4882 lines
1.1 MiB
4882 lines
1.1 MiB
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var DU=Object.create;var QS=Object.defineProperty;var RU=Object.getOwnPropertyDescriptor;var FU=Object.getOwnPropertyNames;var OU=Object.getPrototypeOf,PU=Object.prototype.hasOwnProperty;var Pg=(r=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(r,{get:(t,e)=>(typeof require!="undefined"?require:t)[e]}):r)(function(r){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+r+'" is not supported')});var gr=(r,t)=>()=>(t||r((t={exports:{}}).exports,t),t.exports),Wt=(r,t)=>{for(var e in t)QS(r,e,{get:t[e],enumerable:!0})},LU=(r,t,e,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let o of FU(t))!PU.call(r,o)&&o!==e&&QS(r,o,{get:()=>t[o],enumerable:!(n=RU(t,o))||n.enumerable});return r};var Tl=(r,t,e)=>(e=r!=null?DU(OU(r)):{},LU(t||!r||!r.__esModule?QS(e,"default",{value:r,enumerable:!0}):e,r));var T1=gr((Elt,N1)=>{N1.exports=Ue;var mo=null;try{mo=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(r){}function Ue(r,t,e){this.low=r|0,this.high=t|0,this.unsigned=!!e}Ue.prototype.__isLong__;Object.defineProperty(Ue.prototype,"__isLong__",{value:!0});function Fn(r){return(r&&r.__isLong__)===!0}Ue.isLong=Fn;var g1={},x1={};function zu(r,t){var e,n,o;return t?(r>>>=0,(o=0<=r&&r<256)&&(n=x1[r],n)?n:(e=He(r,(r|0)<0?-1:0,!0),o&&(x1[r]=e),e)):(r|=0,(o=-128<=r&&r<128)&&(n=g1[r],n)?n:(e=He(r,r<0?-1:0,!1),o&&(g1[r]=e),e))}Ue.fromInt=zu;function fo(r,t){if(isNaN(r))return t?Mu:ho;if(t){if(r<0)return Mu;if(r>=C1)return v1}else{if(r<=-b1)return Rn;if(r+1>=b1)return S1}return r<0?fo(-r,t).neg():He(r%Vp|0,r/Vp|0,t)}Ue.fromNumber=fo;function He(r,t,e){return new Ue(r,t,e)}Ue.fromBits=He;var Bg=Math.pow;function mv(r,t,e){if(r.length===0)throw Error("empty string");if(r==="NaN"||r==="Infinity"||r==="+Infinity"||r==="-Infinity")return ho;if(typeof t=="number"?(e=t,t=!1):t=!!t,e=e||10,e<2||36<e)throw RangeError("radix");var n;if((n=r.indexOf("-"))>0)throw Error("interior hyphen");if(n===0)return mv(r.substring(1),t,e).neg();for(var o=fo(Bg(e,8)),s=ho,i=0;i<r.length;i+=8){var a=Math.min(8,r.length-i),u=parseInt(r.substring(i,i+a),e);if(a<8){var l=fo(Bg(e,a));s=s.mul(l).add(fo(u))}else s=s.mul(o),s=s.add(fo(u))}return s.unsigned=t,s}Ue.fromString=mv;function Ls(r,t){return typeof r=="number"?fo(r,t):typeof r=="string"?mv(r,t):He(r.low,r.high,typeof t=="boolean"?t:r.unsigned)}Ue.fromValue=Ls;var y1=1<<16,s4=1<<24,Vp=y1*y1,C1=Vp*Vp,b1=C1/2,w1=zu(s4),ho=zu(0);Ue.ZERO=ho;var Mu=zu(0,!0);Ue.UZERO=Mu;var Bp=zu(1);Ue.ONE=Bp;var I1=zu(1,!0);Ue.UONE=I1;var pv=zu(-1);Ue.NEG_ONE=pv;var S1=He(-1,2147483647,!1);Ue.MAX_VALUE=S1;var v1=He(-1,-1,!0);Ue.MAX_UNSIGNED_VALUE=v1;var Rn=He(0,-2147483648,!1);Ue.MIN_VALUE=Rn;var gt=Ue.prototype;gt.toInt=function(){return this.unsigned?this.low>>>0:this.low};gt.toNumber=function(){return this.unsigned?(this.high>>>0)*Vp+(this.low>>>0):this.high*Vp+(this.low>>>0)};gt.toString=function(t){if(t=t||10,t<2||36<t)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(Rn)){var e=fo(t),n=this.div(e),o=n.mul(e).sub(this);return n.toString(t)+o.toInt().toString(t)}else return"-"+this.neg().toString(t);for(var s=fo(Bg(t,6),this.unsigned),i=this,a="";;){var u=i.div(s),l=i.sub(u.mul(s)).toInt()>>>0,c=l.toString(t);if(i=u,i.isZero())return c+a;for(;c.length<6;)c="0"+c;a=""+c+a}};gt.getHighBits=function(){return this.high};gt.getHighBitsUnsigned=function(){return this.high>>>0};gt.getLowBits=function(){return this.low};gt.getLowBitsUnsigned=function(){return this.low>>>0};gt.getNumBitsAbs=function(){if(this.isNegative())return this.eq(Rn)?64:this.neg().getNumBitsAbs();for(var t=this.high!=0?this.high:this.low,e=31;e>0&&(t&1<<e)==0;e--);return this.high!=0?e+33:e+1};gt.isZero=function(){return this.high===0&&this.low===0};gt.eqz=gt.isZero;gt.isNegative=function(){return!this.unsigned&&this.high<0};gt.isPositive=function(){return this.unsigned||this.high>=0};gt.isOdd=function(){return(this.low&1)===1};gt.isEven=function(){return(this.low&1)===0};gt.equals=function(t){return Fn(t)||(t=Ls(t)),this.unsigned!==t.unsigned&&this.high>>>31===1&&t.high>>>31===1?!1:this.high===t.high&&this.low===t.low};gt.eq=gt.equals;gt.notEquals=function(t){return!this.eq(t)};gt.neq=gt.notEquals;gt.ne=gt.notEquals;gt.lessThan=function(t){return this.comp(t)<0};gt.lt=gt.lessThan;gt.lessThanOrEqual=function(t){return this.comp(t)<=0};gt.lte=gt.lessThanOrEqual;gt.le=gt.lessThanOrEqual;gt.greaterThan=function(t){return this.comp(t)>0};gt.gt=gt.greaterThan;gt.greaterThanOrEqual=function(t){return this.comp(t)>=0};gt.gte=gt.greaterThanOrEqual;gt.ge=gt.greaterThanOrEqual;gt.compare=function(t){if(Fn(t)||(t=Ls(t)),this.eq(t))return 0;var e=this.isNegative(),n=t.isNegative();return e&&!n?-1:!e&&n?1:this.unsigned?t.high>>>0>this.high>>>0||t.high===this.high&&t.low>>>0>this.low>>>0?-1:1:this.sub(t).isNegative()?-1:1};gt.comp=gt.compare;gt.negate=function(){return!this.unsigned&&this.eq(Rn)?Rn:this.not().add(Bp)};gt.neg=gt.negate;gt.add=function(t){Fn(t)||(t=Ls(t));var e=this.high>>>16,n=this.high&65535,o=this.low>>>16,s=this.low&65535,i=t.high>>>16,a=t.high&65535,u=t.low>>>16,l=t.low&65535,c=0,p=0,m=0,f=0;return f+=s+l,m+=f>>>16,f&=65535,m+=o+u,p+=m>>>16,m&=65535,p+=n+a,c+=p>>>16,p&=65535,c+=e+i,c&=65535,He(m<<16|f,c<<16|p,this.unsigned)};gt.subtract=function(t){return Fn(t)||(t=Ls(t)),this.add(t.neg())};gt.sub=gt.subtract;gt.multiply=function(t){if(this.isZero())return ho;if(Fn(t)||(t=Ls(t)),mo){var e=mo.mul(this.low,this.high,t.low,t.high);return He(e,mo.get_high(),this.unsigned)}if(t.isZero())return ho;if(this.eq(Rn))return t.isOdd()?Rn:ho;if(t.eq(Rn))return this.isOdd()?Rn:ho;if(this.isNegative())return t.isNegative()?this.neg().mul(t.neg()):this.neg().mul(t).neg();if(t.isNegative())return this.mul(t.neg()).neg();if(this.lt(w1)&&t.lt(w1))return fo(this.toNumber()*t.toNumber(),this.unsigned);var n=this.high>>>16,o=this.high&65535,s=this.low>>>16,i=this.low&65535,a=t.high>>>16,u=t.high&65535,l=t.low>>>16,c=t.low&65535,p=0,m=0,f=0,d=0;return d+=i*c,f+=d>>>16,d&=65535,f+=s*c,m+=f>>>16,f&=65535,f+=i*l,m+=f>>>16,f&=65535,m+=o*c,p+=m>>>16,m&=65535,m+=s*l,p+=m>>>16,m&=65535,m+=i*u,p+=m>>>16,m&=65535,p+=n*c+o*l+s*u+i*a,p&=65535,He(f<<16|d,p<<16|m,this.unsigned)};gt.mul=gt.multiply;gt.divide=function(t){if(Fn(t)||(t=Ls(t)),t.isZero())throw Error("division by zero");if(mo){if(!this.unsigned&&this.high===-2147483648&&t.low===-1&&t.high===-1)return this;var e=(this.unsigned?mo.div_u:mo.div_s)(this.low,this.high,t.low,t.high);return He(e,mo.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?Mu:ho;var n,o,s;if(this.unsigned){if(t.unsigned||(t=t.toUnsigned()),t.gt(this))return Mu;if(t.gt(this.shru(1)))return I1;s=Mu}else{if(this.eq(Rn)){if(t.eq(Bp)||t.eq(pv))return Rn;if(t.eq(Rn))return Bp;var i=this.shr(1);return n=i.div(t).shl(1),n.eq(ho)?t.isNegative()?Bp:pv:(o=this.sub(t.mul(n)),s=n.add(o.div(t)),s)}else if(t.eq(Rn))return this.unsigned?Mu:ho;if(this.isNegative())return t.isNegative()?this.neg().div(t.neg()):this.neg().div(t).neg();if(t.isNegative())return this.div(t.neg()).neg();s=ho}for(o=this;o.gte(t);){n=Math.max(1,Math.floor(o.toNumber()/t.toNumber()));for(var a=Math.ceil(Math.log(n)/Math.LN2),u=a<=48?1:Bg(2,a-48),l=fo(n),c=l.mul(t);c.isNegative()||c.gt(o);)n-=u,l=fo(n,this.unsigned),c=l.mul(t);l.isZero()&&(l=Bp),s=s.add(l),o=o.sub(c)}return s};gt.div=gt.divide;gt.modulo=function(t){if(Fn(t)||(t=Ls(t)),mo){var e=(this.unsigned?mo.rem_u:mo.rem_s)(this.low,this.high,t.low,t.high);return He(e,mo.get_high(),this.unsigned)}return this.sub(this.div(t).mul(t))};gt.mod=gt.modulo;gt.rem=gt.modulo;gt.not=function(){return He(~this.low,~this.high,this.unsigned)};gt.and=function(t){return Fn(t)||(t=Ls(t)),He(this.low&t.low,this.high&t.high,this.unsigned)};gt.or=function(t){return Fn(t)||(t=Ls(t)),He(this.low|t.low,this.high|t.high,this.unsigned)};gt.xor=function(t){return Fn(t)||(t=Ls(t)),He(this.low^t.low,this.high^t.high,this.unsigned)};gt.shiftLeft=function(t){return Fn(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?He(this.low<<t,this.high<<t|this.low>>>32-t,this.unsigned):He(0,this.low<<t-32,this.unsigned)};gt.shl=gt.shiftLeft;gt.shiftRight=function(t){return Fn(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?He(this.low>>>t|this.high<<32-t,this.high>>t,this.unsigned):He(this.high>>t-32,this.high>=0?0:-1,this.unsigned)};gt.shr=gt.shiftRight;gt.shiftRightUnsigned=function(t){if(Fn(t)&&(t=t.toInt()),t&=63,t===0)return this;var e=this.high;if(t<32){var n=this.low;return He(n>>>t|e<<32-t,e>>>t,this.unsigned)}else return t===32?He(e,0,this.unsigned):He(e>>>t-32,0,this.unsigned)};gt.shru=gt.shiftRightUnsigned;gt.shr_u=gt.shiftRightUnsigned;gt.toSigned=function(){return this.unsigned?He(this.low,this.high,!1):this};gt.toUnsigned=function(){return this.unsigned?this:He(this.low,this.high,!0)};gt.toBytes=function(t){return t?this.toBytesLE():this.toBytesBE()};gt.toBytesLE=function(){var t=this.high,e=this.low;return[e&255,e>>>8&255,e>>>16&255,e>>>24,t&255,t>>>8&255,t>>>16&255,t>>>24]};gt.toBytesBE=function(){var t=this.high,e=this.low;return[t>>>24,t>>>16&255,t>>>8&255,t&255,e>>>24,e>>>16&255,e>>>8&255,e&255]};Ue.fromBytes=function(t,e,n){return n?Ue.fromBytesLE(t,e):Ue.fromBytesBE(t,e)};Ue.fromBytesLE=function(t,e){return new Ue(t[0]|t[1]<<8|t[2]<<16|t[3]<<24,t[4]|t[5]<<8|t[6]<<16|t[7]<<24,e)};Ue.fromBytesBE=function(t,e){return new Ue(t[4]<<24|t[5]<<16|t[6]<<8|t[7],t[0]<<24|t[1]<<16|t[2]<<8|t[3],e)}});var iE=gr(()=>{});var aE=gr(()=>{});var u_=gr((l_,r0)=>{(function(r,t,e){function n(a){var u=this,l=i();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=l(" "),u.s1=l(" "),u.s2=l(" "),u.s0-=l(a),u.s0<0&&(u.s0+=1),u.s1-=l(a),u.s1<0&&(u.s1+=1),u.s2-=l(a),u.s2<0&&(u.s2+=1),l=null}function o(a,u){return u.c=a.c,u.s0=a.s0,u.s1=a.s1,u.s2=a.s2,u}function s(a,u){var l=new n(a),c=u&&u.state,p=l.next;return p.int32=function(){return l.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,l),p.state=function(){return o(l,{})}),p}function i(){var a=4022871197,u=function(l){l=String(l);for(var c=0;c<l.length;c++){a+=l.charCodeAt(c);var p=.02519603282416938*a;a=p>>>0,p-=a,p*=a,a=p>>>0,p-=a,a+=p*4294967296}return(a>>>0)*23283064365386963e-26};return u}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.alea=s})(l_,typeof r0=="object"&&r0,typeof define=="function"&&define)});var p_=gr((c_,n0)=>{(function(r,t,e){function n(i){var a=this,u="";a.x=0,a.y=0,a.z=0,a.w=0,a.next=function(){var c=a.x^a.x<<11;return a.x=a.y,a.y=a.z,a.z=a.w,a.w^=a.w>>>19^c^c>>>8},i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor128=s})(c_,typeof n0=="object"&&n0,typeof define=="function"&&define)});var f_=gr((m_,o0)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.x^a.x>>>2;return a.x=a.y,a.y=a.z,a.z=a.w,a.w=a.v,(a.d=a.d+362437|0)+(a.v=a.v^a.v<<4^(c^c<<1))|0},a.x=0,a.y=0,a.z=0,a.w=0,a.v=0,i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,l==u.length&&(a.d=a.x<<10^a.x>>>4),a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a.v=i.v,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorwow=s})(m_,typeof o0=="object"&&o0,typeof define=="function"&&define)});var h_=gr((d_,s0)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.x,c=a.i,p,m,f;return p=l[c],p^=p>>>7,m=p^p<<24,p=l[c+1&7],m^=p^p>>>10,p=l[c+3&7],m^=p^p>>>3,p=l[c+4&7],m^=p^p<<7,p=l[c+7&7],p=p^p<<13,m^=p^p<<9,l[c]=m,a.i=c+1&7,m};function u(l,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],l.x=f,l.i=0,p=256;p>0;--p)l.next()}u(a,i)}function o(i,a){return a.x=i.x.slice(),a.i=i.i,a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.x&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorshift7=s})(d_,typeof s0=="object"&&s0,typeof define=="function"&&define)});var x_=gr((g_,i0)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.w,c=a.X,p=a.i,m,f;return a.w=l=l+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,a.i=p,f+(l^l>>>16)|0};function u(l,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;l.w=h,l.X=g,l.i=f}u(a,i)}function o(i,a){return a.i=i.i,a.w=i.w,a.X=i.X.slice(),a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.X&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor4096=s})(g_,typeof i0=="object"&&i0,typeof define=="function"&&define)});var b_=gr((y_,a0)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.b,p=a.c,m=a.d,f=a.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,a.b=c=c<<20^c>>>12^p,a.c=p=p-m|0,a.d=m<<16^p>>>16^f,a.a=f-c|0},a.a=0,a.b=0,a.c=-1640531527,a.d=1367130551,i===Math.floor(i)?(a.a=i/4294967296|0,a.b=i|0):u+=i;for(var l=0;l<u.length+20;l++)a.b^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.a=i.a,a.b=i.b,a.c=i.c,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.tychei=s})(y_,typeof a0=="object"&&a0,typeof define=="function"&&define)});var w_=gr(()=>{});var I_=gr((C_,Yx)=>{(function(r,t,e){var n=256,o=6,s=52,i="random",a=e.pow(n,o),u=e.pow(2,s),l=u*2,c=n-1,p;function m(w,C,N){var _=[];C=C==!0?{entropy:!0}:C||{};var A=g(h(C.entropy?[w,b(t)]:w==null?x():w,3),_),$=new f(_),F=function(){for(var P=$.g(o),V=a,G=0;P<u;)P=(P+G)*n,V*=n,G=$.g(1);for(;P>=l;)P/=2,V/=2,G>>>=1;return(P+G)/V};return F.int32=function(){return $.g(4)|0},F.quick=function(){return $.g(4)/4294967296},F.double=F,g(b($.S),t),(C.pass||N||function(P,V,G,W){return W&&(W.S&&d(W,$),P.state=function(){return d($,{})}),G?(e[i]=P,V):P})(F,A,"global"in C?C.global:this==e,C.state)}function f(w){var C,N=w.length,_=this,A=0,$=_.i=_.j=0,F=_.S=[];for(N||(w=[N++]);A<n;)F[A]=A++;for(A=0;A<n;A++)F[A]=F[$=c&$+w[A%N]+(C=F[A])],F[$]=C;(_.g=function(P){for(var V,G=0,W=_.i,q=_.j,H=_.S;P--;)V=H[W=c&W+1],G=G*n+H[c&(H[W]=H[q=c&q+V])+(H[q]=V)];return _.i=W,_.j=q,G})(n)}function d(w,C){return C.i=w.i,C.j=w.j,C.S=w.S.slice(),C}function h(w,C){var N=[],_=typeof w,A;if(C&&_=="object")for(A in w)try{N.push(h(w[A],C-1))}catch($){}return N.length?N:_=="string"?w:w+"\0"}function g(w,C){for(var N=w+"",_,A=0;A<N.length;)C[c&A]=c&(_^=C[c&A]*19)+N.charCodeAt(A++);return b(C)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(_){var C=r.navigator,N=C&&C.plugins;return[+new Date,r,N,r.screen,b(t)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),t),typeof Yx=="object"&&Yx.exports){Yx.exports=m;try{p=w_()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):e["seed"+i]=m})(typeof self!="undefined"?self:C_,[],Math)});var fh=gr((fNt,S_)=>{var lj=u_(),uj=p_(),cj=f_(),pj=h_(),mj=x_(),fj=b_(),Ju=I_();Ju.alea=lj;Ju.xor128=uj;Ju.xorwow=cj;Ju.xorshift7=pj;Ju.xor4096=mj;Ju.tychei=fj;S_.exports=Ju});var gN=gr(()=>{});var Zb=gr(()=>{});var ig=gr(()=>{});var BW=gr(()=>{});var VW=gr(()=>{});var GW=gr(()=>{});var WW=gr((fI,Ok)=>{var Fk=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(t){t=t||{};function e(){return st.buffer!=jt&&qe(st.buffer),ke}function n(){return st.buffer!=jt&&qe(st.buffer),fe}function o(){return st.buffer!=jt&&qe(st.buffer),Ae}function s(){return st.buffer!=jt&&qe(st.buffer),_n}function i(){return st.buffer!=jt&&qe(st.buffer),or}function a(){return st.buffer!=jt&&qe(st.buffer),Hn}function u(){return st.buffer!=jt&&qe(st.buffer),Lr}var l=typeof t!="undefined"?t:{},c,p;l.ready=new Promise(function(L,U){c=L,p=U});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var f=Object.assign({},l),d=[],h="./this.program",g=(L,U)=>{throw U},x=typeof window=="object",b=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=l.ENVIRONMENT_IS_PTHREAD||!1,N="";function _(L){return l.locateFile?l.locateFile(L,N):N+L}var A,$,F,P;function V(L){if(L instanceof Ru)return;Y("exiting due to exception: "+L)}if(w){b?N=ig().dirname(N)+"/":N=__dirname+"/";var G,W;typeof Pg=="function"&&(G=Zb(),W=ig()),A=(U,ut)=>(U=W.normalize(U),G.readFileSync(U,ut?void 0:"utf8")),F=U=>{var ut=A(U,!0);return ut.buffer||(ut=new Uint8Array(ut)),ut},$=(U,ut,xt)=>{U=W.normalize(U),G.readFile(U,function(Dt,ie){Dt?xt(Dt):ut(ie.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(U){if(!(U instanceof Ru))throw U}),process.on("unhandledRejection",function(U){throw U}),g=(U,ut)=>{if(Mo())throw process.exitCode=U,ut;V(ut),process.exit(U)},l.inspect=function(){return"[Emscripten Module object]"};let L;try{L=BW()}catch(U){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),U}global.Worker=L.Worker}else(x||b)&&(b?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.replace(/[?#].*/,"").lastIndexOf("/")+1):N="",w||(A=L=>{var U=new XMLHttpRequest;return U.open("GET",L,!1),U.send(null),U.responseText},b&&(F=L=>{var U=new XMLHttpRequest;return U.open("GET",L,!1),U.responseType="arraybuffer",U.send(null),new Uint8Array(U.response)}),$=(L,U,ut)=>{var xt=new XMLHttpRequest;xt.open("GET",L,!0),xt.responseType="arraybuffer",xt.onload=()=>{if(xt.status==200||xt.status==0&&xt.response){U(xt.response);return}ut()},xt.onerror=ut,xt.send(null)}),P=L=>document.title=L);w&&typeof performance=="undefined"&&(global.performance=VW().performance);var q=console.log.bind(console),H=console.warn.bind(console);w&&(q=L=>G.writeSync(1,L+`
|
|
`),H=L=>G.writeSync(2,L+`
|
|
`));var j=l.print||q,Y=l.printErr||H;Object.assign(l,f),f=null,l.arguments&&(d=l.arguments),l.thisProgram&&(h=l.thisProgram),l.quit&&(g=l.quit);var Z=4,et=Atomics.load,rt=Atomics.store,ot=Atomics.compareExchange,at;l.wasmBinary&&(at=l.wasmBinary);var nt=l.noExitRuntime||!0;typeof WebAssembly!="object"&&Yc("no native wasm support detected");var st,dt,ht=!1,bt;function kt(L,U){L||Yc(U)}var _t=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Vt(L,U,ut){for(var xt=U+ut,Dt=U;L[Dt]&&!(Dt>=xt);)++Dt;if(Dt-U>16&&L.buffer&&_t)return _t.decode(L.buffer instanceof SharedArrayBuffer?L.slice(U,Dt):L.subarray(U,Dt));for(var ie="";U<Dt;){var Gt=L[U++];if(!(Gt&128)){ie+=String.fromCharCode(Gt);continue}var Xt=L[U++]&63;if((Gt&224)==192){ie+=String.fromCharCode((Gt&31)<<6|Xt);continue}var hr=L[U++]&63;if((Gt&240)==224?Gt=(Gt&15)<<12|Xt<<6|hr:Gt=(Gt&7)<<18|Xt<<12|hr<<6|L[U++]&63,Gt<65536)ie+=String.fromCharCode(Gt);else{var Xn=Gt-65536;ie+=String.fromCharCode(55296|Xn>>10,56320|Xn&1023)}}return ie}function Zt(L,U){return L?Vt(n(),L,U):""}function ce(L,U,ut,xt){if(!(xt>0))return 0;for(var Dt=ut,ie=ut+xt-1,Gt=0;Gt<L.length;++Gt){var Xt=L.charCodeAt(Gt);if(Xt>=55296&&Xt<=57343){var hr=L.charCodeAt(++Gt);Xt=65536+((Xt&1023)<<10)|hr&1023}if(Xt<=127){if(ut>=ie)break;U[ut++]=Xt}else if(Xt<=2047){if(ut+1>=ie)break;U[ut++]=192|Xt>>6,U[ut++]=128|Xt&63}else if(Xt<=65535){if(ut+2>=ie)break;U[ut++]=224|Xt>>12,U[ut++]=128|Xt>>6&63,U[ut++]=128|Xt&63}else{if(ut+3>=ie)break;U[ut++]=240|Xt>>18,U[ut++]=128|Xt>>12&63,U[ut++]=128|Xt>>6&63,U[ut++]=128|Xt&63}}return U[ut]=0,ut-Dt}function he(L,U,ut){return ce(L,n(),U,ut)}var jt,ke,fe,Ae,We,_n,or,Hn,Lr;C&&(jt=l.buffer);function qe(L){jt=L,l.HEAP8=ke=new Int8Array(L),l.HEAP16=Ae=new Int16Array(L),l.HEAP32=_n=new Int32Array(L),l.HEAPU8=fe=new Uint8Array(L),l.HEAPU16=We=new Uint16Array(L),l.HEAPU32=or=new Uint32Array(L),l.HEAPF32=Hn=new Float32Array(L),l.HEAPF64=Lr=new Float64Array(L)}var Mr=l.INITIAL_MEMORY||16777216;if(C)st=l.wasmMemory,jt=l.buffer;else if(l.wasmMemory)st=l.wasmMemory;else if(st=new WebAssembly.Memory({initial:Mr/65536,maximum:32768,shared:!0}),!(st.buffer instanceof SharedArrayBuffer))throw Y("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");st&&(jt=st.buffer),Mr=jt.byteLength,qe(jt);var zr,qn=[],Kn=[],Xr=[],Zi=!1;function Mo(){return nt}function Il(){if(l.preRun)for(typeof l.preRun=="function"&&(l.preRun=[l.preRun]);l.preRun.length;)Rd(l.preRun.shift());Md(qn)}function Tr(){Zi=!0,!C&&Md(Kn)}function Ji(){if(!C){if(l.postRun)for(typeof l.postRun=="function"&&(l.postRun=[l.postRun]);l.postRun.length;)Gk(l.postRun.shift());Md(Xr)}}function Rd(L){qn.unshift(L)}function Fd(L){Kn.unshift(L)}function Gk(L){Xr.unshift(L)}var Sl=0,Xc=null,Qi=null;function Wk(L){Sl++,l.monitorRunDependencies&&l.monitorRunDependencies(Sl)}function Uk(L){if(Sl--,l.monitorRunDependencies&&l.monitorRunDependencies(Sl),Sl==0&&(Xc!==null&&(clearInterval(Xc),Xc=null),Qi)){var U=Qi;Qi=null,U()}}function Yc(L){C?postMessage({cmd:"onAbort",arg:L}):l.onAbort&&l.onAbort(L),L="Aborted("+L+")",Y(L),ht=!0,bt=1,L+=". Build with -sASSERTIONS for more info.";var U=new WebAssembly.RuntimeError(L);throw p(U),U}var gI="data:application/octet-stream;base64,";function pg(L){return L.startsWith(gI)}function Od(L){return L.startsWith("file://")}var en;en="tfjs-backend-wasm-threaded-simd.wasm",pg(en)||(en=_(en));function mg(L){try{if(L==en&&at)return new Uint8Array(at);if(F)return F(L);throw"both async and sync fetching of the wasm failed"}catch(U){Yc(U)}}function xI(){if(!at&&(x||b)){if(typeof fetch=="function"&&!Od(en))return fetch(en,{credentials:"same-origin"}).then(function(L){if(!L.ok)throw"failed to load wasm binary file at '"+en+"'";return L.arrayBuffer()}).catch(function(){return mg(en)});if($)return new Promise(function(L,U){$(en,function(ut){L(new Uint8Array(ut))},U)})}return Promise.resolve().then(function(){return mg(en)})}function yI(){var L={env:vg,wasi_snapshot_preview1:vg};function U(Gt,Xt){var hr=Gt.exports;if(l.asm=hr,EI(l.asm._emscripten_tls_init),zr=l.asm.__indirect_function_table,Fd(l.asm.__wasm_call_ctors),dt=Xt,!C){var Xn=Kt.unusedWorkers.length;Kt.unusedWorkers.forEach(function(ea){Kt.loadWasmModuleToWorker(ea,function(){--Xn||Uk("wasm-instantiate")})})}}C||Wk("wasm-instantiate");function ut(Gt){U(Gt.instance,Gt.module)}function xt(Gt){return xI().then(function(Xt){return WebAssembly.instantiate(Xt,L)}).then(function(Xt){return Xt}).then(Gt,function(Xt){Y("failed to asynchronously prepare wasm: "+Xt),Yc(Xt)})}function Dt(){return!at&&typeof WebAssembly.instantiateStreaming=="function"&&!pg(en)&&!Od(en)&&!w&&typeof fetch=="function"?fetch(en,{credentials:"same-origin"}).then(function(Gt){var Xt=WebAssembly.instantiateStreaming(Gt,L);return Xt.then(ut,function(hr){return Y("wasm streaming compile failed: "+hr),Y("falling back to ArrayBuffer instantiation"),xt(ut)})}):xt(ut)}if(l.instantiateWasm)try{var ie=l.instantiateWasm(L,U);return ie}catch(Gt){Y("Module.instantiateWasm callback failed with error: "+Gt),p(Gt)}return Dt().catch(p),{}}var bI,Hk,wI={};function Ru(L){this.name="ExitStatus",this.message="Program terminated with exit("+L+")",this.status=L}function CI(L){var U=Kt.pthreads[L];delete Kt.pthreads[L],U.terminate(),YS(L),Kt.runningWorkers.splice(Kt.runningWorkers.indexOf(U),1),U.pthread_ptr=0}function II(L){var U=Kt.pthreads[L];U.postMessage({cmd:"cancel"})}function Pd(L){var U=Kt.pthreads[L];kt(U),Kt.returnWorkerToPool(U)}function fg(L){var U=Kt.getNewWorker();if(!U)return 6;Kt.runningWorkers.push(U),Kt.pthreads[L.pthread_ptr]=U,U.pthread_ptr=L.pthread_ptr;var ut={cmd:"run",start_routine:L.startRoutine,arg:L.arg,pthread_ptr:L.pthread_ptr};return U.runPthread=()=>{ut.time=performance.now(),U.postMessage(ut,L.transferList)},U.loaded&&(U.runPthread(),delete U.runPthread),0}var dg={varargs:void 0,get:function(){dg.varargs+=4;var L=s()[dg.varargs-4>>2];return L},getStr:function(L){var U=Zt(L);return U}};function Ld(L){if(C)return vl(1,1,L);bt=L,Mo()||(Kt.terminateAllThreads(),l.onExit&&l.onExit(L),ht=!0),g(L,new Ru(L))}function qk(L,U){if(bt=L,!U&&C)throw gg(L),"unwind";Ld(L)}var hg=qk;function SI(L){if(L instanceof Ru||L=="unwind")return bt;g(1,L)}var Kt={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){C?Kt.initWorker():Kt.initMainThread()},initMainThread:function(){for(var L=8;L--;)Kt.allocateUnusedWorker()},initWorker:function(){nt=!1},setExitStatus:function(L){bt=L},terminateAllThreads:function(){for(var L of Object.values(Kt.pthreads))Kt.returnWorkerToPool(L);for(var L of Kt.unusedWorkers)L.terminate();Kt.unusedWorkers=[]},returnWorkerToPool:function(L){var U=L.pthread_ptr;delete Kt.pthreads[U],Kt.unusedWorkers.push(L),Kt.runningWorkers.splice(Kt.runningWorkers.indexOf(L),1),L.pthread_ptr=0,YS(U)},receiveObjectTransfer:function(L){},threadInitTLS:function(){Kt.tlsInitFunctions.forEach(L=>L())},loadWasmModuleToWorker:function(L,U){L.onmessage=ut=>{var xt=ut.data,Dt=xt.cmd;if(L.pthread_ptr&&(Kt.currentProxiedOperationCallerThread=L.pthread_ptr),xt.targetThread&&xt.targetThread!=Ag()){var ie=Kt.pthreads[xt.targetThread];ie?ie.postMessage(xt,xt.transferList):Y('Internal error! Worker sent a message "'+Dt+'" to target pthread '+xt.targetThread+", but that thread no longer exists!"),Kt.currentProxiedOperationCallerThread=void 0;return}Dt==="processProxyingQueue"?zd(xt.queue):Dt==="spawnThread"?fg(xt):Dt==="cleanupThread"?Pd(xt.thread):Dt==="killThread"?CI(xt.thread):Dt==="cancelThread"?II(xt.thread):Dt==="loaded"?(L.loaded=!0,U&&U(L),L.runPthread&&(L.runPthread(),delete L.runPthread)):Dt==="print"?j("Thread "+xt.threadId+": "+xt.text):Dt==="printErr"?Y("Thread "+xt.threadId+": "+xt.text):Dt==="alert"?alert("Thread "+xt.threadId+": "+xt.text):xt.target==="setimmediate"?L.postMessage(xt):Dt==="onAbort"?l.onAbort&&l.onAbort(xt.arg):Dt&&Y("worker sent an unknown command "+Dt),Kt.currentProxiedOperationCallerThread=void 0},L.onerror=ut=>{var xt="worker sent an error!";throw Y(xt+" "+ut.filename+":"+ut.lineno+": "+ut.message),ut},w&&(L.on("message",function(ut){L.onmessage({data:ut})}),L.on("error",function(ut){L.onerror(ut)}),L.on("detachedExit",function(){})),L.postMessage({cmd:"load",urlOrBlob:l.mainScriptUrlOrBlob||r,wasmMemory:st,wasmModule:dt})},allocateUnusedWorker:function(){var L=_("tfjs-backend-wasm-threaded-simd.worker.js");Kt.unusedWorkers.push(new Worker(L))},getNewWorker:function(){return Kt.unusedWorkers.length==0&&(Kt.allocateUnusedWorker(),Kt.loadWasmModuleToWorker(Kt.unusedWorkers[0])),Kt.unusedWorkers.pop()}};l.PThread=Kt;function Md(L){for(;L.length>0;)L.shift()(l)}function vI(L){var U=ZS(),ut=L();return $g(U),ut}function Kk(L){return L}function jk(L){var U=/\b_Z[\w\d_]+/g;return L.replace(U,function(ut){var xt=ut;return ut===xt?ut:xt+" ["+ut+"]"})}function NI(){var L=Ag(),U=s()[L+44>>2],ut=s()[L+48>>2],xt=U-ut;e1(U,xt),$g(U)}l.establishStackSpace=NI;function gg(L){if(C)return vl(2,0,L);try{hg(L)}catch(U){SI(U)}}var Zc=[];function TI(L){var U=Zc[L];return U||(L>=Zc.length&&(Zc.length=L+1),Zc[L]=U=zr.get(L)),U}function kI(L,U){var ut=TI(L)(U);Mo()?Kt.setExitStatus(ut):t1(ut)}l.invokeEntryPoint=kI;function Xk(){var L=new Error;if(!L.stack){try{throw new Error}catch(U){L=U}if(!L.stack)return"(no stack trace available)"}return L.stack.toString()}function EI(L){Kt.tlsInitFunctions.push(L)}function _I(L,U){e().set(L,U)}function AI(L){Zk(L,!b,1,!x),Kt.threadInitTLS()}function $I(L){C?postMessage({cmd:"cleanupThread",thread:L}):Pd(L)}function xg(L,U,ut,xt){return C?vl(3,1,L,U,ut,xt):yg(L,U,ut,xt)}function yg(L,U,ut,xt){if(typeof SharedArrayBuffer=="undefined")return Y("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Dt=[],ie=0;if(C&&(Dt.length===0||ie))return xg(L,U,ut,xt);if(ie)return ie;var Gt={startRoutine:ut,pthread_ptr:L,arg:xt,transferList:Dt};return C?(Gt.cmd="spawnThread",postMessage(Gt,Dt),0):fg(Gt)}function DI(){return 2097152}var RI=!0;function FI(){return RI}function zd(L){Atomics.store(s(),L>>2,1),Ag()&&Qk(L),Atomics.compareExchange(s(),L>>2,1,0)}l.executeNotifiedProxyingQueue=zd;function OI(L,U,ut,xt){if(L==U)setTimeout(()=>zd(xt));else if(C)postMessage({targetThread:L,cmd:"processProxyingQueue",queue:xt});else{var Dt=Kt.pthreads[L];if(!Dt)return;Dt.postMessage({cmd:"processProxyingQueue",queue:xt})}return 1}function PI(L,U,ut){return-1}function LI(){Yc("")}function Fu(L){Fu.shown||(Fu.shown={}),Fu.shown[L]||(Fu.shown[L]=1,w&&(L="warning: "+L),Y(L))}function MI(){w||b||Fu("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function zI(){return Date.now()}function bg(){return 2147483648}function BI(){return bg()}var Jc;w?Jc=()=>{var L=process.hrtime();return L[0]*1e3+L[1]/1e6}:C?Jc=()=>performance.now()-l.__performance_now_clock_drift:Jc=()=>performance.now();function VI(L,U,ut){n().copyWithin(L,U,U+ut)}function GI(){return w?GW().cpus().length:navigator.hardwareConcurrency}function vl(L,U){var ut=arguments.length-2,xt=arguments;return vI(()=>{for(var Dt=ut,ie=Dg(Dt*8),Gt=ie>>3,Xt=0;Xt<ut;Xt++){var hr=xt[2+Xt];u()[Gt+Xt]=hr}return Jk(L,Dt,ie,U)})}var Bd=[];function WI(L,U,ut){Bd.length=U;for(var xt=ut>>3,Dt=0;Dt<U;Dt++)Bd[Dt]=u()[xt+Dt];var ie=L<0,Gt=ie?wI[-L-1]:ZI[L];return Gt.apply(null,Bd)}function UI(L){try{return st.grow(L-jt.byteLength+65535>>>16),qe(st.buffer),1}catch(U){}}function HI(L){var U=n().length;if(L=L>>>0,L<=U)return!1;var ut=bg();if(L>ut)return!1;let xt=(hr,Xn)=>hr+(Xn-hr%Xn)%Xn;for(var Dt=1;Dt<=4;Dt*=2){var ie=U*(1+.2/Dt);ie=Math.min(ie,L+100663296);var Gt=Math.min(ut,xt(Math.max(L,ie),65536)),Xt=UI(Gt);if(Xt)return!0}return!1}function qI(){throw"unwind"}function wg(L){return C?vl(4,1,L):52}function Cg(L,U,ut,xt,Dt){return C?vl(5,1,L,U,ut,xt,Dt):70}var KI=[null,[],[]];function jI(L,U){var ut=KI[L];U===0||U===10?((L===1?j:Y)(Vt(ut,0)),ut.length=0):ut.push(U)}function Ig(L,U,ut,xt){if(C)return vl(6,1,L,U,ut,xt);for(var Dt=0,ie=0;ie<ut;ie++){var Gt=i()[U>>2],Xt=i()[U+4>>2];U+=8;for(var hr=0;hr<Xt;hr++)jI(L,n()[Gt+hr]);Dt+=Xt}return i()[xt>>2]=Dt,0}function Sg(L){var U=l["_"+L];return U}function XI(L,U,ut,xt,Dt){var ie={string:An=>{var rp=0;if(An!=null&&An!==0){var o1=(An.length<<2)+1;rp=Dg(o1),he(An,rp,o1)}return rp},array:An=>{var rp=Dg(An.length);return _I(An,rp),rp}};function Gt(An){return U==="string"?Zt(An):U==="boolean"?Boolean(An):An}var Xt=Sg(L),hr=[],Xn=0;if(xt)for(var ea=0;ea<xt.length;ea++){var n1=ie[ut[ea]];n1?(Xn===0&&(Xn=ZS()),hr[ea]=n1(xt[ea])):hr[ea]=xt[ea]}var JS=Xt.apply(null,hr);function $U(An){return Xn!==0&&$g(Xn),Gt(An)}return JS=$U(JS),JS}function YI(L,U,ut,xt){ut=ut||[];var Dt=ut.every(Gt=>Gt==="number"||Gt==="boolean"),ie=U!=="string";return ie&&Dt&&!xt?Sg(L):function(){return XI(L,U,ut,arguments,xt)}}Kt.init();var ZI=[null,Ld,gg,xg,wg,Cg,Ig],vg={__emscripten_init_main_thread_js:AI,__emscripten_thread_cleanup:$I,__pthread_create_js:yg,_emscripten_default_pthread_stack_size:DI,_emscripten_get_now_is_monotonic:FI,_emscripten_notify_task_queue:OI,_emscripten_set_offscreencanvas_size:PI,abort:LI,emscripten_check_blocking_allowed:MI,emscripten_date_now:zI,emscripten_get_heap_max:BI,emscripten_get_now:Jc,emscripten_memcpy_big:VI,emscripten_num_logical_cores:GI,emscripten_receive_on_main_thread_js:WI,emscripten_resize_heap:HI,emscripten_unwind_to_js_event_loop:qI,exit:hg,fd_close:wg,fd_seek:Cg,fd_write:Ig,memory:st||l.wasmMemory},Yk=yI(),JI=l.___wasm_call_ctors=function(){return(JI=l.___wasm_call_ctors=l.asm.__wasm_call_ctors).apply(null,arguments)},QI=l._init=function(){return(QI=l._init=l.asm.init).apply(null,arguments)},tS=l._init_with_threads_count=function(){return(tS=l._init_with_threads_count=l.asm.init_with_threads_count).apply(null,arguments)},eS=l._get_threads_count=function(){return(eS=l._get_threads_count=l.asm.get_threads_count).apply(null,arguments)},rS=l._register_tensor=function(){return(rS=l._register_tensor=l.asm.register_tensor).apply(null,arguments)},nS=l._dispose_data=function(){return(nS=l._dispose_data=l.asm.dispose_data).apply(null,arguments)},oS=l._dispose=function(){return(oS=l._dispose=l.asm.dispose).apply(null,arguments)},sS=l._Abs=function(){return(sS=l._Abs=l.asm.Abs).apply(null,arguments)},iS=l._Add=function(){return(iS=l._Add=l.asm.Add).apply(null,arguments)},aS=l._AddN=function(){return(aS=l._AddN=l.asm.AddN).apply(null,arguments)},lS=l._All=function(){return(lS=l._All=l.asm.All).apply(null,arguments)},uS=l._Any=function(){return(uS=l._Any=l.asm.Any).apply(null,arguments)},cS=l._ArgMax=function(){return(cS=l._ArgMax=l.asm.ArgMax).apply(null,arguments)},pS=l._AvgPool=function(){return(pS=l._AvgPool=l.asm.AvgPool).apply(null,arguments)},mS=l._BatchMatMul=function(){return(mS=l._BatchMatMul=l.asm.BatchMatMul).apply(null,arguments)},fS=l._Ceil=function(){return(fS=l._Ceil=l.asm.Ceil).apply(null,arguments)},dS=l._ClipByValue=function(){return(dS=l._ClipByValue=l.asm.ClipByValue).apply(null,arguments)},hS=l._Conv2D=function(){return(hS=l._Conv2D=l.asm.Conv2D).apply(null,arguments)},gS=l._Conv2DBackpropInput=function(){return(gS=l._Conv2DBackpropInput=l.asm.Conv2DBackpropInput).apply(null,arguments)},xS=l._Cos=function(){return(xS=l._Cos=l.asm.Cos).apply(null,arguments)},yS=l._Cosh=function(){return(yS=l._Cosh=l.asm.Cosh).apply(null,arguments)},bS=l._CropAndResize=function(){return(bS=l._CropAndResize=l.asm.CropAndResize).apply(null,arguments)},wS=l._Cumprod=function(){return(wS=l._Cumprod=l.asm.Cumprod).apply(null,arguments)},CS=l._Cumsum=function(){return(CS=l._Cumsum=l.asm.Cumsum).apply(null,arguments)},IS=l._DepthToSpace=function(){return(IS=l._DepthToSpace=l.asm.DepthToSpace).apply(null,arguments)},SS=l._DepthwiseConv2dNative=function(){return(SS=l._DepthwiseConv2dNative=l.asm.DepthwiseConv2dNative).apply(null,arguments)},vS=l._Elu=function(){return(vS=l._Elu=l.asm.Elu).apply(null,arguments)},NS=l._Equal=function(){return(NS=l._Equal=l.asm.Equal).apply(null,arguments)},TS=l._Exp=function(){return(TS=l._Exp=l.asm.Exp).apply(null,arguments)},kS=l._FlipLeftRight=function(){return(kS=l._FlipLeftRight=l.asm.FlipLeftRight).apply(null,arguments)},ES=l._Floor=function(){return(ES=l._Floor=l.asm.Floor).apply(null,arguments)},_S=l._FloorDiv=function(){return(_S=l._FloorDiv=l.asm.FloorDiv).apply(null,arguments)},AS=l._FusedBatchNorm=function(){return(AS=l._FusedBatchNorm=l.asm.FusedBatchNorm).apply(null,arguments)},$S=l._FusedConv2D=function(){return($S=l._FusedConv2D=l.asm.FusedConv2D).apply(null,arguments)},DS=l._FusedDepthwiseConv2D=function(){return(DS=l._FusedDepthwiseConv2D=l.asm.FusedDepthwiseConv2D).apply(null,arguments)},RS=l._Gather=function(){return(RS=l._Gather=l.asm.Gather).apply(null,arguments)},FS=l._GatherNd=function(){return(FS=l._GatherNd=l.asm.GatherNd).apply(null,arguments)},OS=l._Greater=function(){return(OS=l._Greater=l.asm.Greater).apply(null,arguments)},PS=l._GreaterEqual=function(){return(PS=l._GreaterEqual=l.asm.GreaterEqual).apply(null,arguments)},LS=l._LeakyRelu=function(){return(LS=l._LeakyRelu=l.asm.LeakyRelu).apply(null,arguments)},MS=l._Less=function(){return(MS=l._Less=l.asm.Less).apply(null,arguments)},zS=l._LessEqual=function(){return(zS=l._LessEqual=l.asm.LessEqual).apply(null,arguments)},BS=l._Log=function(){return(BS=l._Log=l.asm.Log).apply(null,arguments)},VS=l._LogicalAnd=function(){return(VS=l._LogicalAnd=l.asm.LogicalAnd).apply(null,arguments)},GS=l._LogicalNot=function(){return(GS=l._LogicalNot=l.asm.LogicalNot).apply(null,arguments)},WS=l._LogicalOr=function(){return(WS=l._LogicalOr=l.asm.LogicalOr).apply(null,arguments)},US=l._LogicalXor=function(){return(US=l._LogicalXor=l.asm.LogicalXor).apply(null,arguments)},HS=l._Max=function(){return(HS=l._Max=l.asm.Max).apply(null,arguments)},Ng=l._MaxPool=function(){return(Ng=l._MaxPool=l.asm.MaxPool).apply(null,arguments)},Tg=l._Maximum=function(){return(Tg=l._Maximum=l.asm.Maximum).apply(null,arguments)},Vd=l._Mean=function(){return(Vd=l._Mean=l.asm.Mean).apply(null,arguments)},qS=l._Min=function(){return(qS=l._Min=l.asm.Min).apply(null,arguments)},KS=l._Minimum=function(){return(KS=l._Minimum=l.asm.Minimum).apply(null,arguments)},Qc=l._MirrorPad=function(){return(Qc=l._MirrorPad=l.asm.MirrorPad).apply(null,arguments)},kg=l._Multiply=function(){return(kg=l._Multiply=l.asm.Multiply).apply(null,arguments)},tp=l._Neg=function(){return(tp=l._Neg=l.asm.Neg).apply(null,arguments)},ep=l._NonMaxSuppressionV3=function(){return(ep=l._NonMaxSuppressionV3=l.asm.NonMaxSuppressionV3).apply(null,arguments)},jS=l._NonMaxSuppressionV4=function(){return(jS=l._NonMaxSuppressionV4=l.asm.NonMaxSuppressionV4).apply(null,arguments)},K=l._NonMaxSuppressionV5=function(){return(K=l._NonMaxSuppressionV5=l.asm.NonMaxSuppressionV5).apply(null,arguments)},lt=l._NotEqual=function(){return(lt=l._NotEqual=l.asm.NotEqual).apply(null,arguments)},At=l._OneHot=function(){return(At=l._OneHot=l.asm.OneHot).apply(null,arguments)},re=l._PadV2=function(){return(re=l._PadV2=l.asm.PadV2).apply(null,arguments)},Ke=l._Pow=function(){return(Ke=l._Pow=l.asm.Pow).apply(null,arguments)},je=l._Prelu=function(){return(je=l._Prelu=l.asm.Prelu).apply(null,arguments)},ee=l._Prod=function(){return(ee=l._Prod=l.asm.Prod).apply(null,arguments)},te=l._RealDiv=function(){return(te=l._RealDiv=l.asm.RealDiv).apply(null,arguments)},dr=l._Relu=function(){return(dr=l._Relu=l.asm.Relu).apply(null,arguments)},jn=l._Relu6=function(){return(jn=l._Relu6=l.asm.Relu6).apply(null,arguments)},ta=l._ResizeBilinear=function(){return(ta=l._ResizeBilinear=l.asm.ResizeBilinear).apply(null,arguments)},Eg=l._ResizeNearestNeighbor=function(){return(Eg=l._ResizeNearestNeighbor=l.asm.ResizeNearestNeighbor).apply(null,arguments)},Gd=l._Reverse=function(){return(Gd=l._Reverse=l.asm.Reverse).apply(null,arguments)},XS=l._RotateWithOffset=function(){return(XS=l._RotateWithOffset=l.asm.RotateWithOffset).apply(null,arguments)},rn=l._Round=function(){return(rn=l._Round=l.asm.Round).apply(null,arguments)},Nl=l._Rsqrt=function(){return(Nl=l._Rsqrt=l.asm.Rsqrt).apply(null,arguments)},_g=l._ScatterNd=function(){return(_g=l._ScatterNd=l.asm.ScatterNd).apply(null,arguments)},QW=l._SelectV2=function(){return(QW=l._SelectV2=l.asm.SelectV2).apply(null,arguments)},tU=l._Sigmoid=function(){return(tU=l._Sigmoid=l.asm.Sigmoid).apply(null,arguments)},eU=l._Sin=function(){return(eU=l._Sin=l.asm.Sin).apply(null,arguments)},rU=l._Softmax=function(){return(rU=l._Softmax=l.asm.Softmax).apply(null,arguments)},nU=l._SparseFillEmptyRows=function(){return(nU=l._SparseFillEmptyRows=l.asm.SparseFillEmptyRows).apply(null,arguments)},oU=l._SparseReshape=function(){return(oU=l._SparseReshape=l.asm.SparseReshape).apply(null,arguments)},sU=l._SparseSegmentReduction=function(){return(sU=l._SparseSegmentReduction=l.asm.SparseSegmentReduction).apply(null,arguments)},iU=l._Sqrt=function(){return(iU=l._Sqrt=l.asm.Sqrt).apply(null,arguments)},aU=l._Square=function(){return(aU=l._Square=l.asm.Square).apply(null,arguments)},lU=l._SquaredDifference=function(){return(lU=l._SquaredDifference=l.asm.SquaredDifference).apply(null,arguments)},uU=l._Step=function(){return(uU=l._Step=l.asm.Step).apply(null,arguments)},cU=l._StridedSlice=function(){return(cU=l._StridedSlice=l.asm.StridedSlice).apply(null,arguments)},pU=l._Sub=function(){return(pU=l._Sub=l.asm.Sub).apply(null,arguments)},mU=l._Sum=function(){return(mU=l._Sum=l.asm.Sum).apply(null,arguments)},fU=l._Tan=function(){return(fU=l._Tan=l.asm.Tan).apply(null,arguments)},dU=l._Tanh=function(){return(dU=l._Tanh=l.asm.Tanh).apply(null,arguments)},hU=l._Tile=function(){return(hU=l._Tile=l.asm.Tile).apply(null,arguments)},gU=l._TopK=function(){return(gU=l._TopK=l.asm.TopK).apply(null,arguments)},xU=l._Transform=function(){return(xU=l._Transform=l.asm.Transform).apply(null,arguments)},yU=l._Transpose=function(){return(yU=l._Transpose=l.asm.Transpose).apply(null,arguments)},bU=l.__FusedMatMul=function(){return(bU=l.__FusedMatMul=l.asm._FusedMatMul).apply(null,arguments)},wU=l._malloc=function(){return(wU=l._malloc=l.asm.malloc).apply(null,arguments)},CU=l._free=function(){return(CU=l._free=l.asm.free).apply(null,arguments)},IU=l.__emscripten_tls_init=function(){return(IU=l.__emscripten_tls_init=l.asm._emscripten_tls_init).apply(null,arguments)},Ag=l._pthread_self=function(){return(Ag=l._pthread_self=l.asm.pthread_self).apply(null,arguments)},SU=l.___errno_location=function(){return(SU=l.___errno_location=l.asm.__errno_location).apply(null,arguments)},Zk=l.__emscripten_thread_init=function(){return(Zk=l.__emscripten_thread_init=l.asm._emscripten_thread_init).apply(null,arguments)},vU=l.__emscripten_thread_crashed=function(){return(vU=l.__emscripten_thread_crashed=l.asm._emscripten_thread_crashed).apply(null,arguments)},NU=l._emscripten_main_thread_process_queued_calls=function(){return(NU=l._emscripten_main_thread_process_queued_calls=l.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},TU=l._emscripten_main_browser_thread_id=function(){return(TU=l._emscripten_main_browser_thread_id=l.asm.emscripten_main_browser_thread_id).apply(null,arguments)},Jk=l._emscripten_run_in_main_runtime_thread_js=function(){return(Jk=l._emscripten_run_in_main_runtime_thread_js=l.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},kU=l._emscripten_dispatch_to_thread_=function(){return(kU=l._emscripten_dispatch_to_thread_=l.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Qk=l.__emscripten_proxy_execute_task_queue=function(){return(Qk=l.__emscripten_proxy_execute_task_queue=l.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},YS=l.__emscripten_thread_free_data=function(){return(YS=l.__emscripten_thread_free_data=l.asm._emscripten_thread_free_data).apply(null,arguments)},t1=l.__emscripten_thread_exit=function(){return(t1=l.__emscripten_thread_exit=l.asm._emscripten_thread_exit).apply(null,arguments)},e1=l._emscripten_stack_set_limits=function(){return(e1=l._emscripten_stack_set_limits=l.asm.emscripten_stack_set_limits).apply(null,arguments)},ZS=l.stackSave=function(){return(ZS=l.stackSave=l.asm.stackSave).apply(null,arguments)},$g=l.stackRestore=function(){return($g=l.stackRestore=l.asm.stackRestore).apply(null,arguments)},Dg=l.stackAlloc=function(){return(Dg=l.stackAlloc=l.asm.stackAlloc).apply(null,arguments)},EU=l.dynCall_iijjiiii=function(){return(EU=l.dynCall_iijjiiii=l.asm.dynCall_iijjiiii).apply(null,arguments)},_U=l.dynCall_jiji=function(){return(_U=l.dynCall_jiji=l.asm.dynCall_jiji).apply(null,arguments)};l.keepRuntimeAlive=Mo,l.wasmMemory=st,l.cwrap=YI,l.ExitStatus=Ru,l.PThread=Kt;var Rg;Qi=function L(){Rg||r1(),Rg||(Qi=L)};function r1(L){if(L=L||d,Sl>0)return;if(C){c(l),Tr(),postMessage({cmd:"loaded"});return}if(Il(),Sl>0)return;function U(){Rg||(Rg=!0,l.calledRun=!0,!ht&&(Tr(),c(l),l.onRuntimeInitialized&&l.onRuntimeInitialized(),Ji()))}l.setStatus?(l.setStatus("Running..."),setTimeout(function(){setTimeout(function(){l.setStatus("")},1),U()},1)):U()}if(l.preInit)for(typeof l.preInit=="function"&&(l.preInit=[l.preInit]);l.preInit.length>0;)l.preInit.pop()();r1();var Fg;m&&(Fg={uncaughtException:process.listeners("uncaughtException").filter(function(L){return!m.uncaughtException.indexOf(L)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(L){return!m.unhandledRejection.indexOf(L)>-1})});var Og;if(typeof WasmBackendModule!="undefined")Og=WasmBackendModule;else if(typeof t!="undefined")Og=t;else throw new Error("Could not find wasm module in post.js");if(Fg){var AU=Og._dispose;Og._dispose=function(){AU(),Fg.uncaughtException.forEach(function(L){process.removeListener("uncaughtException",L)}),Fg.unhandledRejection.forEach(function(L){process.removeListener("unhandledRejection",L)})}}return t.ready}})();typeof fI=="object"&&typeof Ok=="object"?Ok.exports=Fk:typeof define=="function"&&define.amd?define([],function(){return Fk}):typeof fI=="object"&&(fI.WasmBackendModuleThreadedSimd=Fk)});var HW=gr((G5e,UW)=>{UW.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`});var qW=gr((dI,Lk)=>{var Pk=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(t){t=t||{};var e=typeof t!="undefined"?t:{},n,o;e.ready=new Promise(function(K,lt){n=K,o=lt});var s;typeof process!="undefined"&&process.listeners&&(s={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var i=Object.assign({},e),a=[],u="./this.program",l=(K,lt)=>{throw lt},c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f="";function d(K){return e.locateFile?e.locateFile(K,f):f+K}var h,g,x,b;function w(K){if(K instanceof Xc)return;A("exiting due to exception: "+K)}if(m){p?f=ig().dirname(f)+"/":f=__dirname+"/";var C,N;typeof Pg=="function"&&(C=Zb(),N=ig()),h=(K,lt)=>(K=N.normalize(K),C.readFileSync(K,lt?void 0:"utf8")),x=K=>{var lt=h(K,!0);return lt.buffer||(lt=new Uint8Array(lt)),lt},g=(K,lt,At)=>{K=N.normalize(K),C.readFile(K,function(re,Ke){re?At(re):lt(Ke.buffer)})},process.argv.length>1&&(u=process.argv[1].replace(/\\/g,"/")),a=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof Xc))throw K}),process.on("unhandledRejection",function(K){throw K}),l=(K,lt)=>{if(fe())throw process.exitCode=K,lt;w(lt),process.exit(K)},e.inspect=function(){return"[Emscripten Module object]"}}else(c||p)&&(p?f=self.location.href:typeof document!="undefined"&&document.currentScript&&(f=document.currentScript.src),r&&(f=r),f.indexOf("blob:")!==0?f=f.substr(0,f.replace(/[?#].*/,"").lastIndexOf("/")+1):f="",h=K=>{var lt=new XMLHttpRequest;return lt.open("GET",K,!1),lt.send(null),lt.responseText},p&&(x=K=>{var lt=new XMLHttpRequest;return lt.open("GET",K,!1),lt.responseType="arraybuffer",lt.send(null),new Uint8Array(lt.response)}),g=(K,lt,At)=>{var re=new XMLHttpRequest;re.open("GET",K,!0),re.responseType="arraybuffer",re.onload=()=>{if(re.status==200||re.status==0&&re.response){lt(re.response);return}At()},re.onerror=At,re.send(null)},b=K=>document.title=K);var _=e.print||console.log.bind(console),A=e.printErr||console.warn.bind(console);Object.assign(e,i),i=null,e.arguments&&(a=e.arguments),e.thisProgram&&(u=e.thisProgram),e.quit&&(l=e.quit);var $=4,F;e.wasmBinary&&(F=e.wasmBinary);var P=e.noExitRuntime||!0;typeof WebAssembly!="object"&&Xr("no native wasm support detected");var V,G=!1,W;function q(K,lt){K||Xr(lt)}var H=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function j(K,lt,At){for(var re=lt+At,Ke=lt;K[Ke]&&!(Ke>=re);)++Ke;if(Ke-lt>16&&K.buffer&&H)return H.decode(K.subarray(lt,Ke));for(var je="";lt<Ke;){var ee=K[lt++];if(!(ee&128)){je+=String.fromCharCode(ee);continue}var te=K[lt++]&63;if((ee&224)==192){je+=String.fromCharCode((ee&31)<<6|te);continue}var dr=K[lt++]&63;if((ee&240)==224?ee=(ee&15)<<12|te<<6|dr:ee=(ee&7)<<18|te<<12|dr<<6|K[lt++]&63,ee<65536)je+=String.fromCharCode(ee);else{var jn=ee-65536;je+=String.fromCharCode(55296|jn>>10,56320|jn&1023)}}return je}function Y(K,lt){return K?j(at,K,lt):""}function Z(K,lt,At,re){if(!(re>0))return 0;for(var Ke=At,je=At+re-1,ee=0;ee<K.length;++ee){var te=K.charCodeAt(ee);if(te>=55296&&te<=57343){var dr=K.charCodeAt(++ee);te=65536+((te&1023)<<10)|dr&1023}if(te<=127){if(At>=je)break;lt[At++]=te}else if(te<=2047){if(At+1>=je)break;lt[At++]=192|te>>6,lt[At++]=128|te&63}else if(te<=65535){if(At+2>=je)break;lt[At++]=224|te>>12,lt[At++]=128|te>>6&63,lt[At++]=128|te&63}else{if(At+3>=je)break;lt[At++]=240|te>>18,lt[At++]=128|te>>12&63,lt[At++]=128|te>>6&63,lt[At++]=128|te&63}}return lt[At]=0,At-Ke}function et(K,lt,At){return Z(K,at,lt,At)}var rt,ot,at,nt,st,dt,ht,bt,kt;function _t(K){rt=K,e.HEAP8=ot=new Int8Array(K),e.HEAP16=nt=new Int16Array(K),e.HEAP32=dt=new Int32Array(K),e.HEAPU8=at=new Uint8Array(K),e.HEAPU16=st=new Uint16Array(K),e.HEAPU32=ht=new Uint32Array(K),e.HEAPF32=bt=new Float32Array(K),e.HEAPF64=kt=new Float64Array(K)}var Vt=e.INITIAL_MEMORY||16777216,Zt,ce=[],he=[],jt=[],ke=!1;function fe(){return P}function Ae(){if(e.preRun)for(typeof e.preRun=="function"&&(e.preRun=[e.preRun]);e.preRun.length;)or(e.preRun.shift());Qi(ce)}function We(){ke=!0,Qi(he)}function _n(){if(e.postRun)for(typeof e.postRun=="function"&&(e.postRun=[e.postRun]);e.postRun.length;)Lr(e.postRun.shift());Qi(jt)}function or(K){ce.unshift(K)}function Hn(K){he.unshift(K)}function Lr(K){jt.unshift(K)}var qe=0,Mr=null,zr=null;function qn(K){qe++,e.monitorRunDependencies&&e.monitorRunDependencies(qe)}function Kn(K){if(qe--,e.monitorRunDependencies&&e.monitorRunDependencies(qe),qe==0&&(Mr!==null&&(clearInterval(Mr),Mr=null),zr)){var lt=zr;zr=null,lt()}}function Xr(K){e.onAbort&&e.onAbort(K),K="Aborted("+K+")",A(K),G=!0,W=1,K+=". Build with -sASSERTIONS for more info.";var lt=new WebAssembly.RuntimeError(K);throw o(lt),lt}var Zi="data:application/octet-stream;base64,";function Mo(K){return K.startsWith(Zi)}function Il(K){return K.startsWith("file://")}var Tr;Tr="tfjs-backend-wasm.wasm",Mo(Tr)||(Tr=d(Tr));function Ji(K){try{if(K==Tr&&F)return new Uint8Array(F);if(x)return x(K);throw"both async and sync fetching of the wasm failed"}catch(lt){Xr(lt)}}function Rd(){if(!F&&(c||p)){if(typeof fetch=="function"&&!Il(Tr))return fetch(Tr,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+Tr+"'";return K.arrayBuffer()}).catch(function(){return Ji(Tr)});if(g)return new Promise(function(K,lt){g(Tr,function(At){K(new Uint8Array(At))},lt)})}return Promise.resolve().then(function(){return Ji(Tr)})}function Fd(){var K={env:Ld,wasi_snapshot_preview1:Ld};function lt(ee,te){var dr=ee.exports;e.asm=dr,V=e.asm.memory,_t(V.buffer),Zt=e.asm.__indirect_function_table,Hn(e.asm.__wasm_call_ctors),Kn("wasm-instantiate")}qn("wasm-instantiate");function At(ee){lt(ee.instance)}function re(ee){return Rd().then(function(te){return WebAssembly.instantiate(te,K)}).then(function(te){return te}).then(ee,function(te){A("failed to asynchronously prepare wasm: "+te),Xr(te)})}function Ke(){return!F&&typeof WebAssembly.instantiateStreaming=="function"&&!Mo(Tr)&&!Il(Tr)&&!m&&typeof fetch=="function"?fetch(Tr,{credentials:"same-origin"}).then(function(ee){var te=WebAssembly.instantiateStreaming(ee,K);return te.then(At,function(dr){return A("wasm streaming compile failed: "+dr),A("falling back to ArrayBuffer instantiation"),re(At)})}):re(At)}if(e.instantiateWasm)try{var je=e.instantiateWasm(K,lt);return je}catch(ee){A("Module.instantiateWasm callback failed with error: "+ee),o(ee)}return Ke().catch(o),{}}var Gk,Sl;function Xc(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}function Qi(K){for(;K.length>0;)K.shift()(e)}function Wk(K){return K}function Uk(K){var lt=/\b_Z[\w\d_]+/g;return K.replace(lt,function(At){var re=At;return At===re?At:re+" ["+At+"]"})}function Yc(){var K=new Error;if(!K.stack){try{throw new Error}catch(lt){K=lt}if(!K.stack)return"(no stack trace available)"}return K.stack.toString()}function gI(K,lt){ot.set(K,lt)}function pg(){Xr("")}function Od(){return 2147483648}function en(){return Od()}function mg(K,lt,At){at.copyWithin(K,lt,lt+At)}function xI(K){try{return V.grow(K-rt.byteLength+65535>>>16),_t(V.buffer),1}catch(lt){}}function yI(K){var lt=at.length;K=K>>>0;var At=Od();if(K>At)return!1;let re=(dr,jn)=>dr+(jn-dr%jn)%jn;for(var Ke=1;Ke<=4;Ke*=2){var je=lt*(1+.2/Ke);je=Math.min(je,K+100663296);var ee=Math.min(At,re(Math.max(K,je),65536)),te=xI(ee);if(te)return!0}return!1}var bI={varargs:void 0,get:function(){bI.varargs+=4;var K=dt[bI.varargs-4>>2];return K},getStr:function(K){var lt=Y(K);return lt}};function Hk(K){return 52}function wI(K,lt,At,re,Ke){return 70}var Ru=[null,[],[]];function CI(K,lt){var At=Ru[K];lt===0||lt===10?((K===1?_:A)(j(At,0)),At.length=0):At.push(lt)}function II(K,lt,At,re){for(var Ke=0,je=0;je<At;je++){var ee=ht[lt>>2],te=ht[lt+4>>2];lt+=8;for(var dr=0;dr<te;dr++)CI(K,at[ee+dr]);Ke+=te}return ht[re>>2]=Ke,0}function Pd(K){var lt=e["_"+K];return lt}function fg(K,lt,At,re,Ke){var je={string:rn=>{var Nl=0;if(rn!=null&&rn!==0){var _g=(rn.length<<2)+1;Nl=Vd(_g),et(rn,Nl,_g)}return Nl},array:rn=>{var Nl=Vd(rn.length);return gI(rn,Nl),Nl}};function ee(rn){return lt==="string"?Y(rn):lt==="boolean"?Boolean(rn):rn}var te=Pd(K),dr=[],jn=0;if(re)for(var ta=0;ta<re.length;ta++){var Eg=je[At[ta]];Eg?(jn===0&&(jn=Ng()),dr[ta]=Eg(re[ta])):dr[ta]=re[ta]}var Gd=te.apply(null,dr);function XS(rn){return jn!==0&&Tg(jn),ee(rn)}return Gd=XS(Gd),Gd}function dg(K,lt,At,re){At=At||[];var Ke=At.every(ee=>ee==="number"||ee==="boolean"),je=lt!=="string";return je&&Ke&&!re?Pd(K):function(){return fg(K,lt,At,arguments,re)}}var Ld={abort:pg,emscripten_get_heap_max:en,emscripten_memcpy_big:mg,emscripten_resize_heap:yI,fd_close:Hk,fd_seek:wI,fd_write:II},qk=Fd(),hg=e.___wasm_call_ctors=function(){return(hg=e.___wasm_call_ctors=e.asm.__wasm_call_ctors).apply(null,arguments)},SI=e._init=function(){return(SI=e._init=e.asm.init).apply(null,arguments)},Kt=e._init_with_threads_count=function(){return(Kt=e._init_with_threads_count=e.asm.init_with_threads_count).apply(null,arguments)},Md=e._get_threads_count=function(){return(Md=e._get_threads_count=e.asm.get_threads_count).apply(null,arguments)},vI=e._register_tensor=function(){return(vI=e._register_tensor=e.asm.register_tensor).apply(null,arguments)},Kk=e._dispose_data=function(){return(Kk=e._dispose_data=e.asm.dispose_data).apply(null,arguments)},jk=e._dispose=function(){return(jk=e._dispose=e.asm.dispose).apply(null,arguments)},NI=e._Abs=function(){return(NI=e._Abs=e.asm.Abs).apply(null,arguments)},gg=e._Add=function(){return(gg=e._Add=e.asm.Add).apply(null,arguments)},Zc=e._AddN=function(){return(Zc=e._AddN=e.asm.AddN).apply(null,arguments)},TI=e._All=function(){return(TI=e._All=e.asm.All).apply(null,arguments)},kI=e._Any=function(){return(kI=e._Any=e.asm.Any).apply(null,arguments)},Xk=e._ArgMax=function(){return(Xk=e._ArgMax=e.asm.ArgMax).apply(null,arguments)},EI=e._AvgPool=function(){return(EI=e._AvgPool=e.asm.AvgPool).apply(null,arguments)},_I=e._BatchMatMul=function(){return(_I=e._BatchMatMul=e.asm.BatchMatMul).apply(null,arguments)},AI=e._Ceil=function(){return(AI=e._Ceil=e.asm.Ceil).apply(null,arguments)},$I=e._ClipByValue=function(){return($I=e._ClipByValue=e.asm.ClipByValue).apply(null,arguments)},xg=e._Conv2D=function(){return(xg=e._Conv2D=e.asm.Conv2D).apply(null,arguments)},yg=e._Conv2DBackpropInput=function(){return(yg=e._Conv2DBackpropInput=e.asm.Conv2DBackpropInput).apply(null,arguments)},DI=e._Cos=function(){return(DI=e._Cos=e.asm.Cos).apply(null,arguments)},RI=e._Cosh=function(){return(RI=e._Cosh=e.asm.Cosh).apply(null,arguments)},FI=e._CropAndResize=function(){return(FI=e._CropAndResize=e.asm.CropAndResize).apply(null,arguments)},zd=e._Cumprod=function(){return(zd=e._Cumprod=e.asm.Cumprod).apply(null,arguments)},OI=e._Cumsum=function(){return(OI=e._Cumsum=e.asm.Cumsum).apply(null,arguments)},PI=e._DepthToSpace=function(){return(PI=e._DepthToSpace=e.asm.DepthToSpace).apply(null,arguments)},LI=e._DepthwiseConv2dNative=function(){return(LI=e._DepthwiseConv2dNative=e.asm.DepthwiseConv2dNative).apply(null,arguments)},Fu=e._Elu=function(){return(Fu=e._Elu=e.asm.Elu).apply(null,arguments)},MI=e._Equal=function(){return(MI=e._Equal=e.asm.Equal).apply(null,arguments)},zI=e._Exp=function(){return(zI=e._Exp=e.asm.Exp).apply(null,arguments)},bg=e._FlipLeftRight=function(){return(bg=e._FlipLeftRight=e.asm.FlipLeftRight).apply(null,arguments)},BI=e._Floor=function(){return(BI=e._Floor=e.asm.Floor).apply(null,arguments)},Jc=e._FloorDiv=function(){return(Jc=e._FloorDiv=e.asm.FloorDiv).apply(null,arguments)},VI=e._FusedBatchNorm=function(){return(VI=e._FusedBatchNorm=e.asm.FusedBatchNorm).apply(null,arguments)},GI=e._FusedConv2D=function(){return(GI=e._FusedConv2D=e.asm.FusedConv2D).apply(null,arguments)},vl=e._FusedDepthwiseConv2D=function(){return(vl=e._FusedDepthwiseConv2D=e.asm.FusedDepthwiseConv2D).apply(null,arguments)},Bd=e._Gather=function(){return(Bd=e._Gather=e.asm.Gather).apply(null,arguments)},WI=e._GatherNd=function(){return(WI=e._GatherNd=e.asm.GatherNd).apply(null,arguments)},UI=e._Greater=function(){return(UI=e._Greater=e.asm.Greater).apply(null,arguments)},HI=e._GreaterEqual=function(){return(HI=e._GreaterEqual=e.asm.GreaterEqual).apply(null,arguments)},qI=e._LeakyRelu=function(){return(qI=e._LeakyRelu=e.asm.LeakyRelu).apply(null,arguments)},wg=e._Less=function(){return(wg=e._Less=e.asm.Less).apply(null,arguments)},Cg=e._LessEqual=function(){return(Cg=e._LessEqual=e.asm.LessEqual).apply(null,arguments)},KI=e._Log=function(){return(KI=e._Log=e.asm.Log).apply(null,arguments)},jI=e._LogicalAnd=function(){return(jI=e._LogicalAnd=e.asm.LogicalAnd).apply(null,arguments)},Ig=e._LogicalNot=function(){return(Ig=e._LogicalNot=e.asm.LogicalNot).apply(null,arguments)},Sg=e._LogicalOr=function(){return(Sg=e._LogicalOr=e.asm.LogicalOr).apply(null,arguments)},XI=e._LogicalXor=function(){return(XI=e._LogicalXor=e.asm.LogicalXor).apply(null,arguments)},YI=e._Max=function(){return(YI=e._Max=e.asm.Max).apply(null,arguments)},ZI=e._MaxPool=function(){return(ZI=e._MaxPool=e.asm.MaxPool).apply(null,arguments)},vg=e._Maximum=function(){return(vg=e._Maximum=e.asm.Maximum).apply(null,arguments)},Yk=e._Mean=function(){return(Yk=e._Mean=e.asm.Mean).apply(null,arguments)},JI=e._Min=function(){return(JI=e._Min=e.asm.Min).apply(null,arguments)},QI=e._Minimum=function(){return(QI=e._Minimum=e.asm.Minimum).apply(null,arguments)},tS=e._MirrorPad=function(){return(tS=e._MirrorPad=e.asm.MirrorPad).apply(null,arguments)},eS=e._Multiply=function(){return(eS=e._Multiply=e.asm.Multiply).apply(null,arguments)},rS=e._Neg=function(){return(rS=e._Neg=e.asm.Neg).apply(null,arguments)},nS=e._NonMaxSuppressionV3=function(){return(nS=e._NonMaxSuppressionV3=e.asm.NonMaxSuppressionV3).apply(null,arguments)},oS=e._NonMaxSuppressionV4=function(){return(oS=e._NonMaxSuppressionV4=e.asm.NonMaxSuppressionV4).apply(null,arguments)},sS=e._NonMaxSuppressionV5=function(){return(sS=e._NonMaxSuppressionV5=e.asm.NonMaxSuppressionV5).apply(null,arguments)},iS=e._NotEqual=function(){return(iS=e._NotEqual=e.asm.NotEqual).apply(null,arguments)},aS=e._OneHot=function(){return(aS=e._OneHot=e.asm.OneHot).apply(null,arguments)},lS=e._PadV2=function(){return(lS=e._PadV2=e.asm.PadV2).apply(null,arguments)},uS=e._Pow=function(){return(uS=e._Pow=e.asm.Pow).apply(null,arguments)},cS=e._Prelu=function(){return(cS=e._Prelu=e.asm.Prelu).apply(null,arguments)},pS=e._Prod=function(){return(pS=e._Prod=e.asm.Prod).apply(null,arguments)},mS=e._RealDiv=function(){return(mS=e._RealDiv=e.asm.RealDiv).apply(null,arguments)},fS=e._Relu=function(){return(fS=e._Relu=e.asm.Relu).apply(null,arguments)},dS=e._Relu6=function(){return(dS=e._Relu6=e.asm.Relu6).apply(null,arguments)},hS=e._ResizeBilinear=function(){return(hS=e._ResizeBilinear=e.asm.ResizeBilinear).apply(null,arguments)},gS=e._ResizeNearestNeighbor=function(){return(gS=e._ResizeNearestNeighbor=e.asm.ResizeNearestNeighbor).apply(null,arguments)},xS=e._Reverse=function(){return(xS=e._Reverse=e.asm.Reverse).apply(null,arguments)},yS=e._RotateWithOffset=function(){return(yS=e._RotateWithOffset=e.asm.RotateWithOffset).apply(null,arguments)},bS=e._Round=function(){return(bS=e._Round=e.asm.Round).apply(null,arguments)},wS=e._Rsqrt=function(){return(wS=e._Rsqrt=e.asm.Rsqrt).apply(null,arguments)},CS=e._ScatterNd=function(){return(CS=e._ScatterNd=e.asm.ScatterNd).apply(null,arguments)},IS=e._SelectV2=function(){return(IS=e._SelectV2=e.asm.SelectV2).apply(null,arguments)},SS=e._Sigmoid=function(){return(SS=e._Sigmoid=e.asm.Sigmoid).apply(null,arguments)},vS=e._Sin=function(){return(vS=e._Sin=e.asm.Sin).apply(null,arguments)},NS=e._Softmax=function(){return(NS=e._Softmax=e.asm.Softmax).apply(null,arguments)},TS=e._SparseFillEmptyRows=function(){return(TS=e._SparseFillEmptyRows=e.asm.SparseFillEmptyRows).apply(null,arguments)},kS=e._SparseReshape=function(){return(kS=e._SparseReshape=e.asm.SparseReshape).apply(null,arguments)},ES=e._SparseSegmentReduction=function(){return(ES=e._SparseSegmentReduction=e.asm.SparseSegmentReduction).apply(null,arguments)},_S=e._Sqrt=function(){return(_S=e._Sqrt=e.asm.Sqrt).apply(null,arguments)},AS=e._Square=function(){return(AS=e._Square=e.asm.Square).apply(null,arguments)},$S=e._SquaredDifference=function(){return($S=e._SquaredDifference=e.asm.SquaredDifference).apply(null,arguments)},DS=e._Step=function(){return(DS=e._Step=e.asm.Step).apply(null,arguments)},RS=e._StridedSlice=function(){return(RS=e._StridedSlice=e.asm.StridedSlice).apply(null,arguments)},FS=e._Sub=function(){return(FS=e._Sub=e.asm.Sub).apply(null,arguments)},OS=e._Sum=function(){return(OS=e._Sum=e.asm.Sum).apply(null,arguments)},PS=e._Tan=function(){return(PS=e._Tan=e.asm.Tan).apply(null,arguments)},LS=e._Tanh=function(){return(LS=e._Tanh=e.asm.Tanh).apply(null,arguments)},MS=e._Tile=function(){return(MS=e._Tile=e.asm.Tile).apply(null,arguments)},zS=e._TopK=function(){return(zS=e._TopK=e.asm.TopK).apply(null,arguments)},BS=e._Transform=function(){return(BS=e._Transform=e.asm.Transform).apply(null,arguments)},VS=e._Transpose=function(){return(VS=e._Transpose=e.asm.Transpose).apply(null,arguments)},GS=e.__FusedMatMul=function(){return(GS=e.__FusedMatMul=e.asm._FusedMatMul).apply(null,arguments)},WS=e._malloc=function(){return(WS=e._malloc=e.asm.malloc).apply(null,arguments)},US=e._free=function(){return(US=e._free=e.asm.free).apply(null,arguments)},HS=e.___errno_location=function(){return(HS=e.___errno_location=e.asm.__errno_location).apply(null,arguments)},Ng=e.stackSave=function(){return(Ng=e.stackSave=e.asm.stackSave).apply(null,arguments)},Tg=e.stackRestore=function(){return(Tg=e.stackRestore=e.asm.stackRestore).apply(null,arguments)},Vd=e.stackAlloc=function(){return(Vd=e.stackAlloc=e.asm.stackAlloc).apply(null,arguments)},qS=e.dynCall_iijjiiii=function(){return(qS=e.dynCall_iijjiiii=e.asm.dynCall_iijjiiii).apply(null,arguments)},KS=e.dynCall_jiji=function(){return(KS=e.dynCall_jiji=e.asm.dynCall_jiji).apply(null,arguments)};e.cwrap=dg;var Qc;zr=function K(){Qc||kg(),Qc||(zr=K)};function kg(K){if(K=K||a,qe>0||(Ae(),qe>0))return;function lt(){Qc||(Qc=!0,e.calledRun=!0,!G&&(We(),n(e),e.onRuntimeInitialized&&e.onRuntimeInitialized(),_n()))}e.setStatus?(e.setStatus("Running..."),setTimeout(function(){setTimeout(function(){e.setStatus("")},1),lt()},1)):lt()}if(e.preInit)for(typeof e.preInit=="function"&&(e.preInit=[e.preInit]);e.preInit.length>0;)e.preInit.pop()();kg();var tp;s&&(tp={uncaughtException:process.listeners("uncaughtException").filter(function(K){return!s.uncaughtException.indexOf(K)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(K){return!s.unhandledRejection.indexOf(K)>-1})});var ep;if(typeof t!="undefined")ep=t;else if(typeof WasmBackendModuleThreadedSimd!="undefined")ep=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(tp){var jS=ep._dispose;ep._dispose=function(){jS(),tp.uncaughtException.forEach(function(K){process.removeListener("uncaughtException",K)}),tp.unhandledRejection.forEach(function(K){process.removeListener("unhandledRejection",K)})}}return t.ready}})();typeof dI=="object"&&typeof Lk=="object"?Lk.exports=Pk:typeof define=="function"&&define.amd?define([],function(){return Pk}):typeof dI=="object"&&(dI.WasmBackendModule=Pk)});var ra=class{constructor(t,e){this.backend=t,this.dataMover=e,this.data=new WeakMap,this.dataIdsCount=0}get(t){return this.data.has(t)||this.dataMover.moveData(this.backend,t),this.data.get(t)}set(t,e){this.dataIdsCount++,this.data.set(t,e)}has(t){return this.data.has(t)}delete(t){return this.dataIdsCount--,this.data.delete(t)}numDataIds(){return this.dataIdsCount}},zo=class{refCount(t){return $n("refCount")}incRef(t){return $n("incRef")}timerAvailable(){return!0}time(t){return $n("time")}read(t){return $n("read")}readSync(t){return $n("readSync")}readToGPU(t,e){return $n("readToGPU")}numDataIds(){return $n("numDataIds")}disposeData(t,e){return $n("disposeData")}write(t,e,n){return $n("write")}move(t,e,n,o,s){return $n("move")}createTensorFromTexture(t,e,n){return $n("createTensorFromTexture")}memory(){return $n("memory")}floatPrecision(){return $n("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return $n("dispose")}};function $n(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function s1(r){let t=r.length,e=0;for(;t>0;)e=Math.random()*t|0,t--,Lg(r,t,e)}function MU(r,t){if(r.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${t.length}`);let e=r.length,n=0;for(;e>0;)n=Math.random()*e|0,e--,Lg(r,e,n),Lg(t,e,n)}function np(r,t,e){return Math.max(r,Math.min(t,e))}function zU(r){return r%2===0?r:r+1}function Lg(r,t,e){let n=r[t];r[t]=r[e],r[e]=n}function BU(r){let t=0;for(let e=0;e<r.length;e++)t+=r[e];return t}function VU(r,t){let e=Math.random();return t*e+(1-e)*r}function GU(r,t){let e=0;for(let n=0;n<r.length;n++){let o=Number(r[n])-Number(t[n]);e+=o*o}return e}function E(r,t){if(!r)throw new Error(typeof t=="string"?t:t())}function $e(r,t,e=""){E(Dn(r,t),()=>e+` Shapes ${r} and ${t} must match`)}function Yn(r){E(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Bo(r,t=[],e=!1){if(t==null&&(t=[]),Array.isArray(r)||xr(r)&&!e)for(let n=0;n<r.length;++n)Bo(r[n],t,e);else t.push(r);return t}function Jt(r){if(r.length===0)return 1;let t=r[0];for(let e=1;e<r.length;e++)t*=r[e];return t}function WU(r){return r.length===0}function Dn(r,t){if(r===t)return!0;if(r==null||t==null||r.length!==t.length)return!1;for(let e=0;e<r.length;e++)if(r[e]!==t[e])return!1;return!0}function na(r){return r%1===0}function UU(r){if(Math.tanh!=null)return Math.tanh(r);if(r===1/0)return 1;if(r===-1/0)return-1;{let t=Math.exp(2*r);return(t-1)/(t+1)}}function HU(r){let t=Math.ceil(Math.sqrt(r));return[t,Math.ceil(r/t)]}function qU(r){let t=new Uint32Array(r);for(let e=0;e<r;++e)t[e]=e;return s1(t),t}function Pu(r,t){return t<=r.length?r:r+" ".repeat(t-r.length)}function KU(r,t=o=>0,e,n){return new Promise((o,s)=>{let i=0,a=()=>{if(r()){o();return}i++;let u=t(i);if(e!=null&&i>=e){s();return}n!=null?n(a,u):setTimeout(a,u)};a()})}function jU(r,t){let e=1,n=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)e*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==e)throw Error(`Size(${t}) must match the product of shape ${r}`);return r}if(e===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(t%e!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${e}`);let o=r.slice();return o[n]=t/e,o}function lr(r,t){let e=t.length;return r=r==null?t.map((n,o)=>o):[].concat(r),E(r.every(n=>n>=-e&&n<e),()=>`All values in axis param must be in range [-${e}, ${e}) but got axis ${r}`),E(r.every(n=>na(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?e+n:n)}function tv(r,t){let e=[],n=[],o=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||o?null:lr(t,r).sort(),i=0;for(let a=0;a<r.length;++a){if(s!=null){if(s[i]===a&&r[a]!==1)throw new Error(`Can't squeeze axis ${a} since its dim '${r[a]}' is not 1`);(s[i]==null||s[i]>a)&&r[a]===1&&(e.push(r[a]),n.push(a)),s[i]<=a&&i++}r[a]!==1&&(e.push(r[a]),n.push(a))}return{newShape:e,keptDims:n}}function ev(r,t){let e=null;if(r==null||r==="float32")e=new Float32Array(t);else if(r==="int32")e=new Int32Array(t);else if(r==="bool")e=new Uint8Array(t);else throw new Error(`Unknown data type ${r}`);return e}function rv(r,t){let e=null;if(r==null||r==="float32")e=new Float32Array(t);else if(r==="int32")e=new Int32Array(t);else if(r==="bool")e=new Uint8Array(t);else if(r==="string")e=new Array(t);else throw new Error(`Unknown data type ${r}`);return e}function nv(r,t){for(let e=0;e<r.length;e++){let n=r[e];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function ov(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function XU(r,t){return!(t==="complex64"||t==="float32"&&r!=="complex64"||t==="int32"&&r!=="float32"&&r!=="complex64"||t==="bool"&&r==="bool")}function xr(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray}function Mg(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function sv(r){if(r==null)return 0;let t=0;return r.forEach(e=>t+=e.length),t}function Vo(r){return typeof r=="string"||r instanceof String}function i1(r){return typeof r=="boolean"}function a1(r){return typeof r=="number"}function op(r){return Array.isArray(r)?op(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray?"int32":a1(r)?"float32":Vo(r)?"string":i1(r)?"bool":"float32"}function oi(r){return!!(r&&r.constructor&&r.call&&r.apply)}function sp(r,t){for(let e=t;e<r;++e)if(r%e===0)return e;return r}function si(r){let t=r.length;if(t<2)return[];let e=new Array(t-1);e[t-2]=r[t-1];for(let n=t-3;n>=0;--n)e[n]=e[n+1]*r[n+1];return e}function l1(r,t,e,n=!1){let o=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)o[i]=e[r+i]}else{let s=t[0],i=t.slice(1),a=i.reduce((u,l)=>u*l)*(n?2:1);for(let u=0;u<s;u++)o[u]=l1(r+u*a,i,e,n)}return o}function Ou(r,t,e=!1){if(r.length===0)return t[0];let n=r.reduce((o,s)=>o*s)*(e?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${r}] does not match the input size ${t.length}${e?" for a complex tensor":""}.`);return l1(0,r,t,e)}function Wd(r,t){let e=ip(r,t);for(let n=0;n<e.length;n++)e[n]=1;return e}function ip(r,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(r);if(t==="int32")return new Int32Array(r);if(t==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${t}`)}function YU(r,t){let e=r.reduce((n,o)=>n*o,1);if(t==null||t==="float32")return Ou(r,new Float32Array(e));if(t==="int32")return Ou(r,new Int32Array(e));if(t==="bool")return Ou(r,new Uint8Array(e));throw new Error(`Unknown data type ${t}`)}function Ud(r){r.forEach(t=>{E(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function ZU(r,t,e){if(t===0)return 0;if(t===1)return r[0];let n=r[r.length-1];for(let o=0;o<r.length-1;++o)n+=e[o]*r[o];return n}function JU(r,t,e){if(t===0)return[];if(t===1)return[r];let n=new Array(t);for(let o=0;o<n.length-1;++o)n[o]=Math.floor(r/e[o]),r-=n[o]*e[o];return n[n.length-1]=r,n}function Hd(r){return r&&r.then&&typeof r.then=="function"}var u1="tfjsflags",qd=class{constructor(t){this.global=t,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=t4,this.populateURLFlags()}setPlatform(t,e){this.platform!=null&&(z().getBool("IS_TEST")||z().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=t,this.platform=e}registerFlag(t,e,n){if(this.flagRegistry[t]={evaluationFn:e,setHook:n},this.urlFlags[t]!=null){let o=this.urlFlags[t];z().getBool("IS_TEST")||z().getBool("PROD")||console.warn(`Setting feature override from URL ${t}: ${o}.`),this.set(t,o)}}async getAsync(t){return t in this.flags?this.flags[t]:(this.flags[t]=await this.evaluateFlag(t),this.flags[t])}get(t){if(t in this.flags)return this.flags[t];let e=this.evaluateFlag(t);if(Hd(e))throw new Error(`Flag ${t} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[t]=e,this.flags[t]}getNumber(t){return this.get(t)}getBool(t){return this.get(t)}getFlags(){return this.flags}get features(){return this.flags}set(t,e){if(this.flagRegistry[t]==null)throw new Error(`Cannot set flag ${t} as it has not been registered.`);this.flags[t]=e,this.flagRegistry[t].setHook!=null&&this.flagRegistry[t].setHook(e)}evaluateFlag(t){if(this.flagRegistry[t]==null)throw new Error(`Cannot evaluate flag '${t}': no evaluation function found.`);return this.flagRegistry[t].evaluationFn()}setFlags(t){this.flags=Object.assign({},t)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let t=this.getQueryParams(this.global.location.search);u1 in t&&t[u1].split(",").forEach(n=>{let[o,s]=n.split(":");this.urlFlags[o]=r4(o,s)})}};function t4(r){let t={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(e,...n)=>(e4(t,n[0],n[1]),n.join("="))),t}function e4(r,t,e){r[decodeURIComponent(t)]=decodeURIComponent(e||"")}function r4(r,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${r}.`)}function z(){return iv}var iv=null;function c1(r){iv=r}var av;function lv(){if(av==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");av=r}return av}function n4(){let r=lv();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function Kd(r,t){let e=n4();if(e.has(r))return e.get(r);{let n=t();return e.set(r,n),e.get(r)}}var ii="Abs",oa="Acos",sa="Acosh",Zn="Add",Go="AddN",ia="All",aa="Any",Wo="ArgMax",kl="ArgMin",la="Asin",ua="Asinh",ca="Atan",pa="Atanh",ma="Atan2",Uo="AvgPool",ap="AvgPoolGrad",El="AvgPool3D",lp="AvgPool3DGrad",Ho="BatchMatMul",ai="BatchToSpaceND",up="Bincount",p1="BroadcastTo",cp="BroadcastArgs",lo="Cast",qo="Ceil",uo="ClipByValue",pp="Complex",_l="ComplexAbs",li="Concat",Ko="Conv2D",mp="Conv2DBackpropFilter",jo="Conv2DBackpropInput",Al="Conv3D",fp="Conv3DBackpropFilterV2",dp="Conv3DBackpropInputV2",Xo="Cos",Yo="Cosh",fa="Cumprod",Zo="Cumsum",da="CropAndResize",hp="DenseBincount",ha="DepthToSpace",Jo="DepthwiseConv2dNative",gp="DepthwiseConv2dNativeBackpropFilter",xp="DepthwiseConv2dNativeBackpropInput",yp="Diag",$l="Dilation2D",jd="Dilation2DBackpropInput",Xd="Dilation2DBackpropFilter",Qo="RealDiv",bp="Einsum",ts="Elu",wp="EluGrad",ga="Erf",xa="Equal",es="Exp",ui="ExpandDims",ya="Expm1",Cp="FFT",Dl="Fill",ba="FlipLeftRight",rs="Floor",ns="FloorDiv",os="FusedBatchNorm",ci="GatherV2",wa="GatherNd",Ca="Greater",ss="GreaterEqual",co="Identity",Ip="IFFT",Sp="Imag",Ia="IsFinite",Sa="IsInf",va="IsNan",is="LeakyRelu",Na="Less",Ta="LessEqual",vp="LinSpace",as="Log",ka="Log1p",Ea="LogicalAnd",_a="LogicalNot",Aa="LogicalOr",m1="LogicalXor",f1="LogSoftmax",xlt="LowerBound",Rl="LRN",Np="LRNGrad",ls="Max",us="Maximum",cs="MaxPool",Tp="MaxPoolGrad",Fl="MaxPool3D",kp="MaxPool3DGrad",Ep="MaxPoolWithArgmax",ps="Mean",ms="Min",fs="Minimum",ds="MirrorPad",$a="Mod",_p="Multinomial",hs="Multiply",pi="Neg",Da="NotEqual",Ra="NonMaxSuppressionV3",Fa="NonMaxSuppressionV4",Oa="NonMaxSuppressionV5",mi="OnesLike",gs="OneHot",fi="Pack",xs="PadV2",ylt="Pool",ys="Pow",bs="Prelu",ws="Prod",Ap="RaggedGather",$p="RaggedRange",Dp="RaggedTensorToTensor",Ol="Range",Rp="Real",Pa="Reciprocal",Cs="Relu",di="Reshape",Is="ResizeNearestNeighbor",Fp="ResizeNearestNeighborGrad",Ss="ResizeBilinear",Op="ResizeBilinearGrad",vs="Relu6",Ns="Reverse",Ts="Round",ks="Rsqrt",La="ScatterNd",Pp="SearchSorted",hi="Select",Ma="Selu",gi="Slice",Es="Sin",za="Sinh",Ba="Sign",_s="Sigmoid",Va="Softplus",As="Sqrt",$s="Sum",xi="SpaceToBatchND",yi="SplitV",Ds="Softmax",Pl="SparseFillEmptyRows",Ga="SparseReshape",Ll="SparseSegmentMean",Ml="SparseSegmentSum",Lp="SparseToDense",Rs="SquaredDifference",zl="Square",Wa="StridedSlice",Bl="StringNGrams",Vl="StringSplit",Gl="StringToHashBucketFast",Fs="Sub",Os="Tan",Ps="Tanh",Jn="Tile",Ua="TopK",Ha="Transform",Qn="Transpose",Mp="Unique",bi="Unpack",Wl="UnsortedSegmentSum",blt="UpperBound",wi="ZerosLike",po="Step",Yd="FromPixels",qa="RotateWithOffset",Ci="_FusedMatMul",Ii="FusedConv2D",Si="FusedDepthwiseConv2D";function vi(...r){z().getBool("IS_TEST")||z().getBool("PROD")||console.warn(...r)}function o4(...r){z().getBool("IS_TEST")||z().getBool("PROD")||console.log(...r)}var zp=Kd("kernelRegistry",()=>new Map),Zd=Kd("gradRegistry",()=>new Map);function Jd(r,t){let e=cv(r,t);return zp.get(e)}function uv(r){return Zd.get(r)}function zg(r){let t=zp.entries(),e=[];for(;;){let{done:n,value:o}=t.next();if(n)break;let[s,i]=o,[a]=s.split("_");a===r&&e.push(i)}return e}function Lu(r){let{kernelName:t,backendName:e}=r,n=cv(t,e);zp.has(n)&&vi(`The kernel '${t}' for backend '${e}' is already registered`),zp.set(n,r)}function h1(r){let{kernelName:t}=r;Zd.has(t)&&z().getBool("DEBUG")&&vi(`Overriding the gradient for '${t}'`),Zd.set(t,r)}function vlt(r,t){let e=cv(r,t);if(!zp.has(e))throw new Error(`The kernel '${r}' for backend '${t}' is not registered`);zp.delete(e)}function Nlt(r){if(!Zd.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);Zd.delete(r)}function Tlt(r,t){zg(r).forEach(n=>{let o=Object.assign({},n,{backendName:t});Lu(o)})}function cv(r,t){return`${t}_${r}`}var y={};Wt(y,{arraysEqual:()=>Dn,assert:()=>E,assertNonNegativeIntegerDimensions:()=>Ud,assertNonNull:()=>Yn,assertShapesMatch:()=>$e,bytesFromStringArray:()=>sv,bytesPerElement:()=>Mg,checkConversionForErrors:()=>nv,clamp:()=>np,computeStrides:()=>si,createScalarValue:()=>p4,createShuffledIndices:()=>qU,decodeString:()=>Wp,distSquared:()=>GU,encodeString:()=>Hl,fetch:()=>f4,fingerPrint64:()=>c4,flatten:()=>Bo,getArrayFromDType:()=>rv,getTypedArrayFromDType:()=>ev,hasEncodingLoss:()=>XU,hexToLong:()=>Qd,indexToLoc:()=>JU,inferDtype:()=>op,inferFromImplicitShape:()=>jU,isBoolean:()=>i1,isFunction:()=>oi,isInt:()=>na,isNumber:()=>a1,isPromise:()=>Hd,isScalarShape:()=>WU,isString:()=>Vo,isTypedArray:()=>xr,isValidDtype:()=>ov,locToIndex:()=>ZU,makeOnesTypedArray:()=>Wd,makeZerosNestedTypedArray:()=>YU,makeZerosTypedArray:()=>ip,nearestDivisor:()=>sp,nearestLargerEven:()=>zU,now:()=>Gu,parseAxisParam:()=>lr,randUniform:()=>VU,repeatedTry:()=>KU,rightPad:()=>Pu,shuffle:()=>s1,shuffleCombo:()=>MU,sizeFromShape:()=>Jt,sizeToSquarishShape:()=>HU,squeezeShape:()=>tv,sum:()=>BU,swap:()=>Lg,tanh:()=>UU,toNestedArray:()=>Ou,toTypedArray:()=>Gp});var dv=Tl(T1());var Vu=dv.default||dv;function Qd(r){return Vu.fromString(r,!0,16)}var E1=Qd("c3a5c85c97cb3127"),Bu=Qd("b492b66fbe98f273"),nn=Qd("9ae16a3b2f90404f");function fv(r){return r.xor(r.shru(47))}function _1(r,t,e){let n=r.slice(t,t+e);return Vu.fromBytes(Array.from(n),!0,!0)}function Pe(r,t){return _1(r,t,8)}function k1(r,t){return _1(r,t,4)}function kr(r,t){return t===0?r:r.shru(t).or(r.shl(64-t))}function Ul(r,t,e=Qd("9ddfea08eb382d69")){let n=r.xor(t).mul(e);n=n.xor(n.shru(47));let o=t.xor(n).mul(e);return o=o.xor(o.shru(47)),o=o.mul(e),o}function i4(r,t,e,n,o,s){o=o.add(r),s=kr(s.add(o).add(n),21);let i=o;return o=o.add(t),o=o.add(e),s=s.add(kr(o,44)),[o.add(n),s.add(i)]}function Vg(r,t,e,n){return i4(Pe(r,t),Pe(r,t+8),Pe(r,t+16),Pe(r,t+24),e,n)}function a4(r,t=r.length){if(t>=8){let e=nn.add(t*2),n=Pe(r,0).add(nn),o=Pe(r,t-8),s=kr(o,37).mul(e).add(n),i=kr(n,25).add(o).mul(e);return Ul(s,i,e)}if(t>=4){let e=nn.add(t*2),n=k1(r,0);return Ul(n.shl(3).add(t),k1(r,t-4),e)}if(t>0){let e=r[0],n=r[t>>1],o=r[t-1],s=e+(n<<8),i=t+(o<<2);return fv(nn.mul(s).xor(E1.mul(i))).mul(nn)}return nn}function l4(r,t=r.length){let e=nn.add(t*2),n=Pe(r,0).mul(Bu),o=Pe(r,8),s=Pe(r,t-8).mul(e),i=Pe(r,t-16).mul(nn);return Ul(kr(n.add(o),43).add(kr(s,30)).add(i),n.add(kr(o.add(nn),18)).add(s),e)}function u4(r,t=r.length){let e=nn.add(t*2),n=Pe(r,0).mul(nn),o=Pe(r,8),s=Pe(r,t-8).mul(e),i=Pe(r,t-16).mul(nn),a=kr(n.add(o),43).add(kr(s,30)).add(i),u=Ul(a,n.add(kr(o.add(nn),18)).add(s),e),l=Pe(r,16).mul(e),c=Pe(r,24),p=a.add(Pe(r,t-32)).mul(e),m=u.add(Pe(r,t-24)).mul(e);return Ul(kr(l.add(c),43).add(kr(p,30)).add(m),l.add(kr(c.add(n),18)).add(p),e)}function c4(r,t=r.length){let e=Vu.fromNumber(81,!0);if(t<=32)return t<=16?a4(r,t):l4(r,t);if(t<=64)return u4(r,t);let n=e,o=e.mul(Bu).add(113),s=fv(o.mul(nn).add(113)).mul(nn),i=[Vu.UZERO,Vu.UZERO],a=[Vu.UZERO,Vu.UZERO];n=n.mul(nn).add(Pe(r,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do n=kr(n.add(o).add(i[0]).add(Pe(r,u+8)),37).mul(Bu),o=kr(o.add(i[1]).add(Pe(r,u+48)),42).mul(Bu),n=n.xor(a[1]),o=o.add(i[0]).add(Pe(r,u+40)),s=kr(s.add(a[0]),33).mul(Bu),i=Vg(r,u,i[1].mul(Bu),n.add(a[0])),a=Vg(r,u+32,s.add(a[1]),o.add(Pe(r,u+16))),[s,n]=[n,s],u+=64;while(u!==l);let p=Bu.add(s.and(255).shl(1));return u=c,a[0]=a[0].add(t-1&63),i[0]=i[0].add(a[0]),a[0]=a[0].add(i[0]),n=kr(n.add(o).add(i[0]).add(Pe(r,u+8)),37).mul(p),o=kr(o.add(i[1]).add(Pe(r,u+48)),42).mul(p),n=n.xor(a[1].mul(9)),o=o.add(i[0].mul(9).add(Pe(r,u+40))),s=kr(s.add(a[0]),33).mul(p),i=Vg(r,u,i[1].mul(p),n.add(a[0])),a=Vg(r,u+32,s.add(a[1]),o.add(Pe(r,u+16))),[s,n]=[n,s],Ul(Ul(i[0],a[0],p).add(fv(o).mul(E1)).add(s),Ul(i[1],a[1],p).add(n),p)}function p4(r,t){return t==="string"?Hl(r):Gp([r],t)}function m4(r,t){return r instanceof Float32Array&&t==="float32"||r instanceof Int32Array&&t==="int32"||r instanceof Uint8Array&&t==="bool"}function Gp(r,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=Bo(r)),z().getBool("DEBUG")&&nv(r,t),m4(r,t))return r;if(t==null||t==="float32"||t==="complex64")return new Float32Array(r);if(t==="int32")return new Int32Array(r);if(t==="bool"){let e=new Uint8Array(r.length);for(let n=0;n<e.length;++n)Math.round(r[n])!==0&&(e[n]=1);return e}else throw new Error(`Unknown data type ${t}`)}function Gu(){return z().platform.now()}function f4(r,t){return z().platform.fetch(r,t)}function Hl(r,t="utf-8"){return t=t||"utf-8",z().platform.encode(r,t)}function Wp(r,t="utf-8"){return t=t||"utf-8",z().platform.decode(r,t)}var Gg=class{constructor(t,e){this.backendTimer=t,this.logger=e,e==null&&(this.logger=new hv)}profileKernel(t,e,n){let o,s=()=>{o=n()},i,a=Gu();if(this.backendTimer.timerAvailable())i=this.backendTimer.time(s);else{s();for(let l of o)l.dataSync();i=Promise.resolve({kernelMs:Gu()-a})}if(z().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<o.length;l++){let c=o[l];c.data().then(p=>{d4(p,c.dtype,t)})}return{kernelName:t,outputs:o,inputs:e,timeMs:i.then(l=>l.kernelMs),extraInfo:i.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(t){let{kernelName:e,outputs:n,timeMs:o,inputs:s,extraInfo:i}=t;n.forEach(a=>{Promise.all([a.data(),o,i]).then(u=>{this.logger.logKernelProfile(e,a,u[0],u[1],s,u[2])})})}};function d4(r,t,e){if(t!=="float32")return!1;for(let n=0;n<r.length;n++){let o=r[n];if(isNaN(o)||!isFinite(o))return console.warn(`Found ${o} in the result of '${e}'`),!0}return!1}var hv=class{logKernelProfile(t,e,n,o,s,i){let a=typeof o=="number"?Pu(`${o}ms`,9):o.error,u=Pu(t,25),l=e.rank,c=e.size,p=Pu(e.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||e.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${u} %c${a} %c${l}D ${p} %c${c} %c${m} %c${i}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function A1(r,t,e){let n={},o={};for(let u=0;u<t.length;u++)n[t[u].id]=!0;for(let u=0;u<r.length;u++){let l=r[u],c=l.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<t.length;d++)if(n[m.id]){l.outputs.forEach(h=>n[h.id]=!0),f=!0,o[l.id]=!0;break}if(f)break}}let s={};s[e.id]=!0;let i={};for(let u=r.length-1;u>=0;u--){let l=r[u],c=l.inputs;for(let p=0;p<l.outputs.length;p++)if(s[l.outputs[p].id]){for(let m in c)s[c[m].id]=!0,i[l.id]=!0;break}}let a=[];for(let u=0;u<r.length;u++){let l=r[u];if(o[l.id]&&i[l.id]){let c={};for(let m in l.inputs){let f=l.inputs[m];n[f.id]&&(c[m]=f)}let p=Object.assign({},l);p.inputs=c,p.outputs=l.outputs,a.push(p)}}return a}function $1(r,t,e,n){for(let o=t.length-1;o>=0;o--){let s=t[o],i=[];if(s.outputs.forEach(u=>{let l=r[u.id];l!=null?i.push(l):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let a=s.gradient(i);for(let u in s.inputs){if(!(u in a))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(a)}.`);let l=e(()=>a[u]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=s.inputs[u];if(!Dn(l.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=l;else{let p=r[c.id];r[c.id]=n(p,l),p.dispose()}}}}var D1=20,th=3,gv=7;function R1(r,t,e,n){let o=si(t),s=h4(r,t,e,o),i=t.length,a=Wg(r,t,e,o,s),u=["Tensor"];return n&&(u.push(` dtype: ${e}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(" values:")),u.push(a.map(l=>" "+l).join(`
|
|
`)),u.join(`
|
|
`)}function h4(r,t,e,n){let o=Jt(t),s=n[n.length-1],i=new Array(s).fill(0),a=t.length,u=e==="complex64"?rh(r):r;if(a>1)for(let l=0;l<o/s;l++){let c=l*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],eh(u[c+p],0,e).length)}return i}function eh(r,t,e){let n;return Array.isArray(r)?n=`${parseFloat(r[0].toFixed(gv))} + ${parseFloat(r[1].toFixed(gv))}j`:Vo(r)?n=`'${r}'`:e==="bool"?n=F1(r):n=parseFloat(r.toFixed(gv)).toString(),Pu(n,t)}function F1(r){return r===0?"false":"true"}function Wg(r,t,e,n,o,s=!0){let i=e==="complex64"?2:1,a=t[0],u=t.length;if(u===0){if(e==="complex64"){let h=rh(r);return[eh(h[0],0,e)]}return e==="bool"?[F1(r[0])]:[r[0].toString()]}if(u===1){if(a>D1){let g=th*i,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((a-th)*i,a*i));return e==="complex64"&&(x=rh(x),b=rh(b)),["["+x.map((w,C)=>eh(w,o[C],e)).join(", ")+", ..., "+b.map((w,C)=>eh(w,o[a-th+C],e)).join(", ")+"]"]}return["["+(e==="complex64"?rh(r):Array.from(r)).map((g,x)=>eh(g,o[x],e)).join(", ")+"]"]}let l=t.slice(1),c=n.slice(1),p=n[0]*i,m=[];if(a>D1){for(let h=0;h<th;h++){let g=h*p,x=g+p;m.push(...Wg(r.slice(g,x),l,e,c,o,!1))}m.push("...");for(let h=a-th;h<a;h++){let g=h*p,x=g+p;m.push(...Wg(r.slice(g,x),l,e,c,o,h===a-1))}}else for(let h=0;h<a;h++){let g=h*p,x=g+p;m.push(...Wg(r.slice(g,x),l,e,c,o,h===a-1))}let f=u===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
|
|
`;for(let h=2;h<u;h++)d+=`
|
|
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function rh(r){let t=[];for(let e=0;e<r.length;e+=2)t.push([r[e],r[e+1]]);return t}var pe=class{constructor(t,e,n){if(this.dtype=e,this.shape=t.slice(),this.size=Jt(t),n!=null){let o=n.length;E(o===this.size,()=>`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(e==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||rv(e,this.size),this.strides=si(t)}set(t,...e){e.length===0&&(e=[0]),E(e.length===this.rank,()=>`The number of provided coordinates (${e.length}) must match the rank (${this.rank})`);let n=this.locToIndex(e);this.values[n]=t}get(...t){t.length===0&&(t=[0]);let e=0;for(let o of t){if(o<0||o>=this.shape[e]){let s=`Requested out of range element at ${t}. Buffer shape=${this.shape}`;throw new Error(s)}e++}let n=t[t.length-1];for(let o=0;o<t.length-1;++o)n+=this.strides[o]*t[o];return this.values[n]}locToIndex(t){if(this.rank===0)return 0;if(this.rank===1)return t[0];let e=t[t.length-1];for(let n=0;n<t.length-1;++n)e+=this.strides[n]*t[n];return e}indexToLoc(t){if(this.rank===0)return[];if(this.rank===1)return[t];let e=new Array(this.shape.length);for(let n=0;n<e.length-1;++n)e[n]=Math.floor(t/this.strides[n]),t-=e[n]*this.strides[n];return e[e.length-1]=t,e}get rank(){return this.shape.length}toTensor(){return Ms().makeTensor(this.values,this.shape,this.dtype)}},Ms=null,Up=null,g4=null;function O1(r){Ms=r}function P1(r){Up=r}function L1(r){g4=r}var Ft=class{constructor(t,e,n,o){this.kept=!1,this.isDisposedInternal=!1,this.shape=t.slice(),this.dtype=e||"float32",this.size=Jt(t),this.strides=si(t),this.dataId=n,this.id=o,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let t=await this.data();return Up.buffer(this.shape,this.dtype,t)}bufferSync(){return Up.buffer(this.shape,this.dtype,this.dataSync())}async array(){let t=await this.data();return Ou(this.shape,t,this.dtype==="complex64")}arraySync(){return Ou(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let t=Ms().read(this.dataId);if(this.dtype==="string"){let e=await t;try{return e.map(n=>Wp(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return t}dataToGPU(t){return this.throwIfDisposed(),Ms().readToGPU(this.dataId,t)}dataSync(){this.throwIfDisposed();let t=Ms().readSync(this.dataId);if(this.dtype==="string")try{return t.map(e=>Wp(e))}catch(e){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return t}async bytes(){this.throwIfDisposed();let t=await Ms().read(this.dataId);return this.dtype==="string"?t:new Uint8Array(t.buffer)}dispose(){this.isDisposed||(Ms().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(t=!1){return Up.print(this,t)}clone(){return this.throwIfDisposed(),Up.clone(this)}toString(t=!1){let e=this.dataSync();return R1(e,this.shape,this.dtype,t)}cast(t){return this.throwIfDisposed(),Up.cast(this,t)}variable(t=!0,e,n){return this.throwIfDisposed(),Ms().makeVariable(this,t,e,n)}};Object.defineProperty(Ft,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function O(){return Kd("Tensor",()=>Ft)}O();var Ka=class extends Ft{constructor(t,e,n,o){super(t.shape,t.dtype,t.dataId,o),this.trainable=e,this.name=n}assign(t){if(t.dtype!==this.dtype)throw new Error(`dtype of the new value (${t.dtype}) and previous value (${this.dtype}) must match`);if(!Dn(t.shape,this.shape))throw new Error(`shape of the new value (${t.shape}) and previous value (${this.shape}) must match`);Ms().disposeTensor(this),this.dataId=t.dataId,Ms().incRef(this,null)}dispose(){Ms().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Ka,Symbol.hasInstance,{value:r=>r instanceof Ft&&r.assign!=null&&r.assign instanceof Function});var go={};Wt(go,{assertTypesMatch:()=>Iv,getTensorsInContainer:()=>nh,isTensorInList:()=>y4,makeTypesMatch:()=>Ut});var xv;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(xv||(xv={}));var yv;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(yv||(yv={}));var bv;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(bv||(bv={}));var wv;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(wv||(wv={}));var Cv;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(Cv||(Cv={}));var x4={float32:wv,int32:yv,bool:bv,complex64:Cv};function sr(r,t){if(r==="string"||t==="string"){if(r==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${r} with ${t}`)}return x4[r][t]}function Wu(r){return sr(r,"int32")}function Ut(r,t){if(r.dtype===t.dtype)return[r,t];let e=sr(r.dtype,t.dtype);return[r.cast(e),t.cast(e)]}function Iv(r,t){E(r.dtype===t.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${t.dtype}) input must match`)}function y4(r,t){return t.some(e=>e.id===r.id)}function nh(r){let t=[];return M1(r,t,new Set),t}function M1(r,t,e){if(r==null)return;if(r instanceof Ft){t.push(r);return}if(!b4(r))return;let n=r;for(let o in n){let s=n[o];e.has(s)||(e.add(s),M1(s,t,e))}}function b4(r){return Array.isArray(r)||typeof r=="object"}function Sv(r){return r.kernelName!=null}var Ug=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(t=>t.name)))}}}dispose(){for(let t in this.registeredVariables)this.registeredVariables[t].dispose()}},ql=class{constructor(t){this.ENV=t,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Ug}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let t=this.getSortedBackends();for(let e=0;e<t.length;e++){let n=t[e];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:t,asyncInit:e}=this.initializeBackendsAndReturnBest();if(e)throw new Error(`The highest priority backend '${t}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(t)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(t){if(!(t in this.registry))if(t in this.registryFactory){let{asyncInit:e}=this.initializeBackend(t);if(e)return null}else return null;return this.registry[t]}findBackendFactory(t){return t in this.registryFactory?this.registryFactory[t].factory:null}registerBackend(t,e,n=1){return t in this.registryFactory?(vi(`${t} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[t]={factory:e,priority:n},!0)}async setBackend(t){if(this.registryFactory[t]==null)throw new Error(`Backend name '${t}' not found in registry`);if(this.backendName=t,this.registry[t]==null){this.backendInstance=null;let{success:e,asyncInit:n}=this.initializeBackend(t);if(!(n?await e:e))return!1}return this.backendInstance=this.registry[t],this.setupRegisteredKernels(),this.profiler=new Gg(this.backendInstance),!0}setupRegisteredKernels(){zg(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(t){zg(t).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[t])})}initializeBackend(t){let e=this.registryFactory[t];if(e==null)throw new Error(`Cannot initialize backend ${t}, no registration found.`);try{let n=e.factory();if(n&&!(n instanceof zo)&&typeof n.then=="function"){let o=++this.pendingBackendInitId,s=n.then(i=>o<this.pendingBackendInitId?!1:(this.registry[t]=i,this.pendingBackendInit=null,!0)).catch(i=>(o<this.pendingBackendInitId||(this.pendingBackendInit=null,vi(`Initialization of backend ${t} failed`),vi(i.stack||i.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[t]=n,{success:!0,asyncInit:!1}}catch(n){return vi(`Initialization of backend ${t} failed`),vi(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(t){if(!(t in this.registryFactory))throw new Error(`${t} backend not found in registry`);this.backendName===t&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,t in this.registry&&(this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t]),delete this.registryFactory[t],this.backendName===t&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((t,e)=>this.registryFactory[e].priority-this.registryFactory[t].priority)}initializeBackendsAndReturnBest(){let t=this.getSortedBackends();for(let e=0;e<t.length;e++){let n=t[e],{success:o,asyncInit:s}=this.initializeBackend(n);if(s||o)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(t,e){let n=this.state.tensorInfo.get(e),o=n.backend,s=this.readSync(e),i=o.refCount(e);o.disposeData(e,!0),n.backend=t,t.move(e,s,n.shape,n.dtype,i),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(t,e){let n=null;if(e==null){if(typeof t!="function")throw new Error("Please provide a function to tidy()");e=t}else{if(typeof t!="string"&&!(t instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof e!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=t}let o;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(o),()=>(o=e(),o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),o))}scopedRun(t,e,n){t();try{let o=n();return e(),o}catch(o){throw e(),o}}nextTensorId(){return ql.nextTensorId++}nextVariableId(){return ql.nextVariableId++}clone(t){let e=k.runKernel(co,{x:t}),n={x:t},o=i=>({x:()=>{let a="float32",u={x:i},l={dtype:a};return k.runKernel(lo,u,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[e],o,s,{}),e}runKernel(t,e,n){if(this.backendName==null&&this.backend,!(Jd(t,this.backendName)!=null))throw new Error(`Kernel '${t}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:t,inputs:e,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(t,e,n){let o=this.backend.numDataIds(),s=0;n.forEach(u=>{s+=u.dtype==="complex64"?3:1});let i=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],a=o-e-s-i;if(a>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${a} data ids) after running '${t}'`)}runKernelFunc(t){let e,n=[],o=this.isTapeOn(),s=this.state.numBytes,i=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let a;this.backendName==null&&this.backend;let u,l=Sv(t)?t.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Sv(t)){let{kernelName:d,inputs:h,attrs:g}=t;this.backendName==null&&this.backend;let x=Jd(d,this.backendName);E(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),a=()=>{let b=this.backend.numDataIds();u=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(u)?u:[u];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let C=w.map(N=>N.rank!=null?N:this.makeTensorFromTensorInfo(N));if(o){let N=this.getTensorsForGradient(d,h,C);n=this.saveTensorsForBackwardMode(N)}return C}}else{let{forwardFunc:d}=t,h=g=>{!o||(n=g.map(x=>this.keep(this.clone(x))))};a=()=>{let g=this.backend.numDataIds();u=this.tidy(()=>d(this.backend,h));let x=Array.isArray(u)?u:[u];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,g,x),x}}let{inputs:c,attrs:p}=t,m=Sv(t)?null:t.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?e=a():(f=this.profiler.profileKernel(l,c,()=>a()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),e=f.outputs)}),o&&this.addTapeNode(l,c,e,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-i,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:e.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(u)?e:e[0]}saveTensorsForBackwardMode(t){return t.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(t,e,n){let o=uv(t);if(o!=null){let s=o.inputsToSave||[],i=o.outputsToSave||[],a;o.saveAllInputs?(E(Array.isArray(e),()=>"saveAllInputs is true, expected inputs to be an array."),a=Object.keys(e).map(l=>e[l])):a=s.map(l=>e[l]);let u=n.filter((l,c)=>i[c]);return a.concat(u)}return[]}makeTensor(t,e,n,o){if(t==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",o=o||this.backend;let s=t;n==="string"&&Vo(t[0])&&(s=t.map(u=>Hl(u)));let i=o.write(s,e,n),a=new Ft(e,n,i,this.nextTensorId());if(this.trackTensor(a,o),n==="string"){let u=this.state.tensorInfo.get(i),l=sv(s);this.state.numBytes+=l-u.bytes,u.bytes=l}return a}makeTensorFromDataId(t,e,n,o){n=n||"float32";let s={dataId:t,shape:e,dtype:n};return this.makeTensorFromTensorInfo(s,o)}makeTensorFromTensorInfo(t,e){let{dataId:n,shape:o,dtype:s}=t,i=new Ft(o,s,n,this.nextTensorId());return this.trackTensor(i,e),i}makeVariable(t,e=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==t.dtype&&(t=t.cast(o));let s=new Ka(t,e,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(t,e){this.state.numTensors++,t.dtype==="string"&&this.state.numStringTensors++;let n=0;t.dtype!=="complex64"&&t.dtype!=="string"&&(n=t.size*Mg(t.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(t.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(t.dataId,{backend:e||this.backend,dtype:t.dtype,shape:t.shape,bytes:n})),t instanceof Ka||this.track(t)}incRef(t,e){this.trackTensor(t,e),this.backend.incRef(t.dataId)}removeDataId(t,e){this.state.tensorInfo.has(t)&&this.state.tensorInfo.get(t).backend===e&&(this.state.tensorInfo.delete(t),this.state.numDataBuffers--)}disposeTensor(t){if(!this.state.tensorInfo.has(t.dataId))return;let e=this.state.tensorInfo.get(t.dataId);if(this.state.numTensors--,t.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=e.bytes),t.dtype!=="complex64"&&t.dtype!=="string"){let n=t.size*Mg(t.dtype);this.state.numBytes-=n}e.backend.disposeData(t.dataId)&&this.removeDataId(t.dataId,e.backend)}disposeVariables(){for(let t in this.state.registeredVariables){let e=this.state.registeredVariables[t];this.disposeVariable(e)}}disposeVariable(t){this.disposeTensor(t),this.state.registeredVariables[t.name]!=null&&delete this.state.registeredVariables[t.name]}memory(){let t=this.backend.memory();return t.numTensors=this.state.numTensors,t.numDataBuffers=this.state.numDataBuffers,t.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(t.unreliable=!0,t.reasons==null&&(t.reasons=[]),t.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),t}async profile(t){this.state.profiling=!0;let e=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await t(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-e,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(t,e,n,o,s,i){let a={id:this.state.nextTapeNodeId++,kernelName:t,inputs:e,outputs:n,saved:s},u=uv(t);u!=null&&(o=u.gradFunc),o!=null&&(a.gradient=l=>(l=l.map((c,p)=>{if(c==null){let m=n[p],f=ip(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(l.length>1?l:l[0],s,i))),this.state.activeTape.push(a)}keep(t){return t.kept=!0,t}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(t){let e={track:[],name:"unnamed scope",id:this.state.nextScopeId++};t&&(e.name=t),this.state.scopeStack.push(e),this.state.activeScope=e}endScope(t){let e=nh(t),n=new Set(e.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let i=this.state.activeScope.track[s];!i.kept&&!n.has(i.id)&&i.dispose()}let o=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],e.forEach(s=>{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(t,e,n,o=!1){if(E(e.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",t));E(s instanceof Ft,()=>"The result y returned by f() must be a tensor.");let i=A1(this.state.activeTape,e,s);if(!o&&i.length===0&&e.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let a={};a[s.id]=n==null?w4(s.shape):n,$1(a,i,l=>this.tidy(l),C4);let u=e.map(l=>a[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:u}})}customGrad(t){return E(oi(t),()=>"The f passed in customGrad(f) must be a function."),(...e)=>{E(e.every(a=>a instanceof Ft),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,o={};e.forEach((a,u)=>{o[u]=a});let s=(a,u)=>(n=t(...e,u),E(n.value instanceof Ft,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),E(oi(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),i=(a,u)=>{let l=n.gradFunc(a,u),c=Array.isArray(l)?l:[l];E(c.length===e.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),E(c.every(m=>m instanceof Ft),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:i,inputs:o})}}readSync(t){return this.state.tensorInfo.get(t).backend.readSync(t)}read(t){return this.state.tensorInfo.get(t).backend.read(t)}readToGPU(t,e){return this.state.tensorInfo.get(t).backend.readToGPU(t,e)}async time(t){let e=Gu(),n=await this.backend.time(t);return n.wallMs=Gu()-e,n}track(t){return this.state.activeScope!=null&&(t.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(t)),t}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Ug;for(let t in this.registry)this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};ql.nextTensorId=0;ql.nextVariableId=0;function w4(r){let t=Wd(Jt(r),"float32");return k.makeTensor(t,r,"float32")}function vv(){let r=lv();if(r._tfengine==null){let t=new qd(r);r._tfengine=new ql(t)}return c1(r._tfengine.ENV),O1(()=>r._tfengine),r._tfengine}var k=vv();function C4(r,t){let e={a:r,b:t};return k.runKernel(Zn,e)}var Kl={};Wt(Kl,{isBrowser:()=>Tv,isMobile:()=>v4,mockIsMobile:()=>S4});function I4(){return typeof navigator!="undefined"&&navigator!=null}var Nv;function S4(r){Nv=r}function v4(r){if(Nv!==void 0)return Nv;if(r||I4()){if(r||(r=navigator),r.product==="ReactNative")return!0;let t=r.userAgent||r.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let e=r;return e.userAgentData&&e.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Tv(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var On=z();On.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});On.registerFlag("IS_BROWSER",()=>Tv());On.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");On.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));On.registerFlag("PROD",()=>!1);On.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>On.getBool("DEBUG"));On.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);On.registerFlag("IS_TEST",()=>!1);On.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);On.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);On.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);On.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);On.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function Br(r,t){let e=r;if(xr(r))return t==="string"?[]:[r.length];if(typeof r=="object"&&"texture"in r){let o=r.channels||"RGBA";return[r.height,r.width*o.length]}if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(e)||xr(e)&&t!=="string";)n.push(e.length),e=e[0];return Array.isArray(r)&&z().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&B1(r,n,[]),n}function B1(r,t,e){if(e=e||[],!Array.isArray(r)&&!xr(r)){E(t.length===0,()=>`Element arr[${e.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}E(t.length>0,()=>`Element arr[${e.join("][")}] should be a primitive, but is an array of ${r.length} elements`),E(r.length===t[0],()=>`Element arr[${e.join("][")}] should have ${t[0]} elements, but has ${r.length} elements`);let n=t.slice(1);for(let o=0;o<r.length;++o)B1(r[o],n,e.concat(o))}function z1(r,t,e,n){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==t||r==="numeric"&&t==="string")throw new Error(`Argument '${e}' passed to '${n}' must be ${r} tensor, but got ${t} tensor`)}}function I(r,t,e,n="numeric"){if(r instanceof Ft)return z1(n,r.dtype,t,e),r;let o=op(r);if(o!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(o=n),z1(n,o,t,e),r==null||!xr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let u=r==null?"null":r.constructor.name;throw new Error(`Argument '${t}' passed to '${e}' must be a Tensor or TensorLike, but got '${u}'`)}let s=Br(r,o);!xr(r)&&!Array.isArray(r)&&(r=[r]);let a=o!=="string"?Gp(r,o):Bo(r,[],!0);return k.makeTensor(a,s,o)}function ja(r,t,e,n="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${t} passed to ${e} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,i)=>I(s,`${t}[${i}]`,e,n))}var kv="__op";function T(r){let t=Object.keys(r);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let e=t[0],n=r[e];e.endsWith("_")&&(e=e.substring(0,e.length-1)),e=e+kv;let o=(...s)=>{k.startScope(e);try{let i=n(...s);return Hd(i)&&console.error("Cannot return a Promise inside of tidy."),k.endScope(i),i}catch(i){throw k.endScope(null),i}};return Object.defineProperty(o,"name",{value:e,configurable:!0}),o}function N4(r,t){let e=I(r,"real","complex"),n=I(t,"imag","complex");$e(e.shape,n.shape,`real and imag shapes, ${e.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:e,imag:n};return k.runKernel(pp,o)}var wn=T({complex_:N4});function on(r,t,e,n){if(n==null&&(n=op(r)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(typeof r=="object"&&"texture"in r){if(n!=="float32"&&n!=="int32")throw new Error(`Creating tensor from texture only supports 'float32'|'int32' dtype, while the dtype is ${n}.`);return r.channels=r.channels||"RGBA",k.backend.createTensorFromTexture(r,t||e,n)}if(!xr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Ud(t);let o=Jt(t),s=Jt(e);E(o===s,()=>`Based on the provided shape, [${t}], the tensor should have ${o} values but has ${s}`);for(let i=0;i<e.length;++i){let a=e[i],u=i===e.length-1?a!==Jt(t.slice(i)):!0;E(e[i]===t[i]||!u,()=>`Error creating a new Tensor. Inferred shape (${e}) does not match the provided shape (${t}). `)}}return!xr(r)&&!Array.isArray(r)&&(r=[r]),t=t||e,r=n!=="string"?Gp(r,n):Bo(r,[],!0),k.makeTensor(r,t,n)}function ur(r,t,e){let n=Br(r,e);return on(r,t,n,e)}var oh={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Hg=4;async function G1(r,t){let e=[],n=[],o=Array.isArray(r)?r.map(i=>i.name):Object.keys(r);for(let i=0;i<o.length;++i){let a=o[i],u=Array.isArray(r)?r[i].tensor:r[a];if(u.dtype!=="float32"&&u.dtype!=="int32"&&u.dtype!=="bool"&&u.dtype!=="string"&&u.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${a}': ${u.dtype}`);let l={name:a,shape:u.shape,dtype:u.dtype};if(u.dtype==="string"){let c=new Promise(async p=>{let m=await u.bytes(),f=m.reduce((g,x)=>g+x.length,0)+Hg*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let x=m[g],b=new Uint8Array(new Uint32Array([x.length]).buffer);d.set(b,h),h+=Hg,d.set(x,h),h+=x.length}p(d)});n.push(c)}else n.push(u.data());t!=null&&(l.group=t),e.push(l)}let s=await Promise.all(n);return{data:T4(s),specs:e}}function qg(r,t){let e={},n,o=0;for(let s of t){let i=s.name,a=s.dtype,u=s.shape,l=Jt(u),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(a!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${a}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=oh[p.dtype],f=r.slice(o,o+l*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(a==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")n===void 0&&(n=A4()),c=n(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(a==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${a}`);o+=l*m}else if(a==="string"){let p=Jt(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(o,o+Hg))[0];o+=Hg;let d=new Uint8Array(r.slice(o,o+f));c.push(d),o+=f}}else{let p=oh[a],m=r.slice(o,o+l*p);if(a==="float32")c=new Float32Array(m);else if(a==="int32")c=new Int32Array(m);else if(a==="bool")c=new Uint8Array(m);else if(a==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let x=0;x<f.length;x++)f[x]=c[x*2],d[x]=c[x*2+1];let h=ur(f,u,"float32"),g=ur(d,u,"float32");e[i]=wn(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${a}`);o+=l*p}a!=="complex64"&&(e[i]=ur(c,u,a))}return e}function T4(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let t=0,e=[];r.forEach(s=>{if(t+=s.byteLength,e.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),o=0;return e.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var Ev=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function V1(r){return Ev?Buffer.byteLength(r):new Blob([r]).size}function W1(r){if(Ev)return Buffer.from(r).toString("base64");let t=new Uint8Array(r),e="";for(let n=0,o=t.length;n<o;n++)e+=String.fromCharCode(t[n]);return btoa(e)}function U1(r){if(Ev){let n=Buffer.from(r,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(r),e=new Uint8Array(t.length);for(let n=0;n<t.length;++n)e.set([t.charCodeAt(n)],n);return e.buffer}function Hp(r){if(r.length===1)return r[0];let t=0;r.forEach(o=>{t+=o.byteLength});let e=new Uint8Array(t),n=0;return r.forEach(o=>{e.set(new Uint8Array(o),n),n+=o.byteLength}),e.buffer}function _v(r){let t="/";for(r=r.trim();r.endsWith(t);)r=r.slice(0,r.length-1);let e=r.split(t);return e[e.length-1]}function Kg(r,t){let e={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy,weightsManifest:t};return r.signature!=null&&(e.signature=r.signature),r.userDefinedMetadata!=null&&(e.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(e.modelInitializer=r.modelInitializer),r.initializerSignature!=null&&(e.initializerSignature=r.initializerSignature),r.trainingConfig!=null&&(e.trainingConfig=r.trainingConfig),e}function Av(r,t,e){let n={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy};if(r.trainingConfig!=null&&(n.trainingConfig=r.trainingConfig),r.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!e)throw new Error("modelJSON has weightsManifest but weightData is null");n.weightSpecs=t,n.weightData=e}return r.signature!=null&&(n.signature=r.signature),r.userDefinedMetadata!=null&&(n.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(n.modelInitializer=r.modelInitializer),r.initializerSignature!=null&&(n.initializerSignature=r.initializerSignature),n}async function qp(r,t){let e,n;return r.weightsManifest!=null&&([e,n]=await t(r.weightsManifest)),Av(r,e,n)}function Ni(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:V1(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:V1(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function jg(r){let t=[];for(let e of r)t.push(...e.weights);return t}function k4(){let r=e=>{let n=e<<13,o=0;for(;(n&8388608)===0;)o-=8388608,n<<=1;return n&=-8388609,o+=947912704,n|o},t=new Uint32Array(2048);t[0]=0;for(let e=1;e<1024;e++)t[e]=r(e);for(let e=1024;e<2048;e++)t[e]=939524096+(e-1024<<13);return t}function E4(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let t=1;t<31;t++)r[t]=t<<23;for(let t=33;t<63;t++)r[t]=2147483648+(t-32<<23);return r}function _4(){let r=new Uint32Array(64);for(let t=0;t<64;t++)r[t]=1024;return r[0]=r[32]=0,r}function A4(){let r=k4(),t=E4(),e=_4();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let i=0;i<n.length;i++){let a=n[i],u=r[e[a>>10]+(a&1023)]+t[a>>10];s[i]=u}return new Float32Array(o)}}var Ce=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ce.instance==null&&(Ce.instance=new Ce),Ce.instance}static registerSaveRouter(t){Ce.getInstance().saveRouters.push(t)}static registerLoadRouter(t){Ce.getInstance().loadRouters.push(t)}static getSaveHandlers(t){return Ce.getHandlers(t,"save")}static getLoadHandlers(t,e){return Ce.getHandlers(t,"load",e)}static getHandlers(t,e,n){let o=[];return(e==="load"?Ce.getInstance().loadRouters:Ce.getInstance().saveRouters).forEach(i=>{let a=i(t,n);a!==null&&o.push(a)}),o}},H1=r=>Ce.registerSaveRouter(r),q1=r=>Ce.registerLoadRouter(r),K1=r=>Ce.getSaveHandlers(r),j1=(r,t)=>Ce.getLoadHandlers(r,t);var $v="tensorflowjs",Dv=1,Uu="models_store",jl="model_info_store";function X1(){if(!z().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,t=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Rv(r){let t=r.result;t.createObjectStore(Uu,{keyPath:"modelPath"}),t.createObjectStore(jl,{keyPath:"modelPath"})}var Ti=class{constructor(t){if(this.indexedDB=X1(),t==null||!t)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=t}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,t)}async load(){return this.databaseAction(this.modelPath)}databaseAction(t,e){return new Promise((n,o)=>{let s=this.indexedDB.open($v,Dv);s.onupgradeneeded=()=>Rv(s),s.onsuccess=()=>{let i=s.result;if(e==null){let a=i.transaction(Uu,"readonly"),l=a.objectStore(Uu).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return i.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(i.close(),o(l.error)),a.oncomplete=()=>i.close()}else{let a=Ni(e),u=i.transaction(jl,"readwrite"),l=u.objectStore(jl),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:a}),p;c.onsuccess=()=>{p=i.transaction(Uu,"readwrite");let f=p.objectStore(Uu).put({modelPath:this.modelPath,modelArtifacts:e,modelArtifactsInfo:a});f.onsuccess=()=>n({modelArtifactsInfo:a}),f.onerror=d=>{l=u.objectStore(jl);let h=l.delete(this.modelPath);h.onsuccess=()=>(i.close(),o(f.error)),h.onerror=g=>(i.close(),o(f.error))}},c.onerror=m=>(i.close(),o(c.error)),u.oncomplete=()=>{p==null?i.close():p.oncomplete=()=>i.close()}}},s.onerror=i=>o(s.error)})}};Ti.URL_SCHEME="indexeddb://";var Y1=r=>z().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Ti.URL_SCHEME)?$4(r.slice(Ti.URL_SCHEME.length)):null;Ce.registerSaveRouter(Y1);Ce.registerLoadRouter(Y1);function $4(r){return new Ti(r)}function D4(r){return r.startsWith(Ti.URL_SCHEME)?r.slice(Ti.URL_SCHEME.length):r}var Xg=class{constructor(){this.indexedDB=X1()}async listModels(){return new Promise((t,e)=>{let n=this.indexedDB.open($v,Dv);n.onupgradeneeded=()=>Rv(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(jl,"readonly"),a=s.objectStore(jl).getAll();a.onsuccess=()=>{let u={};for(let l of a.result)u[l.modelPath]=l.modelArtifactsInfo;t(u)},a.onerror=u=>(o.close(),e(a.error)),s.oncomplete=()=>o.close()},n.onerror=o=>e(n.error)})}async removeModel(t){return t=D4(t),new Promise((e,n)=>{let o=this.indexedDB.open($v,Dv);o.onupgradeneeded=()=>Rv(o),o.onsuccess=()=>{let s=o.result,i=s.transaction(jl,"readwrite"),a=i.objectStore(jl),u=a.get(t),l;u.onsuccess=()=>{if(u.result==null)return s.close(),n(new Error(`Cannot find model with path '${t}' in IndexedDB.`));{let c=a.delete(t),p=()=>{l=s.transaction(Uu,"readwrite");let f=l.objectStore(Uu).delete(t);f.onsuccess=()=>e(u.result.modelArtifactsInfo),f.onerror=d=>n(u.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(u.error))}},u.onerror=c=>(s.close(),n(u.error)),i.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var Xa="/",Kp="tensorflowjs_models",Z1="info",R4="model_topology",F4="weight_specs",O4="weight_data",P4="model_metadata";function J1(r){return{info:[Kp,r,Z1].join(Xa),topology:[Kp,r,R4].join(Xa),weightSpecs:[Kp,r,F4].join(Xa),weightData:[Kp,r,O4].join(Xa),modelMetadata:[Kp,r,P4].join(Xa)}}function Q1(r){for(let t of Object.values(r))window.localStorage.removeItem(t)}function L4(r){let t=r.split(Xa);if(t.length<3)throw new Error(`Invalid key format: ${r}`);return t.slice(1,t.length-1).join(Xa)}function M4(r){return r.startsWith(ki.URL_SCHEME)?r.slice(ki.URL_SCHEME.length):r}var ki=class{constructor(t){if(!z().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,t==null||!t)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=t,this.keys=J1(this.modelPath)}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let e=JSON.stringify(t.modelTopology),n=JSON.stringify(t.weightSpecs),o=Ni(t);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,e),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,W1(t.weightData));let s={format:t.format,generatedBy:t.generatedBy,convertedBy:t.convertedBy,signature:t.signature!=null?t.signature:void 0,userDefinedMetadata:t.userDefinedMetadata!=null?t.userDefinedMetadata:void 0,modelInitializer:t.modelInitializer!=null?t.modelInitializer:void 0,initializerSignature:t.initializerSignature!=null?t.initializerSignature:void 0,trainingConfig:t.trainingConfig!=null?t.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:o}}catch(s){throw Q1(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let t=JSON.parse(this.LS.getItem(this.keys.info));if(t==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(t.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let e={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);e.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);e.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let a=JSON.parse(s);e.format=a.format,e.generatedBy=a.generatedBy,e.convertedBy=a.convertedBy,a.signature!=null&&(e.signature=a.signature),a.userDefinedMetadata!=null&&(e.userDefinedMetadata=a.userDefinedMetadata),a.modelInitializer!=null&&(e.modelInitializer=a.modelInitializer),a.initializerSignature!=null&&(e.initializerSignature=a.initializerSignature),a.trainingConfig!=null&&(e.trainingConfig=a.trainingConfig)}let i=this.LS.getItem(this.keys.weightData);if(i==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return e.weightData=U1(i),e}};ki.URL_SCHEME="localstorage://";var tE=r=>z().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ki.URL_SCHEME)?z4(r.slice(ki.URL_SCHEME.length)):null;Ce.registerSaveRouter(tE);Ce.registerLoadRouter(tE);function z4(r){return new ki(r)}var Yg=class{constructor(){E(z().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),E(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let t={},e=Kp+Xa,n=Xa+Z1;for(let o=0;o<this.LS.length;++o){let s=this.LS.key(o);if(s.startsWith(e)&&s.endsWith(n)){let i=L4(s);t[i]=JSON.parse(this.LS.getItem(s))}}return t}async removeModel(t){t=M4(t);let e=J1(t);if(this.LS.getItem(e.info)==null)throw new Error(`Cannot find model at path '${t}'`);let n=JSON.parse(this.LS.getItem(e.info));return Q1(e),n}};var jp="://",Er=class{constructor(){this.managers={}}static getInstance(){return Er.instance==null&&(Er.instance=new Er),Er.instance}static registerManager(t,e){E(t!=null,()=>"scheme must not be undefined or null."),t.endsWith(jp)&&(t=t.slice(0,t.indexOf(jp))),E(t.length>0,()=>"scheme must not be an empty string.");let n=Er.getInstance();E(n.managers[t]==null,()=>`A model store manager is already registered for scheme '${t}'.`),n.managers[t]=e}static getManager(t){let e=Er.getInstance().managers[t];if(e==null)throw new Error(`Cannot find model manager for scheme '${t}'`);return e}static getSchemes(){return Object.keys(Er.getInstance().managers)}};function Zg(r){if(r.indexOf(jp)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Er.getSchemes().join(",")}`);return{scheme:r.split(jp)[0],path:r.split(jp)[1]}}async function eE(r,t,e=!1){E(r!==t,()=>`Old path and new path are the same: '${r}'`);let n=Ce.getLoadHandlers(r);E(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),E(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=Ce.getSaveHandlers(t);E(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),E(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],a=Zg(r).scheme,u=Zg(r).path,l=a===Zg(r).scheme,c=await o.load();e&&l&&await Er.getManager(a).removeModel(u);let p=await i.save(c);return e&&!l&&await Er.getManager(a).removeModel(u),p.modelArtifactsInfo}async function rE(){let r=Er.getSchemes(),t={};for(let e of r){let n=await Er.getManager(e).listModels();for(let o in n){let s=e+jp+o;t[s]=n[o]}}return t}async function nE(r){let t=Zg(r);return Er.getManager(t.scheme).removeModel(t.path)}async function oE(r,t){return eE(r,t,!1)}async function sE(r,t){return eE(r,t,!0)}var Fv=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(t,e){return fetch(t,e)}now(){return performance.now()}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${e}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(t)}decode(t,e){return new TextDecoder(e).decode(t)}setTimeoutCustom(t,e){if(typeof window=="undefined"||!z().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(t,e);return}this.functionRefs.push(t),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},e),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let o=this.functionRefs[n.data.index];o(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}};if(z().get("IS_BROWSER")){z().setPlatform("browser",new Fv);try{Er.registerManager(ki.URL_SCHEME,new Yg)}catch(r){}try{Er.registerManager(Ti.URL_SCHEME,new Xg)}catch(r){}}var B4={importFetch:()=>iE()},Ov;var Pv=class{constructor(){this.util=aE(),this.textEncoder=new this.util.TextEncoder}fetch(t,e){return z().global.fetch!=null?z().global.fetch(t,e):(Ov==null&&(Ov=B4.importFetch()),Ov(t,e))}now(){let t=process.hrtime();return t[0]*1e3+t[1]/1e6}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${e}`);return this.textEncoder.encode(t)}decode(t,e){return t.length===0?"":new this.util.TextDecoder(e).decode(t)}};z().get("IS_NODE")&&!z().get("IS_BROWSER")&&z().setPlatform("node",new Pv);function wt(r,t="float32",e){return t=t||"float32",Ud(r),new pe(r,t,e)}function V4(r,t){let e=I(r,"x","cast");if(!ov(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&e.dtype!=="string"||t!=="string"&&e.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:e},o={dtype:t};return k.runKernel(lo,n,o)}var J=T({cast_:V4});function G4(r){let e={x:I(r,"x","clone","string_or_numeric")};return k.runKernel(co,e)}var sn=T({clone_:G4});function Jg(r,t=!1){console.log(r.toString(t))}vv();var W4={buffer:wt,cast:J,clone:sn,print:Jg};P1(W4);var _r={};Wt(_r,{browserFiles:()=>uE,browserHTTPRequest:()=>mE,concatenateArrayBuffers:()=>Hp,copyModel:()=>oE,decodeWeights:()=>qg,encodeWeights:()=>G1,fromMemory:()=>fE,fromMemorySync:()=>Gv,getLoadHandlers:()=>j1,getModelArtifactsForJSON:()=>qp,getModelArtifactsForJSONSync:()=>Av,getModelArtifactsInfoForJSON:()=>Ni,getSaveHandlers:()=>K1,getWeightSpecs:()=>jg,http:()=>tx,isHTTPScheme:()=>Qg,listModels:()=>rE,loadWeights:()=>cE,moveModel:()=>sE,registerLoadRouter:()=>q1,registerSaveRouter:()=>H1,removeModel:()=>nE,weightsLoaderFactory:()=>Bv,withSaveHandler:()=>dE,withSaveHandlerSync:()=>hE});var U4="model",H4=".json",q4=".weights.bin";function lE(r){return new Promise(t=>setTimeout(t)).then(r)}var Ya=class{constructor(t){if(!z().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");t.startsWith(Ya.URL_SCHEME)&&(t=t.slice(Ya.URL_SCHEME.length)),(t==null||t.length===0)&&(t=U4),this.modelJsonFileName=t+H4,this.weightDataFileName=t+q4}async save(t){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let e=window.URL.createObjectURL(new Blob([t.weightData],{type:"application/octet-stream"}));if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:t.weightSpecs}],o=Kg(t,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(o)],{type:"application/json"})),i=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(i.download=this.modelJsonFileName,i.href=s,await lE(()=>i.dispatchEvent(new MouseEvent("click"))),t.weightData!=null){let a=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;a.download=this.weightDataFileName,a.href=e,await lE(()=>a.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ni(t)}}}};Ya.URL_SCHEME="downloads://";var Lv=class{constructor(t){if(t==null||t.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${t}`);this.jsonFile=t[0],this.weightsFiles=t.slice(1)}async load(){return new Promise((t,e)=>{let n=new FileReader;n.onload=o=>{let s=JSON.parse(o.target.result),i=s.modelTopology;if(i==null){e(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){e(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){t({modelTopology:i});return}let u=qp(s,l=>this.loadWeights(l));t(u)},n.onerror=o=>e(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(t){let e=[],n=[];for(let i of t)e.push(...i.weights),n.push(...i.paths);let o=this.checkManifestAndWeightFiles(t),s=n.map(i=>this.loadWeightsFile(i,o[i]));return Promise.all(s).then(i=>[e,Hp(i)])}loadWeightsFile(t,e){return new Promise((n,o)=>{let s=new FileReader;s.onload=i=>{let a=i.target.result;n(a)},s.onerror=i=>o(`Failed to weights data from file of path '${t}'.`),s.readAsArrayBuffer(e)})}checkManifestAndWeightFiles(t){let e=[],n=this.weightsFiles.map(s=>_v(s.name)),o={};for(let s of t)s.paths.forEach(i=>{let a=_v(i);if(e.indexOf(a)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${a}'`);if(e.push(a),n.indexOf(a)===-1)throw new Error(`Weight file with basename '${a}' is not provided.`);o[i]=this.weightsFiles[n.indexOf(a)]});if(e.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${e.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return o}},K4=r=>z().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Ya.URL_SCHEME)?j4(r.slice(Ya.URL_SCHEME.length)):null;Ce.registerSaveRouter(K4);function j4(r="model"){return new Ya(r)}function uE(r){return new Lv(r)}function Mv(r,t,e,n){i(r),e=e==null?0:e,n=n==null?1:n,a(e,n);let o=0,s=u=>(u.then(l=>{let c=e+ ++o/r.length*(n-e);return t(c),l}),u);function i(u){E(u!=null&&Array.isArray(u)&&u.length>0,()=>"promises must be a none empty array")}function a(u,l){E(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),E(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),E(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(r.map(s))}async function zv(r,t){t==null&&(t={});let e=t.fetchFunc==null?z().platform.fetch:t.fetchFunc,n=r.map(p=>e(p,t.requestInit,{isBinary:!0})),o=0,s=.5,a=(t.onProgress==null?await Promise.all(n):await Mv(n,t.onProgress,o,s)).map(p=>p.arrayBuffer()),u=.5,l=1;return t.onProgress==null?await Promise.all(a):await Mv(a,t.onProgress,u,l)}async function cE(r,t="",e,n){return Bv(i=>zv(i,{requestInit:n}))(r,t,e)}function Bv(r){return async(t,e="",n)=>{let o=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],a=[];if(t.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,b=oh[x]*Jt(g.shape),w=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};n!=null?n.forEach((C,N)=>{C===g.name&&(w(),i[N]=!0)}):w(),a.push(g.name),h+=b})}),!i.every(f=>f)){let f=n.filter((d,h)=>!i[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
|
|
Manifest JSON has weights with names: ${a.join(", ")}.`)}let u=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),l=[];u.forEach(f=>{t[f].paths.forEach(d=>{let h=e+(e.endsWith("/")?"":"/")+d;l.push(h)})});let c=await r(l),p={},m=0;return u.forEach(f=>{let d=t[f].paths.length,h=0;for(let C=0;C<d;C++)h+=c[m+C].byteLength;let g=new ArrayBuffer(h),x=new Uint8Array(g),b=0;for(let C=0;C<d;C++){let N=new Uint8Array(c[m+C]);x.set(N,b),b+=N.byteLength}s[f].forEach(C=>{let N=g.slice(C.groupOffset,C.groupOffset+C.sizeBytes),_=qg(N,[C.manifestEntry]);for(let A in _)p[A]=_[A]}),m+=d}),p}}var X4="application/octet-stream",Y4="application/json",sh=class{constructor(t,e){if(this.DEFAULT_METHOD="POST",e==null&&(e={}),this.weightPathPrefix=e.weightPathPrefix,this.onProgress=e.onProgress,this.weightUrlConverter=e.weightUrlConverter,e.fetchFunc!=null?(E(typeof e.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=e.fetchFunc):this.fetch=z().platform.fetch,E(t!=null&&t.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(t)&&E(t.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${t.length}).`),this.path=t,e.requestInit!=null&&e.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=e.requestInit||{}}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let e=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);e.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:t.weightSpecs}],o=Kg(t,n);e.body.append("model.json",new Blob([JSON.stringify(o)],{type:Y4}),"model.json"),t.weightData!=null&&e.body.append("model.weights.bin",new Blob([t.weightData],{type:X4}),"model.weights.bin");let s=await this.fetch(this.path,e);if(s.ok)return{modelArtifactsInfo:Ni(t),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let t=await this.fetch(this.path,this.requestInit);if(!t.ok)throw new Error(`Request to ${this.path} failed with status code ${t.status}. Please verify this URL points to the model JSON of the model to load.`);let e;try{e=await t.json()}catch(s){let i=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?i+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":i+=" Please make sure the server is serving valid JSON for this request.",new Error(i)}let n=e.modelTopology,o=e.weightsManifest;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return qp(e,s=>this.loadWeights(s))}async loadWeights(t){let e=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=Z4(e),s=this.weightPathPrefix||n,i=jg(t),a=[],u=[];for(let c of t)for(let p of c.paths)this.weightUrlConverter!=null?u.push(this.weightUrlConverter(p)):a.push(s+p+o);this.weightUrlConverter&&a.push(...await Promise.all(u));let l=await zv(a,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[i,Hp(l)]}};sh.URL_SCHEME_REGEX=/^https?:\/\//;function Z4(r){let t=r.lastIndexOf("/"),e=r.lastIndexOf("?"),n=r.substring(0,t),o=e>t?r.substring(e):"";return[n+"/",o]}function Qg(r){return r.match(sh.URL_SCHEME_REGEX)!=null}var pE=(r,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let e=!0;if(Array.isArray(r)?e=r.every(n=>Qg(n)):e=Qg(r),e)return tx(r,t)}return null};Ce.registerSaveRouter(pE);Ce.registerLoadRouter(pE);function tx(r,t){return new sh(r,t)}function mE(r,t){return tx(r,t)}var ih=class{constructor(t){this.modelArtifacts=t}load(){return this.modelArtifacts}},ex=class{constructor(t){this.saveHandler=t}save(t){return this.saveHandler(t)}},Vv=class{constructor(t){t.load&&(this.load=()=>Promise.resolve(t.load())),t.save&&(this.save=e=>Promise.resolve(t.save(e)))}};function fE(r,t,e,n){let o=arguments;return new Vv(Gv(...o))}function Gv(r,t,e,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new ih(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ih({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ih({modelTopology:r,weightSpecs:t,weightData:e,trainingConfig:n}))}function dE(r){return new ex(r)}function hE(r){return new ex(r)}var yE={};Wt(yE,{confusionMatrix:()=>xE});function J4(r,t,e=!1,n=!1){let o=I(r,"a","matMul"),s=I(t,"b","matMul");[o,s]=Ut(o,s);let i={a:o,b:s},a={transposeA:e,transposeB:n};return k.runKernel(Ho,i,a)}var Lt=T({matMul_:J4});function Q4(r,t,e=1,n=0,o="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let i={indices:I(r,"indices","oneHot","int32")},a={dtype:o,depth:t,onValue:e,offValue:n};return k.runKernel(gs,i,a)}var Ei=T({oneHot_:Q4});function dpt(){z().set("PROD",!0)}function hpt(){z().set("DEBUG",!0)}function gpt(){z().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Wv(r){z().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}L1(Wv);function xpt(){k.disposeVariables()}function Pn(){return k}function ah(){return k.memory()}function ypt(r){return k.profile(r)}function B(r,t){return k.tidy(r,t)}function vt(r){nh(r).forEach(e=>e.dispose())}function De(r){return k.keep(r)}function bpt(r){return k.time(r)}function tH(r){return k.setBackend(r)}function wpt(){return k.ready()}function Cpt(){return k.backendName}function Ipt(r){k.removeBackend(r)}function Spt(r){return k.findBackend(r)}function vpt(r){return k.findBackendFactory(r)}function Xp(r,t,e=1){return k.registerBackend(r,t,e)}function gE(){return k.backend}function Npt(r,t){z().setPlatform(r,t)}function eH(r){let e={input:I(r,"input","imag")};return k.runKernel(Sp,e)}var Xl=T({imag_:eH});function rH(r){let e={x:I(r,"x","neg")};return k.runKernel(pi,e)}var Ht=T({neg_:rH});function nH(r){let e={input:I(r,"input","real")};return k.runKernel(Rp,e)}var Za=T({real_:nH});function oH(r,t,e){let n=I(r,"x","transpose");if(t==null&&(t=n.shape.map((i,a)=>a).reverse()),E(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(i=>{E(i>=0&&i<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let o={x:n},s={perm:t};return n.dtype==="complex64"?B(()=>{let i=Za(n),a=Xl(n);return i=k.runKernel(Qn,{x:i},s),a=k.runKernel(Qn,{x:a},s),e&&(a=Ht(a)),wn(i,a)}):k.runKernel(Qn,o,s)}var Ot=T({transpose_:oH});function sH(r,t,e){let n=I(r,"labels","confusionMatrix"),o=I(t,"predictions","confusionMatrix");E(e==null||e>0&&Number.isInteger(e),()=>`If provided, numClasses must be a positive integer, but got ${e}`),E(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),E(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),E(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),E(e>0&&Number.isInteger(e),()=>`numClasses is required to be a positive integer, but got ${e}`);let s=Ei(J(n,"int32"),e),i=Ei(J(o,"int32"),e),a=Ot(s),u=Lt(a,i);return J(u,"int32")}var xE=T({confusionMatrix_:sH});var Vr={};Wt(Vr,{assertAndGetBroadcastShape:()=>Pt,getBroadcastDims:()=>bE,getReductionAxes:()=>ge});function bE(r,t){let e=r.length,n=[];for(let o=0;o<e;o++){let s=e-1-o,i=r[s]||1;(t[t.length-1-o]||1)>1&&i===1&&n.unshift(s)}return n}function ge(r,t){let e=[];for(let n=0;n<t.length;n++){let o=r[r.length-n-1],s=t.length-n-1,i=t[s];(o==null||o===1&&i>1)&&e.unshift(s)}return e}function Pt(r,t){let e=[],n=Math.max(r.length,t.length);for(let o=0;o<n;o++){let s=r[r.length-o-1];s==null&&(s=1);let i=t[t.length-o-1];if(i==null&&(i=1),s===1)e.unshift(i);else if(i===1)e.unshift(s);else if(s!==i){let a=`Operands could not be broadcast together with shapes ${r} and ${t}.`;throw Error(a)}else e.unshift(s)}return e}var nx={};Wt(nx,{fromPixels:()=>mH,fromPixelsAsync:()=>cH,toPixels:()=>pH});function rx(r,t,e){if(Yn(r),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Br(r,e);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return on(r,t,n,e)}var Hu;function wE(r,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let e=!1,n=!1,o=!1,s=!1,i=!1,a=!1;if(r.data instanceof Uint8Array)e=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)a=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(Jd(Yd,k.backendName)!=null){let d={pixels:r},h={numChannels:t};return k.runKernel(Yd,d,h)}let[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;if(i)p=r.getContext("2d").getImageData(0,0,l,c).data;else if(n||e)p=r.data;else if(s||o||a){if(Hu==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Hu=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Hu=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Hu.canvas.width=l,Hu.canvas.height=c,Hu.drawImage(r,0,0,l,c),p=Hu.getImageData(0,0,l,c).data}let m;if(t===4)m=new Int32Array(p);else{let d=l*c;m=new Int32Array(d*t);for(let h=0;h<d;h++)for(let g=0;g<t;++g)m[h*t+g]=p[h*4+g]}return rx(m,[c,l,t],"int32")}function iH(r){return r!=null&&r.data instanceof Uint8Array}function aH(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function lH(r){return r!=null&&r.width!==0&&r.height!==0}function uH(r){return aH()&&!(r instanceof ImageBitmap)&&lH(r)&&!iH(r)}async function cH(r,t=3){let e=null;if(z().getBool("WRAP_TO_IMAGEBITMAP")&&uH(r)){let n;try{n=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(o){n=null}n!=null&&n.width===r.width&&n.height===r.height?e=n:e=r}else e=r;return wE(e,t)}async function pH(r,t){let e=I(r,"img","toPixels");if(!(r instanceof Ft)){let l=e;e=J(l,"int32"),l.dispose()}if(e.rank!==2&&e.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${e.rank}.`);let[n,o]=e.shape.slice(0,2),s=e.rank===2?1:e.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(e.dtype!=="float32"&&e.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${e.dtype}. Please use float32 or int32 tensors.`);let i=await e.data(),a=e.dtype==="float32"?255:1,u=new Uint8ClampedArray(o*n*4);for(let l=0;l<n*o;++l){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=i[l*s+m];if(e.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(e.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*a,c[1]=f*a,c[2]=f*a):c[m]=f*a}let p=l*4;u[p+0]=Math.round(c[0]),u[p+1]=Math.round(c[1]),u[p+2]=Math.round(c[2]),u[p+3]=Math.round(c[3])}if(t!=null){t.width=o,t.height=n;let l=t.getContext("2d"),c=new ImageData(u,o,n);l.putImageData(c,0,0)}return e!==r&&e.dispose(),u}var mH=T({fromPixels_:wE});var ox={};Wt(ox,{prepareAndValidate:()=>CE});function CE(r,t){let e=r.shape.length,n=t.shape.length;if(e<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${e}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>e)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${e}`);if(Jt(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=t.shape,s=o[o.length-1],i=1;for(let p=0;p<o.length-1;++p)i*=o[p];let a=r.shape,u=o.slice();u.pop();let l=1;for(let p=s;p<e;++p)l*=a[p],u.push(a[p]);let c=[...si(r.shape).map(p=>p/l),1].slice(0,s);return[u,i,l,c]}var lh={};Wt(lh,{calculateShapes:()=>IE,validateInput:()=>sx,validateUpdateShape:()=>Uv});function Uv(r,t,e){let n=t.rank>1?t.shape[t.rank-1]:1,o=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${e.shape}, indices.shape: ${t.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(e.rank<o)throw new Error(s+` update.rank < ${o}. `);if(r.length<n+(e.rank-o))throw new Error(s+` Output shape length < ${n+(e.rank-o)}`);if(e.rank!==o+r.length-n)throw new Error(s+` update.rank != ${o+r.length-n}`);for(let i=0;i<o;++i)if(e.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${e.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<e.rank-o;++i)if(e.shape[i+o]!==r[i+n])throw new Error(s+` updates.shape[${i+o}] (${e.shape[i+o]}) != shape[${i+o}] (${r[i+o]})`)}function sx(r,t,e){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(e.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${e}`);if(e.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}Uv(e,t,r)}function IE(r,t,e){let n=t.shape.length,o=n>1?t.shape[n-1]:1,s=e.length,i=1;for(let p=o;p<s;++p)i*=e[p];let a=o<1?1:o,u=Jt(t.shape)/a,l=[...si(e.slice(0,o)),1],c=Jt(e);return{sliceRank:o,numUpdates:u,sliceSize:i,strides:l,outputSize:c}}var Le={};Wt(Le,{assertParamsValid:()=>dH,computeFlatOffset:()=>bH,computeOutShape:()=>gH,getNormalizedAxes:()=>xH,isSliceContinous:()=>yH,maskToAxes:()=>hH,parseSliceParams:()=>qv,sliceInfo:()=>wH,startForAxis:()=>AE,startIndicesWithElidedDims:()=>kE,stopForAxis:()=>$E,stopIndicesWithElidedDims:()=>EE,stridesForAxis:()=>_E,stridesWithElidedDims:()=>vE});var Hv=-2,fH=-1;function dH(r,t,e){let n=r.shape.length;E(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),E(n===e.length,()=>`Error in slice${n}D: Length of size ${e} must match the rank of the array (${n}).`);for(let o=0;o<n;++o)E(t[o]+e[o]<=r.shape[o],()=>`Error in slice${n}D: begin[${o}] + size[${o}] (${t[o]+e[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function hH(r){let t=[],e=0;for(;r>0;)r&1&&t.push(e),r/=2,e++;return t}function gH(r,t,e){let n=[];for(let o=0;o<r.length;o++)n[o]=Math.ceil((t[o]-r[o])/e[o]);return n}function vE(r,t,e,n){let o=[...r];for(let s=o.length;s<n.length;s++)o.push(1);for(let s=0;s<e;s++)s===0?o[t]=1:(o.splice(t,0,1),o.pop());return o}function NE(r,t,e){return e<=r?e:e-(t-1)}function TE(r,t){let e=[];for(let n=0;n<r;n++)e.push(t+n);return e}function xH(r,t,e,n,o,s,i,a,u){let l=r.length,c=new Array(l),p=new Array(l),m=new Array(l);if(t.length&&e>0){let f=t[0],d=e+1;c=kE(i,f,d,n,r),p=EE(a,f,d,o,r),m=vE(s,f,d,r)}else for(let f=0;f<l;f++)c[f]=AE(i,n,s,r,f,u),p[f]=$E(a,o,s,r,f,u),m[f]=_E(s,f,u);return{begin:c,end:p,strides:m}}function kE(r,t,e,n,o){let s=[...o],i=TE(e,t);for(let a=0;a<s.length;a++)if(i.indexOf(a)>-1)s[a]=0;else{let u=NE(t,e,a),l=n[u];r&1<<u&&(l=0),s[a]=l}return s}function EE(r,t,e,n,o){let s=[...o],i=TE(e,t);for(let a=0;a<s.length;a++)if(i.indexOf(a)>-1)s[a]=Number.MAX_SAFE_INTEGER;else{let u=NE(t,e,a),l=n[u];r&1<<u&&(l=Number.MAX_SAFE_INTEGER),s[a]=l}for(let a=0;a<s.length;a++){let u=o[a];s[a]<0&&(s[a]+=u),s[a]=np(0,s[a],o[a])}return s}function _E(r,t,e){let n=r[t];return(e&1<<t||n==null)&&(n=1),n}function AE(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<<o||s&1<<o||i==null)&&(a>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),i=np(0,i,u-1),i}function $E(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<<o||s&1<<o||i==null)&&(a>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),a>0?i=np(0,i,u):i=np(-1,i,u-1),i}function yH(r,t,e){let n=e.length;for(let o=0;o<e.length;o++)if(e[o]>1){n=o;break}for(let o=n+1;o<e.length;o++)if(t[o]>0||e[o]!==r[o])return!1;return!0}function bH(r,t){let e=r.length>0?r[r.length-1]:1;for(let n=0;n<r.length-1;n++)e+=r[n]*t[n];return e}function qv(r,t,e){let n,o=r.shape.length;typeof t=="number"?n=[t,...new Array(o-1).fill(0)]:t.length<o?n=t.concat(new Array(o-t.length).fill(0)):n=t.slice(),n.forEach(i=>{E(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return e==null?s=new Array(o).fill(-1):typeof e=="number"?s=[e,...new Array(o-1).fill(-1)]:e.length<o?s=e.concat(new Array(o-e.length).fill(-1)):s=e,s=s.map((i,a)=>i>=0?i:(E(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${a}.`),r.shape[a]-n[a])),[n,s]}function wH(r,t,e,n,o,s,i,a,u){let l;if(n==null?(l=new Array(t.length),l.fill(1)):l=n,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:e.slice(),strides:l.slice(),beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};for(let w=0;w<p.dims;w++)c&&(1<<w&a)!==0&&p.numAddAxisAfterEllipsis++,1<<w&i&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let m={dims:r.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};CH(p,m);let f=!0,d=!0,h=!0,g=[],x=[];for(let w=0;w<r.length;++w){if(m.strides[w]===0)throw Error(`strides[${w}] must be non-zero`);let C=!!(m.shrinkAxisMask&1<<w),N=r[w];if(N===-1){g.push(C?1:-1);continue}let _=[m.beginMask&1<<w,m.endMask&1<<w],A=[m.strides[w]>0?0:-1,m.strides[w]>0?N:N-1];if(C&&m.strides[w]<=0)throw Error("only stride 1 allowed on non-range indexing.");h=h&&m.strides[w]===1;let $=!!(m.beginMask&1<<w&&m.endMask&1<<w);if(m.beginValid&&m.endValid){if(C){let G=m.begin[w]<0?N+m.begin[w]:m.begin[w];if(m.begin[w]=G,m.end[w]=m.begin[w]+1,G<0||G>=N)throw Error(`slice index ${m.begin[w]} of dimension ${w} out of bounds.`)}else m.begin[w]=SE(m.begin[w],0,m.strides[w],N,_,A),m.end[w]=SE(m.end[w],1,m.strides[w],N,_,A);let V=m.strides[w]===1&&m.begin[w]===0&&m.end[w]===N;f=f&&V,d=d&&(w===0&&m.strides[w]===1||V)}else f=f&&m.strides[w]===1&&$,d=d&&(w===0&&m.strides[w]===1||$);let F,P=!1;if(m.beginValid&&m.endValid?(F=m.end[w]-m.begin[w],P=!0):C?(F=1,P=!0):$&&N>=0&&(m.strides[w]<0?F=-N:F=N,P=!0),P){let V;F===0||F<0!=m.strides[w]<0?V=0:V=Math.trunc(F/m.strides[w])+(F%m.strides[w]!==0?1:0),g.push(V)}else g.push(-1)}for(let w=0;w<m.finalShapeGatherIndices.length;++w){let C=m.finalShapeGatherIndices[w];C>=0?x.push(g[C]):C===Hv&&x.push(1)}return{finalShapeSparse:x.filter((w,C)=>m.finalShapeGatherIndices[C]!==Hv),finalShape:x,isIdentity:f,sliceDim0:d,isSimpleSlice:h,begin:m.begin,end:m.end,strides:m.strides}}function CH(r,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let e=0;t.beginValid=r.begin!=null,t.endValid=r.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<r.dims;n++)if(1<<n&r.ellipsisMask){let o=Math.min(t.dims-(r.dims-n)+1+r.numAddAxisAfterEllipsis,t.dims);for(;e<o;e++)t.begin[e]=0,t.end[e]=0,t.strides[e]=1,t.beginMask|=1<<e,t.endMask|=1<<e,t.finalShapeGatherIndices.push(e),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[e]=n}else if(1<<n&r.newAxisMask)t.finalShapeGatherIndices.push(Hv),t.finalShapeGatherIndicesSparse.push(-1);else{if(e===t.begin.length)throw Error(`Index out of range using input dim ${e}; input has only ${t.dims} dims, ${t.begin.length}.`);r.begin!=null&&(t.begin[e]=r.begin[n]),r.end!=null&&(t.end[e]=r.end[n]),t.strides[e]=r.strides[n],r.beginMask&1<<n&&(t.beginMask|=1<<e),r.endMask&1<<n&&(t.endMask|=1<<e),r.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(fH),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<e):(t.finalShapeGatherIndices.push(e),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[e]=n,e++}}function SE(r,t,e,n,o,s){if(o[t])return e>0?s[t]:s[t+1&1];{let i=r<0?n+r:r;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var Q={};Wt(Q,{Serializable:()=>uh,SerializationMap:()=>_i,registerClass:()=>Cn});var uh=class{getClassName(){return this.constructor.className}static fromConfig(t,e){return new t(e)}},_i=class{constructor(){this.classNameMap={}}static getMap(){return _i.instance==null&&(_i.instance=new _i),_i.instance}static register(t){_i.getMap().classNameMap[t.className]=[t,t.fromConfig]}};function Cn(r){E(r.className!=null,()=>"Class being registered does not have the static className property defined."),E(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),E(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),_i.register(r)}var OE={};Wt(OE,{TEST_EPSILON_FLOAT16:()=>DE,createVideoElement:()=>EH,encodeStrings:()=>FE,expectArrayBuffersEqual:()=>kH,expectArraysClose:()=>SH,expectArraysEqual:()=>NH,expectNumbersClose:()=>RE,expectPromiseToFail:()=>vH,expectValuesInRange:()=>TH,play:()=>_H,testEpsilon:()=>ix});var IH=.001,DE=.1;function SH(r,t,e){return e==null&&(e=ix()),Kv(r,t,(n,o)=>jv(n,o,e))}function ix(){return k.backend.floatPrecision()===32?IH:DE}function Kv(r,t,e){let n=!0;if((xr(r)||xr(t))&&(n=!1),xr(r)&&xr(t)&&(n=!0),n){let i=r.constructor.name,a=t.constructor.name;if(i!==a)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${a}`)}if(Array.isArray(r)&&Array.isArray(t)){let i=Br(r),a=Br(t);if(!Dn(i,a))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${a}]`)}let o=xr(r)?r:Bo(r),s=xr(t)?t:Bo(t);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.
|
|
Actual: ${o}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let a=o[i],u=s[i];if(!e(a,u))throw new Error(`Arrays differ: actual[${i}] = ${a}, expected[${i}] = ${u}.
|
|
Actual: ${o}.
|
|
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function vH(r,t){r().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function NH(r,t){let e=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Vo(r)||Vo(r[0])||Vo(t)||Vo(t[0])?Kv(r,e,(n,o)=>n==o):Kv(r,t,(n,o)=>jv(n,o,0))}function RE(r,t,e){if(e==null&&(e=ix()),!jv(r,t,e))throw new Error(`Numbers differ: actual === ${r}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function jv(r,t,e){return!isFinite(r)&&!isFinite(t)?!0:!(isNaN(r)||isNaN(t)||Math.abs(r-t)>e)}function TH(r,t,e){for(let n=0;n<r.length;n++)if(r[n]<t||r[n]>e)throw new Error(`Value out of range:${r[n]} low: ${t}, high: ${e}`)}function kH(r,t){let e=new Float32Array(r),n=new Float32Array(t);if(e.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${e.length}`);for(let o=0;o<n.length;o++)if(e[o]!==n[o])throw new Error(`Expected ArrayBuffer value at ${o} to be ${n[o]} but got ${e[o]} instead`)}function FE(r){for(let t=0;t<r.length;t++){let e=r[t];Array.isArray(e)?FE(e):r[t]=Hl(e)}return r}function EH(r){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(r),new Promise(e=>{t.addEventListener("loadeddata",n=>e(t)),t.load()})}async function _H(r){await r.play(),"requestVideoFrameCallback"in r&&await new Promise(t=>{r.requestVideoFrameCallback(t)})}var PE="4.0.0";function AH(r,t){let e=I(r,"a","add"),n=I(t,"b","add");[e,n]=Ut(e,n);let o={a:e,b:n};return k.runKernel(Zn,o)}var X=T({add_:AH});function $H(r,t){let e=I(r,"a","floorDiv"),n=I(t,"b","floorDiv");[e,n]=Ut(e,n);let o={a:e,b:n};return k.runKernel(ns,o)}var Yp=T({floorDiv_:$H});function DH(r,t){let e=I(r,"a","div"),n=I(t,"b","div");if([e,n]=Ut(e,n),e.dtype==="int32"&&n.dtype==="int32")return Yp(e,n);let o={a:e,b:n},s={};return k.runKernel(Qo,o,s)}var pt=T({div_:DH});function RH(r,t){let e=I(r,"a","mul"),n=I(t,"b","mul");[e,n]=Ut(e,n);let o={a:e,b:n};return k.runKernel(hs,o)}var D=T({mul_:RH});function FH(r){let t=I(r,"x","abs");if(t.dtype==="complex64"){let e={x:t};return k.runKernel(_l,e)}else{let e={x:t};return k.runKernel(ii,e)}}var Ee=T({abs_:FH});function OH(r){let e={x:I(r,"x","acos")};return k.runKernel(oa,e)}var ax=T({acos_:OH});function PH(r){let e={x:I(r,"x","acosh")};return k.runKernel(sa,e)}var lx=T({acosh_:PH});function LH(r){E(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),E(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let t=r.map((o,s)=>I(o,`tensors${s}`,"addN")),e=t[0];t.forEach(o=>{if(o.dtype!==e.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(o=>{if(!Dn(o.shape,e.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return k.runKernel(Go,n)}var LE=T({addN_:LH});function MH(r,t=null,e=!1){let o={x:I(r,"x","all","bool")},s={axis:t,keepDims:e};return k.runKernel(ia,o,s)}var Zp=T({all_:MH});function zH(r,t=null,e=!1){let o={x:I(r,"x","any","bool")},s={axis:t,keepDims:e};return k.runKernel(aa,o,s)}var qu=T({any_:zH});function BH(r,t=0){let n={x:I(r,"x","argMax")},o={axis:t};return k.runKernel(Wo,n,o)}var Ai=T({argMax_:BH});function VH(r,t=0){let n={x:I(r,"x","argMin")},o={axis:t};return k.runKernel(kl,n,o)}var ux=T({argMin_:VH});function GH(r){let e={x:I(r,"x","asin")};return k.runKernel(la,e)}var cx=T({asin_:GH});function WH(r){let e={x:I(r,"x","asinh")};return k.runKernel(ua,e)}var px=T({asinh_:WH});function UH(r){let e={x:I(r,"x","atan")};return k.runKernel(ca,e)}var mx=T({atan_:UH});function HH(r,t){let e=I(r,"a","atan2"),n=I(t,"b","atan2");[e,n]=Ut(e,n);let o={a:e,b:n};return k.runKernel(ma,o)}var fx=T({atan2_:HH});function qH(r){let e={x:I(r,"x","atanh")};return k.runKernel(pa,e)}var dx=T({atanh_:qH});function KH(r,t,e,n,o="NHWC",s){let i=r[3],a=[...t,i],u=zE(o);return ju(r,a,e,s,n,null,null,u)}function Yv(r,t,e,n,o,s,i="channelsLast"){let[a,u]=hx(t),l;if(i==="channelsLast")l=[a,u,r[3],r[3]];else if(i==="channelsFirst")l=[a,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return ju(r,l,e,n,o,s,!1,i)}function jH(r,t,e,n,o,s,i="NDHWC"){let[a,u,l]=Xv(t),c,p;if(i==="NDHWC")p="channelsLast",c=[a,u,l,r[4],r[4]];else if(i==="NCDHW")p="channelsFirst",c=[a,u,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return ME(r,c,e,n,o,!1,p,s)}function ju(r,t,e,n,o,s,i=!1,a="channelsLast"){let[u,l,c,p]=[-1,-1,-1,-1];if(a==="channelsLast")[u,l,c,p]=r;else if(a==="channelsFirst")[u,p,l,c]=r;else throw new Error(`Unknown dataFormat ${a}`);let[m,f,,d]=t,[h,g]=hx(e),[x,b]=hx(n),w=Jp(m,x),C=Jp(f,b),{padInfo:N,outHeight:_,outWidth:A}=ZH(o,l,c,h,g,w,C,s,a),$=i?d*p:d,F;return a==="channelsFirst"?F=[u,$,_,A]:a==="channelsLast"&&(F=[u,_,A,$]),{batchSize:u,dataFormat:a,inHeight:l,inWidth:c,inChannels:p,outHeight:_,outWidth:A,outChannels:$,padInfo:N,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:C,dilationHeight:x,dilationWidth:b,inShape:r,outShape:F,filterShape:t}}function ME(r,t,e,n,o,s=!1,i="channelsLast",a){let[u,l,c,p,m]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[u,l,c,p,m]=r;else if(i==="channelsFirst")[u,m,l,c,p]=r;else throw new Error(`Unknown dataFormat ${i}`);let[f,d,h,,g]=t,[x,b,w]=Xv(e),[C,N,_]=Xv(n),A=Jp(f,C),$=Jp(d,N),F=Jp(h,_),{padInfo:P,outDepth:V,outHeight:G,outWidth:W}=JH(o,l,c,p,x,b,w,A,$,F,a),q=s?g*m:g,H;return i==="channelsFirst"?H=[u,q,V,G,W]:i==="channelsLast"&&(H=[u,V,G,W,q]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:c,inWidth:p,inChannels:m,outDepth:V,outHeight:G,outWidth:W,outChannels:q,padInfo:P,strideDepth:x,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:A,effectiveFilterHeight:$,effectiveFilterWidth:F,dilationDepth:C,dilationHeight:N,dilationWidth:_,inShape:r,outShape:H,filterShape:t}}function XH(r,t,e,n,o){n==null&&(n=Zv(r,t,e));let s=r[0],i=r[1],a=Ku((s-t+2*n)/e+1,o),u=Ku((i-t+2*n)/e+1,o);return[a,u]}function YH(r,t,e,n,o,s){o==null&&(o=Zv(r,t,n));let i=r[0],a=r[1],u=r[2],l=Ku((i-t+2*o)/n+1,s),c=Ku((a-t+2*o)/n+1,s),p=Ku((u-t+2*o)/n+1,s);return[l,c,p,e]}function Zv(r,t,e,n=1){let o=Jp(t,n);return Math.floor((r[0]*(e-1)-e+o)/2)}function hx(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function Xv(r){return typeof r=="number"?[r,r,r]:r}function Jp(r,t){return t<=1?r:r+(r-1)*(t-1)}function ZH(r,t,e,n,o,s,i,a,u){let l,c,p;if(typeof r=="number"){l={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=XH([t,e],s,n,r,a);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(t/n),p=Math.ceil(e/o);let m=Math.max(0,(c-1)*n+s-t),f=Math.max(0,(p-1)*o+i-e),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;l={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/n),p=Math.ceil((e-i+1)/o);else if(typeof r=="object"){let m=u==="channelsLast"?r[1][0]:r[2][0],f=u==="channelsLast"?r[1][1]:r[2][1],d=u==="channelsLast"?r[2][0]:r[3][0],h=u==="channelsLast"?r[2][1]:r[3][1];l={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=Ku((t-s+m+f)/n+1,a),p=Ku((e-i+d+h)/o+1,a)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:l,outHeight:c,outWidth:p}}function JH(r,t,e,n,o,s,i,a,u,l,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=YH([t,e,n,1],a,1,o,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(t/o),f=Math.ceil(e/s),d=Math.ceil(n/i);let h=(m-1)*o+a-t,g=(f-1)*s+u-e,x=(d-1)*i+l-n,b=Math.floor(h/2),w=h-b,C=Math.floor(g/2),N=g-C,_=Math.floor(x/2),A=x-_;p={top:C,bottom:N,left:_,right:A,front:b,back:w,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((t-a+1)/o),f=Math.ceil((e-u+1)/s),d=Math.ceil((n-l+1)/i);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function Ku(r,t){if(!t)return Math.trunc(r);switch(t){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${t}`)}}function to(r){let[t,e,n]=hx(r);return t===1&&e===1&&n===1}function Ar(r,t){return to(r)||to(t)}function zE(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function Ie(r,t,e){if(e!=null){if(typeof t=="string")throw Error(`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);if(typeof t=="number")E(na(t),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(o=>{E(na(o),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${o}.`)})});else throw Error(`Error in ${r}: Unknown padding parameter: ${t}`)}}function QH(r,t){let n={x:I(r,"x","reshape","string_or_numeric")},o={shape:t};return k.runKernel(di,n,o)}var R=T({reshape_:QH});function tq(r,t,e,n,o){let s=I(r,"x","avgPool","float32"),i=1;E(Ar(e,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`);let a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(a.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${a.rank}.`),Ie("avgPool",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=k.runKernel(Uo,l,c);return p=J(p,s.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Yl=T({avgPool_:tq});function eq(r,t,e,n,o,s="NDHWC"){let i=I(r,"x","avgPool3d","float32"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),E(a.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${a.rank}.`),E(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Ie("avgPool3d",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=k.runKernel(El,l,c);return p=J(p,a.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var gx=T({avgPool3d_:eq});function rq(r,t=0){E(r.length>=1,()=>"Pass at least one tensor to concat");let e=ja(r,"tensors","concat","string_or_numeric");if(e[0].dtype==="complex64"&&e.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),e.length===1)return sn(e[0]);let n=e,o={axis:t};return k.runKernel(li,n,o)}var ne=T({concat_:rq});function nq(r){let e={x:I(r,"x","sigmoid","float32")};return k.runKernel(_s,e)}var Yr=T({sigmoid_:nq});function oq(r,t,e){let n=I(r,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let o={x:n},s={begin:t,size:e};return k.runKernel(gi,o,s)}var Rt=T({slice_:oq});function sq(r){let e={x:I(r,"x","tanh","float32")};return k.runKernel(Ps,e)}var $i=T({tanh_:sq});function iq(r,t,e,n,o,s){let i=I(r,"forgetBias","basicLSTMCell"),a=I(t,"lstmKernel","basicLSTMCell"),u=I(e,"lstmBias","basicLSTMCell"),l=I(n,"data","basicLSTMCell"),c=I(o,"c","basicLSTMCell"),p=I(s,"h","basicLSTMCell"),m=ne([l,p],1),f=Lt(m,a),d=X(f,u),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Rt(d,[0,0],x),w=Rt(d,[0,g],x),C=Rt(d,[0,g*2],x),N=Rt(d,[0,g*3],x),_=X(D(Yr(b),$i(w)),D(c,Yr(X(i,C)))),A=D($i(_),Yr(N));return[_,A]}var BE=T({basicLSTMCell_:iq});function aq(r,t,e){let n=I(r,"x","batchToSpaceND"),o=t.reduce((a,u)=>a*u);E(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),E(e.length===t.length,()=>`crops.length is ${e.length} but should be equal to blockShape.length ${t.length}`),E(n.shape[0]%o===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${o}`);let s={x:n},i={blockShape:t,crops:e};return k.runKernel(ai,s,i)}var Zl=T({batchToSpaceND_:aq});function VE(r){let t;return r.rank===0||r.rank===1?t=R(r,[1,1,1,r.size]):r.rank===2?t=R(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?t=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]):t=r,t}function lq(r,t,e,n,o,s){s==null&&(s=.001);let i=I(r,"x","batchNorm"),a=I(t,"mean","batchNorm"),u=I(e,"variance","batchNorm"),l;o!=null&&(l=I(o,"scale","batchNorm"));let c;n!=null&&(c=I(n,"offset","batchNorm")),E(a.rank===u.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),E(c==null||a.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),E(l==null||a.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:VE(i),scale:l,offset:c,mean:a,variance:u},f={varianceEpsilon:s},d=k.runKernel(os,m,f);return R(d,i.shape)}var Di=T({batchNorm_:lq});function uq(r,t,e,n,o,s){let i=I(r,"x","batchNorm"),a=I(t,"mean","batchNorm"),u=I(e,"variance","batchNorm"),l;o!=null&&(l=I(o,"scale","batchNorm"));let c;return n!=null&&(c=I(n,"offset","batchNorm")),E(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),E(a.rank===2||a.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${a.rank}.`),E(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&E(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&E(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Di(i,a,u,c,l,s)}var xx=T({batchNorm2d_:uq});function cq(r,t,e,n,o,s){let i=I(r,"x","batchNorm"),a=I(t,"mean","batchNorm"),u=I(e,"variance","batchNorm"),l;o!=null&&(l=I(o,"scale","batchNorm"));let c;return n!=null&&(c=I(n,"offset","batchNorm")),E(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),E(a.rank===3||a.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${a.rank}.`),E(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&E(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&E(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Di(i,a,u,c,l,s)}var yx=T({batchNorm3d_:cq});function pq(r,t,e,n,o,s){let i=I(r,"x","batchNorm"),a=I(t,"mean","batchNorm"),u=I(e,"variance","batchNorm"),l;o!=null&&(l=I(o,"scale","batchNorm"));let c;return n!=null&&(c=I(n,"offset","batchNorm")),E(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),E(a.rank===4||a.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${a.rank}.`),E(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&E(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&E(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Di(i,a,u,c,l,s)}var bx=T({batchNorm4d_:pq});function mq(r,t,e){let n=I(r,"x","bincount"),o=I(t,"weights","bincount");E(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),E(e>=0,()=>`size must be non-negative, but got ${e}.`),E(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},i={size:e};return k.runKernel(up,s,i)}var wx=T({bincount_:mq});function fq(r,t){let e=I(r,"s0","broadcastArgs","int32"),n=I(t,"s1","broadcastArgs","int32");if(e.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${e.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let o={s0:e,s1:n};return k.runKernel(cp,o)}var GE=T({broadcastArgs_:fq});function dq(r,t){let e=I(r,"broadcastTo","x"),n=e.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<e.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${e.rank}.`);if(t.length>e.rank){let l=e.shape.slice();for(;l.length<t.length;)l.unshift(1);e=R(e,l)}let o=e.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(o[l]===t[l])s[l]=1;else if(e.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return sn(e);let a={x:e},u={reps:s};return k.runKernel(Jn,a,u)}var Ri=T({broadcastTo_:dq});function hq(r){let e={x:I(r,"x","ceil","float32")};return k.runKernel(qo,e)}var Cx=T({ceil_:hq});function xo(r,t,e){let n={shape:r,value:t,dtype:e};return k.runKernel(Dl,{},n)}function gq(r,t,e){let n=I(r,"x","clipByValue");if(E(t<=e,()=>`Error in clip: min (${t}) must be less than or equal to max (${e}).`),t===e)return xo(n.shape,t,n.dtype);let o={x:n},s={clipValueMin:t,clipValueMax:e};return k.runKernel(uo,o,s)}var Cr=T({clipByValue_:gq});function xq(r){return ne(r,0)}var Ix=T({concat1d_:xq});function yq(r,t){return ne(r,t)}var Sx=T({concat2d_:yq});function bq(r,t){return ne(r,t)}var vx=T({concat3d_:bq});function wq(r,t){return ne(r,t)}var Nx=T({concat4d_:wq});function Cq(r,t,e,n,o="NHWC",s=[1,1],i){let a=I(r,"x","conv2d","float32"),u=I(t,"filter","conv2d","float32"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),E(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),E(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),Ie("conv2d",n,i);let p=o==="NHWC"?l.shape[3]:l.shape[1];E(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),E(Ar(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=k.runKernel(Ko,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var In=T({conv2d_:Cq});function Iq(r,t,e,n,o="NWC",s=1,i){let a=I(r,"x","conv1d"),u=I(t,"filter","conv1d"),l=a,c=!1;a.rank===2&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1]])),E(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),E(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),Ie("conv1d",n,i),E(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),E(Ar(e,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${e} and dilation '${s}'`),E(o==="NWC",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=R(u,[1,u.shape[0],u.shape[1],u.shape[2]]),m=R(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=In(m,p,[1,e],n,"NHWC",[1,s],i);return c?R(g,[g.shape[2],g.shape[3]]):R(g,[g.shape[0],g.shape[2],g.shape[3]])}var Qp=T({conv1d_:Iq});function Sq(r,t,e,n,o,s="NHWC",i){E(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let a=r,u=t,l=!1;t.rank===3&&(l=!0,u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]),a=[1,r[0],r[1],r[2]]),E(a.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${a.length}.`),E(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),E(e.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${e.rank}`);let c=s==="NHWC"?a[3]:a[1],p=s==="NHWC"?u.shape[3]:u.shape[1];E(c===e.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${e.shape[2]}.`),E(p===e.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${e.shape[3]}.`),Ie("conv2dDerInput",o,i);let m={dy:u,filter:e},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,inputShape:a},d=k.runKernel(jo,m,f);return l?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var tm=T({conv2DBackpropInput_:Sq});function vq(r,t,e,n,o,s){let i=I(r,"x","conv2dTranspose"),a=I(t,"filter","conv2dTranspose");return tm(e,i,a,n,o,"NHWC",s)}var em=T({conv2dTranspose_:vq});function Nq(r,t,e,n,o="NDHWC",s=[1,1,1]){let i=I(r,"x","conv3d"),a=I(t,"filter","conv3d"),u=i,l=!1;i.rank===4&&(l=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),E(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),E(a.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${a.rank}.`),E(u.shape[4]===a.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${a.shape[3]}.`),E(Ar(e,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),E(o==="NDHWC",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`);let c={x:u,filter:a},p={strides:e,pad:n,dataFormat:o,dilations:s},m=k.runKernel(Al,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Tx=T({conv3d_:Nq});function Tq(r,t,e,n,o){E(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let s=r,i=t,a=!1;t.rank===4&&(a=!0,i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let u=s[4],l=i.shape[4];E(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),E(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),E(e.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${e.rank}`),E(u===e.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${e.shape[3]}.`),E(l===e.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${e.shape[4]}.`);let c={dy:i,filter:e},p={pad:o,strides:n,inputShape:s},m=k.runKernel(dp,c,p);return a?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var kx=T({conv3DBackpropInput_:Tq});function kq(r,t,e,n,o){let s=I(r,"x","conv3dTranspose"),i=I(t,"filter","conv3dTranspose");return kx(e,s,i,n,o)}var Ex=T({conv3dTranspose_:kq});function Eq(r){let e={x:I(r,"x","cos","float32")};return k.runKernel(Xo,e)}var Jl=T({cos_:Eq});function _q(r){let e={x:I(r,"x","cosh","float32")};return k.runKernel(Yo,e)}var rm=T({cosh_:_q});function Aq(r,t=0,e=!1,n=!1){let s={x:I(r,"x","cumprod")},i={axis:t,exclusive:e,reverse:n};return k.runKernel(fa,s,i)}var Xu=T({cumprod_:Aq});function $q(r,t=0,e=!1,n=!1){let s={x:I(r,"x","cumsum")},i={axis:t,exclusive:e,reverse:n};return k.runKernel(Zo,s,i)}var nm=T({cumsum_:$q});function Dq(r,t,e,n=!1){let o=I(r,"x","denseBincount"),s=I(t,"weights","denseBincount");E(o.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),E(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),E(e>=0,()=>`size must be non-negative, but got ${e}.`),E(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let i={x:o,weights:s},a={size:e,binaryOutput:n};return k.runKernel(hp,i,a)}var ch=T({denseBincount_:Dq});function Rq(r,t,e="NHWC"){let n=I(r,"x","depthToSpace","float32"),o=e==="NHWC"?n.shape[1]:n.shape[2],s=e==="NHWC"?n.shape[2]:n.shape[3],i=e==="NHWC"?n.shape[3]:n.shape[1];E(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),E(o*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${o} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),E(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),E(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let a={x:n},u={blockSize:t,dataFormat:e};return k.runKernel(ha,a,u)}var _x=T({depthToSpace_:Rq});function Fq(r,t,e,n,o="NHWC",s=[1,1],i){let a=I(r,"x","depthwiseConv2d","float32"),u=I(t,"filter","depthwiseConv2d","float32"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),E(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),E(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`);let p=o==="NHWC"?l.shape[3]:l.shape[1];E(p===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${u.shape[2]}.`),Ie("depthwiseConv2d",n,i);let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=k.runKernel(Jo,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Fi=T({depthwiseConv2d_:Fq});function Oq(r){let e={x:I(r,"x","diag")};return k.runKernel(yp,e)}var WE=T({diag_:Oq});function Pq(r,t,e,n,o=[1,1],s="NHWC"){let i=I(r,"x","dilation2d"),a=I(t,"filter","dilation2d");E(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),E(a.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${a.rank}.`),E(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let u=i,l=!1;i.rank===3&&(u=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0);let c={x:u,filter:a},p={strides:e,pad:n,dilations:o},m=k.runKernel($l,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ax=T({dilation2d_:Pq});function Lq(r,t){let e=I(r,"a","equal","string_or_numeric"),n=I(t,"b","equal","string_or_numeric");[e,n]=Ut(e,n),Pt(e.shape,n.shape);let o={a:e,b:n};return k.runKernel(xa,o)}var $r=T({equal_:Lq});function Mq(r,t,e){let n=I(t,"a","where"),o=I(e,"b","where"),s=I(r,"condition","where","bool"),i=Pt(Pt(s.shape,n.shape),o.shape),a=Ri(s,i),u=Ri(n,i),l=Ri(o,i),c={condition:a,t:u,e:l};return k.runKernel(hi,c)}var _e=T({where_:Mq});function zq(r){let e={x:I(r,"x","zerosLike")};return k.runKernel(wi,e)}var It=T({zerosLike_:zq});function Bq(r,t){let e=I(r,"a","div"),n=I(t,"b","div");[e,n]=Ut(e,n);let o=pt(e,n),s=It(o),i=$r(n,s);return _e(i,s,o)}var $x=T({divNoNan_:Bq});function Vq(r,t){let e=I(r,"t1","dot"),n=I(t,"t2","dot");E((e.rank===1||e.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${e.rank} and ${n.rank}.`);let o=e.rank===1?e.size:e.shape[1],s=n.rank===1?n.size:n.shape[0];if(E(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),e.rank===1&&n.rank===1){let i=R(e,[1,-1]),a=R(n,[-1,1]),u=Lt(i,a);return R(u,[])}else if(e.rank===1&&n.rank===2){let i=R(e,[1,-1]),a=R(n,[n.shape[0],n.shape[1]]),u=Lt(i,a);return R(u,[u.size])}else if(e.rank===2&&n.rank===1){let i=R(n,[-1,1]),a=Lt(e,i);return R(a,[a.size])}else{let i=R(n,[n.shape[0],n.shape[1]]);return Lt(e,i)}}var Dx=T({dot_:Vq});function Gq(r,...t){let e=t.map((o,s)=>I(o,`tensors${s}`,"einsum")),n={equation:r};return k.runKernel(bp,e,n)}var UE=T({einsum_:Gq});function Wq(r){let e={x:I(r,"x","elu","float32")};return k.runKernel(ts,e)}var Oi=T({elu_:Wq});function Uq(r){let t=I(r,"x","erf");E(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=J(t,"float32"));let e={x:t};return k.runKernel(ga,e)}var Rx=T({erf_:Uq});function Jv(r,t){for(let e=0;e<r.length;++e)if(r[r.length-e-1]!==t-1-e)return!1;return!0}function HE(r,t,e){let n=r.length+t.length,o=[],s=0,i=0;for(let a=0;a<n;a++)e.indexOf(a)===-1?o.push(r[s++]):o.push(t[i++]);return o}function Qv(r,t){let e=[],n=r.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&e.push(r[s]);let o=t.map(s=>r[s]);return[e,o]}function yo(r,t){let e=t.map(n=>1);return HE(r,e,t)}function Hq(r,t,e){E(Jv(t,e),()=>`${r} supports only inner-most axes for now. Got axes ${t} and rank-${e} input.`)}function t0(r,t){if(Jv(r,t))return null;let e=[];for(let n=0;n<t;++n)r.indexOf(n)===-1&&e.push(n);return r.forEach(n=>e.push(n)),e}function ph(r){return r.map((t,e)=>[e,t]).sort((t,e)=>t[1]-e[1]).map(t=>t[0])}function qq(r,t){let e=[];for(let n=t-r;n<t;++n)e.push(n);return e}function Kq(r,t=null,e=!1){let o={x:I(r,"x","max")},s={reductionIndices:t,keepDims:e};return k.runKernel(ls,o,s)}var Ir=T({max_:Kq});function jq(r,t=null,e=!1){let o={x:I(r,"x","min")},s={axis:t,keepDims:e};return k.runKernel(ms,o,s)}var Ja=T({min_:jq});function Xq(r,t){let e=I(r,"base","pow"),n=I(t,"exp","pow");[e,n]=Ut(e,n);let o={a:e,b:n};return k.runKernel(ys,o)}var an=T({pow_:Xq});function mt(r,t){if((xr(r)&&t!=="string"||Array.isArray(r))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&xr(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return on(r,[],[],t)}function Yq(r){let e={x:I(r,"x","sqrt","float32")};return k.runKernel(As,e)}var Se=T({sqrt_:Yq});function Zq(r){let t=I(r,"x","square"),e={};return k.runKernel("Square",{x:t},e)}var Mt=T({square_:Zq});function Jq(r,t=null,e=!1){let n=I(r,"x","sum");n.dtype==="bool"&&(n=J(n,"int32"));let o={x:n},s={axis:t,keepDims:e};return k.runKernel($s,o,s)}var ft=T({sum_:Jq});function Qq(r,t="euclidean",e=null,n=!1){r=I(r,"x","norm");let o=qE(r,t,e),s=o.shape;if(n){let i=lr(e,r.shape);s=yo(o.shape,i)}return R(o,s)}function qE(r,t,e=null){if(r.rank===0)return Ee(r);if(r.rank!==1&&e===null)return qE(R(r,[-1]),t,e);if(r.rank===1||typeof e=="number"||Array.isArray(e)&&e.length===1){if(t===1)return ft(Ee(r),e);if(t===1/0)return Ir(Ee(r),e);if(t===-1/0)return Ja(Ee(r),e);if(t==="euclidean"||t===2)return Se(ft(an(Ee(r),mt(2,"int32")),e));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(e)&&e.length===2){if(t===1)return Ir(ft(Ee(r),e[0]),e[1]-1);if(t===1/0)return Ir(ft(Ee(r),e[1]),e[0]);if(t===-1/0)return Ja(ft(Ee(r),e[1]),e[0]);if(t==="fro"||t==="euclidean")return Se(ft(Mt(r),e));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${e}`)}var Qa=T({norm_:Qq});function tK(r,t=null,e=!1){return Qa(r,"euclidean",t,e)}var Fx=T({euclideanNorm_:tK});function eK(r){let e={x:I(r,"x","exp")};return k.runKernel(es,e)}var er=T({exp_:eK});function rK(r,t=0){let e=I(r,"x","expandDims","string_or_numeric");E(t<=e.rank,()=>"Axis must be <= rank of the tensor");let n={input:e},o={dim:t};return k.runKernel(ui,n,o)}var rr=T({expandDims_:rK});function nK(r){let e={x:I(r,"x","expm1")};return k.runKernel(ya,e)}var Ox=T({expm1_:nK});function oK(r,t){let e=I(r,"x","tile","string_or_numeric");E(e.rank===t.length,()=>`Error in transpose: rank of input ${e.rank} must match length of reps ${t}.`);let n={x:e},o={reps:t};return k.runKernel(Jn,n,o)}var Dr=T({tile_:oK});function sK(r,t,e,n="float32"){t==null&&(t=r);let o=wt([r,t],n),s=r<=t?r:t;for(let a=0;a<s;++a)o.set(1,a,a);let i=R(o.toTensor(),[r,t]);if(e==null)return i;if(e.length===1)return Dr(rr(i,0),[e[0],1,1]);if(e.length===2)return Dr(rr(rr(i,0),0),[e[0],e[1],1,1]);if(e.length===3)return Dr(rr(rr(rr(i,0),0),0),[e[0],e[1],e[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${e.length}D.`)}var Yu=T({eye_:sK});function iK(r){let e={x:I(r,"x","floor","float32")};return k.runKernel(rs,e)}var Pi=T({floor_:iK});function aK(r,t,e=0,n=0){let o=I(r,"x","gather"),s=I(t,"indices","gather","int32"),i={x:o,indices:s},a={axis:e,batchDims:n};return k.runKernel(ci,i,a)}var Li=T({gather_:aK});function lK(r,t){let e=I(r,"a","greater","string_or_numeric"),n=I(t,"b","greater","string_or_numeric");[e,n]=Ut(e,n),Pt(e.shape,n.shape);let o={a:e,b:n};return k.runKernel(Ca,o)}var Re=T({greater_:lK});function uK(r,t){let e=I(r,"a","greaterEqual","string_or_numeric"),n=I(t,"b","greaterEqual","string_or_numeric");[e,n]=Ut(e,n),Pt(e.shape,n.shape);let o={a:e,b:n};return k.runKernel(ss,o)}var ln=T({greaterEqual_:uK});function cK(r){let e={x:I(r,"x","isFinite")};return k.runKernel(Ia,e)}var Px=T({isFinite_:cK});function pK(r){let e={x:I(r,"x","isInf")};return k.runKernel(Sa,e)}var Lx=T({isInf_:pK});function mK(r){let e={x:I(r,"x","isNaN")};return k.runKernel(va,e)}var Mx=T({isNaN_:mK});function fK(r,t=.2){let n={x:I(r,"x","leakyRelu")},o={alpha:t};return k.runKernel(is,n,o)}var Ql=T({leakyRelu_:fK});function dK(r,t){let e=I(r,"a","less","string_or_numeric"),n=I(t,"b","less","string_or_numeric");[e,n]=Ut(e,n),Pt(e.shape,n.shape);let o={a:e,b:n};return k.runKernel(Na,o)}var om=T({less_:dK});function hK(r,t){let e=I(r,"a","lessEqual","string_or_numeric"),n=I(t,"b","lessEqual","string_or_numeric");[e,n]=Ut(e,n),Pt(e.shape,n.shape);let o={a:e,b:n};return k.runKernel(Ta,o)}var Ln=T({lessEqual_:hK});function KE(r,t,e){if(e<=0)throw new Error("The number of values should be positive.");let n={start:r,stop:t,num:e};return k.runKernel(vp,{},n)}function gK(r,t=5,e=1,n=1,o=.5){let s=I(r,"x","localResponseNormalization");E(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),E(na(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,a=!1;s.rank===3&&(a=!0,i=R(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let u={x:i},l={depthRadius:t,bias:e,alpha:n,beta:o},c=k.runKernel(Rl,u,l);return a?R(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var zx=T({localResponseNormalization_:gK});function xK(r){let e={x:I(r,"x","log","float32")};return k.runKernel(as,e)}var Sr=T({log_:xK});function yK(r){let e={x:I(r,"x","log1p")};return k.runKernel(ka,e)}var tu=T({log1p_:yK});function bK(r){return E(oi(r),()=>"The f passed in grad(f) must be a function"),(t,e)=>{let n=I(t,"x","tf.grad","string_or_numeric"),o=e!=null?I(e,"dy","tf.grad"):null;return k.tidy(()=>{let{value:s,grads:i}=k.gradients(()=>r(n),[n],o);return o!=null&&$e(s.shape,o.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Vx(i),i[0]})}}function wK(r){return E(oi(r),()=>"The f passed in grads(f) must be a function"),(t,e)=>{E(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=ja(t,"args","tf.grads","string_or_numeric"),o=e!=null?I(e,"dy","tf.grads"):null;return k.tidy(()=>{let{value:s,grads:i}=k.gradients(()=>r(...n),n,o);return o!=null&&$e(s.shape,o.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Vx(i),i})}}function CK(r){return E(oi(r),()=>"The f passed in valueAndGrad(f) must be a function"),(t,e)=>{E(t instanceof Ft,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),E(e==null||e instanceof Ft,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:o}=k.gradients(()=>r(t),[t],e);return Vx(n),{grad:n[0],value:o}}}function IK(r){return E(oi(r),()=>"The f passed in valueAndGrads(f) must be a function"),(t,e)=>{E(Array.isArray(t)&&t.every(o=>o instanceof Ft),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),E(e==null||e instanceof Ft,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=k.gradients(()=>r(...t),t,e);return e!=null&&$e(n.value.shape,e.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Vx(n.grads),n}}function Bx(r,t){E(oi(r),()=>"The f passed in variableGrads(f) must be a function"),E(t==null||Array.isArray(t)&&t.every(l=>l instanceof Ka),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let e=t!=null;if(!e){t=[];for(let l in k.registeredVariables)t.push(k.registeredVariables[l])}let n=e?t.filter(l=>!l.trainable):null,o=t.length;t=t.filter(l=>l.trainable),E(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:i,grads:a}=k.gradients(r,t,null,s);E(a.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),E(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,c)=>{a[c]!=null&&(u[l.name]=a[c])}),n!=null&&n.forEach(l=>u[l.name]=null),{value:i,grads:u}}function un(r){return k.customGrad(r)}function Vx(r){if(r.filter(e=>e==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function SK(r){let e={x:I(r,"x","softplus")};return k.runKernel(Va,e)}var zs=T({softplus_:SK});function vK(r){let t=I(r,"x","logSigmoid");return un(n=>({value:Ht(zs(Ht(n))),gradFunc:i=>D(i,Yr(Ht(n)))}))(t)}var Gx=T({logSigmoid_:vK});function NK(r,t){let e=I(r,"a","sub"),n=I(t,"b","sub");[e,n]=Ut(e,n);let o={a:e,b:n};return k.runKernel(Fs,o)}var ct=T({sub_:NK});function TK(r,t=-1){let e=I(r,"logits","logSoftmax");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and axis was ${t}`);return un((o,s)=>{let a=Ir(o,t,!0),u=ct(o,a),l=ct(J(u,"float32"),Sr(ft(er(u),t,!0)));return s([l]),{value:l,gradFunc:(p,m)=>{let[f]=m,d=!0,h=er(f);return ct(p,D(ft(p,t,d),h))}}})(e)}var sm=T({logSoftmax_:TK});function kK(r,t=null,e=!1){let n=I(r,"x","logSumExp"),o=lr(t,n.shape),s=Ir(n,o,!0),i=ct(n,s),a=er(i),u=ft(a,o),l=Sr(u),c=X(R(s,l.shape),l);if(e){let p=yo(c.shape,o);return R(c,p)}return c}var im=T({logSumExp_:kK});function EK(r,t){let e=I(r,"a","logicalAnd","bool"),n=I(t,"b","logicalAnd","bool");Pt(e.shape,n.shape);let o={a:e,b:n};return k.runKernel(Ea,o)}var Rr=T({logicalAnd_:EK});function _K(r){let e={x:I(r,"x","logicalNot","bool")};return k.runKernel(_a,e)}var eu=T({logicalNot_:_K});function AK(r,t){let e=I(r,"a","logicalOr","bool"),n=I(t,"b","logicalOr","bool");Pt(e.shape,n.shape);let o={a:e,b:n};return k.runKernel(Aa,o)}var am=T({logicalOr_:AK});function $K(r,t){let e=I(r,"a","logicalXor","bool"),n=I(t,"b","logicalXor","bool");return Pt(e.shape,n.shape),Rr(am(r,t),eu(Rr(r,t)))}var Wx=T({logicalXor_:$K});var Ux=2147483648;function DK(r,t,e="left"){let n=I(r,"sortedSequence","searchSorted"),o=I(t,"values","searchSorted"),s=n.shape[n.shape.length-1],i=o.shape[o.shape.length-1],a=R(n,[-1,s]),u=R(o,[-1,i]);if(a.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(a.shape[0]!==u.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Jt(u.shape)>=Ux)throw new Error(`values tensor size must less than ${Ux}`);if(a.shape[1]>=Ux)throw new Error(`trailing dim_size must less than ${Ux} for int32 output type, was ${a.shape[1]}`);let l={sortedSequence:a,values:u},c={side:e};return k.runKernel(Pp,l,c)}var mh=T({searchSorted_:DK});function jE(r,t){return mh(r,t,"left")}function RK(r,t,e,n,o){let s=I(r,"x","maxPool"),i=1,a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(a.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.rank}.`),E(Ar(e,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`),Ie("maxPool",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=k.runKernel(cs,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ru=T({maxPool_:RK});function FK(r,t=[1,1,1],e,n,o,s="NDHWC"){let i=I(r,"x","maxPool3d"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),E(a.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${a.rank}.`),E(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Ie("maxPool3d",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=k.runKernel(Fl,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Hx=T({maxPool3d_:FK});function OK(r,t,e,n,o=!1){let i={x:I(r,"x","maxPoolWithArgmax")},a={filterSize:t,strides:e,pad:n,includeBatchInIndex:o},u=k.runKernel(Ep,i,a);return{result:u[0],indexes:u[1]}}var XE=T({maxPoolWithArgmax_:OK});function PK(r,t){let e=I(r,"a","maximum"),n=I(t,"b","maximum");[e,n]=Ut(e,n),e.dtype==="bool"&&(e=J(e,"int32"),n=J(n,"int32")),Pt(e.shape,n.shape);let o={a:e,b:n};return k.runKernel(us,o)}var Sn=T({maximum_:PK});function LK(r,t=null,e=!1){let o={x:I(r,"x","mean")},s={axis:t,keepDims:e};return k.runKernel(ps,o,s)}var ve=T({mean_:LK});function Ne(r,t="float32"){if(t==="complex64"){let n=Ne(r,"float32"),o=Ne(r,"float32");return wn(n,o)}let e=ip(Jt(r),t);return k.makeTensor(e,r,t)}function cr(r,t="float32"){if(t==="complex64"){let n=cr(r,"float32"),o=Ne(r,"float32");return wn(n,o)}let e=Wd(Jt(r),t);return k.makeTensor(e,r,t)}function YE(r,t,{indexing:e="xy"}={}){if(e!=="xy"&&e!=="ij")throw new TypeError(`${e} is not a valid third argument to meshgrid`);if(r===void 0)return[];let n=I(r,"x","meshgrid",r instanceof Ft?r.dtype:"float32");if(t===void 0)return[n];let o=I(t,"y","meshgrid",t instanceof Ft?t.dtype:"float32"),s=Jt(n.shape),i=Jt(o.shape);return e==="xy"?(n=R(n,[1,-1]),o=R(o,[-1,1]),[Lt(cr([i,1],n.dtype),n),Lt(o,cr([1,s],o.dtype))]):(n=R(n,[-1,1]),o=R(o,[1,-1]),[Lt(n,cr([1,i],n.dtype)),Lt(cr([s,1],o.dtype),o)])}function MK(r,t){let e=I(r,"a","minimum"),n=I(t,"b","minimum");[e,n]=Ut(e,n),e.dtype==="bool"&&(e=J(e,"int32"),n=J(n,"int32")),Pt(e.shape,n.shape);let o={a:e,b:n};return k.runKernel(fs,o)}var Mi=T({minimum_:MK});function zK(r,t,e){E(e==="reflect"||e==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${e}.`);let n=I(r,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");E(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let o=e==="reflect"?1:0;for(let a=0;a<n.rank;a++)E(t[a].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),E(t[a][0]>=0&&t[a][0]<=n.shape[a]-o&&t[a][1]>=0&&t[a][1]<=n.shape[a]-o,()=>`Padding in dimension ${a} cannot be greater than or equal to ${n.shape[a]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:e},i={x:n};return k.runKernel(ds,i,s)}var qx=T({mirrorPad_:zK});function BK(r,t){let e=I(r,"a","mod"),n=I(t,"b","mod");[e,n]=Ut(e,n);let o={a:e,b:n};return k.runKernel($a,o)}var Kx=T({mod_:BK});function VK(r,t=null,e=!1){r=I(r,"x","moments");let n=lr(t,r.shape),o=ve(r,n,e),s=o.shape;e||(s=yo(o.shape,n));let i=Mt(ct(J(r,"float32"),R(o,s))),a=ve(i,n,e);return{mean:o,variance:a}}var Zu=T({moments_:VK});function GK(r,t,e,n){let o=I(t,"data","multiRNNCell"),s=ja(e,"c","multiRNNCell"),i=ja(n,"h","multiRNNCell"),a=o,u=[];for(let p=0;p<r.length;p++){let m=r[p](a,s[p],i[p]);u.push(m[0]),u.push(m[1]),a=m[1]}let l=[],c=[];for(let p=0;p<u.length;p+=2)l.push(u[p]),c.push(u[p+1]);return[l,c]}var ZE=T({multiRNNCell_:GK});function WK(r,t,e,n=!1){let o=I(r,"logits","multinomial"),s=o.size,i=o.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);e=e||Math.random();let u={logits:i===1?R(o,[1,-1]):o},l={numSamples:t,seed:e,normalized:n},c=k.runKernel(_p,u,l);return i===1?R(c,[c.size]):c}var JE=T({multinomial_:WK});function UK(r,t){let e=I(r,"a","notEqual","string_or_numeric"),n=I(t,"b","notEqual","string_or_numeric");[e,n]=Ut(e,n),Pt(e.shape,n.shape);let o={a:e,b:n};return k.runKernel(Da,o)}var Bs=T({notEqual_:UK});function HK(r){let e={x:I(r,"x","onesLike")};return k.runKernel(mi,e)}var yr=T({onesLike_:HK});function qK(r,t){let e=I(r,"v1","outerProduct"),n=I(t,"v2","outerProduct");E(e.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${e.rank} and ${n.rank}.`);let o=R(e,[-1,1]),s=R(n,[1,-1]);return Lt(o,s)}var QE=T({outerProduct_:qK});function KK(r,t,e=0){let n=I(r,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let o={paddings:t,constantValue:e},s={x:n};return k.runKernel(xs,s,o)}var cn=T({pad_:KK});function jK(r,t,e=0){return E(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),cn(r,[t],e)}var t_=T({pad1d_:jK});function XK(r,t,e=0){return E(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cn(r,t,e)}var e_=T({pad2d_:XK});function YK(r,t,e=0){return E(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cn(r,t,e)}var r_=T({pad3d_:YK});function ZK(r,t,e=0){return E(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cn(r,t,e)}var n_=T({pad4d_:ZK});function JK(r,t,e){let n=I(r,"x","spaceToBatchND");E(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),E(e.length===t.length,()=>`paddings.shape[0] ${e.length} must be equal to [blockShape] ${t.length}`),E(n.shape.reduce((i,a,u)=>u>0&&u<=t.length?i&&(a+e[u-1][0]+e[u-1][1])%t[u-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${e.toString()} must be divisible by blockShapes ${t.toString()}`);let o={x:n},s={blockShape:t,paddings:e};return k.runKernel(xi,o,s)}var nu=T({spaceToBatchND_:JK});function QK(r,t,e,n,o,s,i){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n="valid");let a=I(r,"x","maxPool"),u=a,l=!1;a.rank===3&&(l=!0,u=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),E(Ar(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let c=Yv(u.shape,t,s,o,n),p=[c.dilationHeight,c.dilationWidth],m;n==="same"?m=ej([c.filterHeight,c.filterWidth],p):m=[[0,0],[0,0]];let f=p[0]===1&&p[1]===1,[d,h]=tj([c.inHeight,c.inWidth],p,m),g=f?n:"valid",x=f?u:nu(u,p,d),w=(e==="avg"?()=>Yl(x,t,s,g,i):()=>ru(x,t,s,g,i))(),C=f?w:Zl(w,p,h);return l?R(C,[C.shape[1],C.shape[2],C.shape[3]]):C}function tj(r,t,e){let n=e.map(c=>c[0]),o=e.map(c=>c[1]),s=r.concat(n,o),i=t.map((c,p)=>(c-s[p]%c)%c),a=o.map((c,p)=>c+i[p]),u=t.map((c,p)=>[n[p],a[p]]),l=t.map((c,p)=>[0,i[p]]);return[u,l]}function ej(r,t){let n=r.map((i,a)=>i+(i-1)*(t[a]-1)).map(i=>i-1),o=n.map(i=>Math.floor(i/2)),s=n.map((i,a)=>i-o[a]);return n.map((i,a)=>[o[a],s[a]])}var jx=T({pool_:QK});function rj(r,t){let e=I(r,"x","prelu"),n=I(t,"alpha","prelu"),o={x:e,alpha:n};return k.runKernel(bs,o)}var ou=T({prelu_:rj});function nj(r,t=null,e=!1){let n=I(r,"x","prod");n.dtype==="bool"&&(n=J(n,"int32"));let o={x:n},s={axis:t,keepDims:e};return k.runKernel(ws,o,s)}var Xx=T({prod_:nj});function oj(r,t,e,n){let o=r.map((c,p)=>I(c,`tensors${p}`,"raggedGather","int32")),s=I(t,"paramsDenseValues","raggedGather"),i=I(e,"indices","raggedGather","int32"),a={paramsNestedSplits:o,paramsDenseValues:s,indices:i},u={outputRaggedRank:n},l=k.runKernel(Ap,a,u);return{outputNestedSplits:l.slice(0,l.length-1),outputDenseValues:l[l.length-1]}}var o_=T({raggedGather_:oj});function sj(r,t,e){let n=I(r,"starts","raggedRange"),o=I(t,"limits","raggedRange",n.dtype),s=I(e,"deltas","raggedRange",n.dtype),i={starts:n,limits:o,deltas:s},a=k.runKernel($p,i);return{rtNestedSplits:a[0],rtDenseValues:a[1]}}var s_=T({raggedRange_:sj});function ij(r,t,e,n,o){let s=I(r,"shape","raggedTensorToTensor","int32"),i=I(t,"values","raggedTensorToTensor"),a=I(e,"defaultValue","raggedTensorToTensor",i.dtype),u=n.map((p,m)=>I(p,`tensors${m}`,"raggedTensorToTensor","int32")),l={shape:s,values:i,defaultValue:a,rowPartitionTensors:u},c={rowPartitionTypes:o};return k.runKernel(Dp,l,c)}var i_=T({raggedTensorToTensor_:ij});function aj(r,t,e){let n=Jt(r),o=null;if(e==null||e==="float32")o=new Float32Array(n);else if(e==="int32")o=new Int32Array(n);else if(e==="bool")o=new Uint8Array(n);else throw new Error(`Unknown data type ${e}`);for(let s=0;s<n;s++)o[s]=t();return k.makeTensor(o,r,e)}var a_=T({rand_:aj});var Qx=Tl(fh());var Qu=class{constructor(t,e,n,o,s){this.mean=t,this.stdDev=e,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let i=s||Math.random();this.random=Qx.alea(i.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let t,e,n=!1;for(;!n;){let o,s,i;do o=2*this.random()-1,s=2*this.random()-1,i=o*o+s*s;while(i>=1||i===0);let a=Math.sqrt(-2*Math.log(i)/i);t=this.mean+this.stdDev*o*a,e=this.mean+this.stdDev*s*a,(!this.truncated||this.isValidTruncated(t))&&(n=!0)}return(!this.truncated||this.isValidTruncated(e))&&(this.nextVal=this.convertValue(e)),this.convertValue(t)}convertValue(t){return this.dtype==null||this.dtype==="float32"?t:Math.round(t)}isValidTruncated(t){return t<=this.upper&&t>=this.lower}},Zx=class{constructor(t,e,n,o){this.alpha=t,this.beta=1/e,this.dtype=n;let s=o||Math.random();this.randu=Qx.alea(s.toString()),this.randn=new Qu(0,1,n,!1,this.randu()),t<1?this.d=t+2/3:this.d=t-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let t,e,n,o,s,i;for(;;){do o=this.randn.nextValue(),i=1+this.c*o;while(i<=0);if(i*=i*i,t=o*o,e=1-.331*t*t,n=.5*t+this.d*(1-i+Math.log(i)),s=this.randu(),s<e||Math.log(s)<n)break}return i=1/this.beta*this.d*i,this.alpha<1&&(i*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(i)}convertValue(t){return this.dtype==="float32"?t:Math.round(t)}},Jx=class{constructor(t=0,e=1,n,o){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=t,this.range=e-t,this.dtype=n,o==null&&(o=Math.random()),typeof o=="number"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${t} - ${e} <= 1 and dtype is not float`);this.random=Qx.alea(o)}convertValue(t){return this.canReturnFloat()?t:Math.round(t)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function dj(r,t,e=1,n="float32",o){if(e==null&&(e=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new Zx(t,e,n,o),i=wt(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var v_=T({randomGamma_:dj});function hj(r,t=0,e=1,n,o){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new Qu(t,e,n,!1,o),i=wt(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var tc=T({randomNormal_:hj});function gj(r,t,e){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return tc(r,0,1,t,e)}var N_=T({randomStandardNormal_:gj});function xj(r,t=0,e=1,n="float32",o){let s=wt(r,n),i=new Jx(t,e,null,o);for(let a=0;a<s.values.length;a++)s.values[a]=i.nextValue();return s.toTensor()}var zi=T({randomUniform_:xj});function su(r,t,e=1,n="float32"){if(e===0)throw new Error("Cannot have a step of zero");let o={start:r,stop:t,step:e,dtype:n};return k.runKernel(Ol,{},o)}function yj(r){let e={x:I(r,"x","reciprocal")};return k.runKernel(Pa,e)}var ty=T({reciprocal_:yj});function bj(r){let e={x:I(r,"x","relu")};return k.runKernel(Cs,e)}var Fr=T({relu_:bj});function wj(r){let e={x:I(r,"x","relu6")};return k.runKernel(vs,e)}var lm=T({relu6_:wj});function Cj(r,t){let n={x:I(r,"x","reverse")},o={dims:t};return k.runKernel(Ns,n,o)}var pr=T({reverse_:Cj});function Ij(r){let t=I(r,"x","reverse");return E(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),pr(t,0)}var T_=T({reverse1d_:Ij});function Sj(r,t){let e=I(r,"x","reverse");return E(e.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${e.rank}.`),pr(e,t)}var k_=T({reverse2d_:Sj});function vj(r,t){let e=I(r,"x","reverse");return E(e.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${e.rank}.`),pr(e,t)}var E_=T({reverse3d_:vj});function Nj(r,t){let e=I(r,"x","reverse");return E(e.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${e.rank}.`),pr(e,t)}var __=T({reverse4d_:Nj});function Tj(r){let e={x:I(r,"x","round")};return k.runKernel(Ts,e)}var um=T({round_:Tj});function kj(r){let e={x:I(r,"x","rsqrt","float32")};return k.runKernel(ks,e)}var cm=T({rsqrt_:kj});function Ej(r){let e={x:I(r,"x","selu")};return k.runKernel(Ma,e)}var pm=T({selu_:Ej});function _j(r,t,e,n,o,s=[1,1],i="NHWC"){let a=I(r,"x","separableConv2d"),u=I(t,"depthwiseFilter","separableConv2d"),l=I(e,"pointwiseFilter","separableConv2d"),c=a,p=!1;if(a.rank===3&&(p=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");E(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),E(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),E(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),E(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),E(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let m=u.shape[2],f=u.shape[3];E(l.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${l.shape[2]}.`);let d=Fi(c,u,n,o,i,s),g=In(d,l,1,"valid",i);return p?R(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var mm=T({separableConv2d_:_j});async function Aj(r,t){let e=I(r,"x","setdiff1d"),n=I(t,"y","setdiff1d");E(e.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${e.dtype}) and y (${n.dtype}).`),E(e.rank===1,()=>`x should be 1D tensor, but got x (${e.shape}).`),E(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await e.data(),s=await n.data(),i=new Set(s),a=0;for(let c=0;c<o.length;c++)i.has(o[c])||a++;let u=new pe([a],e.dtype),l=new pe([a],"int32");for(let c=0,p=0;c<o.length;c++)i.has(o[c])||(u.values[p]=o[c],l.values[p]=c,p++);return[u.toTensor(),l.toTensor()]}var A_=Aj;function $j(r){let e={x:I(r,"x","sign")};return k.runKernel(Ba,e)}var ey=T({sign_:$j});function Dj(r){let e={x:I(r,"x","sin","float32")};return k.runKernel(Es,e)}var fm=T({sin_:Dj});function Rj(r){let e={x:I(r,"x","sinh")};return k.runKernel(za,e)}var dm=T({sinh_:Rj});function Fj(r,t,e){let n=I(r,"x","slice1d");return E(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Rt(n,[t],[e])}var hm=T({slice1d_:Fj});function Oj(r,t,e){let n=I(r,"x","slice2d");return E(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Rt(n,t,e)}var dh=T({slice2d_:Oj});function Pj(r,t,e){let n=I(r,"x","slice3d");return E(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Rt(n,t,e)}var gm=T({slice3d_:Pj});function Lj(r,t,e){let n=I(r,"x","slice4d");return E(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Rt(n,t,e)}var ec=T({slice4d_:Lj});function Mj(r,t=-1){let e=I(r,"logits","softmax","float32");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and dim was ${t}`);let n={logits:e},o={dim:t};return k.runKernel(Ds,n,o)}var iu=T({softmax_:Mj});function zj(r){E(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let t={input:r};return k.runKernel(Cp,t)}var au=T({fft_:zj});function Bj(r){E(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let t={input:r};return k.runKernel(Ip,t)}var tl=T({ifft_:Bj});function Vj(r){let t=r.shape[r.shape.length-1],e=r.size/t,n;if(t<=2){let o=R(r,[e,t]);n=tl(o)}else{let o=[e,2*(t-1)],s=R(Za(r),[e,t]),i=R(Xl(r),[e,t]),a=pr(Rt(s,[0,1],[e,t-2]),1),u=D(pr(Rt(i,[0,1],[e,t-2]),1),mt(-1)),l=ne([s,a],1),c=ne([i,u],1),p=R(wn(l,c),[o[0],o[1]]);n=tl(p)}if(n=Za(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=R(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var xm=T({irfft_:Vj});function Gj(r,t,e=0){let o={x:I(r,"x","split")},s={numOrSizeSplits:t,axis:e};return k.runKernel(yi,o,s)}var mr=T({split_:Gj});function Wj(r,t){E(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let e=r.shape[r.shape.length-1],n=r.size/e,o;if(t!=null&&t<e){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=t,o=Rt(r,d,h),e=t}else if(t!=null&&t>e){let d=r.shape.map(h=>h);d[r.shape.length-1]=t-e,o=ne([r,Ne(d)],r.shape.length-1),e=t}else o=r;let s=It(o),i=R(wn(o,s),[n,e]),a=au(i),u=Math.floor(e/2)+1,l=Za(a),c=Xl(a),p=mr(l,[u,e-u],l.shape.length-1),m=mr(c,[u,e-u],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=u,R(wn(p[0],m[0]),f)}var lu=T({rfft_:Wj});function Uj(r,t){let e=I(r,"a","squaredDifference"),n=I(t,"b","squaredDifference");[e,n]=Ut(e,n),Pt(e.shape,n.shape);let o={a:e,b:n},s={};return k.runKernel(Rs,o,s)}var ym=T({squaredDifference_:Uj});function Hj(r,t){let e=I(r,"x","squeeze","string_or_numeric");return R(e,tv(e.shape,t).newShape)}var Mn=T({squeeze_:Hj});function qj(r,t=0){let e=ja(r,"tensors","stack","string_or_numeric");E(e.length>=1,()=>"Pass at least one tensor to tf.stack"),e.length>0&&E(t<=e[0].rank,()=>"Axis must be <= rank of the tensor");let n=e,o={axis:t};return k.runKernel(fi,n,o)}var nr=T({stack_:qj});function Kj(r,t=0){let n={x:I(r,"x","step")},o={alpha:t};return k.runKernel(po,n,o)}var bo=T({step_:Kj});function jj(r,t,e,n,o=0,s=0,i=0,a=0,u=0){let c={x:I(r,"x","stridedSlice","string_or_numeric")},p={begin:t,end:e,strides:n,beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};return k.runKernel(Wa,c,p)}var ry=T({stridedSlice_:jj});function Xj(r){let e={x:I(r,"x","tan","float32")};return k.runKernel(Os,e)}var ny=T({tan_:Xj});function Me(r,t){Yn(r);let e=Br(r,t);if(e.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return on(r,null,e,t)}function Vs(r,t,e){if(Yn(r),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Br(r,e);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return on(r,t,n,e)}function $_(r,t,e){if(Yn(r),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Br(r,e);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return on(r,t,n,e)}function D_(r,t,e){if(Yn(r),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Br(r,e);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return on(r,t,n,e)}function R_(r,t,e){if(Yn(r),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Br(r,e);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,on(r,t,n,e)}function Yj(r,t=1,e=!0){let n=I(r,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let o=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${t}`);let s={x:n},i={k:t,sorted:e},[a,u]=k.runKernel(Ua,s,i);return{values:a,indices:u}}var oy=T({topk_:Yj});function Zj(r,t=0,e=1,n,o){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Qu(t,e,n,!0,o),i=wt(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var bm=T({truncatedNormal_:Zj});function Jj(r,t=0){let e=I(r,"x","unique","string_or_numeric");E(e.rank>0,()=>"The input tensor must be at least 1D");let n={x:e},o={axis:t},[s,i]=k.runKernel(Mp,n,o);return{values:s,indices:i}}var sy=T({unique_:Jj});function Qj(r,t,e){let n=I(r,"x","unsortedSegmentSum"),o=I(t,"segmentIds","unsortedSegmentSum","int32");E(na(e),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:o},i={numSegments:e};return k.runKernel(Wl,s,i)}var wm=T({unsortedSegmentSum_:Qj});function t6(r,t=0){let e=I(r,"x","unstack","string_or_numeric");E(t>=-e.shape.length&&t<e.shape.length,()=>`Axis = ${t} is not in [-${e.shape.length}, ${e.shape.length})`);let n={value:e},o={axis:t};return k.runKernel(bi,n,o)}var vr=T({unstack_:t6});function F_(r,t){return mh(r,t,"right")}function iy(r,t=!0,e,n){return k.makeVariable(r,t,e,n)}function ay(r,t){let e=[];for(let s=0;s<t.length;s++)t[s]&&e.push(s);let n=wt(r,"int32"),o=wt([e.length,r.length],"int32");for(let s=0;s<e.length;s++){let i=n.indexToLoc(e[s]),a=s*r.length;o.values.set(i,a)}return o.toTensor()}async function e6(r){let t=I(r,"condition","whereAsync","bool"),e=await t.data(),n=ay(t.shape,e);return r!==t&&t.dispose(),n}var ly=e6;async function r6(r,t,e){let n=I(r,"tensor","boolMask"),o=I(t,"mask","boolMask","bool"),s=e==null?0:e,i=o.rank,a=n.shape;E(i>0,()=>"mask cannot be scalar"),$e(a.slice(s,s+i),o.shape,"mask's shape must match the first K dimensions of tensor's shape,");let u=1;for(let h=s;h<s+i;h++)u*=a[h];let l=a.slice(0,s).concat([u],a.slice(s+i)),c=R(n,l),p=R(o,[-1]),m=await ly(p),f=Mn(m,[1]),d=Li(c,f,s);return r!==n&&n.dispose(),t!==o&&o.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var n6=r6;function o6(r,t,e,n,o=!0){let s=I(r,"v","movingAverage"),i=I(t,"x","movingAverage"),a=I(e,"decay","movingAverage");Iv(s,i),E(Dn(s.shape,i.shape),()=>"Shape mismatch in v and x");let u=mt(1),l=ct(u,a),c=D(ct(i,s),l);if(o){E(n!=null,()=>"When using zeroDebias: true, step is required.");let p=I(n,"step","movingAverage");c=pt(c,ct(u,an(a,p)))}return X(s,c)}var s6=T({movingAverage_:o6});function i6(r,t,e){let n=I(r,"indices","scatterND","int32"),o=I(t,"updates","scatterND");sx(o,n,e);let s={indices:n,updates:o},i={shape:e};return k.runKernel(La,s,i)}var a6=T({scatterND_:i6});function O_(r,t,e,n){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(e.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${e.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===o))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${o}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function u6(r,t,e,n=0){let o=I(r,"sparseIndices","sparseToDense","int32"),s=I(t,"sparseValues","sparseToDense","string_or_numeric"),i=I(n,"defaultValue","sparseToDense",s.dtype);O_(o,s,e,i);let a={sparseIndices:o,sparseValues:s,defaultValue:i},u={outputShape:e};return k.runKernel(Lp,a,u)}var c6=T({sparseToDense_:u6});function p6(r,t){let e=I(t,"indices","gatherND","int32"),o={params:I(r,"x","gatherND","string_or_numeric"),indices:e};return k.runKernel(wa,o)}var m6=T({gatherND_:p6});function P_(r,t){if(t==null)return r.shape.slice();if(Dn(r.shape,t))return t;if(r.shape.length===t.length){let e=[];for(let n=0;n<r.shape.length;n++)t[n]==null&&r.shape[n]!=null?e.push(r.shape[n]):e.push(t[n]);return e}return t}function f6(r,t,e,n){let o=I(r,"x","dropout");if(E(o.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),E(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return r instanceof Ft?o.clone():o;let s=P_(o,e),i=1-t,a=pt(Pi(X(zi(s,0,1,"float32",n),i)),i);return D(o,a)}var l0=T({dropout_:f6});function u0(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function hh(r,t,e){let n=1-r%2,o=new Float32Array(r);for(let s=0;s<r;++s){let i=2*Math.PI*s/(r+n-1);o[s]=t-e*Math.cos(i)}return Me(o,"float32")}async function d6(r,t,e=1){let n=I(r,"predictions","inTopK"),o=I(t,"targets","inTopK");E(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),E(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),$e(n.shape.slice(0,n.shape.length-1),o.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];E(e>0&&e<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${e}`);let i=await n.data(),a=await o.data(),[u,l]=[i.length/s,s],c=ev("bool",u);for(let p=0;p<u;p++){let m=p*l,f=i.subarray(m,m+l),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<e;h++)if(d[h].index===a[p]){c[p]=1;break}}return r!==n&&n.dispose(),t!==o&&o.dispose(),ur(c,o.shape,"bool")}var h6=d6;var uu={};Wt(uu,{conv2d:()=>L_,depthwiseConv2d:()=>M_,matMul:()=>z_});function g6(r,t,e,n,o,s="NHWC",i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]])),E(a.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${a.shape}.`),E(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),E(e.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${e}.`);let l=s==="NHWC"?a.shape[3]:a.shape[1],c=s==="NHWC"?u.shape[3]:u.shape[1];E(l===e[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${e[2]}.`),E(c===e[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${e[3]}).`),Ie("conv2dDerFilter",o,i);let p={x:a,dy:u},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,filterShape:e};return k.runKernel(mp,p,m)}var Cm=T({conv2DBackpropFilter_:g6});function rc(r,t,e){if(e==null||e==="linear")return r;if(e==="relu")return D(r,bo(t));throw new Error(`Cannot compute gradient for fused activation ${e}.`)}function nc(r,t){let e=t,n=ge(r.shape,t.shape);return n.length>0&&(e=ft(e,n)),R(e,r.shape)}function oc(r,t,e,n){if(t==="linear")return r;if(t==="relu")return Fr(r);if(t==="elu")return Oi(r);if(t==="relu6")return lm(r);if(t==="prelu")return ou(r,e);if(t==="leakyrelu")return Ql(r,n);if(t==="sigmoid")return Yr(r);throw new Error(`Unknown fused activation ${t}.`)}var sc=(r,t)=>!(r>0)||t==="linear";function x6({x:r,filter:t,strides:e,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||"linear",sc(k.state.gradientDepth,u)===!1){E(o==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${o} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let _=In(r,t,e,n,o,s,i);return a!=null&&(_=X(_,a)),oc(_,u,l,c)}let p=I(r,"x","conv2d","float32"),m=I(t,"filter","conv2d","float32"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),E(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),E(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),Ie("fused conv2d",n,i);let h=o==="NHWC"?f.shape[3]:f.shape[1];E(m.shape[2]===h,()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${m.shape[2]}.`),E(Ar(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let g=ju(f.shape,m.shape,e,s,n,i),x;a!=null&&(x=I(a,"bias","fused conv2d"),[x]=Ut(x,p),o==="NHWC"?Pt(g.outShape,x.shape):(E(x.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${x.shape.length}.`),E(x.shape.length===0||x.shape[0]===g.outChannels||x.shape[0]===1,()=>`Error in fused conv2d: bias shape (${x.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(l!=null){let _=l.shape;if(E(_.length<=1||_.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${_.length}.`),_.length===1)E(_[0]===1||_[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${_}) is not compatible with the number of output channels (${g.outChannels}).`);else if(_.length===3)try{Pt(_,g.outShape)}catch(A){let $=`Error in fused conv2d: PReLU activation weights (${_}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error($)}b=I(l,"prelu weights","fused conv2d")}let w=(_,A)=>{E(o==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${o} but only NHWC is currently supported.`);let[$,F,P,V]=A,G=rc(_,P,u);E(to(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=tm(F.shape,G,$,e,n),q=Cm(F,G,$.shape,e,n),H=[W,q];if(V!=null){let j=nc(V,G);H.push(j)}return H},C={x:f,filter:m,bias:x,preluActivationWeights:b},N={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?un((A,$,F)=>{let P=k.runKernel(Ii,C,N);return F([$,A,P]),d&&(P=R(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:w}})(f,m):un((A,$,F,P)=>{let V=k.runKernel(Ii,C,N);return P([$,A,V,F]),d&&(V=R(V,[V.shape[1],V.shape[2],V.shape[3]])),{value:V,gradFunc:w}})(f,m,x)}var L_=T({fusedConv2d_:x6});function y6(r,t,e,n,o,s=[1,1],i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:a,dy:u},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,filterShape:e};return k.runKernel(gp,l,c)}var uy=T({depthwiseConv2dNativeBackpropFilter_:y6});function b6(r,t,e,n,o,s=[1,1],i){let a=t,u=!1;t.rank===3&&(u=!0,a=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:a,filter:e},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,inputShape:r},p=k.runKernel(xp,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var cy=T({depthwiseConv2dNativeBackpropInput_:b6});function w6({x:r,filter:t,strides:e,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(sc(k.state.gradientDepth,u)===!1){let N=Fi(r,t,e,n,o,s,i);return a!=null&&(N=X(N,a)),oc(N,u,l,c)}let p=I(r,"x","depthwiseConv2d","float32"),m=I(t,"filter","depthwiseConv2d","float32"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),E(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),E(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),E(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),E(Ar(e,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),Ie("fused depthwiseConv2d",n,i);let h=ju(f.shape,m.shape,e,s,n,i,!0),g;a!=null&&(g=I(a,"bias","fused conv2d"),[g]=Ut(g,p),Pt(h.outShape,g.shape));let x;l!=null&&(x=I(l,"prelu weights","fused depthwiseConv2d"));let b=(N,_)=>{E(to(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[A,$,F,P]=_,V=rc(N,F,u),G=cy($.shape,V,A,e,n,s,i),W=uy($,V,A.shape,e,n,s,i);if(P!=null){let q=nc(g,V);return[G,W,q]}return[G,W]},w={x:f,filter:m,bias:g,preluActivationWeights:x},C={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?un((_,A,$)=>{let F=k.runKernel(Si,w,C);return $([A,_,F]),d&&(F=R(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(f,m):un((_,A,$,F)=>{let P=k.runKernel(Si,w,C);return F([A,_,P,$]),d&&(P=R(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:b}})(f,m,g)}var M_=T({fusedDepthwiseConv2d_:w6});function C6({a:r,b:t,transposeA:e=!1,transposeB:n=!1,bias:o,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:a=.2}){if(sc(k.state.gradientDepth,s)===!1){let V=Lt(r,t,e,n);return o!=null&&(V=X(V,o)),oc(V,s,i,a)}let u=I(r,"a","fused matMul"),l=I(t,"b","fused matMul");[u,l]=Ut(u,l);let c=e?u.shape[u.rank-2]:u.shape[u.rank-1],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],m=e?u.shape[u.rank-1]:u.shape[u.rank-2],f=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=u.shape.slice(0,-2),h=l.shape.slice(0,-2),g=Jt(d),x=Jt(h);E(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${e} and transposeB=${n} must match.`);let w=Pt(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([m,f]),C=e?R(u,[g,c,m]):R(u,[g,m,c]),N=n?R(l,[x,f,p]):R(l,[x,p,f]),_;o!=null&&(_=I(o,"bias","fused matMul"),[_]=Ut(_,u),Pt(w,_.shape));let A;i!=null&&(A=I(i,"prelu weights","fused matMul"));let $=(V,G)=>{let[W,q,H,j]=G,Y=rc(R(V,H.shape),H,s),Z,et;if(!e&&!n?(Z=Lt(Y,q,!1,!0),et=Lt(W,Y,!0,!1)):!e&&n?(Z=Lt(Y,q,!1,!1),et=Lt(Y,W,!0,!1)):e&&!n?(Z=Lt(q,Y,!1,!0),et=Lt(W,Y,!1,!1)):(Z=Lt(q,Y,!0,!0),et=Lt(Y,W,!0,!0)),o!=null){let rt=nc(j,Y);return[Z,et,rt]}else return[Z,et]},F={a:C,b:N,bias:_,preluActivationWeights:A},P={transposeA:e,transposeB:n,activation:s,leakyreluAlpha:a};return o==null?un((G,W,q)=>{let H=k.runKernel(Ci,F,P);return q([G,W,H]),{value:R(H,w),gradFunc:$}})(C,N):un((G,W,q,H)=>{let j=k.runKernel(Ci,F,P);return H([G,W,j,q]),{value:R(j,w),gradFunc:$}})(C,N,_)}var z_=T({fusedMatMul_:C6});function I6(r){return hh(r,.54,.46)}var B_=T({hammingWindow_:I6});function S6(r){return hh(r,.5,.5)}var py=T({hannWindow_:S6});function v6(r,t,e,n=!1,o=0){let s=0,i=[];for(;s+t<=r.size;)i.push(Rt(r,s,t)),s+=e;if(n)for(;s<r.size;){let a=s+t-r.size,u=ne([Rt(r,s,t-a),xo([a],o)]);i.push(u),s+=e}return i.length===0?Vs([],[0,t]):R(ne(i),[i.length,t])}var my=T({frame_:v6});function N6(r,t,e,n,o=py){n==null&&(n=u0(t));let s=my(r,t,e),i=D(s,o(t));return lu(i,n)}var V_=T({stft_:N6});function T6(r,t,e,n,o="bilinear",s=0){let i=I(r,"image","cropAndResize"),a=I(t,"boxes","cropAndResize","float32"),u=I(e,"boxInd","cropAndResize","int32"),l=a.shape[0];E(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),E(a.rank===2&&a.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${a.shape}.`),E(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${a.shape}.`),E(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),E(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),E(o==="bilinear"||o==="nearest",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:i,boxes:a,boxInd:u},p={method:o,extrapolationValue:s,cropSize:n};return k.runKernel(da,c,p)}var G_=T({cropAndResize_:T6});function k6(r){let t=I(r,"image","flipLeftRight","float32");E(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let e={image:t};return k.runKernel(ba,e,{})}var W_=T({flipLeftRight_:k6});function E6(r){let t=I(r,"image","grayscaleToRGB"),e=t.rank-1,n=t.shape[e];E(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),E(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let o=new Array(t.rank);return o.fill(1,0,e),o[e]=3,Dr(t,o)}var U_=T({grayscaleToRGB_:E6});function _6(r,t,e=0,n=.5){let o=I(r,"image","rotateWithOffset","float32");E(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},i={radians:t,fillValue:e,center:n};return k.runKernel(qa,s,i)}var H_=T({rotateWithOffset_:_6});function wo(r,t,e,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=r.shape[0];return e=Math.min(e,i),E(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),E(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),E(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),E(t.rank===1,()=>"scores must be a 1D tensor"),E(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),E(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function A6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=I(r,"boxes","nonMaxSuppression","float32"),i=I(t,"scores","nonMaxSuppression","float32"),a=wo(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u={maxOutputSize:e,iouThreshold:n,scoreThreshold:o};return k.runKernel(Ra,{boxes:s,scores:i},u)}var q_=T({nonMaxSuppression_:A6});function K_(r,t,e){let n=$6(r,t,e),o=n<0?-(n+1):n;r.splice(o,0,t)}function $6(r,t,e){return R6(r,t,e||D6)}function D6(r,t){return r>t?1:r<t?-1:0}function R6(r,t,e){let n=0,o=r.length,s=0,i=!1;for(;n<o;){s=n+(o-n>>>1);let a=e(t,r[s]);a>0?n=s+1:(o=s,i=!a)}return i?n:-n-1}function fy(r,t,e,n,o){return c0(r,t,e,n,o,0)}function dy(r,t,e,n,o,s){return c0(r,t,e,n,o,0,!1,s,!0)}function hy(r,t,e,n,o,s){return c0(r,t,e,n,o,s,!0)}function c0(r,t,e,n,o,s,i=!1,a=!1,u=!1){let l=[];for(let g=0;g<t.length;g++)t[g]>o&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(j_);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<e&&l.length>0;){let g=l.pop(),{score:x,boxIndex:b,suppressBeginIndex:w}=g;if(x<o)break;let C=!1;for(let N=p.length-1;N>=w;--N){let _=F6(r,b,p[N]);if(_>=n){C=!0;break}if(g.score=g.score*O6(n,c,_),g.score<=o)break}g.suppressBeginIndex=p.length,C||(g.score===x?(p.push(b),m.push(g.score)):g.score>o&&K_(l,g,j_))}let f=p.length,d=e-f;a&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return i&&(h.selectedScores=m),u&&(h.validOutputs=f),h}function F6(r,t,e){let n=r.subarray(t*4,t*4+4),o=r.subarray(e*4,e*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),a=Math.max(n[0],n[2]),u=Math.max(n[1],n[3]),l=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(a-s)*(u-i),d=(p-l)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,l),g=Math.max(i,c),x=Math.min(a,p),b=Math.min(u,m),w=Math.max(x-h,0)*Math.max(b-g,0);return w/(f+d-w)}function O6(r,t,e){let n=Math.exp(t*e*e);return e<=r?n:0}function j_(r,t){return r.score-t.score||r.score===t.score&&t.boxIndex-r.boxIndex}async function P6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=I(r,"boxes","nonMaxSuppressionAsync"),i=I(t,"scores","nonMaxSuppressionAsync"),a=wo(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u=await Promise.all([s.data(),i.data()]),l=u[0],c=u[1],{selectedIndices:p}=fy(l,c,e,n,o);return s!==r&&s.dispose(),i!==t&&i.dispose(),Me(p,"int32")}var X_=P6;function L6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=I(r,"boxes","nonMaxSuppression"),a=I(t,"scores","nonMaxSuppression"),u=wo(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l={boxes:i,scores:a},c={maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=k.runKernel(Oa,l,c);return{selectedIndices:p[0],selectedScores:p[1]}}var Y_=T({nonMaxSuppressionWithScore_:L6});async function M6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=I(r,"boxes","nonMaxSuppressionAsync"),a=I(t,"scores","nonMaxSuppressionAsync"),u=wo(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l=await Promise.all([i.data(),a.data()]),c=l[0],p=l[1],{selectedIndices:m,selectedScores:f}=hy(c,p,e,n,o,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Me(m,"int32"),selectedScores:Me(f)}}var Z_=M6;function z6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=I(r,"boxes","nonMaxSuppression"),a=I(t,"scores","nonMaxSuppression"),u=wo(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,m={boxes:i,scores:a},f={maxOutputSize:l,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=k.runKernel(Fa,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var J_=T({nonMaxSuppressionPadded_:z6});async function B6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=I(r,"boxes","nonMaxSuppressionAsync"),a=I(t,"scores","nonMaxSuppressionAsync"),u=wo(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,[m,f]=await Promise.all([i.data(),a.data()]),{selectedIndices:d,validOutputs:h}=dy(m,f,l,c,p,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Me(d,"int32"),validOutputs:mt(h,"int32")}}var Q_=B6;function V6(r,t,e=!1,n=!1){let o=I(r,"images","resizeBilinear");E(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),E(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),E(n===!1||e===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=k.runKernel(Ss,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var gy=T({resizeBilinear_:V6});function G6(r,t,e=!1,n=!1){let o=I(r,"images","resizeNearestNeighbor");E(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),E(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),E(o.dtype==="float32"||o.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),E(n===!1||e===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=k.runKernel(Is,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var xy=T({resizeNearestNeighbor_:G6});function W6(r,t="binary",e=!1,n=.5){let o=I(r,"image","threshold"),s=.2989,i=.587,a=.114,u=o.shape[0]*o.shape[1],l=D(Me([n]),255),c,p,m,f;if(E(o.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${o.rank}.`),E(o.shape[2]===3||o.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${o.shape[2]}.`),E(o.dtype==="int32"||o.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${o.dtype}.`),E(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),o.shape[2]===3){[c,p,m]=mr(o,[1,1,1],-1);let g=D(c,s),x=D(p,i),b=D(m,a);f=X(X(g,x),b)}else f=r;if(t==="otsu"){let g=wx(J(um(f),"int32"),ur([]),256);l=U6(g,u)}let d=e?Ln(f,l):Re(f,l);return J(D(d,255),"int32")}function U6(r,t){let e=Me([-1]),n=Me([0]),o=Me([0]),s,i,a,u,l,c;for(let p=0;p<r.size-1;p++){s=Rt(r,0,p+1),i=Rt(r,p+1),l=pt(ft(s),t),c=pt(ft(i),t);let m=ft(D(s,su(0,s.size)));a=pt(m,ft(s));let f=xo(i.shape,s.size),d=X(su(0,i.size),f),h=D(i,d);u=pt(ft(h),ft(i));let g=ct(a,u),x=ct(a,u),b=D(l,c);o=D(D(b,g),x);let w=Re(o,n);n=_e(w,o,n),e=_e(w,Me([p]),e)}return e}var tA=T({threshold_:W6});function H6(r,t,e="nearest",n="constant",o=0,s){let i=I(r,"image","transform","float32"),a=I(t,"transforms","transform","float32");E(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),E(a.rank===2&&(a.shape[0]===i.shape[0]||a.shape[0]===1)&&a.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),E(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let u={image:i,transforms:a},l={interpolation:e,fillMode:n,fillValue:o,outputShape:s};return k.runKernel(Ha,u,l)}var eA=T({transform_:H6});function q6(r,t,e){E(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),E(e%1===0,()=>`bandPart(): numUpper must be an integer, got ${e}.`);let n=I(r,"a","bandPart");E(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,i]=n.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(e<=i))throw new Error(`bandPart(): numUpper (${e}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),e<0&&(e=i);let a=R(su(0,s,1,"int32"),[-1,1]),u=su(0,i,1,"int32"),l=ct(a,u),c=Rr(Ln(l,mt(+t,"int32")),ln(l,mt(-e,"int32"))),p=Ne([s,i],n.dtype);return R(nr(vr(R(n,[-1,s,i])).map(m=>_e(c,m,p))),o)}var rA=T({bandPart_:q6});function K6(r){let t;if(Array.isArray(r)){t=!1,E(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let o=r[0].shape[0];for(let s=1;s<r.length;++s)E(r[s].shape[0]===o,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else t=!0,r=mr(r,r.shape[0],0).map(o=>Mn(o,[0]));E(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let e=[],n=r;for(let o=0;o<r.length;++o)e.push(k.tidy(()=>{let s=n[o];if(o>0)for(let i=0;i<o;++i){let a=D(ft(D(e[i],s)),e[i]);s=ct(s,a)}return pt(s,Qa(s,"euclidean"))}));return t?nr(e,0):e}var nA=T({gramSchmidt_:K6});function j6(r,t=!1){if(E(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return oA(r,t);{let e=r.shape.slice(0,r.shape.length-2).reduce((u,l)=>u*l),n=vr(R(r,[e,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(u=>{let[l,c]=oA(u,t);o.push(l),s.push(c)});let i=R(nr(o,0),r.shape),a=R(nr(s,0),r.shape);return[i,a]}}function oA(r,t=!1){return k.tidy(()=>{E(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let e=r.shape[0],n=r.shape[1],o=Yu(e),s=sn(r),i=Vs([[1]],[1,1]),a=sn(i),u=e>=n?n:e;for(let l=0;l<u;++l){let c=s,p=a,m=o;[a,s,o]=k.tidy(()=>{let f=Rt(s,[l,l],[e-l,1]),d=Qa(f),h=Rt(s,[l,l],[1,1]),g=_e(Re(h,0),Vs([[-1]]),Vs([[1]])),x=ct(h,D(g,d)),b=pt(f,x);b.shape[0]===1?a=sn(i):a=ne([i,Rt(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=Ht(pt(Lt(g,x),d)),C=Rt(s,[l,0],[e-l,n]),N=D(w,a),_=Ot(a);if(l===0)s=ct(C,Lt(N,Lt(_,C)));else{let F=ct(C,Lt(N,Lt(_,C)));s=ne([Rt(s,[0,0],[l,n]),F],0)}let A=Ot(N),$=Rt(o,[0,l],[e,o.shape[1]-l]);if(l===0)o=ct($,Lt(Lt($,a),A));else{let F=ct($,Lt(Lt($,a),A));o=ne([Rt(o,[0,0],[e,l]),F],1)}return[a,s,o]}),vt([c,p,m])}return!t&&e>n&&(o=Rt(o,[0,0],[e,n]),s=Rt(s,[0,0],[n,n])),[o,s]})}var sA=T({qr_:j6});var Xe;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Xe||(Xe={}));function X6(r,t,e=Xe.SUM_BY_NONZERO_WEIGHTS){let n=I(r,"losses","computeWeightedLoss"),o=null;t!=null&&(o=I(t,"weights","computeWeightedLoss"));let s=o==null?n:D(n,o);if(e===Xe.NONE)return s;if(e===Xe.SUM)return ft(s);if(e===Xe.MEAN){if(o==null)return ve(s);{let i=n.size/o.size,a=pt(ft(s),ft(o));return i>1?pt(a,mt(i)):a}}if(e===Xe.SUM_BY_NONZERO_WEIGHTS){if(o==null)return pt(ft(s),mt(n.size));{let i=D(o,cr(n.shape)),a=J(ft(Bs(i,mt(0))),"float32");return pt(ft(s),a)}}throw Error(`Unknown reduction: ${e}`)}var Gr=T({computeWeightedLoss_:X6});function Y6(r,t,e,n=Xe.SUM_BY_NONZERO_WEIGHTS){let o=I(r,"labels","absoluteDifference"),s=I(t,"predictions","absoluteDifference"),i=null;e!=null&&(i=I(e,"weights","absoluteDifference")),$e(o.shape,s.shape,"Error in absoluteDifference: ");let a=Ee(ct(o,s));return Gr(a,i,n)}var iA=T({absoluteDifference_:Y6});function Z6(r,t,e,n,o=Xe.SUM_BY_NONZERO_WEIGHTS){let s=I(r,"labels","cosineDistance"),i=I(t,"predictions","cosineDistance"),a=null;n!=null&&(a=I(n,"weights","cosineDistance")),$e(s.shape,i.shape,"Error in cosineDistance: ");let u=mt(1),l=ct(u,ft(D(s,i),e,!0));return Gr(l,a,o)}var aA=T({cosineDistance_:Z6});function J6(r,t,e,n=Xe.SUM_BY_NONZERO_WEIGHTS){let o=I(r,"labels","hingeLoss"),s=I(t,"predictions","hingeLoss"),i=null;e!=null&&(i=I(e,"weights","hingeLoss")),$e(o.shape,s.shape,"Error in hingeLoss: ");let a=mt(1);o=ct(D(mt(2),o),a);let u=Fr(ct(a,D(o,s)));return Gr(u,i,n)}var lA=T({hingeLoss_:J6});function Q6(r,t,e,n=1,o=Xe.SUM_BY_NONZERO_WEIGHTS){let s=I(r,"labels","huberLoss"),i=I(t,"predictions","huberLoss"),a=null;e!=null&&(a=I(e,"weights","huberLoss")),$e(s.shape,i.shape,"Error in huberLoss: ");let u=mt(n),l=Ee(ct(i,s)),c=Mi(l,u),p=ct(l,c),m=X(D(mt(.5),Mt(c)),D(u,p));return Gr(m,a,o)}var uA=T({huberLoss_:Q6});function tX(r,t,e,n=1e-7,o=Xe.SUM_BY_NONZERO_WEIGHTS){let s=I(r,"labels","logLoss"),i=I(t,"predictions","logLoss"),a=null;e!=null&&(a=I(e,"weights","logLoss")),$e(s.shape,i.shape,"Error in logLoss: ");let u=mt(1),l=mt(n),c=Ht(D(s,Sr(X(i,l)))),p=D(ct(u,s),Sr(X(ct(u,i),l))),m=ct(c,p);return Gr(m,a,o)}var cA=T({logLoss_:tX});function eX(r,t,e,n=Xe.SUM_BY_NONZERO_WEIGHTS){let o=I(r,"labels","meanSquaredError"),s=I(t,"predictions","meanSquaredError"),i=null;e!=null&&(i=I(e,"weights","meanSquaredError")),$e(o.shape,s.shape,"Error in meanSquaredError: ");let a=ym(o,s);return Gr(a,i,n)}var pA=T({meanSquaredError_:eX});function rX(r,t){let e=I(r,"labels","sigmoidCrossEntropyWithLogits"),n=I(t,"logits","sigmoidCrossEntropyWithLogits");$e(e.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let o=Fr(n),s=D(n,e),i=tu(er(Ht(Ee(n))));return X(ct(o,s),i)}function nX(r,t,e,n=0,o=Xe.SUM_BY_NONZERO_WEIGHTS){let s=I(r,"multiClassLabels","sigmoidCrossEntropy"),i=I(t,"logits","sigmoidCrossEntropy"),a=null;if(e!=null&&(a=I(e,"weights","sigmoidCrossEntropy")),$e(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let l=mt(n),c=mt(1),p=mt(.5);s=X(D(s,ct(c,l)),D(p,l))}let u=rX(s,i);return Gr(u,a,o)}var mA=T({sigmoidCrossEntropy_:nX});function oX(r,t,e=-1){if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${e}`);return un((o,s,i)=>{let u=im(s,[e],!0),l=ct(J(s,"float32"),u);i([o,l]);let c=Ht(D(l,o));return{value:ft(c,[e]),gradFunc:(f,d)=>{let[h,g]=d,x=yo(f.shape,[e]);return[D(R(f,x),ct(J(h,"float32"),er(g))),D(R(f,x),ct(er(g),J(h,"float32")))]}}})(r,t)}function sX(r,t,e,n=0,o=Xe.SUM_BY_NONZERO_WEIGHTS){let s=I(r,"onehotLabels","softmaxCrossEntropy"),i=I(t,"logits","softmaxCrossEntropy"),a=null;if(e!=null&&(a=I(e,"weights","softmaxCrossEntropy")),$e(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let l=mt(n),c=mt(1),p=mt(s.shape[1]);s=X(D(s,ct(c,l)),pt(l,p))}let u=oX(s,i);return Gr(u,a,o)}var fA=T({softmaxCrossEntropy_:sX});function iX(r,t,e,n){let o=I(r,"indices","sparseFillEmptyRows","int32"),s=I(t,"values","sparseFillEmptyRows"),i=I(e,"denseShape","sparseFillEmptyRows","int32"),a=I(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(o.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${o.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(a.rank!==0)throw new Error(`Default value should be a scalar but received shape ${a.shape}`);let u={indices:o,values:s,denseShape:i,defaultValue:a},l=k.runKernel(Pl,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var dA=T({sparseFillEmptyRows_:iX});function aX(r,t,e){let n=I(r,"inputIndices","sparseReshape","int32"),o=I(t,"inputShape","sparseReshape","int32"),s=I(e,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${n.shape}`);if(o.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${o.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:o,newShape:s},a=k.runKernel(Ga,i);return{outputIndices:a[0],outputShape:a[1]}}var hA=T({sparseReshape_:aX});function lX(r,t,e){let n=I(r,"data","sparseSegmentMean"),o=I(t,"indices","sparseSegmentMean","int32"),s=I(e,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:o,segmentIds:s};return k.runKernel(Ll,i)}var gA=T({sparseSegmentMean_:lX});function uX(r,t,e){let n=I(r,"data","sparseSegmentSum"),o=I(t,"indices","sparseSegmentSum","int32"),s=I(e,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:o,segmentIds:s};return k.runKernel(Ml,i)}var xA=T({sparseSegmentSum_:uX});function cX(r,t,e,n,o,s,i,a){let u=I(r,"data","stringNGrams","string");if(u.dtype!=="string")throw new Error("Data must be of datatype string");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=I(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:e,nGramWidths:n,leftPad:o,rightPad:s,padWidth:i,preserveShortSequences:a},p={data:u,dataSplits:l},m=k.runKernel(Bl,p,c);return{nGrams:m[0],nGramsSplits:m[1]}}var yA=T({stringNGrams_:cX});function pX(r,t,e=!0){let n=I(r,"input","stringSplit","string"),o=I(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(o.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${o.shape}`);let s={skipEmpty:e},i={input:n,delimiter:o},a=k.runKernel(Vl,i,s);return{indices:a[0],values:a[1],shape:a[2]}}var bA=T({stringSplit_:pX});function mX(r,t){let e=I(r,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let o={input:e};return k.runKernel(Gl,o,n)}var wA=T({stringToHashBucketFast_:mX});var fX={fft:au,ifft:tl,rfft:lu,irfft:xm},dX={hammingWindow:B_,hannWindow:py,frame:my,stft:V_},Gs={flipLeftRight:W_,grayscaleToRGB:U_,resizeNearestNeighbor:xy,resizeBilinear:gy,rotateWithOffset:H_,cropAndResize:G_,nonMaxSuppression:q_,nonMaxSuppressionAsync:X_,nonMaxSuppressionWithScore:Y_,nonMaxSuppressionWithScoreAsync:Z_,nonMaxSuppressionPadded:J_,nonMaxSuppressionPaddedAsync:Q_,threshold:tA,transform:eA},p0={bandPart:rA,gramSchmidt:nA,qr:sA},hX={absoluteDifference:iA,computeWeightedLoss:Gr,cosineDistance:aA,hingeLoss:lA,huberLoss:uA,logLoss:cA,meanSquaredError:pA,sigmoidCrossEntropy:mA,softmaxCrossEntropy:fA},gX={sparseFillEmptyRows:dA,sparseReshape:hA,sparseSegmentMean:gA,sparseSegmentSum:xA},xX={stringNGrams:yA,stringSplit:bA,stringToHashBucketFast:wA};var Wr=class extends uh{minimize(t,e=!1,n){let{value:o,grads:s}=this.computeGradients(t,n);if(n!=null){let i=n.map(a=>({name:a.name,tensor:s[a.name]}));this.applyGradients(i)}else this.applyGradients(s);return vt(s),e?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(t,e){return Bx(t,e)}dispose(){this.iterations_!=null&&vt(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:mt(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(t){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(t){return this.iterations_=(await t[0].tensor.data())[0],t.slice(1)}};Object.defineProperty(Wr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var cu=class extends Wr{constructor(t,e,n=null){super(),this.learningRate=t,this.rho=e,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=k.backend.epsilon())}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=k.registeredVariables[n],i=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:B(()=>It(s).variable(i))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:B(()=>It(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedGrads[o].variable,l=this.accumulatedUpdates[o].variable;B(()=>{let c=X(D(u,this.rho),D(Mt(a),1-this.rho)),p=D(pt(Se(X(l,this.epsilon)),Se(X(u,this.epsilon))),a),m=X(D(l,this.rho),D(Mt(p),1-this.rho));u.assign(c),l.assign(m);let f=X(D(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(vt(this.accumulatedGrads.map(t=>t.variable)),vt(this.accumulatedUpdates.map(t=>t.variable)))}async getWeights(){let t=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=t.length/2,n=!1;this.accumulatedGrads=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.rho,e.epsilon)}};cu.className="Adadelta";Cn(cu);var pu=class extends Wr{constructor(t,e=.1){super(),this.learningRate=t,this.initialAccumulatorValue=e,this.accumulatedGrads=[]}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=k.registeredVariables[n];this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:B(()=>xo(s.shape,this.initialAccumulatorValue).variable(!1))});let i=Array.isArray(t)?t[o].tensor:t[n];if(i==null)return;let a=this.accumulatedGrads[o].variable;B(()=>{let u=X(a,Mt(i));a.assign(u);let l=X(D(pt(i,Se(X(u,k.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&vt(this.accumulatedGrads.map(t=>t.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulatedGrads=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(t,e){return new t(e.learningRate,e.initialAccumulatorValue)}};pu.className="Adagrad";Cn(pu);var mu=class extends Wr{constructor(t,e,n,o=null){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=mt(e).variable(),this.accBeta2=mt(n).variable()}),o==null&&(this.epsilon=k.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);B(()=>{let n=ct(1,this.accBeta1),o=ct(1,this.accBeta2);e.forEach((s,i)=>{let a=k.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:B(()=>It(a).variable(u))}),this.accumulatedSecondMoment[i]==null&&(this.accumulatedSecondMoment[i]={originalName:`${s}/v`,variable:B(()=>It(a).variable(u))});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedSecondMoment[i].variable,m=X(D(c,this.beta1),D(l,1-this.beta1)),f=X(D(p,this.beta2),D(Mt(l),1-this.beta2)),d=pt(m,n),h=pt(f,o);c.assign(m),p.assign(f);let g=X(D(pt(d,X(Se(h),this.epsilon)),-this.learningRate),a);a.assign(g)}),this.accBeta1.assign(D(this.accBeta1,this.beta1)),this.accBeta2.assign(D(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&vt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedSecondMoment!=null&&vt(this.accumulatedSecondMoment.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t),B(()=>{this.accBeta1.assign(an(this.beta1,this.iterations_+1)),this.accBeta2.assign(an(this.beta2,this.iterations_+1))});let e=t.length/2,n=!1;this.accumulatedFirstMoment=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon)}};mu.className="Adam";Cn(mu);var fu=class extends Wr{constructor(t,e,n,o=null,s=0){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=mt(0).variable(),this.accBeta1=mt(e).variable()}),o==null&&(this.epsilon=k.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);B(()=>{let n=ct(1,this.accBeta1),o=pt(-this.learningRate,X(D(this.iteration,this.decay),1));e.forEach((s,i)=>{let a=k.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:It(a).variable(u)}),this.accumulatedWeightedInfNorm[i]==null&&(this.accumulatedWeightedInfNorm[i]={originalName:`${s}/v`,variable:It(a).variable(u)});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedWeightedInfNorm[i].variable,m=X(D(c,this.beta1),D(l,1-this.beta1)),f=D(p,this.beta2),d=Ee(l),h=Sn(f,d);c.assign(m),p.assign(h);let g=X(D(pt(o,n),pt(m,X(h,this.epsilon))),a);a.assign(g)}),this.iteration.assign(X(this.iteration,1)),this.accBeta1.assign(D(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&vt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedWeightedInfNorm!=null&&vt(this.accumulatedWeightedInfNorm.map(t=>t.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(t){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon,e.decay)}};fu.className="Adamax";Cn(fu);var Bi=class extends Wr{constructor(t){super(),this.learningRate=t,this.setLearningRate(t)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=Array.isArray(t)?t[o].tensor:t[n];if(s==null)return;let i=k.registeredVariables[n];B(()=>{let a=X(D(this.c,s),i);i.assign(a)})}),this.incrementIterations()}setLearningRate(t){this.learningRate=t,this.c!=null&&this.c.dispose(),this.c=De(mt(-t))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(t){if(t=await this.extractIterations(t),t.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(t,e){return new t(e.learningRate)}};Bi.className="SGD";Cn(Bi);var du=class extends Bi{constructor(t,e,n=!1){super(t),this.learningRate=t,this.momentum=e,this.useNesterov=n,this.accumulations=[],this.m=mt(this.momentum)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=k.registeredVariables[n];this.accumulations[o]==null&&(this.accumulations[o]={originalName:`${n}/momentum`,variable:B(()=>It(s).variable(!1))});let i=this.accumulations[o].variable,a=Array.isArray(t)?t[o].tensor:t[n];a!=null&&B(()=>{let u,l=X(D(this.m,i),a);this.useNesterov?u=X(D(this.c,X(a,D(l,this.m))),s):u=X(D(this.c,l),s),i.assign(l),s.assign(u)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&vt(this.accumulations.map(t=>t.variable))}setMomentum(t){this.momentum=t}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulations=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(t,e){return new t(e.learningRate,e.momentum,e.useNesterov)}};du.className="Momentum";Cn(du);var hu=class extends Wr{constructor(t,e=.9,n=0,o=null,s=!1){if(super(),this.learningRate=t,this.decay=e,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=k.backend.epsilon()),t==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=k.registeredVariables[n],i=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:B(()=>It(s).variable(i))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:B(()=>It(s).variable(i))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:B(()=>It(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedMeanSquares[o].variable,l=this.accumulatedMoments[o].variable;B(()=>{let c=X(D(u,this.decay),D(Mt(a),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=X(D(p,this.decay),D(a,1-this.decay)),f=pt(D(a,this.learningRate),Se(ct(c,X(Mt(m),this.epsilon)))),d=X(D(l,this.momentum),f);u.assign(c),p.assign(m),l.assign(d);let h=ct(s,d);s.assign(h)}else{let p=X(D(u,this.decay),D(Mt(a),1-this.decay)),m=X(D(l,this.momentum),pt(D(a,this.learningRate),Se(X(p,this.epsilon))));u.assign(p),l.assign(m);let f=ct(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&vt(this.accumulatedMeanSquares.map(t=>t.variable)),this.accumulatedMeanGrads!=null&&this.centered&&vt(this.accumulatedMeanGrads.map(t=>t.variable)),this.accumulatedMoments!=null&&vt(this.accumulatedMoments.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&t.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=this.centered?t.length/3:t.length/2,n=!1;this.accumulatedMeanSquares=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=t.slice(e*2,e*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(t,e){return new t(e.learningRate,e.decay,e.momentum,e.epsilon,e.centered)}};hu.className="RMSProp";Cn(hu);var Ws=class{static sgd(t){return new Bi(t)}static momentum(t,e,n=!1){return new du(t,e,n)}static rmsprop(t,e=.9,n=0,o=null,s=!1){return new hu(t,e,n,o,s)}static adam(t=.001,e=.9,n=.999,o=null){return new mu(t,e,n,o)}static adadelta(t=.001,e=.95,n=null){return new cu(t,e,n)}static adamax(t=.002,e=.9,n=.999,o=null,s=0){return new fu(t,e,n,o,s)}static adagrad(t,e=.1){return new pu(t,e)}};var ic={sgd:Ws.sgd,momentum:Ws.momentum,adadelta:Ws.adadelta,adagrad:Ws.adagrad,rmsprop:Ws.rmsprop,adamax:Ws.adamax,adam:Ws.adam};var yX=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function gh(){return new Promise(r=>yX(()=>r()))}var v={};Wt(v,{ERF_A1:()=>RX,ERF_A2:()=>FX,ERF_A3:()=>OX,ERF_A4:()=>PX,ERF_A5:()=>LX,ERF_P:()=>DX,PARALLELIZE_THRESHOLD:()=>yy,RowPartitionType:()=>Vi,SELU_SCALE:()=>f0,SELU_SCALEALPHA:()=>m0,applyActivation:()=>oc,assertAndGetBroadcastShape:()=>Pt,assertAxesAreInnerMostDims:()=>Hq,assertParamsConsistent:()=>bX,assignToTypedArray:()=>WX,axesAreInnerMostDims:()=>Jv,calculateShapes:()=>IE,checkEinsumDimSizes:()=>XX,checkPadOnDimRoundingMode:()=>Ie,combineLocations:()=>HE,combineRaggedTensorToTensorShapes:()=>CX,complexWithEvenIndex:()=>BX,complexWithOddIndex:()=>VX,computeConv2DInfo:()=>ju,computeConv3DInfo:()=>ME,computeDefaultPad:()=>Zv,computeDilation2DInfo:()=>KH,computeOptimalWindowSize:()=>NX,computeOutAndReduceShapes:()=>Qv,computeOutShape:()=>wX,computePool2DInfo:()=>Yv,computePool3DInfo:()=>jH,convertConv2DDataFormat:()=>zE,decodeEinsumEquation:()=>KX,eitherStridesOrDilationsAreOne:()=>Ar,expandShapeToKeepDim:()=>yo,exponent:()=>HX,exponents:()=>UX,fromStringArrayToUint8:()=>g5,fromUint8ToStringArray:()=>h5,getAxesPermutation:()=>t0,getBroadcastDims:()=>bE,getComplexWithIndex:()=>GX,getEinsumComputePath:()=>YX,getEinsumPermutation:()=>jX,getFusedBiasGradient:()=>nc,getFusedDyActivation:()=>rc,getImageCenter:()=>TX,getInnerMostAxes:()=>qq,getPermuted:()=>EX,getRaggedRank:()=>SX,getReductionAxes:()=>ge,getReshaped:()=>kX,getReshapedPermuted:()=>_X,getRowPartitionTypesHelper:()=>IX,getSliceBeginCoords:()=>AX,getSliceSize:()=>$X,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>t5,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>e5,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>r5,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>s5,getSparseReshapeInputOutputMismatchErrorMessage:()=>a5,getSparseReshapeInputOutputMultipleErrorMessage:()=>i5,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>n5,getSparseReshapeNegativeOutputDimErrorMessage:()=>o5,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>p5,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>l5,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>u5,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>c5,getUndoAxesPermutation:()=>ph,isIdentityPermutation:()=>ZX,log:()=>o4,mergeRealAndImagArrays:()=>MX,prepareAndValidate:()=>CE,prepareSplitSize:()=>QX,segment_util:()=>h0,shouldFuse:()=>sc,slice_util:()=>Le,splitRealAndImagArrays:()=>zX,tupleValuesAreOne:()=>to,upcastType:()=>sr,validateDefaultValueShape:()=>vX,validateInput:()=>sx,validateUpdateShape:()=>Uv,warn:()=>vi});function bX(r,t){let e=r[0].length;r.forEach((o,s)=>{E(o.length===e,()=>`Error in concat${e}D: rank of tensors[${s}] must be the same as the rank of the rest (${e})`)}),E(t>=0&&t<e,()=>`Error in concat${e}D: axis must be between 0 and ${e-1}.`);let n=r[0];r.forEach((o,s)=>{for(let i=0;i<e;i++)E(i===t||o[i]===n[i],()=>`Error in concat${e}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function wX(r,t){let e=r[0].slice();for(let n=1;n<r.length;n++)e[t]+=r[n][t];return e}var Vi;(function(r){r[r.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",r[r.VALUE_ROWIDS=1]="VALUE_ROWIDS",r[r.ROW_LENGTHS=2]="ROW_LENGTHS",r[r.ROW_SPLITS=3]="ROW_SPLITS",r[r.ROW_LIMITS=4]="ROW_LIMITS",r[r.ROW_STARTS=5]="ROW_STARTS"})(Vi||(Vi={}));function CX(r,t,e){let n=new Array;if(e==null&&t==null)return n;if(t==null)for(;n.length<r+e.length;)n.push(-1);else n=t.slice();if(e==null)return n;if(r+e.length!==n.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${r+e.length}, but shape.rank = ${n.length}`);for(let o=1;o<e.length;++o){let s=e[o],i=n[n.length-e.length+o],a=n[i];if(s>=0)if(a>=0){if(a!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${o+r}] = ${s} but shape[${o+r}] = ${a}`)}else n[i]=s}return n}function IX(r){let t={FIRST_DIM_SIZE:Vi.FIRST_DIM_SIZE,VALUE_ROWIDS:Vi.VALUE_ROWIDS,ROW_LENGTHS:Vi.ROW_LENGTHS,ROW_SPLITS:Vi.ROW_SPLITS,ROW_LIMITS:Vi.ROW_LIMITS,ROW_STARTS:Vi.ROW_STARTS},e=[];for(let n of r)if(n in t)e.push(t[n]);else break;return e}function SX(r){return r.length===0?0:r[0]===Vi.FIRST_DIM_SIZE?r.length-1:r.length}function vX(r,t){if(r==null||t==null)return;let e=r.length,n=t.length;if(e>=n)throw new Error(`defaultValue.shape=${r} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${e} must be less than ragged tensor input flatValues.rank = ${n})`);for(let o=0;o<Math.min(e,n-1);++o){let s=r[o],i=t[o+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${r}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${o-r.length}] = ${s} but ragged tensor input.flatValues.shape[${o-r.length}] = ${i}`)}}var yy=30;function NX(r){return r<=yy?r:sp(r,Math.floor(Math.sqrt(r)))}function TX(r,t,e){let n=e*(typeof r=="number"?r:r[0]),o=t*(typeof r=="number"?r:r[1]);return[n,o]}function kX(r,t,e,n=!0){let o=[];if(n)o=o.concat(t.slice(0)),o.push(r[0]/e),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=t.length;for(let i=0;i<s;++i)o=o.concat([r[i+1]/t[i],t[i]]);o=o.concat(r.slice(s+1))}return o}function EX(r,t,e=!0){let n=[];if(e){n.push(t);for(let o=t+1;o<r;++o)o<=2*t?(n.push(o),n.push(o-(t+1))):n.push(o)}else{let o=[],s=[];for(let i=1;i<r;++i)i>=t*2+1||i%2===1?s.push(i):o.push(i);n.push(...o),n.push(0),n.push(...s)}return n}function _X(r,t,e,n=!0){let o=[];n?o.push(r[0]/e):o.push(r[0]*e);for(let s=1;s<r.length;++s)s<=t.length?n?o.push(t[s-1]*r[s]):o.push(r[s]/t[s-1]):o.push(r[s]);return o}function AX(r,t){let e=[0];for(let n=0;n<t;++n)e.push(r[n][0]);return e}function $X(r,t,e){let n=r.slice(0,1);for(let o=0;o<e;++o)n.push(r[o+1]-t[o][0]-t[o][1]);return n}var m0=1.7580993408473768,f0=1.0507009873554805;var DX=.3275911,RX=.254829592,FX=-.284496736,OX=1.421413741,PX=-1.453152027,LX=1.061405429;function MX(r,t){if(r.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${t.length}.`);let e=new Float32Array(r.length*2);for(let n=0;n<e.length;n+=2)e[n]=r[n/2],e[n+1]=t[n/2];return e}function zX(r){let t=new Float32Array(r.length/2),e=new Float32Array(r.length/2);for(let n=0;n<r.length;n+=2)t[n/2]=r[n],e[n/2]=r[n+1];return{real:t,imag:e}}function BX(r){let t=Math.ceil(r.length/4),e=new Float32Array(t),n=new Float32Array(t);for(let o=0;o<r.length;o+=4)e[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:e,imag:n}}function VX(r){let t=Math.floor(r.length/4),e=new Float32Array(t),n=new Float32Array(t);for(let o=2;o<r.length;o+=4)e[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:e,imag:n}}function GX(r,t){let e=r[t*2],n=r[t*2+1];return{real:e,imag:n}}function WX(r,t,e,n){r[n*2]=t,r[n*2+1]=e}function UX(r,t){let e=new Float32Array(r/2),n=new Float32Array(r/2);for(let o=0;o<Math.ceil(r/2);o++){let s=(t?2:-2)*Math.PI*(o/r);e[o]=Math.cos(s),n[o]=Math.sin(s)}return{real:e,imag:n}}function HX(r,t,e){let n=(e?2:-2)*Math.PI*(r/t),o=Math.cos(n),s=Math.sin(n);return{real:o,imag:s}}var d0="->",qX=/->/g,CA=",",IA="...";function KX(r,t){r=r.replace(/\s/g,"");let e=(r.length-r.replace(qX,"").length)/d0.length;if(e<1)throw new Error("Equations without an arrow are not supported.");if(e>1)throw new Error(`Equation must contain exactly one arrow ("${d0}").`);let[n,o]=r.split(d0);E(n.indexOf(IA)===-1,()=>`The ellipsis notation ("${IA}") is not supported yet.`);let s=n.split(CA),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let a=[];for(let m=0;m<o.length;++m){let f=o[m];if(!s.some(d=>d.indexOf(f)!==-1))throw new Error(`Output subscripts contain the label ${f} not present in the input subscripts.`);a.indexOf(f)===-1&&a.push(f)}for(let m=0;m<n.length;++m){let f=n[m];a.indexOf(f)===-1&&f!==CA&&a.push(f)}let u=new Array(s.length);for(let m=0;m<i;++m){if(new Set(s[m].split("")).size!==s[m].length)throw new Error(`Found duplicate axes in input component ${s[m]}. Support for duplicate axes in input is not implemented yet.`);u[m]=[];for(let f=0;f<s[m].length;++f)u[m].push(a.indexOf(s[m][f]))}let l=a.length,c=o.length,p=[];for(let m=c;m<l;++m)p.push(m);return{allDims:a,summedDims:p,idDims:u}}function jX(r,t){let e=new Array(r);e.fill(-1);for(let o=0;o<t.length;++o)e[t[o]]=o;let n=[];for(let o=0;o<r;++o)e[o]===-1&&n.push(o);return e=e.filter(o=>o!==-1),{permutationIndices:e,expandDims:n}}function XX(r,t,e){let n=new Array(r);for(let o=0;o<e.length;++o){let s=e[o].shape;for(let i=0;i<t[o].length;++i)n[t[o][i]]===void 0?n[t[o][i]]=s[i]:E(n[t[o][i]]===s[i],()=>`Expected dimension ${n[t[o][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function YX(r,t){let e=r,n=[],o=0;r.length===0&&e.push(-1),o=r.length+1;for(let i=0;i<o;++i)n.push([]);let s=[];for(let i=0;i<e.length;++i){let a=e[i],u=JX(t,a);for(let l of u)s.indexOf(l)===-1&&(n[i].push(l),s.push(l))}return{path:e,steps:n}}function ZX(r){return r.every((t,e)=>t===e)}function JX(r,t){let e=[];for(let n=0;n<r.length;++n)(r[n].length===0||r[n].indexOf(t)!==-1||t===-1)&&e.push(n);return e}function QX(r,t,e=0){let n=[];if(typeof t=="number")E(r.shape[e]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(r.shape[e]/t);else{let o=t.reduce((i,a)=>(a===-1&&(i+=1),i),0);E(o<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((a,u)=>u>0?a+u:a);t[s]=r.shape[e]-i}E(r.shape[e]===t.reduce((i,a)=>i+a),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function t5(r){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${r}`}function e5(r,t){return`indices(${r}, 0) is invalid: ${t} < 0`}function r5(r,t,e){return`indices(${r}, 0) is invalid: ${t} >= ${e}`}function n5(r,t){return`only one output dimension may be -1, not both ${r} and ${t}`}function o5(r,t){return`size ${r} must be non-negative, not ${t}`}function s5(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function i5(r,t){let e=Jt(r),n=Jt(t);return`Input to reshape is a SparseTensor with ${e}
|
|
dense values, but the requested shape requires a multiple of ${n}. inputShape=${r} outputShape= ${t}`}function a5(r,t){let e=Jt(r),n=Jt(t);return`Input to reshape is a tensor with ${e} dense values, but the requested shape has ${n}. inputShape=${r} outputShape=${t}`}function l5(){return"segment ids must be >= 0"}function u5(){return"segment ids are not increasing"}function c5(r,t){return`Segment id ${r} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function p5(r,t,e){return`Bad: indices[${r}] == ${t} out of range [0, ${e})`}var h0={};Wt(h0,{collectGatherOpShapeInfo:()=>d5,computeOutShape:()=>f5,segOpComputeOptimalWindowSize:()=>m5});function m5(r,t){let e=!1,n;for(r<=yy?(n=r,e=!0):n=sp(r,Math.floor(Math.sqrt(r)));!e;)n>t||n===r?e=!0:n=sp(r,n+1);return n}function f5(r,t,e){let n=[],o=r.length;for(let s=0;s<o;s++)s!==t?n.push(r[s]):n.push(e);return n}function d5(r,t,e,n){let o=t.shape.length,s=r.shape.length;if(n!==0&&(n<-o||n>o))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
|
|
${s}).`);if(e<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${e}).`);for(let p=0;p<n;++p)if(r.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=r.shape[e],a=[],u=1,l=1,c=1;for(let p=0;p<n;++p)a.push(r.shape[p]),u*=r.shape[p];for(let p=n;p<e;p++)a.push(r.shape[p]),l*=r.shape[p];for(let p=n;p<o;p++)a.push(t.shape[p]);for(let p=e+1;p<s;p++)a.push(r.shape[p]),c*=r.shape[p];return{batchSize:u,sliceSize:c,outerSize:l,dimSize:i,outputShape:a}}function h5(r){try{return r.map(t=>Wp(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function g5(r){return r.map(t=>Hl(t))}var Ur={};Wt(Ur,{nonMaxSuppressionV3Impl:()=>fy,nonMaxSuppressionV4Impl:()=>dy,nonMaxSuppressionV5Impl:()=>hy,whereImpl:()=>ay});var by={kernelName:ii,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(r,bo(J(e,"float32"),-1))}}};var SA={kernelName:oa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Mt(J(e,"float32")),o=Se(ct(mt(1),n));return Ht(pt(r,o))}}}};var vA={kernelName:sa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Se(ct(Mt(J(e,"float32")),1));return pt(r,n)}}}};var NA={kernelName:Zn,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Pt(e.shape,n.shape);return{a:()=>{let a=r,u=ge(e.shape,o);return u.length>0&&(a=ft(a,u)),R(a,e.shape)},b:()=>{let a=r,u=ge(n.shape,o);return u.length>0&&(a=ft(a,u)),R(a,n.shape)}}}};var TA={kernelName:Go,saveAllInputs:!0,gradFunc:(r,t)=>{let e={};return t.forEach((n,o)=>{e[o]=()=>r.clone()}),e}};var kA={kernelName:Wo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>It(e)}}};var EA={kernelName:kl,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>It(e)}}};var _A={kernelName:la,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>pt(r,Se(ct(mt(1),Mt(J(e,"float32")))))}}};var AA={kernelName:ua,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Se(X(mt(1),Mt(J(e,"float32"))));return pt(r,n)}}}};var $A={kernelName:ma,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Pt(e.shape,n.shape);return{a:()=>{let a=X(Mt(e),Mt(n)),u=D(r,pt(n,a)),l=ge(e.shape,o);return l.length>0&&(u=ft(u,l)),R(u,e.shape)},b:()=>{let a=X(Mt(e),Mt(n)),u=Ht(D(r,pt(e,a))),l=ge(n.shape,o);return l.length>0&&(u=ft(u,l)),R(u,n.shape)}}}};var DA={kernelName:ca,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>pt(r,X(Mt(J(e,"float32")),1))}}};var RA={kernelName:pa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>pt(r,ct(mt(1),Mt(J(e,"float32"))))}}};function x5(r,t,e,n,o,s){let i=I(r,"dy","avgPool3dGrad"),a=I(t,"input","avgPool3dGrad"),u=i,l=a,c=!1;a.rank===4&&(c=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),E(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),E(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),Ie("avgPool3dGrad",o,s);let p={dy:u,input:l},m={filterSize:e,strides:n,pad:o,dimRoundingMode:s},f=k.runKernel(lp,p,m);return c?R(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var FA=T({avgPool3dGrad_:x5});var OA={kernelName:El,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i,dimRoundingMode:a}=e;return{x:()=>FA(r,n,o,s,i,a)}}};function y5(r,t,e,n,o){let s=I(r,"dy","avgPoolGrad"),i=I(t,"input","avgPoolGrad");E(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let a=i,u=s,l=!1;i.rank===3&&(l=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),E(a.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${a.rank}.`);let c={dy:u,input:a},p={filterSize:e,strides:n,pad:o},m=k.runKernel(ap,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var PA=T({avgPoolGrad_:y5});var LA={kernelName:Uo,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i}=e;return{x:()=>PA(r,n,o,s,i)}}};var MA={kernelName:Ho,inputsToSave:["a","b"],gradFunc:(r,t,e)=>{let[n,o]=t,{transposeA:s,transposeB:i}=e;return!s&&!i?{a:()=>Lt(r,o,!1,!0),b:()=>Lt(n,r,!0,!1)}:!s&&i?{a:()=>Lt(r,o,!1,!1),b:()=>Lt(r,n,!0,!1)}:s&&!i?{a:()=>Lt(o,r,!1,!0),b:()=>Lt(n,r,!1,!1)}:{a:()=>Lt(o,r,!0,!0),b:()=>Lt(r,n,!0,!0)}}};var zA={kernelName:ai,gradFunc:(r,t,e)=>{let{blockShape:n,crops:o}=e;return{x:()=>nu(r,n,o)}}};var BA={kernelName:p1,gradFunc:(r,t,e)=>{let n=e,o=n.inputShape,s=n.shape,i=Array.from(s);for(let u=o.length-1;u>=0;u--)if(o[u]===s[u])i[u]=1;else if(o[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let a=[];for(let u=0;u<i.length;u++)i[u]>1&&a.push(u);return{x:()=>ft(r,a,!0)}}};var VA={kernelName:lo,gradFunc:r=>({x:()=>r.clone()})};var GA={kernelName:qo,gradFunc:r=>({x:()=>It(r)})};var WA={kernelName:uo,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{clipValueMin:o,clipValueMax:s}=e;return{x:()=>_e(Rr(ln(n,o),Ln(n,s)),r,It(r))}}};var UA={kernelName:_l,inputsToSave:["x"],gradFunc:by.gradFunc};var HA={kernelName:li,saveAllInputs:!0,gradFunc:(r,t,e)=>{let n=t.map(u=>u.shape),{axis:o}=e,s=lr(o,t[0].shape)[0],i=n.map(u=>u[s]);return mr(r,i,s).map(u=>()=>u)}};var qA={kernelName:Ko,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,{dilations:s,strides:i,pad:a,dataFormat:u}=e;return E(to(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>tm(n.shape,r,o,i,a,u),filter:()=>Cm(n,r,o.shape,i,a,u)}}};var KA={kernelName:jo,inputsToSave:["dy","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,{strides:s,pad:i,dataFormat:a,dimRoundingMode:u}=e;return{dy:()=>In(r,o,s,i,a,1,u),filter:()=>Cm(r,n,o.shape,s,i,a,u)}}};function b5(r,t,e,n,o){let s=r;r.rank===4&&(s=R(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let i=t;i.rank===4&&(i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),E(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),E(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),E(e.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${e}.`),E(s.shape[4]===e[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${e[3]}.`),E(i.shape[4]===e[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${e[4]}).`);let a={x:s,dy:i},u={strides:n,pad:o,filterShape:e};return k.runKernel(fp,a,u)}var jA=T({conv3DBackpropFilter_:b5});var XA={kernelName:Al,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s}=e;E(to(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,a]=t;return{x:()=>kx(i.shape,r,a,o,s),filter:()=>jA(i,r,a.shape,o,s)}}};var YA={kernelName:Xo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(Ht(fm(J(e,"float32"))),r)}}};var ZA={kernelName:Yo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(dm(J(e,"float32")),r)}}};var JA={kernelName:Zo,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o,exclusive:s,reverse:i}=e;return{x:()=>{let a=t0([o],n.rank),u=nm(r,o,s,!i);return a!=null&&(u=Ot(u,a)),u}}}};var QA={kernelName:Jo,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:i}=e,a=n==null?[1,1]:n;E(to(a),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[u,l]=t;return E(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),E(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),E(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),E(Ar(o,a),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${a}'.`),Ie("depthwiseConv2d",s,i),{x:()=>cy(u.shape,r,l,o,s,a,i),filter:()=>uy(u,r,l.shape,o,s,a,i)}}};var t2={kernelName:$l,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,s={x:n,filter:o,dy:r},i={x:n,filter:o,dy:r};return{x:()=>k.runKernel(jd,s,e),filter:()=>k.runKernel(Xd,i,e)}}};var e2={kernelName:ts,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t,n={dy:r,y:e};return{x:()=>k.runKernel(wp,n)}}};var r2={kernelName:ga,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t,n=D(er(Ht(Mt(e))),2/Math.sqrt(Math.PI));return{x:()=>D(r,n)}}};var n2={kernelName:es,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(r,e)}}};var o2={kernelName:ui,inputsToSave:["input"],gradFunc:(r,t)=>{let[e]=t;return{input:()=>R(r,e.shape)}}};var s2={kernelName:ya,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(r,er(e))}}};var i2={kernelName:rs,gradFunc:r=>({x:()=>It(r)})};var a2={kernelName:ns,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Pt(e.shape,n.shape);return{a:()=>{let a=pt(r,J(n,"float32")),u=ge(e.shape,o);return u.length>0?R(ft(a,u),e.shape):a},b:()=>{let a=D(r,J(e,"float32")),u=ge(n.shape,o);u.length>0&&(a=R(ft(a,u),n.shape));let l=Mt(n);return Ht(pt(a,J(l,"float32")))}}}};var l2={kernelName:os,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,t,e)=>{let{varianceEpsilon:n}=e,[o,s,i,a]=t,u=a==null?mt(1):a,l=ge(s.shape,o.shape),c=[];if(s.rank===1){for(let C=0;C<o.shape.length-1;++C)c.push(o.shape[C]);c.push(1)}let p=ct(o,s),m=D(r,u),f=cm(X(i,mt(n))),d=D(D(D(f,f),f),mt(-.5));return{x:()=>s.rank===1?R(D(D(r,Dr(R(f,[1,1,1,s.shape[0]]),c)),u),o.shape):R(D(D(r,f),u),o.shape),mean:()=>{let C=D(D(f,mt(-1)),m);return s.rank===1&&(C=ft(C,l)),R(C,s.shape)},variance:()=>{let C=D(D(d,p),m);return s.rank===1&&(C=ft(C,l)),R(C,s.shape)},scale:()=>{let C=D(p,f),N=D(r,C);return s.rank===1&&(N=ft(N,l)),R(N,s.shape)},offset:()=>{let C=r;return s.rank===1&&(C=ft(C,l)),R(C,s.shape)}}}};var p2={kernelName:ci,inputsToSave:["x","indices"],gradFunc:(r,t,e)=>{let[n,o]=t,{axis:s}=e,i=lr(s,n.shape)[0];return{x:()=>{let u=n.shape,l=o.size,c=u.slice(0,i),p=c.length,m=u.slice(s,u.length).slice(1),f=m.length,d=u2(0,p),h=u2(p+1,p+1+f),g=c2([c,[l],m]),x=R(r,g),b=R(o,[l]),w=c2([[p],d,h]),C=Ot(x,w),N=wm(C,b,n.shape[i]),_=ph(w);return N=Ot(N,_),N},indices:()=>o}}};function u2(r,t){let e=[];for(let n=r;n<t;++n)e.push(n);return e}function c2(r){let t=[];for(let e=0;e<r.length;++e)for(let n=0;n<r[e].length;++n)t.push(r[e][n]);return t}var m2={kernelName:ss,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>It(e),b:()=>It(n)}}};var f2={kernelName:co,gradFunc:r=>({x:()=>J(r,"float32")})};var d2={kernelName:Ia,gradFunc:r=>({x:()=>It(r)})};var h2={kernelName:Sa,gradFunc:r=>({x:()=>It(r)})};var g2={kernelName:va,gradFunc:r=>({x:()=>It(r)})};var x2={kernelName:is,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{alpha:o}=e,s=Re(n,0);return{x:()=>_e(s,r,D(r,o))}}};var y2={kernelName:ka,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>pt(r,X(e,1))}}};var b2={kernelName:as,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>pt(r,J(e,"float32"))}}};var w2={kernelName:f1,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e;return{logits:()=>{let i=er(n);return ct(r,D(ft(r,o,!0),i))}}}};function w5(r,t,e,n=5,o=1,s=1,i=.5){let a={x:r,y:t,dy:e},u={depthRadius:n,bias:o,alpha:s,beta:i};return k.runKernel(Np,a,u)}var C2=T({localResponseNormalizationBackprop_:w5});var I2={kernelName:Rl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{depthRadius:s,bias:i,alpha:a,beta:u}=e;return{x:()=>C2(n,o,r,s,i,a,u)}}};function wy(r,t,e,n){return t.rank<e.rank&&(t=R(t,yo(t.shape,n))),r.rank<e.rank&&(r=R(r,yo(r.shape,n))),{x:()=>D(r,J($r(e,t),r.dtype))}}var g0={kernelName:ls,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{reductionIndices:o}=n,s=t[0],i=t[1],a=lr(o,s.shape),u=wy(r,i,s,a);return{x:()=>u.x()}}};var S2={kernelName:us,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>D(r,J(ln(e,n),"float32")),b:()=>D(r,J(om(e,n),"float32"))}}};function C5(r,t,e,n,o,s,i){let a=I(r,"dy","maxPool3dGrad"),u=I(t,"input","maxPool3dGrad"),l=I(e,"output","maxPool3dGrad"),c=a,p=u,m=l,f=!1;u.rank===4&&(f=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),p=R(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),m=R(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),E(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),E(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),E(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),Ie("maxPool3dGrad",s,i);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:i},g=k.runKernel(kp,d,h);return f?R(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var v2=T({maxPool3dGrad_:C5});var N2={kernelName:Fl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=e;return{x:()=>v2(r,n,o,s,i,a,u)}}};function I5(r,t,e,n,o,s,i){let a=I(r,"dy","maxPoolGrad"),u=I(t,"input","maxPoolGrad"),l=I(e,"output","maxPoolGrad");E(u.rank===a.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${a.rank})`),E(a.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${a.rank}.`),E(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),Ie("maxPoolGrad",s,i);let c={dy:a,input:u,output:l},p={filterSize:n,strides:o,pad:s,dimRoundingMode:i};return k.runKernel(Tp,c,p)}var T2=T({maxPoolGrad_:I5});var k2={kernelName:cs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a}=e;return{x:()=>T2(r,n,o,s,i,a)}}};var E2={kernelName:ps,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=lr(o,n.shape),a=Qv(n.shape,s)[1],u=Jt(a);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=R(r,c);return pt(D(p,cr(n.shape,"float32")),u)}}}};var _2={kernelName:ms,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{axis:o}=n,[s,i]=t,a=lr(o,s.shape),u=wy(r,i,s,a);return{x:()=>u.x()}}};var A2={kernelName:fs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>D(r,J(Ln(e,n),"float32")),b:()=>D(r,J(Re(e,n),"float32"))}}};var $2={kernelName:ds,inputsToSave:["x"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Rt(r,s,n.shape)}}};var D2={kernelName:$a,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Pt(e.shape,n.shape);return{a:()=>{let a=ge(e.shape,o);return a.length>0?R(ft(r,a),e.shape):r},b:()=>{let a=D(r,Ht(Pi(pt(e,n)))),u=ge(n.shape,o);return u.length>0?R(ft(a,u),n.shape):a}}}};var R2={kernelName:hs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Pt(e.shape,n.shape);return{a:()=>{let a=D(r,J(n,"float32")),u=ge(e.shape,o);return u.length>0?R(ft(a,u),e.shape):a},b:()=>{let a=D(r,J(e,"float32")),u=ge(n.shape,o);return u.length>0?R(ft(a,u),n.shape):a}}}};var F2={kernelName:pi,gradFunc:r=>({x:()=>Ht(r)})};var O2={kernelName:gs,inputsToSave:["indices"],gradFunc:(r,t)=>{let e=t[0];return{indices:()=>Ne(e.shape,"float32")}}};var P2={kernelName:mi,gradFunc:r=>({x:()=>It(r)})};var L2={kernelName:fi,saveAllInputs:!0,gradFunc:(r,t,e)=>{let{axis:n}=e;return vr(r,n).map(s=>()=>s)}};var x0={kernelName:xs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Rt(r,s,n.shape)}}};var M2={kernelName:ys,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,t)=>{let[e,n,o]=t,s=e,i=n,a=Pt(s.shape,i.shape);return{a:()=>{let c=J(i,"float32"),p=D(r,D(c,an(s,ct(c,mt(1))))),m=ge(s.shape,a);return m.length>0&&(p=ft(p,m)),R(p,s.shape)},b:()=>{let c=Re(s,0),p=_e(c,Sr(s),It(s)),m=D(r,D(o,p)),f=ge(i.shape,a);return f.length>0&&(m=ft(m,f)),R(m,i.shape)}}}};var z2={kernelName:bs,inputsToSave:["x","alpha"],gradFunc:(r,t)=>{let[e,n]=t,o=Re(e,0);return{x:()=>_e(o,r,D(r,n)),alpha:()=>{let s=_e(o,It(r),D(r,e)),i=ge(n.shape,r.shape);return i.length>0&&(s=ft(s,i)),R(s,n.shape)}}}};function S5(r,t,e){let n=r.shape.slice();n[e]=1;let o=R(t,n),s=Xu(r,e,!0,!1),i=Xu(r,e,!0,!0),a=D(s,i);return D(o,a)}function v5(r,t,e){let n=r.shape.length,o=n-e.length,s=v.getAxesPermutation(e,n),i=r;s!=null&&(i=Ot(r,s));let a=i.shape.slice(),l=a.splice(n-e.length,e.length).reduce((m,f)=>m*f,1);a.push(l);let c=i.reshape(a),p=S5(c,t,o);if(p=p.reshape(i.shape),s!=null){let m=v.getUndoAxesPermutation(s);p=Ot(p,m)}return p}var B2={kernelName:ws,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=[];return o==null?s=n.shape.map((i,a)=>a):typeof o=="number"?s=[o]:s=o,{x:()=>v5(n,r,s)}}};var V2={kernelName:Qo,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Pt(e.shape,n.shape);return{a:()=>{let a=pt(r,J(n,"float32")),u=ge(e.shape,o);return u.length>0?R(ft(a,u),e.shape):a},b:()=>{let a=D(r,J(e,"float32")),u=ge(n.shape,o);u.length>0&&(a=R(ft(a,u),n.shape));let l=Mt(n);return Ht(pt(a,J(l,"float32")))}}}};var G2={kernelName:Pa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>pt(r,Ht(Mt(e)))}}};var W2={kernelName:vs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t,n=D(Ln(e,6),bo(e));return{x:()=>D(r,J(n,"float32"))}}};var U2={kernelName:Cs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(r,J(bo(e),"float32"))}}};var H2={kernelName:di,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>R(r,e.shape)}}};var q2={kernelName:Ss,inputsToSave:["images"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>k.runKernel(Op,o,e)}}};var K2={kernelName:Is,inputsToSave:["images"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>k.runKernel(Fp,o,e)}}};var j2={kernelName:Ns,gradFunc:(r,t,e)=>{let{dims:n}=e,o=lr(n,r.shape);return{x:()=>pr(r,o)}}};var X2={kernelName:Ts,gradFunc:r=>({x:()=>It(r)})};var Y2={kernelName:ks,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>Ht(pt(r,D(an(e,1.5),2)))}}};var Z2={kernelName:hi,inputsToSave:["condition"],gradFunc:(r,t)=>{let[e]=t;return{condition:()=>J(It(e),"float32"),t:()=>D(r,J(e,r.dtype)),e:()=>D(r,J(eu(e),r.dtype))}}};var J2={kernelName:Ma,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Re(e,mt(0)),o=mt(m0),s=mt(f0),i=D(r,s),a=D(D(r,o),er(J(e,"float32")));return _e(n,i,a)}}}};var Q2={kernelName:_s,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(r,D(e,ct(mt(1),e)))}}};var t$={kernelName:Ba,gradFunc:r=>({x:()=>It(r)})};var e$={kernelName:Es,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(Jl(J(e,"float32")),r)}}};var r$={kernelName:za,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(rm(J(e,"float32")),r)}}};var n$={kernelName:gi,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{begin:o,size:s}=e,i=n.shape,[a,u]=qv(n,o,s),l=[];for(let c=0;c<r.rank;c++)l.push([a[c],i[c]-a[c]-u[c]]);return{x:()=>cn(r,l)}}};var o$={kernelName:Ds,outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{dim:o}=e,s=!0,i=D(r,n);return{logits:()=>ct(i,D(ft(i,[o],s),n))}}};var s$={kernelName:Va,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(r,Yr(e))}}};var y0={kernelName:xi,gradFunc:(r,t,e)=>{let{blockShape:n,paddings:o}=e;return{x:()=>Zl(r,n,o)}}};var b0={kernelName:yi,gradFunc:(r,t,e)=>{let{axis:n}=e;return{x:()=>ne(r,n)}}};var i$={kernelName:As,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>pt(r,D(Se(J(e,"float32")),2))}}};var a$={kernelName:zl,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(r,D(J(e,"float32"),2))}}};var l$={kernelName:Rs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=mt(2);return{a:()=>D(r,D(o,ct(e,n))),b:()=>D(r,D(o,ct(n,e)))}}};var u$={kernelName:po,gradFunc:r=>({x:()=>It(r)})};var c$={kernelName:Fs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Pt(e.shape,n.shape);return{a:()=>{let a=r,u=ge(e.shape,o);return u.length>0&&(a=ft(a,u)),R(a,e.shape)},b:()=>{let a=r,u=ge(n.shape,o);return u.length>0&&(a=ft(a,u)),R(Ht(a),n.shape)}}}};var p$={kernelName:$s,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,o=n.shape.slice(),{axis:s}=e;lr(s,n.shape).forEach(l=>{o[l]=1});let a=R(r,o),u=D(a,cr(n.shape,"float32"));return{x:()=>u}}};var m$={kernelName:Os,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>pt(r,Mt(Jl(e)))}}};var f$={kernelName:Ps,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>D(ct(mt(1),Mt(e)),r)}}};var d$={kernelName:Jn,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{reps:o}=e;return{x:()=>{let i=It(n);if(n.rank===1)for(let a=0;a<o[0];++a)i=X(i,Rt(r,[a*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)i=X(i,Rt(r,[a*n.shape[0],u*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)for(let l=0;l<o[2];++l)i=X(i,Rt(r,[a*n.shape[0],u*n.shape[1],l*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)for(let l=0;l<o[2];++l)for(let c=0;c<o[3];++c)i=X(i,Rt(r,[a*n.shape[0],u*n.shape[1],l*n.shape[2],c*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return i}}}};var h$={kernelName:Qn,gradFunc:(r,t,e)=>{let n=e,{perm:o}=n,s=ph(o);return{x:()=>Ot(r,s)}}};var g$={kernelName:bi,gradFunc:(r,t,e)=>{let n=e,{axis:o}=n;return{value:()=>nr(r,o)}}};var x$={kernelName:Wl,inputsToSave:["segmentIds"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>N5(r,e)}}};function N5(r,t){let e=Sn(t,It(t)),n=Li(r,e),o=ln(t,mt(0,"int32")),s=n.rank-o.rank;for(let a=0;a<s;++a)o=rr(o,a+1);o=Rr(o,cr(n.shape,"bool"));let i=It(n);return _e(o,n,i)}var y$={kernelName:wi,gradFunc:r=>({x:()=>It(r)})};var T5=[by,SA,vA,NA,TA,kA,EA,_A,AA,$A,DA,RA,OA,LA,MA,zA,BA,VA,GA,WA,UA,HA,KA,qA,XA,YA,ZA,JA,QA,t2,V2,e2,r2,n2,o2,s2,a2,i2,l2,p2,m2,f2,d2,h2,g2,x2,y2,b2,w2,I2,g0,g0,S2,N2,k2,E2,_2,A2,$2,D2,R2,F2,O2,P2,L2,x0,x0,M2,z2,B2,G2,W2,U2,H2,q2,K2,j2,X2,Y2,Z2,J2,Q2,t$,e$,r$,n$,o$,s$,y0,y0,b0,b0,i$,l$,a$,u$,c$,p$,m$,f$,d$,h$,g$,x$,y$];for(let r of T5)h1(r);O().prototype.abs=function(){return this.throwIfDisposed(),Ee(this)};O().prototype.acos=function(){return this.throwIfDisposed(),ax(this)};O().prototype.acosh=function(){return this.throwIfDisposed(),lx(this)};O().prototype.add=function(r){return this.throwIfDisposed(),X(this,r)};O().prototype.all=function(r,t){return this.throwIfDisposed(),Zp(this,r,t)};O().prototype.any=function(r,t){return this.throwIfDisposed(),qu(this,r,t)};O().prototype.argMax=function(r){return this.throwIfDisposed(),Ai(this,r)};O().prototype.argMin=function(r){return this.throwIfDisposed(),ux(this,r)};O().prototype.asScalar=function(){return this.throwIfDisposed(),E(this.size===1,()=>"The array must have only 1 element."),R(this,[])};O().prototype.asType=function(r){return this.throwIfDisposed(),J(this,r)};O().prototype.as1D=function(){return this.throwIfDisposed(),R(this,[this.size])};O().prototype.as2D=function(r,t){return this.throwIfDisposed(),R(this,[r,t])};O().prototype.as3D=function(r,t,e){return this.throwIfDisposed(),R(this,[r,t,e])};O().prototype.as4D=function(r,t,e,n){return this.throwIfDisposed(),R(this,[r,t,e,n])};O().prototype.as5D=function(r,t,e,n,o){return this.throwIfDisposed(),R(this,[r,t,e,n,o])};O().prototype.asin=function(){return this.throwIfDisposed(),cx(this)};O().prototype.asinh=function(){return this.throwIfDisposed(),px(this)};O().prototype.atan=function(){return this.throwIfDisposed(),mx(this)};O().prototype.atan2=function(r){return this.throwIfDisposed(),fx(this,r)};O().prototype.atanh=function(){return this.throwIfDisposed(),dx(this)};O().prototype.avgPool=function(r,t,e,n){return this.throwIfDisposed(),Yl(this,r,t,e,n)};O().prototype.batchToSpaceND=function(r,t){return this.throwIfDisposed(),Zl(this,r,t)};O().prototype.batchNorm=function(r,t,e,n,o){return this.throwIfDisposed(),Di(this,r,t,e,n,o)};O().prototype.broadcastTo=function(r){return this.throwIfDisposed(),Ri(this,r)};O().prototype.cast=function(r){return this.throwIfDisposed(),J(this,r)};O().prototype.ceil=function(){return this.throwIfDisposed(),Cx(this)};O().prototype.clipByValue=function(r,t){return this.throwIfDisposed(),Cr(this,r,t)};O().prototype.concat=function(r,t){return this.throwIfDisposed(),r instanceof Ft&&(r=[r]),ne([this,...r],t)};O().prototype.conv1d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Qp(this,r,t,e,n,o,s)};O().prototype.conv2dTranspose=function(r,t,e,n,o){return this.throwIfDisposed(),em(this,r,t,e,n,o)};O().prototype.conv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),In(this,r,t,e,n,o,s)};O().prototype.cos=function(){return this.throwIfDisposed(),Jl(this)};O().prototype.cosh=function(){return this.throwIfDisposed(),rm(this)};O().prototype.cumprod=function(r,t,e){return this.throwIfDisposed(),Xu(this,r,t,e)};O().prototype.cumsum=function(r,t,e){return this.throwIfDisposed(),nm(this,r,t,e)};O().prototype.depthToSpace=function(r,t){return this.throwIfDisposed(),_x(this,r,t)};O().prototype.depthwiseConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Fi(this,r,t,e,n,o,s)};O().prototype.dilation2d=function(r,t,e,n,o){return this.throwIfDisposed(),Ax(this,r,t,e,n,o)};O().prototype.divNoNan=function(r){return this.throwIfDisposed(),$x(this,r)};O().prototype.div=function(r){return this.throwIfDisposed(),pt(this,r)};O().prototype.dot=function(r){return this.throwIfDisposed(),Dx(this,r)};O().prototype.elu=function(){return this.throwIfDisposed(),Oi(this)};O().prototype.equal=function(r){return this.throwIfDisposed(),$r(this,r)};O().prototype.erf=function(){return this.throwIfDisposed(),Rx(this)};O().prototype.euclideanNorm=function(r,t){return this.throwIfDisposed(),Fx(this,r,t)};O().prototype.exp=function(){return this.throwIfDisposed(),er(this)};O().prototype.expandDims=function(r){return this.throwIfDisposed(),rr(this,r)};O().prototype.expm1=function(){return this.throwIfDisposed(),Ox(this)};O().prototype.fft=function(){return this.throwIfDisposed(),au(this)};O().prototype.flatten=function(){return this.throwIfDisposed(),R(this,[this.size])};O().prototype.floor=function(){return this.throwIfDisposed(),Pi(this)};O().prototype.floorDiv=function(r){return this.throwIfDisposed(),Yp(this,r)};O().prototype.gather=function(r,t){return this.throwIfDisposed(),Li(this,r,t)};O().prototype.greaterEqual=function(r){return this.throwIfDisposed(),ln(this,r)};O().prototype.greater=function(r){return this.throwIfDisposed(),Re(this,r)};O().prototype.ifft=function(){return this.throwIfDisposed(),tl(this)};O().prototype.irfft=function(){return this.throwIfDisposed(),xm(this)};O().prototype.isFinite=function(){return this.throwIfDisposed(),Px(this)};O().prototype.isInf=function(){return this.throwIfDisposed(),Lx(this)};O().prototype.isNaN=function(){return this.throwIfDisposed(),Mx(this)};O().prototype.leakyRelu=function(r){return this.throwIfDisposed(),Ql(this,r)};O().prototype.lessEqual=function(r){return this.throwIfDisposed(),Ln(this,r)};O().prototype.less=function(r){return this.throwIfDisposed(),om(this,r)};O().prototype.localResponseNormalization=function(r,t,e,n){return this.throwIfDisposed(),zx(this,r,t,e,n)};O().prototype.logSigmoid=function(){return this.throwIfDisposed(),Gx(this)};O().prototype.logSoftmax=function(r){return this.throwIfDisposed(),sm(this,r)};O().prototype.logSumExp=function(r,t){return this.throwIfDisposed(),im(this,r,t)};O().prototype.log=function(){return this.throwIfDisposed(),Sr(this)};O().prototype.log1p=function(){return this.throwIfDisposed(),tu(this)};O().prototype.logicalAnd=function(r){return this.throwIfDisposed(),Rr(this,r)};O().prototype.logicalNot=function(){return this.throwIfDisposed(),eu(this)};O().prototype.logicalOr=function(r){return this.throwIfDisposed(),am(this,r)};O().prototype.logicalXor=function(r){return this.throwIfDisposed(),Wx(this,r)};O().prototype.matMul=function(r,t,e){return this.throwIfDisposed(),Lt(this,r,t,e)};O().prototype.maxPool=function(r,t,e,n){return this.throwIfDisposed(),ru(this,r,t,e,n)};O().prototype.max=function(r,t){return this.throwIfDisposed(),Ir(this,r,t)};O().prototype.maximum=function(r){return this.throwIfDisposed(),Sn(this,r)};O().prototype.mean=function(r,t){return this.throwIfDisposed(),ve(this,r,t)};O().prototype.min=function(r,t){return this.throwIfDisposed(),Ja(this,r,t)};O().prototype.minimum=function(r){return this.throwIfDisposed(),Mi(this,r)};O().prototype.mirrorPad=function(r,t){return this.throwIfDisposed(),qx(this,r,t)};O().prototype.mod=function(r){return this.throwIfDisposed(),Kx(this,r)};O().prototype.mul=function(r){return this.throwIfDisposed(),D(this,r)};O().prototype.neg=function(){return this.throwIfDisposed(),Ht(this)};O().prototype.norm=function(r,t,e){return this.throwIfDisposed(),Qa(this,r,t,e)};O().prototype.notEqual=function(r){return this.throwIfDisposed(),Bs(this,r)};O().prototype.oneHot=function(r,t=1,e=0){return this.throwIfDisposed(),Ei(this,r,t,e)};O().prototype.onesLike=function(){return this.throwIfDisposed(),yr(this)};O().prototype.pad=function(r,t){return this.throwIfDisposed(),cn(this,r,t)};O().prototype.pool=function(r,t,e,n,o,s){return this.throwIfDisposed(),jx(this,r,t,e,n,o,s)};O().prototype.pow=function(r){return this.throwIfDisposed(),an(this,r)};O().prototype.prelu=function(r){return this.throwIfDisposed(),ou(this,r)};O().prototype.prod=function(r,t){return this.throwIfDisposed(),Xx(this,r,t)};O().prototype.reciprocal=function(){return this.throwIfDisposed(),ty(this)};O().prototype.relu=function(){return this.throwIfDisposed(),Fr(this)};O().prototype.relu6=function(){return this.throwIfDisposed(),lm(this)};O().prototype.reshapeAs=function(r){return this.throwIfDisposed(),R(this,r.shape)};O().prototype.reshape=function(r){return this.throwIfDisposed(),R(this,r)};O().prototype.resizeBilinear=function(r,t,e){return this.throwIfDisposed(),gy(this,r,t,e)};O().prototype.resizeNearestNeighbor=function(r,t,e){return this.throwIfDisposed(),xy(this,r,t,e)};O().prototype.reverse=function(r){return this.throwIfDisposed(),pr(this,r)};O().prototype.rfft=function(){return this.throwIfDisposed(),lu(this)};O().prototype.round=function(){return this.throwIfDisposed(),um(this)};O().prototype.rsqrt=function(){return this.throwIfDisposed(),cm(this)};O().prototype.selu=function(){return this.throwIfDisposed(),pm(this)};O().prototype.separableConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),mm(this,r,t,e,n,o,s)};O().prototype.sigmoid=function(){return this.throwIfDisposed(),Yr(this)};O().prototype.sign=function(){return this.throwIfDisposed(),ey(this)};O().prototype.sin=function(){return this.throwIfDisposed(),fm(this)};O().prototype.sinh=function(){return this.throwIfDisposed(),dm(this)};O().prototype.slice=function(r,t){return this.throwIfDisposed(),Rt(this,r,t)};O().prototype.softmax=function(r){return this.throwIfDisposed(),iu(this,r)};O().prototype.softplus=function(){return this.throwIfDisposed(),zs(this)};O().prototype.spaceToBatchND=function(r,t){return this.throwIfDisposed(),nu(this,r,t)};O().prototype.split=function(r,t){return this.throwIfDisposed(),mr(this,r,t)};O().prototype.sqrt=function(){return this.throwIfDisposed(),Se(this)};O().prototype.square=function(){return this.throwIfDisposed(),Mt(this)};O().prototype.squaredDifference=function(r){return this.throwIfDisposed(),ym(this,r)};O().prototype.squeeze=function(r){return this.throwIfDisposed(),Mn(this,r)};O().prototype.stack=function(r,t){this.throwIfDisposed();let e=r instanceof Ft?[this,r]:[this,...r];return nr(e,t)};O().prototype.step=function(r){return this.throwIfDisposed(),bo(this,r)};O().prototype.stridedSlice=function(r,t,e,n,o,s,i,a){return this.throwIfDisposed(),ry(this,r,t,e,n,o,s,i,a)};O().prototype.sub=function(r){return this.throwIfDisposed(),ct(this,r)};O().prototype.sum=function(r,t){return this.throwIfDisposed(),ft(this,r,t)};O().prototype.tan=function(){return this.throwIfDisposed(),ny(this)};O().prototype.tanh=function(){return this.throwIfDisposed(),$i(this)};O().prototype.tile=function(r){return this.throwIfDisposed(),Dr(this,r)};O().prototype.toBool=function(){return this.throwIfDisposed(),J(this,"bool")};O().prototype.toFloat=function(){return this.throwIfDisposed(),J(this,"float32")};O().prototype.toInt=function(){return this.throwIfDisposed(),J(this,"int32")};O().prototype.topk=function(r,t){return this.throwIfDisposed(),oy(this,r,t)};O().prototype.transpose=function(r){return this.throwIfDisposed(),Ot(this,r)};O().prototype.unique=function(r){return this.throwIfDisposed(),sy(this,r)};O().prototype.unsortedSegmentSum=function(r,t){return this.throwIfDisposed(),wm(this,r,t)};O().prototype.unstack=function(r){return this.throwIfDisposed(),vr(this,r)};O().prototype.where=function(r,t){return this.throwIfDisposed(),_e(r,this,t)};O().prototype.zerosLike=function(){return this.throwIfDisposed(),It(this)};var vn=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,vn.prototype)}},Hr=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,Hr.prototype)}},M=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,M.prototype)}},St=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,St.prototype)}},Im=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,Im.prototype)}};var xh=class{constructor(t){this.maxEntries=t||100,this.cache=new Map}get(t){let e;return this.cache.has(t)&&(e=this.cache.get(t),this.cache.delete(t),this.cache.set(t,e)),e}put(t,e){if(this.cache.has(t))this.cache.delete(t);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(t,e)}getMaxEntries(){return this.maxEntries}setMaxEntries(t){if(t<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${t}.`);if(this.maxEntries>t)for(let e=0;e<this.maxEntries-t;e++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=t}};function Io(r,t){if(Array.isArray(r)){let e=[];for(let n=0;n<t;n++)e=e.concat(r);return e}else{let e=new Array(t);return e.fill(r),e}}function ro(r,t){if(!r)throw new Im(t)}function C0(r,t){let e=0;for(let n of r)n===t&&e++;return e}function Nr(r){return r.length===1?r[0]:r}function xe(r){return Array.isArray(r)?r:[r]}function So(r){let e=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return e[0]!=="_"?e:"private"+e}function el(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(t,e)=>e.toUpperCase())}var Co={};function Sm(r){if(r==null)return null;let t={};return t.className=r.getClassName(),t.config=r.getConfig(),t}function w0(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(t=>w0(t));else{let t=Object.keys(r);for(let e of t){let n=r[e];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?r[e]=n.value:w0(n))}}}function Gi(r,t={},e={},n="object",o=!1){if(typeof r=="string"){let s=r,i;if(s in e)i=e[s];else if(s in Co)i=Co[s];else if(i=t[s],i==null)throw new M(`Unknown ${n}: ${r}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=r;if(s.className==null||s.config==null)throw new M(`${n}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,a,u;if(i in e?[a,u]=e[i]:i in Co?[a,u]=Co.className:i in t&&([a,u]=t[i]),a==null)throw new M(`Unknown ${n}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let f of Object.keys(Co))l[f]=Co[f];for(let f of Object.keys(e))l[f]=e[f];let c=s.config;c.customObjects=l;let p=Object.assign({},Co);for(let f of Object.keys(e))Co[f]=e[f];w0(s.config);let m=u(a,s.config,e,o);return Co=Object.assign({},p),m}else{let l=Object.assign({},Co);for(let p of Object.keys(e))Co[p]=e[p];let c=new a(s.config);return Co=Object.assign({},l),c}}}function k5(r,t){return r<t?-1:r>t?1:0}function yh(r,t){return-1*k5(r,t)}function vo(r){if(r==null)return r;let t=[];for(let e of r)t.indexOf(e)===-1&&t.push(e);return t}function b$(r){if(r==null)throw new M(`Invalid value in obj: ${JSON.stringify(r)}`);for(let t in r)if(r.hasOwnProperty(t))return!1;return!0}function Wi(r,t,e){if(e!=null&&r.indexOf(e)<0)throw new M(`${e} is not a valid ${t}. Valid values are ${r} or null/undefined.`)}function Cy(r,t,e=0,n=1/0){return ro(e>=0),ro(n>=e),Array.isArray(r)&&r.length>=e&&r.length<=n&&r.every(o=>typeof o===t)}function Ze(r,t){Array.isArray(r)?(y.assert(r.length>0,()=>`${t} is unexpectedly an empty array.`),r.forEach((e,n)=>Ze(e,`element ${n+1} of ${t}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${t} to be a positive integer, but got ${w$(r)}.`)}function w$(r){return r===null?"null":Array.isArray(r)?"["+r.map(t=>w$(t)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function C$(r,t,e){let n=e!=null?e():y.now(),o;return(...i)=>{let a=e!=null?e():y.now();return a-n<t||(n=a,o=r(...i)),o}}function Iy(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}var E5=0;function vy(){return E5++}var Sy={};function gu(r=""){return r in Sy||(Sy[r]=0),Sy[r]+=1,r+Sy[r].toString()}var I$=["channelsFirst","channelsLast"],S$=["nearest","bilinear"],v$=["valid","same","causal"],N$=["max","avg"],T$=["sum","mul","concat","ave"];var vm=new Map;function Fe(r){Wi(I$,"DataFormat",r)}function E$(r){Wi(S$,"InterpolationFormat",r)}function pn(r){Wi(v$,"PaddingMode",r)}function I0(r){Wi(N$,"PoolMode",r)}var bh=[],k$="/";function Hs(r,t){bh.push(r);try{let e=t();return bh.pop(),e}catch(e){throw bh.pop(),e}}function _5(){return bh.length===0?"":bh.join(k$)+k$}function Ny(r){if(!_$(r))throw new Error("Not a valid tensor name: '"+r+"'");return _5()+r}function Ty(r){if(!_$(r))throw new Error("Not a valid tensor name: '"+r+"'");vm.has(r)||vm.set(r,0);let t=vm.get(r);if(vm.set(r,vm.get(r)+1),t>0){let e=`${r}_${t}`;return vm.set(e,1),e}else return r}var A5=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function _$(r){return!!r.match(A5)}function A$(r){return r===parseInt(r.toString(),10)}function No(r,t,e){t==null&&(t=0),e==null&&(e=r.length);let n=1;for(let o=t;o<e;++o)n*=r[o];return n}function ac(r){if(r.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let e=0;e<r.length;e++){let n=r[e];n<t&&(t=n)}return t}function qs(r){if(r.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let e=0;e<r.length;e++){let n=r[e];n>t&&(t=n)}return t}function Zr(r,t){if(t<r)throw new M(`end (${t}) < begin (${r}) is forbidden.`);let e=[];for(let n=r;n<t;++n)e.push(n);return e}var S0;function ir(){return S0==null&&(S0=gE().epsilon()),S0}function mn(){return"channelsLast"}function no(r,t){return J(r,t)}function nl(r,t=-1){let e=r.shape.slice();return t<0&&(t=e.length+t+1),e.splice(t,0,1),R(r,e)}function $$(r,t){return B(()=>{if(r.shape.length!==2)throw new M(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let e=nl(r,1);return Ey(e,[1,t,1])})}function D$(r){let t=[No(r.shape)];return R(r,t)}function R$(r){if(r.rank<=1)throw new M(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let t=[r.shape[0],No(r.shape,1)];return R(r,t)}function rl(r,t,e){return B(()=>{switch(r.rank){case 1:return hm(r,t,e);case 2:return dh(r,[t,0],[e,r.shape[1]]);case 3:return gm(r,[t,0,0],[e,r.shape[1],r.shape[2]]);case 4:return ec(r,[t,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Rt(r,[t,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Rt(r,[t,0,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new M(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function v0(r,t,e){return B(()=>{switch(r.rank){case 1:return hm(r,t,e);case 2:return dh(r,[0,t],[r.shape[0],e]);case 3:return gm(r,[0,0,t],[r.shape[0],r.shape[1],e]);case 4:return ec(r,[0,0,0,t],[r.shape[0],r.shape[1],r.shape[2],e]);default:throw new M(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function wh(r,t,e,n){return B(()=>{switch(r.rank){case 1:return hm(r,t,e);case 2:switch(n){case 1:return rl(r,t,e);case 2:return v0(r,t,e);default:throw new M(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return rl(r,t,e);case 2:return gm(r,[0,t,0],[r.shape[0],e,r.shape[2]]);case 3:return v0(r,t,e);default:throw new M(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return rl(r,t,e);case 2:return ec(r,[0,t,0,0],[r.shape[0],e,r.shape[2],r.shape[3]]);case 3:return ec(r,[0,0,t,0],[r.shape[0],r.shape[1],e,r.shape[3]]);case 4:return v0(r,t,e);default:throw new M(`The axis is not within the rank of the tensor ${n}`)}default:throw new M(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Nm(r,t=-1){let e;return t<0&&(e=r[0].rank,e!==0?t=e:t=0),t===r[0].rank&&(t=-1),ne(r,t)}function T0(r,t){switch(r.rank){case 1:return Ix([r,t]);case 2:return Sx([r,t],0);case 3:return vx([r,t],0);case 4:return Nx([r,t],0);default:throw new M(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Ey(r,t){if(Array.isArray(t)||(t=[t]),r.rank!==t.length)throw new M(`The length of input n (${t.length}) does not match the number of dimensions in input x (${r.rank})`);return Dr(r,t)}function Tm(r,t=0,e=1,n,o){return tc(r,t,e,n,o)}function To(r,t,e,n){if(r.rank<2||t.rank<2)throw new St(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${t.shape}`);if(t.rank>=3){let o=r.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(o!==s)throw new St(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${t.shape}`)}if(r.rank===2&&t.rank===2)return uu.matMul({a:r,b:t,transposeA:!1,transposeB:!1,bias:n?N0(r.rank,n,mn()):null,activation:e});{let o=r.shape.slice(),s=o.pop();r=R(r,[-1,s]);let i=t.shape.slice(),a=i.pop(),u=i.pop(),l=[...i,a],c=Array.from({length:t.rank},(d,h)=>h===0?t.rank-2:h<=t.rank-2?h-1:h);t=R(Ot(t,c),[u,-1]);let p=[...o,...l],m=!1,f=!1;return R(uu.matMul({a:r,b:t,transposeA:m,transposeB:f,bias:n?N0(r.rank,n,mn()):null,activation:e}),p)}}function _y(r,t,e){return B(()=>(Array.isArray(t)?t=Me(t,"int32"):t=J(t,"int32"),Li(r,t,e)))}function lc(r){return D(r,r)}function N0(r,t,e){let n=t.shape;if(t.rank!==1&&t.rank!==r)throw new M(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${r}`);if(r===5){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1,1,1]):R(t,[1,n[3],n[0],n[1],n[2]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===4){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1,1]):R(t,[1,n[2],n[0],n[1]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===3){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1]):R(t,[1,n[1],n[0]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,n[0]]):R(t,[1].concat(n))}else if(r<3)return t;throw new M(`Unsupported input rank by biasAdd: ${t.rank}`)}function fn(r,t,e){return B(()=>(e==null&&(e=mn()),Fe(e),X(r,N0(r.rank,t,e))))}function F$(r,t=1){if(t!==1)throw new St(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Oi(r)}function O$(r){return B(()=>pt(r,X(Ee(r),1)))}function Ay(r,t,e,n){return B(()=>l0(r,t,e,n))}function P$(r){return B(()=>{let t=X(.5,D(.2,r));return Cr(t,0,1)})}function xu(r,t,e=!1){return e?r():t()}var L$=["fanIn","fanOut","fanAvg"],M$=["normal","uniform","truncatedNormal"];function $5(r){Wi(L$,"FanMode",r)}function D5(r){Wi(M$,"Distribution",r)}var dn=class extends Q.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},km=class extends dn{apply(t,e){return Ne(t,e)}};km.className="Zeros";Q.registerClass(km);var yu=class extends dn{apply(t,e){return cr(t,e)}};yu.className="Ones";Q.registerClass(yu);var Em=class extends dn{constructor(t){if(super(),typeof t!="object")throw new M(`Expected argument of type ConstantConfig but got ${t}`);if(t.value===void 0)throw new M(`config must have value set but got ${t}`);this.value=t.value}apply(t,e){return B(()=>D(mt(this.value),cr(t,e)))}getConfig(){return{value:this.value}}};Em.className="Constant";Q.registerClass(Em);var _m=class extends dn{constructor(t){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=t.minval||this.DEFAULT_MINVAL,this.maxval=t.maxval||this.DEFAULT_MAXVAL,this.seed=t.seed}apply(t,e){return zi(t,this.minval,this.maxval,e)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};_m.className="RandomUniform";Q.registerClass(_m);var Am=class extends dn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new St(`randomNormal does not support dType ${e}.`);return Tm(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Am.className="RandomNormal";Q.registerClass(Am);var $m=class extends dn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new St(`truncatedNormal does not support dType ${e}.`);return bm(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};$m.className="TruncatedNormal";Q.registerClass($m);var Dm=class extends dn{constructor(t){super(),this.gain=t.gain!=null?t.gain:1}apply(t,e){return B(()=>{if(t.length!==2||t[0]!==t[1])throw new M("Identity matrix initializer can only be used for 2D square matrices.");return D(this.gain,Yu(t[0]))})}getConfig(){return{gain:this.gain}}};Dm.className="Identity";Q.registerClass(Dm);function R5(r,t="channelsLast"){let e,n;if(Fe(t),r.length===2)e=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(t==="channelsFirst"){let o=No(r,2);e=r[1]*o,n=r[0]*o}else if(t==="channelsLast"){let o=No(r,0,r.length-2);e=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=No(r);e=Math.sqrt(o),n=Math.sqrt(o)}return[e,n]}var qr=class extends dn{constructor(t){if(super(),t.scale<0)throw new M(`scale must be a positive float. Got: ${t.scale}`);this.scale=t.scale==null?1:t.scale,this.mode=t.mode==null?"fanIn":t.mode,$5(this.mode),this.distribution=t.distribution==null?"normal":t.distribution,D5(this.distribution),this.seed=t.seed}apply(t,e){let n=R5(t),o=n[0],s=n[1],i=this.scale;if(this.mode==="fanIn"?i/=Math.max(1,o):this.mode==="fanOut"?i/=Math.max(1,s):i/=Math.max(1,(o+s)/2),this.distribution==="normal"){let a=Math.sqrt(i);if(e=e||"float32",e!=="float32"&&e!=="int32")throw new St(`${this.getClassName()} does not support dType ${e}.`);return bm(t,0,a,e,this.seed)}else{let a=Math.sqrt(3*i);return zi(t,-a,a,e)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};qr.className="VarianceScaling";Q.registerClass(qr);var uc=class extends qr{constructor(t){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return qr.className}};uc.className="GlorotUniform";Q.registerClass(uc);var cc=class extends qr{constructor(t){super({scale:1,mode:"fanAvg",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return qr.className}};cc.className="GlorotNormal";Q.registerClass(cc);var pc=class extends qr{constructor(t){super({scale:2,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return qr.className}};pc.className="HeNormal";Q.registerClass(pc);var mc=class extends qr{constructor(t){super({scale:2,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return qr.className}};mc.className="HeUniform";Q.registerClass(mc);var fc=class extends qr{constructor(t){super({scale:1,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return qr.className}};fc.className="LeCunNormal";Q.registerClass(fc);var dc=class extends qr{constructor(t){super({scale:1,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return qr.className}};dc.className="LeCunNormal";Q.registerClass(dc);var Rm=class extends dn{constructor(t){if(super(),this.DEFAULT_GAIN=1,this.gain=t.gain==null?this.DEFAULT_GAIN:t.gain,this.seed=t.seed,this.seed!=null)throw new St("Random seed is not implemented for Orthogonal Initializer yet.")}apply(t,e){return B(()=>{if(t.length<2)throw new St("Shape must be at least 2D.");t[0]*t[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${t[0]*t[1]}) elements: Slowness may result.`);let n=t[0]>t[1]?[t[1],t[0]]:t,o=Tm(n,0,1,"float32"),s=p0.gramSchmidt(o);return t[0]>t[1]&&(s=Ot(s)),D(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Rm.className="Orthogonal";Q.registerClass(Rm);var z$={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function B$(r,t={}){return Gi(r,Q.SerializationMap.getMap().classNameMap,t,"initializer")}function Te(r){return Sm(r)}function de(r){if(typeof r=="string"){let t=r in z$?z$[r]:r;if(t==="GlorotNormal")return new cc;if(t==="GlorotUniform")return new uc;if(t==="HeNormal")return new pc;if(t==="HeUniform")return new mc;if(t==="LeCunNormal")return new fc;if(t==="LeCunUniform")return new dc;{let e={};return e.className=t,e.config={},B$(e)}}else return r instanceof dn?r:B$(r)}function $y(r){return Array.isArray(r)&&Array.isArray(r[0])}function Fm(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Nt(r){let t;if(Array.isArray(r)){if(r.length!==1)throw new M(`Expected Tensor length to be 1; got ${r.length}`);t=r[0]}else t=r;return t}function Bt(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new M(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Om(r){let t=0;for(let e of r)e.shape.length===0?t+=1:t+=e.shape.reduce((n,o)=>n*o);return t}var G$="Variable",Ch=class{constructor(t,e="float32",n=G$,o=!0,s=null){this.dtype=e==null?"float32":e,this.shape=t.shape,this.id=vy(),n=n==null?G$:n,this.originalName=Ny(n),this.name=Ty(this.originalName),this.trainable_=o,this.constraint=s,this.val=iy(t,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(t){return this.assertNotDisposed(),O5(this.val,t),this.val.id!==t.id&&(this.val.assign(t),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(t){this.trainable_=t,this.val.trainable=t}};function O5(r,t){if(r.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(t.shape))}function Ih(r){return r.map(t=>t.read())}function Pm(r){r.forEach(t=>{t[0].write(t[1])})}var ye=class{constructor(t){this.dtype=t.dtype,this.shape=t.shape,t.shape!=null?this.ndim=t.shape.length:this.ndim=t.ndim,this.maxNDim=t.maxNDim,this.minNDim=t.minNDim,this.axes=t.axes||{}}},Jr=class{constructor(t,e,n,o,s,i,a){this.dtype=t,this.shape=e,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=a,this.id=vy(),i!=null&&(this.originalName=Ny(i),this.name=Ty(this.originalName)),this.rank=e.length}},P5=0,ol=class{constructor(t,e){this.callArgs=e,this.id=P5++,this.outboundLayer=t.outboundLayer,this.inboundLayers=t.inboundLayers,this.nodeIndices=t.nodeIndices,this.tensorIndices=t.tensorIndices,this.inputTensors=t.inputTensors,this.outputTensors=t.outputTensors,this.inputMasks=t.inputMasks,this.outputMasks=t.outputMasks,this.inputShapes=t.inputShapes,this.outputShapes=t.outputShapes;for(let n of t.inboundLayers)n!=null&&n.outboundNodes.push(this);t.outboundLayer.inboundNodes.push(this)}getConfig(){let t=[];for(let e of this.inboundLayers)e!=null?t.push(e.name):t.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:t,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},L5=0,$t=class extends Q.Serializable{constructor(t={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=L5++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let e=t.name;if(!e){let n=this.getClassName();e=So(n)+"_"+gu(n)}if(this.name=e,this.trainable_=t.trainable==null?!0:t.trainable,t.inputShape!=null||t.batchInputShape!=null){let n;if(t.batchInputShape!=null)n=t.batchInputShape;else if(t.inputShape!=null){let s=null;t.batchSize!=null&&(s=t.batchSize),n=[s].concat(t.inputShape)}this.batchInputShape=n;let o=t.dtype;o==null&&(o=t.inputDType),o==null&&(o="float32"),this.dtype=o}t.weights!=null?this.initialWeights=t.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(t,e){return t.name+"_ib-"+e.toString()}getNodeAtIndex(t,e){if(this.inboundNodes.length===0)throw new Hr(`The layer has never been called and thus has no defined ${e}.`);if(this.inboundNodes.length<=t)throw new M(`Asked to get ${e} at node ${t}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[t]}getInputAt(t){return Nr(this.getNodeAtIndex(t,"input").inputTensors)}getOutputAt(t){return Nr(this.getNodeAtIndex(t,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new vn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new vn(`Layer ${this.name} is not connected, no input to return.`);return Nr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new vn(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new vn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Nr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(t=>t())}get updates(){return this._updates}get built(){return this._built}set built(t){this._built=t}get trainable(){return this.trainable_}set trainable(t){this._trainableWeights.forEach(e=>e.trainable=t),this.trainable_=t}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(t=>t.trainable):[]}set trainableWeights(t){this._trainableWeights=t}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(t=>!t.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(t){this._nonTrainableWeights=t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(t){if(t=xe(t),this.inputSpec==null||this.inputSpec.length===0)return;let e=xe(this.inputSpec);if(t.length!==e.length)throw new M(`Layer ${this.name} expects ${e.length} inputs, but it received ${t.length} input tensors. Input received: ${t}`);for(let n=0;n<t.length;n++){let o=t[n],s=e[n];if(s==null)continue;let i=o.rank;if(s.ndim!=null&&i!==s.ndim)throw new M(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${i}`);if(s.maxNDim!=null&&i>s.maxNDim)throw new M(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${i}`);if(s.minNDim!=null&&i<s.minNDim)throw new M(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${i}.`);if(s.dtype!=null&&o.dtype!==s.dtype)throw new M(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${o.dtype}.`);if(s.axes){let a=o.shape;for(let u in s.axes){let l=Number(u),c=s.axes[u],p=l>=0?a[l]:a[a.length+l];if(c!=null&&[c,null].indexOf(p)===-1)throw new M(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${a}.`)}}if(s.shape!=null)for(let a=0;a<s.shape.length;++a){let u=s.shape[a],l=o.shape[a];if(u!=null&&l!=null&&u!==l)throw new M(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${o.shape}.`)}}}call(t,e){return t}invokeCallHook(t,e){this._callHook!=null&&this._callHook(t,e)}setCallHook(t){this._callHook=t}clearCallHook(){this._callHook=null}apply(t,e){e=e||{},this.assertNotDisposed();let n=xe(t),o=!0;for(let i of n)if(!(i instanceof Jr)){o=!1;break}let s=!0;for(let i of n)if(i instanceof Jr){s=!1;break}if(o===s)throw new M("Arguments to apply() must be all SymbolicTensors or all Tensors");return Hs(this.name,()=>{if(!this.built){this.assertInputCompatibility(t);let i=[];for(let a of xe(t))i.push(a.shape);this.build(Nr(i)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(t),s){let i=this.call(t,e),a=xe(i),u=[];for(let l of a)n.indexOf(l)!==-1&&(l=l.clone()),u.push(l);if(i=Nr(u),this.activityRegularizer!=null)throw new St("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}else{let i=M5(t),a=this.computeOutputShape(i),u,l=z5(t);if(this.warnOnIncompatibleInputShape(Array.isArray(t)?i[0]:i),a!=null&&a.length>0&&Array.isArray(a[0])?u=a.map((c,p)=>new Jr(l,c,this,xe(t),e,this.name,p)):u=new Jr(l,a,this,xe(t),e,this.name),this.addInboundNode(t,u,null,null,i,a,e),this._refCount++,this.activityRegularizer!=null)throw new St("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return u}})}warnOnIncompatibleInputShape(t){if(this.batchInputShape!=null)if(t.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(t)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let e=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&t[o]!=null&&t[o]!==n&&(e=!0)}),e&&console.warn(`The shape of the input tensor (${JSON.stringify(t)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new vn(`The layer ${this.name} has never been called and thus has no defined output shape.`);let t=[];for(let e of this.inboundNodes){let n=JSON.stringify(e.outputShapes);t.indexOf(n)===-1&&t.push(n)}if(t.length===1){let e=this.inboundNodes[0].outputShapes;return Array.isArray(e)&&Array.isArray(e[0])&&e.length===1?e[0]:e}else throw new vn(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Hr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Om(this.weights)}build(t){this.built=!0}getWeights(t=!1){return Ih(t?this.trainableWeights:this.weights)}setWeights(t){B(()=>{let e=this.weights;if(e.length!==t.length)throw new M(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${t.length}, but the layer was expecting ${e.length} weights. Provided weights: ${t}...`);if(e.length===0)return;let n=[],o=Ih(e);for(let s=0;s<o.length;++s){let i=o[s],a=e[s],u=t[s];if(!y.arraysEqual(i.shape,u.shape))throw new M(`Layer weight shape ${i.shape} not compatible with provided weight shape ${u.shape}`);n.push([a,u])}Pm(n)})}addWeight(t,e,n,o,s,i,a,u){if(this._addedWeightNames.indexOf(t)!==-1)throw new M(`Duplicate weight name ${t} for layer ${this.name}`);this._addedWeightNames.push(t),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(o=u!=null?u():de("zeros"));let l=o.apply(e,n),c=new Ch(l,n,t,i,a);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(c.read())),i==null&&(i=!0),i?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(t){this.fastWeightInitDuringBuild=t}addLoss(t){t==null||Array.isArray(t)&&t.length===0||(t=xe(t),this._losses!==void 0&&this._losses!==null&&this.losses.push(...t))}computeOutputShape(t){return t}computeMask(t,e){if(!this.supportsMasking){if(e!=null)if(Array.isArray(e))e.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return e}addInboundNode(t,e,n,o,s,i,a=null){let u=xe(t);e=xe(e),n=xe(n),o=xe(o),s=Fm(s),i=Fm(i);let l=[],c=[],p=[];for(let m of u)l.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new ol({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:p,inputTensors:u,outputTensors:e,inputMasks:n,outputMasks:o,inputShapes:s,outputShapes:i},a);for(let m=0;m<e.length;m++)e[m].sourceLayer=this,e[m].nodeIndex=this.inboundNodes.length-1,e[m].tensorIndex=m}getConfig(){let t={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(t.batchInputShape=this.batchInputShape),this.dtype!=null&&(t.dtype=this.dtype),t}disposeWeights(){return this.weights.forEach(t=>t.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let t=0;return--this._refCount===0&&(t=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:t}}};function M5(r){r=xe(r);let t=[];for(let e of r)t.push(e.shape);return Nr(t)}function z5(r){return"float32"}function k0(r,t,e){if((t==null||e!=null&&e>0)&&(t=r.sourceLayer,e=r.nodeIndex),t.inboundNodes.length===0)return[r];{let n=t.inboundNodes[e];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;s<n.inboundLayers.length;s++){let i=n.inputTensors[s],a=n.inboundLayers[s],u=n.nodeIndices[s],l=k0(i,a,u);for(let c of l)o.indexOf(c)===-1&&o.push(c)}return o}}}var Ks=class extends $t{constructor(t){if(super({dtype:t.dtype,name:t.name!=null?t.name:gu("input").toString()}),t.batchSize==null&&(t.batchSize=null),t.sparse==null&&(t.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=t.sparse,t.inputShape!=null&&t.batchInputShape!=null)throw new M("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let e=t.batchInputShape;if(e==null){if(t.inputShape==null)throw new M("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");e=[t.batchSize].concat(t.inputShape)}else if(t.batchSize!=null)throw new M("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=t.dtype||"float32";this.batchInputShape=e,this.dtype=n,this.inputSpec=[{shape:e}];let o=new Jr(this.dtype,this.batchInputShape,this,[],{},this.name);o.nodeIndex=0,o.tensorIndex=0,new ol({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[o],outputTensors:[o],inputMasks:[null],outputMasks:[null],inputShapes:[e],outputShapes:[e]})}apply(t,e){throw new M(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Ks.className="InputLayer";Q.registerClass(Ks);function Dy(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new M("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=r.batchShape;r.shape!=null&&t==null&&(t=[null].concat(r.shape));let e=r.dtype;return e==null&&(e="float32"),new Ks({batchInputShape:t,name:r.name,dtype:e,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}function B5(r,t){if(r.dtype==null||r.dtype===t.dtype)return t;try{return J(t,r.dtype)}catch(e){throw new M(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var ko=class{constructor(t){if(this.id2Value={},this.id2Mask={},this.name2Id={},t instanceof ko)for(let e in t.id2Value)this.id2Value[e]=t.id2Value[e],e in t.id2Mask&&(this.id2Mask[e]=t.id2Mask[e]);else{if(t==null)return;for(let e of t)this.add(e.key,e.value)}}add(t,e,n){if(this.id2Value[t.id]==null)this.id2Value[t.id]=B5(t,e),this.name2Id[t.name]=t.id,n!=null&&(this.id2Mask[t.id]=n);else throw new M(`Duplicate key: name=${t.name}, id=${t.id}`);return this}addFeed(t){this.add(t.key,t.value)}hasKey(t){return this.id2Value[t.id]!=null}names(){return Object.keys(this.name2Id)}getValue(t){if(t instanceof Jr){if(this.id2Value[t.id]==null)throw new M(`Nonexistent key: ${t.name}`);return this.id2Value[t.id]}else{let e=this.name2Id[t];if(e==null)throw new M(`Feed dict has no SymbolicTensor name: ${t}`);return this.id2Value[e]}}getMask(t){if(t instanceof Jr){if(this.id2Value[t.id]==null)throw new M(`Nonexistent key: ${t.name}`);return this.id2Mask[t.id]}else{let e=this.name2Id[t];if(e==null)throw new M(`Feed dict has no SymbolicTensor name: ${t}`);return this.id2Mask[e]}}disposeMasks(){this.id2Mask!=null&&vt(this.id2Mask)}},Ry=new xh,Fy=new xh;function U$(r){Ry!=null&&Ry.setMaxEntries(r),Fy!=null&&Fy.setMaxEntries(r)}function hc(r,t,e,n){let o=e==null?!1:e.training,s=Array.isArray(r),i=s?r:[r],a=i.map(d=>d.name),u=[],l=t.names();for(let d of a)l.indexOf(d)!==-1?u.push(t.getValue(d)):u.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let c=a.join(",")+"|"+t.names().sort().join(","),p=Ry.get(c),m;if(p==null){let d=V5(i,t);p=d.sorted,m=d.recipientCounts,Ry.put(c,p),Fy.put(c,m)}m={},o||Object.assign(m,Fy.get(c));let f=new ko(t);for(let d=0;d<p.length;++d){if(n!=null){let F=ah().numTensors;F>n.maxNumTensors&&(n.maxNumTensors=F),F<n.minNumTensors&&(n.minNumTensors=F)}let h=p[d],g=h.sourceLayer;if(g instanceof Ks)continue;let x=[],b=[],w=[],C=!1;for(let F of h.inputs){let P=f.getValue(F),V=f.getMask(F);x.push(P),b.push(V),V!=null&&(C=!0),o||(m[F.name]--,m[F.name]===0&&!t.hasKey(F)&&a.indexOf(F.name)===-1&&!P.isDisposed&&F.sourceLayer.stateful!==!0&&w.push(P))}C&&(e=e||{},e.mask=b[0]);let N=xe(g.apply(x,e)),_=null;g.supportsMasking&&(_=g.computeMask(x,b));let A=W5(h),$=Array.isArray(A)?A:[A];for(let F=0;F<$.length;++F){f.hasKey($[F])||f.add($[F],N[F],Array.isArray(_)?_[0]:_);let P=a.indexOf($[F].name);P!==-1&&(u[P]=N[F])}o||vt(w)}return f.disposeMasks(),s?u:u[0]}function V5(r,t){y.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let e=[],n={};if(r.length===1){let o=W$(r[0],t);e=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:i,recipientMap:a}=W$(s,t);for(let u of i)o.has(u.name)||(e.push(u),o.add(u.name));for(let u in a)n[u]==null&&(n[u]=new Set),a[u].forEach(l=>n[u].add(l))}}return{sorted:e,recipientCounts:G5(n)}}function G5(r){let t={};for(let e in r)t[e]=r[e].size;return t}function W$(r,t){let e=new Set,n=[],o={};for(let a of t.names())e.add(a);let s=[],i=[];for(s.push(r);s.length>0;){let a=s[s.length-1];if(e.has(a.name)){s.pop();continue}let u=i[i.length-1]===s.length-1;if(a.inputs.length===0||u)s.pop(),n.push(a),e.add(a.name),u&&i.pop();else{i.push(s.length-1);for(let l of a.inputs)o[l.name]==null&&(o[l.name]=new Set),o[l.name].add(a.name),!e.has(l.name)&&s.push(l)}}return{sorted:n,recipientMap:o}}function W5(r){let t;if(r.sourceLayer.inboundNodes.length===1)t=r.sourceLayer.output;else{let e=null;for(let n=0;n<r.sourceLayer.inboundNodes.length;++n)for(let o of r.sourceLayer.inboundNodes[n].outputTensors)if(o.id===r.id){e=n;break}t=r.sourceLayer.getOutputAt(e)}return t}var U5=z();U5.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,U$);var K$={};Wt(K$,{maxNorm:()=>H5,minMaxNorm:()=>j5,nonNeg:()=>K5,unitNorm:()=>q5});function E0(r,t){return B(()=>Se(ft(D(r,r),t,!0)))}var gc=class extends Q.Serializable{getConfig(){return{}}},Lm=class extends gc{constructor(t){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>{let e=E0(t,this.axis),n=Cr(e,0,this.maxValue);return D(t,pt(n,X(ir(),e)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Lm.className="MaxNorm";Q.registerClass(Lm);var Mm=class extends gc{constructor(t){super(),this.defaultAxis=0,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>pt(t,X(ir(),E0(t,this.axis))))}getConfig(){return{axis:this.axis}}};Mm.className="UnitNorm";Q.registerClass(Mm);var zm=class extends gc{apply(t){return Fr(t)}};zm.className="NonNeg";Q.registerClass(zm);var Bm=class extends gc{constructor(t){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=t.minValue!=null?t.minValue:this.defaultMinValue,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.rate=t.rate!=null?t.rate:this.defaultRate,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>{let e=E0(t,this.axis),n=X(D(this.rate,Cr(e,this.minValue,this.maxValue)),D(1-this.rate,e));return D(t,pt(n,X(ir(),e)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Bm.className="MinMaxNorm";Q.registerClass(Bm);var H$={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function ze(r){return Sm(r)}function q$(r,t={}){return Gi(r,Q.SerializationMap.getMap().classNameMap,t,"constraint")}function Be(r){if(r==null)return null;if(typeof r=="string"){let e={className:r in H$?H$[r]:r,config:{}};return q$(e)}else return r instanceof gc?r:q$(r)}function H5(r){return new Lm(r)}function q5(r){return new Mm(r)}function K5(){return new zm}function j5(r){return new Bm(r)}var j$={};Wt(j$,{constant:()=>Z5,glorotNormal:()=>o8,glorotUniform:()=>n8,heNormal:()=>s8,heUniform:()=>i8,identity:()=>e8,leCunNormal:()=>a8,leCunUniform:()=>l8,ones:()=>Y5,orthogonal:()=>u8,randomNormal:()=>Q5,randomUniform:()=>J5,truncatedNormal:()=>t8,varianceScaling:()=>r8,zeros:()=>X5});function X5(){return new km}function Y5(){return new yu}function Z5(r){return new Em(r)}function J5(r){return new _m(r)}function Q5(r){return new Am(r)}function t8(r){return new $m(r)}function e8(r){return new Dm(r)}function r8(r){return new qr(r)}function n8(r){return new uc(r)}function o8(r){return new cc(r)}function s8(r){return new pc(r)}function i8(r){return new mc(r)}function a8(r){return new fc(r)}function l8(r){return new dc(r)}function u8(r){return new Rm(r)}var ED={};Wt(ED,{Layer:()=>$t,RNN:()=>Tn,RNNCell:()=>ll,activation:()=>NY,add:()=>FY,alphaDropout:()=>xZ,average:()=>OY,averagePooling1d:()=>G0,averagePooling2d:()=>W0,averagePooling3d:()=>U0,avgPool1d:()=>UY,avgPool2d:()=>qY,avgPool3d:()=>jY,avgPooling1d:()=>HY,avgPooling2d:()=>KY,avgPooling3d:()=>XY,batchNormalization:()=>VY,bidirectional:()=>uZ,categoryEncoding:()=>CZ,concatenate:()=>PY,conv1d:()=>gY,conv2d:()=>xY,conv2dTranspose:()=>yY,conv3d:()=>bY,conv3dTranspose:()=>wY,convLstm2d:()=>sZ,convLstm2dCell:()=>iZ,cropping2D:()=>IY,dense:()=>TY,depthwiseConv2d:()=>vY,dot:()=>BY,dropout:()=>kY,elu:()=>cY,embedding:()=>RY,flatten:()=>_Y,gaussianDropout:()=>gZ,gaussianNoise:()=>hZ,globalAveragePooling1d:()=>YY,globalAveragePooling2d:()=>ZY,globalMaxPool1d:()=>pZ,globalMaxPool2d:()=>mZ,globalMaxPooling1d:()=>vD,globalMaxPooling2d:()=>ND,gru:()=>QY,gruCell:()=>tZ,input:()=>P0,inputLayer:()=>uY,layerNormalization:()=>GY,leakyReLU:()=>mY,lstm:()=>eZ,lstmCell:()=>rZ,masking:()=>yZ,maxPool1d:()=>fZ,maxPool2d:()=>dZ,maxPooling1d:()=>TD,maxPooling2d:()=>kD,maxPooling3d:()=>JY,maximum:()=>LY,minimum:()=>MY,multiply:()=>zY,permute:()=>DY,prelu:()=>fY,reLU:()=>pY,repeatVector:()=>AY,rescaling:()=>bZ,reshape:()=>$Y,resizing:()=>wZ,rnn:()=>aZ,separableConv2d:()=>CY,simpleRNN:()=>nZ,simpleRNNCell:()=>oZ,softmax:()=>dY,spatialDropout1d:()=>EY,stackedRNNCells:()=>lZ,thresholdedReLU:()=>hY,timeDistributed:()=>cZ,upSampling2d:()=>SY,zeroPadding2d:()=>WY});async function Ui(r){if(r==null)return;let t=[],e=[],n=[];for(let o in r){let s=r[o];if(typeof s!="number"){let i=s;t.push(i.data()),e.push(o),n.push(i)}}if(t.length>0){let o=await Promise.all(t);for(let s=0;s<o.length;++s)r[e[s]]=o[s][0];vt(n)}}function Oy(r){if(r!=null)for(let t in r){let e=r[t];typeof e!="number"&&e.dispose()}}var X$;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(X$||(X$={}));var c8=125,sl=class{constructor(){this.validationData=null}setParams(t){this.params=t}async onEpochBegin(t,e){}async onEpochEnd(t,e){}async onBatchBegin(t,e){}async onBatchEnd(t,e){}async onTrainBegin(t){}async onTrainEnd(t){}setModel(t){}},Py=class{constructor(t,e=10){t==null&&(t=[]),this.callbacks=t,this.queueLength=e}append(t){this.callbacks.push(t)}setParams(t){for(let e of this.callbacks)e.setParams(t)}setModel(t){for(let e of this.callbacks)e.setModel(t)}async onEpochBegin(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onEpochBegin(t,e)}async onEpochEnd(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onEpochEnd(t,e)}async onBatchBegin(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onBatchBegin(t,e)}async onBatchEnd(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onBatchEnd(t,e)}async onTrainBegin(t){t==null&&(t={});for(let e of this.callbacks)await e.onTrainBegin(t)}async onTrainEnd(t){t==null&&(t={});for(let e of this.callbacks)await e.onTrainEnd(t)}},_0=class extends sl{constructor(){super()}async onEpochBegin(t){this.seen=0,this.totals={}}async onBatchEnd(t,e){e==null&&(e={});let n=e.size==null?0:e.size;this.seen+=n;for(let o in e){let s=e[o];if(typeof s=="number")this.totals.hasOwnProperty(o)||(this.totals[o]=0),this.totals[o]=this.totals[o]+s*n;else{let i;o in this.totals?i=this.totals[o]:this.totals[o]=0;let a=B(()=>X(this.totals[o],D(s,n)));this.totals[o]=a,i!=null&&i.dispose()}}}async onEpochEnd(t,e){if(e!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?e[n]=this.totals[n]/this.seen:B(()=>{let o=D(pt(1,this.seen),this.totals[n]);e[n]=o,this.totals[n].dispose(),De(e[n])}))}},Ly=class extends sl{async onTrainBegin(t){this.epoch=[],this.history={}}async onEpochEnd(t,e){e==null&&(e={}),this.epoch.push(t);for(let n in e)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(e[n])}async syncData(){let t=[],e=[],n=[];for(let s in this.history){let i=this.history[s];for(let a=0;a<i.length;++a)if(typeof i[a]!="number"){let u=i[a];t.push(u.data()),e.push(s),n.push(a)}}let o=await Promise.all(t);for(let s=0;s<o.length;++s)this.history[e[s]][n[s]].dispose(),this.history[e[s]][n[s]]=o[s][0]}},My=class extends sl{constructor(t,e){if(super(),this.currentEpoch=0,this.nowFunc=t.nowFunc,this.nextFrameFunc=t.nextFrameFunc||gh,this.yieldEvery=e||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=c8),this.yieldEvery==="never"&&t.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");y.isNumber(this.yieldEvery)&&(this.maybeWait=C$(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=t.onTrainBegin,this.trainEnd=t.onTrainEnd,this.epochBegin=t.onEpochBegin,this.epochEnd=t.onEpochEnd,this.batchBegin=t.onBatchBegin,this.batchEnd=t.onBatchEnd,this.yield=t.onYield}async maybeWait(t,e,n){let o=[];this.yield!=null&&(await Ui(n),o.push(this.yield(t,e,n))),o.push(this.nextFrameFunc()),await Promise.all(o)}async onEpochBegin(t,e){this.currentEpoch=t,this.epochBegin!=null&&(await Ui(e),await this.epochBegin(t,e))}async onEpochEnd(t,e){let n=[];this.epochEnd!=null&&(await Ui(e),n.push(this.epochEnd(t,e))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(t,e){this.batchBegin!=null&&(await Ui(e),await this.batchBegin(t,e))}async onBatchEnd(t,e){let n=[];this.batchEnd!=null&&(await Ui(e),n.push(this.batchEnd(t,e))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):y.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,t,e)),await Promise.all(n)}async onTrainBegin(t){this.trainBegin!=null&&(await Ui(t),await this.trainBegin(t))}async onTrainEnd(t){this.trainEnd!=null&&(await Ui(t),await this.trainEnd(t))}};function zy(r,t){return r==null&&(r={}),r instanceof sl?[r]:Array.isArray(r)&&r[0]instanceof sl?r:xe(r).map(n=>new My(n,t))}var hn=class{constructor(){}static registerCallbackConstructor(t,e){y.assert(t>=0&&Number.isInteger(t),()=>`Verbosity level is expected to be an integer >= 0, but got ${t}`),hn.checkForDuplicate(e),hn.constructors[t]==null&&(hn.constructors[t]=[]),hn.constructors[t].push(e)}static checkForDuplicate(t){for(let e in hn.constructors)hn.constructors[+e].forEach(o=>{if(o===t)throw new M("Duplicate callback constructor.")})}static clear(){hn.constructors={}}static createCallbacks(t){let e=[];for(let n in hn.constructors){let o=+n;t>=o&&e.push(...hn.constructors[o])}return e.map(n=>new n)}};hn.constructors={};function By(r,t,e,n,o,s,i,a,u){let l=new Ly,c=[new _0,...hn.createCallbacks(t)];r!=null&&c.push(...r),c.push(l);let p=new Py(c);return p.setParams({epochs:e,initialEpoch:n,samples:o,steps:s,batchSize:i,verbose:t,doValidation:a,metrics:u}),{callbackList:p,history:l}}function gn(r,t={},e=!1){return Gi(r,Q.SerializationMap.getMap().classNameMap,t,"layer",e)}function Sh(r,t){return B(()=>{r.dtype!=="float32"&&(r=J(r,"float32"));let e=ft(lc(r),t,!0),n=xo(e.shape,ir()),o=Se(Sn(e,n));return pt(r,o)})}function Hi(r,t){return B(()=>ve(lc(ct(t,r)),-1))}function Vm(r,t){return B(()=>ve(Ee(ct(t,r)),-1))}function bu(r,t){return B(()=>{let e=ct(r,t),n=Cr(Ee(r),ir(),Number.MAX_VALUE),o=Ee(pt(e,n));return D(100,ve(o,-1))})}function p8(r,t){return B(()=>{let e=Cr(t,ir(),Number.MAX_VALUE),n=Sr(X(1,e)),o=Cr(r,ir(),Number.MAX_VALUE),s=Sr(X(1,o));return ve(lc(ct(n,s)),-1)})}function m8(r,t){return B(()=>{let e=Sn(0,ct(1,D(r,t)));return ve(lc(e),-1)})}function f8(r,t){return B(()=>{let e=Sn(0,ct(1,D(r,t)));return ve(e,-1)})}function d8(r,t){return B(()=>{let e=ft(D(r,t),-1),n=Ir(D(ct(1,r),t),-1);return Sn(0,X(1,ct(n,e)))})}function h8(r,t){return B(()=>{let e=Math.log(2),n=ct(t,r),o=ct(X(n,zs(D(-2,n))),e);return ve(o,-1)})}function xc(r,t,e=!1){return B(()=>{if(e)t=iu(t);else{let n=ft(t,t.shape.length-1,!0);t=pt(t,n)}return t=Cr(t,ir(),1-ir()),Ht(ft(D(J(r,"float32"),Sr(t)),t.shape.length-1))})}function Gm(r,t,e=!1){return B(()=>{let n=J(Pi(D$(r)),"int32");t=Cr(t,ir(),1-ir());let o=t.shape,s=R(Ei(n,o[o.length-1]),o);return xc(s,t,e)})}function g8(r,t){if(!y.arraysEqual(r.shape,t.shape))throw new M(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(t.shape)}`);return B(()=>{let e=Fr(t),n=Ht(Ee(t));return X(ct(e,D(t,r)),tu(er(n)))})}function Wm(r,t){return B(()=>{let e;return e=Cr(t,ir(),1-ir()),e=Sr(pt(e,ct(1,e))),ve(g8(r,e),-1)})}function x8(r,t){return B(()=>{let e=Cr(r,ir(),1),n=Cr(t,ir(),1);return ft(D(r,Sr(pt(e,n))),-1)})}function y8(r,t){return B(()=>{let e=Sr(X(ir(),t));return ve(ct(t,D(r,e)),-1)})}function Nh(r,t){return B(()=>{let e=Sh(r,-1),n=Sh(t,-1),o=D(e,n);return Ht(ft(o,-1))})}var vh={meanSquaredError:Hi,meanAbsoluteError:Vm,meanAbsolutePercentageError:bu,meanSquaredLogarithmicError:p8,squaredHinge:m8,hinge:f8,categoricalHinge:d8,logcosh:h8,categoricalCrossentropy:xc,sparseCategoricalCrossentropy:Gm,binaryCrossentropy:Wm,kullbackLeiblerDivergence:x8,poisson:y8,cosineProximity:Nh};function Vy(r){if(typeof r=="string"){if(r in vh)return vh[r];let t=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new M(t)}else return r}function Th(r,t){return B(()=>{let e=D(.5,yr(t)),n=no(Re(t,e),r.dtype);return ve($r(r,n),-1)})}function kh(r,t){return B(()=>no($r(Ai(r,-1),Ai(t,-1)),"float32"))}function Z$(r,t){return B(()=>J(ft(Rr($r(r,1),$r(t,1))),"float32"))}function b8(r,t){return B(()=>J(ft(Rr($r(r,1),$r(t,0))),"float32"))}function w8(r,t){return B(()=>J(ft(Rr($r(r,0),$r(t,1))),"float32"))}function A0(r,t){return B(()=>{let e=Z$(r,t),n=w8(r,t),o=X(e,n);return J(_e(Re(o,0),pt(e,o),0),"float32")})}function J$(r,t){return B(()=>{let e=Z$(r,t),n=b8(r,t),o=X(e,n);return J(_e(Re(o,0),pt(e,o),0),"float32")})}function Wy(r,t){return Wm(r,t)}function Uy(r,t){return r.rank===t.rank&&(r=Mn(r,[r.rank-1])),t=Ai(t,-1),t.dtype!==r.dtype&&(t=J(t,r.dtype)),J($r(r,t),"float32")}var C8=Hi,I8=Hi,S8=Vm,v8=Vm,N8=bu,T8=bu,Eh=xc,k8=Nh,$0=Gm,Gy={binaryAccuracy:Th,categoricalAccuracy:kh,precision:A0,categoricalCrossentropy:Eh,sparseCategoricalCrossentropy:$0,mse:C8,MSE:I8,mae:S8,MAE:v8,mape:N8,MAPE:T8,cosine:k8};function Q$(r){if(typeof r=="string"&&r in Gy)return Gy[r];if(typeof r!="string"&&r!=null)return r;throw new M(`Unknown metric ${r}`)}function _h(r){if(ro(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let t;for(let e of Object.keys(vh))if(vh[e]===r){t=e;break}if(t!==void 0)return t;for(let e of Object.keys(Gy))if(Gy[e]===r){t=e;break}return t!==void 0?t:r.name}}function eD(r){let t={Adagrad:()=>ic.adagrad(.01),Adadelta:()=>ic.adadelta(1,.95,ir()),Adam:()=>ic.adam(.001,.9,.999,ir()),Adamax:()=>ic.adamax(.002,.9,.999,ir(),0),RMSProp:()=>ic.rmsprop(.001,.9,0,ir()),SGD:()=>ic.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,r in t)return t[r]();throw new M(`Unknown Optimizer ${r}`)}function R0(r,t,e=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!D0(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(e){let n=JSON.stringify(r);n.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function D0(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let t=Object.keys(r);for(let e of t)if(typeof e!="string"||!D0(r[e]))return!1;return!0}else if(Array.isArray(r)){for(let t of r)if(!D0(t))return!1;return!0}else return!1;else{let t=typeof r;return t==="string"||t==="number"||t==="boolean"}}function rD(r,t,e,n=console.log){let o=A8(r),s=["Layer (type)","Input Shape","Output shape","Param #"];o?(t=t||90,e=e||[.32,.61,.89,1]):(t=t||115,e=e||[.24,.48,.7,.8,1]),e[e.length-1]<=1&&(e=e.map(c=>Math.floor(t*c)));let i;if(!o){s.push("Receives inputs"),i=[];for(let c in r.nodesByDepth)i.push(...r.nodesByDepth[c])}n("_".repeat(t)),Hy(s,e,n),n("=".repeat(t));let a=r.layers;for(let c=0;c<a.length;++c)o?$8(a[c],e,n):D8(a[c],e,i,n),n((c===a.length-1?"=":"_").repeat(t));r.checkTrainableWeightsConsistency();let u=_8(r),l=Om(r.nonTrainableWeights);n(`Total params: ${u+l}`),n(`Trainable params: ${u}`),n(`Non-trainable params: ${l}`),n("_".repeat(t))}function _8(r){let t;return r.collectedTrainableWeights!=null?t=Om(r.collectedTrainableWeights):t=Om(r.trainableWeights),t}function A8(r){let t=!0,e=[],n=[];for(let o in r.nodesByDepth)e.push(r.nodesByDepth[o]);for(let o of e){if(o.length>1||o.length===1&&o[0].inboundLayers.length>1){t=!1;break}n.push(...o)}if(t)for(let o of r.layers){let s=!1;for(let i of o.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Hy(r,t,e=console.log){let n="";for(let o=0;o<r.length;++o)o>0&&(n=n.slice(0,n.length-1)+" "),n+=r[o],n=n.slice(0,t[o]),n+=" ".repeat(t[o]-n.length);e(n)}function $8(r,t,e){let n,o;try{o=r.inboundNodes.map(u=>JSON.stringify(u.inputShapes)).join(",")}catch(u){o="multiple"}try{n=JSON.stringify(r.outputShape)}catch(u){n="multiple"}let s=r.name,i=r.getClassName(),a=[`${s} (${i})`,o,n,r.countParams().toString()];Hy(a,t,e)}function D8(r,t,e,n){let o,s;try{s=r.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){s="multiple"}try{o=JSON.stringify(r.outputShape)}catch(p){o="multiple"}let i=[];for(let p of r.inboundNodes)if(!(e!=null&&e.length>0&&e.indexOf(p)===-1))for(let m=0;m<p.inboundLayers.length;++m){let f=p.inboundLayers[m].name,d=p.nodeIndices[m],h=p.tensorIndices[m];i.push(`${f}[${d}][${h}]`)}let a=r.name,u=r.getClassName(),l=i.length===0?"":i[0],c=[`${a} (${u})`,s,o,r.countParams().toString(),l];Hy(c,t,n);for(let p=1;p<i.length;++p)Hy(["","","","",i[p]],t,n)}function nD(r,t,e){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&t===0&&typeof e=="string"}function yc(r,t){if(r===null)return null;if(typeof r=="string")return el(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let e=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];nD(t,o,s)?e.push(s):e.push(yc(s,t))}return e}else{let e={};for(let n of Object.keys(r)){let o=r[n];if(n==="name"&&typeof o=="string")e[n]=o;else{let s=el(n);e[s]=yc(o,s)}}return e}}function qy(r,t){if(r==null)return null;if(typeof r=="string")return So(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let e=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];nD(t,o,s)?e.push(s):e.push(qy(s,t))}return e}else{let e={};for(let n of Object.keys(r)){let o=r[n],s=So(n);(n==="name"||n==="className")&&typeof o=="string"?e[s]=o:e[s]=qy(o,n)}return e}}var Um="4.0.0";var zn=class extends $t{constructor(t){if(super({}),this.containerNodes=new Set,this.name=t.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=gu(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(t.inputs)?this.inputs=t.inputs.slice():this.inputs=[t.inputs],Array.isArray(t.outputs)?this.outputs=t.outputs.slice():this.outputs=[t.outputs],vo(this.inputs).length!==this.inputs.length)throw new M(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);vo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,C=b.nodeIndex,N=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(C),this.outputLayersTensorIndices.push(N)}for(let b of this.inputs){let w=b.sourceLayer,C=b.nodeIndex,N=b.tensorIndex;ro(C===0,"input layer has >1 nodes"),ro(N===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(C),this.inputLayersTensorIndices.push(N)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof Ks))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${t.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let e={},n={},o={},s={},i={},a=[],u=(b,w,C,N,_,A)=>{(N==null||_==null||A==null)&&(N=b.sourceLayer,_=b.nodeIndex,A=b.tensorIndex);let $=N.inboundNodes[_];if(C.indexOf($)!==-1)throw new Hr(`The tensor ${b.name} at layer "${N.name}" is part of a cycle.`);if(w.indexOf($)!==-1)return;this.containerNodes.add(zn.nodeKey(N,_)),N.id in i||(i[N.id]=Object.keys(i).length),C.indexOf($)===-1&&C.push($);let F=$.inboundLayers.length;for(let P=0;P<F;P++){let V=$.inputTensors[P],G=$.inboundLayers[P],W=$.nodeIndices[P],q=$.tensorIndices[P];u(V,w,C,G,W,q)}for(w.push($);C.indexOf($)>=0;)C.splice(C.indexOf($),1);a.push($)},l=[],c=[];for(let b of this.outputs)u(b,l,c);let p=a.slice().reverse();for(let b of p){n[b.id]=b,b.id in e||(e[b.id]=0);let w=e[b.id],C=o[b.outboundLayer.id]==null?0:o[b.outboundLayer.id];w=Math.max(w,C),o[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,e[b.id]=w;for(let N=0;N<b.inboundLayers.length;N++){let _=b.inboundLayers[N],A=b.nodeIndices[N],$=_.inboundNodes[A],F=e[$.id]==null?0:e[$.id];e[$.id]=Math.max(w+1,F),n[$.id]=$}}let m={};for(let b in e){let w=e[b];w in m||(m[w]=[]),m[w].push(n[b])}let f={};for(let b in o){let w=o[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(yh);this.layers=[];for(let b of d){let w=f[b];w.sort((C,N)=>{let _=i[C.id],A=i[N.id];return _<A?-1:_>A?1:0});for(let C of w)C instanceof zn&&this.internalContainerRefs.push(C),this.layers.push(C)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(yh);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let C=w.outboundLayer;if(C!=null){for(let N of w.inputTensors)if(h.indexOf(N)===-1)throw new Hr(`Graph disconnected: cannot obtain value for tensor ${N} at layer "${C.name}". The following previous layers were accessed without issue: ${g}`);for(let N of w.outputTensors)h.push(N);g.push(C.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let w=x.filter(C=>C===b).length;if(w!==1)throw new Hr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new ol({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let t={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let e of this.layers)t.numDisposedVariables+=e.dispose().numDisposedVariables;for(let e of this.internalContainerRefs)t.numDisposedVariables+=e.dispose().numDisposedVariables}return t.refCountAfterDispose=this._refCount,t}get trainable(){return this.trainable_}set trainable(t){this.layers.forEach(e=>{e._trainableWeights.forEach(n=>n.trainable=t)}),this.trainable_=t}get trainableWeights(){if(this._trainableWeights.length>0)throw new M("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let t=[];for(let e of this.layers)t=t.concat(e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.layers)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.layers)e.push(...n.trainableWeights);return e.concat(t)}return t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(t,e=!0){let n={},o=0;for(let i of this.layers)for(let a of i.weights){if(n[a.originalName]!=null)throw new M(`Duplicate weight name: ${a.originalName}`);n[a.originalName]=a,o++}let s=[];for(let i in t){let a=i;if(n[i]==null){let u=i.split("/");a=u.slice(0,-2).concat([u[u.length-1]]).join("/")}if(n[a]!=null)s.push([n[a],t[i]]);else if(e)throw new M(`Provided weight data has no target variable: ${i}`);delete n[a]}if(e){let i=[];for(let a in n)i.push(a);if(i.length>0)throw new M(`${i.length} of ${o} weights are not set: ${i}`)}Pm(s)}updatedConfig(){let t=this.getConfig(),e={};return e.className=this.getClassName(),e.config=t,e.kerasVersion=`tfjs-layers ${Um}`,e.backend="TensorFlow.js",e}toJSON(t,e=!0){let n=qy(this.updatedConfig());return e?JSON.stringify(n):n}call(t,e){return B(()=>{t=xe(t);let n=new ko;for(let o=0;o<this.inputs.length;++o)n.add(this.inputs[o],t[o]);return hc(this.outputs,n,e)})}computeMask(t,e){return B(()=>{t=xe(t);let n;return e==null?n=Io(null,t.length):n=xe(e),this.runInternalGraph(t,n)[1]})}computeOutputShape(t){let e=Fm(t);if(e.length!==this.inputLayers.length)throw new M(`Invalid inputShape argument ${t}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let a=0;a<e.length;a++){let u=this.inputLayers[a],l=e[a],c=u.name+"_0_0";n[c]=l}let o=Object.keys(this.nodesByDepth).map(a=>parseInt(a,10)).sort(yh);if(o.length>1)for(let a of o){let u=this.nodesByDepth[a];for(let l of u){let c=l.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<l.inboundLayers.length;h++){let g=l.inboundLayers[h],x=l.nodeIndices[h],b=l.tensorIndices[h],w=`${g.name}_${x}_${b}`,C=n[w];p.push(C)}let m=c.computeOutputShape(Nr(p)),f=Fm(m),d=c.inboundNodes.indexOf(l);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;n[g]=f[h]}}}let s=[],i=[];for(let a=0;a<this.outputLayers.length;a++){let u=this.outputLayers[a],l=this.outputLayersNodeIndices[a],c=this.outputLayersTensorIndices[a],p=`${u.name}_${l}_${c}`;i.push(p)}for(let a=0;a<i.length;a++){let u=i[a];ro(u in n),s.push(n[u])}return Nr(s)}runInternalGraph(t,e){e==null&&(e=Io(null,t.length));let n={};for(let u=0;u<this.inputs.length;++u){let l=this.inputs[u],c=t[u],p=e[u];n[l.id]=[c,p]}let o=Object.keys(this.nodesByDepth).map(u=>parseInt(u,10)).sort(yh);for(let u of o){let l=this.nodesByDepth[u];for(let c of l){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,x,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[C,N]=d[0];h.mask==null&&(h.mask=N),b=xe(p.call(C,h)),w=xe(p.computeMask(C,N)),g=[C],x=[N]}else g=d.map(C=>C[0]),x=d.map(C=>C[1]),h.mask==null&&(h.mask=x),b=xe(p.call(g,h)),w=xe(p.computeMask(g,x));if(p.activityRegularizer)throw new St("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let C=0;C<f.length;++C){let N=f[C],_=b[C],A=w[C];n[N.id]=[_,A]}}}}let s=[],i=[],a=[];for(let u of this.outputs){ro(u.id in n,`Could not compute output ${u.name} : ${u.id}`);let[l,c]=n[u.id];a.push(l.shape),s.push(l),i.push(c)}return[s,i,a]}buildNodeConversionMap(t){let e={},n;for(let o of this.layers){n=o instanceof zn?1:0;for(let s=0;s<o.inboundNodes.length;s++){let i=zn.nodeKey(o,s);this.containerNodes.has(i)&&(e[i]=n,n+=1)}}return e}getLayer(t,e){if(e!=null){if(this.layers.length<=e)throw new M(`Was asked to retrieve layer at index ${e}, but model only has ${this.layers.length} layer(s).`);return this.layers[e]}else if(t==null)throw new M("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===t)return n;throw new M(`No such layer: ${t}`)}calculateLosses(){return B(()=>{let t=[];for(let e of this.layers)for(let n=0;n<e.inboundNodes.length;++n){let o=zn.nodeKey(e,n);this.containerNodes.has(o)&&t.push(...e.calculateLosses())}return t})}getConfig(){let t={name:this.name},e=this.buildNodeConversionMap(this.layers),n=[];for(let i of this.layers){let a=i.getClassName(),u=i.getConfig(),l=[];for(let p=0;p<i.inboundNodes.length;p++){let m=i.inboundNodes[p],f=zn.nodeKey(i,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${i.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let x=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],C=zn.nodeKey(x,b),N=e[C];N==null&&(N=0),h.push([x.name,N,w,d])}l.push(h)}}}let c={};c.name=i.name,c.className=a,c.config=u,c.inboundNodes=l,n.push(c)}t.layers=n;let o=[];for(let i=0;i<this.inputLayers.length;i++){let a=this.inputLayers[i],u=this.inputLayersNodeIndices[i],l=zn.nodeKey(a,u);if(!this.containerNodes.has(l))continue;let c=e[l];c==null&&(c=0);let p=this.inputLayersTensorIndices[i];o.push([a.name,c,p])}t.inputLayers=o;let s=[];for(let i=0;i<this.outputLayers.length;i++){let a=this.outputLayers[i],u=this.outputLayersNodeIndices[i],l=zn.nodeKey(a,u);if(!this.containerNodes.has(l))continue;let c=e[l];c==null&&(c=0);let p=this.outputLayersTensorIndices[i];s.push([a.name,c,p])}return t.outputLayers=s,t}static fromConfig(t,e,n={},o=!1){let s={},i={};function a(g,x){g.name in i?i[g.name].push(x):i[g.name]=[x]}function u(g,x){let b=[],w;for(let C of x){let N=C[0],_=C[1],A=C[2];if(w=C[3]==null?{}:C[3],!(N in s)){a(g,x);return}let $=s[N];if($.inboundNodes.length<=_){a(g,x);return}let F=$.inboundNodes[_];b.push(F.outputTensors[A])}b.length>0&&g.apply(Nr(b),w)}function l(g){let x=g.name,b=gn(g,e.customObjects!=null?e.customObjects:{});b.setFastWeightInitDuringBuild(o),s[x]=b,g.inboundNodes.forEach(C=>{if(!(C instanceof Array))throw new M(`Corrupted configuration, expected array for nodeData: ${C}`);a(b,C)})}let c=e.name,p=e.layers;for(let g of p)l(g);for(;!b$(i);)for(let g of p){let x=s[g.name];if(x.name in i){let b=i[x.name];delete i[x.name];for(let w of b)u(x,w)}}let m=[],f=[],d=e.inputLayers;for(let g of d){let x=g[0],b=g[1],w=g[2];ro(x in s);let N=s[x].inboundNodes[b].outputTensors;m.push(N[w])}let h=e.outputLayers;for(let g of h){let x=g[0],b=g[1],w=g[2];ro(x in s);let N=s[x].inboundNodes[b].outputTensors;f.push(N[w])}return new t({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new M("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let t of this.layers)if(t.stateful)return!0;return!1}resetStates(){B(()=>{this.layers.forEach(t=>{t.stateful&&t.resetStates()})})}};function R8(r,t,e){let n=t.length;if(r==null||Array.isArray(r)&&r.length===0)return t.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&t[0]in r?[r[t[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${e} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let o=[];return t.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${e} must be either an array with ${n} elements or an object with ${t} keys. Provided ${e} not understood: ${JSON.stringify(r)}`)}function Ky(r,t){return R8(r,t,"classWeight")}async function jy(r,t,e,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(e!=null){let o=B(()=>{if(r.shape.length===1)return sn(r);if(r.shape.length===2){if(r.shape[1]>1)return Ai(r,1);if(r.shape[1]===1)return R(r,[r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());vt(o);let i=[];return s.forEach(a=>{if(e[a]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${a} exists in the data but not in classWeight`);i.push(e[a])}),Me(i,"float32")}else return null}function oD(r,t){return D(r,t)}var F8=32;function aD(r,t){let e,n,o=t;e=o.xs,n=o.ys,y.assert(e!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=sD("input",r.inputNames,e),i=sD("output",r.outputNames,n),a=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(i.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let u=0;u<s.length;u++)y.assert(s[u].shape[0]===a,()=>`Batch size mismatch: input ${r.inputNames[u]} has ${s[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);for(let u=0;u<i.length;u++)y.assert(i[u].shape[0]===a,()=>`Batch size mismatch: output ${r.outputNames[u]} has ${i[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);return{xs:s,ys:i}}function sD(r,t,e){if(e instanceof Ft)return[e];if(Array.isArray(e))return y.assert(e.length===t.length,()=>`Received an array of ${e.length} Tensors, but expected ${t.length} to match the ${r} keys ${t}.`),e;{let n=[];for(let o of t){if(e[o]==null)throw new M(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(e[o])}return n}}function O8(r){if(r.length===3)throw new St("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function lD(r,t,e){let n=e.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(e!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(e.epochs!=null&&e.epochs>0&&Number.isInteger(e.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${e.epochs}`),y.assert(!n||e.batchesPerEpoch>0&&Number.isInteger(e.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${e.batchesPerEpoch}`),y.assert(e.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let o=e.validationData!=null,s,i;if(o)if(iD(e.validationData))y.assert(e.validationBatches==null||e.validationBatches>0&&Number.isInteger(e.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${e.validationBatches}`);else{let g=O8(e.validationData);s=g.xs,i=g.ys}let a=r.makeTrainFunction(),u=r.getDedupedMetricsNames(),l;o?l=u.slice().concat(u.map(g=>"val_"+g)):l=u.slice();let c=zy(e.callbacks,e.yieldEvery),p=e.verbose==null?1:e.verbose,{callbackList:m,history:f}=By(c,p,e.epochs,null,null,P8(t,e),null,o,l);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=e.initialEpoch==null?0:e.initialEpoch,h=await t.iterator();for(;d<e.epochs;){let g={};await m.onEpochBegin(d);let x=0,b=0;for(n||(h=await t.iterator());!n||x<e.batchesPerEpoch;){let w=await h.next();if(n&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${e.batchesPerEpoch}, but your dataset iterator ran out of data after ${x} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${e.batchesPerEpoch*e.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:C,ys:N}=aD(r,w.value),_={};_.batch=b,_.size=C[0].shape[0],await m.onBatchBegin(b,_);let A=[];if(e.classWeight!=null){let P=Ky(e.classWeight,r.outputNames);for(let V=0;V<P.length;++V)A.push(await jy(N[V],null,P[V]))}let $=C.concat(N).concat(A),F=a($);vt($);for(let P=0;P<u.length;++P){let V=u[P],G=F[P];_[V]=G,De(G)}await m.onBatchEnd(b,_),Oy(_),b++,x++}if(n?x>=e.batchesPerEpoch:w.done){if(o){let C;iD(e.validationData)?C=xe(await r.evaluateDataset(e.validationData,{batches:e.validationBatches})):C=xe(r.evaluate(s,i,{batchSize:e.validationBatchSize==null?F8:e.validationBatchSize,verbose:0}));for(let N=0;N<r.metricsNames.length;++N)g[`val_${r.metricsNames[N]}`]=C[N]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function P8(r,t){let e=null;return t.batchesPerEpoch!=null?e=t.batchesPerEpoch:Number.isFinite(r.size)&&(e=r.size),e}function iD(r){return typeof r.iterator=="function"}function L8(r){return typeof r.next=="function"}async function uD(r,t,e){e=e||{};let n=e.batches!=null,o=r.testFunction,s=[];if(e.verbose>0)throw new St("Verbose mode is not implemented yet.");y.assert(!n||e.batches>0&&Number.isInteger(e.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(e.batches)}`);let i=L8(t)?t:await t.iterator(),a=0,u=0;for(;!n||u<e.batches;){let l=await i.next();if(s=B(()=>{if(l.value){let{xs:c,ys:p}=aD(r,l.value),m=c.concat(p),f=B(()=>o(m));if(vt(m),u===0)for(let h=0;h<f.length;++h)s.push(mt(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],x=s[h];s[h]=B(()=>X(s[h],D(d,g))),u>0&&vt(x)}vt(f),a+=d,++u}return s}),l.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${e.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<s.length;++l){let c=s[l];s[l]=pt(s[l],a),vt(c)}return Nr(s)}function Xy(r){y.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function Hm(r,t,e){return r==null?[null]:Array.isArray(r)?r.map(n=>rl(n,t,e-t)):rl(r,t,e-t)}function Yy(r,t){return B(()=>r==null?null:Array.isArray(r)?r.map(e=>Yy(e,t)):_y(r,t.dtype==="int32"?t:J(t,"int32")))}function Zy(r,t){let e=[],n=0,o=null;for(;n<r;)o=n+t,o>=r&&(o=r),e.push([n,o]),n=o;return e}async function M8(r,t,e,n,o,s,i,a,u,l,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(u!=null&&l!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new M("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(e,o,f,"steps_per_epoch"),x;g!=null&&(x=Zr(0,g)),i==null&&(i=1);let{callbackList:b,history:w}=By(a,i,s,m,g,f,o,h,p);b.setModel(r),r.history=w,await b.onTrainBegin(),r.stopTraining_=!1;for(let C=m;C<s;++C){await b.onEpochBegin(C);let N={};if(f!=null)throw new St("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new St("batch shuffling is not implemneted yet");c&&y.shuffle(x);let _=Me(x),A=Zy(g,o);for(let $=0;$<A.length;++$){let F={};if(await b.onBatchBegin($,F),B(()=>{let P=A[$][0],V=A[$][1],G=rl(_,P,V-P);F.batch=$,F.size=V-P;let W=Yy(e,G),q=t(W);for(let H=0;H<n.length;++H){let j=n[H],Y=q[H];F[j]=Y,De(Y)}if($===A.length-1&&h){let H=r.testLoop(u,l,o);for(let j=0;j<n.length;++j){let Y=n[j],Z=H[j];De(Z),N["val_"+Y]=Z}}}),await b.onBatchEnd($,F),Oy(F),r.stopTraining_)break}_.dispose()}if(await b.onEpochEnd(C,N),r.stopTraining_)break}return await b.onTrainEnd(),await r.history.syncData(),r.history}async function cD(r,t,e,n={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let o,s,i,a,u,l,c,p,m;try{let f=n.batchSize==null?32:n.batchSize;Xy(f);let d=!1,h=await r.standardizeUserData(t,e,n.sampleWeight,n.classWeight,d,f);o=h[0],s=h[1],m=h[2];let g=!1,x;if(n.validationData!=null&&n.validationData.length>0){if(g=!0,n.validationData.length===2)u=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new St("validationData including sample weights is not supported yet."):new M(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let F=!0,P=await r.standardizeUserData(u,l,null,null,F,f);c=P[0],p=P[1],x=c.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let F=Math.floor(o[0].shape[0]*(1-n.validationSplit)),P=o[0].shape[0];c=Hm(o,F,P),i=o,o=Hm(o,0,F),p=Hm(s,F,P),a=s,s=Hm(s,0,F),x=c.concat(p)}else n.validationSteps!=null&&(g=!0);let b=o.concat(s).concat(m);r.checkTrainableWeightsConsistency();let w=r.makeTrainFunction(),C=r.getDedupedMetricsNames(),N,_;g?(r.makeTestFunction(),N=r.testFunction,_=C.slice().concat(C.map(F=>"val_"+F))):(N=null,x=[],_=C.slice());let A=zy(n.callbacks,n.yieldEvery);return await M8(r,w,b,C,f,n.epochs,n.verbose,A,N,x,n.shuffle,_,n.initialEpoch,null,null)}finally{r.isTraining=!1,Eo(o,t),Eo(s,e),Eo(i,t),Eo(a,e),Eo(c,u),Eo(p,l),m!=null&&vt(m)}}function F0(r){let t=[];r instanceof Ft&&(r=[r]);for(let e=0;e<r.length;++e){let n=r[e];if(n.rank===1)t.push(nl(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function Eo(r,t){if(r==null)return;let e=[];if(t instanceof Ft)e.push(t.id);else if(Array.isArray(t))t.forEach(o=>e.push(o.id));else if(t!=null)for(let o in t){let s=t[o];e.push(s.id)}let n=[];if(r instanceof Ft)e.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{e.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];e.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function z8(r){return r instanceof Ft}function O0(r){return Array.isArray(r)}function pD(r){return!z8(r)&&!O0(r)}function mD(r,t,e,n=!0,o=""){if(t==null||t.length===0){if(r!=null){let i=!1;if(O0(r)&&r.length>0)i=!0;else if(pD(r)){for(let a in r)if(r.hasOwnProperty(a)){i=!0;break}}else i=!0;if(i)throw new M(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return t.map(i=>null);let s;if(pD(r)){r=r,s=[];for(let i of t){if(r[i]==null)throw new M(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(r[i])}}else if(O0(r)){if(r=r,r.length!==t.length)throw new M(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,t.length>1)throw new M(`The model ${o} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=F0(s),e!=null)for(let i=0;i<t.length;++i){if(e[i]==null)continue;let a=s[i];if(a.shape.length!==e[i].length)throw new M(`Error when checking ${o}: expected ${t[i]} to have ${e[i].length} dimension(s). but got array with shape ${a.shape}`);for(let u=0;u<e[i].length;++u){if(u===0&&!n)continue;let l=a.shape[u],c=e[i][u];if(c!=null&&c>=0&&l!==c)throw new M(`${o} expected a batch of elements where each example has shape [${e[i].slice(1,e[i].length)}] (i.e.,tensor shape [*,${e[i].slice(1,e[i].length)}]) but the ${o} received an input with ${a.shape[0]} examples, each with shape [${a.shape.slice(1,a.shape.length)}] (tensor shape [${a.shape}])`)}}return s}function B8(r,t,e){let n=vo(r.map(s=>s.shape[0]));n.sort();let o=vo(t.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new M(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new M(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!y.arraysEqual(n,o))throw new M(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function V8(r,t,e){let n=[Hi,Wm,xc];for(let o=0;o<r.length;++o){let s=r[o],i=t[o],a=e[o];if(i!=null){if(i===xc&&s.shape[s.shape.length-1]===1)throw new M(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(i)!==-1){let u=s.shape.slice(1),l=a.slice(1);for(let c=0;c<u.length;++c){let p=u[c],m=l[c];if(m!=null&&p!==m)throw new M(`A target Tensor with shape ${s.shape} was passed for an output of shape ${a}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function fD(r,t,e,n=!0,o=""){let s;if(Array.isArray(r)){if(r.length!==t.length)throw new M(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(t.length>1)throw new M(`The model expects ${t.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(e!=null)for(let i=0;i<t.length;++i){if(e[i]==null)continue;let a=s[i];if(a.shape.length!==e[i].length)throw new M(`Error when checking ${o}: expected ${t[i]} to have ${e[i].length} dimension(s), but got array with shape ${JSON.stringify(a.shape)}`);for(let u=0;u<e[i].length;++u){if(u===0&&!n)continue;let l=a.shape[u],c=e[i][u];if(c!=null&&c!==l)throw new M(`Error when checking ${o}: expected ${t[i]} to have shape ${JSON.stringify(e[i])} but got array with shape ${JSON.stringify(a.shape)}.`)}}}function G8(r,t){if(r==null||Array.isArray(r)&&r.length===0)return t.map(n=>[]);let e;if(typeof r=="string"||typeof r=="function")e=[r];else if(Array.isArray(r)||typeof r=="object")e=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(e))return t.map(n=>e);{let n=[];for(let o of t){let s=e.hasOwnProperty(o)?e[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var W8="layers-model",Bn=class extends zn{constructor(t){super(t),this.isTraining=!1}summary(t,e,n=console.log){if(!this.built)throw new M("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");rD(this,t,e,n)}compile(t){if(t.loss==null&&(t.loss=[]),this.loss=t.loss,typeof t.optimizer=="string")this.optimizer_=eD(t.optimizer),this.isOptimizerOwned=!0;else{if(!(t.optimizer instanceof Wr))throw new M("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=t.optimizer,this.isOptimizerOwned=!1}let e=[];if(!Array.isArray(t.loss)&&typeof t.loss!="string"&&typeof t.loss!="function"){t.loss=t.loss;for(let i in t.loss)if(this.outputNames.indexOf(i)===-1)throw new M(`Unknown entry in loss dictionary: "${i}". Only expected the following keys: ${this.outputNames}`);for(let i of this.outputNames)t.loss[i]==null&&console.warn(`Output "${i}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${i} during training`),e.push(Vy(t.loss[i]))}else if(Array.isArray(t.loss)){if(t.loss.length!==this.outputs.length)throw new M(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${t.loss}.`);e=t.loss.map(a=>Vy(a))}else{let i=Vy(t.loss);this.outputs.forEach(a=>{e.push(i)})}this.lossFunctions=e,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let i=0;i<this.outputs.length;++i){let a=this.internalOutputShapes[i],u=this.outputNames[i];this.feedOutputNames.push(u),this.feedOutputShapes.push(a),this.feedLossFns.push(this.lossFunctions[i])}let n=[];this.metrics=t.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Hs("loss",()=>{for(let i=0;i<this.outputs.length;++i){if(n.indexOf(i)!==-1)continue;let a=this.lossFunctions[i];this.outputs.length>1&&(this.metricsTensors.push([a,i]),this.metricsNames.push(this.outputNames[i]+"_loss"))}});let o=G8(t.metrics,this.outputNames),s=(i,a,u)=>{this.outputNames.length>1&&(a=this.outputNames[i]+"_"+a),this.metricsNames.push(a),this.metricsTensors.push([u,i])};Hs("metric",()=>{for(let i=0;i<this.outputs.length;++i){if(n.indexOf(i)!==-1)continue;let a=o[i];(l=>{let c="",p,m,f;for(let d of l){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[i];g[g.length-1]===1||this.lossFunctions[i]===Wm?["accuracy","acc"].indexOf(d)!==-1?m=Th:["crossentropy","ce"].indexOf(d)!==-1&&(m=Wy):this.lossFunctions[i]===Gm?["accuracy","acc"].indexOf(d)!==-1?m=Uy:["crossentropy","ce"].indexOf(d)!==-1&&(m=$0):["accuracy","acc"].indexOf(d)!==-1?m=kh:["crossentropy","ce"].indexOf(d)!==-1&&(m=Eh);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=Q$(d),p=c+_h(d);let h;Hs(p,()=>{h=f}),s(i,p,h)}})(a)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(t,e,n={}){let o=n.batchSize==null?32:n.batchSize;Xy(o);let s=!0,i=this.standardizeUserDataXY(t,e,s,o);try{let a=i[0].concat(i[1]);this.makeTestFunction();let u=this.testFunction,l=this.testLoop(u,a,o,n.verbose,n.steps);return Nr(l)}finally{Eo(i[0],t),Eo(i[1],e)}}async evaluateDataset(t,e){return this.makeTestFunction(),uD(this,t,e)}checkNumSamples(t,e,n,o="steps"){let s;if(n!=null){if(s=null,e!=null)throw new M(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${e}`)}else if(t!=null)Array.isArray(t)?s=t[0].shape[0]:s=t.shape[0];else throw new M(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(t,e){if(Array.isArray(e)&&e.length===0)throw new M("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(e),o=n?e:[e],s=this.retrieveSymbolicTensors(o),i=new ko;if(t instanceof Ft&&(t=[t]),Array.isArray(t)){if(t.length!==this.inputs.length)throw new M(`The number of inputs provided (${t.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let u=0;u<this.inputs.length;++u)i.add(this.inputs[u],t[u])}else for(let u of this.inputs){let l=t[u.name];if(l==null)throw new M(`No value is provided for the model's input ${u.name}`);i.add(u,l)}let a=hc(s,i);return n?a:a[0]}retrieveSymbolicTensors(t){let e=Io(null,t.length),n=t.length;for(let o of this.layers){let s=Array.isArray(o.output)?o.output:[o.output],i=s.map(a=>a.name);for(let a=0;a<t.length;++a){let u=i.indexOf(t[a]);if(u!==-1&&(e[a]=s[u],n--),n===0)break}if(n===0)break}if(n>0){let o=[];throw e.forEach((s,i)=>{s==null&&o.push(t[i])}),new M(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return e}predictLoop(t,e=32,n=!1){return B(()=>{let o=this.checkNumSamples(t);if(n)throw new St("Verbose predictLoop() is not implemented yet.");let s=Zy(o,e),i=this.outputs.map(a=>[]);for(let a=0;a<s.length;++a)B(()=>{let l=s[a][0],c=s[a][1],p=Hm(t,l,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new ko(m);return hc(this.outputs,f)}).forEach((l,c)=>i[c].push(l));return Nr(i.map(a=>ne(a,0)))})}predict(t,e={}){let n=F0(t);fD(n,this.inputNames,this.feedInputShapes,!1);try{let o=e.batchSize==null?32:e.batchSize;return Xy(o),this.predictLoop(n,o)}finally{Eo(n,t)}}predictOnBatch(t){fD(t,this.inputNames,this.feedInputShapes,!0);let e=(Array.isArray(t)?t[0]:t).shape[0];return this.predictLoop(t,e)}standardizeUserDataXY(t,e,n=!0,o){if(this.optimizer_==null)throw new Hr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let i=0;i<this.feedOutputShapes.length;++i){let a=this.feedOutputShapes[i];this.feedLossFns[i]===Gm?s.push(a.slice(0,a.length-1).concat([1])):s.push(a)}if(t=mD(t,this.feedInputNames,this.feedInputShapes,!1,"input"),e=mD(e,this.feedOutputNames,s,!1,"target"),B8(t,e,null),V8(e,this.feedLossFns,this.feedOutputShapes),this.stateful&&o!=null&&o>0&&t[0].shape[0]%o!==0)throw new M(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${t[0].shape[0]} sample(s).`);return[t,e]}async standardizeUserData(t,e,n,o,s=!0,i){let[a,u]=this.standardizeUserDataXY(t,e,s,i);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(o!=null){let c=Ky(o,this.outputNames);l=[];for(let p=0;p<c.length;++p)l.push(await jy(u[p],null,c[p]))}return[a,u,l]}testLoop(t,e,n,o=0,s){return B(()=>{let i=this.checkNumSamples(e,n,s,"steps"),a=[];if(o>0)throw new St("Verbose mode is not implemented yet.");if(s!=null)throw new St("steps mode in testLoop() is not implemented yet");{let u=Zy(i,n),l=Me(Zr(0,i));for(let c=0;c<u.length;++c){let p=u[c][0],m=u[c][1],f=rl(l,p,m-p),d=Yy(e,f),h=t(d);if(c===0)for(let g=0;g<h.length;++g)a.push(mt(0));for(let g=0;g<h.length;++g){let x=h[g];a[g]=X(a[g],D(m-p,x))}}for(let c=0;c<a.length;++c)a[c]=pt(a[c],i)}return a})}getDedupedMetricsNames(){let t=this.metricsNames,e=[];for(let n=0;n<t.length;++n){let o=t[n],s=o;if(C0(t,o)>1){let i=C0(t.slice(0,n),o);s+=`_${i}`}e.push(s)}return e}makeTrainFunction(){return t=>{let e=[],n=t.slice(0,this.inputs.length),o=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=t.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),i=[],a=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:n[h]});let m=new ko(p),f=hc(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let g=this.lossFunctions[h],x=g(o[h],f[h]);s[h]!=null&&(x=oD(x,s[h]));let b=ve(x);e.push(b),h===0?d=x:d=X(d,x)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=e[h];else{let x=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=ve(x(o[b],f[b]))}De(g),i.push(g)}return d=ve(d),this.calculateLosses().forEach(h=>{d=X(d,h)}),d},u=this.collectedTrainableWeights.map(p=>p.read()),l=!0;return[this.optimizer_.minimize(a,l,u)].concat(i)}}makeTestFunction(){this.testFunction=t=>B(()=>{let e=[],n,o=t.slice(0,this.inputs.length),s=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),i=[];for(let l=0;l<this.inputs.length;++l)i.push({key:this.inputs[l],value:o[l]});let a=new ko(i),u=hc(this.outputs,a);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],p=ve(c(s[l],u[l]));l===0?n=p:n=X(n,p),e.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],p=this.metricsTensors[l][1],m=ve(c(s[p],u[p]));e.push(m)}return e})}async fit(t,e,n={}){return cD(this,t,e,n)}async fitDataset(t,e){return lD(this,t,e)}async trainOnBatch(t,e){let n=await this.standardizeUserData(t,e),o=n[0],s=n[1],a=this.makeTrainFunction()(o.concat(s)),u=[];for(let l of a){let c=await l.data();u.push(c[0])}return vt(a),Eo(n[0],t),Eo(n[1],e),Nr(u)}getNamedWeights(t){let e=[],n=t!=null&&t.trainableOnly,o=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let i=0;i<o.length;++i)n&&!o[i].trainable||e.push({name:o[i].originalName,tensor:s[i]});return e}set stopTraining(t){this.stopTraining_=t}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(t){this.optimizer_!==t&&(this.optimizer_=t,this.isOptimizerOwned=!1)}dispose(){let t=super.dispose();if(t.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let e=ah().numTensors;this.optimizer_.dispose(),t.numDisposedVariables+=e-ah().numTensors}return t}getLossIdentifiers(){let t;if(typeof this.loss=="string")t=So(this.loss);else if(Array.isArray(this.loss)){for(let e of this.loss)if(typeof e!="string")throw new Error("Serialization of non-string loss is not supported.");t=this.loss.map(e=>So(e))}else{let e=Object.keys(this.loss);t={};let n=this.loss;for(let o of e)if(typeof n[o]=="string")t[o]=So(n[o]);else throw new Error("Serialization of non-string loss is not supported.")}return t}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[So(_h(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(t=>So(_h(t)));{let t={};for(let e in this.metrics)t[e]=So(_h(this.metrics[e]));return t}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(t){if(t.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(t.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(t.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let e=yc(t.optimizer_config),n=gn(e),o;if(typeof t.loss=="string")o=el(t.loss);else if(Array.isArray(t.loss))o=t.loss.map(i=>el(i));else if(t.loss!=null){o={};for(let i in t.loss)o[i]=el(t.loss[i])}let s;if(Array.isArray(t.metrics))s=t.metrics.map(i=>el(i));else if(t.metrics!=null){s={};for(let i in t.metrics)s[i]=el(t.metrics[i])}this.compile({loss:o,metrics:s,optimizer:n})}async save(t,e){if(typeof t=="string"){let l=_r.getSaveHandlers(t);if(l.length===0)throw new M(`Cannot find any save handlers for URL '${t}'`);if(l.length>1)throw new M(`Found more than one (${l.length}) save handlers for URL '${t}'`);t=l[0]}if(t.save==null)throw new M("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await _r.encodeWeights(this.getNamedWeights(e)),o=!1,s=null,a={modelTopology:this.toJSON(s,o),format:W8,generatedBy:`TensorFlow.js tfjs-layers v${Um}`,convertedBy:null};if((e==null?!1:e.includeOptimizer)&&this.optimizer!=null){a.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:p}=await _r.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...p),n.data=_r.concatenateArrayBuffers([n.data,c])}return this.userDefinedMetadata!=null&&(R0(this.userDefinedMetadata,this.name,!0),a.userDefinedMetadata=this.userDefinedMetadata),a.weightData=n.data,a.weightSpecs=n.specs,t.save(a)}setUserDefinedMetadata(t){R0(t,this.name),this.userDefinedMetadata=t}getUserDefinedMetadata(){return this.userDefinedMetadata}};Bn.className="Model";Q.registerClass(Bn);var Jy=class extends Bn{};Jy.className="Functional";Q.registerClass(Jy);async function dD(r,t){"modelTopology"in r||(r={modelTopology:r}),r=r;let e=r.modelTopology;e.model_config!=null&&(e=e.model_config);let n=yc(e),o=gn(n,t);if(r.weightsManifest!=null){let s=await _r.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(a=>a.originalName)),i={};for(let a of o.weights)i[a.originalName]=s[a.originalName];o.loadWeights(i),vt(s)}return o}async function hD(r,t){if(t==null&&(t={}),typeof r=="string"){let e=_r.getLoadHandlers(r,t);if(e.length===0)e.push(_r.browserHTTPRequest(r,t));else if(e.length>1)throw new M(`Found more than one (${e.length}) load handlers for URL '${r}'`);r=e[0]}return U8(r,void 0,t)}async function U8(r,t,e){if(e==null&&(e={}),r.load==null)throw new M("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=e.strict==null?!0:e.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,a=gn(yc(o),t,i),u=n.trainingConfig;if(u!=null&&a.loadTrainingConfig(u),n.userDefinedMetadata!=null&&a.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new M("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:c}=H8(n.weightData,n.weightSpecs);a.loadWeights(l,s),a.optimizer!=null&&c.length>0&&await a.optimizer.setWeights(c),vt(l),vt(c.map(p=>p.tensor))}return a}function H8(r,t){let e=_r.decodeWeights(r,t),n={},o=[];return t.forEach(s=>{s.group==="optimizer"?o.push({name:s.name,tensor:e[s.name]}):n[s.name]=e[s.name]}),{modelWeights:n,optimizerWeights:o}}var qi=class extends Bn{constructor(t){if(super({inputs:[],outputs:[]}),t=t||{},this.trainable=!0,this.built=!1,this.name=t.name!=null?t.name:gu("sequential_"),t.layers!=null)for(let e of t.layers)this.add(e)}checkShape(t){if(t.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new M(`Negative dimension size caused by adding layer ${t.name} with input shape [${t.inboundNodes[0].inputTensors[0].shape}]`)}add(t){let e=t instanceof qi||t instanceof Bn,n;if(e){if(n=t,n.outputs.length!==1)throw new M("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new M("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(t.inboundNodes.length===0){if(t.batchInputShape==null)throw new M("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let o=Dy({batchShape:t.batchInputShape,dtype:t.dtype,name:t.name+"_input"});t.apply(o)}if(e)this.outputs=n.outputs,this.inputs=n.inputs;else{if(t.inboundNodes.length!==1)throw new M(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${t.name} which has ${t.inboundNodes.length} pre-existing inbound connections.`);if(t.inboundNodes[0].outputTensors.length!==1)throw new M("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[t.inboundNodes[0].outputTensors[0]],this.inputs=k0(this.outputs[0])}this.inboundNodes=[],new ol({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Io(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=t.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(t),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let t=this.layers.length-1;this.layers[t].outboundNodes=[],this.outputs=[this.layers[t].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(t,e){return this.model==null&&this.build(),this.model.call(t,e)}build(t){if(Bt(t),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Bn({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(t,e,n=console.log){this.built||this.build(),super.summary(t,e,n)}setWeights(t){this.model==null&&this.build(),this.model.setWeights(t)}evaluate(t,e,n={}){if(!this.built)throw new Hr("The model needs to be compiled before being used.");return this.model.evaluate(t,e,n)}async evaluateDataset(t,e){if(!this.built)throw new Hr("The model needs to be compiled before being used.");return this.model.evaluateDataset(t,e)}predict(t,e={}){return this.model==null&&this.build(),this.model.predict(t,e)}predictOnBatch(t){return this.model==null&&this.build(),this.model.predictOnBatch(t)}compile(t){this.build(),this.model.compile(t),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(t){this.model.optimizer=t}async fit(t,e,n={}){if(!this.built)throw new Hr("The model needs to be compiled before being used.");return this.model.fit(t,e,n)}async fitDataset(t,e){if(!this.built)throw new Hr("The model needs to be compiled before being used.");return this.model.fitDataset(t,e)}async trainOnBatch(t,e){return this.model.trainOnBatch(t,e)}static fromConfig(t,e,n={},o=!1){let s,i={};if(e instanceof Array){if(e[0].className==null||e[0].className==="Merge")throw new M("Legacy serialization format not supported yet.");s=e}else y.assert(e.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=e.layers,delete e.layers,i=e;let a=new t(i);if(!(a instanceof qi))throw new St(`Sequential.fromConfig called on non-Sequential input: ${a}`);for(let u of s){let c=gn(u,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),a.add(c)}return a}set stopTraining(t){if(this.model==null)throw new M("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=t}get stopTraining(){if(this.model==null)throw new M("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let t=[];for(let e of this.layers){let n={};n.className=e.getClassName(),n.config=e.getConfig(),t.push(n)}return{name:this.name,layers:t}}};qi.className="Sequential";Q.registerClass(qi);function q8(r){return new Bn(r)}function K8(r){return new qi(r)}function P0(r){return Dy(r)}function j8(r,t){hn.registerCallbackConstructor(r,t)}var Qr=class extends Q.Serializable{getConfig(){return{}}},Qy=class extends Qr{apply(t,e=1){return F$(t,e)}};Qy.className="elu";Q.registerClass(Qy);var tb=class extends Qr{apply(t){return pm(t)}};tb.className="selu";Q.registerClass(tb);var eb=class extends Qr{apply(t){return Fr(t)}};eb.className="relu";Q.registerClass(eb);var rb=class extends Qr{apply(t){return B(()=>Mi(6,Fr(t)))}};rb.className="relu6";Q.registerClass(rb);var nb=class extends Qr{apply(t){return t}};nb.className="linear";Q.registerClass(nb);var ob=class extends Qr{apply(t){return Yr(t)}};ob.className="sigmoid";Q.registerClass(ob);var sb=class extends Qr{apply(t){return P$(t)}};sb.className="hardSigmoid";Q.registerClass(sb);var ib=class extends Qr{apply(t){return zs(t)}};ib.className="softplus";Q.registerClass(ib);var ab=class extends Qr{apply(t){return O$(t)}};ab.className="softsign";Q.registerClass(ab);var lb=class extends Qr{apply(t){return $i(t)}};lb.className="tanh";Q.registerClass(lb);var qm=class extends Qr{apply(t,e=-1){return iu(t,e)}};qm.className="softmax";Q.registerClass(qm);var ub=class extends Qr{apply(t,e=-1){return sm(t,e)}};ub.className="logSoftmax";Q.registerClass(ub);var cb=class extends Qr{apply(t,e=1){return B(()=>D(Yr(D(t,e)),t))}};cb.className="swish";Q.registerClass(cb);var pb=class extends Qr{apply(t){return B(()=>D(t,$i(zs(t))))}};pb.className="mish";Q.registerClass(pb);function js(r){return r.getClassName()}function L0(r,t={}){return Gi(r,Q.SerializationMap.getMap().classNameMap,t,"activation")}function Xs(r){if(r==null){let t={};return t.className="linear",t.config={},L0(t)}if(typeof r=="string"){let t={};return t.className=r,t.config={},L0(t)}else return r instanceof Qr?r:L0(r)}function M0(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var mb=class extends Q.Serializable{},wu=class extends mb{constructor(t){super(),M0(t),this.l1=t==null||t.l1==null?.01:t.l1,this.l2=t==null||t.l2==null?.01:t.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(t){return B(()=>{let e=Ne([1]);return this.hasL1&&(e=X(e,ft(D(this.l1,Ee(t))))),this.hasL2&&(e=X(e,ft(D(this.l2,lc(t))))),R(e,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(t,e){return new t({l1:e.l1,l2:e.l2})}};wu.className="L1L2";Q.registerClass(wu);function yD(r){return M0(r),new wu({l1:r!=null?r.l1:null,l2:0})}function bD(r){return M0(r),new wu({l2:r!=null?r.l2:null,l1:0})}var gD={l1l2:"L1L2"};function me(r){return Sm(r)}function xD(r,t={}){return Gi(r,Q.SerializationMap.getMap().classNameMap,t,"regularizer")}function be(r){if(r==null)return null;if(typeof r=="string"){let e={className:r in gD?gD[r]:r,config:{}};return xD(e)}else return r instanceof mb?r:xD(r)}var Km=class extends $t{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null&&(this.maxValue=t.maxValue)}call(t,e){t=Nt(t);let n=Fr(t);return this.maxValue!=null&&(n=Cr(n,0,this.maxValue)),n}computeOutputShape(t){return t}getConfig(){let t={maxValue:this.maxValue},e=super.getConfig();return Object.assign(t,e),t}};Km.className="ReLU";Q.registerClass(Km);var jm=class extends $t{constructor(t){super(t==null?{}:t),this.DEFAULT_ALPHA=.3,t==null&&(t={}),this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=Nt(t);return Ql(n,this.alpha)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};jm.className="LeakyReLU";Q.registerClass(jm);var Xm=class extends $t{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA_INITIALIZER="zeros",t==null&&(t={}),this.supportsMasking=!0,this.alphaInitializer=de(t.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=be(t.alphaRegularizer),this.alphaConstraint=Be(t.alphaConstraint),t.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(t.sharedAxes))this.sharedAxes=t.sharedAxes;else if(typeof t.sharedAxes=="number")this.sharedAxes=[t.sharedAxes];else throw new M(`Expected sharedAxes to be a number or an array of numbers, but got ${t.sharedAxes}`)}build(t){t=Bt(t);let e=t.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)e[o-1]=1;this.alpha=this.addWeight("alpha",e,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o<t.length;++o)n[o]=t[o];this.inputSpec=[new ye({ndim:t.length,axes:n})],this.built=!0}call(t,e){return t=Nt(t),ou(t,this.alpha.read())}getConfig(){let t={alphaInitializer:Te(this.alphaInitializer),alphaRegularizer:me(this.alphaRegularizer),alphaConstraint:ze(this.alphaConstraint),sharedAxes:this.sharedAxes},e=super.getConfig();return Object.assign(t,e),t}};Xm.className="PReLU";Q.registerClass(Xm);var Ym=class extends $t{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA=1,t==null&&(t={}),t.alpha!=null&&t.alpha!==this.DEFAULT_ALPHA)throw new St(`Non-default alpha value (${t.alpha}) is not supported by the ELU layer yet.`);this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=Nt(t);return Oi(n)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};Ym.className="ELU";Q.registerClass(Ym);var Zm=class extends $t{constructor(t){super(t==null?{}:t),this.DEFAULT_THETA=1,t==null&&(t={}),this.theta=t.theta==null?this.DEFAULT_THETA:t.theta}call(t,e){let n=Nt(t);return D(n,J(Re(n,this.theta),"float32"))}computeOutputShape(t){return t}getConfig(){let t={theta:this.theta},e=super.getConfig();return Object.assign(t,e),t}};Zm.className="ThresholdedReLU";Q.registerClass(Zm);var Jm=class extends $t{constructor(t){super(t==null?{}:t),this.DEFAULT_AXIS=1,t==null&&(t={}),this.softmax=new qm().apply,this.axis=t.axis==null?this.DEFAULT_AXIS:t.axis}call(t,e){let n=Nt(t);return this.softmax(n,this.axis)}computeOutputShape(t){return t}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};Jm.className="Softmax";Q.registerClass(Jm);function Cu(r,t,e){if(typeof r=="number")return Io(r,t);if(r.length!==t)throw new M(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${r.length} elements.`);for(let n=0;n<t;++n){let o=r[n];if(!A$(o))throw new M(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(r)} including a non-integer number ${o}`)}return r}function Nn(r,t,e,n,o=1){if(r==null)return r;let s=t+(t-1)*(o-1),i;return e==="same"?i=r:i=r-s+1,Math.floor((i+n-1)/n)}function Ys(r,t,e,n){if(r==null)return null;if(n==="valid")r=r*t+qs([e-t,0]);else if(n==="same")r=r*t;else throw new M(`Unsupport padding mode: ${n}.`);return r}function Ah(r,t){return B(()=>(Fe(t),t==="channelsFirst"?Ot(r,[0,2,3,1]):r))}function z0(r,t){return B(()=>(Fe(t),t==="channelsFirst"?Ot(r,[0,2,3,4,1]):r))}function Y8(r,t,e,n=1,o="valid",s,i=1){return B(()=>{if(s==null&&(s=mn()),Fe(s),r.shape.length!==3)throw new M(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(t.shape.length!==3)throw new M(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(e!=null&&e.shape.length!==1)throw new M(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(r=Ot(r,[0,2,1])),o==="causal")throw new St("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let a=Qp(r,t,n,o==="same"?"same":"valid","NWC",i);return e!=null&&(a=fn(a,e)),a})}function wD(r,t,e,n=[1,1],o="valid",s,i,a=null){return B(()=>{if(s==null&&(s=mn()),Fe(s),r.rank!==3&&r.rank!==4)throw new M(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(t.rank!==3&&t.rank!==4)throw new M(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let u=Ah(r,s);if(o==="causal")throw new St("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return u=uu.conv2d({x:u,filter:t,strides:n,pad:o==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:e,activation:a}),s==="channelsFirst"&&(u=Ot(u,[0,3,1,2])),u})}function Z8(r,t,e,n=[1,1,1],o="valid",s,i){return B(()=>{if(s==null&&(s=mn()),Fe(s),r.rank!==4&&r.rank!==5)throw new M(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(t.rank!==4&&t.rank!==5)throw new M(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let a=z0(r,s);if(o==="causal")throw new St("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return a=Tx(a,t,n,o==="same"?"same":"valid","NDHWC",i),e!=null&&(a=fn(a,e)),s==="channelsFirst"&&(a=Ot(a,[0,4,1,2,3])),a})}var bc=class extends $t{constructor(t,e){if(super(e),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",bc.verifyArgs(e),this.rank=t,Ze(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new St(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Cu(e.kernelSize,t,"kernelSize"),this.strides=Cu(e.strides==null?1:e.strides,t,"strides"),this.padding=e.padding==null?"valid":e.padding,pn(this.padding),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Fe(this.dataFormat),this.activation=Xs(e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.biasInitializer=de(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Be(e.biasConstraint),this.biasRegularizer=be(e.biasRegularizer),this.activityRegularizer=be(e.activityRegularizer),this.dilationRate=Cu(e.dilationRate==null?1:e.dilationRate,t,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new M(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new M(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new M(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(t){if(ro("kernelSize"in t,"required key 'kernelSize' not in config"),typeof t.kernelSize!="number"&&!Cy(t.kernelSize,"number",1,3))throw new M(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(t.kernelSize)}.`)}getConfig(){let t={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:js(this.activation),useBias:this.useBias,biasInitializer:Te(this.biasInitializer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),biasConstraint:ze(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}},Iu=class extends bc{constructor(t,e){super(t,e),this.kernel=null,Iu.verifyArgs(e),this.filters=e.filters,Ze(this.filters,"filters"),this.kernelInitializer=de(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Be(e.kernelConstraint),this.kernelRegularizer=be(e.kernelRegularizer)}build(t){t=Bt(t);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new M(`The channel dimension of the input should be defined. Found ${t[e]}`);let n=t[e],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[e]:n}}],this.built=!0}call(t,e){return B(()=>{t=Nt(t);let n,o=this.bias==null?null:this.bias.read(),s=Iy(this.activation.getClassName());if(s!=null&&this.rank===2)n=wD(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=Y8(t,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=wD(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Z8(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new St("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(t){t=Bt(t);let e=[],n=this.dataFormat==="channelsLast"?t.slice(1,t.length-1):t.slice(2);for(let s=0;s<n.length;++s){let i=Nn(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);e.push(i)}let o=[t[0]];return this.dataFormat==="channelsLast"?(o=o.concat(e),o.push(this.filters)):(o.push(this.filters),o=o.concat(e)),o}getConfig(){let t={filters:this.filters,kernelInitializer:Te(this.kernelInitializer),kernelRegularizer:me(this.kernelRegularizer),kernelConstraint:ze(this.kernelConstraint)},e=super.getConfig();return Object.assign(t,e),t}static verifyArgs(t){if(!("filters"in t)||typeof t.filters!="number"||t.filters<1)throw new M(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(t.filters)}`)}},il=class extends Iu{constructor(t){super(2,t),il.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!Cy(t.kernelSize,"number",1,2))throw new M(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(t.kernelSize)}.`)}};il.className="Conv2D";Q.registerClass(il);var al=class extends Iu{constructor(t){super(3,t),al.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!(Array.isArray(t.kernelSize)&&(t.kernelSize.length===1||t.kernelSize.length===3)))throw new M(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(t.kernelSize)}.`)}};al.className="Conv3D";Q.registerClass(al);var Qm=class extends il{constructor(t){if(super(t),this.inputSpec=[new ye({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new M(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Bt(t),t.length!==4)throw new M("Input should have rank 4; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new M("The channel dimension of the inputs should be defined. Found `None`.");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new ye({ndim:4,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{let n=Nt(t);if(n.shape.length!==4)throw new M(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a;this.dataFormat==="channelsFirst"?(i=2,a=3):(i=1,a=2);let u=o[i],l=o[a],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=Ys(u,m,c,this.padding),h=Ys(l,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(n=Ot(n,[0,2,3,1]));let x=em(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=Ot(x,[0,3,1,2])),this.bias!=null&&(x=fn(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(t){t=Bt(t);let e=t.slice(),n,o,s;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3):(n=3,o=1,s=2);let i=this.kernelSize[0],a=this.kernelSize[1],u=this.strides[0],l=this.strides[1];return e[n]=this.filters,e[o]=Ys(e[o],u,i,this.padding),e[s]=Ys(e[s],l,a,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};Qm.className="Conv2DTranspose";Q.registerClass(Qm);var tf=class extends al{constructor(t){if(super(t),this.inputSpec=[new ye({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new M(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Bt(t),t.length!==5)throw new M("Input should have rank 5; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new M("The channel dimension of the inputs should be defined. Found `None`.");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new ye({ndim:5,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{let n=Nt(t);if(n.shape.length!==5)throw new M(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a,u;this.dataFormat==="channelsFirst"?(u=2,i=3,a=4):(u=1,i=2,a=3);let l=o[u],c=o[i],p=o[a],m=this.kernelSize[0],f=this.kernelSize[1],d=this.kernelSize[2],h=this.strides[0],g=this.strides[1],x=this.strides[2],b=Ys(l,h,m,this.padding),w=Ys(c,g,f,this.padding),C=Ys(p,x,d,this.padding),N=[s,b,w,C,this.filters];this.dataFormat!=="channelsLast"&&(n=Ot(n,[0,2,3,4,1]));let _=Ex(n,this.kernel.read(),N,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(_=Ot(_,[0,4,1,2,3])),this.bias!==null&&(_=fn(_,this.bias.read(),this.dataFormat)),this.activation!==null&&(_=this.activation.apply(_)),_})}computeOutputShape(t){t=Bt(t);let e=t.slice(),n,o,s,i;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3,i=4):(n=4,o=1,s=2,i=3);let a=this.kernelSize[0],u=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],p=this.strides[1],m=this.strides[2];return e[n]=this.filters,e[o]=Ys(e[o],c,a,this.padding),e[s]=Ys(e[s],p,u,this.padding),e[i]=Ys(e[i],m,l,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};tf.className="Conv3DTranspose";Q.registerClass(tf);var fb=class extends Iu{constructor(t,e){if(super(t,e),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,e.filters==null)throw new M("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(e.kernelInitializer!=null||e.kernelRegularizer!=null||e.kernelConstraint!=null)throw new M("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(e.padding!=null&&e.padding!=="same"&&e.padding!=="valid")throw new M(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(e.padding)}`);this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=de(e.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=be(e.depthwiseRegularizer),this.depthwiseConstraint=Be(e.depthwiseConstraint),this.pointwiseInitializer=de(e.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=be(e.pointwiseRegularizer),this.pointwiseConstraint=Be(e.pointwiseConstraint)}build(t){if(t=Bt(t),t.length<this.rank+2)throw new M(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(t)}`);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null||t[e]<0)throw new M(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(t[e])}`);let n=t[e],o=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let a=0;a<this.rank;++a)s.push(1);s.push(n*this.depthMultiplier,this.filters);let i=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",o,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,i,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,i,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,i,this.biasConstraint):this.bias=null,this.inputSpec=[new ye({ndim:this.rank+2,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{t=Nt(t);let n;if(this.rank===1)throw new St("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(t=Ot(t,[0,2,3,1])),n=mm(t,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=fn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ot(n,[0,3,1,2])),n})}getConfig(){let t=super.getConfig();return delete t.rank,delete t.kernelInitializer,delete t.kernelRegularizer,delete t.kernelConstraint,t.depthwiseInitializer=Te(this.depthwiseInitializer),t.pointwiseInitializer=Te(this.pointwiseInitializer),t.depthwiseRegularizer=me(this.depthwiseRegularizer),t.pointwiseRegularizer=me(this.pointwiseRegularizer),t.depthwiseConstraint=ze(this.depthwiseConstraint),t.pointwiseConstraint=ze(this.pointwiseConstraint),t}};fb.className="SeparableConv";var ef=class extends fb{constructor(t){super(2,t)}};ef.className="SeparableConv2D";Q.registerClass(ef);var Su=class extends Iu{constructor(t){super(1,t),Su.verifyArgs(t),this.inputSpec=[{ndim:3}]}getConfig(){let t=super.getConfig();return delete t.rank,delete t.dataFormat,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!Cy(t.kernelSize,"number",1,1))throw new M(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(t.kernelSize)}.`)}};Su.className="Conv1D";Q.registerClass(Su);var rf=class extends $t{constructor(t){super(t),typeof t.cropping=="number"?this.cropping=[[t.cropping,t.cropping],[t.cropping,t.cropping]]:typeof t.cropping[0]=="number"?this.cropping=[[t.cropping[0],t.cropping[0]],[t.cropping[1],t.cropping[1]]]:this.cropping=t.cropping,this.dataFormat=t.dataFormat===void 0?"channelsLast":t.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(t){return this.dataFormat==="channelsFirst"?[t[0],t[1],t[2]-this.cropping[0][0]-this.cropping[0][1],t[3]-this.cropping[1][0]-this.cropping[1][1]]:[t[0],t[1]-this.cropping[0][0]-this.cropping[0][1],t[2]-this.cropping[1][0]-this.cropping[1][1],t[3]]}call(t,e){return B(()=>{if(t=Nt(t),this.dataFormat==="channelsLast"){let n=wh(t,this.cropping[0][0],t.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return wh(n,this.cropping[1][0],t.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=wh(t,this.cropping[0][0],t.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return wh(n,this.cropping[1][0],t.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let t={cropping:this.cropping,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};rf.className="Cropping2D";Q.registerClass(rf);var nf=class extends $t{constructor(t){super(t),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=t.size==null?this.DEFAULT_SIZE:t.size,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Fe(this.dataFormat),this.interpolation=t.interpolation==null?"nearest":t.interpolation,E$(this.interpolation)}computeOutputShape(t){if(this.dataFormat==="channelsFirst"){let e=t[2]==null?null:this.size[0]*t[2],n=t[3]==null?null:this.size[1]*t[3];return[t[0],t[1],e,n]}else{let e=t[1]==null?null:this.size[0]*t[1],n=t[2]==null?null:this.size[1]*t[2];return[t[0],e,n,t[3]]}}call(t,e){return B(()=>{let n=Nt(t),o=n.shape;if(this.dataFormat==="channelsFirst"){n=Ot(n,[0,2,3,1]);let s=this.size[0]*o[2],i=this.size[1]*o[3],a=this.interpolation==="nearest"?Gs.resizeNearestNeighbor(n,[s,i]):Gs.resizeBilinear(n,[s,i]);return Ot(a,[0,3,1,2])}else{let s=this.size[0]*o[1],i=this.size[1]*o[2];return this.interpolation==="nearest"?Gs.resizeNearestNeighbor(n,[s,i]):Gs.resizeBilinear(n,[s,i])}})}getConfig(){let t={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},e=super.getConfig();return Object.assign(t,e),t}};nf.className="UpSampling2D";Q.registerClass(nf);function J8(r,t,e=[1,1],n="valid",o,s){return B(()=>{o==null&&(o=mn()),Fe(o);let i=Ah(r,o);if(r.rank!==4)throw new M(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(t.rank!==4)throw new M(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Fi(i,t,e,n==="same"?"same":"valid","NHWC",s),o==="channelsFirst"&&(i=Ot(i,[0,3,1,2])),i})}var of=class extends bc{constructor(t){super(2,t),this.depthwiseKernel=null,this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=de(t.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Be(t.depthwiseConstraint),this.depthwiseRegularizer=be(t.depthwiseRegularizer)}build(t){if(t=Bt(t),t.length<4)throw new M(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(t)}.`);let e=this.dataFormat==="channelsFirst"?1:3;if(t[e]==null||t[e]<0)throw new M(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${t[e]}).`);let n=t[e],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{t=Nt(t);let n=J8(t,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=fn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(t){t=Bt(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[1]*this.depthMultiplier:t[3]*this.depthMultiplier,s=Nn(e,this.kernelSize[0],this.padding,this.strides[0]),i=Nn(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[t[0],o,s,i]:[t[0],s,i,o]}getConfig(){let t=super.getConfig();return t.depthMultiplier=this.depthMultiplier,t.depthwiseInitializer=Te(this.depthwiseInitializer),t.depthwiseRegularizer=me(this.depthwiseRegularizer),t.depthwiseConstraint=ze(this.depthwiseRegularizer),t}};of.className="DepthwiseConv2D";Q.registerClass(of);function B0(r,t,e,n){if(Array.isArray(r)){if(t!=null||e!=null)throw new M("When inputs is an array, neither initialState or constants should be provided");n!=null&&(e=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(t=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return t=o(t),e=o(e),{inputs:r,initialState:t,constants:e}}function V0(r,t,e,n=!1,o,s,i=!1,a=!1){return B(()=>{let u=t.shape.length;if(u<3)throw new M(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(Zr(2,u));if(t=Ot(t,l),s!=null)throw new St("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),o!=null&&(o=J(J(o,"bool"),"float32"),o.rank===u-1&&(o=rr(o,-1)),o=Ot(o,l)),n&&(t=pr(t,0),o!=null&&(o=pr(o,0)));let c=[],p,m=e,f=t.shape[0],d=vr(t),h;o!=null&&(h=vr(o));for(let x=0;x<f;++x){let b=d[x],w=B(()=>r(b,m));if(o==null)p=w[0],m=w[1];else{let C=B(()=>{let N=h[x],_=ct(yr(N),N),A=X(D(w[0],N),D(m[0],_)),$=m.map((F,P)=>X(D(w[1][P],N),D(F,_)));return{output:A,newStates:$}});p=C.output,m=C.newStates}a&&c.push(p)}let g;return a&&(g=nr(c,1)),[p,g,m]})}var Tn=class extends $t{constructor(t){super(t);let e;if(t.cell==null)throw new M("cell property is missing for the constructor of RNN.");if(Array.isArray(t.cell)?e=new Ic({cells:t.cell}):e=t.cell,e.stateSize==null)throw new M("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=e,this.returnSequences=t.returnSequences==null?!1:t.returnSequences,this.returnState=t.returnState==null?!1:t.returnState,this.goBackwards=t.goBackwards==null?!1:t.goBackwards,this._stateful=t.stateful==null?!1:t.stateful,this.unroll=t.unroll==null?!1:t.unroll,this.supportsMasking=!0,this.inputSpec=[new ye({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Zr(0,t).map(e=>null)}else return this.states_}setStates(t){this.states_=t}computeOutputShape(t){$y(t)&&(t=t[0]),t=t;let e=this.cell.stateSize;Array.isArray(e)||(e=[e]);let n=e[0],o;if(this.returnSequences?o=[t[0],t[1],n]:o=[t[0],n],this.returnState){let s=[];for(let i of e)s.push([t[0],i]);return[o].concat(s)}else return o}computeMask(t,e){return B(()=>{Array.isArray(e)&&(e=e[0]);let n=this.returnSequences?e:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,e=[];for(let n=0;n<t;++n)e.push(null);return e}else return this.states_}set states(t){this.states_=t}build(t){if(this.numConstants!=null)throw new St("Constants support is not implemented in RNN yet.");$y(t)&&(t=t[0]),t=t;let n=this.stateful?t[0]:null,o=t.slice(2);this.inputSpec[0]=new ye({shape:[n,null,...o]});let s=[t[0]].concat(t.slice(2));this.cell.build(s);let i;if(Array.isArray(this.cell.stateSize)?i=this.cell.stateSize:i=[this.cell.stateSize],this.stateSpec!=null){if(!y.arraysEqual(this.stateSpec.map(a=>a.shape[a.shape.length-1]),i))throw new M(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=i.map(a=>new ye({shape:[null,a]}));this.stateful&&this.resetStates()}resetStates(t,e=!1){B(()=>{if(!this.stateful)throw new vn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new M("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>Ne([n,o])):this.states_=[Ne([n,this.cell.stateSize])];else if(t==null)vt(this.states_),this.keptStates!=null&&(vt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>Ne([n,o])):this.states_[0]=Ne([n,this.cell.stateSize]);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new M(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e===!0?this.keptStates.push(this.states_.slice()):vt(this.states_);for(let o=0;o<this.states_.length;++o){let s=t[o],i=Array.isArray(this.cell.stateSize)?this.cell.stateSize[o]:this.cell.stateSize,a=[n,i];if(!y.arraysEqual(s.shape,a))throw new M(`State ${o} is incompatible with layer ${this.name}: expected shape=${a}, received shape=${s.shape}`);this.states_[o]=s}}this.states_=this.states_.map(o=>De(o.clone()))})}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=B0(t,n,o,this.numConstants);t=s.inputs,n=s.initialState,o=s.constants;let i=[],a=[];if(n!=null){e.initialState=n,i=i.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new ye({shape:l.shape}));a=a.concat(this.stateSpec)}if(o!=null&&(e.constants=o,i=i.concat(o),this.numConstants=o.length),i[0]instanceof Jr){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return B(()=>{let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;t=Nt(t),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(t));let i=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==i)throw new M(`RNN Layer has ${i} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let a={training:o},l=V0((d,h)=>{let g=this.cell.call([d].concat(h),a);return[g[0],g.slice(1)]},t,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],p=l[1],m=l[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(t){return B(()=>{let e=Ne(t.shape);return e=ft(e,[1,2]),e=nl(e),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Ey(e,[1,n]):e):this.cell.stateSize>1?[Ey(e,[1,this.cell.stateSize])]:[e]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(t)}getConfig(){let t=super.getConfig(),e={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(e.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Tn.className&&(e.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),t),e)}static fromConfig(t,e,n={}){let o=e.cell,s=gn(o,n);return new t(Object.assign(e,{cell:s}))}};Tn.className="RNN";Q.registerClass(Tn);var ll=class extends $t{},wc=class extends ll{constructor(t){super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,Ze(this.units,"units"),this.activation=Xs(t.activation==null?this.DEFAULT_ACTIVATION:t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=de(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=de(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=de(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=be(t.kernelRegularizer),this.recurrentRegularizer=be(t.recurrentRegularizer),this.biasRegularizer=be(t.biasRegularizer),this.kernelConstraint=Be(t.kernelConstraint),this.recurrentConstraint=Be(t.recurrentConstraint),this.biasConstraint=Be(t.biasConstraint),this.dropout=ac([1,qs([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=ac([1,qs([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Bt(t),this.kernel=this.addWeight("kernel",[t[t.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{if(t=t,t.length!==2)throw new M(`SimpleRNNCell expects 2 input Tensors, got ${t.length}.`);let n=t[1];t=t[0];let o=e.training==null?!1:e.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=cl({ones:()=>yr(t),rate:this.dropout,training:o,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=cl({ones:()=>yr(n),rate:this.recurrentDropout,training:o,dropoutFunc:this.dropoutFunc}));let s,i=this.dropoutMask,a=this.recurrentDropoutMask;i!=null?s=To(D(t,i),this.kernel.read()):s=To(t,this.kernel.read()),this.bias!=null&&(s=fn(s,this.bias.read())),a!=null&&(n=D(n,a));let u=X(s,To(n,this.recurrentKernel.read()));return this.activation!=null&&(u=this.activation.apply(u)),[u,u]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:js(this.activation),useBias:this.useBias,kernelInitializer:Te(this.kernelInitializer),recurrentInitializer:Te(this.recurrentInitializer),biasInitializer:Te(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:ze(this.kernelConstraint),recurrentConstraint:ze(this.recurrentConstraint),biasConstraint:ze(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},t),e)}};wc.className="SimpleRNNCell";Q.registerClass(wc);var sf=class extends Tn{constructor(t){t.cell=new wc(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(vt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(vt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return new t(e)}};sf.className="SimpleRNN";Q.registerClass(sf);var Cc=class extends ll{constructor(t){if(super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.resetAfter)throw new M("GRUCell does not support reset_after parameter set to true.");this.units=t.units,Ze(this.units,"units"),this.activation=Xs(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=Xs(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=de(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=de(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=de(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=be(t.kernelRegularizer),this.recurrentRegularizer=be(t.recurrentRegularizer),this.biasRegularizer=be(t.biasRegularizer),this.kernelConstraint=Be(t.kernelConstraint),this.recurrentConstraint=Be(t.recurrentConstraint),this.biasConstraint=Be(t.biasConstraint),this.dropout=ac([1,qs([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=ac([1,qs([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Bt(t);let e=t[t.length-1];this.kernel=this.addWeight("kernel",[e,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{if(t=t,t.length!==2)throw new M(`GRUCell expects 2 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training==null?!1:e.training,o=t[1];t=t[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=cl({ones:()=>yr(t),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=cl({ones:()=>yr(o),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,a,u,l;0<this.dropout&&this.dropout<1&&(t=D(t,s[0]));let c=To(t,this.kernel.read());this.useBias&&(c=fn(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(o=D(o,i[0]));let p=this.recurrentKernel.read(),[m,f]=mr(p,[2*this.units,this.units],p.rank-1),d=To(o,m),[h,g,x]=mr(c,3,c.rank-1),[b,w]=mr(d,2,d.rank-1);a=this.recurrentActivation.apply(X(h,b)),u=this.recurrentActivation.apply(X(g,w));let C=To(D(u,o),f);l=this.activation.apply(X(x,C));let N=X(D(a,o),D(X(1,Ht(a)),l));return[N,N]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:js(this.activation),recurrentActivation:js(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Te(this.kernelInitializer),recurrentInitializer:Te(this.recurrentInitializer),biasInitializer:Te(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:ze(this.kernelConstraint),recurrentConstraint:ze(this.recurrentConstraint),biasConstraint:ze(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign(Object.assign({},t),e)}};Cc.className="GRUCell";Q.registerClass(Cc);var af=class extends Tn{constructor(t){t.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),t.cell=new Cc(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(vt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(vt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};af.className="GRU";Q.registerClass(af);var ul=class extends ll{constructor(t){super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,Ze(this.units,"units"),this.activation=Xs(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=Xs(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=de(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=de(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=de(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=t.unitForgetBias,this.kernelRegularizer=be(t.kernelRegularizer),this.recurrentRegularizer=be(t.recurrentRegularizer),this.biasRegularizer=be(t.biasRegularizer),this.kernelConstraint=Be(t.kernelConstraint),this.recurrentConstraint=Be(t.recurrentConstraint),this.biasConstraint=Be(t.biasConstraint),this.dropout=ac([1,qs([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=ac([1,qs([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){var e;t=Bt(t);let n=t[t.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,i=this.units;o=new(e=class extends dn{apply(u,l){let c=s.apply([i]),p=new yu().apply([i]),m=s.apply([i*2]);return T0(T0(c,p),m)}},e.className="CustomInit",e)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(t,e){return B(()=>{let n=e.training==null?!1:e.training;if(t=t,t.length!==3)throw new M(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let o=t[1],s=t[2];t=t[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=cl({ones:()=>yr(t),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=cl({ones:()=>yr(o),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,a=this.recurrentDropoutMask,u,l,c,p;0<this.dropout&&this.dropout<1&&(t=D(t,i[0]));let m=To(t,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(o=D(o,a[0])),m=X(m,To(o,this.recurrentKernel.read())),this.useBias&&(m=fn(m,this.bias.read()));let[f,d,h,g]=mr(m,4,m.rank-1);u=this.recurrentActivation.apply(f),l=this.recurrentActivation.apply(d),c=X(D(l,s),D(u,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let x=D(p,this.activation.apply(c));return[x,x,c]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:js(this.activation),recurrentActivation:js(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Te(this.kernelInitializer),recurrentInitializer:Te(this.recurrentInitializer),biasInitializer:Te(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:ze(this.kernelConstraint),recurrentConstraint:ze(this.recurrentConstraint),biasConstraint:ze(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign(Object.assign({},t),e)}};ul.className="LSTMCell";Q.registerClass(ul);var lf=class extends Tn{constructor(t){t.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),t.cell=new ul(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(vt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(vt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};lf.className="LSTM";Q.registerClass(lf);var Ic=class extends ll{constructor(t){super(t),this.cells=t.cells}get stateSize(){let t=[];for(let e of this.cells.slice().reverse())Array.isArray(e.stateSize)?t.push(...e.stateSize):t.push(e.stateSize);return t}call(t,e){return B(()=>{t=t;let n=t.slice(1),o=[];for(let a of this.cells.slice().reverse())Array.isArray(a.stateSize)?o.push(n.splice(0,a.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],i;for(let a=0;a<this.cells.length;++a){let u=this.cells[a];n=o[a],a===0?i=[t[0]].concat(n):i=[i[0]].concat(n),i=u.call(i,e),s.push(i.slice(1))}n=[];for(let a of s.slice().reverse())n.push(...a);return[i[0]].concat(n)})}build(t){$y(t)&&(t=t[0]),t=t;let e;this.cells.forEach((n,o)=>{Hs(`RNNCell_${o}`,()=>{n.build(t),Array.isArray(n.stateSize)?e=n.stateSize[0]:e=n.stateSize,t=[t[0],e]})}),this.built=!0}getConfig(){let t=super.getConfig(),e=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(e)};return Object.assign(Object.assign({},t),o)}static fromConfig(t,e,n={}){let o=[];for(let s of e.cells)o.push(gn(s,n));return new t({cells:o})}get trainableWeights(){if(!this.trainable)return[];let t=[];for(let e of this.cells)t.push(...e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.cells)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.cells)e.push(...n.trainableWeights);return e.concat(t)}return t}getWeights(){let t=[];for(let e of this.cells)t.push(...e.weights);return Ih(t)}setWeights(t){let e=[];for(let n of this.cells){let o=n.weights.length,s=t.splice(o);for(let i=0;i<n.weights.length;++i)e.push([n.weights[i],s[i]])}Pm(e)}};Ic.className="StackedRNNCells";Q.registerClass(Ic);function cl(r){let{ones:t,rate:e,training:n=!1,count:o=1,dropoutFunc:s}=r,i=()=>s!=null?s(t(),e):Ay(t(),e),a=()=>xu(i,t,n);return!o||o<=1?De(a().clone()):Array(o).fill(void 0).map(a).map(l=>De(l.clone()))}var Q8=function(r,t){var e={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&t.indexOf(n)<0&&(e[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var o=0,n=Object.getOwnPropertySymbols(r);o<n.length;o++)t.indexOf(n[o])<0&&Object.prototype.propertyIsEnumerable.call(r,n[o])&&(e[n[o]]=r[n[o]]);return e};var db=class extends Tn{constructor(t){if(t.unroll)throw new St("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(t.cell))throw new St("It is not possible at the moment to stack convolutional cells.");super(t),this.inputSpec=[new ye({ndim:5})]}call(t,e){return B(()=>{if(this.cell.dropoutMask!=null&&(vt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(vt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),e&&e.constants)throw new M("ConvRNN2D cell does not support constants");let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}computeOutputShape(t){let e=this.computeSingleOutputShape(t);return this.returnSequences||(e=[e[0],...e.slice(2)]),this.returnState&&(e=[e,...Array(2).fill([t[0],...e.slice(-3)])]),e}getInitialState(t){return B(()=>{let{stateSize:e}=this.cell,n=t.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],i=Ne(s);return Array.isArray(e)?Array(e.length).fill(i):[i]})}resetStates(t,e=!1){B(()=>{if(!this.stateful)throw new vn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new M("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ne(s)):this.states_=[Ne(s)];else if(t==null)vt(this.states_),this.keptStates!=null&&(vt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ne(s)):this.states_[0]=Ne(s);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new M(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e?this.keptStates.push(this.states_.slice()):vt(this.states_);for(let a=0;a<this.states_.length;++a){let u=t[a],l=s;if(!y.arraysEqual(u.shape,l))throw new M(`State ${a} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${u.shape}`);this.states_[a]=u}}this.states_=this.states_.map(a=>De(a.clone()))})}computeSingleOutputShape(t){let{dataFormat:e,filters:n,kernelSize:o,padding:s,strides:i,dilationRate:a}=this.cell,u=e==="channelsFirst",l=t[u?3:2],c=t[u?4:3],p=Nn(l,o[0],s,i[0],a[0]),m=Nn(c,o[1],s,i[1],a[1]);return[...t.slice(0,2),...u?[n,p,m]:[p,m,n]]}};db.className="ConvRNN2D";var Sc=class extends ul{constructor(t){let{filters:e,kernelSize:n,strides:o,padding:s,dataFormat:i,dilationRate:a}=t;super(Object.assign(Object.assign({},t),{units:e})),this.filters=e,Ze(this.filters,"filters"),this.kernelSize=Cu(n,2,"kernelSize"),this.kernelSize.forEach(u=>Ze(u,"kernelSize")),this.strides=Cu(o||1,2,"strides"),this.strides.forEach(u=>Ze(u,"strides")),this.padding=s||"valid",pn(this.padding),this.dataFormat=i||"channelsLast",Fe(this.dataFormat),this.dilationRate=Cu(a||1,2,"dilationRate"),this.dilationRate.forEach(u=>Ze(u,"dilationRate"))}build(t){var e;t=Bt(t);let n=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[n]==null)throw new M(`The channel dimension of the input should be defined. Found ${t[n]}`);let o=t[n],s=4,i=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight("kernel",i,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let a=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",a,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let u;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;u=new(e=class extends dn{apply(m,f){let d=l.apply([c]),h=cr([c]),g=l.apply([c*2]);return Nm([d,h,g])}},e.className="CustomInit",e)}else u=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,u,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(t,e){return B(()=>{if(t.length!==3)throw new M(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training||!1,o=t[0],s=t[1],i=t[2],a=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=cl({ones:()=>yr(o),rate:this.dropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let u=this.dropoutMask,l=(rt,ot,at)=>!ot||!ot[at]?rt:D(ot[at],rt),c=l(o,u,0),p=l(o,u,1),m=l(o,u,2),f=l(o,u,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=cl({ones:()=>yr(s),rate:this.recurrentDropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let d=this.recurrentDropoutMask,h=l(s,d,0),g=l(s,d,1),x=l(s,d,2),b=l(s,d,3),w=3,[C,N,_,A]=mr(this.kernel.read(),a,w),[$,F,P,V]=this.useBias?mr(this.bias.read(),a):[null,null,null,null];c=this.inputConv(c,C,$,this.padding),p=this.inputConv(p,N,F,this.padding),m=this.inputConv(m,_,P,this.padding),f=this.inputConv(f,A,V,this.padding);let[G,W,q,H]=mr(this.recurrentKernel.read(),a,w);h=this.recurrentConv(h,G),g=this.recurrentConv(g,W),x=this.recurrentConv(x,q),b=this.recurrentConv(b,H);let j=this.recurrentActivation.apply(X(c,h)),Y=this.recurrentActivation.apply(X(p,g)),Z=X(D(Y,i),D(j,this.activation.apply(X(m,x)))),et=D(this.recurrentActivation.apply(X(f,b)),this.activation.apply(Z));return[et,et,Z]})}getConfig(){let t=super.getConfig(),{units:e}=t,n=Q8(t,["units"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),o)}inputConv(t,e,n,o){let s=In(t,e,this.strides,o||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?fn(s,n,this.dataFormat):s}recurrentConv(t,e){return In(t,e,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Sc.className="ConvLSTM2DCell";Q.registerClass(Sc);var uf=class extends db{constructor(t){let e=new Sc(t);super(Object.assign(Object.assign({},t),{cell:e}))}static fromConfig(t,e){return new t(e)}};uf.className="ConvLSTM2D";Q.registerClass(uf);var vc=class extends $t{constructor(t){super(t),this.rate=Math.max(Math.min(t.rate,1),0),this.noiseShape=t.noiseShape,this.seed=t.seed,this.supportsMasking=!0}getNoiseShape(t){if(this.noiseShape==null)return this.noiseShape;let e=t.shape,n=[];for(let o=0;o<this.noiseShape.length;++o)n.push(this.noiseShape[o]==null?e[o]:this.noiseShape[o]);return n}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);if(0<this.rate&&this.rate<1){let o=e.training==null?!1:e.training,s=this.getNoiseShape(n);return xu(()=>Ay(n,this.rate,s,this.seed),()=>n,o)}return t})}getConfig(){let t={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},e=super.getConfig();return Object.assign(t,e),t}dispose(){return super.dispose()}};vc.className="Dropout";Q.registerClass(vc);var cf=class extends vc{constructor(t){super(t),this.inputSpec=[{ndim:3}]}getNoiseShape(t){let e=t.shape;return[e[0],1,e[2]]}};cf.className="SpatialDropout1D";Q.registerClass(cf);var pf=class extends $t{constructor(t){if(super(t),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.batchInputShape==null&&t.inputShape==null&&t.inputDim!=null){let e=null;t.batchSize!=null&&(e=t.batchSize),this.batchInputShape=[e,t.inputDim]}this.units=t.units,Ze(this.units,"units"),this.activation=Xs(t.activation),t.useBias!=null&&(this.useBias=t.useBias),this.kernelInitializer=de(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=de(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Be(t.kernelConstraint),this.biasConstraint=Be(t.biasConstraint),this.kernelRegularizer=be(t.kernelRegularizer),this.biasRegularizer=be(t.biasRegularizer),this.activityRegularizer=be(t.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(t){t=Bt(t);let e=t[t.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[e,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:e}}],this.built=!0}computeOutputShape(t){t=Bt(t);let e=t.slice();return e[e.length-1]=this.units,e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t),o=Iy(this.activation.getClassName()),s;return o!=null?s=To(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=To(n,this.kernel.read()),this.bias!=null&&(s=fn(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let t={units:this.units,activation:js(this.activation),useBias:this.useBias,kernelInitializer:Te(this.kernelInitializer),biasInitializer:Te(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:ze(this.kernelConstraint),biasConstraint:ze(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}};pf.className="Dense";Q.registerClass(pf);var mf=class extends $t{constructor(t){t=t||{},super(t),this.inputSpec=[{minNDim:3}],this.dataFormat=t.dataFormat}computeOutputShape(t){t=Bt(t);for(let e of t.slice(1))if(e==null)throw new M(`The shape of the input to "Flatten" is not fully defined (got ${t.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[t[0],No(t,1)]}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);if(this.dataFormat==="channelsFirst"&&n.rank>1){let o=[0];for(let s=2;s<n.rank;++s)o.push(s);o.push(1),n=Ot(n,o)}return R$(n)})}getConfig(){let t={};this.dataFormat!=null&&(t.dataFormat=this.dataFormat);let e=super.getConfig();return Object.assign(t,e),t}};mf.className="Flatten";Q.registerClass(mf);var ff=class extends $t{constructor(t){super(t),this.supportsMasking=!0,this.activation=Xs(t.activation)}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);return this.activation.apply(n)})}getConfig(){let t={activation:js(this.activation)},e=super.getConfig();return Object.assign(t,e),t}};ff.className="Activation";Q.registerClass(ff);var df=class extends $t{constructor(t){super(t),this.n=t.n,this.inputSpec=[{ndim:2}]}computeOutputShape(t){return[t[0],this.n,t[1]]}call(t,e){return B(()=>(t=Nt(t),$$(t,this.n)))}getConfig(){let t={n:this.n},e=super.getConfig();return Object.assign(t,e),t}};df.className="RepeatVector";Q.registerClass(df);var hf=class extends $t{constructor(t){super(t),this.targetShape=t.targetShape;for(let e=0;e<this.targetShape.length;++e)this.isUnknown(this.targetShape[e])&&(this.targetShape[e]=null)}isUnknown(t){return t<0||t==null}fixUnknownDimension(t,e){let n="Total size of new array must be unchanged.",o=e.slice(),s=1,i=null;for(let u=0;u<o.length;++u){let l=o[u];if(this.isUnknown(l))if(i===null)i=u;else throw new M("Can only specifiy one unknown dimension.");else s*=l}let a=No(t);if(i!==null){if(s===0||a%s!==0)throw new M(n);o[i]=a/s}else if(a!==s)throw new M(n);return o}computeOutputShape(t){let e=!1;for(let n=0;n<t.length;++n)if(this.isUnknown(t[n])){e=!0;break}return e?t.slice(0,1).concat(this.targetShape):t.slice(0,1).concat(this.fixUnknownDimension(t.slice(1),this.targetShape))}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return R(n,s)})}getConfig(){let t={targetShape:this.targetShape},e=super.getConfig();return Object.assign(t,e),t}};hf.className="Reshape";Q.registerClass(hf);var gf=class extends $t{constructor(t){if(super(t),t.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(t.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${t.dims} instead.`);let e=Zr(1,t.dims.length+1);if(!y.arraysEqual(t.dims.slice().sort(),e))throw new Error("Invalid permutation `dims`: "+JSON.stringify(t.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=t.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new ye({ndim:this.dims.length+1})]}computeOutputShape(t){t=Bt(t);let e=t.slice();return this.dims.forEach((n,o)=>{e[o+1]=t[n]}),e}call(t,e){return Ot(Nt(t),this.dimsIncludingBatch)}getConfig(){let t={dims:this.dims},e=super.getConfig();return Object.assign(t,e),t}};gf.className="Permute";Q.registerClass(gf);var xf=class extends $t{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null?this.maskValue=t.maskValue==null?0:t.maskValue:this.maskValue=0}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={maskValue:this.maskValue};return Object.assign(e,t),e}computeMask(t,e){let n=Nt(t),o=-1;return qu(Bs(n,this.maskValue),o)}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t),o=-1,s=!0,i=qu(Bs(n,this.maskValue),o,s);return D(n,J(i,n.dtype))})}};xf.className="Masking";Q.registerClass(xf);var yf=class extends $t{constructor(t){if(super(t),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",t.batchInputShape==null&&t.inputShape==null){let e=null;t.batchSize!=null&&(e=t.batchSize),t.inputLength==null?this.batchInputShape=[e,null]:this.batchInputShape=[e].concat(xe(t.inputLength))}this.inputDim=t.inputDim,Ze(this.inputDim,"inputDim"),this.outputDim=t.outputDim,Ze(this.outputDim,"outputDim"),this.embeddingsInitializer=de(t.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=be(t.embeddingsRegularizer),this.activityRegularizer=be(t.activityRegularizer),this.embeddingsConstraint=Be(t.embeddingsConstraint),this.maskZero=t.maskZero,this.supportsMasking=t.maskZero,this.inputLength=t.inputLength}build(t){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(t){}computeMask(t,e){return B(()=>this.maskZero?(t=Nt(t),Bs(t,It(t))):null)}computeOutputShape(t){if(t=Bt(t),this.inputLength==null)return[...t,this.outputDim];let e=xe(this.inputLength);if(e.length!==t.length-1)throw new M(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);{let n=0;for(let o=0;o<e.length;++o){let s=e[o],i=t[o+1];if(s!=null&&i!=null&&s!==i)throw new M(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);s==null&&(e[n]=i),n++}}return[t[0],...e,this.outputDim]}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);n.dtype!=="int32"&&(n=no(n,"int32"));let o=_y(this.embeddings.read(),R(n,[n.size]));return R(o,Bt(this.computeOutputShape(n.shape)))})}getConfig(){let t={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Te(this.embeddingsInitializer),embeddingsRegularizer:me(this.embeddingsRegularizer),activityRegularizer:me(this.activityRegularizer),embeddingsConstraint:ze(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},e=super.getConfig();return Object.assign(t,e),t}};yf.className="Embedding";Q.registerClass(yf);var pl=class extends $t{constructor(t){super(t||{}),this.supportsMasking=!0}mergeFunction(t){throw new St}computeElementwiseOpOutputShape(t,e){if(t==null||e==null)return null;if(t.length<e.length)return this.computeElementwiseOpOutputShape(e,t);if(e.length===0)return t;let n=t.slice(0,t.length-e.length);for(let o=0;o<e.length;++o){let s=t[t.length-e.length+o],i=e[o];if(s==null||i==null||s<0||i<0)n.push(null);else if(s===1)n.push(i);else if(i===1)n.push(s);else{if(s!==i)throw new M("Operands could not be broadcast together with shapes "+JSON.stringify(t)+" "+JSON.stringify(e));n.push(s)}}return n}build(t){if(Array.isArray(t)&&!Array.isArray(t[0])&&(t=[Bt(t)]),t=t,t.length<2)throw new M(`A merge layer should be called on an Array of at least 2 inputs. Got ${t.length} input(s).`);let e=[];for(let s of t)s!=null&&s[0]!==null&&e.push(s[0]);if(e=vo(e),e.length>1)throw new M(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(t)}.`);let n=t[0]==null?null:t[0].slice(1);for(let s=1;s<t.length;++s){let i=t[s]==null?null:t[s].slice(1);n=this.computeElementwiseOpOutputShape(n,i)}let o=t.map(s=>s.length);t.indexOf(null)===-1&&vo(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(t,e){return B(()=>{if(t=t,this.reshapeRequired){let n=[],o=t.map(s=>s.rank);if(o.indexOf(null)===-1){let s=qs(o);for(let i of t){let a=i.rank;for(let u=0;u<s-a;++u)i=nl(i,1);n.push(i)}return this.mergeFunction(n)}else{let s=!1;for(let u of t){let l=u.rank;if(l==null){let c=u.shape,p=c[0],m=c.slice(1).concat([p]),f=R(u,[p].concat(No(c.slice(1))));f=Ot(f,[1,0]),f=R(f,m),n.push(f),s=!0}else if(l>1){let c=Zr(1,l).concat([0]);n.push(Ot(u,c)),s=!0}else n.push(u)}let i=this.mergeFunction(n),a=i.rank;if(s){if(a==null){let u=i.shape,l=u.length,c=u[l-1],p=[c].concat(u.slice(0,u.length-1));i=R(Ot(R(i,[-1,c]),[1,0]),p)}else if(a>1){let u=[a-1].concat(Zr(0,a-1));i=Ot(i,u)}}return i}}else return this.mergeFunction(t)})}computeOutputShape(t){t=t;let e;t[0]==null?e=null:e=t[0].slice(1);for(let o=1;o<t.length;++o){let s=t[o]==null?null:t[o].slice(1);e=this.computeElementwiseOpOutputShape(e,s)}let n=[];for(let o of t)o!=null&&o[0]!==null&&n.push(o[0]);return n=vo(n),n.length===1?e=n.concat(e):e=[null].concat(e),e}computeMask(t,e){return B(()=>{if(e==null)return null;if(!Array.isArray(e))throw new M("`mask` should be an Array");if(!Array.isArray(t))throw new M("`inputs` should be an Array");if(e.length!==t.length)throw new M(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${t.length} vs ${e.length})`);if(e.every(o=>o==null))return null;e=e.map(o=>o==null?o:rr(o,0));let n=e[0];for(let o=1;o<e.length-1;++o)n=Rr(n,e[o]);return n})}},bf=class extends pl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=X(e,t[n]);return e})}};bf.className="Add";Q.registerClass(bf);var wf=class extends pl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=D(e,t[n]);return e})}};wf.className="Multiply";Q.registerClass(wf);var Cf=class extends pl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=X(e,t[n]);return D(1/t.length,e)})}};Cf.className="Average";Q.registerClass(Cf);var If=class extends pl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0];for(let n=1;n<t.length;++n)e=Sn(e,t[n]);return e})}};If.className="Maximum";Q.registerClass(If);var Sf=class extends pl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0];for(let n=1;n<t.length;++n)e=Mi(e,t[n]);return e})}};Sf.className="Minimum";Q.registerClass(Sf);var vf=class extends pl{constructor(t){super(t),this.DEFAULT_AXIS=-1,t==null&&(t={}),this.axis=t.axis==null?this.DEFAULT_AXIS:t.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(t){if(!(Array.isArray(t)&&Array.isArray(t[0]))||t.length===1)throw new M("A `Concatenate` layer should be called on a list of at least 2 inputs");t=t;let e=!0;for(let o of t)if(o!=null){e=!1;break}if(e)return;let n=[];for(let o=0;o<t.length;++o){let s=t[o].slice();s.splice(this.axis,1);let i=!1;for(let a of n)if(y.arraysEqual(a,s)){i=!0;break}i||n.push(s)}if(n.length>1)throw new M("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(t))}mergeFunction(t){return B(()=>Nm(t,this.axis))}computeOutputShape(t){if(!(Array.isArray(t)&&Array.isArray(t[0])))throw new M("A `Concatenate` layer should be called on a list of inputs.");let e=t,n=e[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of e.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(t,e){if(e==null)return null;if(!Array.isArray(e))throw new M("`mask` should be an array for Concatenate");if(!Array.isArray(t))throw new M("`inputs` should be an array for Concatenate");if(e.length!==t.length)throw new M(`Mismatch in the length of mask (${e.length}) and the legnth of inputs (${t.length})`);return B(()=>{let n=!0;if(e.forEach(i=>{if(i!=null){n=!1;return}}),n)return null;let o=[];for(let i=0;i<t.length;++i)e[i]==null?o.push(J(yr(t[i]),"bool")):e[i].rank<t[i].rank?o.push(rr(e[i],-1)):o.push(e[i]);let s=ne(o,this.axis);return Zp(s,-1,!1)})}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};vf.className="Concatenate";Q.registerClass(vf);function $h(r,t){for(;r<0;)r+=t;return r}function tY(r,t,e){if(r.shape.length>3||t.shape.length>3)throw new St("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof e=="number"&&(e=[e,e]),r.dtype==="complex64"||t.dtype==="complex64")throw new St("batchDot is not implemented for complex64-type Tensors yet.");let n=r.shape.length,o=t.shape.length;e==null&&(e=[n-1,o-2]);let s=e;return B(()=>{let i;if(n>o){i=n-o;let u=[];for(let l=0;l<i;++l)u.push(1);t=R(t,t.shape.concat(u))}else if(o>n){i=o-n;let u=[];for(let l=0;l<i;++l)u.push(1);r=R(r,r.shape.concat(u))}else i=0;let a;if(r.shape.length===2&&t.shape.length===2)s[0]===s[1]?a=ft(D(r,t),s[0]):a=ft(D(Ot(r,[1,0]),t),s[1]);else{let u=s[0]!==r.shape.length-1,l=s[1]===t.shape.length-1;a=Lt(r,t,u,l)}if(i>0){let u;n>o?u=n+o-3:u=n-1;let l=[];for(let c=u;c<u+i;++c)l.push(c);a=Mn(a,l)}return a.shape.length===1&&(a=rr(a,1)),a})}var Nf=class extends pl{constructor(t){super(t),this.axes=t.axes,this.normalize=t.normalize==null?!1:t.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(t){y.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0],n=t[1];if(e.length>3||n.length>3)throw new St("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,n);if(e[o[0]]!==n[o[1]])throw new M(`Dimension incompatibility: ${e[o[0]]} !== ${n[o[1]]}`)}mergeFunction(t){if(t.length!==2)throw new M(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${t.length} input(s).`);let e=t[0],n=t[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,i)=>$h(s,t[i].shape.length)):o=[$h(this.axes,e.shape.length),$h(this.axes,n.shape.length)],this.normalize&&(e=Sh(e,o[0]),n=Sh(n,o[1])),tY(e,n,o)}interpretAxes(t,e){let n;return Array.isArray(this.axes)?n=this.axes:n=[$h(this.axes,t.length),$h(this.axes,e.length)],n}computeOutputShape(t){y.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0].slice(),n=t[1].slice();if(e.length>3||n.length>3)throw new St("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,n);e.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=e.concat(n);return s.length===1&&s.push(1),s}computeMask(t,e){return null}getConfig(){let t={axes:this.axes,normalize:this.normalize},e=super.getConfig();return Object.assign(t,e),t}};Nf.className="Dot";Q.registerClass(Nf);var Tf=class extends $t{constructor(t){super(t),this.supportsMasking=!0,this.stddev=t.stddev}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={stddev:this.stddev};return Object.assign(e,t),e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);return xu(()=>X(Tm(n.shape,0,this.stddev),n),()=>n,e.training||!1)})}};Tf.className="GaussianNoise";Q.registerClass(Tf);var kf=class extends $t{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);return this.rate>0&&this.rate<1?xu(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return D(n,Tm(n.shape,1,s))},()=>n,e.training||!1):n})}};kf.className="GaussianDropout";Q.registerClass(kf);var Ef=class extends $t{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate,this.noiseShape=t.noiseShape}_getNoiseShape(t){return this.noiseShape||Nt(t).shape}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return B(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(t);return xu(()=>{let s=Nt(t),i=1.6732632423543772,a=1.0507009873554805,u=-i*a,l=ln(zi(n),this.rate);l=no(l,"float32");let c=((1-this.rate)*(1+this.rate*u**2))**-.5,p=-c*u*this.rate,m=X(D(s,l),D(X(l,-1),u));return X(D(m,c),p)},()=>Nt(t),e.training||!1)}return t})}};Ef.className="AlphaDropout";Q.registerClass(Ef);function Dh(r,t,e,n,o,s=.001){let i;if(r.rank===2)i=xx(r,t,e,n,o,s);else if(r.rank===3)i=yx(r,t,e,n,o,s);else if(r.rank===4)i=bx(r,t,e,n,o,s);else throw new St(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return i}function eY(r,t,e,n,o=.001){return B(()=>{let s=Zu(r,n),i=s.mean,a=s.variance;return[Dh(r,i,a,e,t,o),i,a]})}function rY(r,t,e,n,o=.001){return B(()=>{let s=Zu(r,n),i=s.mean,a=s.variance,u=[];for(let d of Zr(0,r.rank))n.indexOf(d)!==-1?u.push(1):u.push(r.shape[d]);let l=R(i,u),c=R(a,u),p=t==null?null:R(t,u),m=e==null?null:R(e,u);return[Dh(r,l,c,m,p,o),i,a]})}function nY(r,t,e,n,o=.001){return y.arraysEqual(n.slice().sort(),Zr(0,r.rank-1))?eY(r,t,e,n,o):rY(r,t,e,n,o)}var _f=class extends $t{constructor(t){t==null&&(t={}),super(t),this.supportsMasking=!0,this.axis=t.axis==null?-1:t.axis,this.momentum=t.momentum==null?.99:t.momentum,this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=de(t.betaInitializer||"zeros"),this.gammaInitializer=de(t.gammaInitializer||"ones"),this.movingMeanInitializer=de(t.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=de(t.movingVarianceInitializer||"ones"),this.betaConstraint=Be(t.betaConstraint),this.gammaConstraint=Be(t.gammaConstraint),this.betaRegularizer=be(t.betaRegularizer),this.gammaRegularizer=be(t.gammaRegularizer)}build(t){t=Bt(t);let e=this.axis>=0?this.axis:this.axis+t.length,n=t[e];if(n==null)throw new M(`Axis ${e} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(t)}.`);this.inputSpec=[new ye({ndim:t.length,axes:{[e]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight("gamma",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(t,e){return B(()=>{let n=e.training==null?!1:e.training,o=Nt(t),s=o.shape,i=s.length,a=Zr(0,i),u=this.axis>=0?this.axis:this.axis+i;a.splice(u,1);let l=Io(1,i);l[u]=s[u];let c=a.slice();c.sort();let p=!y.arraysEqual(c,Zr(0,i).slice(0,i-1)),m=()=>{if(p){let b=R(this.movingMean.read(),l),w=R(this.movingVariance.read(),l),C=this.center?R(this.beta.read(),l):null,N=this.scale?R(this.gamma.read(),l):null;return Dh(o,b,w,C,N,this.epsilon)}else return Dh(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=nY(o,this.gamma.read(),this.beta.read(),a,this.epsilon),g=(b,w,C)=>{B(()=>{let N=1-C,_=b.read(),A=D(ct(_,w),N);b.write(ct(_,A))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let t={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Te(this.betaInitializer),gammaInitializer:Te(this.gammaInitializer),movingMeanInitializer:Te(this.movingMeanInitializer),movingVarianceInitializer:Te(this.movingVarianceInitializer),betaRegularizer:me(this.betaRegularizer),gammaRegularizer:me(this.gammaRegularizer),betaConstraint:ze(this.betaConstraint),gammaConstraint:ze(this.gammaConstraint)},e=super.getConfig();return Object.assign(t,e),t}};_f.className="BatchNormalization";Q.registerClass(_f);var Af=class extends $t{constructor(t){if(t==null&&(t={}),super(t),this.axis=t.axis==null?-1:t.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let e of this.axis)if(!Number.isInteger(e))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=de(t.betaInitializer||"zeros"),this.gammaInitializer=de(t.gammaInitializer||"ones"),this.betaRegularizer=be(t.betaRegularizer),this.gammaRegularizer=be(t.gammaRegularizer),this.supportsMasking=!0}build(t){t=Bt(t);let e=t.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=e);for(let s of this.axis)if(s<0||s>=e)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==vo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>t[s]),o=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(t,e){let n=Nt(t),o=n.shape,s=o.length;return B(()=>{let{mean:a,variance:u}=Zu(n,this.axis,!0),l=Io(1,s);for(let h of this.axis)l[h]=o[h];let c=h=>h!=null&&h.shape.length!==s?R(h,l):h,p=this.scale?c(this.gamma.read()):null,m=this.center?c(this.beta.read()):null,f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(o[h]),d.push(1)):(f.push(1),d.push(o[h]));return a=Dr(a,f),u=Dr(u,f),p!=null&&(p=Dr(p,d)),m!=null&&(m=Dr(m,d)),Dh(n,a,u,m,p,this.epsilon)})}getConfig(){let t={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Te(this.betaInitializer),gammaInitializer:Te(this.gammaInitializer),betaRegularizer:me(this.betaRegularizer),gammaRegularizer:me(this.gammaRegularizer)},e=super.getConfig();return Object.assign(t,e),t}};Af.className="LayerNormalization";Q.registerClass(Af);function oY(r,t,e){return B(()=>{if(r.rank!==4)throw new M(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new M("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(e==null&&(e=mn()),e!=="channelsLast"&&e!=="channelsFirst")throw new M(`Unknown data format: ${e}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return e==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],cn(r,n)})}var $f=class extends $t{constructor(t){if(t==null&&(t={}),super(t),this.dataFormat=t.dataFormat==null?mn():t.dataFormat,t.padding==null)this.padding=[[1,1],[1,1]];else if(typeof t.padding=="number")this.padding=[[t.padding,t.padding],[t.padding,t.padding]];else{if(t.padding=t.padding,t.padding.length!==2)throw new M(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${t.padding.length} array.`);let e,n;if(typeof t.padding[0]=="number")e=[t.padding[0],t.padding[0]],n=[t.padding[1],t.padding[1]];else{if(t.padding=t.padding,t.padding[0].length!==2)throw new M(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${t.padding[0].length} array.`);if(e=t.padding[0],t.padding[1].length!==2)throw new M(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${t.padding[1].length} array.`);n=t.padding[1]}this.padding=[e,n]}this.inputSpec=[new ye({ndim:4})]}computeOutputShape(t){t=Bt(t);let e,n;return this.dataFormat==="channelsFirst"?(t[2]!=null&&t[2]>=0?e=t[2]+this.padding[0][0]+this.padding[0][1]:e=null,t[3]!=null&&t[3]>=0?n=t[3]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],t[1],e,n]):(t[1]!=null&&t[1]>=0?e=t[1]+this.padding[0][0]+this.padding[0][1]:e=null,t[2]!=null&&t[2]>=0?n=t[2]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],e,n,t[3]])}call(t,e){return B(()=>oY(Nt(t),this.padding,this.dataFormat))}getConfig(){let t={padding:this.padding,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};$f.className="ZeroPadding2D";Q.registerClass($f);function wb(r,t,e,n,o,s){return B(()=>{Fe(o),I0(s),pn(n),e==null&&(e=[1,1]),n==null&&(n="valid"),o==null&&(o=mn()),s==null&&(s="max"),r=Ah(r,o);let i,a=n==="same"?"same":"valid";return s==="max"?i=ru(r,t,e,a):i=Yl(r,t,e,a),o==="channelsFirst"&&(i=Ot(i,[0,3,1,2])),i})}function CD(r,t,e,n,o,s){return B(()=>{Fe(o),I0(s),pn(n),e==null&&(e=[1,1,1]),n==null&&(n="valid"),o==null&&(o=mn()),s==null&&(s="max"),r=z0(r,o);let i,a=n==="same"?"same":"valid";return s==="max"?i=Hx(r,t,e,a):i=gx(r,t,e,a),o==="channelsFirst"&&(i=Ot(i,[0,4,1,2,3])),i})}var hb=class extends $t{constructor(t){if(t.poolSize==null&&(t.poolSize=2),super(t),typeof t.poolSize=="number")this.poolSize=[t.poolSize];else if(Array.isArray(t.poolSize)&&t.poolSize.length===1&&typeof t.poolSize[0]=="number")this.poolSize=t.poolSize;else throw new M(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.poolSize)}`);if(Ze(this.poolSize,"poolSize"),t.strides==null)this.strides=this.poolSize;else if(typeof t.strides=="number")this.strides=[t.strides];else if(Array.isArray(t.strides)&&t.strides.length===1&&typeof t.strides[0]=="number")this.strides=t.strides;else throw new M(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.strides)}`);Ze(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,pn(this.padding),this.inputSpec=[new ye({ndim:3})]}computeOutputShape(t){t=Bt(t);let e=Nn(t[1],this.poolSize[0],this.padding,this.strides[0]);return[t[0],e,t[2]]}call(t,e){return B(()=>{this.invokeCallHook(t,e),t=nl(Nt(t),2);let n=this.poolingFunction(Nt(t),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Mn(n,[2])})}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides},e=super.getConfig();return Object.assign(t,e),t}},Df=class extends hb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Fe(s),pn(o),wb(t,e,n,o,s,"max")}};Df.className="MaxPooling1D";Q.registerClass(Df);var Rf=class extends hb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Fe(s),pn(o),wb(t,e,n,o,s,"avg")}};Rf.className="AveragePooling1D";Q.registerClass(Rf);var gb=class extends $t{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==2)throw new M(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides];Ze(this.poolSize,"poolSize"),Ze(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Fe(this.dataFormat),pn(this.padding),this.inputSpec=[new ye({ndim:4})]}computeOutputShape(t){t=Bt(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2];return e=Nn(e,this.poolSize[0],this.padding,this.strides[0]),n=Nn(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,n]:[t[0],e,n,t[3]]}call(t,e){return B(()=>(this.invokeCallHook(t,e),this.poolingFunction(Nt(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Ff=class extends gb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Fe(s),pn(o),wb(t,e,n,o,s,"max")}};Ff.className="MaxPooling2D";Q.registerClass(Ff);var Of=class extends gb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Fe(s),pn(o),wb(t,e,n,o,s,"avg")}};Of.className="AveragePooling2D";Q.registerClass(Of);var xb=class extends $t{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==3)throw new M(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides,t.strides];Ze(this.poolSize,"poolSize"),Ze(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Fe(this.dataFormat),pn(this.padding),this.inputSpec=[new ye({ndim:5})]}computeOutputShape(t){t=Bt(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[4]:t[3];return e=Nn(e,this.poolSize[0],this.padding,this.strides[0]),n=Nn(n,this.poolSize[1],this.padding,this.strides[1]),o=Nn(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,n,o]:[t[0],e,n,o,t[4]]}call(t,e){return B(()=>(this.invokeCallHook(t,e),this.poolingFunction(Nt(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Pf=class extends xb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Fe(s),pn(o),CD(t,e,n,o,s,"max")}};Pf.className="MaxPooling3D";Q.registerClass(Pf);var Lf=class extends xb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Fe(s),pn(o),CD(t,e,n,o,s,"avg")}};Lf.className="AveragePooling3D";Q.registerClass(Lf);var yb=class extends $t{constructor(t){super(t),this.inputSpec=[new ye({ndim:3})]}computeOutputShape(t){return[t[0],t[2]]}call(t,e){throw new St}},Mf=class extends yb{constructor(t){super(t||{})}call(t,e){return B(()=>{let n=Nt(t);return ve(n,1)})}};Mf.className="GlobalAveragePooling1D";Q.registerClass(Mf);var zf=class extends yb{constructor(t){super(t||{})}call(t,e){return B(()=>{let n=Nt(t);return Ir(n,1)})}};zf.className="GlobalMaxPooling1D";Q.registerClass(zf);var bb=class extends $t{constructor(t){super(t),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Fe(this.dataFormat),this.inputSpec=[new ye({ndim:4})]}computeOutputShape(t){return t=t,this.dataFormat==="channelsLast"?[t[0],t[3]]:[t[0],t[1]]}call(t,e){throw new St}getConfig(){let t={dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Bf=class extends bb{call(t,e){return B(()=>{let n=Nt(t);return this.dataFormat==="channelsLast"?ve(n,[1,2]):ve(n,[2,3])})}};Bf.className="GlobalAveragePooling2D";Q.registerClass(Bf);var Vf=class extends bb{call(t,e){return B(()=>{let n=Nt(t);return this.dataFormat==="channelsLast"?Ir(n,[1,2]):Ir(n,[2,3])})}};Vf.className="GlobalMaxPooling2D";Q.registerClass(Vf);var Cb=class extends $t{constructor(t){super(t),this.layer=t.layer}build(t){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(t){this.layer!=null&&(this.layer.trainable=t)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(t){this.layer.setWeights(t)}getConfig(){let t={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},e=super.getConfig();return Object.assign(t,e),t}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(t)}static fromConfig(t,e,n={}){let o=e.layer,s=gn(o,n);delete e.layer;let i={layer:s};return Object.assign(i,e),new t(i)}},Gf=class extends Cb{constructor(t){super(t),this.supportsMasking=!0}build(t){if(t=Bt(t),t.length<3)throw new M(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(t)}`);this.inputSpec=[{shape:t}];let e=[t[0]].concat(t.slice(2));this.layer.built||(this.layer.build(e),this.layer.built=!0),super.build(t)}computeOutputShape(t){t=Bt(t);let e=[t[0]].concat(t.slice(2)),n=this.layer.computeOutputShape(e),o=t[1];return[n[0],o].concat(n.slice(1))}call(t,e){return B(()=>(t=Nt(t),V0((i,a)=>[Nt(this.layer.call(i,e)),[]],t,[],!1,null,null,!1,!0)[1]))}};Gf.className="TimeDistributed";Q.registerClass(Gf);function sY(r){Wi(T$,"BidirectionalMergeMode",r)}var iY="concat",Wf=class extends Cb{constructor(t){super(t);let e=t.layer.getConfig(),n={};n.className=t.layer.getClassName(),n.config=e,this.forwardLayer=gn(n),e.goBackwards=e.goBackwards!==!0;let o={};if(o.className=t.layer.getClassName(),o.config=e,this.backwardLayer=gn(o),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=t.mergeMode===void 0?iY:t.mergeMode,sY(this.mergeMode),t.weights)throw new St("weights support is not implemented for Bidirectional layer yet.");this._stateful=t.layer.stateful,this.returnSequences=t.layer.returnSequences,this.returnState=t.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=t.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(t){this._trainable=t,this.forwardLayer!=null&&(this.forwardLayer.trainable=t),this.backwardLayer!=null&&(this.backwardLayer.trainable=t)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(t){let e=t.length,n=Math.floor(e/2);this.forwardLayer.setWeights(t.slice(0,n)),this.backwardLayer.setWeights(t.slice(n))}computeOutputShape(t){let e=this.forwardLayer.computeOutputShape(t);Array.isArray(e)&&Array.isArray(e[0])||(e=[e]),e=e;let n,o,s;return this.returnState&&(s=e.slice(1)),n=e[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):Nr(o)}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=B0(t,n,o,this.numConstants);if(t=s.inputs,n=s.initialState,o=s.constants,Array.isArray(t)&&(n=t.slice(1),t=t[0]),(n==null||n.length===0)&&o==null)return super.apply(t,e);let i=[],a=[];if(n!=null){let l=n.length;if(l%2>0)throw new M("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");e.initialState=n,i.push(...n);let c=n.map(p=>new ye({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),a.push(...c)}if(o!=null)throw new St("Support for constants in Bidirectional layers is not implemented yet.");let u=i[0]instanceof Jr;for(let l of i)if(l instanceof Jr!==u)throw new M("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(u){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return B(()=>{let n=e.initialState,o,s;if(n==null)o=this.forwardLayer.call(t,e),s=this.backwardLayer.call(t,e);else{let u=n.slice(0,n.length/2),l=n.slice(n.length/2);o=this.forwardLayer.call(t,Object.assign(e,{initialState:u})),s=this.backwardLayer.call(t,Object.assign(e,{initialState:l}))}let i;this.returnState&&(Array.isArray(o)&&(i=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=pr(s,1));let a;return this.mergeMode==="concat"?a=Nm([o,s]):this.mergeMode==="sum"?a=X(o,s):this.mergeMode==="ave"?a=D(.5,X(o,s)):this.mergeMode==="mul"?a=D(o,s):this.mergeMode==null&&(a=[o,s]),this.returnState?this.mergeMode==null?a.concat(i):[a].concat(i):a})}resetStates(t){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(t){Hs(this.forwardLayer.name,()=>{this.forwardLayer.build(t)}),Hs(this.backwardLayer.name,()=>{this.backwardLayer.build(t)}),this.built=!0}computeMask(t,e){Array.isArray(e)&&(e=e[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[e,e]:n=e:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(i=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(t),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(t)}getConfig(){let t={mergeMode:this.mergeMode},e=super.getConfig();return Object.assign(t,e),t}static fromConfig(t,e){let n=gn(e.layer);if(delete e.layer,e.numConstants!=null)throw new St("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let o=e;return o.layer=n,new t(o)}};Wf.className="Bidirectional";Q.registerClass(Wf);var Uf=class extends $t{constructor(t){super(t),this.scale=t.scale,t.offset?this.offset=t.offset:this.offset=0}getConfig(){let t={scale:this.scale,offset:this.offset},e=super.getConfig();return Object.assign(t,e),t}call(t,e){return B(()=>(t=Nt(t),t.dtype!=="float32"&&(t=no(t,"float32")),X(D(t,this.scale),this.offset)))}};Uf.className="Rescaling";Q.registerClass(Uf);var aY=["bilinear","nearest"],ID=new Set(aY),Hf=class extends $t{constructor(t){if(super(t),this.height=t.height,this.width=t.width,t.interpolation)if(ID.has(t.interpolation))this.interpolation=t.interpolation;else throw new M(`Invalid interpolation parameter: ${t.interpolation} is not implemented`);else this.interpolation="bilinear";this.cropToAspectRatio=Boolean(t.cropToAspectRatio)}computeOutputShape(t){t=Bt(t);let e=t[2];return[this.height,this.width,e]}getConfig(){let t={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},e=super.getConfig();return Object.assign(t,e),t}call(t,e){return B(()=>{let n=[this.height,this.width];if(this.interpolation==="bilinear")return Gs.resizeBilinear(t,n,!this.cropToAspectRatio);if(this.interpolation==="nearest")return Gs.resizeNearestNeighbor(t,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[...ID]} are supported`)})}};Hf.className="Resizing";Q.registerClass(Hf);function SD(r,t,e,n){let o=Nt(r);if(o.dtype!=="int32"&&(o=no(o,"int32")),t==="int")return o;let s=o.shape;if(o.rank===0&&(o=rr(o,-1)),t==="oneHot"&&o.shape[o.shape.length-1]!==1&&(o=rr(o,-1)),o.rank>2)throw new M(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${o.rank}.`);let i=["multiHot","oneHot"].includes(t),a=o,u;if(typeof n!="undefined"&&t==="count"?u=ch(a,n,e,i):u=ch(a,[],e,i),t!=="tfIdf")return u;if(n)return D(u,n);throw new M("When outputMode is 'tfIdf', weights must be provided.")}var qf=class extends $t{constructor(t){super(t),this.numTokens=t.numTokens,t.outputMode?this.outputMode=t.outputMode:this.outputMode="multiHot"}getConfig(){let t={numTokens:this.numTokens,outputMode:this.outputMode},e=super.getConfig();return Object.assign(t,e),t}computeOutputShape(t){return t=Bt(t),t==null?[this.numTokens]:this.outputMode==="oneHot"&&t[t.length-1]!==1?(t.push(this.numTokens),t):(t[t.length-1]=this.numTokens,t)}call(t,e){return B(()=>{t=Nt(t),t.dtype!=="int32"&&(t=no(t,"int32"));let n;if(typeof e.countWeights!="undefined"){if(this.outputMode!=="count")throw new M(`countWeights is not used when outputMode !== count.
|
|
Received countWeights=${e.countWeights}`);n=Nt(e.countWeights)}let o=Ir(t),s=Ja(t),i=Re(this.numTokens,o).bufferSync().get(0),a=ln(s,0).bufferSync().get(0);if(!(i&&a))throw new M(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return SD(t,this.outputMode,this.numTokens,n)})}};qf.className="CategoryEncoding";Q.registerClass(qf);function uY(r){return new Ks(r)}function cY(r){return new Ym(r)}function pY(r){return new Km(r)}function mY(r){return new jm(r)}function fY(r){return new Xm(r)}function dY(r){return new Jm(r)}function hY(r){return new Zm(r)}function gY(r){return new Su(r)}function xY(r){return new il(r)}function yY(r){return new Qm(r)}function bY(r){return new al(r)}function wY(r){return new tf(r)}function CY(r){return new ef(r)}function IY(r){return new rf(r)}function SY(r){return new nf(r)}function vY(r){return new of(r)}function NY(r){return new ff(r)}function TY(r){return new pf(r)}function kY(r){return new vc(r)}function EY(r){return new cf(r)}function _Y(r){return new mf(r)}function AY(r){return new df(r)}function $Y(r){return new hf(r)}function DY(r){return new gf(r)}function RY(r){return new yf(r)}function FY(r){return new bf(r)}function OY(r){return new Cf(r)}function PY(r){return new vf(r)}function LY(r){return new If(r)}function MY(r){return new Sf(r)}function zY(r){return new wf(r)}function BY(r){return new Nf(r)}function VY(r){return new _f(r)}function GY(r){return new Af(r)}function WY(r){return new $f(r)}function G0(r){return new Rf(r)}function UY(r){return G0(r)}function HY(r){return G0(r)}function W0(r){return new Of(r)}function qY(r){return W0(r)}function KY(r){return W0(r)}function U0(r){return new Lf(r)}function jY(r){return U0(r)}function XY(r){return U0(r)}function YY(r){return new Mf(r)}function ZY(r){return new Bf(r)}function vD(r){return new zf(r)}function ND(r){return new Vf(r)}function TD(r){return new Df(r)}function kD(r){return new Ff(r)}function JY(r){return new Pf(r)}function QY(r){return new af(r)}function tZ(r){return new Cc(r)}function eZ(r){return new lf(r)}function rZ(r){return new ul(r)}function nZ(r){return new sf(r)}function oZ(r){return new wc(r)}function sZ(r){return new uf(r)}function iZ(r){return new Sc(r)}function aZ(r){return new Tn(r)}function lZ(r){return new Ic(r)}function uZ(r){return new Wf(r)}function cZ(r){return new Gf(r)}var pZ=vD,mZ=ND,fZ=TD,dZ=kD;function hZ(r){return new Tf(r)}function gZ(r){return new kf(r)}function xZ(r){return new Ef(r)}function yZ(r){return new xf(r)}function bZ(r){return new Uf(r)}function wZ(r){return new Hf(r)}function CZ(r){return new qf(r)}var _D={};Wt(_D,{MAPE:()=>DZ,MSE:()=>OZ,binaryAccuracy:()=>IZ,binaryCrossentropy:()=>SZ,categoricalAccuracy:()=>NZ,categoricalCrossentropy:()=>TZ,cosineProximity:()=>_Z,mape:()=>RZ,meanAbsoluteError:()=>AZ,meanAbsolutePercentageError:()=>$Z,meanSquaredError:()=>FZ,mse:()=>PZ,precision:()=>kZ,recall:()=>EZ,sparseCategoricalAccuracy:()=>vZ});function IZ(r,t){return Th(r,t)}function SZ(r,t){return Wy(r,t)}function vZ(r,t){return Uy(r,t)}function NZ(r,t){return kh(r,t)}function TZ(r,t){return Eh(r,t)}function kZ(r,t){return A0(r,t)}function EZ(r,t){return J$(r,t)}function _Z(r,t){return Nh(r,t)}function AZ(r,t){return Vm(r,t)}function $Z(r,t){return bu(r,t)}function DZ(r,t){return bu(r,t)}function RZ(r,t){return bu(r,t)}function FZ(r,t){return Hi(r,t)}function OZ(r,t){return Hi(r,t)}function PZ(r,t){return Hi(r,t)}var AD={};Wt(AD,{modelFromJSON:()=>dD});var $D={};Wt($D,{l1:()=>MZ,l1l2:()=>LZ,l2:()=>zZ});function LZ(r){return new wu(r)}function MZ(r){return yD(r)}function zZ(r){return bD(r)}var Sb=class extends sl{constructor(){super(...arguments),this.model=null}setModel(t){if(!(t instanceof Bn))throw new Error("model must be a LayersModel, not some other Container");this.model=t}};function Ib(r,t){return r<t}function DD(r,t){return r>t}var vb=class extends Sb{constructor(t){if(super(),t==null&&(t={}),t.restoreBestWeights)throw new St("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=t.monitor||"val_loss",this.minDelta=Math.abs(t.minDelta||0),this.patience=t.patience||0,this.verbose=t.verbose||0,this.mode=t.mode||"auto",this.baseline=t.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Ib:this.mode==="max"?this.monitorFunc=DD:this.monitor.indexOf("acc")!==-1?this.monitorFunc=DD:this.monitorFunc=Ib,this.monitorFunc===Ib&&(this.minDelta*=-1)}async onTrainBegin(t){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Ib?1/0:-1/0}async onEpochEnd(t,e){await Ui(e);let n=this.getMonitorValue(e);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=t,this.model.stopTraining=!0)))}async onTrainEnd(t){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(t){t==null&&(t={});let e=t[this.monitor];return e==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(t)}`),e}};function BZ(r){return new vb(r)}var VZ={earlyStopping:BZ};var GZ=z();GZ.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,r=>{r&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var oo;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_QINT16=15]="DT_QINT16",r[r.DT_QUINT16=16]="DT_QUINT16",r[r.DT_UINT16=17]="DT_UINT16",r[r.DT_COMPLEX128=18]="DT_COMPLEX128",r[r.DT_HALF=19]="DT_HALF",r[r.DT_RESOURCE=20]="DT_RESOURCE",r[r.DT_VARIANT=21]="DT_VARIANT",r[r.DT_UINT32=22]="DT_UINT32",r[r.DT_UINT64=23]="DT_UINT64",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",r[r.DT_QINT16_REF=115]="DT_QINT16_REF",r[r.DT_QUINT16_REF=116]="DT_QUINT16_REF",r[r.DT_UINT16_REF=117]="DT_UINT16_REF",r[r.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",r[r.DT_HALF_REF=119]="DT_HALF_REF",r[r.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",r[r.DT_VARIANT_REF=121]="DT_VARIANT_REF",r[r.DT_UINT32_REF=122]="DT_UINT32_REF",r[r.DT_UINT64_REF=123]="DT_UINT64_REF"})(oo||(oo={}));var RD;(function(r){let t;(function(e){e[e.LEGACY=0]="LEGACY",e[e.V1=1]="V1",e[e.V2=2]="V2"})(t=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(RD||(RD={}));var H0={};function UZ(r,t){let e={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:t};H0[r]=e}function Nb(r){return H0[r]}function HZ(r){delete H0[r]}function S(r,t,e,n,o){let s=t.inputParams[r];if(s&&s.inputIndexStart!==void 0){let a=s.inputIndexStart,u=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?a+1:s.inputIndexEnd;if(s.type==="tensor")return br(t.inputNames[s.inputIndexStart],e,n,o);if(s.type==="tensors")return t.inputNames.slice(a,u).map(m=>br(m,e,n,o));let l=br(t.inputNames.slice(a)[0],e,n,o),c=l.dataSync();return s.type==="number"?c[0]:y.toNestedArray(l.shape,c)}let i=t.attrParams[r];return i&&i.value}function br(r,t,e,n){let[o,s]=xn(r);if(n!=null){let a=n.getHashTableHandleByName(o);if(a!=null)return a}let i=e.currentContextIds.find(a=>!!t[Tb(o,a)]);return i!==void 0?t[Tb(o,i)][s]:void 0}function FD(r,t,e){return t[Tb(r,e.currentContextId)]}function _o(r,t){let[e,n,o]=xn(r);return[Tb(e,t&&t.currentContextId),n,o]}function Tb(r,t){return t?`${r}-${t}`:r}function xn(r){let t=r.split(":");if(t.length===1)return[r,0,void 0];let e=t[0],n=t.length===3?t[1]:void 0,o=Number(t[t.length-1]);return[e,o,n]}function Rh(r,t,e){let n=S("pad",r,t,e);if(n==="explicit"){n=S("explicitPaddings",r,t,e);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function Zs(r){return r.kept?r:sn(r)}var q0={};Wt(q0,{json:()=>qZ});var qZ=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var K0={};Wt(K0,{json:()=>KZ});var KZ=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var j0={};Wt(j0,{json:()=>jZ});var jZ=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}];var X0={};Wt(X0,{json:()=>XZ});var XZ=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var Y0={};Wt(Y0,{json:()=>YZ});var YZ=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var Z0={};Wt(Z0,{json:()=>ZZ});var ZZ=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var J0={};Wt(J0,{json:()=>JZ});var JZ=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var Q0={};Wt(Q0,{json:()=>QZ});var QZ=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var tN={};Wt(tN,{json:()=>t7});var t7=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}];var eN={};Wt(eN,{json:()=>e7});var e7=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}];var rN={};Wt(rN,{json:()=>r7});var r7=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var nN={};Wt(nN,{json:()=>n7});var n7=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}];var oN={};Wt(oN,{json:()=>o7});var o7=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var sN={};Wt(sN,{json:()=>s7});var s7=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var iN={};Wt(iN,{json:()=>i7});var i7=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var aN={};Wt(aN,{json:()=>a7});var a7=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}];var lN={};Wt(lN,{json:()=>l7});var l7=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var uN={};Wt(uN,{json:()=>u7});var u7=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}];var cN={};Wt(cN,{json:()=>c7});var c7=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}];var Fh=class{constructor(){let t=[q0,K0,j0,X0,Y0,Z0,J0,Q0,tN,eN,rN,nN,oN,sN,iN,aN,lN,uN,cN],e=[].concat(...t.map(n=>n.json));this.opMappers=e.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}static get Instance(){return this._instance||(this._instance=new this)}transformGraph(t,e={}){let n=t.node,o=[],s=[],i=[],a=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?o.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&i.push(h[g.name]),h),{}),u=[],l=[],c={},p={};e!=null&&(c=this.mapSignatureEntries(e.inputs),p=this.mapSignatureEntries(e.outputs));let m=Object.keys(a);m.forEach(h=>{let g=a[h];g.inputNames.forEach((x,b)=>{let[w,,C]=_o(x),N=a[w];if(N.outputs!=null){let _=N.outputs.indexOf(C);if(_!==-1){let A=`${w}:${_}`;g.inputNames[b]=A}}g.inputs.push(N),N.children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=a[h];g.children.length===0&&l.push(g)}):Object.keys(p).forEach(h=>{let[g]=_o(h),x=a[g];x!=null&&(x.signatureKey=p[h],l.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=_o(h),x=a[g];x&&(x.signatureKey=c[h],u.push(x))}):u=o;let f={};t.library!=null&&t.library.function!=null&&(f=t.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:a,inputs:u,outputs:l,weights:s,placeholders:o,signature:e,functions:f};return i.length>0&&(d.initNodes=i),d}mapSignatureEntries(t){return Object.keys(t||{}).reduce((e,n)=>(e[t[n].name]=n,e),{})}mapNode(t){let e=Nb(t.op)||this.opMappers[t.op]||{};t.attr==null&&(t.attr={});let n={name:t.name,op:t.op,category:e.category,inputNames:(t.input||[]).map(o=>o.startsWith("^")?o.slice(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:t.attr,outputs:e.outputs};return e.inputs!=null&&(n.inputParams=e.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),e.attrs!=null&&(n.attrParams=e.attrs.reduce((o,s)=>{let i=s.type,a;switch(s.type){case"string":a=kb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=kb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":a=Fb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Fb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":a=_b(t.attr,s.tfName,s.defaultValue||0),a===void 0&&!!s.tfDeprecatedName&&(a=_b(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":a=Rb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Rb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":a=Eb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Eb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":a=Pb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Pb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":a=Db(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Db(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":a=Ob(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Ob(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":a=Ab(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Ab(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":a=$b(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=$b(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":a=OD(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=OD(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${t.op}`)}return o[s.name]={value:a,type:i},o},{})),n}mapFunction(t){let e=t.nodeDef,n=[],o=[],s={};e!=null&&(s=e.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&o.push(p[m.name]),p),{}));let i=[],a=[];t.signature.inputArg.forEach(p=>{let[m]=_o(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:pN(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,i.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach((f,d)=>{let[h,,g]=_o(f),x=s[h];if(x.outputs!=null){let b=x.outputs.indexOf(g);if(b!==-1){let w=`${h}:${b}`;m.inputNames[d]=w}}m.inputs.push(x),x.children.push(m)})});let l=t.ret;t.signature.outputArg.forEach(p=>{let[m,f]=_o(l[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,a.push(d))});let c=this.mapArgsToSignature(t);return{nodes:s,inputs:i,outputs:a,weights:o,placeholders:n,signature:c}}mapArgsToSignature(t){return{methodName:t.signature.name,inputs:t.signature.inputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n),e),{}),outputs:t.signature.outputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n,t.ret),e),{})}}mapArgToTensorInfo(t,e){let n=t.name;return e!=null&&(n=e[n]),{name:n,dtype:t.type}}};function p7(r){let t=z().global;if(typeof t.atob!="undefined")return t.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function PD(r,t){let e=Array.isArray(r)?String.fromCharCode.apply(null,r):p7(r);return t?e:e.toLowerCase()}function kb(r,t,e,n=!1){let o=r[t];return o!=null?PD(o.s,n):e}function Eb(r,t,e){let n=r[t];return n?n.b:e}function _b(r,t,e){let n=r[t]||{},o=n.i!=null?n.i:n.f!=null?n.f:e;return typeof o=="number"?o:parseInt(o,10)}function pN(r){switch(typeof r=="string"&&(r=oo[r]),r){case oo.DT_FLOAT:case oo.DT_HALF:return"float32";case oo.DT_INT32:case oo.DT_INT64:case oo.DT_INT8:case oo.DT_UINT8:return"int32";case oo.DT_BOOL:return"bool";case oo.DT_DOUBLE:return"float32";case oo.DT_STRING:return"string";default:return null}}function OD(r,t,e){let n=r[t];return n&&n.func?n.func.name:e}function Ab(r,t,e){let n=r[t];return n&&n.type?pN(n.type):e}function $b(r,t,e){let n=r[t];return n&&n.list&&n.list.type?n.list.type.map(o=>pN(o)):e}function LD(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Db(r,t,e){let n=r[t];return n&&n.shape?LD(n.shape):e}function Rb(r,t,e){let n=r[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o=="number"?o:parseInt(o,10)):e}function Fb(r,t,e,n=!1){let o=r[t];return o&&o.list&&o.list.s?o.list.s.map(s=>PD(s,n)):e}function Ob(r,t,e){let n=r[t];return n&&n.list&&n.list.shape?n.list.shape.map(o=>LD(o)):e}function Pb(r,t,e){let n=r[t];return n&&n.list&&n.list.b?n.list.b:e}var Lb=class{constructor(t,e,n){this.node=t,this.tensorMap=e,this.context=n,this.inputs=[],this.attrs={},this.inputs=t.inputNames.map(o=>this.getInput(o)),t.rawAttrs!=null&&(this.attrs=Object.keys(t.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(t){return br(t,this.tensorMap,this.context)}getAttr(t,e){let n=this.node.rawAttrs[t];if(n.tensor!=null)return br(t,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return _b(this.node.rawAttrs,t,e);if(n.s!=null)return kb(this.node.rawAttrs,t,e);if(n.b!=null)return Eb(this.node.rawAttrs,t,e);if(n.shape!=null)return Db(this.node.rawAttrs,t,e);if(n.type!=null)return Ab(this.node.rawAttrs,t,e);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Rb(this.node.rawAttrs,t,e);if(n.list.s!=null)return Fb(this.node.rawAttrs,t,e);if(n.list.shape!=null)return Ob(this.node.rawAttrs,t,e);if(n.list.b!=null)return Pb(this.node.rawAttrs,t,e);if(n.list.type!=null)return $b(this.node.rawAttrs,t,e)}return e}};var ae={};Wt(ae,{OP_SCOPE_SUFFIX:()=>kv,abs:()=>Ee,acos:()=>ax,acosh:()=>lx,add:()=>X,addN:()=>LE,all:()=>Zp,any:()=>qu,argMax:()=>Ai,argMin:()=>ux,asin:()=>cx,asinh:()=>px,atan:()=>mx,atan2:()=>fx,atanh:()=>dx,avgPool:()=>Yl,avgPool3d:()=>gx,basicLSTMCell:()=>BE,batchNorm:()=>Di,batchNorm2d:()=>xx,batchNorm3d:()=>yx,batchNorm4d:()=>bx,batchToSpaceND:()=>Zl,bincount:()=>wx,booleanMaskAsync:()=>n6,broadcastArgs:()=>GE,broadcastTo:()=>Ri,buffer:()=>wt,cast:()=>J,ceil:()=>Cx,clipByValue:()=>Cr,clone:()=>sn,complex:()=>wn,concat:()=>ne,concat1d:()=>Ix,concat2d:()=>Sx,concat3d:()=>vx,concat4d:()=>Nx,conv1d:()=>Qp,conv2d:()=>In,conv2dTranspose:()=>em,conv3d:()=>Tx,conv3dTranspose:()=>Ex,cos:()=>Jl,cosh:()=>rm,cosineWindow:()=>hh,cumprod:()=>Xu,cumsum:()=>nm,denseBincount:()=>ch,depthToSpace:()=>_x,depthwiseConv2d:()=>Fi,diag:()=>WE,dilation2d:()=>Ax,div:()=>pt,divNoNan:()=>$x,dot:()=>Dx,dropout:()=>l0,einsum:()=>UE,elu:()=>Oi,enclosingPowerOfTwo:()=>u0,equal:()=>$r,erf:()=>Rx,euclideanNorm:()=>Fx,exp:()=>er,expandDims:()=>rr,expm1:()=>Ox,eye:()=>Yu,fft:()=>au,fill:()=>xo,floor:()=>Pi,floorDiv:()=>Yp,fused:()=>uu,gather:()=>Li,gatherND:()=>m6,greater:()=>Re,greaterEqual:()=>ln,ifft:()=>tl,imag:()=>Xl,image:()=>Gs,inTopKAsync:()=>h6,irfft:()=>xm,isFinite:()=>Px,isInf:()=>Lx,isNaN:()=>Mx,leakyRelu:()=>Ql,less:()=>om,lessEqual:()=>Ln,linalg:()=>p0,linspace:()=>KE,localResponseNormalization:()=>zx,log:()=>Sr,log1p:()=>tu,logSigmoid:()=>Gx,logSoftmax:()=>sm,logSumExp:()=>im,logicalAnd:()=>Rr,logicalNot:()=>eu,logicalOr:()=>am,logicalXor:()=>Wx,losses:()=>hX,lowerBound:()=>jE,matMul:()=>Lt,max:()=>Ir,maxPool:()=>ru,maxPool3d:()=>Hx,maxPoolWithArgmax:()=>XE,maximum:()=>Sn,mean:()=>ve,meshgrid:()=>YE,min:()=>Ja,minimum:()=>Mi,mirrorPad:()=>qx,mod:()=>Kx,moments:()=>Zu,movingAverage:()=>s6,mul:()=>D,multiRNNCell:()=>ZE,multinomial:()=>JE,neg:()=>Ht,norm:()=>Qa,notEqual:()=>Bs,oneHot:()=>Ei,ones:()=>cr,onesLike:()=>yr,op:()=>T,outerProduct:()=>QE,pad:()=>cn,pad1d:()=>t_,pad2d:()=>e_,pad3d:()=>r_,pad4d:()=>n_,pool:()=>jx,pow:()=>an,prelu:()=>ou,print:()=>Jg,prod:()=>Xx,raggedGather:()=>o_,raggedRange:()=>s_,raggedTensorToTensor:()=>i_,rand:()=>a_,randomGamma:()=>v_,randomNormal:()=>tc,randomStandardNormal:()=>N_,randomUniform:()=>zi,range:()=>su,real:()=>Za,reciprocal:()=>ty,relu:()=>Fr,relu6:()=>lm,reshape:()=>R,reverse:()=>pr,reverse1d:()=>T_,reverse2d:()=>k_,reverse3d:()=>E_,reverse4d:()=>__,rfft:()=>lu,round:()=>um,rsqrt:()=>cm,scalar:()=>mt,scatterND:()=>a6,searchSorted:()=>mh,selu:()=>pm,separableConv2d:()=>mm,setdiff1dAsync:()=>A_,sigmoid:()=>Yr,sign:()=>ey,signal:()=>dX,sin:()=>fm,sinh:()=>dm,slice:()=>Rt,slice1d:()=>hm,slice2d:()=>dh,slice3d:()=>gm,slice4d:()=>ec,softmax:()=>iu,softplus:()=>zs,spaceToBatchND:()=>nu,sparse:()=>gX,sparseToDense:()=>c6,spectral:()=>fX,split:()=>mr,sqrt:()=>Se,square:()=>Mt,squaredDifference:()=>ym,squeeze:()=>Mn,stack:()=>nr,step:()=>bo,stridedSlice:()=>ry,string:()=>xX,sub:()=>ct,sum:()=>ft,tan:()=>ny,tanh:()=>$i,tensor:()=>ur,tensor1d:()=>Me,tensor2d:()=>Vs,tensor3d:()=>rx,tensor4d:()=>$_,tensor5d:()=>D_,tensor6d:()=>R_,tile:()=>Dr,topk:()=>oy,transpose:()=>Ot,truncatedNormal:()=>bm,unique:()=>sy,unsortedSegmentSum:()=>wm,unstack:()=>vr,upperBound:()=>F_,variable:()=>iy,where:()=>_e,whereAsync:()=>ly,zeros:()=>Ne,zerosLike:()=>It});var MD=(r,t,e,n=ae)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[n.add(S("a",r,t,e),S("b",r,t,e))];case"AddN":return[n.addN(S("tensors",r,t,e))];case"FloorMod":case"Mod":return[n.mod(S("a",r,t,e),S("b",r,t,e))];case"Mul":return[n.mul(S("a",r,t,e),S("b",r,t,e))];case"RealDiv":case"Div":return[n.div(S("a",r,t,e),S("b",r,t,e))];case"DivNoNan":return[n.divNoNan(S("a",r,t,e),S("b",r,t,e))];case"FloorDiv":return[n.floorDiv(S("a",r,t,e),S("b",r,t,e))];case"Sub":return[n.sub(S("a",r,t,e),S("b",r,t,e))];case"Minimum":return[n.minimum(S("a",r,t,e),S("b",r,t,e))];case"Maximum":return[n.maximum(S("a",r,t,e),S("b",r,t,e))];case"Pow":return[n.pow(S("a",r,t,e),S("b",r,t,e))];case"SquaredDifference":return[n.squaredDifference(S("a",r,t,e),S("b",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var zD=(r,t,e,n=ae)=>{switch(r.op){case"Abs":case"ComplexAbs":return[n.abs(S("x",r,t,e))];case"Acos":return[n.acos(S("x",r,t,e))];case"Acosh":return[n.acosh(S("x",r,t,e))];case"Asin":return[n.asin(S("x",r,t,e))];case"Asinh":return[n.asinh(S("x",r,t,e))];case"Atan":return[n.atan(S("x",r,t,e))];case"Atan2":return[n.atan2(S("x",r,t,e),S("y",r,t,e))];case"Atanh":return[n.atanh(S("x",r,t,e))];case"Ceil":return[n.ceil(S("x",r,t,e))];case"Complex":return[n.complex(S("real",r,t,e),S("imag",r,t,e))];case"Cos":return[n.cos(S("x",r,t,e))];case"Cosh":return[n.cosh(S("x",r,t,e))];case"Elu":return[n.elu(S("x",r,t,e))];case"Erf":return[n.erf(S("x",r,t,e))];case"Exp":return[n.exp(S("x",r,t,e))];case"Expm1":return[n.expm1(S("x",r,t,e))];case"Floor":return[n.floor(S("x",r,t,e))];case"Log":return[n.log(S("x",r,t,e))];case"Log1p":return[n.log1p(S("x",r,t,e))];case"Imag":return[n.imag(S("x",r,t,e))];case"Neg":return[n.neg(S("x",r,t,e))];case"Reciprocal":return[n.reciprocal(S("x",r,t,e))];case"Real":return[n.real(S("x",r,t,e))];case"Relu":return[n.relu(S("x",r,t,e))];case"Round":return[n.round(S("x",r,t,e))];case"Selu":return[n.selu(S("x",r,t,e))];case"Sigmoid":return[n.sigmoid(S("x",r,t,e))];case"Sin":return[n.sin(S("x",r,t,e))];case"Sign":return[n.sign(S("x",r,t,e))];case"Sinh":return[n.sinh(S("x",r,t,e))];case"Softplus":return[n.softplus(S("x",r,t,e))];case"Sqrt":return[n.sqrt(S("x",r,t,e))];case"Square":return[n.square(S("x",r,t,e))];case"Tanh":return[n.tanh(S("x",r,t,e))];case"Tan":return[n.tan(S("x",r,t,e))];case"ClipByValue":return[n.clipByValue(S("x",r,t,e),S("clipValueMin",r,t,e),S("clipValueMax",r,t,e))];case"Relu6":return[n.relu6(S("x",r,t,e))];case"Rsqrt":return[n.rsqrt(br(r.inputNames[0],t,e))];case"Prod":return[n.prod(S("x",r,t,e),S("axes",r,t,e))];case"LeakyRelu":return[n.leakyRelu(S("x",r,t,e),S("alpha",r,t,e))];case"Prelu":return[n.prelu(S("x",r,t,e),S("alpha",r,t,e))];case"IsNan":return[n.isNaN(br(r.inputNames[0],t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Vn(r,t,e=""){if(!(typeof r=="number"||typeof t=="number")){y.assert(r.length===t.length,()=>e+` Shapes ${r} and ${t} must match`);for(let n=0;n<r.length;n++){let o=r[n],s=t[n];y.assert(o<0||s<0||o===s,()=>e+` Shapes ${r} and ${t} must match`)}}}function BD(r){return!(typeof r=="number"||r.some(t=>t<0))}function Kf(r,t,e){let n=Mb(r,e),o=!BD(n);if(o&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(o&&t.forEach(s=>{n=Mb(s.shape,n)}),!BD(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function Mb(r,t){if(typeof r=="number")return t;if(typeof t=="number")return r;if(r.length!==t.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${t}`);let e=[];for(let n=0;n<r.length;++n){let o=r[n],s=t[n];if(o>=0&&s>=0&&o!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${t}`);e[n]=o>=0?o:s}return e}var zb=class{constructor(t,e,n,o,s,i,a){this.name=t,this.dtype=e,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=i,this.clearAfterRead=a,this.tensors=[],this.closed_=!1,this.idTensor=mt(0),De(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.tensor.id))&&e.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||t>=this.size())throw new Error(`Tried to read from index ${t}, but array size is: ${this.size()}`);let e=this.tensors[t];if(e.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${t} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(e.cleared=!0),e.read=!0,e.tensor}readMany(t){return t.map(e=>this.read(e))}write(t,e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||!this.dynamicSize&&t>=this.maxSize)throw new Error(`Tried to write to index ${t}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[t]||{};if(e.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t},
|
|
because the value dtype is ${e.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=e.shape),Vn(this.elementShape,e.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${t}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been written.`);n.tensor=e,De(e),n.written=!0,this.tensors[t]=n}writeMany(t,e){if(t.length!==e.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${t.length} is not the same as tensors size: ${e.length}.`);t.forEach((n,o)=>this.write(n,e[o]))}gather(t,e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${e}`);if(t)t=t.slice(0,this.size());else{t=[];for(let o=0;o<this.size();o++)t.push(o)}if(t.length===0)return ur([],[0].concat(this.elementShape));let n=this.readMany(t);return Vn(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),nr(n,0)}concat(t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${t}`);if(this.size()===0)return ur([],[0].concat(this.elementShape));let e=[];for(let o=0;o<this.size();o++)e.push(o);let n=this.readMany(e);return Vn(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ne(n,0)}scatter(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let n=Math.max(...t);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(t,vr(e,0))}split(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);let n=0,o=t.map(u=>(n+=u,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${e.shape}`);if(!this.dynamicSize&&t.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${t.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:e.size/n,i=[];B(()=>{e=R(e,[1,n,s]);for(let u=0;u<t.length;++u){let c=[0,u===0?0:o[u-1],0],p=[1,t[u],s];i[u]=R(Rt(e,c,p),this.elementShape)}return i});let a=[];for(let u=0;u<t.length;u++)a[u]=u;this.writeMany(a,i)}};var ml=class{constructor(t,e,n,o=-1){this.tensors=t,this.elementShape=e,this.elementDtype=n,t!=null&&t.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Vn(e,s.shape,"TensorList shape mismatch: "),De(s)}),this.idTensor=mt(0),this.maxNumElements=o,De(this.idTensor)}get id(){return this.idTensor.id}copy(){return new ml([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.id))&&e.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(t,e,n=-1){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Vn(t,this.elementShape,"TensorList shape mismatch: ");let o=Kf(this.elementShape,this.tensors,t);return B(()=>{let s=this.tensors.map(i=>R(i,o));return nr(s,0)})}popBack(t,e){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Kf(this.elementShape,this.tensors,t),o=this.tensors.pop();return o.kept=!1,Vn(o.shape,t,"TensorList shape mismatch: "),R(o,n)}pushBack(t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(Vn(t.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");De(t),this.tensors.push(t)}resize(t){if(t<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${t}`);if(this.maxNumElements!==-1&&t>this.maxNumElements)throw new Error(`TensorListResize input size ${t} is greater maxNumElement ${this.maxNumElements}.`);let e=new ml([],this.elementShape,this.elementDtype,this.maxNumElements);e.tensors.length=t;for(let n=0;n<Math.min(this.tensors.length,t);++n)e.tensors[n]=this.tensors[n];return e}getItem(t,e,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(t<0||t>this.tensors.length)throw new Error(`Trying to access element ${t} in a list with ${this.tensors.length} elements.`);if(this.tensors[t]==null)throw new Error(`element at index ${t} is null.`);Vn(this.tensors[t].shape,e,"TensorList shape mismatch: ");let o=Kf(this.elementShape,this.tensors,e);return R(this.tensors[t],o)}setItem(t,e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(t<0||this.maxNumElements!==-1&&t>=this.maxNumElements)throw new Error(`Trying to set element ${t} in a list with max ${this.maxNumElements} elements.`);Vn(this.elementShape,e.shape,"TensorList shape mismatch: "),De(e),this.tensors[t]!=null&&(this.tensors[t].kept=!1),this.tensors[t]=e}gather(t,e,n){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);Vn(this.elementShape,n,"TensorList shape mismatch: "),t=t.slice(0,this.size());let o=Kf(this.elementShape,this.tensors,n);return t.length===0?ur([],[0].concat(o)):B(()=>{let s=t.map(i=>R(this.tensors[i],o));return nr(s,0)})}concat(t,e){if(!!t&&t!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${t}`);Vn(this.elementShape,e,"TensorList shape mismatch: ");let n=Kf(this.elementShape,this.tensors,e);return this.size()===0?ur([],[0].concat(n)):B(()=>{let o=this.tensors.map(s=>R(s,n));return ne(o,0)})}};function VD(r,t,e){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==e)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${e}`);let o=r.shape.slice(1);Vn(o,t,"TensorList shape mismatch: ");let s=vr(r);return new ml(s,t,n)}function GD(r,t,e,n){return new ml([],r,t,n)}function WD(r,t,e,n){if(t.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${r.shape[0]}`);let o=Math.max(...t);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new ml([],e,r.dtype,n),i=vr(r,0);return t.forEach((a,u)=>{s.setItem(a,i[u])}),s}function UD(r,t,e){let n=0,o=t.map(c=>(n+=c,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),i=Mb(s,e),a=n===0?0:r.size/n,u=B(()=>{let c=[];r=R(r,[1,n,a]);for(let p=0;p<t.length;++p){let f=[0,p===0?0:o[p-1],0],d=[1,t[p],a];c[p]=R(Rt(r,f,d),i)}return r.dispose(),c}),l=new ml([],e,r.dtype,t.length);for(let c=0;c<u.length;c++)l.setItem(c,u[c]);return l}var HD=async(r,t,e)=>{switch(r.op){case"If":case"StatelessIf":{let n=S("thenBranch",r,t,e),o=S("elseBranch",r,t,e),s=S("cond",r,t,e),i=S("args",r,t,e);return(await s.data())[0]?e.functionMap[n].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap):e.functionMap[o].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap)}case"While":case"StatelessWhile":{let n=S("body",r,t,e),o=S("cond",r,t,e),s=S("args",r,t,e),i=await e.functionMap[o].executeFunctionAsync(s,e.tensorArrayMap,e.tensorListMap),a=s.map(c=>c.id),u=await i[0].data();i.forEach(c=>{!c.kept&&a.indexOf(c.id)===-1&&c.dispose()});let l=s;for(;u[0];){let c=l;l=await e.functionMap[n].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);let p=l.map(f=>f.id);c.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await e.functionMap[o].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);u=await m[0].data(),m.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return l}case"LoopCond":{let n=S("pred",r,t,e);return[Zs(n)]}case"Switch":{let n=S("pred",r,t,e),o=S("data",r,t,e);return o.kept||(o=Zs(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case"Merge":{let n=r.inputNames.find(o=>br(o,t,e)!==void 0);if(n){let o=br(n,t,e);return[Zs(o)]}return}case"Enter":{let n=S("frameName",r,t,e),o=S("tensor",r,t,e);return e.enterFrame(n),[Zs(o)]}case"Exit":{let n=S("tensor",r,t,e);return e.exitFrame(),[Zs(n)]}case"NextIteration":{let n=S("tensor",r,t,e);return e.nextIteration(),[Zs(n)]}case"TensorArrayV3":{let n=S("size",r,t,e),o=S("dtype",r,t,e),s=S("elementShape",r,t,e),i=S("dynamicSize",r,t,e),a=S("clearAfterRead",r,t,e),u=S("identicalElementShapes",r,t,e),l=S("name",r,t,e),c=new zb(l,o,n,s,u,i,a);return e.addTensorArray(c),[c.idTensor,mt(1)]}case"TensorArrayWriteV3":{let n=S("tensorArrayId",r,t,e),o=S("index",r,t,e),s=S("tensor",r,t,e),i=e.getTensorArray(n.id);return i.write(o,s),[i.idTensor]}case"TensorArrayReadV3":{let n=S("tensorArrayId",r,t,e),o=S("index",r,t,e);return[e.getTensorArray(n.id).read(o)]}case"TensorArrayGatherV3":{let n=S("tensorArrayId",r,t,e),o=S("indices",r,t,e),s=S("dtype",r,t,e);return[e.getTensorArray(n.id).gather(o,s)]}case"TensorArrayScatterV3":{let n=S("tensorArrayId",r,t,e),o=S("indices",r,t,e),s=S("tensor",r,t,e),i=e.getTensorArray(n.id);return i.scatter(o,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=S("tensorArrayId",r,t,e),o=e.getTensorArray(n.id),s=S("dtype",r,t,e);return[o.concat(s)]}case"TensorArraySplitV3":{let n=S("tensorArrayId",r,t,e),o=S("tensor",r,t,e),s=S("lengths",r,t,e),i=e.getTensorArray(n.id);return i.split(s,o),[i.idTensor]}case"TensorArraySizeV3":{let n=S("tensorArrayId",r,t,e),o=e.getTensorArray(n.id);return[mt(o.size(),"int32")]}case"TensorArrayCloseV3":{let n=S("tensorArrayId",r,t,e),o=e.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case"TensorListSetItem":{let n=S("tensorListId",r,t,e),o=S("index",r,t,e),s=S("tensor",r,t,e),i=e.getTensorList(n.id);return i.setItem(o,s),[i.idTensor]}case"TensorListGetItem":{let n=S("tensorListId",r,t,e),o=S("index",r,t,e),s=S("elementShape",r,t,e),i=S("elementDType",r,t,e);return[e.getTensorList(n.id).getItem(o,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=S("indices",r,t,e),o=S("tensor",r,t,e),s=S("elementShape",r,t,e),i=S("numElements",r,t,e),a=WD(o,n,s,i);return e.addTensorList(a),[a.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=S("elementShape",r,t,e),o=S("elementDType",r,t,e),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=S(s,r,t,e),a=r.op==="TensorListReserve"?-1:i,u=GD(n,o,i,a);return e.addTensorList(u),[u.idTensor]}case"TensorListGather":{let n=S("tensorListId",r,t,e),o=S("indices",r,t,e),s=S("elementShape",r,t,e),i=S("elementDType",r,t,e);return[e.getTensorList(n.id).gather(o,i,s)]}case"TensorListStack":{let n=S("tensorListId",r,t,e),o=S("elementShape",r,t,e),s=S("elementDType",r,t,e),i=S("numElements",r,t,e);return[e.getTensorList(n.id).stack(o,s,i)]}case"TensorListFromTensor":{let n=S("tensor",r,t,e),o=S("elementShape",r,t,e),s=S("elementDType",r,t,e),i=VD(n,o,s);return e.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let n=S("tensorListId",r,t,e),o=e.getTensorList(n.id),s=S("dtype",r,t,e),i=S("elementShape",r,t,e);return[o.concat(s,i)]}case"TensorListPushBack":{let n=S("tensorListId",r,t,e),o=S("tensor",r,t,e),s=e.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case"TensorListPopBack":{let n=S("tensorListId",r,t,e),o=S("elementShape",r,t,e),s=S("elementDType",r,t,e);return[e.getTensorList(n.id).popBack(o,s)]}case"TensorListSplit":{let n=S("tensor",r,t,e),o=S("elementShape",r,t,e),s=S("lengths",r,t,e),i=UD(n,s,o);return e.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=S("tensorListId",r,t,e),o=e.getTensorList(n.id);return[mt(o.size(),"int32")]}case"TensorListResize":{let n=S("tensorListId",r,t,e),o=S("size",r,t,e),i=e.getTensorList(n.id).resize(o);return e.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function qD(r,t,e){let[n,o]=S("fusedOps",r,t,e),s=n==="biasadd",i=!s,a=o==="prelu",u=n==="fusedbatchnorm",l=S("numArgs",r,t,e);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&s&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(u)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=S("strides",r,t,e),p=Rh(r,t,e),m=S("dataFormat",r,t,e).toUpperCase(),f=S("dilations",r,t,e),[d,h]=S("args",r,t,e);i&&(h=d,d=void 0);let g=S("leakyreluAlpha",r,t,e);return{stride:c,pad:p,dataFormat:m,dilations:f,biasArg:d,preluArg:h,activationFunc:o,leakyreluAlpha:g}}var KD=(r,t,e,n=ae)=>{switch(r.op){case"Conv1D":{let o=S("stride",r,t,e),s=S("pad",r,t,e),i=S("dataFormat",r,t,e).toUpperCase(),a=S("dilation",r,t,e);return[n.conv1d(S("x",r,t,e),S("filter",r,t,e),o,s,i,a)]}case"Conv2D":{let o=S("strides",r,t,e),s=Rh(r,t,e),i=S("dataFormat",r,t,e).toUpperCase(),a=S("dilations",r,t,e);return[n.conv2d(S("x",r,t,e),S("filter",r,t,e),[o[1],o[2]],s,i,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=qD(r,t,e);return[n.fused.conv2d({x:S("x",r,t,e),filter:S("filter",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=qD(r,t,e);return[n.fused.depthwiseConv2d({x:S("x",r,t,e),filter:S("filter",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let o=S("outputShape",r,t,e),s=S("strides",r,t,e),i=Rh(r,t,e);return[n.conv2dTranspose(S("x",r,t,e),S("filter",r,t,e),o,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let o=S("strides",r,t,e),s=Rh(r,t,e),i=S("dilations",r,t,e),a=S("dataFormat",r,t,e).toUpperCase();return[n.depthwiseConv2d(S("input",r,t,e),S("filter",r,t,e),[o[1],o[2]],s,a,[i[1],i[2]])]}case"Conv3D":{let o=S("strides",r,t,e),s=S("pad",r,t,e),i=S("dataFormat",r,t,e).toUpperCase(),a=S("dilations",r,t,e);return[n.conv3d(S("x",r,t,e),S("filter",r,t,e),[o[1],o[2],o[3]],s,i,[a[1],a[2],a[3]])]}case"AvgPool":{let o=S("strides",r,t,e),s=S("pad",r,t,e),i=S("kernelSize",r,t,e);return[n.avgPool(S("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case"MaxPool":{let o=S("strides",r,t,e),s=S("pad",r,t,e),i=S("kernelSize",r,t,e);return[n.maxPool(S("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case"MaxPoolWithArgmax":{let o=S("strides",r,t,e),s=S("pad",r,t,e),i=S("kernelSize",r,t,e),a=S("includeBatchInIndex",r,t,e),{result:u,indexes:l}=n.maxPoolWithArgmax(S("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s,a);return[u,l]}case"AvgPool3D":{let o=S("strides",r,t,e),s=S("pad",r,t,e),i=S("kernelSize",r,t,e);return[n.avgPool3d(S("x",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case"MaxPool3D":{let o=S("strides",r,t,e),s=S("pad",r,t,e),i=S("kernelSize",r,t,e);return[n.maxPool3d(S("x",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case"Dilation2D":{let o=S("strides",r,t,e),s=S("pad",r,t,e),i=S("dilations",r,t,e),a=o[1],u=o[2],l=i[1],c=i[2];return[n.dilation2d(S("x",r,t,e),S("filter",r,t,e),[a,u],s,[l,c],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var jD=(r,t,e,n=ae)=>{switch(r.op){case"Fill":{let o=S("shape",r,t,e),s=S("dtype",r,t,e),i=S("value",r,t,e);return[n.fill(o,i,s)]}case"LinSpace":{let o=S("start",r,t,e),s=S("stop",r,t,e),i=S("num",r,t,e);return[n.linspace(o,s,i)]}case"Multinomial":{let o=S("logits",r,t,e),s=S("numSamples",r,t,e),i=S("seed",r,t,e);return[n.multinomial(o,s,i)]}case"OneHot":{let o=S("indices",r,t,e),s=S("depth",r,t,e),i=S("onValue",r,t,e),a=S("offValue",r,t,e),u=S("dtype",r,t,e);return[n.oneHot(o,s,i,a,u)]}case"Ones":return[n.ones(S("shape",r,t,e),S("dtype",r,t,e))];case"OnesLike":return[n.onesLike(S("x",r,t,e))];case"RandomStandardNormal":return[n.randomStandardNormal(S("shape",r,t,e),S("dtype",r,t,e),S("seed",r,t,e))];case"RandomUniform":return[n.randomUniform(S("shape",r,t,e),S("minval",r,t,e),S("maxval",r,t,e),S("dtype",r,t,e))];case"Range":{let o=S("start",r,t,e),s=S("stop",r,t,e),i=S("step",r,t,e);return[n.range(o,s,i,S("dtype",r,t,e))]}case"TruncatedNormal":{let o=S("shape",r,t,e),s=S("mean",r,t,e),i=S("stdDev",r,t,e),a=S("seed",r,t,e);return[n.truncatedNormal(o,s,i,S("dtype",r,t,e),a)]}case"Zeros":return[n.zeros(S("shape",r,t,e),S("dtype",r,t,e))];case"ZerosLike":return[n.zerosLike(S("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function mN(r,t,e){let n=S("boxes",r,t,e),o=S("scores",r,t,e),s=S("maxOutputSize",r,t,e),i=S("iouThreshold",r,t,e),a=S("scoreThreshold",r,t,e),u=S("softNmsSigma",r,t,e);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:i,scoreThreshold:a,softNmsSigma:u}}var XD=async(r,t,e,n,o=ae)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l,softNmsSigma:c}=mN(r,t,e),p=await o.image.nonMaxSuppressionWithScoreAsync(s,i,a,u,l,c);return[p.selectedIndices,p.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=mN(r,t,e),c=S("padToMaxOutputSize",r,t,e),p=await o.image.nonMaxSuppressionPaddedAsync(s,i,a,u,l,c);return[p.selectedIndices,p.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=mN(r,t,e);return[await o.image.nonMaxSuppressionAsync(s,i,a,u,l)]}case"Where":{let s=o.cast(S("condition",r,t,e),"bool"),i=[await o.whereAsync(s)];return s.dispose(),i}case"ListDiff":return o.setdiff1dAsync(S("x",r,t,e),S("y",r,t,e));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var YD=(r,t,e,n=ae)=>{switch(r.op){case"LowerBound":{let o=S("sortedSequence",r,t,e),s=S("values",r,t,e);return[n.lowerBound(o,s)]}case"TopKV2":{let o=S("x",r,t,e),s=S("k",r,t,e),i=S("sorted",r,t,e),a=n.topk(o,s,i);return[a.values,a.indices]}case"UpperBound":{let o=S("sortedSequence",r,t,e),s=S("values",r,t,e);return[n.upperBound(o,s)]}case"Unique":{let o=S("x",r,t,e),s=n.unique(o);return[s.values,s.indices]}case"UniqueV2":{let o=S("x",r,t,e),s=S("axis",r,t,e),i=n.unique(o,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var ZD=(r,t,e,n=ae)=>{switch(r.op){case"Const":return t[r.name];case"PlaceholderWithDefault":let o=S("default",r,t,e);return[br(r.name,t,e)||o];case"Placeholder":return[br(r.name,t,e)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=S("x",r,t,e);return[Zs(c)]}case"IdentityN":return S("x",r,t,e).map(c=>Zs(c));case"Snapshot":let s=S("x",r,t,e);return[Zs(s)];case"Shape":return[n.tensor1d(S("x",r,t,e).shape,"int32")];case"ShapeN":return S("x",r,t,e).map(c=>n.tensor1d(c.shape));case"Size":return[n.scalar(S("x",r,t,e).size,"int32")];case"Rank":return[n.scalar(S("x",r,t,e).rank,"int32")];case"NoOp":return[n.scalar(1)];case"Print":let i=S("x",r,t,e),a=S("data",r,t,e),u=S("message",r,t,e),l=S("summarize",r,t,e);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(u);for(let c=0;c<a.length;c++)console.log(Array.prototype.slice.call(a[c].dataSync()).slice(0,l));return[i];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Bb=class{constructor(t,e){this.keyDType=t,this.valueDType=e,this.handle=mt(0),this.tensorMap=new Map,De(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(t=>t.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return mt(this.size(),"int32")}async import(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),B(()=>{let o=vr(e),s=n.length,i=o.length;y.assert(s===i,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${i} elements.`);for(let a=0;a<s;a++){let u=n[a],l=o[a];De(l),this.tensorMap.set(u,l)}return this.handle})}async find(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return B(()=>{let o=[];for(let s=0;s<n.length;s++){let i=n[s],a=this.findWithDefault(i,e);o.push(a)}return nr(o)})}findWithDefault(t,e){let n=this.tensorMap.get(t);return n!=null?n:e}checkKeyAndValueTensor(t,e){if(t.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${t.dtype}`);if(e.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${e.dtype}`)}};var JD=async(r,t,e,n)=>{switch(r.op){case"HashTable":case"HashTableV2":{let o=n.getHashTableHandleByName(r.name);if(o!=null)return[o];{let s=S("keyDType",r,t,e),i=S("valueDType",r,t,e),a=new Bb(s,i);return n.addHashTable(r.name,a),[a.handle]}}case"LookupTableImport":case"LookupTableImportV2":{let o=S("tableHandle",r,t,e,n),s=S("keys",r,t,e),i=S("values",r,t,e);return[await n.getHashTableById(o.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let o=S("tableHandle",r,t,e,n),s=S("keys",r,t,e),i=S("defaultValue",r,t,e);return[await n.getHashTableById(o.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let o=S("tableHandle",r,t,e,n);return[n.getHashTableById(o.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var QD=(r,t,e,n=ae)=>{switch(r.op){case"ResizeBilinear":{let o=S("images",r,t,e),s=S("size",r,t,e),i=S("alignCorners",r,t,e),a=S("halfPixelCenters",r,t,e);return[n.image.resizeBilinear(o,[s[0],s[1]],i,a)]}case"ResizeNearestNeighbor":{let o=S("images",r,t,e),s=S("size",r,t,e),i=S("alignCorners",r,t,e),a=S("halfPixelCenters",r,t,e);return[n.image.resizeNearestNeighbor(o,[s[0],s[1]],i,a)]}case"CropAndResize":{let o=S("image",r,t,e),s=S("boxes",r,t,e),i=S("boxInd",r,t,e),a=S("cropSize",r,t,e),u=S("method",r,t,e),l=S("extrapolationValue",r,t,e);return[n.image.cropAndResize(o,s,i,a,u,l)]}case"ImageProjectiveTransformV3":{let o=S("images",r,t,e),s=S("transforms",r,t,e),i=S("outputShape",r,t,e),a=S("fillValue",r,t,e),u=S("interpolation",r,t,e),l=S("fillMode",r,t,e);return[n.image.transform(o,s,u.toLowerCase(),l.toLowerCase(),a,i)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var tR=(r,t,e,n=ae)=>{switch(r.op){case"Equal":return[n.equal(S("a",r,t,e),S("b",r,t,e))];case"NotEqual":return[n.notEqual(S("a",r,t,e),S("b",r,t,e))];case"Greater":return[n.greater(S("a",r,t,e),S("b",r,t,e))];case"GreaterEqual":return[n.greaterEqual(S("a",r,t,e),S("b",r,t,e))];case"Less":return[n.less(S("a",r,t,e),S("b",r,t,e))];case"LessEqual":return[n.lessEqual(S("a",r,t,e),S("b",r,t,e))];case"LogicalAnd":return[n.logicalAnd(S("a",r,t,e),S("b",r,t,e))];case"LogicalNot":return[n.logicalNot(S("a",r,t,e))];case"LogicalOr":return[n.logicalOr(S("a",r,t,e),S("b",r,t,e))];case"Select":case"SelectV2":return[n.where(S("condition",r,t,e),S("a",r,t,e),S("b",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var eR=(r,t,e,n=ae)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[n.matMul(S("a",r,t,e),S("b",r,t,e),S("transposeA",r,t,e),S("transposeB",r,t,e))];case"Einsum":return[n.einsum(S("equation",r,t,e),...S("tensors",r,t,e))];case"Transpose":return[n.transpose(S("x",r,t,e),S("perm",r,t,e))];case"_FusedMatMul":let[o,s]=S("fusedOps",r,t,e),i=o==="biasadd",a=s==="prelu",u=S("numArgs",r,t,e),l=S("leakyreluAlpha",r,t,e);if(i){if(a&&u!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&u!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,p]=S("args",r,t,e);return[n.fused.matMul({a:S("a",r,t,e),b:S("b",r,t,e),transposeA:S("transposeA",r,t,e),transposeB:S("transposeB",r,t,e),bias:c,activation:s,preluActivationWeights:p,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var rR=(r,t,e,n=ae)=>{switch(r.op){case"EuclideanNorm":return[n.euclideanNorm(S("x",r,t,e),S("axis",r,t,e),S("keepDims",r,t,e))];case"FusedBatchNorm":case"FusedBatchNormV2":return[n.batchNorm(S("x",r,t,e),S("mean",r,t,e),S("variance",r,t,e),S("offset",r,t,e),S("scale",r,t,e),S("epsilon",r,t,e))];case"FusedBatchNormV3":return[n.batchNorm(S("x",r,t,e),S("mean",r,t,e),S("variance",r,t,e),S("offset",r,t,e),S("scale",r,t,e),S("epsilon",r,t,e))];case"LRN":return[n.localResponseNormalization(S("x",r,t,e),S("radius",r,t,e),S("bias",r,t,e),S("alpha",r,t,e),S("beta",r,t,e))];case"Softmax":return[n.softmax(S("x",r,t,e))];case"LogSoftmax":return[n.logSoftmax(S("x",r,t,e))];case"SparseToDense":return[n.sparseToDense(S("sparseIndices",r,t,e),S("outputShape",r,t,e),S("sparseValues",r,t,e),S("defaultValue",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var nR=(r,t,e,n=ae)=>{switch(r.op){case"Max":{let a=S("axis",r,t,e),u=S("keepDims",r,t,e);return[n.max(S("x",r,t,e),a,u)]}case"Mean":{let a=S("axis",r,t,e),u=S("keepDims",r,t,e);return[n.mean(S("x",r,t,e),a,u)]}case"Min":{let a=S("axis",r,t,e),u=S("keepDims",r,t,e);return[n.min(S("x",r,t,e),a,u)]}case"Sum":{let a=S("axis",r,t,e),u=S("keepDims",r,t,e);return[n.sum(S("x",r,t,e),a,u)]}case"All":{let a=S("axis",r,t,e),u=S("keepDims",r,t,e);return[n.all(S("x",r,t,e),a,u)]}case"Any":{let a=S("axis",r,t,e),u=S("keepDims",r,t,e);return[n.any(S("x",r,t,e),a,u)]}case"ArgMax":{let a=S("axis",r,t,e);return[n.argMax(S("x",r,t,e),a)]}case"ArgMin":{let a=S("axis",r,t,e);return[n.argMin(S("x",r,t,e),a)]}case"Prod":{let a=S("axis",r,t,e),u=S("keepDims",r,t,e);return[n.prod(S("x",r,t,e),a,u)]}case"Cumprod":{let a=S("axis",r,t,e),u=S("exclusive",r,t,e),l=S("reverse",r,t,e);return[n.cumprod(S("x",r,t,e),a,u,l)]}case"Cumsum":{let a=S("axis",r,t,e),u=S("exclusive",r,t,e),l=S("reverse",r,t,e);return[n.cumsum(S("x",r,t,e),a,u,l)]}case"Bincount":let o=S("x",r,t,e),s=S("weights",r,t,e),i=S("size",r,t,e);return[n.bincount(o,s,i)];case"DenseBincount":{let a=S("x",r,t,e),u=S("weights",r,t,e),l=S("size",r,t,e),c=S("binaryOutput",r,t,e);return[n.denseBincount(a,u,l,c)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var oR=(r,t,e,n=ae)=>{switch(r.op){case"ConcatV2":case"Concat":{let o=S("n",r,t,e),s=S("axis",r,t,e),i=S("tensors",r,t,e);return i=i.slice(0,o),[n.concat(i,s)]}case"Gather":{let o=S("x",r,t,e),s=S("indices",r,t,e);return[n.gather(o,n.cast(s,"int32"),0)]}case"GatherV2":{let o=S("axis",r,t,e),s=S("batchDims",r,t,e),i=S("x",r,t,e),a=S("indices",r,t,e);return[n.gather(i,n.cast(a,"int32"),o,s)]}case"Reverse":{let o=S("dims",r,t,e),s=[];for(let a=0;a<o.length;a++)o[a]&&s.push(a);let i=S("x",r,t,e);return[n.reverse(i,s)]}case"ReverseV2":{let o=S("axis",r,t,e),s=S("x",r,t,e);return[n.reverse(s,o)]}case"Slice":{let o=S("begin",r,t,e),s=S("size",r,t,e);return[n.slice(S("x",r,t,e),o,s)]}case"StridedSlice":{let o=S("begin",r,t,e),s=S("end",r,t,e),i=S("strides",r,t,e),a=S("beginMask",r,t,e),u=S("endMask",r,t,e),l=S("ellipsisMask",r,t,e),c=S("newAxisMask",r,t,e),p=S("shrinkAxisMask",r,t,e),m=S("x",r,t,e);return[n.stridedSlice(m,o,s,i,a,u,l,c,p)]}case"Pack":return B(()=>{let o=S("axis",r,t,e),s=S("tensors",r,t,e),i=s[0].shape,a=n.squeeze(s[0]).shape,u=s.map(l=>{let c=y.arraysEqual(l.shape,i);if(!c&&!y.arraysEqual(n.squeeze(l).shape,a))throw new Error("the input tensors shape does not match");return c?l:n.reshape(l,i)});return[n.stack(u,o)]});case"Unpack":{let o=S("axis",r,t,e),s=S("tensor",r,t,e);return n.unstack(s,o)}case"Tile":{let o=S("reps",r,t,e);return[n.tile(S("x",r,t,e),o)]}case"Split":case"SplitV":{let o=S("axis",r,t,e),s=S("numOrSizeSplits",r,t,e),i=S("x",r,t,e);return n.split(i,s,o)}case"ScatterNd":{let o=S("indices",r,t,e),s=S("values",r,t,e),i=S("shape",r,t,e);return[n.scatterND(o,s,i)]}case"GatherNd":{let o=S("x",r,t,e),s=S("indices",r,t,e);return[n.gatherND(o,s)]}case"SparseToDense":{let o=S("sparseIndices",r,t,e),s=S("outputShape",r,t,e),i=S("sparseValues",r,t,e),a=S("defaultValue",r,t,e);return[n.sparseToDense(o,i,s,i.dtype===a.dtype?a:n.cast(a,i.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var sR=(r,t,e,n=ae)=>{switch(r.op){case"SparseFillEmptyRows":{let{outputIndices:o,outputValues:s,emptyRowIndicator:i,reverseIndexMap:a}=n.sparse.sparseFillEmptyRows(S("indices",r,t,e),S("values",r,t,e),S("denseShape",r,t,e),S("defaultValue",r,t,e));return[o,s,i,a]}case"SparseReshape":{let{outputIndices:o,outputShape:s}=n.sparse.sparseReshape(S("inputIndices",r,t,e),S("inputShape",r,t,e),S("newShape",r,t,e));return[o,s]}case"SparseSegmentMean":return[n.sparse.sparseSegmentMean(S("data",r,t,e),S("indices",r,t,e),S("segmentIds",r,t,e))];case"SparseSegmentSum":return[n.sparse.sparseSegmentSum(S("data",r,t,e),S("indices",r,t,e),S("segmentIds",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var iR=(r,t,e,n=ae)=>{switch(r.op){case"FFT":return[n.fft(S("x",r,t,e))];case"IFFT":return[n.ifft(S("x",r,t,e))];case"RFFT":return[n.rfft(S("x",r,t,e))];case"IRFFT":return[n.irfft(S("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var aR=(r,t,e,n=ae)=>{switch(r.op){case"StringNGrams":{let{nGrams:o,nGramsSplits:s}=n.string.stringNGrams(S("data",r,t,e),S("dataSplits",r,t,e),S("separator",r,t,e),S("nGramWidths",r,t,e),S("leftPad",r,t,e),S("rightPad",r,t,e),S("padWidth",r,t,e),S("preserveShortSequences",r,t,e));return[o,s]}case"StringSplit":{let{indices:o,values:s,shape:i}=n.string.stringSplit(S("input",r,t,e),S("delimiter",r,t,e),S("skipEmpty",r,t,e));return[o,s,i]}case"StringToHashBucketFast":return[n.string.stringToHashBucketFast(S("input",r,t,e),S("numBuckets",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var lR=(r,t,e,n=ae)=>{switch(r.op){case"Cast":return[n.cast(S("x",r,t,e),S("dtype",r,t,e))];case"ExpandDims":{let o=S("axis",r,t,e);return[n.expandDims(S("x",r,t,e),o)]}case"Squeeze":{let o=S("axis",r,t,e);return[n.squeeze(S("x",r,t,e),o)]}case"Reshape":return[n.reshape(S("x",r,t,e),S("shape",r,t,e))];case"MirrorPad":return[n.mirrorPad(S("x",r,t,e),S("padding",r,t,e),S("mode",r,t,e))];case"PadV2":case"Pad":return[n.pad(S("x",r,t,e),S("padding",r,t,e),S("constantValue",r,t,e))];case"SpaceToBatchND":{let o=S("blockShape",r,t,e),s=S("paddings",r,t,e);return[n.spaceToBatchND(S("x",r,t,e),o,s)]}case"BatchToSpaceND":{let o=S("blockShape",r,t,e),s=S("crops",r,t,e);return[n.batchToSpaceND(S("x",r,t,e),o,s)]}case"DepthToSpace":{let o=S("blockSize",r,t,e),s=S("dataFormat",r,t,e).toUpperCase();return[n.depthToSpace(S("x",r,t,e),o,s)]}case"BroadcastTo":return[n.broadcastTo(S("x",r,t,e),S("shape",r,t,e))];case"BroadcastArgs":return[n.broadcastArgs(S("s0",r,t,e),S("s1",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function fN(r,t,e,n,o=B){let s=((i,a,u)=>{switch(i.category){case"arithmetic":return o(()=>MD(i,a,u));case"basic_math":return o(()=>zD(i,a,u));case"control":return HD(i,a,u);case"convolution":return o(()=>KD(i,a,u));case"creation":return o(()=>jD(i,a,u));case"dynamic":return XD(i,a,u);case"evaluation":return o(()=>YD(i,a,u));case"image":return o(()=>QD(i,a,u));case"graph":return o(()=>ZD(i,a,u));case"logical":return o(()=>tR(i,a,u));case"matrices":return o(()=>eR(i,a,u));case"normalization":return o(()=>rR(i,a,u));case"reduction":return o(()=>nR(i,a,u));case"slice_join":return o(()=>oR(i,a,u));case"sparse":return o(()=>sR(i,a,u));case"spectral":return o(()=>iR(i,a,u));case"string":return o(()=>aR(i,a,u));case"transformation":return o(()=>lR(i,a,u));case"hash_table":return JD(i,a,u,n);case"custom":let l=Nb(i.op);if(l&&l.customExecutor)return l.customExecutor(new Lb(i,a,u));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,t,e);return y.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var Oh=class{constructor(t={},e={},n={},o={}){this.weightMap=t,this.tensorArrayMap=e,this.tensorListMap=n,this.functionMap=o,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(t,e){return{id:t,frameName:e,iterationId:0}}set currentContext(t){this.contexts!==t&&(this.contexts=t,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let t=[];for(let e=0;e<this.contexts.length-1;e++){let n=this.contexts.slice(0,this.contexts.length-e);t.push(this.contextIdforContexts(n))}t.push(""),this._currentContextIds=t}contextIdforContexts(t){return t?t.map(e=>e.id===0&&e.iterationId===0?"":`${e.frameName}-${e.iterationId}`).join("/"):""}enterFrame(t){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,t)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let t=Object.assign({},this.contexts[this.contexts.length-1]);t.iterationId+=1,t.id=this.lastId,this.contexts.splice(-1,1,t),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(t){return this.weightMap[t]}addTensorArray(t){this.tensorArrayMap[t.id]=t}getTensorArray(t){return this.tensorArrayMap[t]}addTensorList(t){this.tensorListMap[t.id]=t}getTensorList(t){return this.tensorListMap[t]}dispose(t){for(let e in this.tensorArrayMap)this.tensorArrayMap[e].clearAndClose(t);for(let e in this.tensorListMap)this.tensorListMap[e].clearAndClose(t)}};function dN(r,t,e,n){let o=new Set,s=[],i=null,a=null,u=new Set,l=Object.keys(r).map(m=>xn(m)[0]),c=[];n!=null&&(c=n.map(m=>xn(m.name)[0]));let p=[...t];for(;p.length>0;){let m=p.pop();if((hN(m)||F7(m)||O7(m))&&i==null&&(i=m,a=i.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),e[m.name]==null&&l.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{u.has(f.name)||(u.add(f.name),p.push(f))})}}return{inputs:r,outputs:t,usedNodes:o,missingInputs:s,dynamicNode:i,syncInputs:a}}function uR(r,t,e){let{usedNodes:n,inputs:o}=e,s=[],i=Object.keys(o).map(c=>xn(c)[0]).map(c=>r.nodes[c]),a=r.initNodes;i.forEach(c=>{n.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{n.has(c.name)&&s.push(c)}),a!=null&&a.forEach(c=>{n.has(c.name)&&s.push(c)});let u=new Set,l=[];for(;s.length>0;){let c=s.pop();u.add(c.name),t[c.name]||l.push(c),c.children.forEach(p=>{!u.has(p.name)&&n.has(p.name)&&p.inputs.every(m=>u.has(m.name))&&s.push(p)})}return l}var $7=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],D7=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],R7=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function hN(r){return $7.indexOf(r.op)>=0}function F7(r){return D7.indexOf(r.op)>=0}function O7(r){return R7.indexOf(r.op)>=0}var Nc=class{constructor(t,e){this.graph=t,this.parent=e,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=t.outputs,this._inputs=t.inputs,this._initNodes=t.initNodes,this._signature=t.signature,this._functions=t.functions,t.functions!=null&&Object.keys(t.functions).forEach(n=>{this._functionExecutorMap[n]=new Nc(t.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(t){let e=Object.keys(t).map(n=>t[n].map(o=>o.id));this._weightIds=[].concat(...e),this._weightMap=t}set resourceManager(t){this._resourceManager=t}get inputs(){return this._inputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(t=>t.signatureKey||t.name)}get outputNodes(){return this._outputs.map(t=>{let e=t.signatureKey||t.name;return t.defaultOutput?`${e}:${t.defaultOutput}`:e})}get functions(){return Object.keys(this._functions).reduce((t,e)=>(t[e]=this._functions[e].signature,t),{})}getCompilationKey(t,e){let n=t.map(s=>s.name).sort(),o=e.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+o.join(this.SEPERATOR)}compile(t,e){let n=dN(t,e,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:i}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${i}]`);if(o.length>0){let a=e.map(l=>l.name),u=Object.keys(t);throw new Error(`Cannot compute the outputs [${a}] from the provided inputs [${u}]. Missing the following inputs: [${o}]`)}return uR(this.graph,this.weightMap,n)}execute(t,e){t=this.mapInputs(t);let n=Object.keys(t).sort();this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e);let o=n.map(p=>this.graph.nodes[xn(p)[0]]),s=e.map(p=>xn(p)[0]),i=s.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),i.length===0&&(i=this._outputs);let a=this.getCompilationKey(o,i),u=this.compiledMap.get(a);u==null&&(u=this.compile(t,i),this.compiledMap.set(a,u));let l={},c={};return B(()=>{let p=new Oh(this.weightMap,l,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(t).forEach(h=>{let[g,x]=xn(h),b=[];b[x]=t[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<u.length;h++){let g=u[h];if(!m[g.name]){let x=fN(g,m,p,this._resourceManager);if(y.isPromise(x))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=x,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),e.map(h=>br(h,m,p))})}getFrozenTensorIds(t){let e=[].concat.apply([],Object.keys(t).map(n=>t[n]).map(n=>n.map(o=>o.id)));return new Set(e)}checkTensorForDisposal(t,e,n,o,s,i,a){e.category==="control"||i.indexOf(t)!==-1||(n[t].forEach(u=>{u!=null&&(a[u.id]=(a[u.id]||0)+e.children.length)}),e.inputs.forEach(u=>{if(u.category!=="control"){let l=FD(u.name,n,o);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!s.has(c.id)){let p=a[c.id];if(p===1){if(!this.keepTensorForDebug)c.dispose();else{let[m,f]=_o(e.name,o);this.intermediateTensors[m]?this.intermediateTensors[m][f]=c:(this.intermediateTensors[m]=[],this.intermediateTensors[m][f]=c)}delete a[c.id]}else p!=null&&a[c.id]--}})}}))}async executeAsync(t,e){return this._executeAsync(t,e)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(t=>this.intermediateTensors[t].forEach(e=>e.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(t=>{this.tensorsMap[t].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let t in this.intermediateTensors)this.intermediateTensors[t].forEach(e=>e.dispose()),delete this.intermediateTensors[t]}async _executeAsync(t,e,n=!1,o={},s={}){n||(t=this.mapInputs(t),this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e));try{this.keepTensorForDebug=z().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(c){console.warn(c.message)}this.resetIntermediateTensors();let i=new Oh(this.weightMap,o,s,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(t,i,e,n);let a=e.map(c=>br(c,this.tensorsMap,i)),u=a.map(c=>c.id),l=Object.keys(t).map(c=>t[c].id);return this.keepIds=new Set([...u,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&i.dispose(this.keepIds),a}async executeFunctionAsync(t,e,n){let o=t.reduce((s,i,a)=>(s[this.inputs[a].name]=i,s),{});return this._executeAsync(o,this.outputNodes,!0,e,n)}async executeWithControlFlow(t,e,n,o){let s=Object.keys(t),i=s.map(w=>this.graph.nodes[xn(w)[0]]),a=n.map(w=>xn(w)[0]),u=a.map(w=>this.graph.nodes[w]);u.length===0&&(u=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:p,syncInputs:m}=dN(t,u,this.weightMap,this._initNodes),f=[...i,...this.graph.weights,...this._initNodes||[]].map(w=>({node:w,contexts:e.currentContext})),d=Object.assign({},this.weightMap);Object.keys(t).forEach(w=>{let[C,N]=xn(w),_=[];_[N]=t[w],d[C]=_});let h={},g=this.getFrozenTensorIds(d),x={};for(;f.length>0;){let w=this.processStack(i,f,e,d,x,g,a,h,l);await Promise.all(w)}p==null&&!o&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=u.filter(w=>!hN(w)&&!br(w.name,d,e)).map(w=>w.name);if(b.length>0){let w="";throw p!=null&&(w=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${w}`)}return d}processStack(t,e,n,o,s,i,a,u,l){let c=[];for(;e.length>0;){let p=e.pop();n.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&S("isConstant",p.node,o,n)&&([m]=_o(p.node.name,n)),o[p.node.name]==null){let f=fN(p.node,o,n,this._resourceManager);m||([m]=_o(p.node.name,n));let d=n.currentContext;y.isPromise(f)?c.push(f.then(h=>(o[m]=h,n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l),h))):(o[m]=f,this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l))}else this.processChildNodes(p.node,e,n,o,s,l)}return c}processChildNodes(t,e,n,o,s,i){t.children.forEach(a=>{let[u]=_o(a.name,n);s[u]||!i.has(a.name)||(a.op==="Merge"?a.inputNames.some(l=>!!br(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})):a.inputNames.every(l=>!!br(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})))})}dispose(){Object.keys(this.weightMap).forEach(t=>this.weightMap[t].forEach(e=>e.dispose()))}checkInputShapeAndType(t){Object.keys(t).forEach(e=>{let n=t[e],[o]=xn(e),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let i=s.attrParams.shape.value,a=i.length===n.shape.length&&n.shape.every((u,l)=>i[l]===-1||i[l]===u);y.assert(a,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${i}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(t){let e={};for(let n in t)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let o=this._signature.inputs[n];e[o.name]=t[n]}else e[n]=t[n];return e}checkInputs(t){let e=Object.keys(t).filter(n=>{let[o]=xn(n);return this.graph.nodes[o]==null});if(e.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${e}] that are not part of graph`)}mapOutputs(t){return t.map(e=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[e]!=null?this._signature.outputs[e].name:e,{})}checkOutputs(t){t.forEach(e=>{let[n]=xn(e);if(!this.graph.nodes[n])throw new Error(`The output '${e}' is not found in the graph`)})}};var Vb=class{constructor(t={},e={}){this.hashTableNameToHandle=t,this.hashTableMap=e}addHashTable(t,e){this.hashTableNameToHandle[t]=e.handle,this.hashTableMap[e.id]=e}getHashTableHandleByName(t){return this.hashTableNameToHandle[t]}getHashTableById(t){return this.hashTableMap[t]}dispose(){for(let t in this.hashTableMap)this.hashTableMap[t].clearAndClose(),delete this.hashTableMap[t];for(let t in this.hashTableNameToHandle)this.hashTableNameToHandle[t].dispose(),delete this.hashTableNameToHandle[t]}};var P7="?tfjs-format=file",L7="model.json",Ph=class{constructor(t,e={},n=_r){this.modelUrl=t,this.loadOptions=e,this.version="n/a",this.io=n,e==null&&(this.loadOptions={}),this.resourceManager=new Vb}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let t=this.modelUrl;if(t.load!=null)this.handler=t;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(t,this.loadOptions);else{let e=this.io.getLoadHandlers(t,this.loadOptions);if(e.length===0)e.push(this.io.browserHTTPRequest(t,this.loadOptions));else if(e.length>1)throw new Error(`Found more than one (${e.length}) load handlers for URL '${[t]}'`);this.handler=e[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let t=this.handler.load();return y.isPromise(t)?t.then(e=>this.loadSync(e)):this.loadSync(t)}loadSync(t){this.artifacts=t;let e=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let s=this.artifacts.userDefinedMetadata;s.signature!=null&&(n=s.signature),s.structuredOutputKeys!=null&&(this.structuredOutputKeys=s.structuredOutputKeys)}this.signature=n,this.version=`${e.versions.producer}.${e.versions.minConsumer}`;let o=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Nc(Fh.Instance.transformGraph(e,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(o),this.executor.resourceManager=this.resourceManager,t.modelInitializer!=null&&t.modelInitializer.node!=null){let s=Fh.Instance.transformGraph(t.modelInitializer);this.initializer=new Nc(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=t.initializerSignature}return!0}async save(t,e){if(typeof t=="string"){let n=this.io.getSaveHandlers(t);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${t}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${t}'`);t=n[0]}if(t.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return t.save(this.artifacts)}predict(t,e){let n=this.execute(t,this.outputNodes);if(this.structuredOutputKeys){let o=n instanceof Ft?[n]:n,s={};return o.forEach((i,a)=>s[this.structuredOutputKeys[a]]=i),s}return n}normalizeInputs(t){if(!(t instanceof Ft)&&!Array.isArray(t)){if(this.signature!=null&&this.signature.inputs!=null)for(let o in this.signature.inputs){let s=this.signature.inputs[o];s.resourceId!=null&&(t[o]=this.resourceIdToCapturedInput[s.resourceId])}return t}t=Array.isArray(t)?t:[t];let e=Object.keys(this.resourceIdToCapturedInput).length;if(t.length+e!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-e} non-resource placeholders, while there are ${t.length} input tensors provided.`);let n=0;return this.inputNodes.reduce((o,s)=>{let i=this.signature?this.signature.inputs[s]:null;return i!=null&&i.resourceId!=null?o[s]=this.resourceIdToCapturedInput[i.resourceId]:o[s]=t[n++],o},{})}normalizeOutputs(t){return t=t||this.outputNodes,Array.isArray(t)?t:[t]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(t){if(this.resourceIdToCapturedInput={},this.initializerSignature){let e=Object.keys(this.initializerSignature.outputs);for(let n=0;n<e.length;n++){let o=e[n],s=this.initializerSignature.outputs[o];this.resourceIdToCapturedInput[s.resourceId]=t[n]}}}execute(t,e){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=this.executor.execute(t,e);return n.length>1?n:n[0]}async executeAsync(t,e){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=await this.executor.executeAsync(t,e);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(t){return Object.keys(t).reduce((e,n)=>(e[n]=[t[n]],e),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&vt(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function M7(r,t={},e=_r){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof r=="string"&&(r=B7(r));let n=new Ph(r,t,e);return await n.load(),n}function z7(r){if(r==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(r instanceof Array){let[n,o]=r;if(!n)throw new Error("modelJSON must be the first element of the array");if(!o||!(o instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in n))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in n))throw new Error("Model JSON is missing 'weightsManifest'");let s=_r.getWeightSpecs(n.weightsManifest),i=_r.getModelArtifactsForJSONSync(n,s,o);t=_r.fromMemorySync(i)}else if("load"in r)t=r;else if("modelTopology"in r&&"weightSpecs"in r&&"weightData"in r)t=_r.fromMemorySync(r);else throw new Error("Unknown model format");let e=new Ph(t);return e.load(),e}function B7(r){return r.endsWith("/")||(r=r+"/"),`${r}${L7}${P7}`}var cR="4.0.0";var AR={};Wt(AR,{CSVDataset:()=>Yf,Dataset:()=>Js,FileDataSource:()=>ed,TextLineDataset:()=>Xf,URLDataSource:()=>rd,array:()=>wR,csv:()=>NR,func:()=>TR,generator:()=>kR,microphone:()=>_R,version_data:()=>PN,webcam:()=>ER,zip:()=>CR});var bR=Tl(fh());var gR=Tl(fh());function pR(r,t){return Gb(r,t)}function Gb(r,t,e=new Map,n=new Set){if(r==null)return null;if(typeof Blob=="function"&&r instanceof Blob)return r.slice();if(n.has(r))throw new Error("Circular references are not supported.");if(e.has(r))return e.get(r);let o=t(r);if(o.recurse&&o.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(o.recurse)if(vu(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let a=r[i],u=Gb(a,t,e,n);s[i]=u}return n.delete(r),r.__proto__&&(s.__proto__=r.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return e.set(r,o.value),o.value}function mR(r,t=xN){return fR(r,t)}function fR(r,t,e=new Set){let n=r[0];if(e.has(n))throw new Error("Circular references are not supported.");let o=t(r);if(o.recurse&&o.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(o.recurse)if(vu(n)){let s=Array.isArray(n)?[]:{};e.add(n);for(let i in n){let a=r.map(l=>l[i]),u=fR(a,t,e);s[i]=u}return e.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function xN(r){return r===null?null:vu(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function Wb(r,t){let e=new Map;Gb(r,t,e);for(let o of Array.from(e.keys())){let s=e.get(o);if(y.isPromise(s)){let i=await s;e.set(o,i)}}return Gb(r,t,e)}function vu(r){let t=!1;if(z().get("IS_BROWSER"))t=r instanceof TextDecoder;else{let{StringDecoder:e}=gN();t=r instanceof e}return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Ft)&&!(r instanceof Promise)&&!t)}function dR(r){return r==null||V7(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Ft||y.isTypedArray(r)}function V7(r){return r===null||typeof r!="object"&&typeof r!="function"}function hR(r){return pR(r,G7)}function G7(r){return r instanceof Ft?{value:r.clone(),recurse:!1}:vu(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var jf=class{constructor(t){if(this.capacity=t,this.begin=0,this.end=0,t==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(t<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(t),this.doubledCapacity=2*t}wrap(t){for(;t<0;)t+=this.doubledCapacity;return t%this.doubledCapacity}get(t){if(t<0)throw new RangeError("Can't get item at a negative index.");return this.data[t%this.capacity]}set(t,e){if(t<0)throw new RangeError("Can't set item at a negative index.");this.data[t%this.capacity]=e}length(){let t=this.end-this.begin;return t<0&&(t=this.doubledCapacity+t),t}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,t),this.end=this.wrap(this.end+1)}pushAll(t){for(let e of t)this.push(e)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let t=this.get(this.end);return this.set(this.end,void 0),t}unshift(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,t)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),t}shuffleExcise(t){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.wrap(this.begin+t),n=this.get(e);return this.set(e,this.pop()),n}};var Tc=class extends jf{constructor(){super(Tc.INITIAL_CAPACITY)}isFull(){return!1}push(t){super.isFull()&&this.expand(),super.push(t)}unshift(t){super.isFull()&&this.expand(),super.unshift(t)}expand(){let t=this.capacity*2,e=new Array(t),n=this.length();for(let o=0;o<n;o++)e[o]=this.get(this.wrap(this.begin+o));this.data=e,this.capacity=t,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Tc.INITIAL_CAPACITY=32;function AN(r){return new yN(r)}function Lh(r){return new bN(r)}function xR(r,t){return new Hb(r,t)}function yR(r,t=fl.FAIL){return new EN(r,t)}var Je=class{async toArray(){let t=[],e=await this.next();for(;!e.done;)t.push(e.value),e=await this.next();return t}async toArrayForTest(){let t=this.prefetch(100),e=[],n=await t.next();for(;!n.done;)e.push(n.value),n=await t.next();return e}async resolveFully(){let t=await this.next();for(;!t.done;)t=await this.next()}async resolveWhile(t){let e=await this.next(),n=t(e.value);for(;!e.done&&n;)e=await this.next(),n=t(e.value)}handleErrors(t){return new TN(this,t)}filter(t){return new vN(this,t)}map(t){return new NN(this,t)}mapAsync(t){return new Ub(this,t)}serialMapAsync(t){return new Ub(this,t).serial()}flatmap(t){return new kN(this,t)}async forEachAsync(t){return this.map(t).resolveFully()}async serialForEach(t){return this.serialMapAsync(t).resolveWhile(e=>e===!0)}rowMajorBatch(t,e=!0){return new SN(this,t,e)}columnMajorBatch(t,e=!0,n=xN){return this.rowMajorBatch(t,e).map(s=>mR(s,n))}concatenate(t,e){return new Hb(AN([this,t]),e)}take(t){return t<0||t==null?this:new IN(this,t)}skip(t){return t<0||t==null?this:new CN(this,t)}prefetch(t){return new qb(this,t)}shuffle(t,e){return new _N(this,t,e)}serial(){return new wN(this)}},yN=class extends Je{constructor(t){super(),this.items=t,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let t=this.items[this.trav];return this.trav++,{value:hR(t),done:!1}}},bN=class extends Je{constructor(t){super(),this.nextFn=t}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(t){throw t.message=`Error thrown while iterating through a dataset: ${t.message}`,t}}},wN=class extends Je{constructor(t){super(),this.upstream=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},CN=class extends Je{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let t=await this.upstream.next();if(t.done)return t;vt(t.value)}return this.upstream.next()}},IN=class extends Je{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},SN=class extends Je{constructor(t,e,n=!0){super(),this.upstream=t,this.batchSize=e,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let t=[];for(;t.length<this.batchSize;){let e=await this.upstream.next();if(e.done)return this.enableSmallLastBatch&&t.length>0?{value:t,done:!1}:{value:null,done:!0};t.push(e.value)}return{value:t,done:!1}}},vN=class extends Je{constructor(t,e){super(),this.upstream=t,this.predicate=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let t=await this.upstream.next();if(t.done||this.predicate(t.value))return t;vt(t.value)}}},NN=class extends Je{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Map`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=go.getTensorsInContainer(t.value),n=this.transform(t.value),o=go.getTensorsInContainer(n);for(let s of e)go.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},TN=class extends Je{constructor(t,e){super(),this.upstream=t,this.handler=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(t){if(!this.handler(t))return{value:null,done:!0}}}},Ub=class extends Je{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=go.getTensorsInContainer(t.value),n=await this.transform(t.value),o=go.getTensorsInContainer(n);for(let s of e)go.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},kc=class extends Je{constructor(){super(),this.outputQueue=new Tc,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},kN=class extends kc{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let t=await this.upstream.next();if(t.done)return!1;let e=go.getTensorsInContainer(t.value),n=this.transform(t.value),o=go.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of e)go.isTensorInList(s,o)||s.dispose();return!0}},Hb=class extends Je{constructor(t,e){super(),this.baseErrorHandler=e,this.lastRead=null,this.iterator=null,this.moreIterators=t}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(t){if(await t,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let e=await this.iterator.next();return e.done?(this.iterator=null,this.readFromChain(t)):e}},fl;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(fl||(fl={}));var EN=class extends Je{constructor(t,e=fl.FAIL){super(),this.iterators=t,this.mismatchMode=e,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(t){await t;let e=0,n=0;function o(i){return i instanceof Je?{value:i.next().then(u=>(e++,u.done&&n++,u.value)),recurse:!1}:{value:null,recurse:!0}}let s=await Wb(this.iterators,o);if(e===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case fl.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case fl.SHORTEST:return{value:null,done:!0};case fl.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},qb=class extends Je{constructor(t,e){super(),this.upstream=t,this.bufferSize=e,this.buffer=new jf(e)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let t=this.upstream.next();this.buffer.push(t)}}next(){return this.refill(),this.buffer.shift()}},_N=class extends qb{constructor(t,e,n){super(t,e),this.upstream=t,this.windowSize=e,this.upstreamExhausted=!1,this.random=gR.alea(n||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(t){return Math.floor(this.random()*t)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let t=this.chooseIndex(),e=await this.buffer.shuffleExcise(t);if(e.done)this.upstreamExhausted=!0;else return this.refill(),e}return{value:null,done:!0}}};var Js=class{constructor(){this.size=null}batch(t,e=!0){let n=this;y.assert(t>0,()=>`batchSize needs to be positive, but it is
|
|
${t}`);let o;return this.size===1/0||this.size==null?o=this.size:e?o=Math.ceil(this.size/t):o=Math.floor(this.size/t),kn(async()=>(await n.iterator()).columnMajorBatch(t,e,W7),o)}concatenate(t){let e=this,n;return this.size===1/0||t.size===1/0?n=1/0:this.size!=null&&t.size!=null?n=this.size+t.size:n=null,kn(async()=>(await e.iterator()).concatenate(await t.iterator()),n)}filter(t){let e=this,n;return this.size===1/0?n=1/0:n=null,kn(async()=>(await e.iterator()).filter(o=>B(()=>t(o))),n)}async forEachAsync(t){return(await this.iterator()).forEachAsync(t)}map(t){let e=this;return kn(async()=>(await e.iterator()).map(n=>B(()=>t(n))),this.size)}mapAsync(t){let e=this;return kn(async()=>(await e.iterator()).mapAsync(t),this.size)}prefetch(t){if(t==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let e=this;return kn(async()=>(await e.iterator()).prefetch(t),this.size)}repeat(t){let e=this,n;return this.size!=null&&t>0?n=this.size*t:t===0?n=0:this.size!=null&&(t===void 0||t<0)?n=1/0:n=null,kn(async()=>{let o=Lh(async()=>({value:await e.iterator(),done:!1}));return xR(o.take(t))},n)}skip(t){let e=this,n;return this.size!=null&&t>=0&&this.size>=t?n=this.size-t:this.size!=null&&(this.size<t||t===void 0||t<0)?n=0:n=null,kn(async()=>(await e.iterator()).skip(t),n)}shuffle(t,e,n=!0){if(t==null||t<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=bR.alea(e||y.now().toString());return kn(async()=>{let i=s.int32();return n&&(i+=s.int32()),(await o.iterator()).shuffle(t,i.toString())},this.size)}take(t){let e=this,n;return this.size!=null&&this.size>t?n=t:this.size!=null&&this.size<=t?n=this.size:n=null,kn(async()=>(await e.iterator()).take(t),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Js.MAX_BUFFER_SIZE=1e4;function kn(r,t=null){return new class extends Js{constructor(){super(...arguments),this.size=t}async iterator(){return r()}}}function wR(r){return kn(async()=>AN(r),r.length)}function CR(r){if(!vu(r))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(r))for(let e=0;e<r.length;e++)t=t==null?r[e].size:Math.min(t,r[e].size);else if(r instanceof Object)for(let e in r)t=t==null?r[e].size:Math.min(t,r[e].size);return kn(async()=>{let e=await Wb(r,n=>{if(n instanceof Js)return{value:n.iterator(),recurse:!1};if(vu(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return yR(e,fl.SHORTEST)},t)}function W7(r){if(r===null)return null;let t=r[0];return dR(t)?{value:U7(r),recurse:!1}:{value:null,recurse:!0}}function U7(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Ft?nr(r):ur(r)}var Xf=class extends Js{constructor(t){super(),this.input=t}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(o=>(o.endsWith("\r")&&(o=o.slice(0,-1)),o))}};var Kb='"',Mh=Symbol("out"),IR=Symbol("field"),jb=Symbol("quote"),$N=Symbol("quoteafterquote"),SR=Symbol("quoteinquote"),Yf=class extends Js{constructor(t,e){super(),this.input=t,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Xf(t),e||(e={}),this.hasHeader=e.hasHeader!==!1,this.fullColumnNames=e.columnNames,this.columnConfigs=e.columnConfigs,this.configuredColumnsOnly=e.configuredColumnsOnly,e.delimWhitespace?(y.assert(e.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=e.delimiter?e.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let t=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!t)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&t&&y.assert(t.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+t.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=t);let e=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(e).filter(o=>e[o]>1);if(y.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key "'+o+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let n=e.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let t=await this.base.iterator();return this.hasHeader&&(t=t.skip(1)),t.map(e=>this.makeDataElement(e))}makeDataElement(t){let e=this.parseRow(t),n={},o={};for(let s=0;s<this.fullColumnNames.length;s++){let i=this.fullColumnNames[s],a=this.columnConfigs?this.columnConfigs[i]:null;if(!(this.configuredColumnsOnly&&!a)){let u=e[s],l=null;if(u==="")if(a&&a.default!==void 0)l=a.default;else{if(a&&(a.required||a.isLabel))throw new Error(`Required column ${i} is empty in this line: ${t}`);l=void 0}else{let c=Number(u);if(isNaN(c))a&&a.dtype==="bool"?l=this.getBoolean(u):l=u;else if(!a||!a.dtype)l=c;else switch(a.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(u);break;default:l=c}}a&&a.isLabel?o[i]=l:n[i]=l}}return Object.keys(o).length===0?n:{xs:n,ys:o}}getBoolean(t){return t==="1"||t.toLowerCase()==="true"?1:0}parseRow(t,e=!0){let n=[],o=0,s=t.length,i=Mh;for(let a=0;a<s;a++)switch(i){case Mh:switch(t.charAt(a)){case Kb:o=a+1,i=jb;break;case this.delimiter:if(o=a+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),i=Mh;break;default:i=IR,o=a;break}break;case IR:switch(t.charAt(a)){case this.delimiter:n.push(t.substring(o,a)),i=Mh,o=a+1;break;default:}break;case jb:switch(t.charAt(a)){case Kb:i=$N;break;default:}break;case $N:switch(t.charAt(a)){case this.delimiter:n.push(t.substring(o,a-1)),i=Mh,o=a+1;break;case Kb:i=jb;break;default:i=SR;break}break;case SR:switch(t.charAt(a)){case Kb:i=jb;break;default:}break;default:}if(i===$N?n.push(t.substring(o,s-1)):n.push(t.substring(o)),e&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}};var Zf=class extends Je{constructor(t){super(),this.microphoneConfig=t,this.isClosed=!1,this.fftSize=t.fftSize||1024;let e=Math.log2(this.fftSize);if(this.fftSize<0||e<4||e>14||!Number.isInteger(e))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=t.numFramesPerSpectrogram||43,this.sampleRateHz=t.sampleRateHz,this.columnTruncateLength=t.columnTruncateLength||this.fftSize,this.audioTrackConstraints=t.audioTrackConstraints,this.smoothingTimeConstant=t.smoothingTimeConstant||0,this.includeSpectrogram=t.includeSpectrogram!==!1,this.includeWaveform=t.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(t={}){if(!z().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let e=new Zf(t);return await e.start(),e}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let t=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new t,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let e=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,e.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let t,e,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:t,waveform:e},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let t=[],e=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&o({freqDataQueue:t,timeDataQueue:e}),t.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),e.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:t,timeDataQueue:e}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(t){let e=t[0].length,n=new Float32Array(t.length*e);return t.forEach((o,s)=>n.set(o,s*e)),n}getTensorFromAudioDataArray(t,e){let n=new Float32Array(y.sizeFromShape(e));return n.set(t,n.length-t.length),ur(n,e)}};var Jf=class extends Je{constructor(t,e){if(super(),this.webcamVideoElement=t,this.webcamConfig=e,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Me([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,i=(1-o)/2,a=s+n,u=o+i;this.cropBox=Vs([i,s,u,a],[1,4])}else this.cropBox=Vs([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(t,e={}){if(!z().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!t){if(t=document.createElement("video"),!e.resizeWidth||!e.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");t.width=e.resizeWidth,t.height=e.resizeHeight}let n=new Jf(t,e);return await n.start(),n}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(t){throw t.message=`Error thrown while initializing video stream: ${t.message}`,t}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(t){console.log(t),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(t=>{this.webcamVideoElement.onloadedmetadata=()=>{t()}})}async next(){if(this.isClosed)return{value:null,done:!0};let t;try{t=nx.fromPixels(this.webcamVideoElement)}catch(e){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(t),done:!1}}catch(e){throw new Error(`Error thrown cropping the video: ${e.message}`)}finally{t.dispose()}else return{value:t,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(t){return B(()=>{let e=rr(J(t,"float32"),0),n;n=Gs.cropAndResize(e,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let o=n.shape;return R(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var Qf=class{};var zh=class extends Je{split(t){return new DN(this,t)}},DN=class extends zh{constructor(t,e){super(),this.upstream=t,this.impl=new RN(t,e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},RN=class extends kc{constructor(t,e){super(),this.upstream=t,this.separator=e,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let t=await this.upstream.next();if(t.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let e=t.value.split(this.separator);e[0]=this.carryover+e[0];for(let n of e.slice(0,-1))this.outputQueue.push(n);return this.carryover=e[e.length-1],!0}};var Xb=class extends Je{decodeUTF8(){return new FN(this)}},FN=class extends zh{constructor(t){super(),this.upstream=t,this.impl=new ON(t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},ON=class extends kc{constructor(t){if(super(),this.upstream=t,z().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:e}=gN();this.decoder=new e("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let t=await this.upstream.next(),e;if(t.done)return!1;e=t.value;let n;return z().get("IS_BROWSER")?n=this.decoder.decode(e,{stream:!0}):n=this.decoder.write(Buffer.from(e.buffer)),this.outputQueue.push(n),!0}};var td=class extends Xb{constructor(t,e={}){super(),this.file=t,this.options=e,y.assert(t instanceof Uint8Array||(z().get("IS_BROWSER")?t instanceof File||t instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=e.offset||0,this.chunkSize=e.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=a=>{let u=s.result;if(u instanceof ArrayBuffer&&(u=new Uint8Array(u)),!(u instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));e(u)},s.onabort=a=>n(new Error("Aborted")),s.onerror=a=>n(new Error(a.type));let i=this.file.slice(this.offset,o);s.readAsArrayBuffer(i)}this.offset=o}),done:!1}}};async function vR(r,t={},e){let n,o;typeof r=="string"?n=r:(n=r.url,o=H7(r));let s=await(e||y.fetch)(n,o);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new td(i,t)}else throw new Error(s.statusText)}var H7=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function Yb(r){return typeof r=="string"&&r.slice(0,7)==="file://"}var ed=class extends Qf{constructor(t,e={}){super(),this.input=t,this.options=e}async iterator(){if(Yb(this.input)&&z().get("IS_NODE")){let t=Zb();this.input=t.readFileSync(this.input.slice(7))}return new td(this.input,this.options)}};var rd=class extends Qf{constructor(t,e={}){super(),this.url=t,this.fileOptions=e}async iterator(){return Yb(this.url)?new ed(this.url,this.fileOptions).iterator():vR(this.url,this.fileOptions)}};function NR(r,t={}){return new Yf(new rd(r),t)}function TR(r){let t=Lh(r);return kn(async()=>t)}function kR(r){return kn(async()=>{let t=await r();return Lh(()=>t.next())})}async function ER(r,t){return Jf.create(r,t)}async function _R(r){return Zf.create(r)}var PN="4.0.0";function tt(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&y.assert(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var q7=Ur.whereImpl,Nu=class extends zo{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new ra(this,Pn())}nextDataId(){return Nu.nextDataId++}write(t,e,n){this.firstUse&&(this.firstUse=!1,z().get("IS_NODE")&&v.warn(`
|
|
============================
|
|
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let o={id:this.nextDataId()};return this.data.set(o,{values:t,dtype:n,refCount:1}),o}makeTensorInfo(t,e,n){let o;if(e==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(i=>y.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return{dataId:o,shape:t,dtype:e}}refCount(t){return this.data.has(t)?this.data.get(t).refCount:0}incRef(t){let e=this.data.get(t);e.refCount++}decRef(t){if(this.data.has(t)){let e=this.data.get(t);e.refCount--}}move(t,e,n,o,s){this.data.set(t,{values:e,dtype:o,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(t){return this.readSync(t)}readSync(t){let{dtype:e,complexTensorInfos:n}=this.data.get(t);if(e==="complex64"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return v.mergeRealAndImagArrays(o,s)}return this.data.get(t).values}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype==="string")try{let n=e.map(o=>y.decodeString(o));return wt(t.shape,t.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return wt(t.shape,t.dtype,e)}makeOutput(t,e,n){return Pn().makeTensorFromTensorInfo(this.makeTensorInfo(e,n,t),this)}disposeData(t,e=!1){if(this.data.has(t)){if(this.data.get(t).refCount--,!e&&this.data.get(t).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(t);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(t)}return!0}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}async time(t){let e=y.now();return t(),{kernelMs:y.now()-e}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(t){tt([t],"where");let e=this.readSync(t.dataId);return q7(t.shape,e)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Nu.nextDataId=0;var mw={};Wt(mw,{addImpl:()=>zN,bincountImpl:()=>sd,bincountReduceImpl:()=>Jb,castImpl:()=>MN,ceilImpl:()=>BN,concatImpl:()=>Ec,equalImpl:()=>VN,expImpl:()=>WN,expm1Impl:()=>HN,floorImpl:()=>qN,gatherNdImpl:()=>Qb,gatherV2Impl:()=>tw,greaterEqualImpl:()=>jN,greaterImpl:()=>KN,lessEqualImpl:()=>YN,lessImpl:()=>XN,linSpaceImpl:()=>ew,logImpl:()=>ZN,maxImpl:()=>rw,maximumImpl:()=>JN,minimumImpl:()=>QN,multiplyImpl:()=>Bh,negImpl:()=>tT,notEqualImpl:()=>eT,prodImpl:()=>rT,raggedGatherImpl:()=>nw,raggedRangeImpl:()=>ow,raggedTensorToTensorImpl:()=>sw,rangeImpl:()=>Ac,rsqrtImpl:()=>nT,scatterImpl:()=>dl,sigmoidImpl:()=>sF,simpleAbsImpl:()=>LN,sliceImpl:()=>$c,sparseFillEmptyRowsImpl:()=>iw,sparseReshapeImpl:()=>aw,sparseSegmentReductionImpl:()=>ld,sqrtImpl:()=>lF,squaredDifferenceImpl:()=>sT,stridedSliceImpl:()=>lw,stringNGramsImpl:()=>Dc,stringSplitImpl:()=>Rc,stringToHashBucketFastImpl:()=>Fc,subImpl:()=>aT,tileImpl:()=>uw,topKImpl:()=>cw,transposeImpl:()=>id,uniqueImpl:()=>pw});function LN(r){let t=new Float32Array(r.length);for(let e=0;e<r.length;++e)t[e]=Math.abs(r[e]);return t}var K7=r=>{let{x:t}=r.inputs,e=r.backend;tt(t,"abs");let n=new Float32Array(y.sizeFromShape(t.shape)),o=e.data.get(t.dataId).values;return n=LN(o),e.makeOutput(n,t.shape,t.dtype)},$R={kernelName:ii,backendName:"cpu",kernelFunc:K7};function Qt(r){return(t,e,n,o,s)=>{let i=v.assertAndGetBroadcastShape(t,e),a=i.length,u=y.computeStrides(i),l=y.sizeFromShape(i),c=y.getTypedArrayFromDType(s,l),p=t.length,m=e.length,f=y.computeStrides(t),d=y.computeStrides(e),h=v.getBroadcastDims(t,i),g=v.getBroadcastDims(e,i);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(n[x%n.length],o[x%o.length]);else for(let x=0;x<c.length;++x){let b=y.indexToLoc(x,a,u),w=b.slice(-p);h.forEach(A=>w[A]=0);let C=y.locToIndex(w,p,f),N=b.slice(-m);g.forEach(A=>N[A]=0);let _=y.locToIndex(N,m,d);c[x]=r(n[C],o[_])}return[c,i]}}function wr(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=e.makeTensorInfo(n.shape,"complex64"),u=e.data.get(a.dataId);return u.complexTensorInfos={real:e.makeTensorInfo(n.shape,"float32",s),imag:e.makeTensorInfo(o.shape,"float32",i)},a}var DR={kernelName:pp,backendName:"cpu",kernelFunc:wr};function nd(r,t,e="float32"){if(e==="complex64"){let o=nd(r,t,"float32"),s=nd(r,t,"float32");return wr({inputs:{real:o,imag:s},backend:r})}let n=y.makeZerosTypedArray(y.sizeFromShape(t),e);return r.makeTensorInfo(t,e,n)}function Kr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var RR={kernelName:co,backendName:"cpu",kernelFunc:Kr};function Ao(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.real,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var FR={kernelName:Rp,backendName:"cpu",kernelFunc:Ao};function MN(r,t,e,n){if(n==="int32"){let o=Int32Array.from(r);return[t,"int32",o]}if(n==="bool"){let o=y.toTypedArray([0],e),[s,i]=Qt((a,u)=>a!==u?1:0)(t,[],r,o,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${e} to ${n}`)}function $o(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return Kr({inputs:{x:o},backend:e});let c=nd(e,o.shape,o.dtype),p=$o({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),m=wr({inputs:{real:p,imag:c},backend:e});return e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),m}if(o.dtype==="complex64"){let c=Ao({inputs:{input:o},backend:e}),p=$o({inputs:{x:c},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(c),p}if(!y.hasEncodingLoss(o.dtype,s)){let c=Kr({inputs:{x:o},backend:e});return{dataId:c.dataId,shape:c.shape,dtype:s}}let i=e.data.get(o.dataId).values,[a,u,l]=MN(i,o.shape,o.dtype,s);return e.makeTensorInfo(a,u,l)}var OR={kernelName:lo,backendName:"cpu",kernelFunc:$o};function oe(r,t,e,n){return e==null?({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;tt([i,a],r);let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=i.dtype==="string"?v.fromUint8ToStringArray(l):l,m=i.dtype==="string"?v.fromUint8ToStringArray(c):c,f=n||i.dtype,[d,h]=t(i.shape,a.shape,p,m,f);return u.makeTensorInfo(h,f,d)}:({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;if(i.dtype==="complex64"||a.dtype==="complex64"){let l=$o({inputs:{x:i},backend:u,attrs:{dtype:"complex64"}}),c=u.data.get(l.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=u.data.get(p.dataId).values,d=u.data.get(m.dataId).values,h=$o({inputs:{x:a},backend:u,attrs:{dtype:"complex64"}}),g=u.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=u.data.get(x.dataId).values,C=u.data.get(b.dataId).values,[N,_,A]=e(i.shape,a.shape,f,d,w,C),$=u.makeTensorInfo(A,"float32",N),F=u.makeTensorInfo(A,"float32",_),P=wr({inputs:{real:$,imag:F},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(h),u.disposeIntermediateTensorInfo($),u.disposeIntermediateTensorInfo(F),P}else{let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=n||i.dtype,[m,f]=t(i.shape,a.shape,l,c,p);return u.makeTensorInfo(f,p,m)}}}function od(r){return(t,e,n,o,s,i)=>{let a=v.assertAndGetBroadcastShape(t,e),u=y.sizeFromShape(a),l=a.length,c=y.computeStrides(a),p=y.getTypedArrayFromDType("float32",u),m=y.getTypedArrayFromDType("float32",u),f=v.getBroadcastDims(t,a),d=v.getBroadcastDims(e,a),h=v.mergeRealAndImagArrays(n,o),g=v.mergeRealAndImagArrays(s,i),x=t.length,b=y.computeStrides(t),w=e.length,C=y.computeStrides(e);if(f.length+d.length===0)for(let N=0;N<p.length;N++){let _=N%h.length,A=N%g.length,$=r(h[_*2],h[_*2+1],g[A*2],g[A*2+1]);p[N]=$.real,m[N]=$.imag}else for(let N=0;N<p.length;N++){let _=y.indexToLoc(N,l,c),A=_.slice(-x);f.forEach(G=>A[G]=0);let $=y.locToIndex(A,x,b),F=_.slice(-w);d.forEach(G=>F[G]=0);let P=y.locToIndex(F,w,C),V=r(h[$*2],h[$*2+1],g[P*2],g[P*2+1]);p[N]=V.real,m[N]=V.imag}return[p,m,a]}}var zN=Qt((r,t)=>r+t),j7=od((r,t,e,n)=>({real:r+e,imag:t+n})),Ki=oe(Zn,zN,j7),PR={kernelName:Zn,backendName:"cpu",kernelFunc:Ki};function sd(r,t,e,n,o){let s=y.sizeFromShape(n),i=y.makeZerosTypedArray(o,e);for(let a=0;a<r.length;a++){let u=r[a];if(u<0)throw new Error("Input x must be non-negative!");u>=o||(s>0?i[u]+=t[a]:i[u]+=1)}return i}function Jb(r,t,e,n=!1){let o=r.shape[0],s=r.shape[1],i=wt([o,e],t.dtype);for(let a=0;a<o;a++)for(let u=0;u<s;u++){let l=r.get(a,u);if(l<0)throw new Error("Input x must be non-negative!");l>=e||(n?i.set(1,a,l):t.size>0?i.set(i.get(a,l)+t.get(a,u),a,l):i.set(i.get(a,l)+1,a,l))}return i}function yn(r){return(t,e,n)=>{let o=y.getTypedArrayFromDType(e,t.length);for(let s=0;s<t.length;++s)o[s]=r(t[s],n);return o}}function Et(r,t,e){return({inputs:n,attrs:o,backend:s})=>{let{x:i}=n;if(tt(i,r),i.dtype==="string"||e==="string")throw new Error("unaryKernelFunc does not support string input/output");let a=s,u=a.data.get(i.dataId).values,l=y.sizeFromShape(i.shape),c=e||i.dtype,p=y.getArrayFromDType(c,l);for(let m=0;m<l;++m)p[m]=t(u[m],o);return a.makeTensorInfo(i.shape,c,p)}}function Do(r,t,e){return({inputs:n,attrs:o,backend:s})=>{let{x:i}=n;if(tt(i,r),i.dtype==="string"||e==="string")throw new Error("unaryKernelFunc does not support string input/output");let a=s,u=a.data.get(i.dataId).values,l=e||i.dtype,c=t(u,l,o);return a.makeTensorInfo(i.shape,l,c)}}var BN=yn(r=>Math.ceil(r)),X7=Do(qo,BN),LR={kernelName:qo,backendName:"cpu",kernelFunc:X7};function Ec(r,t,e,n){let o=y.getArrayFromDType(e,y.sizeFromShape(t));if(n&&e!=="string"){let s=0;r.forEach(i=>{let a=y.sizeFromShape(i.shape);o.set(i.vals,s),s+=a})}else{let s=0;r.forEach(i=>{let a=e==="string"?v.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;l<i.shape[0];++l){let c=l*t[1]+s;for(let p=0;p<i.shape[1];++p)o[c+p]=a[u++]}s+=i.shape[1]})}return o}var VN=Qt((r,t)=>r===t?1:0),GN=oe(xa,VN,null,"bool"),MR={kernelName:xa,backendName:"cpu",kernelFunc:GN};var WN=yn(r=>Math.exp(r)),UN=Do(es,WN,"float32"),zR={kernelName:es,backendName:"cpu",kernelFunc:UN};var HN=yn(r=>Math.expm1(r)),Y7=Do(ya,HN),BR={kernelName:ya,backendName:"cpu",kernelFunc:Y7};var qN=yn(r=>Math.floor(r)),Z7=Do(rs,qN),VR={kernelName:rs,backendName:"cpu",kernelFunc:Z7};function Qb(r,t,e,n,o,s,i,a,u){let l=wt([n,s],e);for(let c=0;c<n;c++){let p=[],m=0;for(let f=0;f<o;f++){let d=r[c*o+f];m+=d*i[f],p.push(d)}if(m<0||m>=u/s)throw new Error(`Invalid indices: ${p} does not index into ${a}`);for(let f=0;f<s;f++)l.values[c*s+f]=t.get(...t.indexToLoc(m*s+f))}return l}function tw(r,t,e){let n=wt(e,r.dtype);for(let o=0;o<n.size;++o){let i=n.indexToLoc(o).slice(),a=i[0],u=i[2],l=t.locToIndex([a,u]);i[2]=t.values[l];let c=r.locToIndex(i);0<=c&&c<r.values.length&&(n.values[o]=r.values[c])}return n}var KN=Qt((r,t)=>r>t?1:0),J7=oe(Ca,KN,null,"bool"),GR={kernelName:Ca,backendName:"cpu",kernelFunc:J7};var jN=Qt((r,t)=>r>=t?1:0),Q7=oe(ss,jN,null,"bool"),WR={kernelName:ss,backendName:"cpu",kernelFunc:Q7};var XN=Qt((r,t)=>r<t?1:0),tJ=oe(Na,XN,null,"bool"),UR={kernelName:Na,backendName:"cpu",kernelFunc:tJ};var YN=Qt((r,t)=>r<=t?1:0),eJ=oe(Ta,YN,null,"bool"),HR={kernelName:Ta,backendName:"cpu",kernelFunc:eJ};function ew(r,t,e){let n=(t-r)/(e-1),o=y.makeZerosTypedArray(e,"float32");o[0]=r;for(let s=1;s<o.length;s++)o[s]=o[s-1]+n;return o}var ZN=yn(r=>Math.log(r)),rJ=Do(as,ZN),qR={kernelName:as,backendName:"cpu",kernelFunc:rJ};function rw(r,t,e,n){let o=y.getTypedArrayFromDType(n,y.sizeFromShape(e));for(let s=0;s<o.length;++s){let i=s*t,a=r[i];for(let u=0;u<t;++u){let l=r[i+u];(Number.isNaN(l)||l>a)&&(a=l)}o[s]=a}return o}var JN=Qt((r,t)=>Math.max(r,t)),nJ=oe(us,JN),KR={kernelName:us,backendName:"cpu",kernelFunc:nJ};var QN=Qt((r,t)=>Math.min(r,t)),oJ=oe(fs,QN),jR={kernelName:fs,backendName:"cpu",kernelFunc:oJ};var Bh=Qt((r,t)=>r*t),sJ=od((r,t,e,n)=>({real:r*e-t*n,imag:r*n+t*e})),_c=oe(hs,Bh,sJ),XR={kernelName:hs,backendName:"cpu",kernelFunc:_c};function tT(r,t,e){let n=y.createScalarValue(-1,e);return Bh([],t,n,r,e)}function iJ(r){let{inputs:t,backend:e}=r,{x:n}=t;tt(n,"neg");let o=e.data.get(n.dataId).values,[s,i]=tT(o,n.shape,n.dtype);return e.makeTensorInfo(i,n.dtype,s)}var YR={kernelName:pi,backendName:"cpu",kernelFunc:iJ};var eT=Qt((r,t)=>r!==t?1:0),aJ=oe(Da,eT,null,"bool"),ZR={kernelName:Da,backendName:"cpu",kernelFunc:aJ};function id(r,t,e,n,o){let s=t.length,i=y.sizeFromShape(t),a=y.computeStrides(t),u=y.computeStrides(o),l=y.getTypedArrayFromDType(e,y.sizeFromShape(o));for(let c=0;c<i;++c){let p=y.indexToLoc(c,s,a),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[n[d]];let f=y.locToIndex(m,s,u);l[f]=r[c]}return l}function Ve(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{perm:s}=e;tt(o,"transpose");let i=o.shape.length,a=new Array(i);for(let p=0;p<a.length;p++)a[p]=o.shape[s[p]];let u=n.data.get(o.dataId).values,l=id(u,o.shape,o.dtype,s,a);return{dataId:n.write(l,a,o.dtype),shape:a,dtype:o.dtype}}var JR={kernelName:Qn,backendName:"cpu",kernelFunc:Ve};function rT(r,t,e,n){let[o,s]=v.computeOutAndReduceShapes(r,n),i=sr(t,"int32"),a=y.makeZerosTypedArray(y.sizeFromShape(o),i),u=y.sizeFromShape(s);for(let l=0;l<a.length;++l){let c=l*u,p=1;for(let m=0;m<u;++m)p*=e[c+m];a[l]=p}return{outVals:a,outShape:o,outDtype:i}}function lJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"prod");let a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=v.getAxesPermutation(u,a),c=u,p=o,m=[];l!=null&&(p=Ve({inputs:{x:o},backend:e,attrs:{perm:l}}),m.push(p),c=v.getInnerMostAxes(c.length,a));let f=e.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=rT(p.shape,p.dtype,f,c),x=h;return i&&(x=v.expandShapeToKeepDim(h,u)),m.forEach(b=>e.disposeIntermediateTensorInfo(b)),e.makeTensorInfo(x,g,d)}var QR={kernelName:ws,backendName:"cpu",kernelFunc:lJ};function uJ(r,t,e){r.forEach((n,o)=>{if(n<0||n>=e){let s=y.indexToLoc(o,t.length,y.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${n} is not in [0, ${e})`)}})}function cJ(r,t){for(let e=0;e<r.length;++e){let n=r[e],o=e===r.length-1?t:r[e+1].length;if(n.length===0)throw new Error("Ragged splits may not be empty");if(n[0]<0)throw new Error("Ragged splits must be non-negative");if(n[n.length-1]>o)throw new Error("Ragged splits must not point past values");for(let s=1;s<n.length;++s)if(n[s-1]>n[s])throw new Error("Ragged splits must be sorted in ascending order")}}function pJ(r,t,e,n){let o=[],s=0,i=t.length-1+e.length,a=new Array(i).fill(null).map(()=>[0]);cJ(e,n);let u=1;for(let l=0;l<t.length-1;++l){u*=t[l];let c=t[l+1];for(let p=1;p<u+1;++p)a[l].push(p*c)}for(let l=0;l<r.length;++l){let c=r[l],p=r[l]+1;for(let m=0;m<e.length;++m){let f=e[m],d=m+t.length-1;if(d>=0){let h=a[d],g=h[h.length-1]-f[c];for(let x=c;x<p;++x)a[d].push(f[x+1]+g)}c=f[c],p=f[p]}p!==c&&(o.push([c,p]),s+=p-c)}return{outSplits:a,valueSlices:o,numValues:s}}function mJ(r){let t=[];for(let e=0;e<r.length;++e){let n=r[e].length,o=y.getArrayFromDType("int32",n);t.push(o),r[e].forEach((s,i)=>o[i]=s)}return t}function tF(r,t){let e=r.slice(0,t);for(;e.length<t;)e.push(1);for(let n=t;n<r.length;n++)e[t-1]*=r[n];return e}function fJ(r,t,e,n,o,s){let i=tF(t,2)[1],a=tF(s,2)[1],u=0;for(let l of e)for(let c=l[0];c<l[1];++c){for(let p=0;p<n;++p)o[u*a+p]=r[c*i+p];++u}}function dJ(r,t,e,n,o){let s=t.slice();s[0]=o;let i=y.getArrayFromDType(e,y.sizeFromShape(s)),a=r.length,u=a===0?0:a/t[0];return fJ(r,t,n,u,i,s),[i,s]}function nw(r,t,e,n,o,s,i,a){if(r.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let u=t[0][0]-1;if(uJ(s,i,u),n.length===0)throw new Error("params.rank must be nonzero");let l=n[0],{outSplits:c,valueSlices:p,numValues:m}=pJ(s,i,r,l),f=mJ(c),d=dJ(e,n,o,p,m);return[f,d[0],d[1]]}var eF=2147483647;function ow(r,t,e,n,o,s,i){if(t.length>1)throw new Error("starts must be a scalar or vector");if(o.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let a=t.length===0,u=o.length===0,l=i.length===0,c=[];a||c.push(t[0]),u||c.push(o[0]),l||c.push(i[0]);for(let g=1;g<c.length;++g)if(c[g]!==c[g-1])throw new Error("starts, limits, and deltas must have the same shape");let p=c.length===0?1:c[0],m=y.getArrayFromDType("int32",p+1);m[0]=0;for(let g=0;g<p;++g){let x=a?r[0]:r[g],b=u?n[0]:n[g],w=l?s[0]:s[g];if(w===0)throw new Error("Requires delta != 0");let C;if(w>0&&b<x||w<0&&b>x)C=0;else if(C=Math.ceil(Math.abs((b-x)/w)),C>eF)throw new Error(`Requires ((limit - start) / delta) <= ${eF}`);m[g+1]=m[g]+C}let f=m[p],d=y.getArrayFromDType(e,f),h=0;for(let g=0;g<p;++g){let x=m[g+1]-m[g],b=a?r[0]:r[g],w=l?s[0]:s[g];for(let C=0;C<x;++C)d[h++]=b,b+=w}return[m,d]}var Ro=v.RowPartitionType,ad=class{constructor(t,e,n,o,s,i,a,u,l,c){this.shape=t,this.shapeShape=e,this.values=n,this.valuesShape=o,this.valuesDType=s,this.defaultValue=i,this.defaultValueShape=a,this.rowPartitionValues=u,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=v.getRowPartitionTypesHelper(c),this.raggedRank=v.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(t){return this.rowPartitionTypes[0]===Ro.FIRST_DIM_SIZE?this.rowPartitionTypes[t+1]:this.rowPartitionTypes[t]}getRowPartitionTensor(t){return this.rowPartitionTypes[0]===Ro.FIRST_DIM_SIZE?this.rowPartitionValues[t+1]:this.rowPartitionValues[t]}getMaxWidth(t){let e=this.getRowPartitionTensor(t-1);switch(this.getRowPartitionTypeByDimension(t-1)){case Ro.VALUE_ROWIDS:return ad.getMaxWidthValueRowID(e);case Ro.ROW_SPLITS:return ad.getMaxWidthRowSplit(e);default:throw new Error(`Cannot handle partition type ${Ro[this.getRowPartitionTypeByDimension(t-1)]}`)}}static getMaxWidthRowSplit(t){let e=t.length;if(e===0||e===1)return 0;let n=0;for(let o=0;o<e-1;++o){let s=t[o+1]-t[o];s>n&&(n=s)}return n}static getMaxWidthValueRowID(t){let e=t.length;if(e===0)return 0;let n=0,o=t[0],s=0;for(let i=1;i<e;++i){let a=t[i];a!==o&&(o=a,s=Math.max(i-n,s),n=i)}return Math.max(e-n,s)}tensorShapeFromTensor(t,e,n=!0){if(e.length===0){if(t[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return nF(t,n)}calculateOutputSize(t){let e=this.valuesShape,n=this.defaultValueShape;v.validateDefaultValueShape(n,e);let o=this.tensorShapeFromTensor(this.shape,this.shapeShape),i=v.combineRaggedTensorToTensorShapes(this.raggedRank,o,e);i[0]<0&&(i[0]=t);for(let a=1;a<=this.raggedRank;++a)i[a]<0&&(i[a]=this.getMaxWidth(a));return i}calculateFirstParentOutputIndex(t,e,n){let o=Math.min(t,n),s=[],i=0;for(let a=0;a<o;++a,i+=e)s.push(i);for(let a=o;a<t;++a)s.push(-1);return y.assert(s.length===t,()=>"Final length of result must be equal to firstDimension."),s}calculateOutputIndexRowSplit(t,e,n,o){let s=t.length,i=[];for(let a=0;a<s-1;++a){let u=t[a+1]-t[a],l=Math.min(o,u),c=e[a];c===-1&&(l=0);for(let p=0;p<l;++p)i.push(c),c+=n;for(let p=0;p<u-l;++p)i.push(-1)}if(s>0&&i.length!==t[s-1])throw new Error("Invalid row split size.");return i}calculateOutputIndexValueRowID(t,e,n,o){let s=t.length,i=[];if(s===0)return[];let a=0,u=t[0];if(u>=e.length)throw new Error(`Got currentValueRowId=${u}, which is not less than ${e.length}`);let l=e[u];i.push(l);for(let c=1;c<s;++c){let p=t[c];if(p===u)l>=0&&(++a,a<o?l+=n:l=-1);else{if(a=0,u=p,p>=e.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${e.length}`);l=e[p]}i.push(l)}if(i.length!==t.length)throw new Error("Invalid row ids.");return i}calculateOutputIndex(t,e,n,o){let s=this.getRowPartitionTensor(t),i=this.getRowPartitionTypeByDimension(t);switch(i){case Ro.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(s,e,n,o);case Ro.ROW_SPLITS:if(s.length-1>e.length)throw new Error(`Row partition size is greater than output size: ${s.length-1} > ${e.length}`);return this.calculateOutputIndexRowSplit(s,e,n,o);default:throw new Error(`Unsupported partition type: ${Ro[i]}`)}}getFirstDimensionSize(){let t=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let e=this.rowPartitionTypes[0];switch(e){case Ro.FIRST_DIM_SIZE:return t[0];case Ro.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case Ro.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Ro[e]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),n=this.calculateOutputSize(e),o=new Array(this.raggedRank+1);o[o.length-1]=1;for(let u=o.length-2;u>=0;--u)o[u]=o[u+1]*n[u+1];let s=nF(n,!1),i=y.getArrayFromDType(this.valuesDType,y.sizeFromShape(s));if(o[0]*n[0]>0){let u=this.calculateFirstParentOutputIndex(e,o[0],n[0]);for(let l=1;l<=this.raggedRank;++l)u=this.calculateOutputIndex(l-1,u,o[l],n[l]);this.setOutput(this.raggedRank,u,i,s)}return[s,i]}setOutput(t,e,n,o){if(n.length===0)return;let s=this.values,i=n,a=o.slice();a=a.slice(t+1);let u=y.sizeFromShape(a),l=e.length,c=this.defaultValue;if(c.length!==u&&c.length!==1){let d=this.defaultValueShape;B(()=>{let h=R(c,d);c=Ri(h,a).dataSync()})}let p=0,m=0,f=0;for(let d=0;d<=l;++d){let h=d<l?e[d]:-1;if(h===f){++f;continue}if(m<f){let g=s.subarray(p*u),x=i.subarray(m*u),b=(f-m)*u;rF(x,g,b)}if(d>=l){let g=n.length;h=Math.floor(g/u)}if(h>f)if(this.defaultValue.length===1)i.subarray(f*u,h*u).fill(this.defaultValue[0]),f=h;else for(;h>f;){let g=i.slice(f*u);rF(g,c,u),++f}h<0?(p=d+1,m=f):(p=d,m=f,f=m+1)}}};function rF(r,t,e){for(let n=0;n<e;n++)r[n]=t[n]}function nF(r,t){let e=[];for(let n of r){if(n<0){if(!t)throw new Error(`Dimension ${n} must be >= 0`);if(n<-1)throw new Error(`Dimension ${n} must be >= -1`);n=-1}e.push(n)}return e}function sw(r,t,e,n,o,s,i,a,u,l){return new ad(r,t,e,n,o,s,i,a,u,l).compute()}function Ac(r,t,e,n){let o=r===t,s=r<t&&e<0,i=t<r&&e>1;if(o||s||i)return y.makeZerosTypedArray(0,n);let a=Math.abs(Math.ceil((t-r)/e)),u=y.makeZerosTypedArray(a,n);t<r&&e===1&&(e=-1),u[0]=r;for(let l=1;l<u.length;l++)u[l]=u[l-1]+e;return u}var nT=yn(r=>1/Math.sqrt(r)),hJ=Do(ks,nT),oF={kernelName:ks,backendName:"cpu",kernelFunc:hJ};function dl(r,t,e,n,o,s,i,a,u,l){let c=[n/o,o],p=r.values,m=t.values;if(n===0)return wt(e,t.dtype);let f=wt(c,t.dtype);typeof u=="string"||typeof u=="number"?f.values.fill(u):typeof u=="boolean"&&f.values.fill(+u);for(let d=0;d<s;d++){let h=[],g=0;for(let x=0;x<i;x++){let b=p[d*i+x];h.push(b),g+=b*a[x]}if(g<0||g>=n/o)throw new Error(`Invalid indices: ${h} does not index into ${e}`);for(let x=0;x<o;x++)l?f.values[g*o+x]+=m[d*o+x]:f.values[g*o+x]=t.rank===0?m[0]:m[d*o+x]}return f}var sF=yn(r=>1/(1+Math.exp(-r))),oT=Et(_s,r=>1/(1+Math.exp(-r))),iF={kernelName:_s,backendName:"cpu",kernelFunc:oT};function $c(r,t,e,n,o){let s=Le.isSliceContinous(n,t,e),i=y.sizeFromShape(e),a=y.computeStrides(n);if(s){let p=Le.computeFlatOffset(t,a);return o==="string"?r.slice(p,p+i):r.subarray(p,p+i)}let u=o==="string"?v.fromUint8ToStringArray(r):r,l=wt(n,o,u),c=wt(e,o);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+t[h]);c.set(l.get(...f),...m)}return o==="string"?v.fromStringArrayToUint8(c.values):c.values}function Fo(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n;tt(o,"slice");let[a,u]=Le.parseSliceParams(o,s,i);Le.assertParamsValid(o,a,u);let l=e.data.get(o.dataId).values,c=$c(l,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,c)}var aF={kernelName:gi,backendName:"cpu",kernelFunc:Fo};function iw(r,t,e,n,o,s,i){let a=t[0],u=s[0],l=new Array(u),c=new Array(a),p=t[1];if(u===0){if(a!==0)throw new Error(v.getSparseFillEmptyRowsIndicesDenseShapeMismatch(a));let g=y.getArrayFromDType(e,0),x=y.getArrayFromDType(o,0);return[g,[0,p],x,l,c]}let m=!0,f=0,d=new Array(u).fill(0);for(let g=0;g<a;++g){let x=r[g*p];if(x<0)throw new Error(v.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,x));if(x>=u)throw new Error(v.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,x,u));++d[x],m=m&&x>=f,f=x}let h=!0;for(let g=0;g<u;++g){let x=d[g]===0;l[g]=x,h=h&&!x,d[g]=Math.max(d[g],1),g>0&&(d[g]+=d[g-1])}if(h&&m){let g=r,x=n;for(let b=0;b<a;++b)c[b]=b;return[g,[a,p],x,l,c]}else{let g=d[u-1],x=y.getArrayFromDType(e,g*p),b=y.getArrayFromDType(o,g),w=new Array(u).fill(0);for(let C=0;C<a;++C){let N=r[C*p],_=w[N],A=(N===0?0:d[N-1])+_;w[N]++;for(let $=0;$<p;++$)x[A*p+$]=r[C*p+$];b[A]=n[C],c[C]=A}for(let C=0;C<u;++C)if(w[C]===0){let _=C===0?0:d[C-1];x[_*p+0]=C;for(let A=1;A<p;++A)x[_*p+A]=0;b[_]=i}return[x,[g,p],b,l,c]}}function aw(r,t,e,n,o){let s=y.sizeFromShape(n),i=t[0],a=o.length,u=[],l=1,c=-1;for(let g=0;g<a;++g){let x=o[g];if(x===-1){if(c!==-1)throw new Error(v.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,u.push(1)}else{if(x<0)throw new Error(v.getSparseReshapeNegativeOutputDimErrorMessage(g,x));l*=x,u.push(x)}}if(c!==-1){if(l<=0)throw new Error(v.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(s/l);if(l*g!==s)throw new Error(v.getSparseReshapeInputOutputMultipleErrorMessage(n,u));u[c]=g}if(y.sizeFromShape(u)!==s)throw new Error(v.getSparseReshapeInputOutputMismatchErrorMessage(n,u));let m=n.length,f=[];if(m>0){f[m-1]=1;for(let g=m-2;g>=0;--g)f[g]=f[g+1]*n[g+1]}let d=[];if(a>0){d[a-1]=1;for(let g=a-2;g>=0;--g)d[g]=d[g+1]*u[g+1]}let h=y.getArrayFromDType(e,i*a);for(let g=0;g<i;++g){let x=0;for(let b=0;b<m;++b)x+=r[g*m+b]*f[b];for(let b=0;b<a;++b)h[g*a+b]=Math.trunc(x/d[b]),x%=d[b]}return[h,[i,a],u]}function ld(r,t,e,n,o,s=!1,i=0){let a=n.length,u=[t[0],r.length/t[0]],l=u[1],p=a>0?o[a-1]+1:0;if(p<0)throw new Error(v.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=t.slice();m[0]=p;let f=m.reduce((w,C)=>w*C,1),d=y.getArrayFromDType(e,f);if(a===0)return p>0&&d.fill(i),[d,m];if(p<=0)throw new Error(v.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=0,g=1,x=0,b=o[h];for(;;){let w=0;if(g<a){if(w=o[g],b===w){++g;continue}if(b>=w)throw new Error(v.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(v.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>x&&d.fill(i,x*l,b*l);for(let C=h;C<g;++C){let N=n[C];if(N<0||N>=u[0])throw new Error(v.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(C,n[C],u[0]));for(let _=0;_<l;_++)d[b*l+_]+=r[N*l+_]}if(s)for(let C=0;C<l;C++)d[b*l+C]/=g-h;if(h=g,++g,x=b+1,b=w,g>a)break}return x<p&&d.fill(i,x*l,p*l),[d,m]}var lF=yn(r=>Math.sqrt(r)),gJ=Et(As,r=>Math.sqrt(r)),uF={kernelName:As,backendName:"cpu",kernelFunc:gJ};var sT=Qt((r,t)=>{let e=r-t;return e*e}),xJ=oe(Rs,sT),cF={kernelName:Rs,backendName:"cpu",kernelFunc:xJ};function lw(r,t,e,n){let o=wt(r,t.dtype);for(let s=0;s<o.size;s++){let i=o.indexToLoc(s),a=new Array(i.length);for(let u=0;u<a.length;u++)a[u]=i[u]*e[u]+n[u];o.set(t.get(...a),...i)}return o}var iT=class{constructor(t,e,n,o,s,i){this.separator=y.encodeString(t),this.nGramWidths=e,this.leftPad=y.encodeString(n),this.rightPad=y.encodeString(o),this.padWidth=s,this.preserveShort=i}getPadWidth(t){return Math.min(this.padWidth<0?t-1:this.padWidth,t-1)}getNumNGrams(t,e){let n=this.getPadWidth(e);return Math.max(0,t+2*n-e+1)}createNGrams(t,e,n,o,s,i){for(let a=0;a<s;++a){let u=this.getPadWidth(i),l=Math.max(0,u-a),c=Math.max(0,u-(s-(a+1))),p=i-(l+c),m=e+(l>0?0:a-u),f=0;f+=l*this.leftPad.length;for(let b=0;b<p;++b)f+=t[m+b].length;f+=c*this.rightPad.length;let d=l+c+p-1;f+=d*this.separator.length,n[o+a]=new Uint8Array(f);let h=n[o+a],g=0,x=b=>b.forEach(w=>h[g++]=w);for(let b=0;b<l;++b)x(this.leftPad),x(this.separator);for(let b=0;b<p-1;++b)x(t[m+b]),x(this.separator);if(p>0){x(t[m+p-1]);for(let b=0;b<c;++b)x(this.separator),x(this.rightPad)}else{for(let b=0;b<c-1;++b)x(this.rightPad),x(this.separator);x(this.rightPad)}}}compute(t,e){let n=t.length,o=e.length;if(o>0){let u=e[0];if(u!==0)throw new Error(`First split value must be 0, got ${u}`);for(let l=1;l<o;++l){let c=e[l]>=u;if(c=c&&e[l]<=n,!c)throw new Error(`Invalid split value ${e[l]}, must be in [${u}, ${n}]`);u=e[l]}if(u!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${u}`)}let s=o-1,i=y.getArrayFromDType("int32",o);if(n===0||o===0){let u=new Array(n);for(let l=0;l<=s;++l)i[l]=0;return[u,i]}i[0]=0;for(let u=1;u<=s;++u){let l=e[u]-e[u-1],c=0;this.nGramWidths.forEach(p=>{c+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&c===0&&(c=1),i[u]=i[u-1]+c}let a=new Array(i[s]);for(let u=0;u<s;++u){let l=e[u],c=i[u];if(this.nGramWidths.forEach(p=>{let m=e[u+1]-e[u],f=this.getNumNGrams(m,p);this.createNGrams(t,l,a,c,f,p),c+=f}),this.preserveShort&&c===i[u]){let p=e[u+1]-e[u];if(p===0)continue;let m=p+2*this.padWidth,f=1;this.createNGrams(t,l,a,c,f,m)}}return[a,i]}};function Dc(r,t,e,n,o,s,i,a){return new iT(e,n,o,s,i,a).compute(r,t)}function yJ(r,t,e,n){if(!r.length)return;if(t.length===0){for(let s=0;s<r.length;++s)n.push(r.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=r.indexOf(s);for(;i!==-1;){let a=r.subarray(0,i);(!e||a.length!==0)&&n.push(a),r=r.subarray(i+1),i=r.indexOf(s)}(!e||r.length!==0)&&n.push(r);return}let o=0;for(let s=0;s<r.length+1;s++)if(s===r.length||t.indexOf(r[s])!==-1){let i=r.subarray(o,s);(!e||i.length!==0)&&n.push(i),o=s+1}}function Rc(r,t,e){let n=r.length,o=[],s=0,i=0,a=new Array(n);for(let m=0;m<n;++m){let f=o.length;yJ(r[m],t,e,o);let d=o.length-f;a[m]=d,s+=d,i=Math.max(i,d)}let u=y.getArrayFromDType("int32",s*2),l=new Array(s),c=[n,i],p=0;for(let m=0;m<n;++m)for(let f=0;f<a[m];++f)u[p*2]=m,u[p*2+1]=f,l[p]=o[p],++p;return[u,l,c]}function Fc(r,t){let e=y.getArrayFromDType("int32",r.length);for(let n=0;n<r.length;++n)e[n]=y.fingerPrint64(r[n]).modulo(t).getLowBitsUnsigned();return e}var aT=Qt((r,t)=>r-t),bJ=od((r,t,e,n)=>({real:r-e,imag:t-n})),Vh=oe(Fs,aT,bJ),pF={kernelName:Fs,backendName:"cpu",kernelFunc:Vh};function uw(r,t){let e=new Array(r.rank);for(let o=0;o<e.length;o++)e[o]=r.shape[o]*t[o];let n=wt(e,r.dtype);for(let o=0;o<n.values.length;++o){let s=n.indexToLoc(o),i=new Array(r.rank);for(let u=0;u<i.length;u++)i[u]=s[u]%r.shape[u];let a=r.locToIndex(i);n.values[o]=r.values[a]}return n}var Gh=(r,t)=>{let e=t.value-r.value;return e===0?r.index-t.index:e};function mF(r,t,e=0,n=r.length-1){for(;n>e;){if(n-e>600){let a=n-e+1,u=t-e+1,l=Math.log(a),c=.5*Math.exp(2*l/3),p=.5*Math.sqrt(l*c*(a-c)/a)*Math.sign(u-a/2),m=Math.max(e,Math.floor(t-u*c/a+p)),f=Math.min(n,Math.floor(t+(a-u)*c/a+p));mF(r,t,m,f)}let o=r[t],s=e,i=n;for(y.swap(r,e,t),Gh(r[n],o)>0&&y.swap(r,e,n);s<i;){for(y.swap(r,s,i),s++,i--;Gh(r[s],o)<0;)s=s+1;for(;Gh(r[i],o)>0;)i=i-1}Gh(r[e],o)===0?y.swap(r,e,i):(i=i+1,y.swap(r,i,n)),i<=t&&(e=i+1),t<=i&&(n=i-1)}}function cw(r,t,e,n,o){let s=t[t.length-1],[i,a]=[r.length/s,s],u=y.getTypedArrayFromDType(e,i*n),l=y.getTypedArrayFromDType("int32",i*n);for(let p=0;p<i;p++){let m=p*a,f=r.subarray(m,m+a),d=new Array(f.length);f.forEach((b,w)=>d[w]={value:b,index:w}),n<d.length&&(mF(d,n),d=d.slice(0,n)),o&&d.sort(Gh);let h=p*n,g=u.subarray(h,h+n),x=l.subarray(h,h+n);for(let b=0;b<n;b++)g[b]=d[b].value,x[b]=d[b].index}let c=t.slice();return c[c.length-1]=n,[wt(c,e,u),wt(c,"int32",l)]}function pw(r,t,e,n){let o=y.parseAxisParam(t,e)[0],s=[1,e[0],1];for(let d=0;d<o;d++)s[0]*=e[d];s[1]=e[o];for(let d=o+1;d<e.length;d++)s[2]*=e[d];let i={},a=new Int32Array(e[o]),u=new pe(s,n,r),l=[],c=s[0]===1&&s[2]===1;for(let d=0;d<e[o];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let x=0;x<s[0];x++)for(let b=0;b<s[2];b++)g.push(u.get(x,d,b));h=g.join(",")}if(i[h]!==void 0)a[d]=i[h];else{let g=Object.keys(i).length;i[h]=g,a[d]=g,l.push(d)}}let p=s.slice();p[1]=Object.keys(i).length;let m=new pe(p,n);l.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(u.get(g,d,x),g,h,x)});let f=e.slice();return f[o]=p[1],{outputValues:m.values,outputShape:f,indices:a}}Xp("cpu",()=>new Nu,1);var lT=Et(ts,r=>r>=0?r:Math.exp(r)-1),fF={kernelName:ts,backendName:"cpu",kernelFunc:lT};function uT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n;tt([o],"leakyRelu");let i=y.sizeFromShape(o.shape),a=e.data.get(o.dataId).values,u=y.getTypedArrayFromDType("float32",i);for(let l=0;l<a.length;l++)u[l]=a[l]<0?s*a[l]:a[l];return e.makeTensorInfo(o.shape,"float32",u)}var dF={kernelName:is,backendName:"cpu",kernelFunc:uT};var CJ=Qt((r,t)=>r<0?t*r:r);function cT(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t;tt([n,o],"prelu");let s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,[a,u]=CJ(n.shape,o.shape,s,i,"float32");return e.makeTensorInfo(u,"float32",a)}var hF={kernelName:bs,backendName:"cpu",kernelFunc:cT};var pT=Et(Cs,r=>Math.max(0,r)),gF={kernelName:Cs,backendName:"cpu",kernelFunc:pT};var mT=Et(vs,r=>Math.min(Math.max(0,r),6)),xF={kernelName:vs,backendName:"cpu",kernelFunc:mT};function Oc(r,t,e,n,o){if(e==="linear")return Kr({inputs:{x:t},backend:r});if(e==="relu")return pT({inputs:{x:t},backend:r});if(e==="elu")return lT({inputs:{x:t},backend:r});if(e==="relu6")return mT({inputs:{x:t},backend:r});if(e==="prelu")return cT({inputs:{x:t,alpha:n},backend:r});if(e==="leakyrelu")return uT({inputs:{x:t},backend:r,attrs:{alpha:o}});if(e==="sigmoid")return oT({inputs:{x:t},backend:r});throw new Error(`Activation ${e} has not been implemented for the CPU backend.`)}function Yt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(a);y.assert(i===u,()=>`The new shape (${a}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),e.incRef(o.dataId);let l=e.data.get(o.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;c.shape=a,p.shape=a}return{dataId:o.dataId,shape:a,dtype:o.dtype}}var yF={kernelName:di,backendName:"cpu",kernelFunc:Yt};function fT(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;tt([o,s],"matMul");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=Vr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let C=i?[g,c,m]:[g,m,c],N=a?[x,f,p]:[x,p,f],_=Yt({inputs:{x:o},backend:e,attrs:{shape:C}}),A=Yt({inputs:{x:s},backend:e,attrs:{shape:N}}),$=i?_.shape[1]:_.shape[2],F=i?_.shape[2]:_.shape[1],P=a?A.shape[1]:A.shape[2],V=Math.max(g,x),G=e.data.get(_.dataId).values,W=e.data.get(A.dataId).values,q=y.computeStrides(_.shape),H=y.computeStrides(A.shape),[j,Y,Z]=i?[q[0],1,q[1]]:[q[0],q[1],1],[et,rt,ot]=a?[1,H[1],H[0]]:[H[1],1,H[0]],at=F*P,nt=wt([V,F,P],_.dtype),st=nt.values,dt=e.blockSize;for(let ht=0;ht<V;ht++)for(let bt=0;bt<F;bt+=dt)for(let kt=0;kt<P;kt+=dt)for(let _t=0;_t<$;_t+=dt){let Vt=Math.min(bt+dt,F),Zt=Math.min(kt+dt,P),ce=Math.min(_t+dt,$);for(let he=bt;he<Vt;he++)for(let jt=kt;jt<Zt;jt++){let ke=0;for(let fe=_t;fe<ce;fe++){let Ae=Math.min(ht,g-1)*j,We=Math.min(ht,x-1)*ot,_n=G[Ae+he*Y+fe*Z],or=W[fe*et+jt*rt+We];ke+=_n*or}st[ht*at+(he*P+jt)]+=ke}}return e.disposeIntermediateTensorInfo(_),e.disposeIntermediateTensorInfo(A),e.makeTensorInfo(w,nt.dtype,nt.values)}var bF={kernelName:Ho,backendName:"cpu",kernelFunc:fT};function IJ(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m,f,d,h=[];m=fT({inputs:{a:o,b:s},attrs:{transposeA:u,transposeB:l},backend:e}),i&&(f=Ki({inputs:{a:m,b:i},backend:e}),h.push(m),m=f),c&&(d=Oc(e,m,c,a,p),h.push(m),m=d);for(let x of h)e.disposeIntermediateTensorInfo(x);return m}var wF={kernelName:Ci,backendName:"cpu",kernelFunc:IJ};var SJ=Et(oa,r=>Math.acos(r)),CF={kernelName:oa,backendName:"cpu",kernelFunc:SJ};var vJ=Et(sa,r=>Math.acosh(r)),IF={kernelName:sa,backendName:"cpu",kernelFunc:vJ};function NJ(r){let{inputs:t,backend:e}=r,n=t;tt(t,"addN");let o=n.map(a=>e.data.get(a.dataId).values),s=wt(n[0].shape,n[0].dtype),i=s.values;for(let a=0;a<n.length;a++){let u=o[a];for(let l=0;l<i.length;l++)i[l]+=u[l]}return e.makeTensorInfo(s.shape,s.dtype,s.values)}var SF={kernelName:Go,backendName:"cpu",kernelFunc:NJ};function TJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"all");let a=y.parseAxisParam(s,o.shape),u=a,l=v.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ve({inputs:{x:o},backend:e,attrs:{perm:l}}),u=v.getInnerMostAxes(u.length,o.shape.length)),v.assertAxesAreInnerMostDims("all",u,c.shape.length);let[p,m]=v.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let C=0;C<f;++C){let N=h[b+C];w=w&&N}d[x]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let x=v.expandShapeToKeepDim(p,a),b=Yt({inputs:{x:g},backend:e,attrs:{shape:x}});return e.disposeIntermediateTensorInfo(g),b}return g}var vF={kernelName:ia,backendName:"cpu",kernelFunc:TJ};function kJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"any");let a=y.parseAxisParam(s,o.shape),u=a,l=v.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ve({inputs:{x:o},backend:e,attrs:{perm:l}}),u=v.getInnerMostAxes(u.length,o.shape.length)),v.assertAxesAreInnerMostDims("any",u,c.shape.length);let[p,m]=v.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let C=0;C<f;++C){let N=h[b+C];w=w||N}d[x]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let x=v.expandShapeToKeepDim(p,a),b=Yt({inputs:{x:g},backend:e,attrs:{shape:x}});return e.disposeIntermediateTensorInfo(g),b}return g}var NF={kernelName:aa,backendName:"cpu",kernelFunc:kJ};function EJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;tt(o,"argMax");let i=y.parseAxisParam(s,o.shape),a=v.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Ve({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=v.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],v.assertAxesAreInnerMostDims("argMax",i,u.shape.length);let[c,p]=v.computeOutAndReduceShapes(u.shape,i),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let C=0;C<d;++C){let N=h[x+C];N>b&&(b=N,w=C)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,"int32",f)}var TF={kernelName:Wo,backendName:"cpu",kernelFunc:EJ};function _J(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;tt(o,"argMin");let i=y.parseAxisParam(s,o.shape),a=v.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Ve({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=v.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],v.assertAxesAreInnerMostDims("argMin",i,u.shape.length);let[c,p]=v.computeOutAndReduceShapes(u.shape,i),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let C=0;C<d;++C){let N=h[x+C];N<b&&(b=N,w=C)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,"int32",f)}var kF={kernelName:kl,backendName:"cpu",kernelFunc:_J};var AJ=Et(la,r=>Math.asin(r)),EF={kernelName:la,backendName:"cpu",kernelFunc:AJ};var $J=Et(ua,r=>Math.asinh(r)),_F={kernelName:ua,backendName:"cpu",kernelFunc:$J};var DJ=Et(ca,r=>Math.atan(r)),AF={kernelName:ca,backendName:"cpu",kernelFunc:DJ};var RJ=Qt((r,t)=>Math.atan2(r,t)),FJ=oe(ma,RJ),$F={kernelName:ma,backendName:"cpu",kernelFunc:FJ};var OJ=Et(pa,r=>Math.atanh(r)),DF={kernelName:pa,backendName:"cpu",kernelFunc:OJ};function ud(r,t,e,n,o,s){let i=o.strideHeight,a=o.strideWidth,u=o.dilationHeight,l=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=wt(o.outShape,e),g=h.values,x=o.outShape[1]*o.outShape[2]*o.outShape[3],b=o.outShape[2]*o.outShape[3],w=o.outShape[3];for(let C=0;C<o.batchSize;++C){let N=C*x,_=C*n[0];for(let A=0;A<o.inChannels;++A)for(let $=0;$<o.outHeight;++$){let F=$*i-m,P=Math.max(0,F),V=Math.min(o.inHeight,c+F),G=N+$*b;for(let W=0;W<o.outWidth;++W){let q=W*a-f,H=Math.max(0,q),j=Math.min(o.inWidth,p+q),Y=d,Z=0,et=0;for(let ot=P;ot<V;ot+=u){let at=_+ot*n[1];for(let nt=H;nt<j;nt+=l){let st=at+nt*n[2],dt=r[st+A];s==="max"&&dt>Y?Y=dt:s==="avg"&&(Z+=dt,et++)}if(isNaN(Y))break}let rt=G+W*w+A;g[rt]=s==="avg"?Z/et:Y}}}return h}function fw(r,t,e,n,o=!1,s=!1){let i=wt(n.outShape,"int32"),a=n.strideHeight,u=n.strideWidth,l=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=wt(t,e,r);for(let g=0;g<n.batchSize;++g)for(let x=0;x<n.inChannels;++x)for(let b=0;b<n.outHeight;++b){let w=b*a-f,C=w;for(;C<0;)C+=l;let N=Math.min(n.inHeight,p+w);for(let _=0;_<n.outWidth;++_){let A=_*u-d,$=A;for(;$<0;)$+=c;let F=Math.min(n.inWidth,m+A),P=Number.NEGATIVE_INFINITY,V=-1;for(let G=C;G<N;G+=l){let W=G-w;for(let q=$;q<F;q+=c){let H=q-A,j=h.get(g,G,q,x);j>P&&(P=j,o?V=s?((g*n.inHeight+G)*n.inWidth+q)*n.inChannels+x:(G*n.inWidth+q)*n.inChannels+x:V=W*m+H)}}i.set(V,g,b,_,x)}}return i}function dw(r,t,e,n,o,s){let i=o.strideDepth,a=o.strideHeight,u=o.strideWidth,l=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,x=o.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=wt(o.outShape,e),C=w.values,N=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],_=o.outShape[2]*o.outShape[3]*o.outShape[4],A=o.outShape[3]*o.outShape[4],$=o.outShape[4];for(let F=0;F<o.batchSize;++F){let P=F*N,V=F*n[0];for(let G=0;G<o.inChannels;++G)for(let W=0;W<o.outDepth;++W){let q=W*i-h,H=q;for(;H<0;)H+=l;let j=Math.min(o.inDepth,m+q),Y=P+W*_;for(let Z=0;Z<o.outHeight;++Z){let et=Z*a-g,rt=et;for(;rt<0;)rt+=c;let ot=Math.min(o.inHeight,f+et),at=Y+Z*A;for(let nt=0;nt<o.outWidth;++nt){let st=nt*u-x,dt=st;for(;dt<0;)dt+=p;let ht=Math.min(o.inWidth,d+st),bt=at+nt*$,kt=b,_t=0,Vt=0;for(let ce=H;ce<j;ce+=l){let he=V+ce*n[1];for(let jt=rt;jt<ot;jt+=c){let ke=he+jt*n[2];for(let fe=dt;fe<ht;fe+=p){let Ae=ke+fe*n[3],We=r[Ae+G];if(s==="max"&&We>kt?kt=We:s==="avg"&&(_t+=We,Vt++),isNaN(kt))break}if(isNaN(kt))break}if(isNaN(kt))break}let Zt=bt+G;C[Zt]=s==="avg"?_t/Vt:kt}}}}return w}function RF(r,t){let e=wt(t.outShape,"int32"),n=t.strideDepth,o=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,a=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,m=t.padInfo.front,f=t.padInfo.top,d=t.padInfo.left;for(let h=0;h<t.batchSize;++h)for(let g=0;g<t.inChannels;++g)for(let x=0;x<t.outDepth;++x){let b=x*n-m,w=b;for(;w<0;)w+=i;let C=Math.min(t.inDepth,l+b);for(let N=0;N<t.outHeight;++N){let _=N*o-f,A=_;for(;A<0;)A+=a;let $=Math.min(t.inHeight,c+_);for(let F=0;F<t.outWidth;++F){let P=F*s-d,V=P;for(;V<0;)V+=u;let G=Math.min(t.inWidth,p+P),W=Number.NEGATIVE_INFINITY,q=-1;for(let H=w;H<C;H+=i){let j=H-b;for(let Y=A;Y<$;Y+=a){let Z=Y-_;for(let et=V;et<G;et+=u){let rt=et-P,ot=r.get(h,H,Y,et,g);ot>=W&&(W=ot,q=j*c*p+Z*c+rt)}}}e.set(q,h,x,N,F,g)}}}return e}function PJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;tt(o,"avgPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(v.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=v.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Kr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=ud(m,o.shape,o.dtype,f,c,"avg");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var FF={kernelName:Uo,backendName:"cpu",kernelFunc:PJ};function LJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;tt(o,"avgPool3d");let c=v.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=dw(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"avg");return e.makeTensorInfo(m.shape,"float32",m.values)}var OF={kernelName:El,backendName:"cpu",kernelFunc:LJ};function MJ(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;tt([o,s],"avgPool3DGrad");let c=v.computePool3DInfo(s.shape,i,a,1,u,l),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,C=c.effectiveFilterDepth,N=c.effectiveFilterHeight,_=c.effectiveFilterWidth,A=C-1-c.padInfo.front,$=_-1-c.padInfo.left,F=N-1-c.padInfo.top,P=wt(s.shape,"float32"),V=1/(d*h*g),G=e.bufferSync(o);for(let W=0;W<c.batchSize;++W)for(let q=0;q<c.inChannels;++q)for(let H=0;H<c.inDepth;++H)for(let j=0;j<c.inHeight;++j)for(let Y=0;Y<c.inWidth;++Y){let Z=H-A,et=j-F,rt=Y-$,ot=0;for(let at=0;at<C;at+=x){let nt=(Z+at)/p;if(!(nt<0||nt>=c.outDepth||Math.floor(nt)!==nt))for(let st=0;st<N;st+=b){let dt=(et+st)/m;if(!(dt<0||dt>=c.outHeight||Math.floor(dt)!==dt))for(let ht=0;ht<_;ht+=w){let bt=(rt+ht)/f;if(bt<0||bt>=c.outWidth||Math.floor(bt)!==bt)continue;let kt=G.get(W,nt,dt,bt,q);ot+=kt}}}P.set(ot*V,W,H,j,Y,q)}return e.makeTensorInfo(P.shape,P.dtype,P.values)}var PF={kernelName:lp,backendName:"cpu",kernelFunc:MJ};function zJ(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;tt([o,s],"avgPoolGrad");let{filterSize:a,strides:u,pad:l}=n,c=v.computePool2DInfo(i.shape,a,u,1,l),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,C=x-1-c.padInfo.top,N=wt(i.shape,"float32"),_=1/(f*d),A=e.data.get(o.dataId).values,$=wt(o.shape,"float32",A);for(let F=0;F<c.batchSize;++F)for(let P=0;P<c.inChannels;++P)for(let V=0;V<c.inHeight;++V)for(let G=0;G<c.inWidth;++G){let W=V-C,q=G-w,H=0;for(let j=0;j<x;j+=h){let Y=(W+j)/p;if(!(Y<0||Y>=c.outHeight||Math.floor(Y)!==Y))for(let Z=0;Z<b;Z+=g){let et=(q+Z)/m;if(et<0||et>=c.outWidth||Math.floor(et)!==et)continue;let rt=$.get(F,Y,et,P);H+=rt}}N.set(H*_,F,V,G,P)}return e.makeTensorInfo(N.shape,N.dtype,N.values)}var LF={kernelName:ap,backendName:"cpu",kernelFunc:zJ};function BJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,scale:s,offset:i,mean:a,variance:u}=t;y.assert(a.shape.length===u.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),tt([o,a,u,s,i],"batchNorm");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=e.data.get(o.dataId).values,p=e.data.get(a.dataId).values,m=e.data.get(u.dataId).values,f=s?e.data.get(s.dataId).values:new Float32Array([1]),d=i?e.data.get(i.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,w=p.length,C=0,N=0,_=0,A=0;for(let $=0;$<c.length;++$)h[$]=d[C++]+(c[$]-p[N++])*f[_++]/Math.sqrt(m[A++]+l),C>=g&&(C=0),N>=w&&(N=0),_>=x&&(_=0),A>=b&&(A=0);return e.makeTensorInfo(o.shape,o.dtype,h)}var MF={kernelName:os,backendName:"cpu",kernelFunc:BJ};function VJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;tt([o],"batchToSpaceND");let a=s.reduce((x,b)=>x*b),u=v.getReshaped(o.shape,s,a),l=v.getPermuted(u.length,s.length),c=v.getReshapedPermuted(o.shape,s,a),p=v.getSliceBeginCoords(i,s.length),m=v.getSliceSize(c,i,s.length),f=Yt({inputs:{x:o},backend:e,attrs:{shape:u}}),d=Ve({inputs:{x:f},backend:e,attrs:{perm:l}}),h=Yt({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Fo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var zF={kernelName:ai,backendName:"cpu",kernelFunc:VJ};function GJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=sd(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var BF={kernelName:up,backendName:"cpu",kernelFunc:GJ};function WJ(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=v.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],"int32",Int32Array.from(a))}var VF={kernelName:cp,backendName:"cpu",kernelFunc:WJ};var UJ=Et(uo,(r,t)=>{let e=t;return r>e.clipValueMax?e.clipValueMax:r<e.clipValueMin?e.clipValueMin:r}),GF={kernelName:uo,backendName:"cpu",kernelFunc:UJ};var HJ=r=>{let{x:t}=r.inputs,e=r.backend,n=new Float32Array(y.sizeFromShape(t.shape)),o=e.data.get(t.dataId),s=o.complexTensorInfos.real,i=o.complexTensorInfos.imag,a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values;for(let l=0;l<a.length;l++){let c=a[l],p=u[l];n[l]=Math.hypot(c,p)}return e.makeOutput(n,t.shape,"float32")},WF={kernelName:_l,backendName:"cpu",kernelFunc:HJ};function ji(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.imag,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var UF={kernelName:Sp,backendName:"cpu",kernelFunc:ji};function Tu(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,t[0].shape)[0],i=t.map(h=>h.shape);v.assertParamsConsistent(i,s);let a=v.computeOutShape(t.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return e.makeTensorInfo(a,t[0].dtype,[]);let u=t.filter(h=>y.sizeFromShape(h.shape)>0);if(u.length===1)return Kr({inputs:{x:u[0]},backend:e});if(u[0].dtype==="complex64"){let h=u.map(C=>Ao({inputs:{input:C},backend:e})),g=u.map(C=>ji({inputs:{input:C},backend:e})),x=Tu({inputs:h,backend:e,attrs:{axis:s}}),b=Tu({inputs:g,backend:e,attrs:{axis:s}}),w=wr({inputs:{real:x,imag:b},backend:e});return h.forEach(C=>e.disposeIntermediateTensorInfo(C)),g.forEach(C=>e.disposeIntermediateTensorInfo(C)),e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(b),w}let l=u.map(h=>{let x=[-1,y.sizeFromShape(h.shape.slice(s))];return Yt({inputs:{x:h},backend:e,attrs:{shape:x}})}),c=l.map(h=>({vals:e.data.get(h.dataId).values,shape:h.shape}));a=v.computeOutShape(l.map(h=>h.shape),1);let p=l[0].shape[0]===1,m=Ec(c,a,t[0].dtype,p),f=v.computeOutShape(u.map(h=>h.shape),s),d=e.makeTensorInfo(f,t[0].dtype,m);return l.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var HF={kernelName:li,backendName:"cpu",kernelFunc:Tu};function dT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n;tt([o,s],"conv2d");let p=v.convertConv2DDataFormat(u),m=v.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",C=new pe(m.outShape,o.dtype),N=y.computeStrides(o.shape),_=y.computeStrides(s.shape),A=N[0],$=w?N[1]:N[2],F=w?N[2]:1,P=w?1:N[1],V=C.strides[0],G=w?C.strides[1]:C.strides[2],W=w?C.strides[2]:1,q=w?1:C.strides[1],H=e.data.get(o.dataId).values,j=e.data.get(s.dataId).values,Y=C.values;for(let Z=0;Z<m.batchSize;++Z){let et=Z*A,rt=Z*V;for(let ot=0;ot<m.outHeight;++ot){let at=rt+ot*G,nt=ot*m.strideHeight-b;for(let st=0;st<f;++st){let dt=nt+st*h;if(dt<0||dt>=m.inHeight)continue;let ht=st*_[0],bt=et+dt*$;for(let kt=0;kt<m.outWidth;++kt){let _t=at+kt*W,Vt=kt*m.strideWidth-x;for(let Zt=0;Zt<d;++Zt){let ce=Vt+Zt*g;if(ce<0||ce>=m.inWidth)continue;let he=ht+Zt*_[1],jt=bt+ce*F,ke=he;for(let fe=0;fe<m.inChannels;++fe){let Ae=H[jt+fe*P];for(let We=0;We<m.outChannels;++We)Y[_t+We*q]+=Ae*j[ke+We];ke+=m.outChannels}}}}}}return e.makeTensorInfo(C.shape,C.dtype,Y)}var qF={kernelName:Ko,backendName:"cpu",kernelFunc:dT};function qJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n;tt([o,s],"conv2dBackpropFilter");let p=v.convertConv2DDataFormat(u),m=v.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",b=new pe(m.filterShape,"float32"),w=m.padInfo.left,C=m.padInfo.top,N=e.data.get(o.dataId).values,_=e.data.get(s.dataId).values,A=new pe(o.shape,o.dtype,N),$=new pe(s.shape,s.dtype,_);for(let F=0;F<h;++F){let P=Math.max(0,Math.ceil((C-F)/f)),V=Math.min(m.outHeight,(m.inHeight+C-F)/f);for(let G=0;G<g;++G){let W=Math.max(0,Math.ceil((w-G)/d)),q=Math.min(m.outWidth,(m.inWidth+w-G)/d);for(let H=0;H<m.inChannels;++H)for(let j=0;j<m.outChannels;++j){let Y=0;for(let Z=0;Z<m.batchSize;++Z)for(let et=P;et<V;++et){let rt=F+et*f-C;for(let ot=W;ot<q;++ot){let at=G+ot*d-w;x?Y+=A.get(Z,rt,at,H)*$.get(Z,et,ot,j):Y+=A.get(Z,H,rt,at)*$.get(Z,j,et,ot)}}b.set(Y,F,G,H,j)}}}return e.makeTensorInfo(b.shape,b.dtype,b.values)}var KF={kernelName:mp,backendName:"cpu",kernelFunc:qJ};function KJ(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n;tt([o,s],"conv2dBackpropInput");let p=y.computeStrides(s.shape),m=y.computeStrides(o.shape),f=v.convertConv2DDataFormat(l),d=v.computeConv2DInfo(i,s.shape,a,1,u,c,!1,f),h=new pe(d.inShape,"float32"),g=h.values,x=e.data.get(o.dataId).values,b=e.data.get(s.dataId).values,[w,C,N]=p,{batchSize:_,filterHeight:A,filterWidth:$,inChannels:F,inHeight:P,inWidth:V,outChannels:G,outHeight:W,outWidth:q,strideHeight:H,strideWidth:j}=d;f=d.dataFormat;let Y=A-1-d.padInfo.top,Z=$-1-d.padInfo.left,et=f==="channelsLast",rt=h.strides[0],ot=et?h.strides[1]:h.strides[2],at=et?h.strides[2]:1,nt=et?1:h.strides[1],st=m[0],dt=et?m[1]:m[2],ht=et?m[2]:1,bt=et?1:m[1];for(let kt=0;kt<_;++kt)for(let _t=0;_t<F;++_t)for(let Vt=0;Vt<P;++Vt){let Zt=Vt-Y,ce=Math.max(0,Math.ceil(Zt/H)),he=Math.min(W,(A+Zt)/H);for(let jt=0;jt<V;++jt){let ke=jt-Z,fe=Math.max(0,Math.ceil(ke/j)),Ae=Math.min(q,($+ke)/j),We=0;for(let or=ce;or<he;++or){let Hn=or*H-Zt;for(let Lr=fe;Lr<Ae;++Lr){let qe=Lr*j-ke,Mr=st*kt+dt*or+ht*Lr,zr=w*(A-1-Hn)+C*($-1-qe)+N*_t;for(let qn=0;qn<G;++qn){let Kn=x[Mr+bt*qn],Xr=b[zr+qn];We+=Kn*Xr}}}let _n=rt*kt+ot*Vt+at*jt+nt*_t;g[_n]=We}}return e.makeTensorInfo(h.shape,h.dtype,h.values)}var jF={kernelName:jo,backendName:"cpu",kernelFunc:KJ};function jJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;tt([o,s],"conv3d");let l=v.computeConv3DInfo(o.shape,s.shape,i,u,a),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=l,x=g.front,b=g.left,w=g.top,C=new pe(l.outShape,o.dtype),N=e.data.get(o.dataId).values,_=e.data.get(s.dataId).values,A=C.values,$=y.computeStrides(o.shape),F=y.computeStrides(s.shape);for(let P=0;P<l.batchSize;++P){let V=P*$[0],G=P*C.strides[0];for(let W=0;W<l.outDepth;++W){let q=G+W*C.strides[1],H=W*l.strideDepth-x;for(let j=0;j<c;++j){let Y=H+j*f;if(Y<0||Y>=l.inDepth)continue;let Z=j*F[0],et=V+Y*$[1];for(let rt=0;rt<l.outHeight;++rt){let ot=q+rt*C.strides[2],at=rt*l.strideHeight-w;for(let nt=0;nt<p;++nt){let st=at+nt*d;if(st<0||st>=l.inHeight)continue;let dt=Z+nt*F[1],ht=et+st*$[2];for(let bt=0;bt<l.outWidth;++bt){let kt=ot+bt*l.outChannels,_t=bt*l.strideWidth-b;for(let Vt=0;Vt<m;++Vt){let Zt=_t+Vt*h;if(Zt<0||Zt>=l.inWidth)continue;let ce=dt+Vt*F[2],he=ht+Zt*l.inChannels,jt=ce;for(let ke=0;ke<l.inChannels;++ke){let fe=N[he+ke];for(let Ae=0;Ae<l.outChannels;++Ae)A[kt+Ae]+=fe*_[jt+Ae];jt+=l.outChannels}}}}}}}}return e.makeTensorInfo(C.shape,C.dtype,C.values)}var XF={kernelName:Al,backendName:"cpu",kernelFunc:jJ};function XJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n;tt([o,s],"conv3dBackpropFilterV2");let l=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=v.computeConv3DInfo(o.shape,u,i,1,a),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,b=new pe(p.filterShape,"float32"),w=b.values,[C,N,_,A]=b.strides,$=e.data.get(s.dataId).values,[F,P,V,G]=c,W=e.data.get(o.dataId).values,[q,H,j,Y]=l,Z=p.padInfo.front,et=p.padInfo.left,rt=p.padInfo.top;for(let ot=0;ot<h;++ot){let at=Math.max(0,Math.ceil((Z-ot)/m)),nt=Math.min(p.outDepth,(p.inDepth+Z-ot)/m),st=ot*C;for(let dt=0;dt<g;++dt){let ht=Math.max(0,Math.ceil((rt-dt)/f)),bt=Math.min(p.outHeight,(p.inHeight+rt-dt)/f),kt=dt*N+st;for(let _t=0;_t<x;++_t){let Vt=Math.max(0,Math.ceil((et-_t)/d)),Zt=Math.min(p.outWidth,(p.inWidth+et-_t)/d),ce=_t*_+kt;for(let he=0;he<p.inChannels;++he){let jt=he*A+ce;for(let ke=0;ke<p.outChannels;++ke){let fe=0;for(let Ae=0;Ae<p.batchSize;++Ae){let We=Ae*q,_n=Ae*F;for(let or=at;or<nt;++or){let Lr=(ot+or*m-Z)*H+We,qe=or*P+_n;for(let Mr=ht;Mr<bt;++Mr){let qn=(dt+Mr*f-rt)*j+Lr,Kn=Mr*V+qe;for(let Xr=Vt;Xr<Zt;++Xr){let Mo=(_t+Xr*d-et)*Y+qn,Il=Xr*G+Kn;fe+=W[Mo+he]*$[Il+ke]}}}}w[jt+ke]=fe}}}}}return e.makeTensorInfo(b.shape,b.dtype,b.values)}var YF={kernelName:fp,backendName:"cpu",kernelFunc:XJ};function YJ(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n;tt([o],"conv3dBackpropInputV2");let l=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=v.computeConv3DInfo(u,s.shape,a,1,i),m=new pe(p.inShape,"float32"),f=m.values,[d,h,g,x]=m.strides,b=e.data.get(o.dataId).values,[w,C,N,_]=l,A=e.data.get(s.dataId).values,[$,F,P,V]=c,{batchSize:G,filterDepth:W,filterHeight:q,filterWidth:H,inChannels:j,inDepth:Y,inHeight:Z,inWidth:et,outChannels:rt,outDepth:ot,outHeight:at,outWidth:nt,strideDepth:st,strideHeight:dt,strideWidth:ht}=p,bt=W-1-p.padInfo.front,kt=q-1-p.padInfo.top,_t=H-1-p.padInfo.left;for(let Vt=0;Vt<G;++Vt)for(let Zt=0;Zt<j;++Zt)for(let ce=0;ce<Y;++ce){let he=ce-bt,jt=Math.max(0,Math.ceil(he/st)),ke=Math.min(ot,(W+he)/st);for(let fe=0;fe<Z;++fe){let Ae=fe-kt,We=Math.max(0,Math.ceil(Ae/dt)),_n=Math.min(at,(q+Ae)/dt);for(let or=0;or<et;++or){let Hn=or-_t,Lr=Math.max(0,Math.ceil(Hn/ht)),qe=Math.min(nt,(H+Hn)/ht),Mr=0;for(let zr=jt;zr<ke;++zr){let qn=zr*st-he;for(let Kn=We;Kn<_n;++Kn){let Xr=Kn*dt-Ae;for(let Zi=Lr;Zi<qe;++Zi){let Mo=Zi*ht-Hn,Il=w*Vt+C*zr+N*Kn+_*Zi,Tr=$*(W-1-qn)+F*(q-1-Xr)+P*(H-1-Mo)+V*Zt;for(let Ji=0;Ji<rt;++Ji){let Rd=b[Il+Ji],Fd=A[Tr+Ji];Mr+=Rd*Fd}}}}f[d*Vt+h*ce+g*fe+x*or+Zt]=Mr}}}return e.makeTensorInfo(m.shape,m.dtype,m.values)}var ZF={kernelName:dp,backendName:"cpu",kernelFunc:YJ};var ZJ=Et(Xo,r=>Math.cos(r)),JF={kernelName:Xo,backendName:"cpu",kernelFunc:ZJ};var JJ=Et(Yo,r=>Math.cosh(r)),QF={kernelName:Yo,backendName:"cpu",kernelFunc:JJ};function QJ(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=a,x=wt([d,h,g,f],"float32"),b=e.data.get(s.dataId).values,w=e.data.get(i.dataId).values,C=e.data.get(o.dataId).values,N=y.computeStrides(o.shape),_=y.computeStrides(x.shape);for(let A=0;A<d;A++){let $=A*4,F=b[$],P=b[$+1],V=b[$+2],G=b[$+3],W=w[A];if(W>=c)continue;let q=h>1?(V-F)*(p-1)/(h-1):0,H=g>1?(G-P)*(m-1)/(g-1):0;for(let j=0;j<h;j++){let Y=h>1?F*(p-1)+j*q:.5*(F+V)*(p-1);if(Y<0||Y>p-1){for(let Z=0;Z<g;Z++)for(let et=0;et<f;et++){let rt=et+Z*_[2]+j*_[1]+A*_[0];x.values[rt]=l}continue}if(u==="bilinear"){let Z=Math.floor(Y),et=Math.ceil(Y),rt=Y-Z;for(let ot=0;ot<g;ot++){let at=g>1?P*(m-1)+ot*H:.5*(P+G)*(m-1);if(at<0||at>m-1){for(let ht=0;ht<f;ht++){let bt=ht+ot*_[2]+j*_[1]+A*_[0];x.values[bt]=l}continue}let nt=Math.floor(at),st=Math.ceil(at),dt=at-nt;for(let ht=0;ht<f;ht++){let bt=ht+nt*N[2]+Z*N[1]+W*N[0],kt=C[bt];bt=ht+st*N[2]+Z*N[1]+W*N[0];let _t=C[bt];bt=ht+nt*N[2]+et*N[1]+W*N[0];let Vt=C[bt];bt=ht+st*N[2]+et*N[1]+W*N[0];let Zt=C[bt],ce=kt+(_t-kt)*dt,he=Vt+(Zt-Vt)*dt;bt=ht+ot*_[2]+j*_[1]+A*_[0],x.values[bt]=ce+(he-ce)*rt}}}else for(let Z=0;Z<g;++Z){let et=g>1?P*(m-1)+Z*H:.5*(P+G)*(m-1);if(et<0||et>m-1){for(let at=0;at<f;at++){let nt=at+Z*_[2]+j*_[1]+A*_[0];x.values[nt]=l}continue}let rt=Math.round(et),ot=Math.round(Y);for(let at=0;at<f;at++){let nt=at+rt*N[2]+ot*N[1]+W*N[0],st=at+Z*_[2]+j*_[1]+A*_[0];x.values[st]=C[nt]}}}}return e.makeTensorInfo(x.shape,x.dtype,x.values)}var tO={kernelName:da,backendName:"cpu",kernelFunc:QJ};function tQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;tt(o,"cumprod");let u=v.getAxesPermutation([s],o.shape.length),l=o;u!=null&&(l=Ve({inputs:{x:o},backend:e,attrs:{perm:u}}));let c=v.getInnerMostAxes(1,o.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=sr(l.dtype,"int32"),m=y.makeOnesTypedArray(y.sizeFromShape(l.shape),p),f=e.data.get(l.dataId).values,d=l.shape[l.shape.length-1],h=a?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let w=h(x,b);if(b===0)m[w]=i?1:f[w];else{let C=h(x,b-1);m[w]=i?f[C]*m[C]:f[w]*m[C]}}let g=e.makeTensorInfo(l.shape,p,m);if(u!=null){let x=v.getUndoAxesPermutation(u),b=Ve({inputs:{x:g},backend:e,attrs:{perm:x}});return e.disposeIntermediateTensorInfo(g),e.disposeIntermediateTensorInfo(l),b}return g}var eO={kernelName:fa,backendName:"cpu",kernelFunc:tQ};function eQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;tt(o,"cumsum");let u=v.getAxesPermutation([s],o.shape.length),l=o;u!=null&&(l=Ve({inputs:{x:o},backend:e,attrs:{perm:u}}));let c=v.getInnerMostAxes(1,o.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=sr(l.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(l.shape),p),f=e.data.get(l.dataId).values,d=l.shape[l.shape.length-1],h=a?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let w=h(x,b);if(b===0)m[w]=i?0:f[w];else{let C=h(x,b-1);m[w]=i?f[C]+m[C]:f[w]+m[C]}}let g=e.makeTensorInfo(l.shape,p,m);if(u!=null){let x=v.getUndoAxesPermutation(u),b=Ve({inputs:{x:g},backend:e,attrs:{perm:x}});return e.disposeIntermediateTensorInfo(g),e.disposeIntermediateTensorInfo(l),b}return g}var rO={kernelName:Zo,backendName:"cpu",kernelFunc:eQ};function rQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=sd(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=Jb(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var nO={kernelName:hp,backendName:"cpu",kernelFunc:rQ};function nQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n;y.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let a=o.shape[0],u=o.shape[1],l=o.shape[2],c=o.shape[3],p=u*s,m=l*s,f=c/(s*s),d=e.data.get(o.dataId).values,h=new Float32Array(a*p*m*f),g=0;for(let x=0;x<a;++x)for(let b=0;b<p;++b){let w=Math.floor(b/s),C=b%s;for(let N=0;N<m;++N){let _=Math.floor(N/s),A=N%s,$=(C*s+A)*f;for(let F=0;F<f;++F){let V=F+$+c*(_+l*(w+u*x));h[g++]=d[V]}}}return e.makeTensorInfo([a,p,m,f],o.dtype,h)}var oO={kernelName:ha,backendName:"cpu",kernelFunc:nQ};function hT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u,dimRoundingMode:l}=n;tt([o,s],"depthwiseConv2DNative");let c=y.computeStrides(o.shape),p=y.computeStrides(s.shape),m=u;m==null&&(m=[1,1]),y.assert(v.eitherStridesOrDilationsAreOne(i,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${m}'`);let f=v.computeConv2DInfo(o.shape,s.shape,i,m,a,l,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,w=b.left,C=b.top,N=f.outChannels/f.inChannels,_=new pe(f.outShape,o.dtype),A=e.data.get(o.dataId).values,$=e.data.get(s.dataId).values,F=_.values;for(let P=0;P<f.batchSize;++P){let V=P*c[0],G=P*_.strides[0];for(let W=0;W<f.outHeight;++W){let q=G+W*_.strides[1],H=W*f.strideHeight-C;for(let j=0;j<d;++j){let Y=H+j*g;if(Y<0||Y>=f.inHeight)continue;let Z=j*p[0],et=V+Y*c[1];for(let rt=0;rt<f.outWidth;++rt){let ot=q+rt*_.strides[2],at=rt*f.strideWidth-w;for(let nt=0;nt<h;++nt){let st=at+nt*x;if(st<0||st>=f.inWidth)continue;let dt=Z+nt*p[1],ht=et+st*f.inChannels,bt=ot,kt=dt;for(let _t=0;_t<f.inChannels;++_t){let Vt=A[ht+_t];for(let Zt=0;Zt<N;++Zt)F[bt+Zt]+=Vt*$[kt+Zt];bt+=N,kt+=N}}}}}}return e.makeTensorInfo(_.shape,_.dtype,_.values)}var sO={kernelName:Jo,backendName:"cpu",kernelFunc:hT};function oQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n;tt([o,s],"depthwiseConv2dNativeBackpropFilter");let p=v.computeConv2DInfo(o.shape,c,i,a,u,l,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new pe(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,C=e.data.get(o.dataId).values,N=new pe(o.shape,o.dtype,C),_=e.data.get(s.dataId).values,A=new pe(s.shape,s.dtype,_);for(let $=0;$<d;++$){let F=Math.max(0,Math.ceil((b-$)/m)),P=Math.min(p.outHeight,(p.inHeight+b-$)/m);for(let V=0;V<h;++V){let G=Math.max(0,Math.ceil((x-V)/f)),W=Math.min(p.outWidth,(p.inWidth+x-V)/f);for(let q=0;q<p.outChannels;++q){let H=Math.trunc(q/w),j=q%w,Y=0;for(let Z=0;Z<p.batchSize;++Z)for(let et=F;et<P;++et){let rt=$+et*m-b;for(let ot=G;ot<W;++ot){let at=V+ot*f-x;Y+=N.get(Z,rt,at,H)*A.get(Z,et,ot,q)}}g.set(Y,$,V,H,j)}}}return e.makeTensorInfo(g.shape,g.dtype,g.values)}var iO={kernelName:gp,backendName:"cpu",kernelFunc:oQ};function sQ(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n;tt([o,s],"depthwiseConv2DNativeBackpropInput");let p=y.computeStrides(o.shape),m=y.computeStrides(s.shape),f=v.computeConv2DInfo(c,s.shape,i,a,u,l,!0),d=new pe(f.inShape,"float32"),h=d.values,[g,x,b]=d.strides,w=e.data.get(o.dataId).values,[C,N,_]=p,A=e.data.get(s.dataId).values,[$,F,P]=m,{batchSize:V,filterHeight:G,filterWidth:W,inChannels:q,inHeight:H,inWidth:j,outChannels:Y,outHeight:Z,outWidth:et,strideHeight:rt,strideWidth:ot}=f,at=G-1-f.padInfo.top,nt=W-1-f.padInfo.left,st=Y/q;for(let dt=0;dt<V;++dt)for(let ht=0;ht<q;++ht)for(let bt=0;bt<H;++bt){let kt=bt-at,_t=Math.max(0,Math.ceil(kt/rt)),Vt=Math.min(Z,(G+kt)/rt);for(let Zt=0;Zt<j;++Zt){let ce=Zt-nt,he=Math.max(0,Math.ceil(ce/ot)),jt=Math.min(et,(W+ce)/ot),ke=0;for(let fe=_t;fe<Vt;++fe){let Ae=fe*rt-kt;for(let We=he;We<jt;++We){let _n=We*ot-ce,or=C*dt+N*fe+_*We,Hn=$*(G-1-Ae)+F*(W-1-_n)+P*ht;for(let Lr=0;Lr<st;++Lr){let qe=ht*st+Lr,Mr=w[or+qe],zr=A[Hn+Lr];ke+=Mr*zr}}}h[g*dt+x*bt+b*Zt+ht]=ke}}return e.makeTensorInfo(d.shape,d.dtype,d.values)}var aO={kernelName:xp,backendName:"cpu",kernelFunc:sQ};function iQ(r){let{inputs:t,backend:e}=r,{x:n}=t,o=y.sizeFromShape(n.shape),s=e.data.get(n.dataId).values,i=wt([o,o],n.dtype),a=i.values;for(let l=0;l<s.length;l++)a[l*o+l]=s[l];let u=[...n.shape,...n.shape];return e.makeTensorInfo(u,i.dtype,i.values)}var lO={kernelName:yp,backendName:"cpu",kernelFunc:iQ};var uO={kernelName:$l,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o}=r,{strides:s,pad:i,dilations:a}=e,u=t,l=u.data.get(n.dataId).values,c=n.shape.length,p=u.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:w,strideHeight:C,strideWidth:N,filterHeight:_,filterWidth:A,dilationHeight:$,dilationWidth:F,outShape:P}=v.computeDilation2DInfo(n.shape,o.shape,s,i,"NHWC",a),V=y.sizeFromShape(P),G=P.length,W=y.getArrayFromDType(n.dtype,V);for(let H=0;H<f;++H)for(let j=0;j<x;++j){let Y=j*C-w.top;for(let Z=0;Z<b;++Z){let et=Z*N-w.left;for(let rt=0;rt<g;++rt){let ot=Number.MIN_SAFE_INTEGER;for(let nt=0;nt<_;++nt){let st=Y+nt*$;if(st>=0&&st<d)for(let dt=0;dt<A;++dt){let ht=et+dt*F;if(ht>=0&&ht<h){let bt=y.locToIndex([H,st,ht,rt],c,y.computeStrides(n.shape)),kt=y.locToIndex([nt,dt,rt],m,y.computeStrides(o.shape)),_t=l[bt]+p[kt];_t>ot&&(ot=_t)}}}let at=y.locToIndex([H,j,Z,rt],G,y.computeStrides(P));W[at]=ot}}}return{dataId:u.write(y.toTypedArray(W,n.dtype),P,n.dtype),shape:P,dtype:n.dtype}}};var cO={kernelName:Xd,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=y.toNestedArray(n.shape,l.data.get(n.dataId).values),p=y.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:C,filterHeight:N,filterWidth:_,dilationHeight:A,dilationWidth:$,outShape:F}=v.computeDilation2DInfo(n.shape,o.shape,i,a,"NHWC",u);y.assert(s.rank===F.length,()=>`Error in ${Xd}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=y.toNestedArray(F,l.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let W=0;W<m;++W)for(let q=0;q<g;++q){let H=q*w-b.top;for(let j=0;j<x;++j){let Y=j*C-b.left;for(let Z=0;Z<h;++Z){let et=Number.MIN_SAFE_INTEGER,rt=0,ot=0;for(let at=0;at<N;++at){let nt=H+at*A;if(nt>=0&&nt<f)for(let st=0;st<_;++st){let dt=Y+st*$;if(dt>=0&&dt<d){let ht=c[W][nt][dt][Z]+p[at][st][Z];ht>et&&(et=ht,rt=at,ot=st)}}}V[rt][ot][Z]+=P[W][q][j][Z]}}}return{dataId:l.write(y.toTypedArray(V,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var pO={kernelName:jd,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=y.toNestedArray(n.shape,l.data.get(n.dataId).values),p=y.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:C,filterHeight:N,filterWidth:_,dilationHeight:A,dilationWidth:$,outShape:F}=v.computeDilation2DInfo(n.shape,o.shape,i,a,"NHWC",u);y.assert(s.rank===F.length,()=>`Error in ${jd}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=y.toNestedArray(F,l.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let W=0;W<m;++W)for(let q=0;q<g;++q){let H=q*w-b.top;for(let j=0;j<x;++j){let Y=j*C-b.left;for(let Z=0;Z<h;++Z){let et=Number.MIN_SAFE_INTEGER,rt=H<0?0:H,ot=Y<0?0:Y;for(let at=0;at<N;++at){let nt=H+at*A;if(nt>=0&&nt<f)for(let st=0;st<_;++st){let dt=Y+st*$;if(dt>=0&&dt<d){let ht=c[W][nt][dt][Z]+p[at][st][Z];ht>et&&(et=ht,rt=nt,ot=dt)}}}V[W][rt][ot][Z]+=P[W][q][j][Z]}}}return{dataId:l.write(y.toTypedArray(V,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function hl(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"sum");let a;o.dtype==="bool"?a=$o({inputs:{x:o},backend:e,attrs:{dtype:"int32"}}):a=Kr({inputs:{x:o},backend:e});let u=a.shape.length,l=y.parseAxisParam(s,a.shape),c=v.getAxesPermutation(l,u),p=l,m=a;c!=null&&(m=Ve({inputs:{x:a},backend:e,attrs:{perm:c}}),p=v.getInnerMostAxes(p.length,u)),v.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=v.computeOutAndReduceShapes(m.shape,p),h=v.upcastType(m.dtype,"int32"),g=nd(e,f,h),x=y.sizeFromShape(d),b=e.data.get(g.dataId).values,w=e.data.get(m.dataId).values;for(let C=0;C<b.length;++C){let N=C*x,_=0;for(let A=0;A<x;++A)_+=w[N+A];b[C]=_}if(i){let C=v.expandShapeToKeepDim(g.shape,l),N=g;g=Yt({inputs:{x:g},backend:e,attrs:{shape:C}}),e.disposeIntermediateTensorInfo(N)}return e.disposeIntermediateTensorInfo(a),c!=null&&e.disposeIntermediateTensorInfo(m),g}var mO={kernelName:$s,backendName:"cpu",kernelFunc:hl};function aQ(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=v.decodeEinsumEquation(o,s.length);v.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=v.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=v.getEinsumPermutation(f,u[g]),w;v.isIdentityPermutation(x)?w=s[g]:(w=Ve({inputs:{x:s[g]},backend:e,attrs:{perm:x}}),d.push(w));let C=w.shape.slice();for(let N=0;N<b.length;++N)C.splice(b[N],0,1);y.arraysEqual(w.shape,C)||(w=Yt({inputs:{x:w},backend:e,attrs:{shape:C}}),d.push(w)),m===null?m=w:(m=_c({inputs:{a:w,b:m},backend:e}),d.push(m))}h<p-1&&(l[h]>=0&&(m=hl({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var fO={kernelName:bp,backendName:"cpu",kernelFunc:aQ};function lQ(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t;tt([n,o],"eluGrad");let s=new Float32Array(y.sizeFromShape(o.shape)),i=e.data.get(o.dataId).values,a=e.data.get(n.dataId).values;for(let u=0;u<i.length;++u){let l=i[u];l>=1?s[u]=a[u]:s[u]=a[u]*(l+1)}return e.makeTensorInfo(o.shape,"float32",s)}var dO={kernelName:wp,backendName:"cpu",kernelFunc:lQ};var uQ=v.ERF_P,cQ=v.ERF_A1,pQ=v.ERF_A2,mQ=v.ERF_A3,fQ=v.ERF_A4,dQ=v.ERF_A5,hQ=Et(ga,r=>{let t=Math.sign(r),e=Math.abs(r),n=1/(1+uQ*e);return t*(1-((((dQ*n+fQ)*n+mQ)*n+pQ)*n+cQ)*n*Math.exp(-e*e))}),hO={kernelName:ga,backendName:"cpu",kernelFunc:hQ};function cd(r){let{inputs:t,backend:e,attrs:n}=r,{input:o}=t,{dim:s}=n,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(y.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),Yt({inputs:{x:o},backend:e,attrs:{shape:a}})}var gO={kernelName:ui,backendName:"cpu",kernelFunc:cd};var gQ=Qt((r,t)=>r/t),Wh=oe(Qo,gQ),Uh={kernelName:Qo,backendName:"cpu",kernelFunc:Wh};function hw(r,t,e){let n=r.shape,o=n[0],s=n[1],i=e.data.get(r.dataId),a=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[o,s],c=y.sizeFromShape(l),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<o;g++){let x=Fo({inputs:{x:a},backend:e,attrs:{begin:[g,0],size:[1,s]}}),b=Fo({inputs:{x:u},backend:e,attrs:{begin:[g,0],size:[1,s]}}),w=wr({inputs:{real:x,imag:b},backend:e}),{real:C,imag:N}=xQ(w,t,e),_=v.mergeRealAndImagArrays(C,N);for(let A=0;A<s;A++){let $=v.getComplexWithIndex(_,A);p[g*s+A]=$.real,m[g*s+A]=$.imag}e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(b),e.disposeIntermediateTensorInfo(w)}let f=e.makeTensorInfo(l,"float32",p),d=e.makeTensorInfo(l,"float32",m),h=wr({inputs:{real:f,imag:d},backend:e});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),h}function xQ(r,t,e){let n=y.sizeFromShape(r.shape),o=e.data.get(r.dataId),s=e.data.get(o.complexTensorInfos.real.dataId).values,i=e.data.get(o.complexTensorInfos.imag.dataId).values;if(yQ(n)){let a=gT(s,i,n,t,e),u=[r.shape[0],r.shape[1]];if(t){let l=e.makeTensorInfo(u,"float32",a.real),c=e.makeTensorInfo(u,"float32",a.imag),p=e.makeTensorInfo([],"float32",y.createScalarValue(n,"float32")),m=Kr({inputs:{x:p},backend:e}),f=Uh.kernelFunc({inputs:{a:l,b:p},backend:e}),d=Uh.kernelFunc({inputs:{a:c,b:m},backend:e}),h=e.data.get(f.dataId).values,g=e.data.get(d.dataId).values;return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return a}else{let a=v.mergeRealAndImagArrays(s,i),u=bQ(a,n,t);return v.splitRealAndImagArrays(u)}}function yQ(r){return(r&r-1)===0}function gT(r,t,e,n,o){if(e===1)return{real:r,imag:t};let s=v.mergeRealAndImagArrays(r,t),i=e/2,a=v.complexWithEvenIndex(s),u=a.real,l=a.imag,c=[u.length],p=o.makeTensorInfo(c,"float32",u),m=o.makeTensorInfo(c,"float32",l),f=wr({inputs:{real:p,imag:m},backend:o}),d=v.complexWithOddIndex(s),h=d.real,g=d.imag,x=[h.length],b=o.makeTensorInfo(x,"float32",h),w=o.makeTensorInfo(x,"float32",g),C=wr({inputs:{real:b,imag:w},backend:o}),N=gT(u,l,i,n,o),_=N.real,A=N.imag,$=[_.length],F=o.makeTensorInfo($,"float32",_),P=o.makeTensorInfo($,"float32",A),V=wr({inputs:{real:F,imag:P},backend:o}),G=gT(h,g,i,n,o),W=G.real,q=G.imag,H=[W.length],j=o.makeTensorInfo(H,"float32",W),Y=o.makeTensorInfo(H,"float32",q),Z=wr({inputs:{real:j,imag:Y},backend:o}),et=v.exponents(e,n),rt=[et.real.length],ot=o.makeTensorInfo(rt,"float32",et.real),at=o.makeTensorInfo(rt,"float32",et.imag),nt=wr({inputs:{real:ot,imag:at},backend:o}),st=_c({inputs:{a:nt,b:Z},backend:o}),dt=Ki({inputs:{a:V,b:st},backend:o}),ht=Vh({inputs:{a:V,b:st},backend:o}),bt=Ao({inputs:{input:dt},backend:o}),kt=Ao({inputs:{input:ht},backend:o}),_t=ji({inputs:{input:dt},backend:o}),Vt=ji({inputs:{input:ht},backend:o}),Zt=Tu({inputs:[bt,kt],backend:o,attrs:{axis:0}}),ce=Tu({inputs:[_t,Vt],backend:o,attrs:{axis:0}}),he=o.data.get(Zt.dataId).values,jt=o.data.get(ce.dataId).values;return o.disposeIntermediateTensorInfo(p),o.disposeIntermediateTensorInfo(m),o.disposeIntermediateTensorInfo(f),o.disposeIntermediateTensorInfo(b),o.disposeIntermediateTensorInfo(w),o.disposeIntermediateTensorInfo(C),o.disposeIntermediateTensorInfo(F),o.disposeIntermediateTensorInfo(P),o.disposeIntermediateTensorInfo(V),o.disposeIntermediateTensorInfo(j),o.disposeIntermediateTensorInfo(Y),o.disposeIntermediateTensorInfo(Z),o.disposeIntermediateTensorInfo(ot),o.disposeIntermediateTensorInfo(at),o.disposeIntermediateTensorInfo(nt),o.disposeIntermediateTensorInfo(st),o.disposeIntermediateTensorInfo(dt),o.disposeIntermediateTensorInfo(ht),o.disposeIntermediateTensorInfo(bt),o.disposeIntermediateTensorInfo(_t),o.disposeIntermediateTensorInfo(kt),o.disposeIntermediateTensorInfo(Vt),o.disposeIntermediateTensorInfo(Zt),o.disposeIntermediateTensorInfo(ce),{real:he,imag:jt}}function bQ(r,t,e){let n=new Float32Array(t*2);for(let o=0;o<t;o++){let s=0,i=0;for(let a=0;a<t;a++){let u=v.exponent(o*a,t,e),l=v.getComplexWithIndex(r,a);s+=l.real*u.real-l.imag*u.imag,i+=l.real*u.imag+l.imag*u.real}e&&(s/=t,i/=t),v.assignToTypedArray(n,s,i,o)}return n}function wQ(r){let{inputs:t,backend:e}=r,{input:n}=t,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=Yt({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=hw(a,!1,e),l=Yt({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var xO={kernelName:Cp,backendName:"cpu",kernelFunc:wQ};function Hh(r){let{backend:t,attrs:e}=r,{shape:n,value:o,dtype:s}=e,i=s||y.inferDtype(o),a=y.getArrayFromDType(i,y.sizeFromShape(n));return CQ(a,o,i),t.makeTensorInfo(n,i,a)}var yO={kernelName:Dl,backendName:"cpu",kernelFunc:Hh};function CQ(r,t,e){r.fill(t)}var bO={kernelName:ba,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,o=e,s=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[i,a,u,l]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m<i;m++){let f=m*u*a*l;for(let d=0;d<a;d++){let h=d*(u*l);for(let g=0;g<u;g++){let x=g*l;for(let b=0;b<l;b++){let w=Math.round(u-g-1),C=f+h+x+b,N=c[C];if(w>=0&&w<u){let _=w*l,A=f+h+_+b;N=c[A]}s[C]=N}}}}return{dataId:o.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var IQ=Qt((r,t)=>Math.floor(r/t)),SQ=oe(ns,IQ,null,"int32"),wO={kernelName:ns,backendName:"cpu",kernelFunc:SQ};function vQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=dT({inputs:{x:o,filter:s},backend:e,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m}});if(i){let g=h;if(c==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let x=Yt({inputs:{x:i},backend:e,attrs:{shape:[i.shape[0],1,1]}});h=Ki({inputs:{a:h,b:x},backend:e}),e.disposeIntermediateTensorInfo(x)}else h=Ki({inputs:{a:h,b:i},backend:e});e.disposeIntermediateTensorInfo(g)}if(f){let g=h;if(c==="NCHW"&&f==="prelu"&&a.shape.length===1&&a.shape[0]!==1){let x=Yt({inputs:{x:a},backend:e,attrs:{shape:[a.shape[0],1,1]}});h=Oc(e,h,f,x,d),e.disposeIntermediateTensorInfo(x)}else h=Oc(e,h,f,a,d);e.disposeIntermediateTensorInfo(g)}return h}var CO={kernelName:Ii,backendName:"cpu",kernelFunc:vQ};function NQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=hT({inputs:{x:o,filter:s},backend:e,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m}});if(i){let g=h;h=Ki({inputs:{a:h,b:i},backend:e}),e.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=Oc(e,h,f,a,d),e.disposeIntermediateTensorInfo(g)}return h}var IO={kernelName:Si,backendName:"cpu",kernelFunc:NQ};function TQ(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=y.sizeFromShape(n.shape),i=o.shape,a=i[i.length-1],[u,l,c,p]=v.prepareAndValidate(n,o);if(l===0)return e.makeTensorInfo(u,n.dtype,[]);let m=e.data.get(o.dataId).values,f=e.bufferSync(n),d=Qb(m,f,n.dtype,l,a,c,p,n.shape,s);return e.makeTensorInfo(u,n.dtype,d.values)}var SO={kernelName:wa,backendName:"cpu",kernelFunc:TQ};function kQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,indices:s}=t,{axis:i,batchDims:a}=n;tt([o,s],"gatherV2");let u=y.parseAxisParam(i,o.shape)[0],l=e.data.get(s.dataId).values,c=o.shape[u];for(let C=0;C<l.length;++C){let N=l[C];y.assert(N<=c-1&&N>=0,()=>`GatherV2: the index value ${N} is not in [0, ${c-1}]`)}let p=a;a==null&&(p=0);let m=y.sizeFromShape(s.shape),f=v.segment_util.collectGatherOpShapeInfo(o,s,u,p),d=Yt({inputs:{x:o},backend:e,attrs:{shape:[f.batchSize,f.outerSize,f.dimSize,f.sliceSize]}}),h=Yt({inputs:{x:s},backend:e,attrs:{shape:[f.batchSize,m/f.batchSize]}}),g=[f.batchSize,f.outerSize,m/f.batchSize,f.sliceSize],x=e.bufferSync(h),b=e.bufferSync(d),w=tw(b,x,g);return e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.makeTensorInfo(f.outputShape,w.dtype,w.values)}var vO={kernelName:ci,backendName:"cpu",kernelFunc:kQ};function EQ(r){let{inputs:t,backend:e}=r,{input:n}=t,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=Yt({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=hw(a,!0,e),l=Yt({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var NO={kernelName:Ip,backendName:"cpu",kernelFunc:EQ};var _Q=Et(Ia,r=>Number.isFinite(r)?1:0,"bool"),TO={kernelName:Ia,backendName:"cpu",kernelFunc:_Q};var AQ=Et(Sa,r=>Math.abs(r)===1/0?1:0,"bool"),kO={kernelName:Sa,backendName:"cpu",kernelFunc:AQ};var $Q=Et(va,r=>Number.isNaN(r)?1:0,"bool"),EO={kernelName:va,backendName:"cpu",kernelFunc:$Q};function DQ(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=ew(n,o,s);return t.makeTensorInfo([i.length],"float32",i)}var _O={kernelName:vp,backendName:"cpu",kernelFunc:DQ};var RQ=Et(ka,r=>Math.log1p(r)),AO={kernelName:ka,backendName:"cpu",kernelFunc:RQ};var FQ=Qt((r,t)=>r&&t),OQ=oe(Ea,FQ,null,"bool"),$O={kernelName:Ea,backendName:"cpu",kernelFunc:OQ};var PQ=Et(_a,r=>r?0:1,"bool"),DO={kernelName:_a,backendName:"cpu",kernelFunc:PQ};var LQ=Qt((r,t)=>r||t),MQ=oe(Aa,LQ,null,"bool"),RO={kernelName:Aa,backendName:"cpu",kernelFunc:MQ};function zQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;tt(o,"LRN");let l=o.shape[3],c=l-1,p=e.data.get(o.dataId).values,m=y.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%l,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;x<=b;x++){let C=p[x];w+=C*C}return w}for(let h=0;h<m;h++){let g=d(h),x=p[h]*Math.pow(i+a*g,-u);f[h]=x}return e.makeTensorInfo(o.shape,o.dtype,f)}var FO={kernelName:Rl,backendName:"cpu",kernelFunc:zQ};function BQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n;tt(i,"LRNGrad");let p=y.sizeFromShape(i.shape),m=i.shape[3],f=e.data.get(i.dataId).values,d=e.data.get(o.dataId).values,h=e.data.get(s.dataId).values,g=new Float32Array(p),x=p;for(let b=0;b<x;b++){let w=b%m,C=b-w+Math.max(0,w-a),N=b-w+Math.min(m,w+a+1),_=0;for(let A=C;A<N;A++)_+=Math.pow(d[A],2);_=l*_+u;for(let A=C;A<N;A++){let $=-2*l*c*d[A]*h[b]/_;b===A&&($+=Math.pow(_,-c)),$*=f[b],g[A]+=$}}return e.makeTensorInfo(i.shape,o.dtype,g)}var OO={kernelName:Np,backendName:"cpu",kernelFunc:BQ};function xT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=e,u=o.shape,l=u.length,c=y.parseAxisParam(s,u),p=c,m=v.getAxesPermutation(p,l),f=a.data.get(o.dataId).values;if(m!=null){let C=new Array(l);for(let N=0;N<C.length;N++)C[N]=u[m[N]];f=id(f,u,o.dtype,m,C),p=v.getInnerMostAxes(p.length,l),u=C}tt(o,"max"),v.assertAxesAreInnerMostDims("max",p,l);let[d,h]=v.computeOutAndReduceShapes(u,p),g=y.sizeFromShape(h),x=rw(f,g,d,o.dtype),b=a.write(x,d,o.dtype),w=d;return i&&(w=v.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:o.dtype}}var PO={kernelName:ls,backendName:"cpu",kernelFunc:xT};function VQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;tt(o,"maxPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(v.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=v.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Kr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=ud(m,o.shape,o.dtype,f,c,"max");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var LO={kernelName:cs,backendName:"cpu",kernelFunc:VQ};function GQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;tt(o,"maxPool3d");let c=v.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=dw(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"max");return e.makeTensorInfo(m.shape,"float32",m.values)}var MO={kernelName:Fl,backendName:"cpu",kernelFunc:GQ};function WQ(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;tt([o,s],"maxPool3DGrad");let c=v.computePool3DInfo(s.shape,i,a,1,u,l),p=e.bufferSync(s),m=RF(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,C=c.effectiveFilterHeight,N=c.effectiveFilterWidth,_=w-1-c.padInfo.front,A=N-1-c.padInfo.left,$=C-1-c.padInfo.top,F=wt(s.shape,"float32"),P=e.bufferSync(o);for(let V=0;V<c.batchSize;++V)for(let G=0;G<c.inChannels;++G)for(let W=0;W<c.inDepth;++W)for(let q=0;q<c.inHeight;++q)for(let H=0;H<c.inWidth;++H){let j=W-_,Y=q-$,Z=H-A,et=0;for(let rt=0;rt<w;rt+=g){let ot=(j+rt)/f;if(!(ot<0||ot>=c.outDepth||Math.floor(ot)!==ot))for(let at=0;at<C;at+=x){let nt=(Y+at)/d;if(!(nt<0||nt>=c.outHeight||Math.floor(nt)!==nt))for(let st=0;st<N;st+=b){let dt=(Z+st)/h;if(dt<0||dt>=c.outWidth||Math.floor(dt)!==dt)continue;let ht=w*C*N-1-m.get(V,ot,nt,dt,G),bt=rt*C*N+at*N+st,kt=ht===bt?1:0;if(kt===0)continue;let _t=P.get(V,ot,nt,dt,G);et+=_t*kt}}}F.set(et,V,W,q,H,G)}return e.makeTensorInfo(F.shape,F.dtype,F.values)}var zO={kernelName:kp,backendName:"cpu",kernelFunc:WQ};function UQ(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;tt([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=v.computePool2DInfo(a.shape,u,l,1,c,p),f=e.data.get(a.dataId).values,d=wt(m.outShape,a.dtype,fw(f,a.shape,a.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,C=m.effectiveFilterWidth,N=C-1-m.padInfo.left,_=w-1-m.padInfo.top,A=wt(a.shape,"float32"),$=e.data.get(o.dataId).values,F=wt(o.shape,"float32",$);for(let P=0;P<m.batchSize;++P)for(let V=0;V<m.inChannels;++V)for(let G=0;G<m.inHeight;++G)for(let W=0;W<m.inWidth;++W){let q=G-_,H=W-N,j=0;for(let Y=0;Y<w;Y+=x){let Z=(q+Y)/h;if(!(Z<0||Z>=m.outHeight||Math.floor(Z)!==Z))for(let et=0;et<C;et+=b){let rt=(H+et)/g;if(rt<0||rt>=m.outWidth||Math.floor(rt)!==rt)continue;let ot=w*C-1-d.get(P,Z,rt,V),at=Y*C+et,nt=ot===at?1:0;if(nt===0)continue;let st=F.get(P,Z,rt,V);j+=st*nt}}A.set(j,P,G,W,V)}return e.makeTensorInfo(A.shape,A.dtype,A.values)}var BO={kernelName:Tp,backendName:"cpu",kernelFunc:UQ};function VO(r,t,e,n,o){let s=y.computeStrides(t),i=ud(r,t,e,s,o,"max"),a=fw(r,t,e,o,!0,n);return[i.values,a.values]}var GO={kernelName:Ep,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;tt(n,"MaxPoolWithArgmax");let l=u.data.get(n.dataId).values,c=v.computePool2DInfo(n.shape,o,s,[1,1],i),[p,m]=VO(l,n.shape,n.dtype,a,c),f=u.write(p,c.outShape,n.dtype),d=u.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function HQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=y.parseAxisParam(s,o.shape),l=v.computeOutAndReduceShapes(o.shape,a)[1],c=y.sizeFromShape(l),p=[],m=e.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=$o({inputs:{x:o},backend:e,attrs:{dtype:"float32"}});p.push(f);let d=Wh({inputs:{a:f,b:m},backend:e});p.push(d);let h=hl({inputs:{x:d},backend:e,attrs:{axis:s,keepDims:i}});return p.forEach(g=>e.disposeIntermediateTensorInfo(g)),h}var WO={kernelName:ps,backendName:"cpu",kernelFunc:HQ};function qQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"min");let a=y.parseAxisParam(s,o.shape),u=a,l=v.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ve({inputs:{x:o},backend:e,attrs:{perm:l}}),u=v.getInnerMostAxes(u.length,o.shape.length)),v.assertAxesAreInnerMostDims("min",u,c.shape.length);let[p,m]=v.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let C=0;C<f;++C){let N=h[b+C];(Number.isNaN(N)||N<w)&&(w=N)}d[x]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let x=v.expandShapeToKeepDim(p,a),b=Yt({inputs:{x:g},backend:e,attrs:{shape:x}});return e.disposeIntermediateTensorInfo(g),b}return g}var UO={kernelName:ms,backendName:"cpu",kernelFunc:qQ};function KQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,mode:i}=n;tt(o,"mirrorPad");let a=s.map((w,C)=>w[0]+o.shape[C]+w[1]),u=s.map(w=>w[0]),l=s.map((w,C)=>w[0]+o.shape[C]),c=i==="reflect"?0:1,p=e.data.get(o.dataId).values,m=o.shape.length,f=y.computeStrides(o.shape),d=y.sizeFromShape(a),h=a.length,g=y.computeStrides(a),x=y.getTypedArrayFromDType(o.dtype,d);for(let w=0;w<d;w++){let C=y.indexToLoc(w,h,g);for(let _=0;_<h;_++)C[_]<u[_]?C[_]=u[_]*2-C[_]-c:C[_]>=l[_]&&(C[_]=(l[_]-1)*2-C[_]+c);C=C.map((_,A)=>_-u[A]);let N=y.locToIndex(C,m,f);x[w]=p[N]}return{dataId:e.write(x,a,o.dtype),shape:a,dtype:o.dtype}}var HO={kernelName:ds,backendName:"cpu",kernelFunc:KQ};var jQ=Qt((r,t)=>{let e=r%t;return r<0&&t<0||r>=0&&t>=0?e:(e+t)%t}),XQ=oe($a,jQ),qO={kernelName:$a,backendName:"cpu",kernelFunc:XQ};var jO=Tl(fh());function yT(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=o.shape.length,a=s;if(a===-1&&(a=i-1),a!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${a}`);let u=y.parseAxisParam([a],o.shape),l=xT({inputs:{x:o},backend:e,attrs:{reductionIndices:u,keepDims:!1}}),c=v.expandShapeToKeepDim(l.shape,u),p=Yt({inputs:{x:l},backend:e,attrs:{shape:c}}),m=Vh({inputs:{a:o,b:p},backend:e}),f=UN({inputs:{x:m},backend:e}),d=hl({inputs:{x:f},backend:e,attrs:{axis:u,keepDims:!1}}),h=Yt({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Wh({inputs:{a:f,b:h},backend:e});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var KO={kernelName:Ds,backendName:"cpu",kernelFunc:yT};function YQ(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;tt(o,"multinomial");let u=a?o:yT({inputs:{logits:o},backend:e,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],p=e.data.get(u.dataId).values,m=[l,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d<l;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let x=jO.alea(i.toString()),b=d*s;for(let w=0;w<s;++w){let C=x();f[b+w]=g.length;for(let N=0;N<g.length;N++)if(C<g[N]){f[b+w]=N;break}}}return a||e.disposeIntermediateTensorInfo(u),e.makeTensorInfo(m,"int32",f)}var XO={kernelName:_p,backendName:"cpu",kernelFunc:YQ};var ZQ=Ur.nonMaxSuppressionV3Impl;function JQ(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n;tt(o,"NonMaxSuppression");let l=e.data.get(o.dataId).values,c=e.data.get(s.dataId).values,{selectedIndices:p}=ZQ(l,c,i,a,u);return e.makeTensorInfo([p.length],"int32",new Int32Array(p))}var YO={kernelName:Ra,backendName:"cpu",kernelFunc:JQ};var QQ=Ur.nonMaxSuppressionV4Impl;function t9(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n;tt(o,"NonMaxSuppressionPadded");let c=e.data.get(o.dataId).values,p=e.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=QQ(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],"int32",new Int32Array(m)),e.makeTensorInfo([],"int32",new Int32Array([f]))]}var ZO={kernelName:Fa,backendName:"cpu",kernelFunc:t9};var e9=Ur.nonMaxSuppressionV5Impl;function r9(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n;tt(o,"NonMaxSuppressionWithScore");let c=e.data.get(o.dataId).values,p=e.data.get(s.dataId).values,m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:x}=e9(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],"int32",new Int32Array(g)),e.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var JO={kernelName:Oa,backendName:"cpu",kernelFunc:r9};function n9(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n;tt(o,"oneHot");let l=y.sizeFromShape(o.shape),c=new Float32Array(l*i);c.fill(u);let p=e.data.get(o.dataId).values;for(let m=0;m<l;++m)p[m]>=0&&p[m]<i&&(c[m*i+p[m]]=a);return e.makeTensorInfo([...o.shape,i],s,c)}var QO={kernelName:gs,backendName:"cpu",kernelFunc:n9};function qh(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Ao({inputs:{input:n},backend:e}),s=qh({inputs:{x:o},backend:e}),i=ji({inputs:{input:n},backend:e}),a=qh({inputs:{x:i},backend:e}),u=wr({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Hh({backend:e,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var tP={kernelName:wi,backendName:"cpu",kernelFunc:qh};function eP(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Ao({inputs:{input:n},backend:e}),s=eP({inputs:{x:o},backend:e}),i=ji({inputs:{input:n},backend:e}),a=qh({inputs:{x:i},backend:e}),u=wr({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Hh({backend:e,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var rP={kernelName:mi,backendName:"cpu",kernelFunc:eP};function bT(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return cd({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=cd({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=Tu({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var nP={kernelName:fi,backendName:"cpu",kernelFunc:bT};function o9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;tt(o,"pad");let a=s.map((b,w)=>b[0]+o.shape[w]+b[1]),u=s.map(b=>b[0]),l=e.data.get(o.dataId).values,c=y.sizeFromShape(o.shape),p=o.shape.length,m=y.computeStrides(o.shape),f=y.sizeFromShape(a),d=a.length,h=y.computeStrides(a),g=y.getTypedArrayFromDType(o.dtype,f);i!==0&&g.fill(i);for(let b=0;b<c;b++){let C=y.indexToLoc(b,p,m).map((_,A)=>_+u[A]),N=y.locToIndex(C,d,h);g[N]=l[b]}return{dataId:e.write(g,a,o.dtype),shape:a,dtype:o.dtype}}var gw={kernelName:xs,backendName:"cpu",kernelFunc:o9};var s9=Qt((r,t)=>Math.pow(r,t)),i9=oe(ys,s9),oP={kernelName:ys,backendName:"cpu",kernelFunc:i9};function a9(r){let{inputs:t,backend:e,attrs:n}=r,{paramsNestedSplits:o,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:a}=n,u=o.map(x=>e.data.get(x.dataId).values),l=o.map(x=>x.shape),c=e.data.get(s.dataId).values,p=e.data.get(i.dataId).values,[m,f,d]=nw(u,l,c,s.shape,s.dtype,p,i.shape,a),h=m.map(x=>e.makeTensorInfo([x.length],"int32",x)),g=e.makeTensorInfo(d,s.dtype,f);return h.concat([g])}var sP={kernelName:Ap,backendName:"cpu",kernelFunc:a9};function l9(r){let{inputs:t,backend:e}=r,{starts:n,limits:o,deltas:s}=t,i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=ow(i,n.shape,n.dtype,a,o.shape,u,s.shape),p=e.makeTensorInfo([l.length],"int32",l),m=e.makeTensorInfo([c.length],n.dtype,c);return[p,m]}var iP={kernelName:$p,backendName:"cpu",kernelFunc:l9};function u9(r){let{inputs:t,backend:e,attrs:n}=r,{shape:o,values:s,defaultValue:i,rowPartitionTensors:a}=t,{rowPartitionTypes:u}=n,l=e.data.get(o.dataId).values,c=e.data.get(s.dataId).values,p=e.data.get(i.dataId).values,m=a.map(g=>e.data.get(g.dataId).values),f=a.map(g=>g.shape),[d,h]=sw(l,o.shape,c,s.shape,s.dtype,p,i.shape,m,f,u);return e.makeTensorInfo(d,s.dtype,h)}var aP={kernelName:Dp,backendName:"cpu",kernelFunc:u9};function c9(r){let{backend:t,attrs:e}=r,{start:n,stop:o,dtype:s,step:i}=e,a=Ac(n,o,i,s);return t.makeTensorInfo([a.length],s,a)}var lP={kernelName:Ol,backendName:"cpu",kernelFunc:c9};var p9=Et(Pa,r=>1/r),uP={kernelName:Pa,backendName:"cpu",kernelFunc:p9};function m9(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;tt(o,"resizeBilinear");let u=y.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(y.sizeFromShape([p,l,c,d])),x=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=0,C=x[0]/b[0],N=x[1]/b[1];for(let _=0;_<p;_++)for(let A=0;A<l;A++){let $;i?$=C*(A+.5)-.5:$=C*A;let F=Math.max(0,Math.floor($)),P=$-F,V=Math.min(m-1,Math.ceil($)),G=_*u[0]+F*u[1],W=_*u[0]+V*u[1];for(let q=0;q<c;q++){let H;i?H=N*(q+.5)-.5:H=N*q;let j=Math.max(0,Math.floor(H)),Y=H-j,Z=Math.min(f-1,Math.ceil(H)),et=G+j*u[2],rt=W+j*u[2],ot=G+Z*u[2],at=W+Z*u[2];for(let nt=0;nt<d;nt++){let st=h[et+nt],dt=h[rt+nt],ht=h[ot+nt],bt=h[at+nt],kt=st+(ht-st)*Y,_t=dt+(bt-dt)*Y,Vt=kt+(_t-kt)*P;g[w++]=Vt}}}return e.makeTensorInfo([p,l,c,d],"float32",g)}var cP={kernelName:Ss,backendName:"cpu",kernelFunc:m9};function f9(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n;tt([s,o],"resizeBilinearGrad");let a=y.computeStrides(o.shape),[u,l,c,p]=o.shape,[,m,f]=s.shape,d=new Float32Array(u*l*c*p),h=[i&&m>1?l-1:l,i&&f>1?c-1:c],g=[i&&m>1?m-1:m,i&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],w=e.data.get(s.dataId).values,C=0;for(let N=0;N<u;N++){let _=N*a[0];for(let A=0;A<m;A++){let $=A*x,F=Math.floor($),P=Math.min(Math.ceil($),l-1),V=_+F*a[1],G=_+P*a[1],W=$-F,q=1-W;for(let H=0;H<f;H++){let j=H*b,Y=Math.floor(j),Z=Math.min(Math.ceil(j),c-1),et=j-Y,rt=1-et,ot=V+Y*a[2],at=V+Z*a[2],nt=G+Y*a[2],st=G+Z*a[2],dt=q*rt,ht=q*et,bt=W*rt,kt=W*et;for(let _t=0;_t<p;_t++){let Vt=w[C++];d[ot+_t]+=Vt*dt,d[at+_t]+=Vt*ht,d[nt+_t]+=Vt*bt,d[st+_t]+=Vt*kt}}}}return e.makeTensorInfo([u,c,l,p],"float32",d)}var pP={kernelName:Op,backendName:"cpu",kernelFunc:f9};function d9(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;tt(o,"resizeNearestNeighbor");let u=y.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(p*l*c*d),x=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=x[0]/b[0],C=x[1]/b[1],N=0;for(let _=0;_<p;_++){let A=_*u[0];for(let $=0;$<l;$++){let F=i?w*($+.5):w*$,P=Math.min(m-1,s?Math.round(F):Math.floor(F));i&&(P=Math.max(0,P));let V=A+P*u[1];for(let G=0;G<c;G++){let W=i?C*(G+.5):C*G,q=Math.min(f-1,s?Math.round(W):Math.floor(W));i&&(q=Math.max(0,q));let H=V+q*u[2];for(let j=0;j<d;j++){let Y=h[H+j];g[N++]=Y}}}}return e.makeTensorInfo([p,l,c,d],o.dtype,g)}var mP={kernelName:Is,backendName:"cpu",kernelFunc:d9};function h9(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n;tt([s,o],"resizeNearestNeighborGrad");let a=y.computeStrides(o.shape),u=y.computeStrides(s.shape),[l,c,p,m]=o.shape,[,f,d]=s.shape,h=new Float32Array(l*c*p*m),g=e.data.get(s.dataId).values,x=[i&&f>1?c-1:c,i&&d>1?p-1:p],b=[i&&f>1?f-1:f,i&&d>1?d-1:d],w=x[0]/b[0],C=x[1]/b[1],N=1/w,_=1/C,A=Math.ceil(N)*2+2,$=Math.ceil(_)*2+2;for(let F=0;F<l;F++){let P=F*a[0];for(let V=0;V<c;V++){let G=P+V*a[1],W=Math.floor(V*N),q=Math.floor(W-A/2);for(let H=0;H<p;H++){let j=G+H*a[2],Y=Math.floor(H*_),Z=Math.floor(Y-$/2);for(let et=0;et<m;et++){let rt=0;for(let ot=0;ot<A;ot++){let at=ot+q;if(at<0||at>=f)continue;let nt=P+at*u[1],st=at*w,dt=Math.min(c-1,i?Math.round(st):Math.floor(st));if(V===dt)for(let ht=0;ht<$;ht++){let bt=ht+Z;if(bt<0||bt>=d)continue;let kt=nt+bt*u[2],_t=bt*C,Vt=Math.min(p-1,i?Math.round(_t):Math.floor(_t));H===Vt&&(rt+=g[kt+et])}}h[j+et]=rt}}}}return e.makeTensorInfo(o.shape,o.dtype,h)}var fP={kernelName:Fp,backendName:"cpu",kernelFunc:h9};function g9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n;tt(o,"reverse");let i=o.shape.length,a=y.parseAxisParam(s,o.shape);if(i===0)return Kr({inputs:{x:o},backend:e});let u=new pe(o.shape,o.dtype),l=e.bufferSync(o);for(let c=0;c<u.size;c++){let p=u.indexToLoc(c),m=p.slice();a.forEach(f=>m[f]=o.shape[f]-1-m[f]),u.set(l.get(...m),...p)}return e.makeTensorInfo(u.shape,u.dtype,u.values)}var dP={kernelName:Ns,backendName:"cpu",kernelFunc:g9};var hP={kernelName:qa,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[l,c,p,m]=n.shape,[f,d]=v.getImageCenter(i,c,p),h=255,g=Math.sin(o),x=Math.cos(o),b=a.data.get(n.dataId).values;for(let C=0;C<l;C++){let N=C*p*c*m;for(let _=0;_<c;_++){let A=_*(p*m);for(let $=0;$<p;$++){let F=$*m;for(let P=0;P<m;P++){let V=[l,_,$,P],G=V[2],W=V[1],q=(G-f)*x-(W-d)*g,H=(G-f)*g+(W-d)*x;q=Math.round(q+f),H=Math.round(H+d);let j=s;if(typeof s!="number"&&(P===3?j=h:j=s[P]),q>=0&&q<p&&H>=0&&H<c){let Z=H*(p*m),et=q*m,rt=N+Z+et+P;j=b[rt]}let Y=N+A+F+P;u[Y]=j}}}}return{dataId:a.write(u,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var x9=Et(Ts,r=>{let t=Math.floor(r);return r-t<.5?Math.floor(r):r-t>.5?Math.ceil(r):t%2===0?t:t+1}),gP={kernelName:Ts,backendName:"cpu",kernelFunc:x9};function y9(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=v.calculateShapes(s,o,i),m=!0,f=e.bufferSync(o),d=e.bufferSync(s),h=dl(f,d,i,p,l,u,a,c,0,m);return e.makeTensorInfo(i,h.dtype,h.values)}var xP={kernelName:La,backendName:"cpu",kernelFunc:y9};function b9(r,t){let e=0,n=r.length,o=0;for(;e<n;)o=Math.floor((e+n)/2),r[o]<t?e=o+1:n=o;return n}function w9(r,t){let e=0,n=r.length,o=0;for(;e<n;)o=Math.floor((e+n)/2),r[o]<=t?e=o+1:n=o;return n}function yP(r,t,e,n,o,s){let i=y.getArrayFromDType("int32",e*o);for(let a=0;a<e;++a){let u=r.slice(a*n,(a+1)*n),l=a*o;for(let c=0;c<o;++c)i[l+c]=s==="left"?b9(u,t[c+l]):w9(u,t[c+l])}return i}function C9(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=yP(a,u,o.shape[0],o.shape[1],s.shape[1],i);return e.makeTensorInfo(s.shape,"int32",l)}var bP={kernelName:Pp,backendName:"cpu",kernelFunc:C9};function I9(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t;tt([n,o,s],"select");let i=n.shape.length,a=e.data.get(n.dataId).values,u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=sr(o.dtype,s.dtype),p=y.makeZerosTypedArray(y.sizeFromShape(o.shape),c),m=0,f=i===0||i>1||o.shape.length===1?1:y.sizeFromShape(o.shape.slice(1));for(let d=0;d<a.length;d++)for(let h=0;h<f;h++)a[d]===1?p[m++]=u[d]:p[m++]=l[d];return e.makeTensorInfo(o.shape,c,p)}var wP={kernelName:hi,backendName:"cpu",kernelFunc:I9};var S9=v.SELU_SCALEALPHA,v9=v.SELU_SCALE,N9=Et(Ma,r=>r>=0?v9*r:S9*(Math.exp(r)-1)),CP={kernelName:Ma,backendName:"cpu",kernelFunc:N9};var T9=Et(Ba,r=>r<0?-1:r>0?1:0),IP={kernelName:Ba,backendName:"cpu",kernelFunc:T9};var k9=Et(Es,r=>Math.sin(r)),SP={kernelName:Es,backendName:"cpu",kernelFunc:k9};var E9=Et(za,r=>Math.sinh(r)),vP={kernelName:za,backendName:"cpu",kernelFunc:E9};var _9=11920928955078125e-23,NP=Math.log(_9)+2,A9=Et(Va,r=>{let t=r>-NP,e=r<NP,n=Math.exp(r),o;return e?o=n:t?o=r:o=Math.log(1+n),o}),TP={kernelName:Va,backendName:"cpu",kernelFunc:A9};function $9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;tt([o],"spaceToBatchND");let a=y.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let _=1+s.length;_<o.shape.length;++_)u.push([0,0]);let l=gw.kernelFunc({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),c=v.getReshaped(l.shape,s,a,!1),p=v.getPermuted(c.length,s.length,!1),m=v.getReshapedPermuted(l.shape,s,a,!1),h=Yt({inputs:{x:l},backend:e,attrs:{shape:c}}),b=Ve({inputs:{x:h},backend:e,attrs:{perm:p}}),N=Yt({inputs:{x:b},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(b),N}var kP={kernelName:xi,backendName:"cpu",kernelFunc:$9};function D9(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let a=e.data.get(n.dataId).values,u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=e.data.get(i.dataId).values[0],[p,m,f,d,h]=iw(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var EP={kernelName:Pl,backendName:"cpu",kernelFunc:D9};function R9(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.data.get(o.dataId).values),a=e.data.get(n.dataId).values,u=Array.from(e.data.get(s.dataId).values),[l,c,p]=aw(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var _P={kernelName:Ga,backendName:"cpu",kernelFunc:R9};function F9(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=ld(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var AP={kernelName:Ll,backendName:"cpu",kernelFunc:F9};function O9(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=ld(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var $P={kernelName:Ml,backendName:"cpu",kernelFunc:O9};function P9(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=v.calculateShapes(s,o,a),f=!1,d=e.bufferSync(o),h;switch(s.dtype){case"bool":{let g=e.bufferSync(s),x=Boolean(e.data.get(i.dataId).values[0]);h=dl(d,g,a,m,c,l,u,p,x,f);break}case"float32":{let g=e.bufferSync(s),x=e.data.get(i.dataId).values[0];h=dl(d,g,a,m,c,l,u,p,x,f);break}case"int32":{let g=e.bufferSync(s),x=e.data.get(i.dataId).values[0];h=dl(d,g,a,m,c,l,u,p,x,f);break}case"string":{let g=e.bufferSync(s),x=y.decodeString(e.data.get(i.dataId).values[0]);h=dl(d,g,a,m,c,l,u,p,x,f);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return e.makeTensorInfo(a,h.dtype,h.values)}var DP={kernelName:Lp,backendName:"cpu",kernelFunc:P9};function L9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=y.parseAxisParam(i,o.shape)[0],u=v.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Fo({inputs:{x:o},backend:e,attrs:{begin:l,size:m}});return l[a]+=p,f})}var RP={kernelName:yi,backendName:"cpu",kernelFunc:L9};var FP={kernelName:zl,backendName:"cpu",kernelFunc:({inputs:r,backend:t})=>{let{x:e}=r,n=t;tt(e,"square");let o=n.data.get(e.dataId).values,s=new Float32Array(o.length);for(let a=0;a<o.length;++a){let u=o[a];s[a]=u*u}return{dataId:n.write(s,e.shape,e.dtype),shape:e.shape,dtype:e.dtype}}};var M9=Et(po,(r,t)=>{let e=t;return isNaN(r)?NaN:r>0?1:e.alpha}),OP={kernelName:po,backendName:"cpu",kernelFunc:M9};function z9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;tt(o,"stridedSlice");let{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:C}=Le.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=Yt({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let _=Le.computeOutShape(b,w,C),A=Fo({inputs:{x:o},backend:e,attrs:{begin:b,size:_}});N=Yt({inputs:{x:A},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(A)}else{let _=e.bufferSync(o),A=lw(f,_,C,b);N=e.makeTensorInfo(d,A.dtype,A.values)}return N}var PP={kernelName:Wa,backendName:"cpu",kernelFunc:z9};function B9(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.data.get(c.dataId).values,f=e.data.get(p.dataId).values,[d,h]=Dc(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],"string",d),e.makeTensorInfo(p.shape,"int32",h)]}var LP={kernelName:Bl,backendName:"cpu",kernelFunc:B9};function V9(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values[0],[l,c,p]=Rc(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],"int32",l),e.makeTensorInfo([m],"string",c),e.makeTensorInfo([2],"int32",new Int32Array(p))]}var MP={kernelName:Vl,backendName:"cpu",kernelFunc:V9};function G9(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(o<=0)throw new Error("Number of buckets must be at least 1");let i=e.data.get(s.dataId).values,a=Fc(i,o);return e.makeTensorInfo(s.shape,"int32",a)}var zP={kernelName:Gl,backendName:"cpu",kernelFunc:G9};var W9=Et(Os,r=>Math.tan(r)),BP={kernelName:Os,backendName:"cpu",kernelFunc:W9};var U9=Et(Ps,r=>Math.tanh(r)),VP={kernelName:Ps,backendName:"cpu",kernelFunc:U9};function H9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;tt(o,"tile");let i=uw(e.bufferSync(o),s);return e.makeTensorInfo(i.shape,i.dtype,i.values)}var GP={kernelName:Jn,backendName:"cpu",kernelFunc:H9};function q9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n;tt(o,"topk");let a=e.data.get(o.dataId).values,[u,l]=cw(a,o.shape,o.dtype,s,i);return[e.makeTensorInfo(u.shape,u.dtype,u.values),e.makeTensorInfo(l.shape,l.dtype,l.values)]}var WP={kernelName:Ua,backendName:"cpu",kernelFunc:q9};function K9(r){let{inputs:t,attrs:e,backend:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=e,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=y.computeStrides(o.shape),b=x[0],w=x[1],C=x[2],N=y.computeStrides(g),_=N[0],A=N[1],$=N[2],F=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(g));F.fill(u);let P=n.data.get(o.dataId).values,V=n.data.get(s.dataId).values;for(let W=0;W<c;++W){let q=s.shape[0]===1?V:V.subarray(W*8,W*8+8);for(let H=0;H<d;++H)for(let j=0;j<h;++j)for(let Y=0;Y<f;++Y){let Z,et=q[6]*j+q[7]*H+1;if(et===0)continue;let rt=(q[0]*j+q[1]*H+q[2])/et,ot=(q[3]*j+q[4]*H+q[5])/et,at=UP(rt,m,a),nt=UP(ot,p,a);switch(i){case"nearest":Z=J9(P,p,m,b,w,C,W,nt,at,Y,u);break;case"bilinear":Z=Q9(P,p,m,b,w,C,W,nt,at,Y,u);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let st=W*_+H*A+j*$+Y;F[st]=Z}return n.makeTensorInfo(g,o.dtype,F)}return{dataId:n.write(F,g,o.dtype),shape:o.shape,dtype:o.dtype}}var HP={kernelName:Ha,backendName:"cpu",kernelFunc:K9};function UP(r,t,e){switch(e){case"reflect":return j9(r,t);case"wrap":return X9(r,t);case"nearest":return Z9(r,t);case"constant":default:return Y9(r,t)}}function j9(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=2*t;e<n&&(e=n*Math.trunc(-e/n)+e),e=e<-t?e+n:-e-1}else if(e>t-1)if(t<=1)e=0;else{let n=2*t;e-=n*Math.trunc(e/n),e>=t&&(e=n-e-1)}return y.clamp(0,e,t-1)}function X9(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=t-1;e+=t*(Math.trunc(-e/n)+1)}else if(e>t-1)if(t<=1)e=0;else{let n=t-1;e-=t*Math.trunc(e/n)}return y.clamp(0,e,t-1)}function Y9(r,t){return r}function Z9(r,t){return y.clamp(0,r,t-1)}function Kh(r,t,e,n,o,s,i,a,u,l,c){let p=i*n+a*o+u*s+l;return 0<=a&&a<t&&0<=u&&u<e?r[p]:c}function J9(r,t,e,n,o,s,i,a,u,l,c){let p=Math.round(a),m=Math.round(u);return Kh(r,t,e,n,o,s,i,p,m,l,c)}function Q9(r,t,e,n,o,s,i,a,u,l,c){let p=Math.floor(a),m=Math.floor(u),f=p+1,d=m+1,h=(d-u)*Kh(r,t,e,n,o,s,i,p,m,l,c)+(u-m)*Kh(r,t,e,n,o,s,i,p,d,l,c),g=(d-u)*Kh(r,t,e,n,o,s,i,f,m,l,c)+(u-m)*Kh(r,t,e,n,o,s,i,f,d,l,c);return(f-a)*h+(a-p)*g}function ttt(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;tt(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:a,outputShape:u,indices:l}=pw(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],"int32",l)]}var qP={kernelName:Mp,backendName:"cpu",kernelFunc:ttt};function ett(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape.length,a=o.shape[s],u=new Array(i-1),l=0;for(let f=0;f<i;f++)f!==s&&(u[l++]=o.shape[f]);let c=new Array(i).fill(0),p=o.shape.slice();p[s]=1;let m=new Array(a);for(let f=0;f<m.length;f++){c[s]=f;let d=Fo({inputs:{x:o},backend:e,attrs:{begin:c,size:p}});m[f]=Yt({inputs:{x:d},backend:e,attrs:{shape:u}}),e.disposeIntermediateTensorInfo(d)}return m}var KP={kernelName:bi,backendName:"cpu",kernelFunc:ett};function rtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n;tt(o,"unsortedSegmentSum");let a=o.shape.length,u=s.shape.length,l=[],c=[],p=a-u,m=s;for(let d=0;d<p;++d){let h=cd({inputs:{input:m},backend:e,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<i;++d){let h=y.createScalarValue(d,"int32"),g=e.makeTensorInfo([],"int32",h),x=GN({inputs:{a:g,b:m},backend:e}),b=$o({inputs:{x},backend:e,attrs:{dtype:"float32"}}),w=_c({inputs:{a:b,b:o},backend:e}),C=hl({inputs:{x:w},backend:e,attrs:{axis:0,keepDims:!1}});l.push(C),c.push(g),c.push(x),c.push(b),c.push(w),c.push(C)}let f=bT({inputs:l,backend:e,attrs:{axis:0}});return c.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var jP={kernelName:Wl,backendName:"cpu",kernelFunc:rtt};var ntt=[wF,$R,CF,IF,PR,SF,vF,NF,TF,kF,EF,_F,AF,$F,DF,FF,OF,PF,LF,bF,MF,zF,BF,VF,OR,LR,GF,DR,WF,HF,qF,KF,jF,XF,YF,ZF,JF,QF,tO,eO,rO,nO,oO,sO,iO,aO,lO,uO,cO,pO,fO,fF,dO,MR,hO,zR,gO,BR,xO,yO,bO,VR,wO,CO,IO,SO,vO,GR,WR,RR,NO,UF,TO,kO,EO,dF,UR,HR,_O,qR,AO,$O,DO,RO,FO,OO,PO,KR,LO,MO,zO,BO,GO,WO,UO,jR,HO,qO,XO,XR,YR,YO,ZO,JO,ZR,QO,rP,nP,gw,oP,hF,QR,sP,iP,aP,lP,FR,Uh,uP,gF,xF,yF,cP,pP,mP,fP,dP,hP,gP,oF,xP,bP,wP,CP,iF,IP,SP,vP,aF,KO,TP,kP,EP,_P,AP,$P,DP,RP,uF,FP,cF,OP,PP,LP,MP,zP,pF,mO,BP,VP,GP,WP,HP,JR,qP,KP,jP,tP];for(let r of ntt)Lu(r);var dd={};Wt(dd,{assertNotComplex:()=>Qs,bindCanvasToFramebuffer:()=>mtt,bindColorTextureToFramebuffer:()=>Zh,bindTextureToProgramUniformSampler:()=>OT,bindTextureUnit:()=>JP,bindVertexBufferToProgramAttribute:()=>Iw,callAndCheck:()=>yt,canBeRepresented:()=>ST,createFragmentShader:()=>NT,createFramebuffer:()=>DT,createProgram:()=>TT,createStaticIndexBuffer:()=>_T,createStaticVertexBuffer:()=>ET,createTexture:()=>AT,createVertexShader:()=>vT,getBatchDim:()=>xl,getExtensionOrThrow:()=>pd,getFramebufferErrorMessage:()=>QP,getMaxTexturesInShader:()=>MT,getNumChannels:()=>ctt,getProgramUniformLocation:()=>FT,getProgramUniformLocationOrThrow:()=>RT,getRowsCols:()=>yl,getShapeAs3D:()=>fd,getTextureShapeFromLogicalShape:()=>PT,getWebGLDisjointQueryTimerVersion:()=>zT,getWebGLErrorMessage:()=>ZP,getWebGLMaxTextureSize:()=>LT,hasExtension:()=>Wn,isCapableOfRenderingToFloatTexture:()=>BT,isDownloadFloatTextureEnabled:()=>VT,isReshapeFree:()=>Eu,isWebGLFenceEnabled:()=>GT,isWebGLVersionEnabled:()=>vw,linkProgram:()=>kT,logShaderSourceAndInfoLog:()=>Cw,resetMaxTextureSize:()=>ftt,resetMaxTexturesInShader:()=>dtt,unbindColorTextureFromFramebuffer:()=>Sw,unbindTextureUnit:()=>ptt,validateFramebuffer:()=>md,validateProgram:()=>Yh,validateTextureSize:()=>$T});var Pc={},xw={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function wT(r,t){Pc[r]=t}function Gn(r,t){if(!(r in Pc)||t!=null){let n=stt(r,t);if(n!==null)Pc[r]=n;else return console.log("Could not get context for WebGL version",r),null}let e=Pc[r];return e==null||e.isContextLost()?(delete Pc[r],Gn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),Pc[r])}function ott(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function stt(r,t){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=t==null?ott(r):t;return e.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Pc[r]},!1),z().getBool("SOFTWARE_WEBGL_ENABLED")&&(xw.failIfMajorPerformanceCaveat=!1),r===1?e.getContext("webgl",xw)||e.getContext("experimental-webgl",xw):e.getContext("webgl2",xw)}var ku;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(ku||(ku={}));var jr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(jr||(jr={}));var Pr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Pr||(Pr={}));function Lc(r,t){return[t,r]}function XP(r,t){return r*t}function jh(r){let t=y.sizeFromShape(r),e=Math.ceil(t/4);return y.sizeToSquarishShape(e)}function Xi(r,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(r/2))]}function YP(r,t){let[e,n]=Xi(r,t);return e*n*4}function Xh(r,t){let e=r,n,o,s,i,a,u,l,c,p,m;return z().getNumber("WEBGL_VERSION")===2?(n=e.R32F,o=e.R16F,s=e.RGBA16F,i=e.RGBA32F,a=e.RED,l=4,c=1,p=e.HALF_FLOAT,m=e.FLOAT,u=e.RGBA8):(n=r.RGBA,o=r.RGBA,s=r.RGBA,i=e.RGBA,a=r.RGBA,l=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,m=r.FLOAT,u=r.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:a,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function yt(r,t){let e=t();return z().getBool("DEBUG")&&itt(r),e}function itt(r){let t=r.getError();if(t!==r.NO_ERROR)throw new Error("WebGL Error: "+ZP(r,t))}var att=596e-10,ltt=65504;function ST(r){return!!(z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||att<Math.abs(r)&&Math.abs(r)<ltt)}function ZP(r,t){switch(t){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function pd(r,t){return gl(r,()=>r.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function vT(r,t){let e=gl(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(yt(r,()=>r.shaderSource(e,t)),yt(r,()=>r.compileShader(e)),r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(e)),new Error("Failed to compile vertex shader.");return e}function NT(r,t){let e=gl(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(yt(r,()=>r.shaderSource(e,t)),yt(r,()=>r.compileShader(e)),z().get("ENGINE_COMPILE_ONLY"))return e;if(r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw Cw(t,r.getShaderInfoLog(e)),new Error("Failed to compile fragment shader.");return e}var utt=/ERROR: [0-9]+:([0-9]+):/g;function Cw(r,t){let e=utt.exec(t);if(e==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(r);return}let n=+e[1],o=r.split(`
|
|
`),s=o.length.toString().length+2,i=o.map((p,m)=>y.rightPad((m+1).toString(),s)+p),a=0;for(let p=0;p<i.length;p++)a=Math.max(i[p].length,a);let u=i.slice(0,n-1),l=i.slice(n-1,n),c=i.slice(n);console.log(u.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${y.rightPad(l[0],a)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function TT(r){return gl(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function kT(r,t){if(yt(r,()=>r.linkProgram(t)),!z().get("ENGINE_COMPILE_ONLY")&&r.getProgramParameter(t,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Yh(r,t){if(yt(r,()=>r.validateProgram(t)),r.getProgramParameter(t,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function ET(r,t){let e=gl(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return yt(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),yt(r,()=>r.bufferData(r.ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function _T(r,t){let e=gl(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return yt(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,e)),yt(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function ctt(){return z().getNumber("WEBGL_VERSION")===2?1:4}function AT(r){return gl(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function $T(r,t){let e=z().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||t<=0){let n=`[${r}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(r>e||t>e){let n=`[${r}x${t}]`,o=`[${e}x${e}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+o+".")}}function DT(r){return gl(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Iw(r,t,e,n,o,s,i){let a=r.getAttribLocation(t,e);return a===-1?!1:(yt(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),yt(r,()=>r.vertexAttribPointer(a,o,r.FLOAT,!1,s,i)),yt(r,()=>r.enableVertexAttribArray(a)),!0)}function JP(r,t,e){tL(r,e),yt(r,()=>r.activeTexture(r.TEXTURE0+e)),yt(r,()=>r.bindTexture(r.TEXTURE_2D,t))}function ptt(r,t){tL(r,t),yt(r,()=>r.activeTexture(r.TEXTURE0+t)),yt(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function RT(r,t,e){return gl(r,()=>r.getUniformLocation(t,e),'uniform "'+e+'" not present in program.')}function FT(r,t,e){return r.getUniformLocation(t,e)}function OT(r,t,e,n){yt(r,()=>JP(r,t,n)),yt(r,()=>r.uniform1i(e,n))}function mtt(r){yt(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),yt(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),yt(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function Zh(r,t,e){yt(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),yt(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0))}function Sw(r,t){yt(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),yt(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function md(r){let t=r.checkFramebufferStatus(r.FRAMEBUFFER);if(t!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+QP(r,t))}function QP(r,t){switch(t){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function gl(r,t,e){let n=yt(r,()=>t());if(n==null)throw new Error(e);return n}function tL(r,t){let e=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+r.TEXTURE0;if(n<r.TEXTURE0||n>e){let o=`[gl.TEXTURE0, gl.TEXTURE${e}]`;throw new Error(`textureUnit must be in ${o}.`)}}function xl(r,t=2){return y.sizeFromShape(r.slice(0,r.length-t))}function yl(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function fd(r){let t=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(t=[xl(r),...yl(r)]),t}function PT(r,t=!1){let e=z().getNumber("WEBGL_MAX_TEXTURE_SIZE"),n=z().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");n===1/0&&z().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(n=e/2),t&&(e=e*2,n=n*2,r=r.map((a,u)=>u>=r.length-2?y.nearestLargerEven(r[u]):r[u]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let o=y.sizeFromShape(r),s=null;r.length<=1&&o<=e?s=[1,o]:r.length===2&&r[0]<=e&&r[1]<=e?s=r:r.length===3&&r[0]*r[1]<=e&&r[2]<=e?s=[r[0]*r[1],r[2]]:r.length===3&&r[0]<=e&&r[1]*r[2]<=e?s=[r[0],r[1]*r[2]]:r.length===4&&r[0]*r[1]*r[2]<=e&&r[3]<=e?s=[r[0]*r[1]*r[2],r[3]]:r.length===4&&r[0]<=e&&r[1]*r[2]*r[3]<=e&&(s=[r[0],r[1]*r[2]*r[3]]);let i=s!=null&&Math.max(...s)>n&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let a=xl(r),u=2,l=2;r.length&&([u,l]=yl(r)),o=a*(u/2)*(l/2),s=y.sizeToSquarishShape(o).map(c=>c*2)}else s=y.sizeToSquarishShape(o);return s}function yw(r){return r%2===0}function Eu(r,t){if(r=r.slice(-2),t=t.slice(-2),y.arraysEqual(r,t)||!r.length||!t.length||r[0]===0||r[1]===0||t[0]===0||t[1]===0)return!0;if(r.length!==t.length){let e=r.slice(-1)[0],n=t.slice(-1)[0];if(e===n||yw(e)&&yw(n)&&(r[0]===1||t[0]===1))return!0}return r[1]===t[1]&&yw(r[0])&&yw(t[0])}var bw,ww;function LT(r){if(bw==null){let t=Gn(r);bw=t.getParameter(t.MAX_TEXTURE_SIZE)}return bw}function ftt(){bw=null}function dtt(){ww=null}function MT(r){if(ww==null){let t=Gn(r);ww=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,ww)}function zT(r){if(r===0)return 0;let t,e=Gn(r);return Wn(e,"EXT_disjoint_timer_query_webgl2")&&r===2?t=2:Wn(e,"EXT_disjoint_timer_query")?t=1:t=0,t}function Wn(r,t){return r.getExtension(t)!=null}function vw(r){try{if(Gn(r)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function BT(r){if(r===0)return!1;let t=Gn(r);if(r===1){if(!Wn(t,"OES_texture_float"))return!1}else if(!Wn(t,"EXT_color_buffer_float"))return!1;return IT(t)}function VT(r){if(r===0)return!1;let t=Gn(r);if(r===1){if(!Wn(t,"OES_texture_float")||!Wn(t,"WEBGL_color_buffer_float"))return!1}else{if(Wn(t,"EXT_color_buffer_float"))return IT(t);let n="EXT_color_buffer_half_float";if(Wn(t,n)){let o=t.getExtension(n);return htt(t,o)}return!1}return IT(t)}function IT(r){let t=Xh(r),e=r.createTexture();r.bindTexture(r.TEXTURE_2D,e);let n=1,o=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatFloat,n,o,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(e),r.deleteFramebuffer(s),i}function htt(r,t){let e=Xh(r,t),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n);let o=1,s=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatHalfFloat,o,s,0,e.textureFormatFloat,e.textureTypeHalfFloat,null);let i=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,i),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(i),a}function GT(r){return r!==2?!1:Gn(r).fenceSync!=null}function Qs(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&y.assert(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Tt=z();Tt.registerFlag("HAS_WEBGL",()=>Tt.getNumber("WEBGL_VERSION")>0);Tt.registerFlag("WEBGL_VERSION",()=>vw(2)?2:vw(1)?1:0);Tt.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Tt.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Tt.get("WEBGL_VERSION")===2);Tt.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Tt.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Tt.registerFlag("WEBGL_PACK",()=>Tt.getBool("HAS_WEBGL"));Tt.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Tt.getBool("WEBGL_PACK"));Tt.registerFlag("WEBGL_PACK_CLIP",()=>Tt.getBool("WEBGL_PACK"));Tt.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Tt.getBool("WEBGL_PACK"));Tt.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Tt.getBool("WEBGL_PACK"));Tt.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Tt.getBool("WEBGL_PACK"));Tt.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Tt.getBool("WEBGL_PACK"));Tt.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Tt.getBool("WEBGL_PACK"));Tt.registerFlag("WEBGL_PACK_REDUCE",()=>Tt.getBool("WEBGL_PACK"));Tt.registerFlag("WEBGL_LAZILY_UNPACK",()=>Tt.getBool("WEBGL_PACK"));Tt.registerFlag("WEBGL_CONV_IM2COL",()=>Tt.getBool("WEBGL_PACK"));Tt.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>LT(Tt.getNumber("WEBGL_VERSION")));Tt.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>MT(Tt.getNumber("WEBGL_VERSION")));Tt.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Tt.getNumber("WEBGL_VERSION");return r===0?0:zT(r)});Tt.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Tt.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Kl.isMobile());Tt.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>BT(Tt.getNumber("WEBGL_VERSION")));Tt.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Tt.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Tt.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Tt.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>VT(Tt.getNumber("WEBGL_VERSION")));Tt.registerFlag("WEBGL_FENCE_API_ENABLED",()=>GT(Tt.getNumber("WEBGL_VERSION")));Tt.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Tt.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Tt.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Tt.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Kl.isMobile()?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});Tt.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Tt.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Tt.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Tt.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);Tt.registerFlag("WEBGL_EXP_CONV",()=>!1);Tt.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>Tt.getBool("IS_TEST"));Tt.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);Tt.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);Tt.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);function Ge(){let r,t,e,n,o,s,i,a,u,l;return z().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",t="in",e="out",n="in",o="texture",s="outputColor",i="out vec4 outputColor;",a=z().getBool("WEBGL2_ISNAN_CUSTOM")?`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`:"",u="",l=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(r="",t="attribute",e="varying",n="varying",o="texture2D",s="gl_FragColor",i="",a=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,u=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,l=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:r,attribute:t,varyingVs:e,varyingFs:n,texture2D:o,output:s,defineOutput:i,defineSpecialNaN:a,defineSpecialInf:u,defineRound:l}}function ti(r,t,e="index"){let n=y.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / ${o}`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${i}; ${a};`}).join("")}function Mc(r,t,e="index"){let n=y.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / outShapeStrides[${s}]`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * outShapeStrides[${s}]`:`index -= ${r[s]} * outShapeStrides[${s}]`;return`${i}; ${a};`}).join("")}function gtt(r,t){let e=r.length,n=r.map(s=>`${t}[${s}]`),o=new Array(e-1);o[e-2]=n[e-1];for(let s=e-3;s>=0;--s)o[s]=`(${o[s+1]} * ${n[s+1]})`;return o}function eL(r,t,e="index"){let n=r.map((s,i)=>i),o=gtt(n,t);return o.map((s,i)=>{let a=`int ${r[i]} = ${e} / ${o[i]}`,u=i===o.length-1?`int ${r[i+1]} = ${e} - ${r[i]} * ${o[i]}`:`index -= ${r[i]} * ${o[i]}`;return`${a}; ${u};`}).join("")}function hd(r){let t=y.computeStrides(r).map(e=>e.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function gd(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var Nw=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`;var{getBroadcastDims:rL}=v;function nL(r,t,e){let n=[];if(r.forEach(f=>{let d=y.sizeFromShape(f.shapeInfo.logicalShape);if(f.shapeInfo.isUniform?n.push(`uniform float ${f.name}${d>1?`[${d}]`:""};`):(n.push(`uniform sampler2D ${f.name};`),n.push(`uniform int offset${f.name};`)),e.enableShapeUniforms){let{uniformShape:h}=Tw(e.packedInputs,f.shapeInfo.logicalShape,f.shapeInfo.texShape);switch(h.length){case 1:n.push(`uniform int ${f.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${f.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${f.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${f.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${f.name}TexShape;`)}}),e.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}e.customUniforms&&e.customUniforms.forEach(f=>{n.push(`uniform ${f.type} ${f.name}${f.arrayIndex?`[${f.arrayIndex}]`:""};`)});let o=n.join(`
|
|
`),s=r.map(f=>xtt(f,t,e.packedInputs,e.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,a=Ge(),u=wtt(a),l,c,p=Stt(a);return t.isPacked?(l=ytt(t.logicalShape,i,e.enableShapeUniforms),c=Itt(a)):(l=btt(t.logicalShape,i,e.enableShapeUniforms),c=Ctt(a)),e.packedInputs&&(p+=ktt),[p,u,c,o,l,s,e.userCode].join(`
|
|
`)}function yd(r,t=!1){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return ztt(r,t);case 1:return Vtt(r,t);case 2:return Wtt(r,t);case 3:return Htt(r,t);case 4:return Ktt(r,t);case 5:return jtt(r);case 6:return Xtt(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function oL(r,t){switch(r.shapeInfo.logicalShape.length){case 0:return Mtt(r);case 1:return Btt(r,t);case 2:return Gtt(r,t);case 3:return Utt(r,t);default:return qtt(r,t)}}function xtt(r,t,e=!1,n){let o="";e?o+=oL(r,n):o+=yd(r,n);let s=r.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(e?o+=Ytt(r,t):o+=Ztt(r,t)),o}function ytt(r,t,e){switch(r.length){case 0:return sL();case 1:return Ett(r,t,e);case 2:return Ptt(r,t,e);case 3:return Att(r,t,e);default:return Dtt(r,t,e)}}function btt(r,t,e){switch(r.length){case 0:return sL();case 1:return _tt(r,t,e);case 2:return Ltt(r,t,e);case 3:return $tt(r,t,e);case 4:return Rtt(r,t,e);case 5:return Ftt(r,t);case 6:return Ott(r,t);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function wtt(r){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${r.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function Ctt(r){return`
|
|
void setOutput(float val) {
|
|
${r.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function Itt(r){return`
|
|
void setOutput(vec4 val) {
|
|
${r.output} = val;
|
|
}
|
|
`}function Stt(r){return`${r.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${r.varyingFs} vec2 resultUV;
|
|
${r.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${r.defineSpecialNaN}
|
|
${r.defineSpecialInf}
|
|
${r.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${vtt}
|
|
${Ntt}
|
|
${Ttt}
|
|
`}var vtt=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Ntt=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Ttt=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,ktt=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function sL(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function Ett(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?e?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?e?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:e?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function _tt(r,t,e){return t[0]===1?e?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?e?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:e?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function Att(r,t,e){if(e)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[2]/2),s=o*Math.ceil(r[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${o});
|
|
int c = imod(index, ${o}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function $tt(r,t,e){if(e)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Mc(["r","c","d"],r)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let n=ti(["r","c","d"],r);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function Dtt(r,t,e){if(e)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[r.length-1]/2),s=o*Math.ceil(r[r.length-2]/2),i=s,a="",u="b, r, c";for(let l=2;l<r.length-1;l++)i*=r[r.length-l-1],a=`
|
|
int b${l} = index / ${i};
|
|
index -= b${l} * ${i};
|
|
`+a,u=`b${l}, `+u;return`
|
|
ivec${r.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${a}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${o});
|
|
int c = imod(index, ${o}) * 2;
|
|
|
|
return ivec${r.length}(${u});
|
|
}
|
|
`}function Rtt(r,t,e){if(e)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Mc(["r","c","d","d2"],r)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let n=ti(["r","c","d","d2"],r);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function Ftt(r,t){let e=ti(["r","c","d","d2","d3"],r);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${e}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function Ott(r,t){let e=ti(["r","c","d","d2","d3","d4"],r);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${e}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function Ptt(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(y.arraysEqual(r,t))return e?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let o=Math.ceil(r[1]/2);return e?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${o});
|
|
int c = imod(index, ${o}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ltt(r,t,e){return y.arraysEqual(r,t)?e?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:r[1]===1?e?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:r[0]===1?e?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:e?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${r[1]};
|
|
int c = index - r * ${r[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function zc(r){return`offset${r}`}function Mtt(r){let t=r.name,e="get"+t.charAt(0).toUpperCase()+t.slice(1),n=Ge();return`
|
|
vec4 ${e}() {
|
|
return ${n.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function ztt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${n}() {return ${e};}`;let[o,s]=r.shapeInfo.texShape;if(o===1&&s===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${e}, halfCR);
|
|
}
|
|
`;let i=zc(e);if(t)return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${e}TexShape[0], ${e}TexShape[1], ${i});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`;let[a,u]=r.shapeInfo.texShape;return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${a}, ${u}, ${i});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function Btt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=r.shapeInfo.texShape,s=Ge();if(t)return`
|
|
vec4 ${n}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${e}TexShape[0]) / 2.0), ceil(float(${e}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${e}, uv);
|
|
}
|
|
`;let i=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)];return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${e}, uv);
|
|
}
|
|
`}function Vtt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${bd(r)}
|
|
}
|
|
`;let o=r.shapeInfo.texShape,s=o[0],i=o[1];if(i===1&&s===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${e}, halfCR);
|
|
}
|
|
`;let a=zc(e);return i===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / float(${e}TexShape[0]));
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${a}) + 0.5) / float(${e}TexShape[1]), 0.5);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${e}TexShape[0], ${e}TexShape[1], index + ${a});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${a});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function Gtt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,i=s[0],a=s[1],u=Ge();if(s!=null&&y.arraysEqual(e,s))return t?`
|
|
vec4 ${o}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${o}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${i}.0);
|
|
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${o}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],c=Math.ceil(e[1]/2);return`
|
|
vec4 ${o}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`}function Wtt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape;if(s!=null&&y.arraysEqual(e,s)){if(t)return`
|
|
float ${o}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=s[0],f=s[1];return`
|
|
float ${o}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:a}=y.squeezeShape(e),u=i;if(u.length<e.length){let m=wd(r,u),f=["row","col"];return`
|
|
${yd(m,t)}
|
|
float ${o}(int row, int col) {
|
|
return ${o}(${Cd(f,a)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
|
|
${bd(r)}
|
|
}
|
|
`;let l=s[0],c=s[1],p=zc(n);return c===1?t?`
|
|
float ${o}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${e[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?t?`
|
|
float ${o}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${e[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${o}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n}Shape[1] + col + ${p};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${e[1]} + col + ${p};
|
|
vec2 uv = uvFromFlat(${l}, ${c}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Utt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(e[0]===1){let m=e.slice(1),f=[1,2],d=wd(r,m),h=["b","row","col"];return`
|
|
${oL(d,t)}
|
|
vec4 ${o}(int b, int row, int col) {
|
|
return ${o}(${Cd(h,f)});
|
|
}
|
|
`}let a=Ge();if(t)return`
|
|
vec4 ${o}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let u=i[0],l=i[1],c=Math.ceil(e[2]/2),p=c*Math.ceil(e[1]/2);return`
|
|
vec4 ${o}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${u}, ${l}, ${p}, ${c}, b, row, col);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function Htt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e[1]*e[2],i=e[2],{newShape:a,keptDims:u}=y.squeezeShape(e),l=a;if(l.length<e.length){let h=wd(r,l),g=["row","col","depth"];return`
|
|
${yd(h,t)}
|
|
float ${o}(int row, int col, int depth) {
|
|
return ${o}(${Cd(g,u)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${bd(r)}
|
|
}
|
|
`;let c=r.shapeInfo.texShape,p=c[0],m=c[1],f=r.shapeInfo.flatOffset;if(m===s&&f==null)return t?`
|
|
float ${o}(int row, int col, int depth) {
|
|
int stride1 = ${n}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&f==null)return t?`
|
|
float ${o}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let d=zc(n);return t?`
|
|
float ${o}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${n}Shape[1] * ${n}Shape[2];
|
|
int stride1 = ${n}Shape[2];
|
|
int index = row * stride0 + col * stride1 + depth + ${d};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${d};
|
|
vec2 uv = uvFromFlat(${p}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function qtt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=Ge();if(t)return`
|
|
vec4 ${n}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${e}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${e}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${e}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${e}TexShape[0]) / 2.0), ceil(float(${e}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${o.texture2D}(${e}, uv);
|
|
}
|
|
`;let s=r.shapeInfo.logicalShape,i=s.length,a=r.shapeInfo.texShape,u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],l=u[0],c=u[1],p=Math.ceil(s[i-1]/2),m=p*Math.ceil(s[i-2]/2),f="int b, int row, int col",d=`b * ${m} + (row / 2) * ${p} + (col / 2)`;for(let h=2;h<i-1;h++)f=`int b${h}, `+f,m*=s[i-h-1],d=`b${h} * ${m} + `+d;return`
|
|
vec4 ${n}(${f}) {
|
|
int index = ${d};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${l});
|
|
return ${o.texture2D}(${e}, uv);
|
|
}
|
|
`}function Ktt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e[3],i=e[2]*s,a=e[1]*i,{newShape:u,keptDims:l}=y.squeezeShape(e);if(u.length<e.length){let b=wd(r,u),w=["row","col","depth","depth2"];return`
|
|
${yd(b,t)}
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
return ${o}(${Cd(w,l)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${a}, ${i}, ${s}, 1)));
|
|
${bd(r)}
|
|
}
|
|
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1],d=`int stride2 = ${n}Shape[3];`,h=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(f===a&&c==null)return t?`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
${d}
|
|
${h}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===s&&c==null)return t?`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${e[1]*e[2]}, ${e[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let x=zc(n);return t?`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${d}
|
|
${h}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${x});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${m}, ${f}, index + ${x});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function jtt(r){let t=r.shapeInfo.logicalShape,e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=t[4],s=t[3]*o,i=t[2]*s,a=t[1]*i,{newShape:u,keptDims:l}=y.squeezeShape(t);if(u.length<t.length){let h=wd(r,u),g=["row","col","depth","depth2","depth3"];return`
|
|
${yd(h)}
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${n}(${Cd(g,l)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${a}, ${i}, ${s}, ${o})) +
|
|
depth3;
|
|
${bd(r)}
|
|
}
|
|
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===a&&c==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`;if(f===o&&c==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`;let d=zc(e);return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${i} + depth * ${s} +
|
|
depth2 * ${o} + depth3 + ${d};
|
|
vec2 uv = uvFromFlat(${m}, ${f}, index);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function Xtt(r){let t=r.shapeInfo.logicalShape,e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),{newShape:o,keptDims:s}=y.squeezeShape(t);if(o.length<t.length){let g=wd(r,o),x=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${yd(g)}
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${n}(${Cd(x,s)});
|
|
}
|
|
`}let i=t[5],a=t[4]*i,u=t[3]*a,l=t[2]*u,c=t[1]*l;if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${l}, ${u}, ${a})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${bd(r)}
|
|
}
|
|
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${l}, ${u}, ${a}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${f}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`;if(d===i&&p==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${f}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`;let h=zc(e);return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${l} + depth * ${u} +
|
|
depth2 * ${a} + depth3 * ${i} + depth4 + ${h};
|
|
vec2 uv = uvFromFlat(${f}, ${d}, index);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function bd(r){let t=r.name,e=y.sizeFromShape(r.shapeInfo.logicalShape);return e<2?`return ${t};`:`
|
|
for (int i = 0; i < ${e}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function Ytt(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o="get"+n+"AtOutCoords",s=r.shapeInfo.logicalShape.length,i=t.logicalShape.length,a=rL(r.shapeInfo.logicalShape,t.logicalShape),u=zt(i),l=i-s,c,p=["x","y","z","w","u","v"];s===0?c="":i<2&&a.length>=1?c="coords = 0;":c=a.map(b=>`coords.${p[b+l]} = 0;`).join(`
|
|
`);let m="";i<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+l]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(t.logicalShape)===1;if(s===1&&!h&&!x)f=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(h&&!x)i===1?f=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:f=`
|
|
return vec4(outputValue.x);
|
|
`;else if(a.length){let b=s-2,w=s-1;a.indexOf(b)>-1&&a.indexOf(w)>-1?f="return vec4(outputValue.x);":a.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":a.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${o}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${n}(${m});
|
|
${f}
|
|
}
|
|
`}function Ztt(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o="get"+n+"AtOutCoords",s=t.texShape,i=r.shapeInfo.texShape,a=r.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!r.shapeInfo.isUniform&&a===u&&r.shapeInfo.flatOffset==null&&y.arraysEqual(i,s))return`
|
|
float ${o}() {
|
|
return sampleTexture(${e}, resultUV);
|
|
}
|
|
`;let l=zt(u),c=rL(r.shapeInfo.logicalShape,t.logicalShape),p=u-a,m,f=["x","y","z","w","u","v"];a===0?m="":u<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
|
|
`);let d="";return u<2&&a>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
|
|
float ${o}() {
|
|
${l} coords = getOutputCoords();
|
|
${m}
|
|
return get${n}(${d});
|
|
}
|
|
`}function zt(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function Tw(r,t,e){let{newShape:n,keptDims:o}=y.squeezeShape(t),s=t.length,i=r&&s===3&&t[0]===1,a=i?t.slice(1):n,u=!r&&s>1&&!y.arraysEqual(t,e)&&n.length<s||i;return{useSqueezeShape:u,uniformShape:u?a:t,keptDims:o}}function wd(r,t){let e=JSON.parse(JSON.stringify(r));return e.shapeInfo.logicalShape=t,e}function Cd(r,t){return t.map(e=>r[e]).join(", ")}function aL(r,t,e,n){let o=e.map((c,p)=>{let m={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(m.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:m}}),s=o.map(c=>c.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},a=nL(o,i,t),u=NT(r.gl,a),l=r.createProgram(u);return z().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i},WT(r,t,l))}function WT(r,t,e){let n={},o={},s={},i=[],a,u,l,c=null,p=null;p=r.getUniformLocation(e,"NAN",!1),z().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(e,"INFINITY",!1));let m=!1;for(let f=0;f<t.variableNames.length;f++){let d=t.variableNames[f];n[d]=r.getUniformLocation(e,d,m),n[`offset${d}`]=r.getUniformLocation(e,`offset${d}`,m),t.enableShapeUniforms&&(o[`${d}Shape`]=r.getUniformLocation(e,`${d}Shape`,m),s[`${d}TexShape`]=r.getUniformLocation(e,`${d}TexShape`,m))}return t.enableShapeUniforms&&(a=r.getUniformLocation(e,"outShape",m),l=r.getUniformLocation(e,"outShapeStrides",m),u=r.getUniformLocation(e,"outTexShape",m)),t.customUniforms&&t.customUniforms.forEach((f,d)=>{i[d]=r.getUniformLocation(e,f.name,m)}),{uniformLocations:n,customUniformLocations:i,infLoc:c,nanLoc:p,inShapesLocations:o,inTexShapesLocations:s,outShapeLocation:a,outShapeStridesLocation:l,outTexShapeLocation:u}}function iL(r,t){if(r.length!==t.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${t.length} inputs`);r.forEach((e,n)=>{let o=e.logicalShape,s=t[n],i=s.shape;if(!y.arraysEqual(o,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${i} must match`);if(e.isUniform&&s.isUniform)return;let a=e.texShape,u=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(a,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${a} and ${u} must match`)})}function lL(r,t,e,n,o){t.program.enableShapeUniforms||(iL(t.inShapeInfos,e),iL([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):r.setOutputMatrixTexture(s.texture,i[0],i[1]),r.setProgram(t.webGLProgram),z().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&r.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&r.gl.uniform1f(t.nanLoc,NaN),e.forEach((u,l)=>{let c=t.program.variableNames[l],p=t.uniformLocations[c],m=t.uniformLocations[`offset${c}`],f=t.inShapesLocations[`${c}Shape`],d=t.inTexShapesLocations[`${c}TexShape`];if(f){let{uniformShape:h}=Tw(t.program.packedInputs,u.shape,u.texData.texShape);switch(h.length){case 1:r.gl.uniform1iv(f,new Int32Array(h));break;case 2:r.gl.uniform2iv(f,new Int32Array(h));break;case 3:r.gl.uniform3iv(f,new Int32Array(h));break;case 4:r.gl.uniform4iv(f,new Int32Array(h));break;default:break}}if(d&&r.gl.uniform2i(d,u.texData.texShape[0],u.texData.texShape[1]),p!=null){if(u.isUniform){if(y.sizeFromShape(u.shape)<2)r.gl.uniform1f(p,u.uniformValues[0]);else{let h=u.uniformValues;h instanceof Float32Array||(h=new Float32Array(h)),r.gl.uniform1fv(p,h)}return}u.texData.slice!=null&&m!=null&&r.gl.uniform1i(m,u.texData.slice.flatOffset),r.setInputMatrixTexture(u.texData.texture.texture,p,l)}});let a=t.outShapeLocation;if(a)switch(n.shape.length){case 1:r.gl.uniform1iv(a,new Int32Array(n.shape));break;case 2:r.gl.uniform2iv(a,new Int32Array(n.shape));break;case 3:r.gl.uniform3iv(a,new Int32Array(n.shape));break;case 4:r.gl.uniform4iv(a,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let u=y.computeStrides(n.shape);switch(n.shape.length){case 2:r.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(u));break;case 3:r.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(u));break;case 4:r.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(u));break;default:break}}t.outTexShapeLocation&&r.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&o&&t.program.customUniforms.forEach((u,l)=>{let c=t.customUniformLocations[l],p=o[l];if(u.type==="float")r.gl.uniform1fv(c,p);else if(u.type==="vec2")r.gl.uniform2fv(c,p);else if(u.type==="vec3")r.gl.uniform3fv(c,p);else if(u.type==="vec4")r.gl.uniform4fv(c,p);else if(u.type==="int")r.gl.uniform1iv(c,p);else if(u.type==="ivec2")r.gl.uniform2iv(c,p);else if(u.type==="ivec3")r.gl.uniform3iv(c,p);else if(u.type==="ivec4")r.gl.uniform4iv(c,p);else throw Error(`uniform type ${u.type} is not supported yet.`)}),r.executeProgram()}function uL(r,t,e){let n="";t.concat(e).forEach(i=>{let a=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(r.enableShapeUniforms&&!i.isUniform){let u=i.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:p}=Tw(r.packedInputs,i.shape,u),m="",f="",d="";if(c.length===1&&r.packedInputs){let N=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];m=`${N[0]>1}_${N[1]>1}`}else if(c.length===2&&!r.packedInputs)f=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!r.packedInputs){let N=y.computeStrides(c);d=`${N[0]===u[1]}_${N[N.length-1]===u[1]}`}let h=i.shape.length,g=c.length===2&&y.arraysEqual(i.shape,u),x=y.sizeFromShape(i.shape)===1,b=v.getBroadcastDims(i.shape,e.shape),w=!r.packedInputs&&h===e.shape.length&&y.arraysEqual(u,e.texData.texShape),C=r.packedInputs||c.length>2?"":`${u[0]>1}_${u[1]>1}`;n+=`${h}_${w}_${l?p:""}_${c.length}_${x}_${b}_${g}_${m}_${f}_${d}_${C}_${a}`}else{let u=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${u}_${a}`}});let o=r.userCode,s=r.constructor.name;return s+="_"+n+"_"+o+`${z().getNumber("WEBGL_VERSION")}`,s}function we(r){return z().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&r<=4}var kw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ku.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let e=Ge();this.outputShape=t,this.enableShapeUniforms=we(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Mc(["r","c","d"],t):ti(["r","c","d"],t)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${e.output} = result;
|
|
}
|
|
`}};var Ew=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ku.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let e=Ge();this.outputShape=t,this.enableShapeUniforms=we(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Mc(["r","c","d"],t):ti(["r","c","d"],t)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${e.output} = result;
|
|
}
|
|
`}};var _w=class{constructor(t){this.variableNames=["A"],this.outTexUsage=jr.DOWNLOAD;let e=Ge();this.outputShape=t,this.userCode=`
|
|
${Nw}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${e.output} = encode_float(x);
|
|
}
|
|
`}};var Aw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=jr.DOWNLOAD;let e=Ge();this.outputShape=t,this.userCode=`
|
|
${Nw}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${e.output} = encode_float(x);
|
|
}
|
|
`}};var tet={R:0,G:1,B:2,A:3},Jh=class{constructor(t,e=!1,n="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let o=Ge();this.outputShape=t,this.enableShapeUniforms=we(this.outputShape.length);let s="result";e&&(s="floor(result * 255. + 0.5)");let i="";for(let a=0;a<n.length;a++){let u=n[a];i+=`
|
|
if(offset == ${a}) {
|
|
result = values[${tet[u]}];
|
|
}`}this.userCode=`
|
|
${this.enableShapeUniforms?gd():hd(t)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int flatIndex = getFlatIndex(coords);
|
|
float result = 0.;
|
|
int offset = imod(flatIndex, ${n.length});
|
|
|
|
flatIndex = idiv(flatIndex, ${n.length}, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
if (r < texShape[0]) {
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${o.texture2D}(A, uv);
|
|
${i}
|
|
}
|
|
${o.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}};var $w=class{constructor(t,e=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Ge();this.outputShape=t,this.enableShapeUniforms=we(this.outputShape.length);let o="",s="result";e&&(s="floor(result * 255. + 0.5)");for(let i=0;i<=1;i++)for(let a=0;a<=1;a++){let u=i*2+a;o+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${a} < ${this.enableShapeUniforms?"outShape[2]":`${t[2]}`}) {
|
|
localCoords[2] += ${a};
|
|
if (localCoords[1] + ${i} < ${this.enableShapeUniforms?"outShape[1]":`${t[1]}`}) {
|
|
localCoords[1] += ${i};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${u}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${u}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${u}] = values[2];
|
|
} else {
|
|
result[${u}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?gd():hd(t)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${o}
|
|
|
|
${n.output} = ${s};
|
|
}
|
|
`}};var ik={};Wt(ik,{bindVertexProgramAttributeStreams:()=>JT,createBufferFromOutputTexture:()=>ek,createFloat16MatrixTexture:()=>jT,createFloat16PackedMatrixTexture:()=>ZT,createFloat32MatrixTexture:()=>KT,createIndexBuffer:()=>qT,createPackedMatrixTexture:()=>YT,createUnsignedBytesMatrixTexture:()=>XT,createVertexBuffer:()=>HT,createVertexShader:()=>UT,downloadByteEncodedFloatMatrixFromOutputTexture:()=>nk,downloadFloat32MatrixFromBuffer:()=>rk,downloadMatrixFromPackedOutputTexture:()=>sk,downloadPackedMatrixFromBuffer:()=>ok,getInternalFormatForFloat16MatrixTexture:()=>Rw,getInternalFormatForFloat16PackedMatrixTexture:()=>Pw,getInternalFormatForFloat32MatrixTexture:()=>Dw,getInternalFormatForPackedMatrixTexture:()=>Ow,getInternalFormatForUnsignedBytesMatrixTexture:()=>Fw,uploadDenseMatrixToTexture:()=>QT,uploadPixelDataToTexture:()=>tk});function UT(r){let t=Ge(),e=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return vT(r,e)}function HT(r){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return ET(r,t)}function qT(r){let t=new Uint16Array([0,1,2,2,1,3]);return _T(r,t)}function Qh(r,t,e,n,o,s){$T(t,e);let i=AT(r),a=r.TEXTURE_2D;return yt(r,()=>r.bindTexture(a,i)),yt(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),yt(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),yt(r,()=>r.texParameteri(a,r.TEXTURE_MIN_FILTER,r.NEAREST)),yt(r,()=>r.texParameteri(a,r.TEXTURE_MAG_FILTER,r.NEAREST)),z().getNumber("WEBGL_VERSION")===1?yt(r,()=>r.texImage2D(a,0,n,t,e,0,o,s,null)):yt(r,()=>r.texStorage2D(a,1,n,t,e)),yt(r,()=>r.bindTexture(r.TEXTURE_2D,null)),{texture:i,texShape:[e,t]}}function Dw(r){return r.internalFormatFloat}function KT(r,t,e,n){let[o,s]=Lc(t,e);return Qh(r,o,s,Dw(n),n.textureFormatFloat,r.FLOAT)}function Rw(r){return r.internalFormatHalfFloat}function jT(r,t,e,n){let[o,s]=Lc(t,e);return Qh(r,o,s,Rw(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Fw(r){return r.downloadTextureFormat}function XT(r,t,e,n){let[o,s]=Lc(t,e);return Qh(r,o,s,Fw(n),r.RGBA,r.UNSIGNED_BYTE)}function Ow(r){return r.internalFormatPackedFloat}function YT(r,t,e,n){let[o,s]=Xi(t,e);return Qh(r,o,s,Ow(n),r.RGBA,r.FLOAT)}function Pw(r){return r.internalFormatPackedHalfFloat}function ZT(r,t,e,n){let[o,s]=Xi(t,e);return Qh(r,o,s,Pw(n),r.RGBA,n.textureTypeHalfFloat)}function JT(r,t,e){return yt(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),Iw(r,t,"clipSpacePos",e,3,20,0)&&Iw(r,t,"uv",e,2,20,12)}function QT(r,t,e,n,o,s){yt(r,()=>r.bindTexture(r.TEXTURE_2D,t));let i,a,u;o instanceof Uint8Array?(i=new Uint8Array(e*n*4),a=r.UNSIGNED_BYTE,u=r.RGBA):(i=new Float32Array(e*n*4),a=r.FLOAT,u=s.internalFormatPackedFloat),i.set(o),z().getNumber("WEBGL_VERSION")===2?yt(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e,n,r.RGBA,a,i)):yt(r,()=>r.texImage2D(r.TEXTURE_2D,0,u,e,n,0,r.RGBA,a,i)),yt(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function tk(r,t,e){yt(r,()=>r.bindTexture(r.TEXTURE_2D,t)),e.data instanceof Uint8Array?z().getNumber("WEBGL_VERSION")===2?yt(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e.width,e.height,r.RGBA,r.UNSIGNED_BYTE,e.data)):yt(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,e.width,e.height,0,r.RGBA,r.UNSIGNED_BYTE,e.data)):z().getNumber("WEBGL_VERSION")===2?yt(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,e)):yt(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,e)),yt(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function ek(r,t,e,n){let o=r.createBuffer();yt(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let a=4*4*t*e;return yt(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,a,r.STREAM_READ)),yt(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,0)),yt(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function rk(r,t,e){let n=r,o=new Float32Array(e);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function nk(r,t,e,n){let[o,s]=Lc(t,e),i=4,a=new Uint8Array(XP(t*e,i));return yt(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,a)),new Float32Array(a.buffer)}function ok(r,t,e,n,o,s,i,a){let u=r,l=new Float32Array(YP(s,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function sk(r,t,e){let n=new Float32Array(t*e*4);return yt(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,n)),n}var Bc=class{constructor(t){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let e=z().getNumber("WEBGL_VERSION");t!=null?(this.gl=t,wT(e,t)):this.gl=Gn(e);let n="WEBGL_color_buffer_float",o="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),z().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",i="OES_texture_half_float";if(this.textureFloatExtension=pd(this.gl,s),Wn(this.gl,i))this.textureHalfFloatExtension=pd(this.gl,i);else if(z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Wn(this.gl,o))this.colorBufferHalfFloatExtension=pd(this.gl,o);else if(z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Wn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Wn(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=HT(this.gl),this.indexBuffer=qT(this.gl),this.framebuffer=DT(this.gl),this.textureConfig=Xh(this.gl,this.textureHalfFloatExtension)}get debug(){return z().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let t=this.gl;yt(t,()=>t.finish()),yt(t,()=>t.bindFramebuffer(t.FRAMEBUFFER,null)),yt(t,()=>t.deleteFramebuffer(this.framebuffer)),yt(t,()=>t.bindBuffer(t.ARRAY_BUFFER,null)),yt(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null)),yt(t,()=>t.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(t,e){return this.throwIfDisposed(),KT(this.gl,t,e,this.textureConfig)}createFloat16MatrixTexture(t,e){return this.throwIfDisposed(),jT(this.gl,t,e,this.textureConfig)}createUnsignedBytesMatrixTexture(t,e){return this.throwIfDisposed(),XT(this.gl,t,e,this.textureConfig)}uploadPixelDataToTexture(t,e){this.throwIfDisposed(),tk(this.gl,t,e)}uploadDenseMatrixToTexture(t,e,n,o){this.throwIfDisposed(),QT(this.gl,t,e,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(t,e){return this.throwIfDisposed(),ZT(this.gl,t,e,this.textureConfig)}createPackedMatrixTexture(t,e){return this.throwIfDisposed(),YT(this.gl,t,e,this.textureConfig)}deleteMatrixTexture(t){this.throwIfDisposed(),this.outputTexture===t&&(Sw(this.gl,this.framebuffer),this.outputTexture=null),yt(this.gl,()=>this.gl.deleteTexture(t))}downloadByteEncodedFloatMatrixFromOutputTexture(t,e,n){return this.downloadMatrixDriver(t,()=>nk(this.gl,e,n,this.textureConfig))}downloadPackedMatrixFromBuffer(t,e,n,o,s,i){return ok(this.gl,t,e,n,o,s,i,this.textureConfig)}downloadFloat32MatrixFromBuffer(t,e){return rk(this.gl,t,e)}createBufferFromTexture(t,e,n){this.bindTextureToFrameBuffer(t);let o=ek(this.gl,e,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let t=this.createFence(this.gl);return this.pollFence(t)}createFence(t){let e,n;if(z().getBool("WEBGL_FENCE_API_ENABLED")){let o=t,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);t.flush(),n=()=>{let i=o.clientWaitSync(s,0,0);return i===o.ALREADY_SIGNALED||i===o.CONDITION_SATISFIED},e=s}else z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(e=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(e,z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:e,isFencePassed:n}}downloadMatrixFromPackedTexture(t,e,n){return this.downloadMatrixDriver(t,()=>sk(this.gl,e,n))}createProgram(t){this.throwIfDisposed();let e=this.gl;this.vertexShader==null&&(this.vertexShader=UT(e));let n=TT(e);return yt(e,()=>e.attachShader(n,this.vertexShader)),yt(e,()=>e.attachShader(n,t)),kT(e,n),this.debug&&Yh(e,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=JT(e,this.program,this.vertexBuffer)),n}deleteProgram(t){this.throwIfDisposed(),t===this.program&&(this.program=null),t!=null&&yt(this.gl,()=>this.gl.deleteProgram(t))}setProgram(t){this.throwIfDisposed(),this.program=t,this.program!=null&&this.debug&&Yh(this.gl,this.program),yt(this.gl,()=>this.gl.useProgram(t))}getUniformLocation(t,e,n=!0){return this.throwIfDisposed(),n?RT(this.gl,t,e):FT(this.gl,t,e)}getAttributeLocation(t,e){return this.throwIfDisposed(),yt(this.gl,()=>this.gl.getAttribLocation(t,e))}getUniformLocationNoThrow(t,e){return this.throwIfDisposed(),this.gl.getUniformLocation(t,e)}setInputMatrixTexture(t,e,n){this.throwIfDisposed(),this.throwIfNoProgram(),OT(this.gl,t,e,n)}setOutputMatrixTexture(t,e,n){this.setOutputMatrixTextureDriver(t,n,e)}setOutputPackedMatrixTexture(t,e,n){this.throwIfDisposed();let[o,s]=Xi(e,n);this.setOutputMatrixTextureDriver(t,o,s)}setOutputMatrixWriteRegion(t,e,n,o){this.setOutputMatrixWriteRegionDriver(n,t,o,e)}setOutputPackedMatrixWriteRegion(t,e,n,o){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Yh(this.gl,this.program),md(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let t=this.gl;this.debug&&this.debugValidate(),yt(t,()=>t.drawElements(t.TRIANGLES,6,t.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),yt(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=pd(this.gl,z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let t=this.getQueryTimerExtensionWebGL1(),e=t.createQueryEXT();return t.beginQueryEXT(t.TIME_ELAPSED_EXT,e),e}endQuery(){if(z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let e=this.gl,n=this.getQueryTimerExtensionWebGL2();e.endQuery(n.TIME_ELAPSED_EXT);return}let t=this.getQueryTimerExtensionWebGL1();t.endQueryEXT(t.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(t){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(t,z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(t,z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(t,e){if(e===0)return null;if(e===2){let n=this.gl;return n.getQueryParameter(t,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(t,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(t,e){if(e===0)return!0;if(e===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(t,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(t,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(t){return new Promise(e=>{this.addItemToPoll(()=>t.isFencePassed(),()=>e())})}pollItems(){let t=eet(this.itemsToPoll.map(e=>e.isDoneFn));for(let e=0;e<=t;++e){let{resolveFn:n}=this.itemsToPoll[e];n()}this.itemsToPoll=this.itemsToPoll.slice(t+1)}addItemToPoll(t,e){if(this.itemsToPoll.push({isDoneFn:t,resolveFn:e}),this.itemsToPoll.length>1)return;let n;"setTimeoutCustom"in z().platform&&(n=z().platform.setTimeoutCustom.bind(z().platform)),y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(t){this.throwIfDisposed(),Zh(this.gl,t,this.framebuffer),this.debug&&md(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Zh(this.gl,this.outputTexture,this.framebuffer),this.debug&&md(this.gl)):Sw(this.gl,this.framebuffer)}downloadMatrixDriver(t,e){this.bindTextureToFrameBuffer(t);let n=e();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(t,e,n){this.throwIfDisposed();let o=this.gl;Zh(o,t,this.framebuffer),this.debug&&md(o),this.outputTexture=t,yt(o,()=>o.viewport(0,0,e,n)),yt(o,()=>o.scissor(0,0,e,n))}setOutputMatrixWriteRegionDriver(t,e,n,o){this.throwIfDisposed(),yt(this.gl,()=>this.gl.scissor(t,e,n,o))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function eet(r){let t=0;for(;t<r.length&&r[t]();++t);return t-1}var{addImpl:cL,bincountImpl:Lw,bincountReduceImpl:pL,castImpl:mL,ceilImpl:fL,concatImpl:dL,equalImpl:hL,expImpl:gL,expm1Impl:xL,floorImpl:yL,gatherNdImpl:bL,gatherV2Impl:wL,greaterImpl:CL,greaterEqualImpl:IL,lessImpl:SL,lessEqualImpl:vL,linSpaceImpl:NL,logImpl:TL,maxImpl:kL,maximumImpl:EL,minimumImpl:_L,multiplyImpl:AL,negImpl:$L,notEqualImpl:DL,prodImpl:RL,raggedGatherImpl:FL,raggedRangeImpl:OL,raggedTensorToTensorImpl:PL,rangeImpl:LL,rsqrtImpl:ML,scatterImpl:zL,sigmoidImpl:BL,simpleAbsImpl:Mw,sliceImpl:VL,sparseFillEmptyRowsImpl:GL,sparseReshapeImpl:WL,sparseSegmentReductionImpl:zw,sqrtImpl:UL,stridedSliceImpl:HL,stringNGramsImpl:qL,stringSplitImpl:KL,stringToHashBucketFastImpl:jL,subImpl:XL,tileImpl:YL,topKImpl:ZL,transposeImpl:Vc,uniqueImpl:JL}=mw;function ak(r,t){return["x","y","z","w","u","v"].slice(0,t).map(e=>`${r}.${e}`)}function Qe(r,t){return t===1?[r]:ak(r,t)}function QL(r,t){if(r===1)return"rc";let e="";for(let n=0;n<r;n++)e+=t[n],n<r-1&&(e+=",");return e}var Bw=class{constructor(t){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.enableShapeUniforms=we(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let e=Qe("rc",this.rank),n=zt(this.rank),o=this.getOutOfBoundsCondition(e),s=this.getSetup(e),i=this.getOutput(e);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${o}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(t){let e=[];for(let n=0;n<=1;n++)for(let o=0;o<=1;o++){let s=`${n===0?"r":"rp1"}, ${o===0?"c":"cp1"}`;for(let i=2;i<this.rank;i++)s=`${t[t.length-1-i]},`+s;e.push(s)}return e}getOutOfBoundsCondition(t){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let e="";for(let n=this.rank-2;n<this.rank;n++)e+=`${t[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(e+="||");return e}getSetup(t){if(this.rank===1)return"";let e=t.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],o=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${e[0]};
|
|
int c = ${e[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${o};
|
|
`}getOutput(t){let e=this.getSourceCoordsArr(t);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${e[0]}),
|
|
cEdge ? 0. : getA(${e[1]}),
|
|
rEdge ? 0. : getA(${e[2]}),
|
|
rEdge || cEdge ? 0. : getA(${e[3]})`}};var Id=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=t,this.enableShapeUniforms=we(this.outputShape.length);let n="";for(let o=0;o<4;o++){let s="thisRC = rc;";o%2===1&&(s+="thisRC.z += 1;"),o>1&&(s+="thisRC.y += 1;"),n+=`
|
|
${s}
|
|
${o>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${o}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${o>0?"}":""}
|
|
`}this.userCode=`
|
|
${ret(e,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?gd():hd(t)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":t[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":t[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function ret(r,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?eL(["r","c","d"],"inputShape"):ti(["r","c","d"],r)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var Vw=class{constructor(t){this.gpgpu=t,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(t,e,n){let o=eM(e,n),s=rM(t,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let i=tM(t,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=i,this.log();let u=this.freeTextures[s].shift();return this.usedTextures[s].push(u),u}let a;return o===Pr.PACKED_2X2_FLOAT32?a=this.gpgpu.createPackedMatrixTexture(t[0],t[1]):o===Pr.PACKED_2X2_FLOAT16?a=this.gpgpu.createFloat16PackedMatrixTexture(t[0],t[1]):o===Pr.UNPACKED_FLOAT32?a=this.gpgpu.createFloat32MatrixTexture(t[0],t[1]):o===Pr.UNPACKED_FLOAT16?a=this.gpgpu.createFloat16MatrixTexture(t[0],t[1]):o===Pr.PACKED_4X1_UNSIGNED_BYTE&&(a=this.gpgpu.createUnsignedBytesMatrixTexture(t[0],t[1])),this.usedTextures[s].push(a),this.numUsedTextures++,this._numBytesAllocated+=i,this.log(),a}releaseTexture(t,e,n,o){if(this.freeTextures==null)return;let s=eM(n,o),i=rM(e,s,o);i in this.freeTextures||(this.freeTextures[i]=[]);let a=tM(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),u=z().get("WEBGL_DELETE_TEXTURE_THRESHOLD");u!==-1&&this._numBytesAllocated>u?(this.gpgpu.deleteMatrixTexture(t.texture),this._numBytesAllocated-=a):(this.freeTextures[i].push(t),this.numFreeTextures++,this._numBytesFree+=a),this.numUsedTextures--;let l=this.usedTextures[i],c=l.indexOf(t);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let t=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${t})`);let e=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*e)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let t in this.freeTextures)this.freeTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});for(let t in this.usedTextures)this.usedTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function net(r,t){let e=r;if(t===e.R32F)return 4;if(t===e.R16F)return 2;if(t===e.RGBA32F)return 16;if(t===r.RGBA)return 16;if(t===e.RGBA16F)return 8;if(t===e.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function tM(r,t,e,n,o){let s=oet(t,n),i;if(o){let[u,l]=Xi(r[0],r[1]);i=u*l}else{let[u,l]=Lc(r[0],r[1]);i=u*l}let a=net(e,s);return i*a}function oet(r,t){switch(r){case Pr.PACKED_2X2_FLOAT32:return Ow(t);case Pr.PACKED_2X2_FLOAT16:return Pw(t);case Pr.UNPACKED_FLOAT32:return Dw(t);case Pr.UNPACKED_FLOAT16:return Rw(t);case Pr.PACKED_4X1_UNSIGNED_BYTE:return Fw(t);default:throw new Error(`Unknown physical texture type ${r}`)}}function set(r){return z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?Pr.PACKED_2X2_FLOAT32:Pr.UNPACKED_FLOAT32:r?Pr.PACKED_2X2_FLOAT16:Pr.UNPACKED_FLOAT16}function eM(r,t){if(r===jr.UPLOAD)return Pr.PACKED_2X2_FLOAT32;if(r===jr.RENDER||r==null)return set(t);if(r===jr.DOWNLOAD||r===jr.PIXELS)return Pr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function rM(r,t,e){return`${r[0]}_${r[1]}_${t}_${e}`}var tn=class{constructor(t,e){this.variableNames=["A"],this.outputShape=t,this.enableShapeUniforms=we(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},fr="if (isnan(x)) return x;",nM="return x;",lk="return abs(x);";var oM="return (x >= 0.0) ? x : (exp(x) - 1.0);",sM=fr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,iM=fr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Gc="return x;",aM="return 1.0 / (1.0 + exp(-1.0 * x));";var uM="return x;",cM=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,pM=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,mM=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,fM="return 1.0 / (1.0 + exp(-1.0 * x));",so=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.enableShapeUniforms=we(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}};var Gw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=t,this.enableShapeUniforms=we(this.outputShape.length);let e=t.length,n=Qe("rc",e),o=zt(e),s=QL(e,n),i=n.slice(-2),a=e<=1?"rc":`vec2(${i.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${s});
|
|
|
|
setOutput(getChannel(packedInput, ${a}));
|
|
}
|
|
`}};var aet=Ur.whereImpl,uet=1e-7,cet=1e-4,Ww={};function pet(r){return r in Ww||(Ww[r]={}),Ww[r]}var met=z().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),fet=600;function det(){return z().global.screen==null?1024:z().global.screen.height*z().global.screen.width*window.devicePixelRatio*fet/1024/1024}var _u=class extends zo{constructor(t){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!z().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let e;if(t!=null){if(t instanceof Bc)e=t;else{let n=Gn(z().getNumber("WEBGL_VERSION"),t);e=new Bc(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Gn(z().getNumber("WEBGL_VERSION"));e=new Bc(n),this.binaryCache=pet(z().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=e,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new Vw(this.gpgpu),this.numMBBeforeWarning=det(),this.texData=new ra(this,Pn())}nextDataId(){return _u.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(t,e,n,o,s,i){let a=this.makeTensorInfo(e,n),u=this.texData.get(a.dataId);u.isPacked=!1,u.texture={texture:t,texShape:[o,s]},u.texShape=[o,s];let l=fd(e),c=new Jh(l,!1,i),p=this.runWebGLProgram(c,[a],n,[[o,s]]);return p.shape=e,u.texture=null,this.disposeIntermediateTensorInfo(a),p.dataId}write(t,e,n){if((z().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||z().getBool("DEBUG"))&&this.checkNumericalProblems(t),n==="complex64"&&t!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let o={id:this.nextDataId()};return this.texData.set(o,{shape:e,dtype:n,values:t,usage:jr.UPLOAD,refCount:1}),o}refCount(t){return this.texData.has(t)?this.texData.get(t).refCount:0}incRef(t){let e=this.texData.get(t);e.refCount++}decRef(t){if(this.texData.has(t)){let e=this.texData.get(t);e.refCount--}}move(t,e,n,o,s){if(z().getBool("DEBUG")&&this.checkNumericalProblems(e),o==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(t,{shape:n,dtype:o,values:e,usage:jr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}readSync(t){let e=this.texData.get(t),{values:n,dtype:o,complexTensorInfos:s,slice:i,shape:a,isPacked:u}=e;if(i!=null){let m;u?m=new so(a,Gc):m=new tn(a,Gc);let f=this.runWebGLProgram(m,[{dataId:t,shape:a,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(t);if(o==="string")return n;let l=this.activeTimers!=null,c;l&&(c=y.now());let p;if(o==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=v.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(t);return l&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(t,p)}async read(t){if(this.pendingRead.has(t)){let d=this.pendingRead.get(t);return new Promise(h=>d.push(h))}let e=this.texData.get(t),{values:n,shape:o,slice:s,dtype:i,complexTensorInfos:a,isPacked:u}=e;if(s!=null){let d;u?d=new so(o,Gc):d=new tn(o,Gc);let h=this.runWebGLProgram(d,[{dataId:t,shape:o,dtype:i}],i),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(t);if(z().getBool("DEBUG")&&!z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&z().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(i!=="complex64"&&z().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(t);let d=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(d.texture.texture,...jh(o))}this.pendingRead.set(t,[]),i!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(i==="complex64"){let d=await Promise.all([this.read(a.real.dataId),this.read(a.imag.dataId)]),h=d[0],g=d[1];p=v.mergeRealAndImagArrays(h,g)}else if(l==null)p=this.getValuesFromTexture(t);else{let d=y.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,d)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let d=this.gpgpu.gl;yt(d,()=>d.deleteBuffer(l))}let m=this.convertAndCacheOnCPU(t,p),f=this.pendingRead.get(t);return this.pendingRead.delete(t),f.forEach(d=>d(m)),this.pendingDisposal.has(t)&&(this.pendingDisposal.delete(t),this.disposeData(t)&&Pn().removeDataId(t,this),this.pendingDeletes--),m}readToGPU(t,e={}){let n=this.texData.get(t),{values:o,shape:s,slice:i,dtype:a,isPacked:u,texture:l}=n;if(a==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(i!=null){let f;u?f=new so(s,Gc):f=new tn(s,Gc);let d=this.runWebGLProgram(f,[{dataId:t,shape:s,dtype:a}],a),h=this.readToGPU(d,e);return this.disposeIntermediateTensorInfo(d),h}if(l==null)throw o!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let c=this.decode(t,e.customTexShape),p=Pn().makeTensorFromTensorInfo(c),m=this.texData.get(c.dataId);return Object.assign({tensorRef:p},m.texture)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype==="string")try{let n=e.map(o=>y.decodeString(o));return wt(t.shape,t.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return wt(t.shape,t.dtype,e)}checkNumericalProblems(t){if(t!=null)for(let e=0;e<t.length;e++){let n=t[e];if(!ST(n))throw z().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(t){let{shape:e,dtype:n,isPacked:o}=this.texData.get(t),s=y.sizeFromShape(e);if(z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(t),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture.texture,...jh(e)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let i=z().getBool("WEBGL_PACK")&&o===!0,a=i?fd(e):e,u=i?new Aw(a):new _w(a),l=this.runWebGLProgram(u,[{shape:a,dtype:n,dataId:t}],"float32"),c=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(t){let e=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,t();let s=y.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),i=y.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=e,o&&(this.programTimersStack=null);let a={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let u=await Promise.all(s);a.kernelMs=y.sum(u),a.getExtraProfileInfo=()=>u.map((l,c)=>({name:i[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else a.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,a})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(t){return z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),t):(t.endMs=y.now(),t)}async getQueryTime(t){if(z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(t);let e=t;return e.endMs-e.startMs}disposeData(t,e=!1){if(this.pendingDisposal.has(t))return!1;if(!this.texData.has(t))return!0;if(e?this.texData.get(t).refCount=0:this.texData.get(t).refCount--,!e&&this.texData.get(t).refCount>0)return!1;if(this.pendingRead.has(t))return this.pendingDisposal.add(t),this.pendingDeletes++,!1;this.releaseGPUData(t);let{complexTensorInfos:n}=this.texData.get(t);return n!=null&&(this.disposeData(n.real.dataId,e),this.disposeData(n.imag.dataId,e)),this.texData.delete(t),!0}releaseGPUData(t){let{texture:e,dtype:n,texShape:o,usage:s,isPacked:i,slice:a}=this.texData.get(t),u=a&&a.origDataId||t,l=this.dataRefCount.get(u);l>1?this.dataRefCount.set(u,l-1):(this.dataRefCount.delete(u),e!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(e,o,s,i)));let c=this.texData.get(t);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(t){return this.uploadToGPU(t),this.texData.get(t).texture.texture}getDataInfo(t){return this.texData.get(t)}shouldExecuteOnCPU(t,e=met){return z().getBool("WEBGL_CPU_FORWARD")&&t.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)<e)}getGPGPUContext(){return this.gpgpu}where(t){v.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let e=t.dataSync();return aet(t.shape,e)}packedUnaryOp(t,e,n){let o=new so(t.shape,e),s=this.compileAndRun(o,[t],n);return Pn().makeTensorFromTensorInfo(s)}abs(t){if(this.shouldExecuteOnCPU([t])&&t.dtype!=="complex64"){let o=Mw(this.texData.get(t.dataId).values);return this.makeOutput(t.shape,t.dtype,o)}if(z().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,lk,t.dtype);let e=new tn(t.shape,lk),n=this.compileAndRun(e,[t]);return Pn().makeTensorFromTensorInfo(n)}makeTensorInfo(t,e,n){let o;if(e==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(i=>y.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return this.texData.get(o).usage=null,{dataId:o,shape:t,dtype:e}}makeOutput(t,e,n){return Pn().makeTensorFromTensorInfo(this.makeTensorInfo(t,e,n),this)}unpackTensor(t){let e=new Gw(t.shape);return this.runWebGLProgram(e,[t],t.dtype)}packTensor(t){let e=new Bw(t.shape),n=!0;return this.runWebGLProgram(e,[t],t.dtype,null,n)}packedReshape(t,e){let n=[xl(t.shape),...yl(t.shape)],o={dtype:t.dtype,shape:n,dataId:t.dataId},s=[xl(e),...yl(e)],i=new Id(s,n),a=!0,u=[n],l=this.runWebGLProgram(i,[o],t.dtype,u,a);return{dataId:l.dataId,shape:e,dtype:l.dtype}}decode(t,e){let n=this.texData.get(t),{isPacked:o,shape:s,dtype:i}=n;if(e!=null){let m=y.sizeFromShape(s),f=e[0]*e[1]*4;y.assert(m<=f,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let a=fd(s),u;o?u=new Ew(a):u=new kw(a);let l=!0,c=[e!=null?e:jh(a)],p=this.runWebGLProgram(u,[{shape:a,dtype:i,dataId:t}],i,c,l,e);return{dtype:i,shape:s,dataId:p.dataId}}runWebGLProgram(t,e,n,o,s=!1,i){let a=this.makeTensorInfo(t.outputShape,n),u=this.texData.get(a.dataId);if(t.packedOutput&&(u.isPacked=!0),t.outPackingScheme===ku.DENSE){let x=i!=null?i:jh(t.outputShape);u.texShape=x.map(b=>b*2)}if(t.outTexUsage!=null&&(u.usage=t.outTexUsage),y.sizeFromShape(a.shape)===0)return u.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],c=e.map(x=>{if(x.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(x.dataId);if(b.texture==null){if(!t.packedInputs&&y.sizeFromShape(x.shape)<=z().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:x.shape,texData:null,isUniform:!0,uniformValues:b.values};t.packedInputs&&(b.isPacked=!0,b.shape=x.shape)}if(this.uploadToGPU(x.dataId),!!b.isPacked!=!!t.packedInputs)x=b.isPacked?this.unpackTensor(x):this.packTensor(x),l.push(x),b=this.texData.get(x.dataId);else if(b.isPacked&&!Eu(b.shape,x.shape)){let w=x,C=x.shape;x.shape=b.shape,x=this.packedReshape(x,C),l.push(x),b=this.texData.get(x.dataId),w.shape=C}return{shape:x.shape,texData:b,isUniform:!1}});this.uploadToGPU(a.dataId);let p={shape:a.shape,texData:u,isUniform:!1},m=uL(t,c,p),f=this.getAndSaveBinary(m,()=>aL(this.gpgpu,t,c,p)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),z().get("ENGINE_COMPILE_ONLY")||lL(this.gpgpu,f,c,p,o),l.forEach(x=>this.disposeIntermediateTensorInfo(x)),d&&(h=this.endTimer(h),this.activeTimers.push({name:t.constructor.name,query:this.getQueryTime(h)}));let g=z().get("WEBGL_FLUSH_THRESHOLD");if(g>0){let x=y.now();x-this.lastGlFlushTime>g&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=x)}if(!z().getBool("WEBGL_LAZILY_UNPACK")&&u.isPacked&&s===!1){let x=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),x}return a}compileAndRun(t,e,n,o,s=!1){return n=n||e[0].dtype,this.runWebGLProgram(t,e,n,o,s)}getAndSaveBinary(t,e){return t in this.binaryCache||(this.binaryCache[t]=e()),this.binaryCache[t]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(z().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=B(()=>{if(!z().get("WEBGL_RENDER_FLOAT32_ENABLED")){let t=z().getBool("DEBUG");z().set("DEBUG",!1);let e=this.abs(mt(1e-8)).dataSync()[0];if(z().set("DEBUG",t),e>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?uet:cet}uploadToGPU(t){let e=this.texData.get(t),{shape:n,dtype:o,values:s,texture:i,usage:a,isPacked:u}=e;if(i!=null)return;let l=this.activeTimers!=null,c;l&&(c=y.now());let p=e.texShape;if(p==null&&(p=PT(n,u),e.texShape=p),s!=null){let m=fd(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array||s instanceof Uint8ClampedArray;(u||!g)&&([d,h]=Xi(p[0],p[1])),u?f=new $w(m,g):f=new Jh(m,g);let x=g?[h,d]:p,b=this.makeTensorInfo(x,o),w=this.texData.get(b.dataId);g?w.usage=jr.PIXELS:w.usage=jr.UPLOAD,w.texShape=x,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),d,h,s);let C=[[h,d]],N=!0,_=this.runWebGLProgram(f,[b],o,C,N),A=this.texData.get(_.dataId);e.texShape=A.texShape,e.isPacked=A.isPacked,e.usage=A.usage,z().get("ENGINE_COMPILE_ONLY")?this.disposeData(_.dataId):(e.texture=A.texture,e.values=null,this.texData.delete(_.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,a,o,u);e.texture=m}}convertAndCacheOnCPU(t,e){let n=this.texData.get(t),{dtype:o}=n;return this.releaseGPUData(t),e!=null&&(n.values=het(e,o)),n.values}acquireTexture(t,e,n,o){if(this.numBytesInGPU+=this.computeBytes(t,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(t,e,o)}computeBytes(t,e){return t[0]*t[1]*y.bytesPerElement(e)}checkCompileCompletion(){for(let[,t]of Object.entries(this.binaryCache))this.checkCompletion_(t)}async checkCompileCompletionAsync(){let t=[];if(this.gpgpu.parallelCompilationExtension){for(let[,e]of Object.entries(this.binaryCache))t.push(this.checkCompletionAsync_(e));return Promise.all(t)}else{for(let[,e]of Object.entries(this.binaryCache)){let n=new Promise(o=>{try{this.checkCompletion_(e),o(!0)}catch(s){throw s}});t.push(n)}return Promise.all(t)}}async checkCompletionAsync_(t){return this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(t):(await gh(),this.checkCompletionAsync_(t))}checkCompletion_(t){if(this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)),this.gpgpu.gl.getShaderParameter(t.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(Cw(t.source,this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,t]of Object.entries(this.binaryCache)){let{uniformLocations:e,customUniformLocations:n,infLoc:o,nanLoc:s,inShapesLocations:i,inTexShapesLocations:a,outShapeLocation:u,outShapeStridesLocation:l,outTexShapeLocation:c}=WT(this.gpgpu,t.program,t.webGLProgram);t.uniformLocations=e,t.customUniformLocations=n,t.infLoc=o,t.nanLoc=s,t.inShapesLocations=i,t.inTexShapesLocations=a,t.outShapeLocation=u,t.outShapeStridesLocation=l,t.outTexShapeLocation=c}}createTensorFromTexture(t,e,n){let{texture:o,height:s,width:i,channels:a}=t,u=Pn().backend;if(!u.gpgpu.gl.isTexture(o))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=u.writeTexture(o,e,n,s,i,a);return Pn().makeTensorFromDataId(l,e,n,u)}};_u.nextDataId=0;function het(r,t){if(t==="float32"||t==="complex64")return r;if(t==="int32"||t==="bool"){let e=t==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;n<e.length;++n)e[n]=Math.round(r[n]);return e}else throw new Error(`Unknown dtype ${t}`)}var dM="4.0.0";function hM(){z().set("WEBGL_FORCE_F16_TEXTURES",!0)}Kl.isBrowser()&&Xp("webgl",()=>new _u,2);var Zke={forceHalfFloat:hM};var Sd=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`;var io=class{constructor(t,e,n){this.variableNames=["A","B"],this.outputShape=v.assertAndGetBroadcastShape(e,n),this.enableShapeUniforms=we(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}};var Yi=`
|
|
result.r = isNaN.r ? NAN : result.r;
|
|
result.g = isNaN.g ? NAN : result.g;
|
|
result.b = isNaN.b ? NAN : result.b;
|
|
result.a = isNaN.a ? NAN : result.a;
|
|
`;var Oo=class{constructor(t,e,n,o=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=v.assertAndGetBroadcastShape(e,n);let s=this.outputShape.length;this.enableShapeUniforms=we(s);let i="";if(o)if(s===0||y.sizeFromShape(this.outputShape)===1)i=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(i=`
|
|
${zt(s)} coords = getOutputCoords();
|
|
`,s===1)this.enableShapeUniforms?i+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:i+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let u=Qe("coords",s);this.enableShapeUniforms?i+=`
|
|
bool nextRowOutOfBounds =
|
|
(${u[s-2]} + 1) >= outShape[${s} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${u[s-1]} + 1) >= outShape[${s} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:i+=`
|
|
bool nextRowOutOfBounds =
|
|
(${u[s-2]} + 1) >= ${this.outputShape[s-2]};
|
|
bool nextColOutOfBounds =
|
|
(${u[s-1]} + 1) >= ${this.outputShape[s-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${i}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function tr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var gM={kernelName:co,backendName:"webgl",kernelFunc:tr};function En(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.makeTensorInfo(n.shape,"complex64"),i=e.texData.get(s.dataId),a=tr({inputs:{x:n},backend:e}),u=tr({inputs:{x:o},backend:e});return i.complexTensorInfos={real:a,imag:u},s}var xM={kernelName:pp,backendName:"webgl",kernelFunc:En};var uk="return (a < 0.) ? b * a : a;",ck=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function get(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n,i=e.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),a=z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Oo(ck,o.shape,i.shape):new io(uk,o.shape,i.shape),u=e.runWebGLProgram(a,[o,i],"float32");return e.disposeIntermediateTensorInfo(i),u}var yM={kernelName:is,backendName:"webgl",kernelFunc:get};var pk="return (a < 0.) ? b * a : a;",mk=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function xet(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Oo(mk,n.shape,o.shape):new io(pk,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],"float32")}var bM={kernelName:bs,backendName:"webgl",kernelFunc:xet};var Po="if (isnan(x)) return x;";function Ct({opSnippet:r,packedOpSnippet:t,cpuKernelImpl:e,dtype:n}){return({inputs:o,backend:s})=>{let{x:i}=o,a=s,u=n||i.dtype;if(a.shouldExecuteOnCPU([i])&&e!=null){let p=a.texData.get(i.dataId),m=e(p.values,u);return a.makeTensorInfo(i.shape,u,m)}let l=z().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return l?c=new so(i.shape,t):c=new tn(i.shape,r),a.runWebGLProgram(c,[i],u)}}function le({opSnippet:r,packedOpSnippet:t,checkOutOfBounds:e=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:i,backend:a})=>{let{a:u,b:l}=i,c=a;if(n&&u.dtype==="complex64"){let d=c.texData.get(u.dataId),h=c.texData.get(l.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[C,N]=w,_={dataId:C.dataId,dtype:C.dtype,shape:u.shape},A={dataId:N.dataId,dtype:N.dtype,shape:l.shape},$=new io(r,u.shape,l.shape);return c.runWebGLProgram($,[_,A],sr(C.dtype,N.dtype))}),b=En({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||sr(u.dtype,l.dtype);if((u.dtype==="string"||l.dtype==="string"||c.shouldExecuteOnCPU([u,l]))&&o!=null){let d=c.texData.get(u.dataId).values,h=c.texData.get(l.dataId).values,g=u.dtype==="string"?v.fromUint8ToStringArray(d):d,x=u.dtype==="string"?v.fromUint8ToStringArray(h):h,[b,w]=o(u.shape,l.shape,g,x,p),C=c.makeTensorInfo(w,p),N=c.texData.get(C.dataId);return N.values=b,C}let m=z().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,f;return m?f=new Oo(t,u.shape,l.shape,e):f=new io(r,u.shape,l.shape),c.runWebGLProgram(f,[u,l],p)}}function bl(r,t=!1){if(r==="linear")return t?uM:nM;if(r==="relu")return t?pM:sM;if(r==="elu")return t?cM:oM;if(r==="relu6")return t?mM:iM;if(r==="prelu")return t?mk:pk;if(r==="leakyrelu")return t?ck:uk;if(r==="sigmoid")return t?fM:aM;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var vd=class{constructor(t,e,n,o=!1,s=!1,i=!1,a=null,u=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=we(this.outputShape.length);let c=o?t[1]:t[2],p=Math.ceil(c/2),m=o?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=o?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";a&&(u?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${a}
|
|
}`:l?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${a}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${a}
|
|
}`,x="result = activation(result);");let b=i?"result += getBiasAtOutCoords();":"";i&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let w="rc.x",C="rc.x";t[0]<e[0]?w=`int(min(float(rc.x), ${t[0]-1}.))`:e[0]<t[0]&&(C=`int(min(float(rc.x), ${e[0]-1}.))`),this.userCode=`
|
|
${g}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${p}; i++) {
|
|
int batchA = ${w};
|
|
int batchB = ${C};
|
|
vec4 a = getMatrixA(batchA, ${m});
|
|
vec4 b = getMatrixB(batchB, ${f});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${d[0]} * ${h[0]});
|
|
result += (${d[1]} * ${h[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${b}
|
|
|
|
${x}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};var fk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},tg=class{constructor(t,e,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=v.assertAndGetBroadcastShape(e,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}};var wM="return a * b;";function eg(r){let{inputs:t,backend:e}=r,{a:n,b:o}=t,s=v.upcastType(n.dtype,o.dtype);if(n.dtype==="complex64"){let a=e.texData.get(n.dataId),u=e.texData.get(o.dataId),l=new tg(fk.REAL,n.shape,o.shape),c=new tg(fk.IMAG,n.shape,o.shape),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:n.shape},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:u.complexTensorInfos.real.dataId,dtype:u.complexTensorInfos.real.dtype,shape:o.shape},{dataId:u.complexTensorInfos.imag.dataId,dtype:u.complexTensorInfos.imag.dtype,shape:o.shape}],m=e.runWebGLProgram(l,p,"float32"),f=e.runWebGLProgram(c,p,"float32"),d=En({inputs:{real:m,imag:f},backend:e});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}if(e.shouldExecuteOnCPU([n,o])){let a=e.texData.get(n.dataId),u=e.texData.get(o.dataId),[l,c]=AL(n.shape,o.shape,a.values,u.values,s),p=e.makeTensorInfo(c,s),m=e.texData.get(p.dataId);return m.values=l,p}let i;return z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Oo(wM,n.shape,o.shape):i=new io(wM,n.shape,o.shape),e.runWebGLProgram(i,[n,o],s)}var CM={kernelName:hs,backendName:"webgl",kernelFunc:eg};function IM(r,t,e){let n=[xl(r.shape),...yl(r.shape)],o={dtype:r.dtype,shape:n,dataId:r.dataId},s=[xl(t),...yl(t)],i=new Id(s,n),a=!0,u=[n],l=e.runWebGLProgram(i,[o],r.dtype,u,a);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function it(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=e,a=y.sizeFromShape(o.shape),u=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(u);y.assert(a===l,()=>`The new shape (${u}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(o.dataId);return c.isPacked&&!Eu(o.shape,u)&&!(c.texture!==null&&Eu(c.shape,u))?IM(o,u,i):(i.incRef(o.dataId),{dataId:o.dataId,shape:u,dtype:o.dtype})}var SM={kernelName:di,backendName:"webgl",kernelFunc:it};var rg=class{constructor(t,e){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a=Math.floor(n/4)*4,u=n%4,l="sumValue += dot(values, ones);";if(e!=null){let p=1/e;l=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${a};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}};var Uw=class{constructor(t,e){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a="0.0",u="";e==="prod"?a="1.0":e==="min"?(a="1.0 / 1e-20",u="min"):e==="max"&&(a="-1.0 / 1e-20",u="max");let l=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="sum"?l="sumValue":e==="prod"?l="prodValue":e==="all"?l="allValue":e==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,p=n%4,m=`
|
|
if (${e==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${e==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${u}(values, minMaxValue);
|
|
if (${e==="min"} || ${e==="max"}) {
|
|
minMaxValue = ${u}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,f="vec4";e==="all"?(a="1.0",m=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,f="bvec4"):e==="any"&&(a="0.0",m=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,f="bvec4");let d="";s%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${a};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${a});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${m}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${p===1}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===2}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===3}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function bet(r){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let e=t.length?t[t.length-1].outSize:r[1],n=v.computeOptimalWindowSize(e);t.push({inSize:e,windowSize:n,outSize:Math.ceil(e/n)})}return t}function Un(r,t,e,n){let o=bet(r.shape),s=r;for(let i=0;i<o.length;i++){let{inSize:a,windowSize:u,outSize:l}=o[i],c,p;e==="mean"?c=i===0?new rg({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l},a):new rg({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l}):c=new Uw({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l},e),p=s,s=n.runWebGLProgram(c,[s],t),p.dataId!==r.dataId&&n.disposeIntermediateTensorInfo(p)}return s}var Hw=class{constructor(t,e){this.variableNames=["A"];let n=new Array(t.length);for(let i=0;i<n.length;i++)n[i]=t[e[i]];this.outputShape=n,this.rank=n.length;let o=zt(this.rank),s=wet(e);this.userCode=`
|
|
void main() {
|
|
${o} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function wet(r){let t=r.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let o=0;o<r.length;o++)n[r[o]]=e[o];return n.join()}var qw=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(t.length);for(let c=0;c<n.length;c++)n[c]=t[e[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=zt(this.rank),s=ak("rc",this.rank),i=new Array(this.rank);for(let c=0;c<e.length;c++)i[e[c]]=s[c];let a=`vec2(${i.slice(-2).join()})`,u=`++${s[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${i.join()}), ${a})`;this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${u}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${s[this.rank-1]};
|
|
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${u}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Au(r,t,e){let n=z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qw(r.shape,t):new Hw(r.shape,t);return e.runWebGLProgram(n,[r],r.dtype)}function vM(r,t,e,n){let o=t,s=r.shape.length,i=y.parseAxisParam(o,r.shape),a=i,u=v.getAxesPermutation(a,s),l=u!=null,c=r;l&&(c=Au(r,u,n),a=v.getInnerMostAxes(a.length,s)),v.assertAxesAreInnerMostDims("sum",a,s);let[p,m]=v.computeOutAndReduceShapes(c.shape,a),f=p;e&&(f=v.expandShapeToKeepDim(p,i));let d=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/d,x=it({inputs:{x:c},attrs:{shape:[g,d]},backend:n}),b=Wu(r.dtype),w=Un(x,b,"sum",n),C=it({inputs:{x:w},attrs:{shape:f},backend:n});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),l&&n.disposeIntermediateTensorInfo(c),C}function Wc(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;return vM(o,s,i,e)}var NM={kernelName:$s,backendName:"webgl",kernelFunc:Wc};function Oe(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{perm:s}=n,i=e,a=o.shape.length,u=new Array(a);for(let c=0;c<u.length;c++)u[c]=o.shape[s[c]];let l;if(i.shouldExecuteOnCPU([o])){let p=i.texData.get(o.dataId).values,m=Vc(p,o.shape,o.dtype,s,u);l=i.makeTensorInfo(u,o.dtype);let f=i.texData.get(l.dataId);f.values=m}else l=Au(o,s,i);return l}var TM={kernelName:Qn,backendName:"webgl",kernelFunc:Oe};var dk=1e3;function Uc({a:r,b:t,transposeA:e,transposeB:n,backend:o,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:a=0,activation:u=null}){let l=r.shape.length,c=t.shape.length,p=e?r.shape[l-2]:r.shape[l-1],m=n?t.shape[c-1]:t.shape[c-2],f=e?r.shape[l-1]:r.shape[l-2],d=n?t.shape[c-2]:t.shape[c-1],h=r.shape.slice(0,-2),g=t.shape.slice(0,-2),x=y.sizeFromShape(h),b=y.sizeFromShape(g),C=Vr.assertAndGetBroadcastShape(r.shape.slice(0,-2),t.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${t.shape} and transposeA=${e} and transposeB=${n} must match.`);let N=e?[x,p,f]:[x,f,p],_=n?[b,d,m]:[b,m,d],A=it({inputs:{x:r},backend:o,attrs:{shape:N}}),$=it({inputs:{x:t},backend:o,attrs:{shape:_}}),F=[A,$],P=Math.max(x,b),V=e?A.shape[1]:A.shape[2],G=s!=null,W=i!=null,q=u==="leakyrelu",H=u!=null?bl(u,!0):null,j=G||W||q||H!=null,Y;if((f===1||d===1)&&V>dk&&j===!1){let et=A,rt=$;e&&(et=Oe({inputs:{x:A},backend:o,attrs:{perm:[0,2,1]}}),F.push(et)),n&&(rt=Oe({inputs:{x:$},backend:o,attrs:{perm:[0,2,1]}}),F.push(rt));let ot=d!==1,at=d===1,nt=et;ot&&(nt=it({inputs:{x:et},backend:o,attrs:{shape:[P,V,1]}}),F.push(nt));let st=d===1?2:1,dt=rt;at&&(dt=it({inputs:{x:rt},backend:o,attrs:{shape:[P,1,V]}}),F.push(dt));let ht=eg({inputs:{a:nt,b:dt},backend:o});Y=Wc({inputs:{x:ht},backend:o,attrs:{axis:st,keepDims:!0}}),F.push(ht)}else{let et=sr(r.dtype,t.dtype),rt=new vd(N,_,[P,f,d],e,n,G,H,W,q),ot=[A,$];if(s!=null&&ot.push(s),W&&ot.push(i),q){let at=o.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));ot.push(at),F.push(at)}Y=o.runWebGLProgram(rt,ot,et)}let Z=it({inputs:{x:Y},backend:o,attrs:{shape:C}});F.push(Y);for(let et of F)o.disposeIntermediateTensorInfo(et);return Z}function Cet(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n;return Uc({a:o,b:s,transposeA:u,transposeB:l,backend:e,bias:i,preluActivationWeights:a,leakyreluAlpha:p,activation:c})}var kM={kernelName:Ci,backendName:"webgl",kernelFunc:Cet};var EM="return abs(x);";function Iet(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=e.texData.get(n.dataId),i=Mw(s.values);return e.makeTensorInfo(n.shape,n.dtype,i)}let o;return z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new so(n.shape,EM):o=new tn(n.shape,EM),e.runWebGLProgram(o,[n],n.dtype)}var _M={kernelName:ii,backendName:"webgl",kernelFunc:Iet};var vet=fr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,Net=Ct({opSnippet:vet}),AM={kernelName:oa,backendName:"webgl",kernelFunc:Net};var Tet=fr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,ket=Ct({opSnippet:Tet}),$M={kernelName:sa,backendName:"webgl",kernelFunc:ket};var DM="return a + b;",Eet=le({opSnippet:DM,packedOpSnippet:DM,supportsComplex:!0,cpuKernelImpl:cL}),RM={kernelName:Zn,backendName:"webgl",kernelFunc:Eet};var Kw=class{constructor(t,e){this.outputShape=[],this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${o};
|
|
setOutput(result);
|
|
}
|
|
`}};var jw=class{constructor(t,e){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${o};
|
|
setOutput(result);
|
|
}
|
|
`}};function Xw(r){let{inputs:t,backend:e}=r,n=t;if(n.length===1)return tr({inputs:{x:n[0]},backend:e});if(n.length>z().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(n.length/2),l=Xw({inputs:n.slice(0,u),backend:e}),c=Xw({inputs:n.slice(u),backend:e});return Xw({inputs:[l,c],backend:e})}let o=n.map(u=>u.dtype).reduce((u,l)=>sr(u,l)),s=n.map(u=>u.shape),a=z().getBool("WEBGL_PACK")?new jw(n[0].shape,s):new Kw(n[0].shape,s);return e.runWebGLProgram(a,n,o)}var FM={kernelName:Go,backendName:"webgl",kernelFunc:Xw};function _et(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=v.getAxesPermutation(l,a),p=o;c!=null&&(p=Oe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=v.getInnerMostAxes(l.length,a)),v.assertAxesAreInnerMostDims("all",l,a);let[m,f]=v.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=it({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Un(h,h.dtype,"all",e),x;if(i){let b=v.expandShapeToKeepDim(m,u);x=it({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=it({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var OM={kernelName:ia,backendName:"webgl",kernelFunc:_et};function Aet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=v.getAxesPermutation(l,a),p=o;c!=null&&(p=Oe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=v.getInnerMostAxes(l.length,a)),v.assertAxesAreInnerMostDims("any",l,a);let[m,f]=v.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=it({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Un(h,h.dtype,"any",e),x;if(i){let b=v.expandShapeToKeepDim(m,u);x=it({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=it({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var PM={kernelName:aa,backendName:"webgl",kernelFunc:Aet};var Yw=class{constructor(t,e,n){this.variableNames=["A"];let{windowSize:o,batchSize:s,outSize:i}=t;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,i];let a=e==="max"?">":"<",u=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${o};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${o}; i++) {
|
|
int inIdx = ${u};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${a} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}};var Zw=class{constructor(t,e,n,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(t.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=t[t.length-1],i=Math.ceil(s/e);this.outputShape=t.slice(0,-1),i>1&&this.outputShape.push(i),o||this.variableNames.push("bestIndicesA");let a=this.outputShape,u=a.length,l=zt(u),c=Qe("coords",u),p,m;if(i===1){m=u+1;let $=zt(m);p=`
|
|
${$} sourceLocR = ${$}(${c.join()}, 0);
|
|
++${c[u-1]};
|
|
${$} sourceLocG = ${$}(${c.join()}, 0);
|
|
++${c[u-2]};
|
|
${$} sourceLocA = ${$}(${c.join()}, 0);
|
|
--${c[u-1]};
|
|
${$} sourceLocB = ${$}(${c.join()}, 0);
|
|
--${c[u-2]};`}else m=u,p=`
|
|
${l} sourceLocR = coords;
|
|
++${c[u-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[u-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[u-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[u-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map($=>"int "+$),g=Qe("sourceLocR",m-1).concat("inIdx.r"),x=Qe("sourceLocG",m-1).concat("inIdx.g"),b=Qe("sourceLocB",m-1).concat("inIdx.b"),w=Qe("sourceLocA",m-1).concat("inIdx.a"),C=n==="max"?"greaterThan":"lessThan",N=o?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${x.join()}),
|
|
getBestIndicesAChannel(${b.join()}),
|
|
getBestIndicesAChannel(${w.join()})));`,_=`vec4(
|
|
getAChannel(${g.join()}),
|
|
hasNextCol ? getAChannel(${x.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${b.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,A=o?"":`
|
|
float getBestIndicesAChannel(${h.join()}) {
|
|
return getChannel(getBestIndicesA(${f.join()}),
|
|
vec2(${f.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${h.join()}) {
|
|
return getChannel(getA(${f.join()}),
|
|
vec2(${f.slice(-2).join()}));
|
|
}
|
|
${A}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[u-1]} < ${a[u-1]-1};
|
|
bool hasNextRow = ${c[u-2]} < ${a[u-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
|
|
sourceLocB${d}, sourceLocA${d}) * ${e};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${_};
|
|
|
|
for (int i = 0; i < ${e}; i++) {
|
|
inIdx = srcIdx;
|
|
${N}
|
|
vec4 candidate = ${_};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${C}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function LM(r,t,e,n=null){let o=t.shape[0],s=t.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let i=v.computeOptimalWindowSize(s),a={windowSize:i,inSize:s,batchSize:o,outSize:Math.ceil(s/i)},u=new Yw(a,e,n==null),l=[t];n!=null&&l.push(n);let c=r.runWebGLProgram(u,l,"int32");if(c.shape[1]===1)return c;let p=LM(r,t,e,c);return r.disposeIntermediateTensorInfo(c),p}function MM(r,t,e,n=null){let o=n!=null?n.shape:t.shape,s=o[o.length-1],i=v.computeOptimalWindowSize(s),a=new Zw(o,i,e,n==null),u=n==null?[t]:[t,n],l=r.runWebGLProgram(a,u,"int32");if(l.shape.length===t.shape.length){let c=MM(r,t,e,l);return r.disposeIntermediateTensorInfo(l),c}return l}function Jw(r,t,e,n){let o=[e];if(v.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),o,t.shape.length),!z().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=r.texData.get(t.dataId),a=i!==null&&i.isPacked,u=t;a&&(u=r.unpackTensor(t),s.push(u));let[l,c]=v.computeOutAndReduceShapes(u.shape,o),p=y.sizeFromShape(c),m=it({inputs:{x:u},backend:r,attrs:{shape:[-1,p]}});s.push(m);let f=LM(r,m,n);s.push(f);let d=it({inputs:{x:f},backend:r,attrs:{shape:l}});return s.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}return MM(r,t,n)}function $et(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=y.parseAxisParam(s,o.shape),a=v.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Oe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=v.getInnerMostAxes(i.length,u.shape.length)),v.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=Jw(e,u,i[0],"max");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var zM={kernelName:Wo,backendName:"webgl",kernelFunc:$et};function Det(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=y.parseAxisParam(s,o.shape),a=v.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Oe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=v.getInnerMostAxes(i.length,u.shape.length)),v.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=Jw(e,u,i[0],"min");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var BM={kernelName:kl,backendName:"webgl",kernelFunc:Det};var Ret=fr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,Fet=Ct({opSnippet:Ret}),VM={kernelName:la,backendName:"webgl",kernelFunc:Fet};var Oet=fr+"return log(x + sqrt(x * x + 1.0));",Pet=Ct({opSnippet:Oet}),GM={kernelName:ua,backendName:"webgl",kernelFunc:Pet};var Let=fr+`
|
|
return atan(x);
|
|
`,Met=Ct({opSnippet:Let}),WM={kernelName:ca,backendName:"webgl",kernelFunc:Met};var zet=Sd+`
|
|
return atan(a, b);
|
|
`,Bet=`
|
|
vec4 result = atan(a, b);
|
|
bvec4 isNaNA = isnan(a);
|
|
bvec4 isNaNB = isnan(b);
|
|
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
|
|
`+Yi+`
|
|
return result;
|
|
`,Vet=le({opSnippet:zet,packedOpSnippet:Bet}),UM={kernelName:ma,backendName:"webgl",kernelFunc:Vet};var Get=fr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Wet=Ct({opSnippet:Get}),HM={kernelName:pa,backendName:"webgl",kernelFunc:Wet};var ei=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let i=t.filterWidth,a=t.strideHeight,u=t.strideWidth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterHeight,m=t.effectiveFilterWidth,f=t.padInfo.top,d=t.padInfo.left;this.outputShape=t.outShape;let h=e==="avg",g=`((batch * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + d`,x=`(xR * ${t.inWidth} + xC) * ${t.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${u});
|
|
const ivec2 pads = ivec2(${f}, ${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${o?s?g:x:`wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",C=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(C="avgValue / count");let N=Math.floor(i/4)*4,_=i%4,A=`
|
|
if (${h}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${u});
|
|
const ivec2 pads = ivec2(${f}, ${d});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${N}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${A}
|
|
}
|
|
|
|
int xC = xCCorner + ${N};
|
|
if (${_===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${A}
|
|
} else if (${_===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${A}
|
|
} else if (${_===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${A}
|
|
}
|
|
}
|
|
setOutput(${C});
|
|
}
|
|
`}},$u=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let i=t.filterWidth,a=t.strideDepth,u=t.strideHeight,l=t.strideWidth,c=t.dilationDepth,p=t.dilationHeight,m=t.dilationWidth,f=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,g=t.padInfo.front,x=t.padInfo.top,b=t.padInfo.left;this.outputShape=t.outShape;let w=e==="avg",C="0.0";if(w||(C="-1.0 / 1e-20"),n){let P=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${a}, ${u}, ${l});
|
|
const ivec3 pads = ivec3(${g}, ${x}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${f};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${t.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${m}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${P} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${o?s?`(((batch * ${t.inDepth} + xD) * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`((xD * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`wD * ${d} * ${h} +
|
|
wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let N="max",_=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(_="avgValue / count");let A=Math.floor(i/4)*4,$=i%4,F=`
|
|
if (${w}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${N}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${a}, ${u}, ${l});
|
|
const ivec3 pads = ivec3(${g}, ${x}, ${b});
|
|
const float initializationValue = ${C};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${C});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${f};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${t.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${A}; wC += 4) {
|
|
int xC = xCCorner + wC * ${m};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
|
|
);
|
|
|
|
${F}
|
|
}
|
|
|
|
int xC = xCCorner + ${A};
|
|
if (${$===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${F}
|
|
} else if (${$===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${F}
|
|
} else if (${$===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${F}
|
|
}
|
|
}
|
|
setOutput(${_});
|
|
}
|
|
}
|
|
`}};function Uet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;Qs(o,"avgPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(v.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=v.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return tr({inputs:{x:o},backend:e});let p=new ei(c,"avg",!1);return e.runWebGLProgram(p,[o],"float32")}var qM={kernelName:Uo,backendName:"webgl",kernelFunc:Uet};function Het(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=[1,1,1],p=v.computePool3DInfo(o.shape,s,i,c,a,u,l),m=new $u(p,"avg",!1);return e.runWebGLProgram(m,[o],"float32")}var KM={kernelName:El,backendName:"webgl",kernelFunc:Het};var Qw=class{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterHeight,l=t.effectiveFilterWidth,c=u-1-t.padInfo.top,p=l-1-t.padInfo.left,m=1/(e*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float avgMultiplier = float(${m});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${i}) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${a}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},tC=class{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterDepth,m=t.effectiveFilterHeight,f=t.effectiveFilterWidth,d=p-1-t.padInfo.front,h=m-1-t.padInfo.top,g=f-1-t.padInfo.left,x=1/(e*n*o);this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${h}, ${g});
|
|
const float avgMultiplier = float(${x});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
float dyD = float(dyDCorner + wD) / ${s}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${m};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${i}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function qet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=v.computePool3DInfo(i.shape,a,u,p,l,c),f=new tC(m);return e.runWebGLProgram(f,[o],i.dtype)}var jM={kernelName:lp,backendName:"webgl",kernelFunc:qet};function Ket(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;Qs([o,s],"avgPoolGrad");let{filterSize:a,strides:u,pad:l}=n,c=v.computePool2DInfo(i.shape,a,u,1,l),p=new Qw(c);return e.runWebGLProgram(p,[o],i.dtype)}var XM={kernelName:ap,backendName:"webgl",kernelFunc:Ket};function jet(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;return Uc({a:o,b:s,transposeA:i,transposeB:a,backend:e})}var YM={kernelName:Ho,backendName:"webgl",kernelFunc:jet};var eC=class{constructor(t,e,n,o,s,i){this.outputShape=[],this.variableNames=["x","mean","variance"],v.assertAndGetBroadcastShape(t,e),v.assertAndGetBroadcastShape(t,n);let a="0.0";o!=null&&(v.assertAndGetBroadcastShape(t,o),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let u="1.0";s!=null&&(v.assertAndGetBroadcastShape(t,s),this.variableNames.push("scale"),u="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${a};
|
|
float scale = ${u};
|
|
float inv = scale * inversesqrt(variance + float(${i}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}};var rC=class{constructor(t,e,n,o,s,i){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],v.assertAndGetBroadcastShape(t,e),v.assertAndGetBroadcastShape(t,n);let a="vec4(0.0)";o!=null&&(v.assertAndGetBroadcastShape(t,o),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let u="vec4(1.0)";s!=null&&(v.assertAndGetBroadcastShape(t,s),this.variableNames.push("scale"),u="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${a};
|
|
vec4 scale = ${u};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${i}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}};var Xet=({inputs:r,backend:t,attrs:e})=>{let{x:n,mean:o,variance:s,offset:i,scale:a}=r;y.assert(o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:u}=e;u==null&&(u=.001);let l=[n,o,s],c=null;i!=null&&(c=i.shape,l.push(i));let p=null;a!=null&&(p=a.shape,l.push(a));let m=z().getBool("WEBGL_PACK_NORMALIZATION")?new rC(n.shape,o.shape,s.shape,c,p,u):new eC(n.shape,o.shape,s.shape,c,p,u);return t.runWebGLProgram(m,l,l[0].dtype)},ZM={kernelName:os,backendName:"webgl",kernelFunc:Xet};var nC=class{constructor(t){this.variableNames=["source"],this.outputShape=t,this.rank=t.length;let e=zt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Yet(this.rank),o,s=t.map((i,a)=>`sourceLoc.${hk[a]} = start[${a}] + coords.${hk[a]};`);o=`
|
|
${e} sourceLoc;
|
|
${e} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${o}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},hk=["x","y","z","w","u","v"];function Yet(r){if(r===1)return"sourceLoc";if(r<=6)return hk.slice(0,r).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var oC=class{constructor(t){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let e=zt(this.rank),n=Qe("coords",this.rank),o=Qe("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${o.slice(-2).join()})`,i=`getChannel(getSource(${o.join()}), ${s})`,a=`
|
|
result.x = ${i};
|
|
if (++${n[this.rank-1]} < ${t[this.rank-1]}) {
|
|
++${o[this.rank-1]};
|
|
result.y = ${i};
|
|
--${o[this.rank-1]};
|
|
}
|
|
`,u=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${t[this.rank-2]}) {
|
|
++${o[this.rank-2]};
|
|
result.z = ${i};
|
|
if (++${n[this.rank-1]} < ${t[this.rank-1]}) {
|
|
++${o[this.rank-1]};
|
|
result.w = ${i};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${e}(${t.map((c,p)=>`start[${p}]`).join()});`:t.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${e} coords = getOutputCoords();
|
|
${e} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${a}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}};function Zet(r,t,e,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(e,r.dtype),i=n.texData.get(s.dataId);Object.assign(i,o),i.refCount=1,i.shape=e,i.dtype=r.dtype;let a=Le.computeFlatOffset(t,y.computeStrides(r.shape));o.slice&&(a+=o.slice.flatOffset),i.slice={flatOffset:a,origDataId:o.slice&&o.slice.origDataId||r.dataId};let u=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,u+1),s}function ri(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n,[a,u]=Le.parseSliceParams(o,s,i);if(Le.assertParamsValid(o,a,u),y.sizeFromShape(u)===0)return e.makeTensorInfo(u,o.dtype,[]);if(e.shouldExecuteOnCPU([o])||o.dtype==="string"){let p=e.texData.get(o.dataId),m=VL(p.values,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,m)}let{isPacked:l}=e.texData.get(o.dataId),c=Le.isSliceContinous(o.shape,a,u);if(l||!c){let p=z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new oC(u):new nC(u),m=[a];return e.runWebGLProgram(p,[o],o.dtype,m)}return e.uploadToGPU(o.dataId),Zet(o,a,u,e)}var JM={kernelName:gi,backendName:"webgl",kernelFunc:ri};var Jet=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;y.assert(o.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let a=s.reduce((b,w)=>b*w),u=v.getReshaped(o.shape,s,a),l=v.getPermuted(u.length,s.length),c=v.getReshapedPermuted(o.shape,s,a),p=v.getSliceBeginCoords(i,s.length),m=v.getSliceSize(c,i,s.length),f=[],d=it({inputs:{x:o},backend:e,attrs:{shape:u}}),h=Oe({inputs:{x:d},backend:e,attrs:{perm:l}}),g=it({inputs:{x:h},backend:e,attrs:{shape:c}}),x=ri({inputs:{x:g},backend:e,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>e.disposeIntermediateTensorInfo(b)),x},QM={kernelName:ai,backendName:"webgl",kernelFunc:Jet};function Qet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.readSync(o.dataId),u=e.readSync(s.dataId),l=Lw(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var tz={kernelName:up,backendName:"webgl",kernelFunc:Qet};function trt(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.readSync(n.dataId),i=e.readSync(o.dataId),a=v.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],"int32",Int32Array.from(a))}var ez={kernelName:cp,backendName:"webgl",kernelFunc:trt};var ert="return float(a != b);",gk=le({opSnippet:ert,cpuKernelImpl:DL,dtype:"bool"}),rz={kernelName:Da,backendName:"webgl",kernelFunc:gk};function wl(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return tr({inputs:{x:o.complexTensorInfos.real},backend:e})}var nz={kernelName:Rp,backendName:"webgl",kernelFunc:wl};var rrt="return float(int(x));";function oz(r,t){let e=new tn(r.shape,rrt),n=t.runWebGLProgram(e,[r],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function xk(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return tr({inputs:{x:o},backend:e});let i=Ne(o.shape),a=xk({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),u=En({inputs:{real:a,imag:i},backend:e});return i.dispose(),e.disposeIntermediateTensorInfo(a),u}if(o.dtype==="complex64"){let i=wl({inputs:{input:o},backend:e}),a=xk({inputs:{x:i},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(i),a}if(!y.hasEncodingLoss(o.dtype,s)){let i=tr({inputs:{x:o},backend:e});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(e.shouldExecuteOnCPU([o])){let i=e.texData.get(o.dataId).values,[a,u,l]=mL(i,o.shape,o.dtype,s);return e.makeTensorInfo(a,u,l)}if(s==="int32")return oz(o,e);if(s==="bool"){let i=e.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),u=gk({inputs:{a:o,b:i},backend:e});return e.disposeIntermediateTensorInfo(i),u}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var sz={kernelName:lo,backendName:"webgl",kernelFunc:xk};var iz="return ceil(x);",nrt=Ct({opSnippet:iz,packedOpSnippet:iz,cpuKernelImpl:fL}),az={kernelName:qo,backendName:"webgl",kernelFunc:nrt};var sC=class{constructor(t){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=t,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}};var iC=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function ort(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a;z().getBool("WEBGL_PACK_CLIP")?a=new iC(o.shape):a=new sC(o.shape);let u=[[s],[i]];return e.runWebGLProgram(a,[o],o.dtype,u)}var lz={kernelName:uo,backendName:"webgl",kernelFunc:ort};var aC=class{constructor(t){this.variableNames=["real","imag"],this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function uz(r,t){return{dataId:t.dataId,dtype:t.dtype,shape:r.shape}}function srt(r){let{inputs:t,backend:e}=r,{x:n}=t,o=e.texData.get(n.dataId),s=new aC(n.shape),i=[uz(n,o.complexTensorInfos.real),uz(n,o.complexTensorInfos.imag)];return e.runWebGLProgram(s,i,i[0].dtype)}var cz={kernelName:_l,backendName:"webgl",kernelFunc:srt};var lC=class{constructor(t){this.outputShape=[],this.outputShape=v.computeOutShape(t,1),this.variableNames=t.map((i,a)=>`T${a}`);let e=new Array(t.length-1);e[0]=t[0][1];for(let i=1;i<e.length;i++)e[i]=e[i-1]+t[i][1];let n=[`if (yC < ${e[0]}) setOutput(getT0(yR, yC));`];for(let i=1;i<e.length;i++){let a=e[i-1];n.push(`else if (yC < ${e[i]}) setOutput(getT${i}(yR, yC-${a}));`)}let o=e.length,s=e[e.length-1];n.push(`else setOutput(getT${o}(yR, yC-${s}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}};var cC=class{constructor(t,e){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=v.computeOutShape(t,e);let n=this.outputShape,o=n.length,s=zt(o),i=Qe("coords",o),a=["x","y","z","w","u","v"].slice(0,o);this.variableNames=t.map((h,g)=>`T${g}`);let u=new Array(t.length-1);u[0]=t[0][e];for(let h=1;h<u.length;h++)u[h]=u[h-1]+t[h][e];let l=a[e],c=a.slice(-2),p=a.join(),m=`if (${l} < ${u[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${c.join()}));
|
|
}`;for(let h=1;h<u.length;h++){let g=u[h-1];m+=`
|
|
if (${l} < ${u[h]} && ${l} >= ${u[h-1]}) {
|
|
return getChannel(
|
|
getT${h}(${uC(a,l,g)}),
|
|
vec2(${uC(c,l,g)}));
|
|
}`}let f=u.length,d=u[u.length-1];m+=`
|
|
return getChannel(
|
|
getT${f}(${uC(a,l,d)}),
|
|
vec2(${uC(c,l,d)}));`,this.userCode=`
|
|
float getValue(${a.map(h=>"int "+h)}) {
|
|
${m}
|
|
}
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${i}), 0., 0., 0.);
|
|
|
|
${i[o-1]} = ${i[o-1]} + 1;
|
|
if (${i[o-1]} < ${n[o-1]}) {
|
|
result.g = getValue(${i});
|
|
}
|
|
|
|
${i[o-2]} = ${i[o-2]} + 1;
|
|
if (${i[o-2]} < ${n[o-2]}) {
|
|
result.a = getValue(${i});
|
|
}
|
|
|
|
${i[o-1]} = ${i[o-1]} - 1;
|
|
if (${i[o-2]} < ${n[o-2]} &&
|
|
${i[o-1]} < ${n[o-1]}) {
|
|
result.b = getValue(${i});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function uC(r,t,e){let n=r.indexOf(t);return r.map((s,i)=>i===n?`${s} - ${e}`:s).join()}function Hc(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return tr({inputs:{x:o.complexTensorInfos.imag},backend:e})}var pz={kernelName:Sp,backendName:"webgl",kernelFunc:Hc};function Nd(r,t,e){let n=r[0].dtype;if(n==="complex64"){let p=r.map(g=>wl({inputs:{input:g},backend:e})),m=r.map(g=>Hc({inputs:{input:g},backend:e})),f=Nd(p,t,e),d=Nd(m,t,e),h=En({inputs:{real:f,imag:d},backend:e});return p.forEach(g=>e.disposeIntermediateTensorInfo(g)),m.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),h}let o=e.shouldExecuteOnCPU(r);if(n==="string"&&(o=!0),o){let p=r.map(b=>{let C=[-1,y.sizeFromShape(b.shape.slice(t))];return it({inputs:{x:b},backend:e,attrs:{shape:C}})}),m=p.map(b=>({vals:e.readSync(b.dataId),shape:b.shape})),f=v.computeOutShape(p.map(b=>b.shape),1),d=p[0].shape[0]===1,h=dL(m,f,n,d),g=v.computeOutShape(r.map(b=>b.shape),t),x=e.makeTensorInfo(g,n,h);return p.forEach(b=>e.disposeIntermediateTensorInfo(b)),x}let s=z().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(r.length>s){let p=[];for(let f=0;f<r.length;f+=s){let d=r.slice(f,f+s);p.push(Nd(d,t,e))}let m=Nd(p,t,e);for(let f of p)e.disposeIntermediateTensorInfo(f);return m}if(z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let p=new cC(r.map(m=>m.shape),t);return e.runWebGLProgram(p,r,n)}let{tensors2D:i,outShape:a}=irt(r,t,e),u=new lC(i.map(p=>p.shape)),l=e.runWebGLProgram(u,i,n);i.forEach(p=>e.disposeIntermediateTensorInfo(p));let c=it({inputs:{x:l},attrs:{shape:a},backend:e});return e.disposeIntermediateTensorInfo(l),c}function irt(r,t,e){let n=v.computeOutShape(r.map(s=>s.shape),t);return{tensors2D:r.map(s=>it({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(t))]},backend:e})),outShape:n}}function yk(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,t[0].shape)[0],i=t.map(l=>l.shape);v.assertParamsConsistent(i,s);let a=v.computeOutShape(t.map(l=>l.shape),s);if(y.sizeFromShape(a)===0)return e.makeTensorInfo(a,t[0].dtype,[]);let u=t.filter(l=>y.sizeFromShape(l.shape)>0);return u.length===1?tr({inputs:{x:u[0]},backend:e}):Nd(u,s,e)}var mz={kernelName:li,backendName:"webgl",kernelFunc:yk};var Td=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=t.outShape;let i=t.padInfo.top,a=t.padInfo.left,u=t.strideHeight,l=t.strideWidth,c=t.dilationHeight,p=t.dilationWidth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4,g=t.dataFormat==="channelsLast",x=g?1:2,b=g?2:3,w=g?3:1,C="",N="";n&&(o?C=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?C=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:C=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,N="result = activation(result);");let _=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${C}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${l});
|
|
const ivec2 pads = ivec2(${i}, ${a});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${w}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${x}], coords[${b}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${h===1}) {
|
|
|
|
if (${g}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${d}) *
|
|
getW(wR, wC, ${d}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${d}, xR, xC) *
|
|
getW(wR, wC, ${d}, d2);
|
|
}
|
|
|
|
} else if (${h===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${h===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2),
|
|
getW(wR, wC, ${d} + 2, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1),
|
|
getX(batch, xR, xC, ${d} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC),
|
|
getX(batch, ${d} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${_}
|
|
${N}
|
|
setOutput(result);
|
|
}
|
|
`}},pC=class{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let e=t.padInfo.front,n=t.padInfo.top,o=t.padInfo.left,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.filterDepth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${s}, ${i}, ${a});
|
|
const ivec3 pads = ivec3(${e}, ${n}, ${o});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${u};
|
|
|
|
if (xF < 0 || xF >= ${t.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${h===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${d}) *
|
|
getW(wF, wR, wC, ${d}, d2);
|
|
} else if (${h===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${h===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1),
|
|
getX(batch, xF, xR, xC, ${d} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2),
|
|
getW(wF, wR, wC, ${d} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};var kd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=we(this.outputShape.length);let i=t.padInfo.left,a=t.strideWidth,u=t.dilationWidth,l=t.filterHeight,c=t.filterWidth,p=c,m=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)m+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;m+=`
|
|
for (int r = 0; r < ${l}; r++) {
|
|
for (int d1 = 0; d1 < ${t.inChannels}; d1 += 2) {
|
|
`;for(let g=0;g<c;g++)m+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;m+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(p+1)/2;g++){let x=g*2;if(m+=`
|
|
xC = xCCorner + ${x*u};
|
|
`,a===1){if(x<c&&(i%2===1?(m+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
|
|
xTexelC${x} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${x}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x}Ready = 1;
|
|
}
|
|
`,u===1&&x>0?m+=`
|
|
xC${x} = vec4(xTexelC${x-2}.zw, xTexelC${x}.xy);
|
|
`:m+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${x} = vec4(previous.zw, xTexelC${x}.xy);
|
|
} else {
|
|
xC${x} = vec4(0.0, 0.0, xTexelC${x}.xy);
|
|
}
|
|
`):m+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
|
|
xTexelC${x} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${x}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x}Ready = 1;
|
|
}
|
|
|
|
xC${x} = xTexelC${x};
|
|
`,x+1<c)){let b=i%2===0?y.nearestLargerEven(u):u;u%2===0&&i%2===1||u%2!==0&&i%2!==1?(m+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
|
|
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${x+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x+1}Ready = 1;
|
|
}
|
|
`,u>1?m+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
xC${x+1} = vec4(previous.zw, xTexelC${x+1}.xy);
|
|
} else {
|
|
xC${x+1} = vec4(0.0, 0.0, xTexelC${x+1}.xy);
|
|
}
|
|
`:m+=`
|
|
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.xy);
|
|
`):b===1?m+=`
|
|
xC${x+1} = xTexelC${x};
|
|
`:m+=`
|
|
xCOffset = xC + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
|
|
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${x+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x+1}Ready = 1;
|
|
}
|
|
|
|
xC${x+1} = xTexelC${x+1};
|
|
`}}else x<c&&(i%2===1?(m+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
|
|
xTexelC${x} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${x}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${x+1}Ready == 0) {
|
|
xTexelC${x+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${x+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x+1}Ready = 1;
|
|
}
|
|
|
|
xC${x} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
|
|
`,x+1<c&&(m+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${x+1} = vec4(xTexelC${x+1}.xy, final.xy);
|
|
`)):(m+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
|
|
xTexelC${x} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${x}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${x}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
|
|
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${x+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${x+1}Ready = 1;
|
|
}
|
|
|
|
xC${x} = vec4(
|
|
xTexelC${x}.xy, xTexelC${x+1}.xy);
|
|
`,x+1<c&&(m+=`
|
|
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
|
|
`)));x<c&&(m+=`
|
|
wTexel = getW(r, ${x}, d1, d2);
|
|
dotProd += xC${x}.xxzz * vec4(wTexel.xy, wTexel.xy);
|
|
if(d1 + 1 < ${t.inChannels}) {
|
|
dotProd += xC${x}.yyww * vec4(wTexel.zw, wTexel.zw);
|
|
}
|
|
`,x+1<c&&(m+=`
|
|
wTexel = getW(r, ${x+1}, d1, d2);
|
|
dotProd += xC${x+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
|
|
if(d1 + 1 < ${t.inChannels}) {
|
|
dotProd += xC${x+1}.yyww * vec4(wTexel.zw, wTexel.zw);
|
|
}
|
|
`))}m+=`
|
|
}
|
|
`,m+=`
|
|
}
|
|
`,m+=`
|
|
}
|
|
`;let f="",d="";n&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,d="result = activation(result);");let h=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${f}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${m}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${h}
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}};var mC=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=t,this.enableShapeUniforms=we(this.outputShape.length);let{dataFormat:n}=e,o=Ge(),s=n==="channelsLast",i=s?1:2,a=s?2:3,u=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${t[2]} && pos < ${t[1]}) {`,l="";for(let c=0;c<=1;c++)for(let p=0;p<=1;p++)l+=`
|
|
blockIndex = rc.z + ${p};
|
|
pos = rc.y + ${c};
|
|
|
|
${u}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${i}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${a}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${s}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${c*2+p}] = getChannel(
|
|
getA(rc.x, d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${c*2+p}] = getChannel(
|
|
getA(rc.x, ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${o.output} = result;
|
|
}
|
|
`}};function fC(r,t){let e=r.length;return e>=3?t?[...r.slice(0,-3),r[e-3]*r[e-2],r[e-1]]:[...r.slice(0,-3),r[e-3],r[e-2]*r[e-1]]:!t&&e===1&&r[0]>1?[r[0],1]:null}function dC({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let u=r.shape,l=n.texData.get(r.dataId),c=e.inChannels,p=u[0]*u[1]*u[2],m=e.outChannels,f=e.dataFormat==="channelsLast",d=!1,h=!1,g,x=[];if(s!=null){let C=fC(s.shape,f);C!=null&&(s=it({inputs:{x:s},backend:n,attrs:{shape:C}}),x.push(s))}if(o!=null){let C=fC(o.shape,f);C!=null&&(o=it({inputs:{x:o},backend:n,attrs:{shape:C}}),x.push(o))}if(!((p===1||m===1)&&c>dk)&&l.isPacked&&f&&l.texture!=null&&u[2]%2!==0&&y.arraysEqual(l.shape.slice(-3),u.slice(-3))){let C=u[0]*u[1]*(u[2]+1),N={dataId:r.dataId,shape:[1,C,e.inChannels],dtype:r.dtype},_=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,y.assert(Eu(l.shape,N.shape),()=>`packed reshape ${l.shape} to ${N.shape} isn't free`);let A=it({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}});x.push(A);let $=Uc({a:N,b:A,backend:n,transposeA:d,transposeB:h,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i}),F=n.texData.get($.dataId);y.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=_,F.shape=e.outShape,g=tr({inputs:{x:$},backend:n}),g.shape=e.outShape,x.push($)}else{let C=e.outHeight*e.outWidth,N=it({inputs:{x:r},backend:n,attrs:{shape:f?[e.batchSize,C,e.inChannels]:[e.batchSize,e.inChannels,C]}}),_=it({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}}),A=Uc({a:f?N:_,b:f?_:N,transposeA:!f,transposeB:h,backend:n,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i});g=it({inputs:{x:A},backend:n,attrs:{shape:e.outShape}}),x.push(N),x.push(_),x.push(A)}for(let C of x)n.disposeIntermediateTensorInfo(C);return g}function hC({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=e,d=f==="channelsLast",h=u*l*c,g=m*p,x=[e.batchSize,h,g],b=!0,w=!1,C=[];if(s!=null){let Z=fC(s.shape,d);Z!=null&&(s=it({inputs:{x:s},backend:n,attrs:{shape:Z}}),C.push(s))}if(o!=null){let Z=fC(o.shape,d);Z!=null&&(o=it({inputs:{x:o},backend:n,attrs:{shape:Z}}),C.push(o))}let N=it({inputs:{x:t},backend:n,attrs:{shape:[1,h,y.sizeFromShape(t.shape)/h]}});C.push(N);let _=new mC(x,e),A=[r.shape,[e.padInfo.top,e.padInfo.left],[e.strideHeight,e.strideWidth],[e.dilationHeight,e.dilationWidth],[e.inChannels],[e.filterWidth*e.inChannels],[e.outWidth]],$=n.runWebGLProgram(_,[r],"float32",A),F=it({inputs:{x:$},backend:n,attrs:{shape:x}});C.push($),C.push(F);let P=o!=null,V=s!=null,G=a==="leakyrelu",W=a?bl(a,!0):null,q=new vd(d?F.shape:N.shape,d?N.shape:F.shape,d?[e.batchSize,g,e.outChannels]:[e.batchSize,e.outChannels,g],b,w,P,W,V,G),H=d?[F,N]:[N,F];if(o&&H.push(o),V&&H.push(s),G){let Z=n.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));H.push(Z),C.push(Z)}let j=n.runWebGLProgram(q,H,"float32"),Y=it({inputs:{x:j},backend:n,attrs:{shape:e.outShape}});C.push(j);for(let Z of C)n.disposeIntermediateTensorInfo(Z);return Y}function art(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n,p=v.convertConv2DDataFormat(u),m=v.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=dC({x:o,filter:s,convInfo:m,backend:e});else if(m.strideWidth<=2&&p==="channelsLast"&&z().getBool("WEBGL_EXP_CONV")){let h=new kd(m),g=[[m.padInfo.top,m.padInfo.left],[m.strideHeight,m.strideWidth],[m.dilationHeight,m.dilationWidth],[m.inHeight,m.inWidth]];f=e.runWebGLProgram(h,[o,s],"float32",g)}else if(z().getBool("WEBGL_CONV_IM2COL"))f=hC({x:o,filter:s,convInfo:m,backend:e});else{let h=new Td(m);f=e.runWebGLProgram(h,[o,s],"float32")}let d=it({inputs:{x:f},backend:e,attrs:{shape:m.outShape}});return e.disposeIntermediateTensorInfo(f),d}var fz={kernelName:Ko,backendName:"webgl",kernelFunc:art};var gC=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${t.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${t.outHeight}; yR++) {
|
|
int xR = wR + yR * ${e} - ${o};
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${t.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${i}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},xC=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dataFormat==="channelsLast",a=e-1-t.padInfo.top,u=n-1-t.padInfo.left,l=i?1:2,c=i?2:3,p=i?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${u});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${e}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${e} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${t.outChannels}; d2++) {
|
|
|
|
if (${i}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},yC=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.padInfo.front,i=t.padInfo.top,a=t.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${t.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${t.outDepth}; yF++) {
|
|
int xF = wF + yF * ${e} - ${s};
|
|
|
|
if (xF < 0 || xF >= ${t.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${t.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${i};
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${t.outWidth}; yC++) {
|
|
int xC = wC + yC * ${o} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},bC=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=e-1-t.padInfo.front,l=n-1-t.padInfo.top,c=o-1-t.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${e}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${s}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${t.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${e} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${i}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${o} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${t.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function lrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n,p=v.convertConv2DDataFormat(u),m=v.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),f=new gC(m);return e.runWebGLProgram(f,[o,s],"float32")}var dz={kernelName:mp,backendName:"webgl",kernelFunc:lrt};function urt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n,p=v.convertConv2DDataFormat(l),m=v.computeConv2DInfo(i,s.shape,a,1,u,c,!1,p),f=new xC(m);return e.runWebGLProgram(f,[o,s],"float32")}var hz={kernelName:jo,backendName:"webgl",kernelFunc:urt};function crt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=v.computeConv3DInfo(o.shape,s.shape,i,u,a),c=new pC(l);return e.runWebGLProgram(c,[o,s],"float32")}var gz={kernelName:Al,backendName:"webgl",kernelFunc:crt};function prt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n,l=v.computeConv3DInfo(o.shape,u,i,1,a),c=new yC(l);return e.runWebGLProgram(c,[o,s],"float32")}var xz={kernelName:fp,backendName:"webgl",kernelFunc:prt};function mrt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n,l=v.computeConv3DInfo(u,s.shape,a,1,i),c=new bC(l);return e.runWebGLProgram(c,[o,s],"float32")}var yz={kernelName:dp,backendName:"webgl",kernelFunc:mrt};var frt=Po+`
|
|
return cos(x);
|
|
`,drt=Ct({opSnippet:frt}),bz={kernelName:Xo,backendName:"webgl",kernelFunc:drt};var hrt=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,grt=Ct({opSnippet:hrt}),wz={kernelName:Yo,backendName:"webgl",kernelFunc:grt};var wC=class{constructor(t,e,n,o,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[i,a,u,l]=t,[c]=e,[p,m]=n;this.outputShape=[c,p,m,l];let f=o==="bilinear"?1:0,[d,h]=[`${a-1}.0`,`${u-1}.0`],[g,x,b]=p>1?[`${(a-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,C,N]=m>1?[`${(u-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
|
|
const float height_ratio = float(${g});
|
|
const float width_ratio = float(${w});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${i}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${x};
|
|
float width_scale = ${C};
|
|
|
|
float in_y = ${b};
|
|
if( in_y < 0.0 || in_y > ${d} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
float in_x = ${N};
|
|
if( in_x < 0.0 || in_x > ${h} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${f} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}};var xrt=r=>{let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,c=new wC(o.shape,s.shape,a,u,l);return e.runWebGLProgram(c,[o,s,i],"float32")},Cz={kernelName:da,backendName:"webgl",kernelFunc:xrt};var qc;(function(r){r.Prod="*",r.Sum="+"})(qc||(qc={}));var ng=class{constructor(t,e,n,o){this.op=t,this.outputShape=e,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let s=this.outputShape.length,i=this.op===qc.Prod?"1.0":"0.0",a=n?i:`getX(${Iz(s,"coords",this.op)})`,u=this.outputShape[this.outputShape.length-1],l="",c="";n?(l=o?`end != ${u-1}`:"end != 0",c=o?"end + 1":"end - 1"):(l=o?`end + pow2 < ${u}`:"end >= pow2",c=o?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${zt(s)} coords = getOutputCoords();
|
|
int end = ${Sz(s,"coords",this.op)};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${l}) {
|
|
int idx = ${c};
|
|
${Sz(s,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${Iz(s,"coords",this.op)});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Iz(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.x, ${t}.y`;if(r===3)return`${t}.x, ${t}.y, ${t}.z`;if(r===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function Sz(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.y`;if(r===3)return`${t}.z`;if(r===4)return`${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function CC(r,t,e,n,o,s){let i=t.shape.length,a=v.getAxesPermutation([n],i),u=t;a!=null&&(u=Oe({inputs:{x:t},backend:e,attrs:{perm:a}}));let l=v.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let c=u.shape[l],p=tr({inputs:{x:u},backend:e});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new ng(r,u.shape,!1,s),d=[[m]],h=p;p=e.runWebGLProgram(f,[p],p.dtype,d),e.disposeIntermediateTensorInfo(h)}if(o){let m=new ng(r,u.shape,o,s),f=p;p=e.runWebGLProgram(m,[p],p.dtype),e.disposeIntermediateTensorInfo(f)}if(a!=null){let m=v.getUndoAxesPermutation(a),f=Oe({inputs:{x:p},backend:e,attrs:{perm:m}});return e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(u),f}return p}function yrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return CC(qc.Prod,o,e,s,i,a)}var vz={kernelName:fa,backendName:"webgl",kernelFunc:yrt};function brt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return CC(qc.Sum,o,e,s,i,a)}var Nz={kernelName:Zo,backendName:"webgl",kernelFunc:brt};function wrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=Lw(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=pL(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var Tz={kernelName:hp,backendName:"webgl",kernelFunc:wrt};var IC=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=t,this.blockSize=e,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${e};
|
|
int offset_h = imod(h, ${e});
|
|
int in_w = w / ${e};
|
|
int offset_w = imod(w, ${e});
|
|
int offset_d = (offset_h * ${e} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Crt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i==="NHWC"?o.shape[1]:o.shape[2],l=i==="NHWC"?o.shape[2]:o.shape[3],c=i==="NHWC"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i==="NHWC"?[a,p,m,f]:[a,f,p,m],h=new IC(d,s,i);return e.runWebGLProgram(h,[o],o.dtype)}var kz={kernelName:ha,backendName:"webgl",kernelFunc:Crt};var Ed=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=we(this.outputShape.length);let i=t.filterHeight,a=t.filterWidth,u=t.outChannels/t.inChannels,l="",c="";n&&(o?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,c="result = activation(result);");let p=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${u};
|
|
int q = d2 - d1 * ${u};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${i}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${p}
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}};var _d=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=we(this.outputShape.length);let i=t.outChannels/t.inChannels,a=t.padInfo.left,u=t.strideWidth,l=t.dilationWidth,c=t.filterHeight,p=t.filterWidth,m=p,f=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let x=0;x<p;x++)f+=`
|
|
vec4 xTexelC${x*2};
|
|
int xTexelC${x*2}Ready;
|
|
vec4 xTexelC${x*2+1};
|
|
int xTexelC${x*2+1}Ready;
|
|
vec4 xC${x};`;f+=`
|
|
for (int r = 0; r < ${c}; r++) {
|
|
`;for(let x=0;x<p;x++)f+=`
|
|
xTexelC${x*2} = vec4(0.0);
|
|
xTexelC${x*2}Ready = 0;
|
|
xTexelC${x*2+1} = vec4(0.0);
|
|
xTexelC${x*2+1}Ready = 0;
|
|
xC${x} = vec4(0.0);`;f+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let x=0;x<(m+1)/2;x++){let b=x*2;if(f+=`
|
|
xC = xCCorner + ${b*l};
|
|
`,u===1){if(b<p&&(a%2===1?(f+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`,l===1&&b>0?f+=`
|
|
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
|
|
`:f+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
|
|
} else {
|
|
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
|
|
}
|
|
`):f+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xC${b} = xTexelC${b};
|
|
`,b+1<p)){let w=a%2===0?y.nearestLargerEven(l):l;l%2===0&&a%2===1||l%2!==0&&a%2!==1?(f+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${w};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
`,l>1?f+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);
|
|
} else {
|
|
xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);
|
|
}
|
|
`:f+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
|
|
`):w===1?f+=`
|
|
xC${b+1} = xTexelC${b};
|
|
`:f+=`
|
|
xCOffset = xC + ${w};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b+1} = xTexelC${b+1};
|
|
`}}else b<p&&(a%2===1?(f+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`,b+1<p&&(f+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
|
|
`)):(f+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(
|
|
xTexelC${b}.xy, xTexelC${b+1}.xy);
|
|
`,b+1<p&&(f+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`)));b<p&&(f+=`
|
|
wTexel = getW(r, ${b}, d1, q);
|
|
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
|
|
`,b+1<p&&(f+=`
|
|
wTexel = getW(r, ${b+1}, d1, q);
|
|
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}f+=`
|
|
}
|
|
`,f+=`
|
|
}
|
|
`;let d="",h="";n&&(o?d=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?d=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:d=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,h="result = activation(result);");let g=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${d}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${f}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${g}
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}};function Irt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u,dimRoundingMode:l}=n,c=u;c==null&&(c=[1,1]),y.assert(v.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=v.computeConv2DInfo(o.shape,s.shape,i,c,a,l,!0),m;z().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?m=new _d(p):m=new Ed(p);let f=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return e.runWebGLProgram(m,[o,s],"float32",f)}var Ez={kernelName:Jo,backendName:"webgl",kernelFunc:Irt};var SC=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.outChannels/t.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${i} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${t.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${t.outHeight}; yR++) {
|
|
int xR = wR + yR * ${e} - ${o};
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${t.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vC=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=e-1-t.padInfo.top,a=n-1-t.padInfo.left,u=t.outChannels/t.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${a});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${e}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${e} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${u}; dm++) {
|
|
int d2 = d1 * ${u} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Srt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n,p=v.computeConv2DInfo(o.shape,c,i,a,u,l,!0),m=new SC(p);return e.runWebGLProgram(m,[o,s],"float32")}var _z={kernelName:gp,backendName:"webgl",kernelFunc:Srt};function vrt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n,p=v.computeConv2DInfo(c,s.shape,i,a,u,l,!0),m=new vC(p);return e.runWebGLProgram(m,[o,s],"float32")}var Az={kernelName:xp,backendName:"webgl",kernelFunc:vrt};var NC=class{constructor(t){this.variableNames=["X"],this.outputShape=[t,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function Nrt(r){let{inputs:t,backend:e}=r,{x:n}=t,o=[...n.shape,...n.shape],s=y.sizeFromShape(n.shape),i=it({inputs:{x:n},backend:e,attrs:{shape:[s]}}),a=new NC(s),u=e.runWebGLProgram(a,[i],i.dtype),l=it({inputs:{x:u},backend:e,attrs:{shape:o}});return e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(u),l}var $z={kernelName:yp,backendName:"webgl",kernelFunc:Nrt};var TC=class{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let{inHeight:e,inWidth:n,padInfo:o,strideHeight:s,strideWidth:i,filterHeight:a,filterWidth:u,dilationHeight:l,dilationWidth:c}=t,{top:p,left:m}=o;this.userCode=`
|
|
const ivec2 strides = ivec2(${s}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${m});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${a}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${e}) {
|
|
for (int w = 0; w < ${u}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function Trt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=v.computeDilation2DInfo(o.shape,s.shape,i,a,"NHWC",u),c,p=new TC(l);c=e.runWebGLProgram(p,[o,s],"float32");let m=it({inputs:{x:c},backend:e,attrs:{shape:l.outShape}});return e.disposeIntermediateTensorInfo(c),m}var Dz={kernelName:$l,backendName:"webgl",kernelFunc:Trt};function krt(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=v.decodeEinsumEquation(o,s.length);v.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=v.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=v.getEinsumPermutation(f,u[g]),w;v.isIdentityPermutation(x)?w=s[g]:(w=Oe({inputs:{x:s[g]},backend:e,attrs:{perm:x}}),d.push(w));let C=w.shape.slice();for(let N=0;N<b.length;++N)C.splice(b[N],0,1);y.arraysEqual(w.shape,C)||(w=it({inputs:{x:w},backend:e,attrs:{shape:C}}),d.push(w)),m===null?m=w:(m=eg({inputs:{a:w,b:m},backend:e}),d.push(m))}h<p-1&&(l[h]>=0&&(m=Wc({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var Rz={kernelName:bp,backendName:"webgl",kernelFunc:krt};var Ert="return (x >= 0.0) ? x : (exp(x) - 1.0);",_rt=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,Art=Ct({opSnippet:Ert,packedOpSnippet:_rt}),Fz={kernelName:ts,backendName:"webgl",kernelFunc:Art};var $rt="return (b >= 1.0) ? a : a * (b + 1.0);",Drt=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,Rrt=r=>{let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Oo(Drt,n.shape,o.shape):new io($rt,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],n.dtype)},Oz={kernelName:wp,backendName:"webgl",kernelFunc:Rrt};var Frt=`
|
|
return vec4(equal(a, b));
|
|
`,Ort="return float(a == b);",Prt=le({opSnippet:Ort,packedOpSnippet:Frt,dtype:"bool",cpuKernelImpl:hL}),Pz={kernelName:xa,backendName:"webgl",kernelFunc:Prt};var Lrt=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${v.ERF_P};
|
|
float a1 = ${v.ERF_A1};
|
|
float a2 = ${v.ERF_A2};
|
|
float a3 = ${v.ERF_A3};
|
|
float a4 = ${v.ERF_A4};
|
|
float a5 = ${v.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Mrt=Ct({opSnippet:Lrt}),Lz={kernelName:ga,backendName:"webgl",kernelFunc:Mrt};var zrt=Po+`
|
|
return exp(x);
|
|
`,Brt=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,bk=Ct({opSnippet:zrt,packedOpSnippet:Brt,cpuKernelImpl:gL,dtype:"float32"}),Mz={kernelName:es,backendName:"webgl",kernelFunc:bk};function kC(r){let{inputs:t,attrs:e,backend:n}=r,{dim:o}=e,{input:s}=t,i=s.shape.length,a=s.shape.slice(),u=o;return o<0&&(y.assert(-(i+1)<=o,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+o+1),a.splice(u,0,1),it({inputs:{x:s},backend:n,attrs:{shape:a}})}var zz={kernelName:ui,backendName:"webgl",kernelFunc:kC};var Bz="return exp(x) - 1.0;",Vrt=Ct({opSnippet:Bz,packedOpSnippet:Bz,cpuKernelImpl:xL}),Vz={kernelName:ya,backendName:"webgl",kernelFunc:Vrt};var og=class{constructor(t,e,n){this.variableNames=["real","imag"];let o=e[1];this.outputShape=e;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,i=n?`${o}.0`:"1.0",a;if(t==="real")a="return real * expR - imag * expI;";else if(t==="imag")a="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${t}.`);this.userCode=`
|
|
const float exponentMultiplier = ${s};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${a}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${o});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${i};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function EC(r,t,e){let n=e.texData.get(r.dataId),o=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=o/s,a=it({inputs:{x:r},backend:e,attrs:{shape:[i,s]}}),u=a.shape,l=new og("real",u,t),c=new og("imag",u,t),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:u},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:u}],m=e.runWebGLProgram(l,p,"float32"),f=e.runWebGLProgram(c,p,"float32"),d=En({inputs:{real:m,imag:f},backend:e});e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f);let h=it({inputs:{x:d},backend:e,attrs:{shape:r.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(d),h}function Grt(r){let{inputs:t,backend:e}=r,{input:n}=t;return EC(n,!1,e)}var Gz={kernelName:Cp,backendName:"webgl",kernelFunc:Grt};var _C=class{constructor(t,e){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Cl(r){let{backend:t,attrs:e}=r,{shape:n,value:o}=e,{dtype:s}=e;if(s=s||y.inferDtype(o),s==="string"){let i=y.getArrayFromDType(s,y.sizeFromShape(n));return i.fill(o),t.makeTensorInfo(n,s,i)}else{let i=new _C(n,o),a=[[o]];return t.runWebGLProgram(i,[],s,a)}}var Wz={kernelName:Dl,backendName:"webgl",kernelFunc:Cl};var AC=class{constructor(t){this.variableNames=["Image"],this.outputShape=[];let e=t[2];this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${e} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${e}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};var Uz={kernelName:ba,backendName:"webgl",kernelFunc:({inputs:r,backend:t})=>{let{image:e}=r,n=t,o=new AC(e.shape);return n.runWebGLProgram(o,[e],e.dtype)}};var Hz="return floor(x);",Wrt=Ct({opSnippet:Hz,packedOpSnippet:Hz,cpuKernelImpl:yL}),qz={kernelName:rs,backendName:"webgl",kernelFunc:Wrt};var Urt=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Hrt=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,qrt=le({opSnippet:Urt,packedOpSnippet:Hrt,dtype:"int32"}),Kz={kernelName:ns,backendName:"webgl",kernelFunc:qrt};var $C=class{constructor(t){this.variableNames=["A"];let e=Ge(),[n,o]=t;this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);
|
|
|
|
vec4 values = ${e.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}};var DC=class{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let e=Ge(),[n,o]=t;this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${o}.0, ${n}.0);
|
|
vec4 values = ${e.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${e.output} = result;
|
|
}
|
|
`}};var jz={kernelName:Yd,backendName:"webgl",kernelFunc:Krt},Ad,wk=z().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Krt(r){let{inputs:t,backend:e,attrs:n}=r,{pixels:o}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&o instanceof HTMLVideoElement,a=typeof HTMLImageElement!="undefined"&&o instanceof HTMLImageElement,[u,l]=i?[o.videoWidth,o.videoHeight]:[o.width,o.height],c=[l,u],p=[l,u,s];if(a||i){let h=z().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Ad==null||h!==wk)&&(wk=h,Ad=document.createElement("canvas").getContext("2d",{willReadFrequently:wk})),Ad.canvas.width=u,Ad.canvas.height=l,Ad.drawImage(o,0,0,u,l),o=Ad.canvas}let m=e.makeTensorInfo(c,"int32");e.texData.get(m.dataId).usage=jr.PIXELS,e.gpgpu.uploadPixelDataToTexture(e.getTexture(m.dataId),o);let f=z().getBool("WEBGL_PACK")?new DC(p):new $C(p),d=e.runWebGLProgram(f,[m],"int32");return e.disposeData(m.dataId),d}function jrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=v.convertConv2DDataFormat(c),g=v.computeConv2DInfo(o.shape,s.shape,u,p,l,m,!1,h),x,b=[],w=i!=null,C=a!=null,N=f==="leakyrelu",_=()=>{let $=[o,s],F=(P,V)=>{if(V==="NCHW"&&P.shape.length===1&&P.shape[0]!==1){let G=it({inputs:{x:P},backend:e,attrs:{shape:[P.shape[0],1,1]}});return b.push(G),G}return P};if(w&&$.push(F(i,c)),C&&$.push(F(a,c)),N){let P=e.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));$.push(P),b.push(P)}return $};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=dC({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else if(g.strideWidth<=2&&h==="channelsLast"&&z().getBool("WEBGL_EXP_CONV")){let $=f?bl(f,!0):null,F=new kd(g,w,$,C,N),P=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],V=_();x=e.runWebGLProgram(F,V,"float32",P)}else if(z().getBool("WEBGL_CONV_IM2COL"))x=hC({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else{let $=f?bl(f,!1):null,F=new Td(g,w,$,C,N),P=_();x=e.runWebGLProgram(F,P,"float32")}let A=it({inputs:{x},backend:e,attrs:{shape:g.outShape}});return b.push(x),b.forEach($=>e.disposeIntermediateTensorInfo($)),A}var Xz={kernelName:Ii,backendName:"webgl",kernelFunc:jrt};function Xrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),y.assert(v.eitherStridesOrDilationsAreOne(u,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${h}'`);let g=v.computeConv2DInfo(o.shape,s.shape,u,h,l,p,!0),x=z().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=m?bl(m,x):null,w=[o,s],C=i!=null,N=a!=null,_=m==="leakyrelu";if(C&&w.push(i),N&&w.push(a),_){let P=e.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));w.push(P),d.push(P)}let A;x?A=new _d(g,C,b,N,_):A=new Ed(g,C,b,N,_);let $=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=e.runWebGLProgram(A,w,"float32",$);return d.forEach(P=>e.disposeIntermediateTensorInfo(P)),F}var Yz={kernelName:Si,backendName:"webgl",kernelFunc:Xrt};var RC=class{constructor(t,e,n,o){this.sliceDim=t,this.strides=e,this.paramsShape=o,this.variableNames=["x","indices"],this.outputShape=n;let s=zt(n.length),i=`
|
|
int index;`;for(let a=0;a<this.sliceDim;a++)i+=`
|
|
index = round(getIndices(coords[0], ${a}));
|
|
out_of_bounds = out_of_bounds || index < 0;
|
|
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[a]};
|
|
flattenIndex += index * ${this.strides[a]};`;this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
bool out_of_bounds = false;
|
|
|
|
${i}
|
|
|
|
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Yrt(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=o.shape,i=s[s.length-1],a=y.sizeFromShape(n.shape),[u,l,c,p]=v.prepareAndValidate(n,o),m=it({inputs:{x:o},backend:e,attrs:{shape:[l,i]}}),f=it({inputs:{x:n},backend:e,attrs:{shape:[y.sizeFromShape(n.shape)/c,c]}});if(e.shouldExecuteOnCPU([n,o])||n.dtype==="string"){let x=e.readSync(o.dataId),b=e.bufferSync(n),w=bL(x,b,n.dtype,l,i,c,p,n.shape,a);return e.makeTensorInfo(u,n.dtype,w.values)}let d=new RC(i,p,[l,c],n.shape),h=e.runWebGLProgram(d,[f,m],f.dtype),g=it({inputs:{x:h},backend:e,attrs:{shape:u}});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(h),g}var Zz={kernelName:wa,backendName:"webgl",kernelFunc:Yrt};var FC=class{constructor(t,e){this.variableNames=["A","indices"],this.outputShape=e,this.rank=e.length;let n=zt(this.rank),o=Zrt(t,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${t[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${o}));
|
|
}
|
|
`}};function Zrt(r,t){let e=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let o=0;o<r.length;o++)o===2?n.push("index"):n.push(`${e[o]}`);return n.join()}function Ck(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,indices:s}=t,{axis:i,batchDims:a}=n,u=y.parseAxisParam(i,o.shape)[0];if(z().get("DEBUG")){let b=e.readSync(s.dataId),w=o.shape[u];for(let C=0;C<b.length;++C){let N=b[C];y.assert(N<=w-1&&N>=0,()=>`GatherV2: the index value ${N} is not in [0, ${w-1}]`)}}let l=v.segment_util.collectGatherOpShapeInfo(o,s,u,a),c=y.sizeFromShape(s.shape),p=[],m=it({inputs:{x:o},backend:e,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),f=it({inputs:{x:s},backend:e,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(m),p.push(f);let d=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(e.shouldExecuteOnCPU([o,s])||o.dtype==="string"){let b=e.bufferSync(f),w=e.bufferSync(m),C=wL(w,b,d);return p.forEach(N=>e.disposeIntermediateTensorInfo(N)),e.makeTensorInfo(l.outputShape,C.dtype,C.values)}let h=new FC(m.shape,d),g=e.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=it({inputs:{x:g},backend:e,attrs:{shape:l.outputShape}});return p.forEach(b=>e.disposeIntermediateTensorInfo(b)),x}var Jz={kernelName:ci,backendName:"webgl",kernelFunc:Ck};var Jrt="return float(a > b);",Qrt=`
|
|
return vec4(greaterThan(a, b));
|
|
`,tnt=le({opSnippet:Jrt,packedOpSnippet:Qrt,cpuKernelImpl:CL,dtype:"bool"}),Qz={kernelName:Ca,backendName:"webgl",kernelFunc:tnt};var ent="return float(a >= b);",rnt=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,nnt=le({opSnippet:ent,packedOpSnippet:rnt,dtype:"bool",cpuKernelImpl:IL}),t3={kernelName:ss,backendName:"webgl",kernelFunc:nnt};function ont(r){let{inputs:t,backend:e}=r,{input:n}=t;return EC(n,!0,e)}var e3={kernelName:Ip,backendName:"webgl",kernelFunc:ont};var snt="return float(!isnan(x) && !isinf(x));",int=Ct({opSnippet:snt,dtype:"bool"}),r3={kernelName:Ia,backendName:"webgl",kernelFunc:int};var ant="return float(isinf(x));",lnt=Ct({opSnippet:ant,dtype:"bool"}),n3={kernelName:Sa,backendName:"webgl",kernelFunc:lnt};var unt="return float(isnan(x));",cnt=Ct({opSnippet:unt,dtype:"bool"}),o3={kernelName:va,backendName:"webgl",kernelFunc:cnt};var pnt="return float(a < b);",mnt=`
|
|
return vec4(lessThan(a, b));
|
|
`,fnt=le({opSnippet:pnt,packedOpSnippet:mnt,cpuKernelImpl:SL,dtype:"bool"}),s3={kernelName:Na,backendName:"webgl",kernelFunc:fnt};var dnt="return float(a <= b);",hnt=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,gnt=le({opSnippet:dnt,packedOpSnippet:hnt,cpuKernelImpl:vL,dtype:"bool"}),i3={kernelName:Ta,backendName:"webgl",kernelFunc:gnt};function xnt(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=NL(n,o,s);return t.makeTensorInfo([i.length],"float32",i)}var a3={kernelName:vp,backendName:"webgl",kernelFunc:xnt};var ynt=Po+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,bnt=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,wnt=Ct({opSnippet:ynt,packedOpSnippet:bnt,cpuKernelImpl:TL}),l3={kernelName:as,backendName:"webgl",kernelFunc:wnt};var Cnt=Po+`
|
|
return log(1.0 + x);
|
|
`,Int=Ct({opSnippet:Cnt}),u3={kernelName:ka,backendName:"webgl",kernelFunc:Int};var Snt="return float(a >= 1.0 && b >= 1.0);",vnt=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,Nnt=le({opSnippet:Snt,packedOpSnippet:vnt,dtype:"bool"}),c3={kernelName:Ea,backendName:"webgl",kernelFunc:Nnt};var Tnt="return float(!(x >= 1.0));",knt=Ct({opSnippet:Tnt}),p3={kernelName:_a,backendName:"webgl",kernelFunc:knt};var Ent="return float(a >= 1.0 || b >= 1.0);",_nt=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Ant=le({opSnippet:Ent,packedOpSnippet:_nt,dtype:"bool"}),m3={kernelName:Aa,backendName:"webgl",kernelFunc:Ant};var OC=class{constructor(t,e,n,o,s){this.variableNames=["x"],this.outputShape=[];let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${i}; j <= ${i}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${a}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${u};
|
|
setOutput(val);
|
|
}
|
|
`}};var PC=class{constructor(t,e,n,o,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${i};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${i}; j <= ${i}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${a}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${u};
|
|
setOutput(result);
|
|
}
|
|
`}};var $nt=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n,l=z().getBool("WEBGL_PACK_NORMALIZATION")?new PC(o.shape,s,i,a,u):new OC(o.shape,s,i,a,u);return e.runWebGLProgram(l,[o],o.dtype)},f3={kernelName:Rl,backendName:"webgl",kernelFunc:$nt};var LC=class{constructor(t,e,n,o,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=t,this.depth=t[3],this.depthRadius=e,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${e})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${e} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${o}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${o})
|
|
* float(${s})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${s});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};var Dnt=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n,p=new LC(o.shape,a,u,l,c);return e.runWebGLProgram(p,[o,s,i],o.dtype)},d3={kernelName:Np,backendName:"webgl",kernelFunc:Dnt};function h3(r,t,e,n){let o=y.sizeFromShape(t),i=y.sizeFromShape(r.shape)/o,a=it({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Un(a,r.dtype,"max",n),l=it({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}function Ik(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=v.getAxesPermutation(l,a),p=c!=null,m=e.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let w=e.texData.get(f.dataId).values,C=new Array(a);for(let A=0;A<C.length;A++)C[A]=o.shape[c[A]];let N=Vc(w,o.shape,o.dtype,c,C);f=e.makeTensorInfo(C,o.dtype);let _=e.texData.get(f.dataId);_.values=N}else f=Au(o,c,e);l=v.getInnerMostAxes(l.length,a)}v.assertAxesAreInnerMostDims("max",l,a);let[d,h]=v.computeOutAndReduceShapes(f.shape,l),g=d;i&&(g=v.expandShapeToKeepDim(d,u));let x;if(m){let w=e.texData.get(f.dataId).values,C=kL(w,y.sizeFromShape(h),g,o.dtype);x=e.makeTensorInfo(g,o.dtype);let N=e.texData.get(x.dataId);N.values=C}else x=h3(f,h,g,e);return p&&e.disposeIntermediateTensorInfo(f),x}var g3={kernelName:ls,backendName:"webgl",kernelFunc:Ik};var Rnt=Sd+`
|
|
return max(a, b);
|
|
`,Fnt=`
|
|
vec4 result = vec4(max(a, b));
|
|
bvec4 isNaNA = isnan(a);
|
|
bvec4 isNaNB = isnan(b);
|
|
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
|
|
`+Yi+`
|
|
return result;
|
|
`,Ont=le({opSnippet:Rnt,packedOpSnippet:Fnt,cpuKernelImpl:EL}),x3={kernelName:us,backendName:"webgl",kernelFunc:Ont};function Pnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;Qs(o,"maxPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(v.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=v.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return tr({inputs:{x:o},backend:e});let p=new ei(c,"max",!1);return e.runWebGLProgram(p,[o],o.dtype)}var y3={kernelName:cs,backendName:"webgl",kernelFunc:Pnt};function Lnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dataFormat:u,dimRoundingMode:l}=n,c=[1,1,1],p=v.computePool3DInfo(o.shape,s,i,c,a,l,u),m=new $u(p,"max",!1);return e.runWebGLProgram(m,[o],o.dtype)}var b3={kernelName:Fl,backendName:"webgl",kernelFunc:Lnt};var MC=class{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideHeight,n=t.strideWidth,o=t.dilationHeight,s=t.effectiveFilterHeight,i=t.effectiveFilterWidth,a=s-1-t.padInfo.top,u=i-1-t.padInfo.left,l=s*i-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${u});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${s};
|
|
wR += ${o}) {
|
|
float dyR = float(dyRCorner + wR) / ${e}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${i} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},zC=class{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.dilationDepth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterDepth,l=t.effectiveFilterHeight,c=t.effectiveFilterWidth,p=u-1-t.padInfo.front,m=l-1-t.padInfo.top,f=c-1-t.padInfo.left,d=u*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${m}, ${f});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${s}) {
|
|
float dyD = float(dyDCorner + wD) / ${e}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${i}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${a}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${d} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Mnt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=v.computePool3DInfo(i.shape,a,u,p,l,c),f=new $u(m,"max",!0),d=e.runWebGLProgram(f,[i],i.dtype),h=new zC(m),g=e.runWebGLProgram(h,[o,d],i.dtype);return e.disposeIntermediateTensorInfo(d),g}var w3={kernelName:kp,backendName:"webgl",kernelFunc:Mnt};function znt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;Qs([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=v.computePool2DInfo(a.shape,u,l,1,c,p),f=!0,d=new ei(m,"max",f),h=e.runWebGLProgram(d,[a],a.dtype),g=new MC(m),x=e.runWebGLProgram(g,[o,h],a.dtype);return e.disposeIntermediateTensorInfo(h),x}var C3={kernelName:Tp,backendName:"webgl",kernelFunc:znt};function I3(r,t,e,n){let o=new ei(e,"max",!1),s=n.runWebGLProgram(o,[r],"float32");o=new ei(e,"max",!0,!0,t);let i=n.runWebGLProgram(o,[r],"float32");return[s,i]}var S3={kernelName:Ep,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;y.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let l=[1,1];y.assert(v.eitherStridesOrDilationsAreOne(s,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${l}'`);let c=v.computePool2DInfo(n.shape,o,s,l,i),[p,m]=I3(n,a,c,u);return[p,m]}};function v3(r,t,e,n){let o=y.sizeFromShape(t),i=y.sizeFromShape(r.shape)/o,a=it({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Un(a,"float32","mean",n),l=it({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}var N3={kernelName:ps,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{keepDims:o,axis:s}=t,i=e,a=n.shape.length,u=y.parseAxisParam(s,n.shape),l=u,c=v.getAxesPermutation(l,a),p=c!=null,m=i.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let C=i.texData.get(d.dataId).values,N=new Array(a);for(let $=0;$<N.length;$++)N[$]=n.shape[c[$]];let _=Vc(C,n.shape,n.dtype,c,N);d=i.makeTensorInfo(N,n.dtype);let A=i.texData.get(d.dataId);A.values=_}else d=Au(n,c,i);f.push(d),l=v.getInnerMostAxes(l.length,a)}v.assertAxesAreInnerMostDims("sum",l,a);let[h,g]=v.computeOutAndReduceShapes(d.shape,l),x=h;o&&(x=v.expandShapeToKeepDim(h,u));let b=v3(d,g,x,i);for(let w of f)i.disposeIntermediateTensorInfo(w);return b}};function Bnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=v.getAxesPermutation(l,a),p=o;c!=null&&(p=Oe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=v.getInnerMostAxes(l.length,o.shape.length)),v.assertAxesAreInnerMostDims("min",l,a);let[m,f]=v.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=it({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Un(h,h.dtype,"min",e),x;if(i){let b=v.expandShapeToKeepDim(m,u);x=it({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=it({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var T3={kernelName:ms,backendName:"webgl",kernelFunc:Bnt};var Vnt=Sd+`
|
|
return min(a, b);
|
|
`,Gnt=`
|
|
vec4 result = vec4(min(a, b));
|
|
bvec4 isNaNA = isnan(a);
|
|
bvec4 isNaNB = isnan(b);
|
|
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
|
|
`+Yi+`
|
|
return result;
|
|
`,Wnt=le({opSnippet:Vnt,packedOpSnippet:Gnt,cpuKernelImpl:_L}),k3={kernelName:fs,backendName:"webgl",kernelFunc:Wnt};var BC=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=e.map((c,p)=>c[0]+t[p]+c[1]);let o=t.length,s=zt(o),i=e.map(c=>c[0]).join(","),a=e.map((c,p)=>c[0]+t[p]).join(","),u=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o),l=n==="reflect"?0:1;if(o===1){this.userCode=`
|
|
int start = ${i};
|
|
int end = ${a};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${i});
|
|
${s} end = ${s}(${a});
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
for (int i = 0; i < ${o}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${u}));
|
|
}
|
|
`}};var VC=class{constructor(t,e,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.map((d,h)=>d[0]+t[h]+d[1]);let o=t.length,s=zt(o),i=e.map(d=>d[0]).join(","),a=e.map((d,h)=>d[0]+t[h]).join(","),u=Qe("rc",o),l=Qe("source",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${l.slice(-2).join()})`,m=n==="reflect"?0:1,f="";if(o===1){let d=`
|
|
${s} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${m};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${m};
|
|
}
|
|
source -= start;
|
|
`;f=`
|
|
${s} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${u[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`}else{let d=`
|
|
${s} source = rc;
|
|
${s} lt = ${s}(lessThan(source, start));
|
|
${s} gte = ${s}(greaterThanEqual(source, end));
|
|
${s} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${m}) +
|
|
gte * ((end - 1) * 2 - source + ${m});
|
|
source -= start;
|
|
`;f=`
|
|
${s} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${u[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${u[o-2]} += 1;
|
|
if(${u[o-2]} < ${this.outputShape[o-2]}) {
|
|
${d}
|
|
result[2] = getChannel(getX(${l.join()}), ${p});
|
|
${u[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[3] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${s} start = ${s}(${i});
|
|
const ${s} end = ${s}(${a});
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};var Unt=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{paddings:o,mode:s}=e,i=z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new VC(n.shape,o,s):new BC(n.shape,o,s);return t.runWebGLProgram(i,[n],n.dtype)},E3={kernelName:ds,backendName:"webgl",kernelFunc:Unt};var Hnt=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,qnt=`
|
|
vec4 result = mod(a, b);
|
|
bvec4 isNaN = equal(b, vec4(0.0));
|
|
`+Yi+`
|
|
return result;
|
|
`,Knt=le({opSnippet:Hnt,packedOpSnippet:qnt}),_3={kernelName:$a,backendName:"webgl",kernelFunc:Knt};var GC=class{constructor(t,e,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[t,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${e-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${e-1}));
|
|
}
|
|
`}};var jnt=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Xnt=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,Sk=le({opSnippet:jnt,packedOpSnippet:Xnt,checkOutOfBounds:!0}),A3={kernelName:Qo,backendName:"webgl",kernelFunc:Sk};var $3="return a - b;",vk=le({opSnippet:$3,packedOpSnippet:$3,supportsComplex:!0,cpuKernelImpl:XL}),D3={kernelName:Fs,backendName:"webgl",kernelFunc:vk};function Nk(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=y.parseAxisParam([s],o.shape),a=Ik({inputs:{x:o},backend:e,attrs:{reductionIndices:i,keepDims:!1}}),u=v.expandShapeToKeepDim(a.shape,i),l=it({inputs:{x:a},backend:e,attrs:{shape:u}}),c=vk({inputs:{a:o,b:l},backend:e}),p=bk({inputs:{x:c},backend:e}),m=Wc({inputs:{x:p},backend:e,attrs:{axis:i,keepDims:!1}}),f=it({inputs:{x:m},backend:e,attrs:{shape:u}}),d=Sk({inputs:{a:p,b:f},backend:e});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}var R3={kernelName:Ds,backendName:"webgl",kernelFunc:Nk};function Ynt(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n,u=a?o:Nk({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),l=u.shape[0],c=u.shape[1],p=new GC(l,c,s),m=[[i]],f=e.runWebGLProgram(p,[u],"int32",m);return a||e.disposeIntermediateTensorInfo(u),f}var F3={kernelName:_p,backendName:"webgl",kernelFunc:Ynt};var Znt=fr+`
|
|
return -x;
|
|
`,Jnt=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Qnt(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])){let s=e.texData.get(n.dataId),[i,a]=$L(s.values,n.shape,n.dtype);return e.makeTensorInfo(a,n.dtype,i)}let o;return z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new so(n.shape,Jnt):o=new tn(n.shape,Znt),e.runWebGLProgram(o,[n],n.dtype)}var O3={kernelName:pi,backendName:"webgl",kernelFunc:Qnt};var tot=Ur.nonMaxSuppressionV3Impl;function eot(r){v.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),{selectedIndices:p}=tot(l,c,i,a,u);return e.makeTensorInfo([p.length],"int32",new Int32Array(p))}var P3={kernelName:Ra,backendName:"webgl",kernelFunc:eot};var rot=Ur.nonMaxSuppressionV4Impl;function not(r){v.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=rot(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],"int32",new Int32Array(m)),e.makeTensorInfo([],"int32",new Int32Array([f]))]}var L3={kernelName:Fa,backendName:"webgl",kernelFunc:not};var oot=Ur.nonMaxSuppressionV5Impl;function sot(r){v.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:x}=oot(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],"int32",new Int32Array(g)),e.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var M3={kernelName:Oa,backendName:"webgl",kernelFunc:sot};var WC=class{constructor(t,e,n,o){this.variableNames=["indices"],this.outputShape=[t,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${o}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}};var iot=r=>{let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n,l=y.sizeFromShape(o.shape),c=new WC(l,i,a,u),p=it({inputs:{x:o},backend:e,attrs:{shape:[l]}}),m=e.runWebGLProgram(c,[p],s);e.disposeIntermediateTensorInfo(p);let f=[...o.shape,i],d=it({inputs:{x:m},backend:e,attrs:{shape:f}});return e.disposeIntermediateTensorInfo(m),d},z3={kernelName:gs,backendName:"webgl",kernelFunc:iot};function sg(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="complex64"){let o=wl({inputs:{input:n},backend:e}),s=sg({inputs:{x:o},backend:e}),i=Hc({inputs:{input:n},backend:e}),a=sg({inputs:{x:i},backend:e}),u=En({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Cl({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:e})}var B3={kernelName:wi,backendName:"webgl",kernelFunc:sg};function V3(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let o=wl({inputs:{input:n},backend:e}),s=V3({inputs:{x:o},backend:e}),i=Hc({inputs:{input:n},backend:e}),a=sg({inputs:{x:i},backend:e}),u=En({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Cl({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:e})}var G3={kernelName:mi,backendName:"webgl",kernelFunc:V3};function aot(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return kC({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=kC({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=yk({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var W3={kernelName:fi,backendName:"webgl",kernelFunc:aot};var UC=class{constructor(t,e,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=e.map((l,c)=>l[0]+t[c]+l[1]);let o=t.length,s=zt(o),i=e.map(l=>l[0]).join(","),a=e.map((l,c)=>l[0]+t[c]).join(","),u=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o);if(o===1){this.userCode=`
|
|
int start = ${i};
|
|
int end = ${a};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${i});
|
|
${s} end = ${s}(${a});
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${u}));
|
|
}
|
|
}
|
|
`}};var HC=class{constructor(t,e,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=e.map((h,g)=>h[0]+t[g]+h[1]);let o=t.length,s=zt(o),i=e.map(h=>h[0]).join(","),a=e.map((h,g)=>h[0]+t[g]).join(","),u=Qe("rc",o),l=Qe("source",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${l.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${u[o-1]} += 1;
|
|
if(${c}) {
|
|
`,o===1?"":`}
|
|
rc = outputLoc;
|
|
${u[o-2]} += 1;
|
|
if(${u[o-2]} < ${this.outputShape[o-2]}) {`,o===1?"":` ${u[o-1]} += 1;
|
|
if(${c}) {`],f=o===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=o===1?2:4;h<g;h++)d+=`
|
|
${m[h]}
|
|
if (${f}) {
|
|
result[${h}] = float(value);
|
|
} else {
|
|
${s} source = rc - start;
|
|
result[${h}] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`;d+=o===1?"} ":"}}",this.userCode=`
|
|
const ${s} start = ${s}(${i});
|
|
const ${s} end = ${s}(${a});
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}};var Tk=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;if(y.sizeFromShape(o.shape)===0){let l=s.map((c,p)=>c[0]+o.shape[p]+c[1]);return Cl({backend:e,attrs:{shape:l,value:i,dtype:o.dtype}})}let a=z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new HC(o.shape,s,i):new UC(o.shape,s,i),u=[[i]];return e.runWebGLProgram(a,[o],o.dtype,u)},U3={kernelName:xs,backendName:"webgl",kernelFunc:Tk};var lot=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,uot=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
bvec4 isNaN1 = lessThan(a, vec4(0.0));
|
|
bvec4 isNaN2 = lessThan(floor(b), b);
|
|
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
|
|
`+Yi+`
|
|
return result;
|
|
`,cot=le({opSnippet:lot,packedOpSnippet:uot}),H3={kernelName:ys,backendName:"webgl",kernelFunc:cot};function pot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=[],l=y.parseAxisParam(s,o.shape),c=l,p=v.getAxesPermutation(c,a),m=o;p!=null&&(m=Oe({inputs:{x:o},backend:e,attrs:{perm:p}}),c=v.getInnerMostAxes(c.length,a),u.push(m)),v.assertAxesAreInnerMostDims("prod",c,a);let f;if(e.shouldExecuteOnCPU([m])){let d=e.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=RL(m.shape,m.dtype,d,c);f=e.makeTensorInfo(g,x,h)}else{let[d,h]=v.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=it({inputs:{x:m},backend:e,attrs:{shape:[-1,g]}}),b=Wu(o.dtype),w=Un(x,b,"prod",e);f=it({inputs:{x:w},backend:e,attrs:{shape:d}}),u.push(x),u.push(w)}if(i){u.push(f);let d=v.expandShapeToKeepDim(f.shape,l);f=it({inputs:{x:f},backend:e,attrs:{shape:d}})}return u.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var q3={kernelName:ws,backendName:"webgl",kernelFunc:pot};function mot(r){let{inputs:t,backend:e,attrs:n}=r,{paramsNestedSplits:o,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:a}=n,u=o.map(x=>e.readSync(x.dataId)),l=o.map(x=>x.shape),c=e.readSync(s.dataId),p=e.readSync(i.dataId),[m,f,d]=FL(u,l,c,s.shape,s.dtype,p,i.shape,a),h=m.map(x=>e.makeTensorInfo([x.length],"int32",x)),g=e.makeTensorInfo(d,s.dtype,f);return h.concat([g])}var K3={kernelName:Ap,backendName:"webgl",kernelFunc:mot};function fot(r){let{inputs:t,backend:e}=r,{starts:n,limits:o,deltas:s}=t,i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=OL(i,n.shape,n.dtype,a,o.shape,u,s.shape),p=e.makeTensorInfo([l.length],"int32",l),m=e.makeTensorInfo([c.length],n.dtype,c);return[p,m]}var j3={kernelName:$p,backendName:"webgl",kernelFunc:fot};function dot(r){let{inputs:t,backend:e,attrs:n}=r,{shape:o,values:s,defaultValue:i,rowPartitionTensors:a}=t,{rowPartitionTypes:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),p=e.readSync(i.dataId),m=a.map(g=>e.readSync(g.dataId)),f=a.map(g=>g.shape),[d,h]=PL(l,o.shape,c,s.shape,s.dtype,p,i.shape,m,f,u);return e.makeTensorInfo(d,s.dtype,h)}var X3={kernelName:Dp,backendName:"webgl",kernelFunc:dot};var kk=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=LL(n,o,s,i);return t.makeTensorInfo([a.length],i,a)},Y3={kernelName:Ol,backendName:"webgl",kernelFunc:kk};var hot="return 1.0 / x;",got=Ct({opSnippet:hot}),Z3={kernelName:Pa,backendName:"webgl",kernelFunc:got};var xot=fr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,yot=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,bot=Ct({opSnippet:xot,packedOpSnippet:yot}),J3={kernelName:Cs,backendName:"webgl",kernelFunc:bot};var wot=fr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Cot=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Iot=Ct({opSnippet:wot,packedOpSnippet:Cot}),Q3={kernelName:vs,backendName:"webgl",kernelFunc:Iot};var qC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${m};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};var KC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]},
|
|
${c[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,
|
|
${u}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${m};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Sot(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new KC(o.shape,u,l,s,i):new qC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],"float32")}var tB={kernelName:Ss,backendName:"webgl",kernelFunc:Sot};var jC=class{constructor(t,e,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${m});
|
|
const float invWidthScale = float(${f});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${h});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function vot(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new jC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var eB={kernelName:Op,backendName:"webgl",kernelFunc:vot};var XC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${f};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};var YC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":f="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]},
|
|
${c[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,
|
|
${u}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${f};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Not(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new YC(o.shape,u,l,s,i):new XC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],o.dtype)}var rB={kernelName:Is,backendName:"webgl",kernelFunc:Not};var ZC=class{constructor(t,e,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${m});
|
|
const float invWidthScale = float(${f});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${h});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${u[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${u[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${o}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Tot(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new ZC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var nB={kernelName:Fp,backendName:"webgl",kernelFunc:Tot};var JC=class{constructor(t,e){this.variableNames=["x"];let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=t,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${t[0]} - coord - 1));
|
|
}
|
|
`;return}let o=a=>e.indexOf(a)!==-1&&t[a]!==1?`${t[a]} - coords[${a}] - 1`:`coords[${a}]`,s=t.map((a,u)=>o(u)).join(","),i=zt(n);this.userCode=`
|
|
void main() {
|
|
${i} coords = getOutputCoords();
|
|
setOutput(getX(${s}));
|
|
}
|
|
`}};var QC=class{constructor(t,e){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=t;let o=Qe("rc",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,i=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,a=zt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${t[0]} - rc - 1),
|
|
${t[0]} - rc - 1);
|
|
if(${s}){
|
|
result.g = getChannel(getX(${t[0]} - (rc + 1) - 1),
|
|
${t[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${u(o.slice())};
|
|
if(${s}){
|
|
result.g = ${l(o.slice())};
|
|
}
|
|
if(${i}) {
|
|
result.b = ${c(o.slice())};
|
|
if(${s}) {
|
|
result.a = ${p(o.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function u(d){return m(d)}function l(d){return d[n-1]="("+d[n-1]+" + 1)",m(d)}function c(d){return d[n-2]="("+d[n-2]+" + 1)",m(d)}function p(d){return d[n-1]="("+d[n-1]+" + 1)",d[n-2]="("+d[n-2]+" + 1)",m(d)}function m(d){let h=t.map((b,w)=>f(w,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return e.indexOf(d)!==-1&&t[d]!==1?`${t[d]} - ${h[d]} - 1`:`${h[d]}`}}};function kot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=o.shape.length,a=y.parseAxisParam(s,o.shape);if(i===0)return tr({inputs:{x:o},backend:e});let u=z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new QC(o.shape,a):new JC(o.shape,a);return e.runWebGLProgram(u,[o],o.dtype)}var oB={kernelName:Ns,backendName:"webgl",kernelFunc:kot};var tI=class{constructor(t,e){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=t[1],o=t[2];this.outputShape=t;let s="";typeof e=="number"?s=`float outputValue = ${e.toFixed(2)};`:s=`
|
|
vec3 fill = vec3(${e.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${s}
|
|
if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};var sB={kernelName:qa,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=new tI(n.shape,s),[l,c]=v.getImageCenter(i,n.shape[1],n.shape[2]),p=[[l,c,Math.sin(o),Math.cos(o)]];return a.runWebGLProgram(u,[n],n.dtype,p)}};var Eot=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,_ot=Ct({opSnippet:Eot}),iB={kernelName:Ts,backendName:"webgl",kernelFunc:_ot};var Aot="return inversesqrt(x);",$ot=Ct({opSnippet:Aot,cpuKernelImpl:ML}),aB={kernelName:ks,backendName:"webgl",kernelFunc:$ot};var $d=class{constructor(t,e,n,o,s,i,a=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=i;let u=zt(s.length),l=zt(i.length),c="";n===1?c="i":n===2&&(c="i, j");let p=`getIndices(${c})`,m="";o===1?m="i":o===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=e>1?"strides[j]":"strides";this.userCode=`
|
|
${u} strides = ${u}(${s});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${t}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${e}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${d};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${f};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Dot(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=v.calculateShapes(s,o,i),m=[p/l,l];if(p===0)return e.makeTensorInfo(i,o.dtype);let f=it({inputs:{x:o},backend:e,attrs:{shape:[u,a]}}),d=it({inputs:{x:s},backend:e,attrs:{shape:[u,l]}}),h=e.makeTensorInfo([],"float32",new Float32Array([0])),g=new $d(u,a,f.shape.length,d.shape.length,c,m),x=e.runWebGLProgram(g,[d,f,h],d.dtype),b=it({inputs:{x},backend:e,attrs:{shape:i}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(h),b}var lB={kernelName:La,backendName:"webgl",kernelFunc:Dot};var eI=class{constructor(t,e,n,o){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[t,n];let s="while (left < right) {",i=`for (int i = 0; i < ${Math.ceil(Math.log2(e+1))}; ++i) { if (left >= right) break;`,a=z().getNumber("WEBGL_VERSION")===2?s:i,u=o==="left"?"<":"<=";this.userCode=`
|
|
int findBound(int batch, float value) {
|
|
int left = 0;
|
|
int right = numInputs;
|
|
int mid;
|
|
${a}
|
|
mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${u} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int valueIndex = coords[1];
|
|
|
|
float value = getValues(batch, valueIndex);
|
|
|
|
setOutput(float(findBound(batch, value)));
|
|
}
|
|
`}};function Rot(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=new eI(o.shape[0],o.shape[1],s.shape[1],i),u=[[o.shape[1]]];return e.runWebGLProgram(a,[o,s],"int32",u)}var uB={kernelName:Pp,backendName:"webgl",kernelFunc:Rot};var rI=class{constructor(t,e,n){this.variableNames=["c","a","b"],this.outputShape=e;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",o="resRC";else{let a=["resRC.x","resRC.y","resRC.z","resRC.w"],u=[],l=[];for(let c=0;c<e.length;c++)l.push(`${a[c]}`),c<t&&u.push(`${a[c]}`);o=u.join(),s=l.join()}let i=zt(n);this.userCode=`
|
|
void main() {
|
|
${i} resRC = getOutputCoords();
|
|
float cVal = getC(${o});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${s}));
|
|
} else {
|
|
setOutput(getB(${s}));
|
|
}
|
|
}
|
|
`}};function Fot(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=new rI(n.shape.length,o.shape,o.shape.length);return e.runWebGLProgram(i,[n,o,s],sr(o.dtype,s.dtype))}var cB={kernelName:hi,backendName:"webgl",kernelFunc:Fot};var Oot=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${v.SELU_SCALEALPHA};
|
|
float scale = ${v.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,Pot=Ct({opSnippet:Oot}),pB={kernelName:Ma,backendName:"webgl",kernelFunc:Pot};var Lot=Po+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,Mot=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,zot=Ct({opSnippet:Lot,packedOpSnippet:Mot,cpuKernelImpl:BL}),mB={kernelName:_s,backendName:"webgl",kernelFunc:zot};var Bot=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Vot=Ct({opSnippet:Bot}),fB={kernelName:Ba,backendName:"webgl",kernelFunc:Vot};var Got=Po+`
|
|
return sin(x);
|
|
`,Wot=Ct({opSnippet:Got}),dB={kernelName:Es,backendName:"webgl",kernelFunc:Wot};var Uot=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Hot=Ct({opSnippet:Uot}),hB={kernelName:za,backendName:"webgl",kernelFunc:Hot};var qot=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Kot=Ct({opSnippet:qot}),gB={kernelName:Va,backendName:"webgl",kernelFunc:Kot};var jot=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;y.assert(o.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let a=s.reduce((x,b)=>x*b),u=[[0,0]];u.push(...i);for(let x=1+s.length;x<o.shape.length;++x)u.push([0,0]);let l=[],c=Tk({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),p=v.getReshaped(c.shape,s,a,!1),m=v.getPermuted(p.length,s.length,!1),f=v.getReshapedPermuted(c.shape,s,a,!1),d=it({inputs:{x:c},backend:e,attrs:{shape:p}}),h=Oe({inputs:{x:d},backend:e,attrs:{perm:m}}),g=it({inputs:{x:h},backend:e,attrs:{shape:f}});return l.push(c),l.push(d),l.push(h),l.forEach(x=>e.disposeIntermediateTensorInfo(x)),g},xB={kernelName:xi,backendName:"webgl",kernelFunc:jot};function Xot(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let a=e.readSync(n.dataId),u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=e.readSync(i.dataId)[0],[p,m,f,d,h]=GL(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var yB={kernelName:Pl,backendName:"webgl",kernelFunc:Xot};function Yot(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.readSync(o.dataId)),a=e.readSync(n.dataId),u=Array.from(e.readSync(s.dataId)),[l,c,p]=WL(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var bB={kernelName:Ga,backendName:"webgl",kernelFunc:Yot};function Zot(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=zw(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var wB={kernelName:Ll,backendName:"webgl",kernelFunc:Zot};function Jot(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=zw(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var CB={kernelName:Ml,backendName:"webgl",kernelFunc:Jot};function Qot(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=v.calculateShapes(s,o,a),f=!1;if(s.dtype==="string"){let x=e.bufferSync(o),b=e.bufferSync(s),w=y.decodeString(e.readSync(i.dataId)[0]),C=zL(x,b,a,m,c,l,u,p,w,f);return e.makeTensorInfo(a,C.dtype,C.values)}let d=new $d(l,u,o.shape.length,s.shape.length,p,[m,1],f),h=e.runWebGLProgram(d,[s,o,i],s.dtype),g=it({inputs:{x:h},backend:e,attrs:{shape:a}});return e.disposeIntermediateTensorInfo(h),g}var IB={kernelName:Lp,backendName:"webgl",kernelFunc:Qot};function tst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=y.parseAxisParam(i,o.shape)[0],u=v.prepareSplitSize(o,s,a),l=o.shape.length,c=new Array(l).fill(0),p=o.shape.slice();return u.map(m=>{let f=[...p];f[a]=m;let d=ri({inputs:{x:o},backend:e,attrs:{begin:c,size:f}});return c[a]+=m,d})}var SB={kernelName:yi,backendName:"webgl",kernelFunc:tst};var vB="return sqrt(x);",est=Ct({opSnippet:vB,packedOpSnippet:vB,cpuKernelImpl:UL}),NB={kernelName:As,backendName:"webgl",kernelFunc:est};var rst="return x * x;",nst=Ct({opSnippet:rst}),TB={kernelName:zl,backendName:"webgl",kernelFunc:nst};var kB="return (a - b) * (a - b);",ost=le({opSnippet:kB,packedOpSnippet:kB}),EB={kernelName:Rs,backendName:"webgl",kernelFunc:ost};function sst({inputs:r,attrs:t,backend:e}){let{x:n}=r,o=fr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new tn(n.shape,o);return e.runWebGLProgram(s,[n],n.dtype)}var _B={kernelName:po,backendName:"webgl",kernelFunc:sst};var nI=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=n;let o=n.length,s=zt(n.length),i=zt(n.length),a="";if(o===1)a="coords * strides + begin";else{let u=0;a=n.map((l,c)=>(u++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${u-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${s} begin = ${s}(${t});
|
|
${s} strides = ${s}(${e});
|
|
|
|
void main() {
|
|
${i} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}};function ist(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:C}=Le.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=it({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let A=Le.computeOutShape(b,w,C),$=ri({inputs:{x:o},backend:e,attrs:{begin:b,size:A}});N=it({inputs:{x:$},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo($)}else if(e.shouldExecuteOnCPU([o])){let $=e.readSync(o.dataId),F=wt(o.shape,o.dtype,$),P=HL(f,F,C,b);N=e.makeTensorInfo(d,o.dtype,P.values)}else{let $=new nI(b,C,f);N=e.runWebGLProgram($,[o],o.dtype)}let _=it({inputs:{x:N},backend:e,attrs:{shape:d}});return e.disposeIntermediateTensorInfo(N),_}var AB={kernelName:Wa,backendName:"webgl",kernelFunc:ist};function ast(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.readSync(c.dataId),f=e.readSync(p.dataId),[d,h]=qL(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],"string",d),e.makeTensorInfo(p.shape,"int32",h)]}var $B={kernelName:Bl,backendName:"webgl",kernelFunc:ast};function lst(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.readSync(s.dataId),u=e.readSync(i.dataId)[0],[l,c,p]=KL(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],"int32",l),e.makeTensorInfo([m],"string",c),e.makeTensorInfo([2],"int32",new Int32Array(p))]}var DB={kernelName:Vl,backendName:"webgl",kernelFunc:lst};function ust(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(o<=0)throw new Error("Number of buckets must be at least 1");let i=e.readSync(s.dataId),a=jL(i,o);return e.makeTensorInfo(s.shape,"int32",a)}var RB={kernelName:Gl,backendName:"webgl",kernelFunc:ust};var cst="return tan(x);",pst=Ct({opSnippet:cst}),FB={kernelName:Os,backendName:"webgl",kernelFunc:pst};var mst=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,fst=Ct({opSnippet:mst}),OB={kernelName:Ps,backendName:"webgl",kernelFunc:fst};var oI=class{constructor(t,e){this.variableNames=["A"];let n=new Array(t.length);for(let i=0;i<n.length;i++)n[i]=t[i]*e[i];this.outputShape=n,this.rank=n.length;let o=zt(this.rank),s=dst(t);this.userCode=`
|
|
void main() {
|
|
${o} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function dst(r){let t=r.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${r[0]})`;let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let o=0;o<r.length;o++)n.push(`imod(${e[o]}, ${r[o]})`);return n.join()}function Ek(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;if(o.dtype==="string"||o.shape.length>5){let u=e.readSync(o.dataId),l=o.dtype==="string"?u.map(m=>y.decodeString(m)):u,c=wt(o.shape,o.dtype,l),p=YL(c,s);return e.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new oI(o.shape,s);return e.runWebGLProgram(i,[o],o.dtype)}var PB={kernelName:Jn,backendName:"webgl",kernelFunc:Ek};var sI=class{constructor(t){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},iI=class{constructor(t){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Kc(r,t){t!==null&&r.disposeIntermediateTensorInfo(t)}function LB(r){let t=1;for(;t<r;)t*=2;return t}function hst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n,a=z().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),u=z().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),l=o.shape,c=l[l.length-1];if(e.shouldExecuteOnCPU([o])||c<a||s>u){let P=e.readSync(o.dataId),[V,G]=ZL(P,l,o.dtype,s,i);return[e.makeTensorInfo(V.shape,V.dtype,V.values),e.makeTensorInfo(G.shape,G.dtype,G.values)]}if(s===0)return l[l.length-1]=0,[e.makeTensorInfo(l,o.dtype,[]),e.makeTensorInfo(l,"int32",[])];if(c===1)return[o,Cl({attrs:{shape:l,dtype:"int32",value:0},backend:e})];let p=e.texData.get(o.dataId),m=p!==null&&p.isPacked,f=m?e.unpackTensor(o):o,h=y.sizeFromShape(l)/c,g=it({inputs:{x:f},attrs:{shape:[h,c]},backend:e});m&&Kc(e,f);let x=LB(s),b=LB(c),w=null,C=()=>w===null?[g,g]:[g,w],N=(P,V,G)=>{let W=C(),q=new sI(G),j=[[c],[w===null?1:0],[Number.NEGATIVE_INFINITY],[P],[V]],Y=w;w=e.runWebGLProgram(q,W,"int32",j),Kc(e,Y)};for(let P=1;P<x;P*=2){let V=P*2;for(let G=P;G>=1;G/=2)N(V,G,[h,b])}for(let P=b;P>x;P/=2){let V=C(),G=new iI([h,P/2]),q=[[c],[w===null?1:0],[x]],H=w;w=e.runWebGLProgram(G,V,"int32",q),Kc(e,H);let j=x/2,Y=j*2;for(let Z=j;Z>=1;Z/=2)N(Y,Z,w.shape)}let _=w;w=ri({inputs:{x:w},backend:e,attrs:{begin:0,size:[h,s]}}),Kc(e,_);let A=Ck({inputs:{x:g,indices:w},backend:e,attrs:{axis:1,batchDims:1}});Kc(e,g);let $=l.slice(0,-1);$.push(s),_=w,w=it({inputs:{x:w},attrs:{shape:$},backend:e}),Kc(e,_);let F=A;return A=it({inputs:{x:A},attrs:{shape:$},backend:e}),Kc(e,F),[A,w]}var MB={kernelName:Ua,backendName:"webgl",kernelFunc:hst};var aI=class{constructor(t,e,n,o,s,i){this.variableNames=["Image","Transforms"],this.outputShape=i;let a=n==="nearest"?1:2,u;switch(o){case"constant":u=1;break;case"reflect":u=2;break;case"wrap":u=3;break;case"nearest":u=4;break;default:u=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${u} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${u} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${u} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${t} && 0 <= coordX && coordX < ${e}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${s});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${s});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${e}));
|
|
float mapY = mapCoord(inY, float(${t}));
|
|
|
|
if (${a} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function gst(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=new aI(p,m,i,a,u,g);return e.runWebGLProgram(x,[o,s],"float32")}var zB={kernelName:Ha,backendName:"webgl",kernelFunc:gst};function xst(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;Qs(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:a,outputShape:u,indices:l}=JL(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],"int32",l)]}var BB={kernelName:Mp,backendName:"webgl",kernelFunc:xst};function yst(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o,a=i.shape.length,u=o.shape[s],l=new Array(a-1),c=0;for(let h=0;h<a;h++)h!==s&&(l[c++]=i.shape[h]);let p=[],m=new Array(a).fill(0),f=i.shape.slice();f[s]=1;let d=new Array(u);for(let h=0;h<d.length;h++){m[s]=h;let g=ri({inputs:{x:i},backend:e,attrs:{begin:m,size:f}}),x=it({inputs:{x:g},backend:e,attrs:{shape:l}});d[h]=x,p.push(g)}return p.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var VB={kernelName:bi,backendName:"webgl",kernelFunc:yst};var lI=class{constructor(t,e){this.variableNames=["x","segmentIds"];let n=t.windowSize,o=t.batchSize,s=t.inSize,i=t.numSegments,a=i*Math.ceil(s/n);this.outputShape=[o,a];let u="0.0",l="sumValue",c=Math.floor(n/4)*4,p=n%4,m=`
|
|
sumValue += dot(values, segFilter);
|
|
`,f="";s%n>0&&(f=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`);let d="";s%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${u};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${f}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${d}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${i})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${i})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${m}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function bst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n,a=o.shape.length,u=[],l=0,c=v.getAxesPermutation([l],a),p=o;c!=null&&(p=Oe({inputs:{x:o},backend:e,attrs:{perm:c}}),u.push(p),l=v.getInnerMostAxes(1,a)[0]);let m=v.segment_util.computeOutShape(p.shape,l,i),f=y.sizeFromShape([p.shape[l]]),d=it({inputs:{x:p},backend:e,attrs:{shape:[-1,f]}});u.push(d);let h=Wu(o.dtype),g=(C,N,_,A,$)=>{let F=C.shape[0],P=C.shape[1],V=v.segment_util.segOpComputeOptimalWindowSize(P,$),G={windowSize:V,inSize:P,batchSize:F,numSegments:$},W=new lI(G,N),q=e.compileAndRun(W,[C,_],A);if(u.push(q),q.shape[1]===$)return q;let H=kk({backend:e,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),j=Ek({inputs:{x:H},backend:e,attrs:{reps:[P/V]}});return u.push(H),u.push(j),g(q,N,j,A,$)},x=g(d,"unsortedSegmentSum",s,h,i),b=it({inputs:{x},backend:e,attrs:{shape:m}}),w=b;if(c!=null){u.push(b);let C=v.getUndoAxesPermutation(c);w=Oe({inputs:{x:w},backend:e,attrs:{perm:C}})}return u.forEach(C=>e.disposeIntermediateTensorInfo(C)),w}var GB={kernelName:Wl,backendName:"webgl",kernelFunc:bst};var wst=[kM,_M,AM,$M,RM,FM,OM,PM,zM,BM,VM,GM,WM,UM,HM,qM,KM,jM,XM,YM,ZM,QM,tz,ez,sz,az,lz,xM,cz,mz,fz,dz,hz,gz,xz,yz,bz,wz,Cz,vz,Nz,Tz,kz,Ez,_z,Az,$z,Dz,Rz,Fz,Oz,Pz,Lz,Mz,zz,Vz,Gz,Wz,Uz,qz,Kz,jz,Xz,Yz,Zz,Jz,Qz,t3,gM,e3,pz,r3,n3,o3,yM,s3,i3,a3,l3,u3,c3,p3,m3,f3,d3,g3,x3,y3,b3,w3,C3,S3,N3,T3,k3,E3,_3,F3,CM,O3,P3,L3,M3,rz,z3,G3,W3,U3,H3,bM,q3,K3,j3,X3,Y3,nz,A3,Z3,J3,Q3,SM,tB,eB,rB,nB,oB,sB,iB,aB,lB,uB,cB,pB,mB,fB,dB,hB,JM,R3,gB,xB,yB,bB,wB,CB,IB,SB,NB,TB,EB,_B,AB,$B,DB,RB,D3,NM,FB,OB,PB,MB,zB,TM,BB,VB,GB,B3];for(let r of wst)Lu(r);var qt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(qt||(qt={}));var Du;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu",r[r.sigmoid=5]="sigmoid",r[r.elu=6]="elu"})(Du||(Du={}));var WB;function Cst(r){WB=r.wasm.cwrap(Ci,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Ist(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=0;if(i!=null){let $=e.dataIdMap.get(i.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);d=$.id}let h=a==null?0:e.dataIdMap.get(a.dataId).id,g=Du[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=u?o.shape[2]:o.shape[1],b=l?s.shape[1]:s.shape[2],w=Vr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)),C=e.makeOutput([...w,x,b],o.dtype),N=e.dataIdMap.get(C.dataId).id,_=new Uint8Array(new Int32Array(o.shape).buffer),A=new Uint8Array(new Int32Array(s.shape).buffer);return WB(m,_,o.shape.length,f,A,s.shape.length,u,l,g,d,h,p||0,N),C}var UB={kernelName:Ci,backendName:"wasm",setupFunc:Cst,kernelFunc:Ist};function se(r,t){let e;function n(s){e=s.wasm.cwrap(r,null,["number","number","number"])}function o(s){let{backend:i,inputs:{x:a}}=s,u=i.dataIdMap.get(a.dataId).id,l=i.makeOutput(a.shape,t||a.dtype),c=i.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(u,qt[a.dtype],c),l}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:o}}var HB=se(ii);function ue(r,t,e){let n;function o(i){n=i.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:a,inputs:u}=i,{a:l,b:c}=u,p=a.dataIdMap.get(l.dataId).id,m=a.dataIdMap.get(c.dataId).id,f=e!=null?e:l.dtype,d=v.assertAndGetBroadcastShape(l.shape,c.shape),h=a.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(l.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=a.dataIdMap.get(h.dataId).id;return(()=>n(p,g,l.shape.length,m,x,c.shape.length,qt[l.dtype],b))(),h}return{kernelName:r,backendName:"wasm",setupFunc:o,kernelFunc:s}}var Sst=!0,qB=ue(Zn,Sst);var KB;function vst(r){KB=r.wasm.cwrap(Go,null,["array","number","number","number"])}function Nst(r){let{inputs:t,backend:e}=r,n=e.makeOutput(t[0].shape,t[0].dtype);if(y.sizeFromShape(n.shape)===0)return n;let o=t.map(a=>e.dataIdMap.get(a.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),i=e.dataIdMap.get(n.dataId).id;return KB(s,o.length,qt[n.dtype],i),n}var jB={kernelName:Go,backendName:"wasm",setupFunc:vst,kernelFunc:Nst};function jc(r){let{inputs:{x:t},backend:e}=r;if(t.dtype==="string")return ur(e.readSync(t.dataId),t.shape,t.dtype);let n=e.makeOutput(t.shape,t.dtype),o=e.typedArrayFromHeap(t);return e.typedArrayFromHeap(n).set(o),n}var XB={kernelName:co,backendName:"wasm",kernelFunc:jc};var YB;function Tst(r){YB=r.wasm.cwrap(Qn,null,["number","array","number","number","number","array","number"])}function ao(r){let{inputs:t,backend:e,attrs:n}=r,[o,s]=Est(t.x.shape,n.perm),i=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(i=!1);let a=kst(t.x.shape,n.perm),u={dataId:t.x.dataId,shape:o,dtype:t.x.dtype};if(i){let d=jc({inputs:t,backend:e});return d.shape=a,d}let l=e.makeOutput(a,u.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.dataIdMap.get(l.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(u.shape).buffer);return YB(c,f,u.shape.length,qt[u.dtype],p,m,s.length),l}function kst(r,t){let e=new Array(r.length);for(let n=0;n<e.length;n++)e[n]=r[t[n]];return e}function Est(r,t){let e=[],n=[];for(let o=0;o<r.length;++o)r[o]!==1&&e.push(r[o]),r[t[o]]!==1&&n.push(t[o]);for(let o=0;o<n.length;++o){let s=-1;for(let i=0;i<n.length;++i)n[i]>=o&&(s===-1||n[s]>n[i])&&(s=i);n[s]=o}return[e,n]}var ZB={kernelName:Qn,backendName:"wasm",kernelFunc:ao,setupFunc:Tst};function bn(r,t,e){let n=r.shape,o=r.shape.length,s=y.parseAxisParam(t,n),i=s,a=v.getAxesPermutation(i,o),u=null,l=!1;if(a!=null){let c=new Array(o);for(let f=0;f<c.length;f++)c[f]=n[a[f]];i=v.getInnerMostAxes(i.length,o),u=ao({inputs:{x:r},attrs:{perm:a},backend:e});let p=e.dataIdMap.get(r.dataId).id;e.dataIdMap.get(u.dataId).id!==p&&(l=!0)}return{transposed:u,originalAxes:s,axes:i,inputWasTransposed:l}}var JB;function _st(r){JB=r.wasm.cwrap(ia,null,["number, number, number"])}function Ast(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=bn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;v.assertAxesAreInnerMostDims("all",p,d);let[h,g]=v.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;JB(u,x,w)}if(f&&t.disposeData(c.dataId),s){let w=v.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var QB={kernelName:ia,backendName:"wasm",setupFunc:_st,kernelFunc:Ast};var tV;function $st(r){tV=r.wasm.cwrap(aa,null,["number, number, number"])}function Dst(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=bn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;v.assertAxesAreInnerMostDims("any",p,d);let[h,g]=v.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;tV(u,x,w)}if(f&&t.disposeData(c.dataId),s){let w=v.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var eV={kernelName:aa,backendName:"wasm",setupFunc:$st,kernelFunc:Dst};var rV;function Rst(r){rV=r.wasm.cwrap(Wo,null,["number","number","number","number","number"])}function Fst(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o}=n,{x:s}=e,i=t.dataIdMap.get(s.dataId).id,a=i,u=s,{transposed:l,axes:c,inputWasTransposed:p}=bn(s,o,t);if(p){let x=t.dataIdMap.get(l.dataId).id;x!==i&&(u=l,a=x)}let m=u.shape.slice(0,-1),f=t.makeOutput(m,"int32"),d=t.dataIdMap.get(f.dataId).id,h=y.sizeFromShape(f.shape),g=u.shape[c[0]];return rV(a,qt[u.dtype],h,g,d),p&&t.disposeData(l.dataId),f}var nV={kernelName:Wo,backendName:"wasm",kernelFunc:Fst,setupFunc:Rst};var oV;function Ost(r){oV=r.wasm.cwrap(Uo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pst(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=v.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let C=n.makeOutput(c.outShape,"float32"),N=n.dataIdMap.get(C.dataId).id;return oV(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,N),C}var sV={kernelName:Uo,backendName:"wasm",setupFunc:Ost,kernelFunc:Pst};function ar(r){let{inputs:t,attrs:e}=r,{x:n}=t,{shape:o}=e,s=y.sizeFromShape(n.shape),i=y.inferFromImplicitShape(o,s);return y.assert(s===y.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var iV={kernelName:di,backendName:"wasm",kernelFunc:ar};var aV;function Lst(r){aV=r.wasm.cwrap(Ho,null,["number","array","number","number","array","number","number","number","number"])}function Mst(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=Vr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let C=i?[g,c,m]:[g,m,c],N=a?[x,f,p]:[x,p,f],_=ar({inputs:{x:o},backend:e,attrs:{shape:C}}),A=ar({inputs:{x:s},backend:e,attrs:{shape:N}}),$=e.dataIdMap.get(_.dataId).id,F=e.dataIdMap.get(A.dataId).id,P=i?_.shape[2]:_.shape[1],V=a?A.shape[1]:A.shape[2],G=Math.max(g,x),W=e.makeOutput([G,P,V],_.dtype),q=e.dataIdMap.get(W.dataId).id,H=new Uint8Array(new Int32Array(_.shape).buffer),j=new Uint8Array(new Int32Array(A.shape).buffer);return aV($,H,_.shape.length,F,j,A.shape.length,i,a,q),e.disposeData(_.dataId),e.disposeData(A.dataId),W.shape=w,W}var lV={kernelName:Ho,backendName:"wasm",setupFunc:Lst,kernelFunc:Mst};function Lo(r){let{inputs:{x:t},attrs:{begin:e,size:n},backend:o}=r,[s,i]=Le.parseSliceParams(t,e,n),a=Le.isSliceContinous(t.shape,s,i),u=o.readSync(t.dataId),l=o.makeOutput(i,t.dtype),c=y.computeStrides(t.shape),p=o.dataIdMap.get(l.dataId);if(a){let d=Le.computeFlatOffset(s,c);return t.dtype==="string"?p.stringBytes=u.slice(d,d+y.sizeFromShape(i)):o.typedArrayFromHeap(l).set(u.subarray(d,d+y.sizeFromShape(i))),l}if(t.dtype==="string"){let d=$c(u,s,i,t.shape,t.dtype);return p.stringBytes=d,l}let m=o.typedArrayFromHeap(l),f=t.shape.length;if(f===2)zst(u,c[0],m,s,i);else if(f===3)Bst(u,c[0],c[1],m,s,i);else if(f===4)Vst(u,c[0],c[1],c[2],m,s,i);else{let d=$c(u,s,i,t.shape,t.dtype);m.set(d)}return l}function zst(r,t,e,n,o){let s=0,i=n[0],a=n[1],u=i+o[0];for(let l=i;l<u;l++){let c=l*t+a;e.set(r.subarray(c,c+o[1]),s),s+=o[1]}}function Bst(r,t,e,n,o,s){let i=0,a=o[0],u=o[1],l=o[2],c=a+s[0],p=u+s[1];for(let m=a;m<c;m++)for(let f=u;f<p;f++){let d=m*t+f*e+l;n.set(r.subarray(d,d+s[2]),i),i+=s[2]}}function Vst(r,t,e,n,o,s,i){let a=0,u=s[0],l=s[1],c=s[2],p=u+i[0],m=l+i[1],f=c+i[2],d=s[3];for(let h=u;h<p;h++)for(let g=l;g<m;g++)for(let x=c;x<f;x++){let b=h*t+g*e+x*n+d;o.set(r.subarray(b,b+i[3]),a),a+=i[3]}}var uV={kernelName:gi,backendName:"wasm",kernelFunc:Lo};function Gst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n,a=s.reduce((x,b)=>x*b),u=v.getReshaped(o.shape,s,a),l=v.getPermuted(u.length,s.length),c=v.getReshapedPermuted(o.shape,s,a),p=v.getSliceBeginCoords(i,s.length),m=v.getSliceSize(c,i,s.length),f=ar({inputs:{x:o},backend:e,attrs:{shape:u}}),d=ao({inputs:{x:f},backend:e,attrs:{perm:l}}),h=ar({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Lo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeData(f.dataId),e.disposeData(d.dataId),e.disposeData(f.dataId),g}var cV={kernelName:ai,backendName:"wasm",kernelFunc:Gst};function ni(r){let{inputs:{x:t},attrs:{dtype:e},backend:n}=r,o=n.makeOutput(t.shape,e),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(o).set(s),o}var pV={kernelName:lo,backendName:"wasm",kernelFunc:ni};var mV=se(qo);var fV;function Wst(r){fV=r.wasm.cwrap(uo,null,["number","number","number","number"])}function Ust(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a=e.dataIdMap.get(o.dataId).id,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(u.dataId).id;return fV(a,s,i,l),u}var dV={kernelName:uo,backendName:"wasm",setupFunc:Wst,kernelFunc:Ust};function _k(r){let{inputs:t,backend:e}=r,n=y.parseAxisParam(r.attrs.axis,t[0].shape)[0],o=t.map(f=>f.shape);v.assertParamsConsistent(o,n);let s=v.computeOutShape(t.map(f=>f.shape),n),i=t.filter(f=>y.sizeFromShape(f.shape)>0);if(i.length===1)return jc({inputs:{x:i[0]},backend:e});let a=e.makeOutput(s,t[0].dtype);if(y.sizeFromShape(s)===0)return a;if(i[0].dtype==="string"){let f=i.map(w=>{let N=[-1,y.sizeFromShape(w.shape.slice(n))];return ar({inputs:{x:w},backend:e,attrs:{shape:N}})}),d=f.map(w=>({vals:e.readSync(w.dataId),shape:w.shape}));s=v.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=Ec(d,s,t[0].dtype,h),x=v.computeOutShape(i.map(w=>w.shape),n);a.shape=x;let b=e.dataIdMap.get(a.dataId);return b.stringBytes=v.fromStringArrayToUint8(g),f.forEach(w=>e.disposeData(w.dataId)),a}let u=y.sizeFromShape(i[0].shape.slice(0,n)),l=0,c=i.map(f=>{let d=y.sizeFromShape(f.shape.slice(n));return l+=d,d}),p=i.map(f=>e.typedArrayFromHeap(f)),m=e.typedArrayFromHeap(a);for(let f=0;f<u;f++){let d=f*l;for(let h=0;h<p.length;h++){let g=c[h],x=f*g,b=p[h].subarray(x,x+g);m.set(b,d),d+=g}}return a}var hV={kernelName:li,backendName:"wasm",kernelFunc:_k};var gV;function Hst(r){gV=r.wasm.cwrap(Ko,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qst(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p,dataFormat:m}=e,f=v.convertConv2DDataFormat(m),d=v.computeConv2DInfo(o.shape,s.shape,u,l,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,x=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,C=d.padInfo.left,N=d.dilationHeight,_=d.dilationWidth,A=d.strideHeight,$=d.strideWidth,F=d.inChannels,P=d.outChannels,V=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let G=n.makeOutput(d.outShape,"float32"),W=n.dataIdMap.get(G.dataId).id;return gV(i,o.shape[0],o.shape[1],o.shape[2],a,h,g,x,b,w,C,V,N,_,A,$,F,P,W),G}var xV={kernelName:Ko,backendName:"wasm",setupFunc:Hst,kernelFunc:qst};var yV;function Kst(r){yV=r.wasm.cwrap(jo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function jst(r){let{backend:t,inputs:e,attrs:n}=r,{dy:o,filter:s}=e,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,inputShape:c}=n,p=1,m=v.convertConv2DDataFormat(u),f=v.computeConv2DInfo(c,s.shape,i,p,a,l,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:x,inHeight:b,inWidth:w,outChannels:C,outHeight:N,outWidth:_,strideHeight:A,strideWidth:$}=f,F=h-1-f.padInfo.top,P=g-1-f.padInfo.left,V=f.dataFormat==="channelsLast",G=y.computeStrides(f.inShape),W=y.computeStrides(o.shape),[q,H,j]=y.computeStrides(s.shape),Y=G[0],Z=V?G[1]:G[2],et=V?G[2]:1,rt=V?1:G[1],ot=W[0],at=V?W[1]:W[2],nt=V?W[2]:1,st=V?1:W[1],dt=t.makeOutput(f.inShape,"float32"),ht=t.dataIdMap.get(dt.dataId).id,bt=t.dataIdMap.get(o.dataId).id,kt=t.dataIdMap.get(s.dataId).id;return yV(bt,kt,d,h,g,b,w,x,N,_,C,A,$,F,P,q,H,j,Y,Z,et,rt,ot,at,nt,st,ht),dt}var bV={kernelName:jo,backendName:"wasm",setupFunc:Kst,kernelFunc:jst};var wV=se(Xo);var CV=se(Yo);var Ak;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(Ak||(Ak={}));var IV;function Xst(r){IV=r.wasm.cwrap(da,null,["number","number","number","number","array","number","number","number","number","number"])}function Yst(r){let{backend:t,inputs:e,attrs:n}=r,{method:o,extrapolationValue:s,cropSize:i}=n,{image:a,boxes:u,boxInd:l}=e,c=u.shape[0],[p,m]=i,f=[c,p,m,a.shape[3]],d=t.dataIdMap.get(a.dataId),h;a.dtype!=="float32"&&(h=ni({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),d=t.dataIdMap.get(h.dataId));let g=d.id,x=t.dataIdMap.get(u.dataId).id,b=t.dataIdMap.get(l.dataId).id,w=t.makeOutput(f,"float32"),C=t.dataIdMap.get(w.dataId).id,N=new Uint8Array(new Int32Array(a.shape).buffer);return IV(g,x,b,c,N,p,m,Ak[o],s,C),h!=null&&t.disposeData(h.dataId),w}var SV={kernelName:da,backendName:"wasm",setupFunc:Xst,kernelFunc:Yst};var vV;function Zst(r){vV=r.wasm.cwrap(fa,null,["number","number","number","number","number","number"])}function Jst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;y.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumprod does not support ${o.dtype} tensors in the WASM backend`);let l=v.getAxesPermutation([s],u),c=o;l!==null&&(c=ao({inputs:{x:o},attrs:{perm:l},backend:e}));let p=v.getInnerMostAxes(1,u)[0];v.assertAxesAreInnerMostDims("cumprod",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;vV(d,i?1:0,a?1:0,f,h,qt[o.dtype]);let g=m;if(l!==null){let x=v.getUndoAxesPermutation(l);g=ao({inputs:{x:m},attrs:{perm:x},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var NV={kernelName:fa,backendName:"wasm",setupFunc:Zst,kernelFunc:Jst};var TV;function Qst(r){TV=r.wasm.cwrap(Zo,null,["number","number","number","number","number","number"])}function tit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;y.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let l=v.getAxesPermutation([s],u),c=o;l!==null&&(c=ao({inputs:{x:o},attrs:{perm:l},backend:e}));let p=v.getInnerMostAxes(1,u)[0];v.assertAxesAreInnerMostDims("cumsum",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;TV(d,i?1:0,a?1:0,f,h,qt[o.dtype]);let g=m;if(l!==null){let x=v.getUndoAxesPermutation(l);g=ao({inputs:{x:m},attrs:{perm:x},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var kV={kernelName:Zo,backendName:"wasm",setupFunc:Qst,kernelFunc:tit};var EV;function eit(r){EV=r.wasm.cwrap(ha,null,["number","number","number","array","number","array","array","number","number"])}function rit(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i==="NHWC"?o.shape[1]:o.shape[2],l=i==="NHWC"?o.shape[2]:o.shape[3],c=i==="NHWC"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i==="NHWC"?[a,p,m,f]:[a,f,p,m],h=t.makeOutput(d,"float32"),x=t.dataIdMap.get(o.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),C=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),N=t.dataIdMap.get(h.dataId).id;return EV(x,s,i==="NHWC"?1:0,b,o.shape.length-1,w,C,d.length,N),h}var _V={kernelName:ha,backendName:"wasm",setupFunc:eit,kernelFunc:rit};var AV;function nit(r){AV=r.wasm.cwrap(Jo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oit(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p}=e,m=l==null?[1,1]:l,f=v.computeConv2DInfo(o.shape,s.shape,u,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,C=f.dilationHeight,N=f.dilationWidth,_=f.strideHeight,A=f.strideWidth,$=f.inChannels,F=f.outChannels,P=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let V=n.makeOutput(f.outShape,"float32"),G=n.dataIdMap.get(V.dataId).id;return AV(i,o.shape[0],o.shape[1],o.shape[2],a,d,h,g,x,b,w,P,C,N,_,A,$,F,G),V}var $V={kernelName:Jo,backendName:"wasm",setupFunc:nit,kernelFunc:oit};var DV=se(ts);var sit=!1,RV=ue(xa,sit,"bool");var FV=se(es,"float32");function uI(r){let{inputs:t,attrs:e,backend:n}=r,{input:o}=t,{dim:s}=e,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(y.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),ar({inputs:{x:o},backend:n,attrs:{shape:a}})}var OV={kernelName:ui,backendName:"wasm",kernelFunc:uI};function $k(r){let{attrs:{shape:t,value:e,dtype:n},backend:o}=r,s=o.makeOutput(t,n);return o.typedArrayFromHeap(s).fill(e),s}var PV={kernelName:Dl,backendName:"wasm",kernelFunc:$k};var LV;function iit(r){LV=r.wasm.cwrap(ba,null,["number","number","number","number","number","number"])}function ait(r){let{inputs:t,backend:e}=r,{image:n}=t,o=e.makeOutput(n.shape,n.dtype),s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,[a,u,l,c]=n.shape;return LV(s,a,u,l,c,i),o}var MV={kernelName:ba,backendName:"wasm",kernelFunc:ait,setupFunc:iit};var zV=se(rs);var lit=!1,BV=ue(ns,lit);var VV;function uit(r){VV=r.wasm.cwrap(os,null,["number","number","number","number","number","number","number"])}function cit(r){let{backend:t,inputs:e,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:i,variance:a,offset:u,scale:l}=e,c=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,m=t.dataIdMap.get(a.dataId).id,f=u!=null?t.dataIdMap.get(u.dataId).id:0,d=l!=null?t.dataIdMap.get(l.dataId).id:0,h=t.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=t.dataIdMap.get(h.dataId).id;return VV(c,p,m,f,d,o,g),h}var GV={kernelName:os,backendName:"wasm",setupFunc:uit,kernelFunc:cit};var WV;function pit(r){WV=r.wasm.cwrap(Ii,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mit(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=v.computeConv2DInfo(o.shape,s.shape,u,c,l,m),g=Du[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,C=0;if(i!=null){let nt=n.dataIdMap.get(i.dataId);if(nt.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${nt.shape.length}.`);if(nt.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${nt.shape}) does not match the number of output channels (${w})`);C=nt.id}let N=h.filterHeight,_=h.filterWidth,A=h.padInfo.top,$=h.padInfo.right,F=h.padInfo.bottom,P=h.padInfo.left,V=h.dilationHeight,G=h.dilationWidth,W=h.strideHeight,q=h.strideWidth,H=h.inChannels,j=h.padInfo.type==="SAME"?1:0,Y=h.batchSize,Z=h.inHeight,et=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let rt=n.makeOutput(h.outShape,"float32"),ot=n.dataIdMap.get(rt.dataId).id,at=a==null?0:n.dataIdMap.get(a.dataId).id;return WV(x,Y,Z,et,b,N,_,C,A,$,F,P,j,V,G,W,q,H,w,g,at,d||0,ot),rt}var UV={kernelName:Ii,backendName:"wasm",setupFunc:pit,kernelFunc:mit};var HV;function fit(r){HV=r.wasm.cwrap(Si,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function dit(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=v.computeConv2DInfo(o.shape,s.shape,u,c,l,m,!0),g=Du[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,C=0;if(i!=null){let nt=n.dataIdMap.get(i.dataId);if(nt.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${nt.shape.length}.`);if(nt.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${nt.shape}) does not match the number of output channels (${w})`);C=nt.id}let N=h.filterHeight,_=h.filterWidth,A=h.padInfo.top,$=h.padInfo.right,F=h.padInfo.bottom,P=h.padInfo.left,V=h.dilationHeight,G=h.dilationWidth,W=h.strideHeight,q=h.strideWidth,H=h.inChannels,j=h.padInfo.type==="SAME"?1:0,Y=h.batchSize,Z=h.inHeight,et=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let rt=n.makeOutput(h.outShape,"float32"),ot=n.dataIdMap.get(rt.dataId).id,at=a==null?0:n.dataIdMap.get(a.dataId).id;return HV(x,Y,Z,et,b,N,_,C,A,$,F,P,j,V,G,W,q,H,w,g,at,d||0,ot),rt}var qV={kernelName:Si,backendName:"wasm",setupFunc:fit,kernelFunc:dit};var KV;function hit(r){KV=r.wasm.cwrap(wa,null,["number","number","number","number","number","number","array","number"])}function git(r){let{backend:t,inputs:e}=r,{params:n,indices:o}=e,[s,i,a,u]=ox.prepareAndValidate(n,o),l=t.makeOutput(s,n.dtype);if(i===0)return l;let c=o.shape,p=c[c.length-1],f=t.dataIdMap.get(n.dataId).id,h=t.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),x=t.dataIdMap.get(l.dataId).id;return KV(f,qt[n.dtype],h,i,p,a,g,x),l}var jV={kernelName:wa,backendName:"wasm",setupFunc:hit,kernelFunc:git};var XV;function xit(r){XV=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function yit(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,indices:s}=e,{axis:i,batchDims:a}=n,u=y.parseAxisParam(i,o.shape)[0],l=t.readSync(s.dataId),c=o.shape[u];for(let F=0;F<l.length;++F){let P=l[F];y.assert(P<=c-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${c-1}]`)}let p=v.segment_util.collectGatherOpShapeInfo(o,s,u,a),m=ar({inputs:{x:o},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),f=y.sizeFromShape(s.shape),d=ar({inputs:{x:s},attrs:{shape:[p.batchSize,f/p.batchSize]},backend:t}),h=[p.batchSize,p.outerSize,f/p.batchSize,p.sliceSize],g=t.makeOutput(h,o.dtype);if(y.sizeFromShape(o.shape)===0)return g;let x=m.shape.length-1,w=t.dataIdMap.get(m.dataId).id,N=t.dataIdMap.get(d.dataId).id,_=t.dataIdMap.get(g.dataId).id,A=new Uint8Array(new Int32Array(y.computeStrides(m.shape)).buffer),$=new Uint8Array(new Int32Array(y.computeStrides(h)).buffer);return XV(w,qt[o.dtype],A,x,N,p.batchSize,$,_),t.disposeData(m.dataId),t.disposeData(d.dataId),g.shape=p.outputShape,g}var YV={kernelName:ci,backendName:"wasm",setupFunc:xit,kernelFunc:yit};var bit=!1,ZV=ue(Ca,bit,"bool");var wit=!1,JV=ue(ss,wit,"bool");var QV;function Cit(r){QV=r.wasm.cwrap(is,null,["number","number","number","number"])}function Iit(r){let{inputs:{x:t},attrs:{alpha:e},backend:n}=r,o=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(y.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;QV(o,qt[t.dtype],e,i)}return s}var tG={kernelName:is,backendName:"wasm",setupFunc:Cit,kernelFunc:Iit};var Sit=!1,eG=ue(Na,Sit,"bool");var vit=!1,rG=ue(Ta,vit,"bool");var nG=se(as);var Nit=!1,oG=ue(Ea,Nit,"bool");var sG=se(_a);var Tit=!1,iG=ue(Aa,Tit,"bool");var kit=!1,aG=ue(m1,kit,"bool");var lG;function Eit(r){lG=r.wasm.cwrap(ls,null,["number","number","number","number"])}function _it(r){let{backend:t,inputs:e,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=bn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;v.assertAxesAreInnerMostDims("max",p,d);let[h,g]=v.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;lG(u,qt[i.dtype],x,w)}if(f&&t.disposeData(c.dataId),s){let w=v.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var uG={kernelName:ls,backendName:"wasm",setupFunc:Eit,kernelFunc:_it};var Ait=!1,cG=ue(us,Ait);var pG;function $it(r){pG=r.wasm.cwrap(cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Dit(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id;y.assert(o.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${o.dtype}.`);let{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=v.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,C=c.strideWidth,N=c.inChannels,_=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let A=n.makeOutput(c.outShape,"float32"),$=n.dataIdMap.get(A.dataId).id;return pG(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,C,N,_,$),A}var mG={kernelName:cs,backendName:"wasm",setupFunc:$it,kernelFunc:Dit};var fG;function Rit(r){fG=r.wasm.cwrap(ps,null,["number, number, number"])}function Fit(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=bn(i,o,t),d=p;if(f){let C=t.dataIdMap.get(c.dataId).id;C!==a&&(l=c,u=C,d=v.getInnerMostAxes(d.length,l.shape.length))}v.assertAxesAreInnerMostDims("mean",d,l.shape.length);let[h,g]=v.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=l;l.dtype!=="float32"&&(b=ni({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),u=t.dataIdMap.get(b.dataId).id);let w=t.makeOutput(h,"float32");if(y.sizeFromShape(l.shape)!==0){let C=t.dataIdMap.get(w.dataId).id;fG(u,x,C)}if(f&&t.disposeData(c.dataId),s){let C=v.expandShapeToKeepDim(w.shape,m);w.shape=C}return l.dtype!=="float32"&&t.disposeData(b.dataId),w}var dG={kernelName:ps,backendName:"wasm",setupFunc:Rit,kernelFunc:Fit};var hG;function Oit(r){hG=r.wasm.cwrap(ms,null,["number","number","number","number"])}function Pit(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=bn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w)}let d=l.shape.length;v.assertAxesAreInnerMostDims("min",p,d);let[h,g]=v.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;hG(u,qt[i.dtype],x,w)}if(f&&t.disposeData(c.dataId),s){let w=v.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var gG={kernelName:ms,backendName:"wasm",setupFunc:Oit,kernelFunc:Pit};var Lit=!1,xG=ue(fs,Lit);var Dk;(function(r){r[r.reflect=0]="reflect",r[r.symmetric=1]="symmetric"})(Dk||(Dk={}));var yG;function Mit(r){yG=r.wasm.cwrap(ds,null,["number","array","number","number","array","array","number","number"])}function zit(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,mode:o}}=r,s=n.map((d,h)=>d[0]+t.shape[h]+d[1]),i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),u=e.dataIdMap.get(a.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return yG(i,l,t.shape.length,qt[t.dtype],m,f,Dk[o],u),a}var bG={kernelName:ds,backendName:"wasm",kernelFunc:zit,setupFunc:Mit};var Bit=!0,wG=ue(hs,Bit);var CG=se(pi);function Dd(r,t){let e=new Int32Array(r.wasm.HEAPU8.buffer,t,4),n=e[0],o=e[1],s=e[2],i=e[3];return r.wasm._free(t),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:i}}var IG;function Vit(r){IG=r.wasm.cwrap(Ra,"number",["number","number","number","number","number"])}function Git(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i}=n,{boxes:a,scores:u}=e,l=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(u.dataId).id,p=IG(l,c,s,o,i),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Dd(t,p);return t.wasm._free(d),t.wasm._free(h),t.makeOutput([f],"int32",m)}var SG={kernelName:Ra,backendName:"wasm",setupFunc:Vit,kernelFunc:Git};var vG;function Wit(r){vG=r.wasm.cwrap(Fa,"number",["number","number","number","number","number","bool"])}function Uit(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=vG(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Dd(t,m);t.wasm._free(h);let x=t.makeOutput([d],"int32",f),b=t.makeOutput([],"int32",g);return[x,b]}var NG={kernelName:Fa,backendName:"wasm",setupFunc:Wit,kernelFunc:Uit};var TG;function Hit(r){TG=r.wasm.cwrap(Oa,"number",["number","number","number","number","number","number"])}function qit(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,softNmsSigma:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=TG(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Dd(t,m);t.wasm._free(g);let x=t.makeOutput([d],"int32",f),b=t.makeOutput([d],"float32",h);return[x,b]}var kG={kernelName:Oa,backendName:"wasm",setupFunc:Hit,kernelFunc:qit};var Kit=!1,EG=ue(Da,Kit,"bool");var _G;function jit(r){_G=r.wasm.cwrap(gs,null,["number","number","number","number","number"])}function Xit(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n,l=e.makeOutput([...o.shape,i],s),c=e.dataIdMap.get(l.dataId).id,m=e.dataIdMap.get(o.dataId).id;return _G(m,i,a,u,c),l}var AG={kernelName:gs,backendName:"wasm",setupFunc:jit,kernelFunc:Xit};function Yit(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(1),n}var $G={kernelName:mi,backendName:"wasm",kernelFunc:Yit};function Zit(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return uI({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=uI({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=_k({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeData(c.dataId)),l}var DG={kernelName:fi,backendName:"wasm",kernelFunc:Zit};var RG;function Jit(r){RG=r.wasm.cwrap(xs,null,["number","array","number","number","array","array","number","number"])}function Qit(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,constantValue:o}}=r,s=n.map((h,g)=>h[0]+t.shape[g]+h[1]);if(y.sizeFromShape(t.shape)===0)return $k({backend:e,attrs:{shape:s,value:o,dtype:t.dtype}});let i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(h=>h[0]),m=n.map(h=>h[1]),f=new Uint8Array(new Int32Array(p).buffer),d=new Uint8Array(new Int32Array(m).buffer);return RG(i,c,t.shape.length,qt[t.dtype],f,d,o,l),a}var cI={kernelName:xs,backendName:"wasm",kernelFunc:Qit,setupFunc:Jit};var tat=!1,FG=ue(ys,tat);var OG;function eat(r){OG=r.wasm.cwrap(bs,null,["number","number","number"])}function rat(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,a=s,u=n,l=u;u.dtype!=="float32"&&(l=ni({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),a=e.dataIdMap.get(l.dataId).id);let c=e.makeOutput(n.shape,"float32"),p=e.dataIdMap.get(c.dataId).id;return OG(a,i,p),u.dtype!=="float32"&&e.disposeData(l.dataId),c}var PG={kernelName:bs,backendName:"wasm",setupFunc:eat,kernelFunc:rat};var LG;function nat(r){LG=r.wasm.cwrap(ws,null,["number","number","number","number"])}function oat(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=bn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=v.getInnerMostAxes(d.length,l.shape.length))}v.assertAxesAreInnerMostDims("prod",d,l.shape.length);let[h,g]=v.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;LG(u,x,qt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=v.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var MG={kernelName:ws,backendName:"wasm",setupFunc:nat,kernelFunc:oat};var sat=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=Ac(n,o,s,i),u=t.makeOutput([a.length],i);return t.typedArrayFromHeap(u).set(a),u},zG={kernelName:Ol,backendName:"wasm",kernelFunc:sat};var iat=!0,BG=ue(Qo,iat);var VG=se(Cs);var GG=se(vs);var WG;function aat(r){WG=r.wasm.cwrap(Ss,null,["number","number","number","number","number","number","number","number","number","number"])}function lat(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.dataIdMap.get(o.dataId),g;h.dtype!=="float32"&&(g=ni({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),h=t.dataIdMap.get(g.dataId));let x=h.id,b=t.makeOutput(d,"float32");if(y.sizeFromShape(o.shape)===0)return b;let w=t.dataIdMap.get(b.dataId).id;return WG(x,c,p,m,f,u,l,s?1:0,i?1:0,w),g!=null&&t.disposeData(g.dataId),b}var UG={kernelName:Ss,backendName:"wasm",setupFunc:aat,kernelFunc:lat};var HG;function uat(r){HG=r.wasm.cwrap(Is,null,["number","number","number","number","number","number","number","number","number","number"])}function cat(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.makeOutput(d,"float32");if(y.sizeFromShape(o.shape)===0)return h;let g=t.dataIdMap.get(o.dataId),x;g.dtype!=="float32"&&(x=ni({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(x.dataId));let b=g.id,w=t.dataIdMap.get(h.dataId).id;return HG(b,c,p,m,f,u,l,s?1:0,i?1:0,w),x!=null&&t.disposeData(x.dataId),h}var qG={kernelName:Is,backendName:"wasm",setupFunc:uat,kernelFunc:cat};var KG;function pat(r){KG=r.wasm.cwrap(Ns,null,["number","array","number","array","number","number"])}function mat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=y.parseAxisParam(s,o.shape);if(o.shape.length===0)return jc({inputs:{x:o},backend:e});let a=e.makeOutput(o.shape,o.dtype),u=e.dataIdMap.get(o.dataId).id,l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);KG(u,c,i.length,p,o.shape.length,l);let m=ar({inputs:{x:a},attrs:{shape:o.shape},backend:e});return e.disposeData(a.dataId),m}var jG={kernelName:Ns,backendName:"wasm",kernelFunc:mat,setupFunc:pat};var XG;function fat(r){XG=r.wasm.cwrap(qa,null,["number","number","number","number","number","number","number","number","array","number","number"])}function dat(r){let{inputs:t,backend:e,attrs:n}=r,{image:o}=t,{radians:s,fillValue:i,center:a}=n,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(o.dataId).id,c=e.dataIdMap.get(u.dataId).id,[p,m,f,d]=o.shape,[h,g]=v.getImageCenter(a,m,f),x=i===0,b=255,w=typeof i=="number"?[i,i,i,x?0:b]:[...i,b],C=new Uint8Array(new Int32Array(w).buffer);return XG(l,p,m,f,d,s,h,g,C,w.length,c),u}var YG={kernelName:qa,backendName:"wasm",kernelFunc:dat,setupFunc:fat};var ZG=se(Ts);var JG=se(ks);var QG;function hat(r){QG=r.wasm.cwrap(La,null,["number","number","number","number","number","number","array","number","number"])}function gat(r){let{backend:t,inputs:e,attrs:n}=r,{indices:o,updates:s}=e,{shape:i}=n,a=t.makeOutput(i,s.dtype);if(y.sizeFromShape(i)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=lh.calculateShapes(s,o,i),d=t.dataIdMap.get(o.dataId).id,g=t.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=t.dataIdMap.get(a.dataId).id;return QG(d,g,qt[s.dtype],u,l,c,x,m,b),a}var tW={kernelName:La,backendName:"wasm",setupFunc:hat,kernelFunc:gat};var eW;function xat(r){eW=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function yat(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=e.dataIdMap.get(n.dataId).id,a=e.dataIdMap.get(o.dataId).id,u=e.dataIdMap.get(s.dataId).id,l=e.makeOutput(o.shape,o.dtype),c=e.dataIdMap.get(l.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(o.shape.slice(1));return eW(i,a,u,f,c),l}var rW={kernelName:hi,backendName:"wasm",kernelFunc:yat,setupFunc:xat};var nW;function bat(r){nW=r.wasm.cwrap(_s,null,["number","number"])}function wat(r){let{backend:t,inputs:{x:e}}=r,n=t.dataIdMap.get(e.dataId).id,o=t.makeOutput(e.shape,e.dtype),s=t.dataIdMap.get(o.dataId).id;return y.sizeFromShape(o.shape)===0||nW(n,s),o}var oW={kernelName:"Sigmoid",backendName:"wasm",setupFunc:bat,kernelFunc:wat};var sW=se(Es);var iW;function Cat(r){iW=r.wasm.cwrap(Ds,null,["number","number","number","number"])}function Iat(r){let{backend:t,inputs:{logits:e},attrs:{dim:n}}=r,o=t.dataIdMap.get(e.dataId).id,s=t.makeOutput(e.shape,e.dtype),i=t.dataIdMap.get(s.dataId).id,a=e.shape[n],u=y.sizeFromShape(e.shape)/a;return y.sizeFromShape(s.shape)===0||iW(o,i,a,u),s}var aW={kernelName:Ds,backendName:"wasm",setupFunc:Cat,kernelFunc:Iat};function Sat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n,a=y.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let _=1+s.length;_<o.shape.length;++_)u.push([0,0]);let l=cI.kernelFunc({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),c=v.getReshaped(l.shape,s,a,!1),p=v.getPermuted(c.length,s.length,!1),m=v.getReshapedPermuted(l.shape,s,a,!1),h=ar({inputs:{x:l},backend:e,attrs:{shape:c}}),b=ao({inputs:{x:h},backend:e,attrs:{perm:p}}),N=ar({inputs:{x:b},backend:e,attrs:{shape:m}});return e.disposeData(l.dataId),e.disposeData(h.dataId),e.disposeData(b.dataId),N}var lW={kernelName:xi,backendName:"wasm",kernelFunc:Sat};var uW;function vat(r){uW=r.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Nat(r){let{backend:t,inputs:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=e,a=n.shape[0],u=n.shape[1],l=t.readSync(s.dataId)[0],c=[a+l,u],p=t.dataIdMap.get(n.dataId).id,m=t.dataIdMap.get(o.dataId).id,f=t.dataIdMap.get(i.dataId).id,d=t.makeOutput(c,n.dtype),h=t.dataIdMap.get(d.dataId).id,g=t.makeOutput(c.slice(0,1),o.dtype),x=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([l],"bool"),w=t.dataIdMap.get(b.dataId).id,C=t.makeOutput([a],n.dtype),N=t.dataIdMap.get(C.dataId).id,_=t.makeOutput([4],"int32"),A=t.dataIdMap.get(_.dataId).id,$=uW(p,m,qt[o.dtype],a,l,u,f,h,x,w,N,A),F=t.readSync(_.dataId),P;switch(F[0]){case 1:{P=v.getSparseFillEmptyRowsIndicesDenseShapeMismatch(F[1]);break}case 2:{P=v.getSparseFillEmptyRowsNegativeIndexErrorMessage(F[1],F[2]);break}case 3:P=v.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(F[1],F[2],F[3]);break;default:P=""}if(t.disposeData(_.dataId),P)throw t.disposeData(d.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(C.dataId),new Error(P);let V=d,G=g;return $!==c[0]&&(V=Lo({inputs:{x:d},attrs:{begin:0,size:[$,u]},backend:t}),G=Lo({inputs:{x:g},attrs:{begin:0,size:$},backend:t}),t.disposeData(d.dataId),t.disposeData(g.dataId)),[V,G,b,C]}var cW={kernelName:Pl,backendName:"wasm",setupFunc:vat,kernelFunc:Nat};var pW;function Tat(r){pW=r.wasm.cwrap(Ga,null,["number","number","number","number","number","number","number"])}function kat(r){let{backend:t,inputs:e}=r,{inputIndices:n,inputShape:o,newShape:s}=e;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(s.dataId).id,l=n.shape[0],c=y.sizeFromShape(s.shape),p=t.makeOutput([l,c],n.dtype),m=t.dataIdMap.get(p.dataId).id,f=t.makeOutput([c],s.dtype),d=t.dataIdMap.get(f.dataId).id,h=t.makeOutput([3],"int32"),g=t.dataIdMap.get(h.dataId).id;pW(i,a,u,l,m,d,g);let x=t.readSync(h.dataId),b;switch(x[0]){case 0:{b=v.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(x[1],x[2]);break}case 1:{b=v.getSparseReshapeNegativeOutputDimErrorMessage(x[1],x[2]);break}case 2:b=v.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let w=Array.from(t.readSync(o.dataId)),C=Array.from(t.readSync(f.dataId));b=v.getSparseReshapeInputOutputMultipleErrorMessage(w,C);break}case 4:{let w=Array.from(t.readSync(o.dataId)),C=Array.from(t.readSync(f.dataId));b=v.getSparseReshapeInputOutputMismatchErrorMessage(w,C);break}default:b=""}if(t.disposeData(h.dataId),b)throw t.disposeData(p.dataId),t.disposeData(f.dataId),new Error(b);return[p,f]}var mW={kernelName:Ga,backendName:"wasm",setupFunc:Tat,kernelFunc:kat};var fW;function pI(r){fW=r.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function mI(r,t){let{backend:e,inputs:n}=r,{data:o,indices:s,segmentIds:i}=n,a=s.shape[0],u=e.readSync(i.dataId,a-1,a)[0],c=a>0?u+1:0;if(c<0)throw new Error(v.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=o.shape.slice();p[0]=c;let m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=e.dataIdMap.get(i.dataId).id,h=e.makeOutput(p,o.dtype),g=e.dataIdMap.get(h.dataId).id,x=e.makeOutput([4],"int32"),b=e.dataIdMap.get(x.dataId).id;fW(m,qt[o.dtype],o.shape[0],f,d,g,b,t,0);let w=e.readSync(x.dataId),C;switch(w[0]){case 0:{C=v.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{C=v.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:C=v.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(w[1],w[2]);break;case 3:C=v.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(w[1],w[2],w[3]);break;default:C=""}if(e.disposeData(x.dataId),C)throw e.disposeData(h.dataId),new Error(C);return h}function Eat(r){return mI(r,!0)}var dW={kernelName:Ll,backendName:"wasm",setupFunc:pI,kernelFunc:Eat};function _at(r){return mI(r,!1)}var hW={kernelName:Ml,backendName:"wasm",setupFunc:pI,kernelFunc:_at};function Aat(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=e,a=y.parseAxisParam(i,o.shape)[0],u=v.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Lo({inputs:{x:o},attrs:{begin:l,size:m},backend:n});return l[a]+=p,f})}var gW={kernelName:yi,backendName:"wasm",kernelFunc:Aat};var xW=se(As);var yW=se(zl);var $at=!0,bW=ue(Rs,$at);var wW;function Dat(r){wW=r.wasm.cwrap(po,null,["number","number","number","number"])}function Rat(r){let{backend:t,inputs:e,attrs:n}=r,{alpha:o}=n,{x:s}=e,i=t.dataIdMap.get(s.dataId).id,a=t.makeOutput(s.shape,s.dtype),u=t.dataIdMap.get(a.dataId).id;return wW(i,o,qt[s.dtype],u),a}var CW={kernelName:po,backendName:"wasm",setupFunc:Dat,kernelFunc:Rat};var IW;function Fat(r){IW=r.wasm.cwrap(Wa,null,["number","array","number","array","array","array","array","array","number","number"])}function Oat(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:C}=Le.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=ar({inputs:{x:o},backend:t,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let _=Le.computeOutShape(b,w,C),A=Lo({inputs:{x:o},backend:t,attrs:{begin:b,size:_}});N=ar({inputs:{x:A},backend:t,attrs:{shape:d}}),t.disposeData(A.dataId)}else{let _=t.makeOutput(f,"float32"),A=t.dataIdMap.get(o.dataId).id,$=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),F=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(w).buffer),V=new Uint8Array(new Int32Array(C).buffer),G=new Uint8Array(new Int32Array(f).buffer),W=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer),q=t.dataIdMap.get(_.dataId).id;IW(A,$,o.shape.length,F,P,V,G,W,f.length,q),N=ar({inputs:{x:_},backend:t,attrs:{shape:d}}),t.disposeData(_.dataId)}return N}var SW={kernelName:Wa,backendName:"wasm",setupFunc:Fat,kernelFunc:Oat};function Pat(r){let{backend:t,inputs:e,attrs:n}=r,{data:o,dataSplits:s}=e,{separator:i,nGramWidths:a,leftPad:u,rightPad:l,padWidth:c,preserveShortSequences:p}=n,m=t.readSync(o.dataId),f=t.readSync(s.dataId),[d,h]=Dc(m,f,i,a,u,l,c,p),g=t.makeOutput([d.length],"string"),x=t.dataIdMap.get(g.dataId);x.stringBytes=d;let b=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(b).set(h),[g,b]}var vW={kernelName:Bl,backendName:"wasm",kernelFunc:Pat};function Lat(r){let{backend:t,inputs:e,attrs:n}=r,{input:o,delimiter:s}=e,{skipEmpty:i}=n,a=t.readSync(o.dataId),u=t.readSync(s.dataId),[l,c,p]=Rc(a,u[0],i),m=c.length,f=t.makeOutput([m,2],"int32");t.typedArrayFromHeap(f).set(l);let h=t.makeOutput([m],"string"),g=t.dataIdMap.get(h.dataId);g.stringBytes=c;let x=t.makeOutput([2],"int32");return t.typedArrayFromHeap(x).set(p),[f,h,x]}var NW={kernelName:Vl,backendName:"wasm",kernelFunc:Lat};function Mat(r){let{backend:t,inputs:e,attrs:n}=r,{input:o}=e,{numBuckets:s}=n,i=t.readSync(o.dataId),a=Fc(i,s),u=t.makeOutput(o.shape,"int32");return t.typedArrayFromHeap(u).set(a),u}var TW={kernelName:Gl,backendName:"wasm",kernelFunc:Mat};var zat=!0,kW=ue(Fs,zat);var EW;function Bat(r){EW=r.wasm.cwrap($s,null,["number","number","number","number"])}function Vat(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=bn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=v.getInnerMostAxes(d.length,l.shape.length))}v.assertAxesAreInnerMostDims("sum",d,l.shape.length);let[h,g]=v.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;EW(u,x,qt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=v.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var _W={kernelName:$s,backendName:"wasm",setupFunc:Bat,kernelFunc:Vat};var AW=se(Os);var $W=se(Ps);var DW;function Gat(r){DW=r.wasm.cwrap(Jn,null,["number","array","number","array","number","number"])}function Wat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,s=e.dataIdMap.get(o.dataId).id,{reps:i}=n,a=new Array(o.shape.length);for(let m=0;m<a.length;m++)a[m]=o.shape[m]*i[m];let u=new Uint8Array(new Int32Array(o.shape).buffer),l=new Uint8Array(new Int32Array(a).buffer),c=e.makeOutput(a,o.dtype),p=e.dataIdMap.get(c.dataId).id;return DW(s,u,o.shape.length,l,a.length,qt[c.dtype],p),c}var RW={kernelName:Jn,backendName:"wasm",setupFunc:Gat,kernelFunc:Wat};var FW;function Uat(r){FW=r.wasm.cwrap(Ua,null,["number","array","number","number","number","bool","number","number"])}var Hat=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{k:o,sorted:s}=e,i=t.dataIdMap.get(n.dataId).id,a=new Uint8Array(new Int32Array(n.shape).buffer),u=n.shape.slice();u[u.length-1]=o;let l=t.makeOutput(u,n.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,"int32"),m=t.dataIdMap.get(p.dataId).id;return FW(i,a,n.shape.length,qt[n.dtype],o,s,c,m),[l,p]},OW={kernelName:Ua,backendName:"wasm",setupFunc:Uat,kernelFunc:Hat};var PW;function qat(r){PW=r.wasm.cwrap(Ha,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function Kat(r){let{backend:t,inputs:e,attrs:n}=r,{image:o,transforms:s}=e,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),b=new Uint8Array(new Int32Array(y.computeStrides(g)).buffer),w=t.makeOutput(g,o.dtype),C=t.dataIdMap.get(w.dataId).id,_=t.dataIdMap.get(o.dataId).id,$=t.dataIdMap.get(s.dataId).id,F=i==="nearest"?1:2,P;switch(a){case"constant":P=1;break;case"reflect":P=2;break;case"wrap":P=3;break;case"nearest":P=4;break;default:P=1;break}return PW(_,$,s.shape[0]>1,c,d,h,f,m,p,x,o.shape.length-1,b,g.length-1,F,P,u,C),w}var LW={kernelName:Ha,backendName:"wasm",setupFunc:qat,kernelFunc:Kat};function jat(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape[s],a=o.shape.length,u=new Array(a-1),l=0;for(let f=0;f<a;f++)f!==s&&(u[l++]=o.shape[f]);let c=new Array(i),p=new Array(a).fill(0),m=o.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=Lo({inputs:{x:o},attrs:{begin:p,size:m},backend:e});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:u}))}var MW={kernelName:bi,backendName:"wasm",kernelFunc:jat};function Xat(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(0),n}var zW={kernelName:wi,backendName:"wasm",kernelFunc:Xat};var Yat=[UB,HB,qB,jB,QB,eV,nV,sV,lV,cV,pV,mV,dV,hV,xV,bV,wV,CV,SV,NV,kV,_V,$V,DV,RV,FV,OV,PV,MV,zV,BV,GV,UV,qV,jV,YV,ZV,JV,XB,tG,eG,rG,nG,oG,sG,iG,aG,uG,cG,mG,dG,gG,xG,bG,wG,CG,SG,NG,kG,EG,AG,$G,DG,cI,FG,PG,MG,zG,BG,VG,GG,iV,UG,qG,jG,YG,ZG,JG,tW,rW,oW,sW,uV,aW,lW,cW,mW,dW,hW,gW,xW,yW,bW,CW,SW,vW,NW,TW,kW,_W,AW,$W,RW,OW,LW,ZB,MW,zW];for(let r of Yat)Lu(r);var Rk=z();Rk.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(r){return!1}});Rk.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Rk.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var zk=Tl(WW()),XW=Tl(HW()),Bk=Tl(qW());var KW=zk.default||zk,Zat=Bk.default||Bk,cg=class extends zo{constructor(t){super(),this.wasm=t,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(ZW),Mk=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new ra(this,Pn())}write(t,e,n){let o={id:this.dataIdNextNumber++};return this.move(o,t,e,n,1),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(t){let e=y.now();return t(),{kernelMs:y.now()-e}}move(t,e,n,o,s){let i=this.dataIdNextNumber++;if(o==="string"){let c=e;this.dataIdMap.set(t,{id:i,stringBytes:c,shape:n,dtype:o,memoryOffset:null,refCount:s});return}let a=y.sizeFromShape(n),u=a*y.bytesPerElement(o),l=this.wasm._malloc(u);this.dataIdMap.set(t,{id:i,memoryOffset:l,shape:n,dtype:o,refCount:s}),this.wasm.tfjs.registerTensor(i,a,l),e!=null&&this.wasm.HEAPU8.set(new Uint8Array(e.buffer,e.byteOffset,u),l)}async read(t){return this.readSync(t)}readSync(t,e,n){let{memoryOffset:o,dtype:s,shape:i,stringBytes:a}=this.dataIdMap.get(t);if(s==="string")return(e==null||e===0)&&(n==null||n>=a.length)?a:a.slice(e,n);e=e||0,n=n||y.sizeFromShape(i);let u=y.bytesPerElement(s),l=this.wasm.HEAPU8.slice(o+e*u,o+n*u);return Qat(l.buffer,s)}disposeData(t,e=!1){if(this.dataIdMap.has(t)){let n=this.dataIdMap.get(t);if(n.refCount--,!e&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(t)}return!0}refCount(t){return this.dataIdMap.has(t)?this.dataIdMap.get(t).refCount:0}incRef(t){let e=this.dataIdMap.get(t);e!=null&&e.refCount++}floatPrecision(){return 32}getMemoryOffset(t){return this.dataIdMap.get(t).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(t,e,n){let o;if(n==null)o=this.write(null,t,e);else{let s=this.dataIdNextNumber++;o={id:s},this.dataIdMap.set(o,{id:s,memoryOffset:n,shape:t,dtype:e,refCount:1});let i=y.sizeFromShape(t);this.wasm.tfjs.registerTensor(s,i,n)}return{dataId:o,shape:t,dtype:e}}typedArrayFromHeap({shape:t,dtype:e,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),i=y.sizeFromShape(t);switch(e){case"float32":return new Float32Array(o,s,i);case"int32":return new Int32Array(o,s,i);case"bool":return new Uint8Array(o,s,i);default:throw new Error(`Unknown dtype ${e}`)}}};function Jat(r){return(t,e)=>(y.fetch(r,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,t).then(s=>{e(s.instance,s.module)})})}),{})}function jW(r,t,e){if(hI!=null)return hI;let n="tfjs-backend-wasm.wasm";return r&&t?n="tfjs-backend-wasm-threaded-simd.wasm":r&&(n="tfjs-backend-wasm-simd.wasm"),lg!=null&&lg[n]!=null?lg[n]:e+n}async function YW(){let[r,t]=await Promise.all([z().getAsync("WASM_HAS_SIMD_SUPPORT"),z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((e,n)=>{let o={};o.locateFile=(a,u)=>{if(a.endsWith(".worker.js")){let l=XW.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(c)}return a.endsWith(".wasm")?jW(r,t,ag!=null?ag:u):u+a},Vk&&(o.instantiateWasm=Jat(jW(r,t,ag!=null?ag:"")));let s=!1;o.onAbort=()=>{if(s||ug)return;ug=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let i;t&&r&&hI==null?(o.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+KW.toString()],{type:"text/javascript"}),i=KW(o)):i=Zat(o),i.then(a=>{s=!0,ug=!1;let u=null;a.tfjs={init:a.cwrap("init",null,[]),initWithThreadsCount:a.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:a.cwrap("get_threads_count","number",[]),registerTensor:a.cwrap("register_tensor",null,["number","number","number"]),disposeData:a.cwrap("dispose_data",u,["number"]),dispose:a.cwrap("dispose",u,[])},e({wasm:a})}).catch(n)})}function Qat(r,t){switch(t){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${t}`)}}var tlt=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],hI=null,ag=null,lg={},ug=!1,Vk=!1;function elt(r,t=!1){if(Wv("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),ug)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");hI=r,Vk=t}function rlt(r,t=!1){if(ug)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")ag=r;else{lg=r;let e=tlt.filter(n=>lg[n]==null);if(e.length>0)throw new Error(`There were no entries found for the following binaries: ${e.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Vk=t}var ZW=-1,Mk=-1;function nlt(r){ZW=r}function olt(){if(Mk===-1)throw new Error("WASM backend not initialized.");return Mk}var slt="4.0.0";var ilt=2;Xp("wasm",async()=>{let{wasm:r}=await YW();return new cg(r)},ilt);var JW="4.0.0",alt="4.0.0",llt="4.0.0",ult="4.0.0",clt="4.0.0",plt={tfjs:JW,"tfjs-core":JW,"tfjs-converter":alt,"tfjs-backend-cpu":llt,"tfjs-backend-webgl":ult,"tfjs-backend-wasm":clt};export{ii as Abs,oa as Acos,sa as Acosh,cu as AdadeltaOptimizer,pu as AdagradOptimizer,mu as AdamOptimizer,fu as AdamaxOptimizer,Zn as Add,Go as AddN,ia as All,aa as Any,Wo as ArgMax,kl as ArgMin,la as Asin,ua as Asinh,ca as Atan,ma as Atan2,pa as Atanh,Uo as AvgPool,El as AvgPool3D,lp as AvgPool3DGrad,ap as AvgPoolGrad,cg as BackendWasm,Ho as BatchMatMul,ai as BatchToSpaceND,up as Bincount,cp as BroadcastArgs,p1 as BroadcastTo,Sb as Callback,Py as CallbackList,lo as Cast,qo as Ceil,uo as ClipByValue,pp as Complex,_l as ComplexAbs,li as Concat,Ko as Conv2D,mp as Conv2DBackpropFilter,jo as Conv2DBackpropInput,Al as Conv3D,fp as Conv3DBackpropFilterV2,dp as Conv3DBackpropInputV2,Xo as Cos,Yo as Cosh,da as CropAndResize,fa as Cumprod,Zo as Cumsum,My as CustomCallback,ra as DataStorage,hp as DenseBincount,ha as DepthToSpace,Jo as DepthwiseConv2dNative,gp as DepthwiseConv2dNativeBackpropFilter,xp as DepthwiseConv2dNativeBackpropInput,yp as Diag,$l as Dilation2D,Xd as Dilation2DBackpropFilter,jd as Dilation2DBackpropInput,iv as ENV,vb as EarlyStopping,bp as Einsum,ts as Elu,wp as EluGrad,qd as Environment,xa as Equal,ga as Erf,es as Exp,ui as ExpandDims,ya as Expm1,Cp as FFT,Dl as Fill,ba as FlipLeftRight,rs as Floor,ns as FloorDiv,Yd as FromPixels,os as FusedBatchNorm,Ii as FusedConv2D,Si as FusedDepthwiseConv2D,Bc as GPGPUContext,wa as GatherNd,ci as GatherV2,Ph as GraphModel,Ca as Greater,ss as GreaterEqual,Ly as History,Ip as IFFT,co as Identity,Sp as Imag,ye as InputSpec,Ia as IsFinite,Sa as IsInf,va as IsNan,zo as KernelBackend,Rl as LRN,Np as LRNGrad,Ch as LayerVariable,Bn as LayersModel,is as LeakyRelu,Na as Less,Ta as LessEqual,vp as LinSpace,as as Log,ka as Log1p,f1 as LogSoftmax,Ea as LogicalAnd,_a as LogicalNot,Aa as LogicalOr,m1 as LogicalXor,xlt as LowerBound,_u as MathBackendWebGL,ls as Max,cs as MaxPool,Fl as MaxPool3D,kp as MaxPool3DGrad,Tp as MaxPoolGrad,Ep as MaxPoolWithArgmax,us as Maximum,ps as Mean,ms as Min,fs as Minimum,ds as MirrorPad,$a as Mod,du as MomentumOptimizer,_p as Multinomial,hs as Multiply,pi as Neg,Ra as NonMaxSuppressionV3,Fa as NonMaxSuppressionV4,Oa as NonMaxSuppressionV5,Da as NotEqual,kv as OP_SCOPE_SUFFIX,gs as OneHot,mi as OnesLike,Wr as Optimizer,Ws as OptimizerConstructors,fi as Pack,xs as PadV2,ylt as Pool,ys as Pow,bs as Prelu,ws as Prod,hu as RMSPropOptimizer,Tn as RNN,Ap as RaggedGather,$p as RaggedRange,Dp as RaggedTensorToTensor,Ol as Range,xv as Rank,Rp as Real,Qo as RealDiv,Pa as Reciprocal,Xe as Reduction,Cs as Relu,vs as Relu6,di as Reshape,Ss as ResizeBilinear,Op as ResizeBilinearGrad,Is as ResizeNearestNeighbor,Fp as ResizeNearestNeighborGrad,Ns as Reverse,qa as RotateWithOffset,Ts as Round,ks as Rsqrt,Bi as SGDOptimizer,La as ScatterNd,Pp as SearchSorted,hi as Select,Ma as Selu,qi as Sequential,_s as Sigmoid,Ba as Sign,Es as Sin,za as Sinh,gi as Slice,Ds as Softmax,Va as Softplus,xi as SpaceToBatchND,Pl as SparseFillEmptyRows,Ga as SparseReshape,Ll as SparseSegmentMean,Ml as SparseSegmentSum,Lp as SparseToDense,yi as SplitV,As as Sqrt,zl as Square,Rs as SquaredDifference,po as Step,Wa as StridedSlice,Bl as StringNGrams,Vl as StringSplit,Gl as StringToHashBucketFast,Fs as Sub,$s as Sum,Jr as SymbolicTensor,Os as Tan,Ps as Tanh,Ft as Tensor,pe as TensorBuffer,Jn as Tile,Ua as TopK,Ha as Transform,Qn as Transpose,Mp as Unique,bi as Unpack,Wl as UnsortedSegmentSum,blt as UpperBound,Ka as Variable,wi as ZerosLike,Ci as _FusedMatMul,Ee as abs,ax as acos,lx as acosh,X as add,LE as addN,Zp as all,qu as any,Ai as argMax,ux as argMin,cx as asin,px as asinh,mx as atan,fx as atan2,dx as atanh,Yl as avgPool,gx as avgPool3d,gE as backend,v as backend_util,BE as basicLSTMCell,Di as batchNorm,xx as batchNorm2d,yx as batchNorm3d,bx as batchNorm4d,Zl as batchToSpaceND,wx as bincount,n6 as booleanMaskAsync,GE as broadcastArgs,Ri as broadcastTo,Vr as broadcast_util,nx as browser,wt as buffer,VZ as callbacks,J as cast,Cx as ceil,Cr as clipByValue,sn as clone,wn as complex,ne as concat,Ix as concat1d,Sx as concat2d,vx as concat3d,Nx as concat4d,K$ as constraints,Qp as conv1d,In as conv2d,em as conv2dTranspose,Tx as conv3d,Ex as conv3dTranspose,Tlt as copyRegisteredKernels,Jl as cos,rm as cosh,hh as cosineWindow,Xu as cumprod,nm as cumsum,un as customGrad,AR as data,ch as denseBincount,Wv as deprecationWarn,_x as depthToSpace,Fi as depthwiseConv2d,HZ as deregisterOp,Kl as device_util,WE as diag,Ax as dilation2d,gpt as disableDeprecationWarnings,vt as dispose,xpt as disposeVariables,pt as div,$x as divNoNan,Dx as dot,l0 as dropout,UE as einsum,Oi as elu,hpt as enableDebugMode,dpt as enableProdMode,u0 as enclosingPowerOfTwo,Pn as engine,z as env,$r as equal,Rx as erf,Fx as euclideanNorm,er as exp,rr as expandDims,Ox as expm1,Yu as eye,au as fft,xo as fill,Spt as findBackend,vpt as findBackendFactory,Pi as floor,Yp as floorDiv,hM as forceHalfFloat,uu as fused,Li as gather,m6 as gatherND,ox as gather_util,Cpt as getBackend,uv as getGradient,Jd as getKernel,zg as getKernelsForBackend,olt as getThreadsCount,ik as gpgpu_util,bK as grad,wK as grads,Re as greater,ln as greaterEqual,tl as ifft,Xl as imag,Gs as image,h6 as inTopKAsync,j$ as initializers,P0 as input,_r as io,xm as irfft,Px as isFinite,Lx as isInf,Mx as isNaN,De as keep,Ur as kernel_impls,ED as layers,Ql as leakyRelu,om as less,Ln as lessEqual,p0 as linalg,KE as linspace,M7 as loadGraphModel,z7 as loadGraphModelSync,hD as loadLayersModel,zx as localResponseNormalization,Sr as log,tu as log1p,Gx as logSigmoid,sm as logSoftmax,im as logSumExp,Rr as logicalAnd,eu as logicalNot,am as logicalOr,Wx as logicalXor,hX as losses,jE as lowerBound,Lt as matMul,yE as math,Ir as max,ru as maxPool,Hx as maxPool3d,XE as maxPoolWithArgmax,Sn as maximum,ve as mean,ah as memory,YE as meshgrid,_D as metrics,Ja as min,Mi as minimum,qx as mirrorPad,Kx as mod,q8 as model,AD as models,Zu as moments,s6 as movingAverage,D as mul,ZE as multiRNNCell,JE as multinomial,Ht as neg,gh as nextFrame,Qa as norm,Bs as notEqual,Ei as oneHot,cr as ones,yr as onesLike,T as op,QE as outerProduct,cn as pad,t_ as pad1d,e_ as pad2d,r_ as pad3d,n_ as pad4d,jx as pool,an as pow,ou as prelu,Jg as print,Xx as prod,ypt as profile,o_ as raggedGather,s_ as raggedRange,i_ as raggedTensorToTensor,a_ as rand,v_ as randomGamma,tc as randomNormal,N_ as randomStandardNormal,zi as randomUniform,su as range,wpt as ready,Za as real,ty as reciprocal,Xp as registerBackend,j8 as registerCallbackConstructor,h1 as registerGradient,Lu as registerKernel,UZ as registerOp,$D as regularizers,Fr as relu,lm as relu6,Ipt as removeBackend,R as reshape,pr as reverse,T_ as reverse1d,k_ as reverse2d,E_ as reverse3d,__ as reverse4d,lu as rfft,um as round,cm as rsqrt,mt as scalar,a6 as scatterND,lh as scatter_util,mh as searchSorted,pm as selu,mm as separableConv2d,K8 as sequential,Q as serialization,tH as setBackend,Npt as setPlatform,nlt as setThreadsCount,elt as setWasmPath,rlt as setWasmPaths,wT as setWebGLContext,A_ as setdiff1dAsync,Yr as sigmoid,ey as sign,dX as signal,fm as sin,dm as sinh,Rt as slice,hm as slice1d,dh as slice2d,gm as slice3d,ec as slice4d,Le as slice_util,iu as softmax,zs as softplus,nu as spaceToBatchND,gX as sparse,c6 as sparseToDense,fX as spectral,mr as split,Se as sqrt,Mt as square,ym as squaredDifference,Mn as squeeze,nr as stack,bo as step,ry as stridedSlice,xX as string,ct as sub,ft as sum,Wu as sumOutType,ny as tan,$i as tanh,ur as tensor,Me as tensor1d,Vs as tensor2d,rx as tensor3d,$_ as tensor4d,D_ as tensor5d,R_ as tensor6d,go as tensor_util,OE as test_util,B as tidy,Dr as tile,bpt as time,oy as topk,ic as train,Ot as transpose,bm as truncatedNormal,sy as unique,Nlt as unregisterGradient,vlt as unregisterKernel,wm as unsortedSegmentSum,vr as unstack,sr as upcastType,F_ as upperBound,y as util,CK as valueAndGrad,IK as valueAndGrads,iy as variable,Bx as variableGrads,plt as version,cR as version_converter,PE as version_core,Um as version_layers,slt as version_wasm,dM as version_webgl,Zke as webgl,dd as webgl_util,_e as where,ly as whereAsync,Ne as zeros,It as zerosLike};
|