face-api/dist/tfjs.esm.js

4342 lines
1.0 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var LB=Object.create,Kd=Object.defineProperty,zB=Object.getPrototypeOf,BB=Object.prototype.hasOwnProperty,VB=Object.getOwnPropertyNames,GB=Object.getOwnPropertyDescriptor;var WB=r=>Kd(r,"__esModule",{value:!0});var Wt=(r,e)=>()=>(e||r((e={exports:{}}).exports,e),e.exports),Ze=(r,e)=>{for(var t in e)Kd(r,t,{get:e[t],enumerable:!0})},UB=(r,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let o of VB(e))!BB.call(r,o)&&o!=="default"&&Kd(r,o,{get:()=>e[o],enumerable:!(t=GB(e,o))||t.enumerable});return r},Au=r=>UB(WB(Kd(r!=null?LB(zB(r)):{},"default",r&&r.__esModule&&"default"in r?{get:()=>r.default,enumerable:!0}:{value:r,enumerable:!0})),r);var S0=Wt(()=>{});var TI=Wt((SI,Bb)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(SI,typeof Bb=="object"&&Bb,typeof define=="function"&&define)});var EI=Wt((AI,Vb)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(AI,typeof Vb=="object"&&Vb,typeof define=="function"&&define)});var $I=Wt((DI,Gb)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(DI,typeof Gb=="object"&&Gb,typeof define=="function"&&define)});var FI=Wt((RI,Wb)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(RI,typeof Wb=="object"&&Wb,typeof define=="function"&&define)});var PI=Wt((OI,Ub)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],y=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,y=Math.max(y,c.length)),f=0,d=-32;d<y;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(OI,typeof Ub=="object"&&Ub,typeof define=="function"&&define)});var LI=Wt((MI,jb)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(MI,typeof jb=="object"&&jb,typeof define=="function"&&define)});var Hb=Wt(()=>{});var zI=Wt((jxe,$h)=>{(function(r,e){var t=this,o=256,n=6,s=52,a="random",i=e.pow(o,n),l=e.pow(2,s),u=l*2,c=o-1,p;function m(w,_,k){var D=[];_=_==!0?{entropy:!0}:_||{};var T=g(h(_.entropy?[w,b(r)]:w==null?y():w,3),D),R=new f(D),O=function(){for(var M=R.g(n),G=i,W=0;M<l;)M=(M+W)*o,G*=o,W=R.g(1);for(;M>=u;)M/=2,G/=2,W>>>=1;return(M+W)/G};return O.int32=function(){return R.g(4)|0},O.quick=function(){return R.g(4)/4294967296},O.double=O,g(b(R.S),r),(_.pass||k||function(M,G,W,j){return j&&(j.S&&d(j,R),M.state=function(){return d(R,{})}),W?(e[a]=M,G):M})(O,T,"global"in _?_.global:this==e,_.state)}e["seed"+a]=m;function f(w){var _,k=w.length,D=this,T=0,R=D.i=D.j=0,O=D.S=[];for(k||(w=[k++]);T<o;)O[T]=T++;for(T=0;T<o;T++)O[T]=O[R=c&R+w[T%k]+(_=O[T])],O[R]=_;(D.g=function(M){for(var G,W=0,j=D.i,H=D.j,q=D.S;M--;)G=q[j=c&j+1],W=W*o+q[c&(q[j]=q[H=c&H+G])+(q[H]=G)];return D.i=j,D.j=H,W})(o)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var k=[],D=typeof w,T;if(_&&D=="object")for(T in w)try{k.push(h(w[T],_-1))}catch(R){}return k.length?k:D=="string"?w:w+"\0"}function g(w,_){for(var k=w+"",D,T=0;T<k.length;)_[c&T]=c&(D^=_[c&T]*19)+k.charCodeAt(T++);return b(_)}function y(){try{var w;return p&&(w=p.randomBytes)?w=w(o):(w=new Uint8Array(o),(t.crypto||t.msCrypto).getRandomValues(w)),b(w)}catch(D){var _=t.navigator,k=_&&_.plugins;return[+new Date,t,k,t.screen,b(r)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),r),typeof $h=="object"&&$h.exports){$h.exports=m;try{p=Hb()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var qb=Wt((Hxe,BI)=>{var HW=TI(),qW=EI(),KW=$I(),XW=FI(),YW=PI(),ZW=LI(),Ll=zI();Ll.alea=HW;Ll.xor128=qW;Ll.xorwow=KW;Ll.xorshift7=XW;Ll.xor4096=YW;Ll.tychei=ZW;BI.exports=Ll});var aA=Wt((iA,P_)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=String(u);for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(iA,typeof P_=="object"&&P_,typeof define=="function"&&define)});var uA=Wt((lA,M_)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(lA,typeof M_=="object"&&M_,typeof define=="function"&&define)});var pA=Wt((cA,L_)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(cA,typeof L_=="object"&&L_,typeof define=="function"&&define)});var fA=Wt((mA,z_)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(mA,typeof z_=="object"&&z_,typeof define=="function"&&define)});var hA=Wt((dA,B_)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],y=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,y=Math.max(y,c.length)),f=0,d=-32;d<y;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(dA,typeof B_=="object"&&B_,typeof define=="function"&&define)});var xA=Wt((gA,V_)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(gA,typeof V_=="object"&&V_,typeof define=="function"&&define)});var bA=Wt((yA,Hg)=>{(function(r,e,t){var o=256,n=6,s=52,a="random",i=t.pow(o,n),l=t.pow(2,s),u=l*2,c=o-1,p;function m(w,_,k){var D=[];_=_==!0?{entropy:!0}:_||{};var T=g(h(_.entropy?[w,b(e)]:w==null?y():w,3),D),R=new f(D),O=function(){for(var M=R.g(n),G=i,W=0;M<l;)M=(M+W)*o,G*=o,W=R.g(1);for(;M>=u;)M/=2,G/=2,W>>>=1;return(M+W)/G};return O.int32=function(){return R.g(4)|0},O.quick=function(){return R.g(4)/4294967296},O.double=O,g(b(R.S),e),(_.pass||k||function(M,G,W,j){return j&&(j.S&&d(j,R),M.state=function(){return d(R,{})}),W?(t[a]=M,G):M})(O,T,"global"in _?_.global:this==t,_.state)}function f(w){var _,k=w.length,D=this,T=0,R=D.i=D.j=0,O=D.S=[];for(k||(w=[k++]);T<o;)O[T]=T++;for(T=0;T<o;T++)O[T]=O[R=c&R+w[T%k]+(_=O[T])],O[R]=_;(D.g=function(M){for(var G,W=0,j=D.i,H=D.j,q=D.S;M--;)G=q[j=c&j+1],W=W*o+q[c&(q[j]=q[H=c&H+G])+(q[H]=G)];return D.i=j,D.j=H,W})(o)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var k=[],D=typeof w,T;if(_&&D=="object")for(T in w)try{k.push(h(w[T],_-1))}catch(R){}return k.length?k:D=="string"?w:w+"\0"}function g(w,_){for(var k=w+"",D,T=0;T<k.length;)_[c&T]=c&(D^=_[c&T]*19)+k.charCodeAt(T++);return b(_)}function y(){try{var w;return p&&(w=p.randomBytes)?w=w(o):(w=new Uint8Array(o),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(D){var _=r.navigator,k=_&&_.plugins;return[+new Date,r,k,r.screen,b(e)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(t.random(),e),typeof Hg=="object"&&Hg.exports){Hg.exports=m;try{p=Hb()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):t["seed"+a]=m})(typeof self!="undefined"?self:yA,[],Math)});var G_=Wt((X9e,wA)=>{var s6=aA(),i6=uA(),a6=pA(),l6=fA(),u6=hA(),c6=xA(),nu=bA();nu.alea=s6;nu.xor128=i6;nu.xorwow=a6;nu.xorshift7=l6;nu.xor4096=u6;nu.tychei=c6;wA.exports=nu});var KA=Wt(()=>{});var Op=Wt(()=>{});var Lz=Wt(()=>{});var zz=Wt(()=>{});var Bz=Wt((Tx,wC)=>{var _C=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return J.buffer!=We&&rr(J.buffer),lt}function o(){return J.buffer!=We&&rr(J.buffer),mt}function n(){return J.buffer!=We&&rr(J.buffer),Kt}function s(){return J.buffer!=We&&rr(J.buffer),Zr}function a(){return J.buffer!=We&&rr(J.buffer),Po}var i=typeof e!="undefined"?e:{},l,u;i.ready=new Promise(function(N,$){l=N,u=$});var c={},p;for(p in i)i.hasOwnProperty(p)&&(c[p]=i[p]);var m=[],f="./this.program",d=function(N,$){throw $},h=!1,g=!1,y=!1,b=!1;h=typeof window=="object",g=typeof importScripts=="function",y=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!h&&!y&&!g;var w=i.ENVIRONMENT_IS_PTHREAD||!1;w&&(We=i.buffer);var _="";function k(N){return i.locateFile?i.locateFile(N,_):_+N}var D,T,R,O,M,G;if(y){g?_=Op().dirname(_)+"/":_=__dirname+"/",D=function($,B){return M||(M=require("fs")),G||(G=Op()),$=G.normalize($),M.readFileSync($,B?null:"utf8")},R=function($){var B=D($,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof jp))throw N}),process.on("unhandledRejection",si),d=function(N){process.exit(N)},i.inspect=function(){return"[Emscripten Module object]"};var W;try{W=Lz()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=W.Worker}else b?(typeof read!="undefined"&&(D=function($){return read($)}),R=function($){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer($)):(B=read($,"binary"),fe(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(d=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||g)&&(g?_=self.location.href:typeof document!="undefined"&&document.currentScript&&(_=document.currentScript.src),typeof r!="undefined"&&r&&(_=r),_.indexOf("blob:")!==0?_=_.substr(0,_.lastIndexOf("/")+1):_="",y?(D=function($,B){return M||(M=require("fs")),G||(G=Op()),$=G.normalize($),M.readFileSync($,B?null:"utf8")},R=function($){var B=D($,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B}):(D=function(N){var $=new XMLHttpRequest;return $.open("GET",N,!1),$.send(null),$.responseText},g&&(R=function(N){var $=new XMLHttpRequest;return $.open("GET",N,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),T=function(N,$,B){var K=new XMLHttpRequest;K.open("GET",N,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){$(K.response);return}B()},K.onerror=B,K.send(null)}),O=function(N){document.title=N});y&&typeof performance=="undefined"&&(global.performance=zz().performance);var j=i.print||console.log.bind(console),H=i.printErr||console.warn.bind(console);for(p in c)c.hasOwnProperty(p)&&(i[p]=c[p]);c=null,i.arguments&&(m=i.arguments),i.thisProgram&&(f=i.thisProgram),i.quit&&(d=i.quit);var q=Atomics.load,X=Atomics.store,oe=Atomics.compareExchange,Y;i.wasmBinary&&(Y=i.wasmBinary);var re=i.noExitRuntime||!0;typeof WebAssembly!="object"&&si("no native wasm support detected");var J,ie,ue=!1,ae;function fe(N,$){N||si("Assertion failed: "+$)}function de(N){var $=i["_"+N];return fe($,"Cannot call unknown function "+N+", make sure it is exported"),$}function ge(N,$,B,K,be){var he={string:function(Lr){var Tu=0;if(Lr!=null&&Lr!==0){var LC=(Lr.length<<2)+1;Tu=Iu(LC),je(Lr,Tu,LC)}return Tu},array:function(Lr){var Tu=Iu(Lr.length);return Nt(Lr,Tu),Tu}};function xe(Lr){return $==="string"?Ce(Lr):$==="boolean"?Boolean(Lr):Lr}var Se=de(N),xt=[],yr=0;if(K)for(var ar=0;ar<K.length;ar++){var _a=he[B[ar]];_a?(yr===0&&(yr=Up()),xt[ar]=_a(K[ar])):xt[ar]=K[ar]}var Su=Se.apply(null,xt);return Su=xe(Su),yr!==0&&Cu(yr),Su}function we(N,$,B,K){B=B||[];var be=B.every(function(xe){return xe==="number"}),he=$!=="string";return he&&be&&!K?de(N):function(){return ge(N,$,B,arguments,K)}}function De(N,$,B){for(var K=$+B,be="";!($>=K);){var he=N[$++];if(!he)return be;if(!(he&128)){be+=String.fromCharCode(he);continue}var xe=N[$++]&63;if((he&224)==192){be+=String.fromCharCode((he&31)<<6|xe);continue}var Se=N[$++]&63;if((he&240)==224?he=(he&15)<<12|xe<<6|Se:he=(he&7)<<18|xe<<12|Se<<6|N[$++]&63,he<65536)be+=String.fromCharCode(he);else{var xt=he-65536;be+=String.fromCharCode(55296|xt>>10,56320|xt&1023)}}return be}function Ce(N,$){return N?De(o(),N,$):""}function ze(N,$,B,K){if(!(K>0))return 0;for(var be=B,he=B+K-1,xe=0;xe<N.length;++xe){var Se=N.charCodeAt(xe);if(Se>=55296&&Se<=57343){var xt=N.charCodeAt(++xe);Se=65536+((Se&1023)<<10)|xt&1023}if(Se<=127){if(B>=he)break;$[B++]=Se}else if(Se<=2047){if(B+1>=he)break;$[B++]=192|Se>>6,$[B++]=128|Se&63}else if(Se<=65535){if(B+2>=he)break;$[B++]=224|Se>>12,$[B++]=128|Se>>6&63,$[B++]=128|Se&63}else{if(B+3>=he)break;$[B++]=240|Se>>18,$[B++]=128|Se>>12&63,$[B++]=128|Se>>6&63,$[B++]=128|Se&63}}return $[B]=0,B-be}function je(N,$,B){return ze(N,o(),$,B)}function it(N){for(var $=0,B=0;B<N.length;++B){var K=N.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|N.charCodeAt(++B)&1023),K<=127?++$:K<=2047?$+=2:K<=65535?$+=3:$+=4}return $}function Nt(N,$){t().set(N,$)}function St(N,$){return N%$>0&&(N+=$-N%$),N}var We,lt,mt,Pt,ho,Kt,Zr,Tr,Po;function rr(N){We=N,i.HEAP8=lt=new Int8Array(N),i.HEAP16=Pt=new Int16Array(N),i.HEAP32=Kt=new Int32Array(N),i.HEAPU8=mt=new Uint8Array(N),i.HEAPU16=ho=new Uint16Array(N),i.HEAPU32=Zr=new Uint32Array(N),i.HEAPF32=Tr=new Float32Array(N),i.HEAPF64=Po=new Float64Array(N)}var go=i.INITIAL_MEMORY||16777216;if(w)J=i.wasmMemory,We=i.buffer;else if(i.wasmMemory)J=i.wasmMemory;else if(J=new WebAssembly.Memory({initial:go/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw H("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),y&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(We=J.buffer),go=We.byteLength,rr(We);var Mr,xr=[],Jr=[],vo=[],bl=[],ga=[],un=!1,oi=!1;w||Jr.push({func:function(){Vd()}}),w&&(un=!0);function Pp(){if(!w){if(i.preRun)for(typeof i.preRun=="function"&&(i.preRun=[i.preRun]);i.preRun.length;)Td(i.preRun.shift());bu(xr)}}function xu(){un=!0,bu(Jr)}function Dx(){w||bu(vo)}function Sd(){w||(oi=!0)}function Qr(){if(!w){if(i.postRun)for(typeof i.postRun=="function"&&(i.postRun=[i.postRun]);i.postRun.length;)$x(i.postRun.shift());bu(ga)}}function Td(N){xr.unshift(N)}function $x(N){ga.unshift(N)}var ni=0,xa=null,wl=null;function Rx(N){fe(!w,"addRunDependency cannot be used in a pthread worker"),ni++,i.monitorRunDependencies&&i.monitorRunDependencies(ni)}function Fx(N){if(ni--,i.monitorRunDependencies&&i.monitorRunDependencies(ni),ni==0&&(xa!==null&&(clearInterval(xa),xa=null),wl)){var $=wl;wl=null,$()}}i.preloadedImages={},i.preloadedAudios={};function si(N){i.onAbort&&i.onAbort(N),w&&console.error("Pthread aborting at "+new Error().stack),N+="",H(N),ue=!0,ae=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(N);throw u($),$}function Ad(N,$){return String.prototype.startsWith?N.startsWith($):N.indexOf($)===0}var yu="data:application/octet-stream;base64,";function Ed(N){return Ad(N,yu)}var Ox="file://";function Dd(N){return Ad(N,Ox)}var eo="tfjs-backend-wasm-threaded-simd.wasm";Ed(eo)||(eo=k(eo));function Px(N){try{if(N==eo&&Y)return new Uint8Array(Y);if(R)return R(N);throw"both async and sync fetching of the wasm failed"}catch($){si($)}}function $d(){if(!Y&&(h||g)){if(typeof fetch=="function"&&!Dd(eo))return fetch(eo,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+eo+"'";return N.arrayBuffer()}).catch(function(){return Px(eo)});if(T)return new Promise(function(N,$){T(eo,function(B){N(new Uint8Array(B))},$)})}return Promise.resolve().then(function(){return Px(eo)})}function Mx(){var N={a:Sy};function $(xe,Se){var xt=xe.exports;if(i.asm=xt,Mr=i.asm.F,ie=Se,!w){var yr=Ee.unusedWorkers.length;Ee.unusedWorkers.forEach(function(ar){Ee.loadWasmModuleToWorker(ar,function(){--yr||Fx("wasm-instantiate")})})}}w||Rx("wasm-instantiate");function B(xe){$(xe.instance,xe.module)}function K(xe){return $d().then(function(Se){return WebAssembly.instantiate(Se,N)}).then(xe,function(Se){H("failed to asynchronously prepare wasm: "+Se),si(Se)})}function be(){return!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!Ed(eo)&&!Dd(eo)&&typeof fetch=="function"?fetch(eo,{credentials:"same-origin"}).then(function(xe){var Se=WebAssembly.instantiateStreaming(xe,N);return Se.then(B,function(xt){return H("wasm streaming compile failed: "+xt),H("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(i.instantiateWasm)try{var he=i.instantiateWasm(N,$);return he}catch(xe){return H("Module.instantiateWasm callback failed with error: "+xe),!1}return be().catch(u),{}}var Rd={8991:function(N,$){setTimeout(function(){$C(N,$)},0)}};function Lx(){Ee.initRuntime()}function bu(N){for(;N.length>0;){var $=N.shift();if(typeof $=="function"){$(i);continue}var B=$.func;typeof B=="number"?$.arg===void 0?Mr.get(B)():Mr.get(B)($.arg):B($.arg===void 0?null:$.arg)}}function wu(N,$){if(N<=0||N>t().length||N&!0||$<0)return-28;if($==0)return 0;$>=2147483647&&($=Infinity);var B=Atomics.load(n(),Nu>>2),K=0;if(B==N){var be=Atomics.compareExchange(n(),Nu>>2,B,0);if(be==B&&(--$,K=1,$<=0))return 1}var he=Atomics.notify(n(),N>>2,$);if(he>=0)return he+K;throw"Atomics.notify returned an unexpected value "+he}i._emscripten_futex_wake=wu;function zx(N){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";n()[N+12>>2]=0;var $=Ee.pthreads[N];$.worker.terminate(),Ee.freeThreadData($),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function Bx(N){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var $=Ee.pthreads[N];$.worker.postMessage({cmd:"cancel"})}function Vx(N){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";n()[N+12>>2]=0;var $=Ee.pthreads[N];if($){var B=$.worker;Ee.returnWorkerToPool(B)}}var Ee={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=8,$=0;$<N;++$)Ee.allocateUnusedWorker()},initRuntime:function(){for(var N=kl(228),$=0;$<228/4;++$)s()[N/4+$]=0;n()[N+12>>2]=N;var B=N+152;n()[B>>2]=B;for(var K=kl(512),$=0;$<128;++$)s()[K/4+$]=0;Atomics.store(s(),N+100>>2,K),Atomics.store(s(),N+40>>2,N),Hd(N,!g,1),DC(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ee.threadExitHandlers.length>0;)Ee.threadExitHandlers.pop()();w&&vu()&&EC()},threadExit:function(N){var $=vu();$&&(Atomics.store(s(),$+4>>2,N),Atomics.store(s(),$+0>>2,1),Atomics.store(s(),$+56>>2,1),Atomics.store(s(),$+60>>2,0),Ee.runExitHandlers(),wu($+0,2147483647),Hd(0,0,0),w&&postMessage({cmd:"exit"}))},threadCancel:function(){Ee.runExitHandlers();var N=vu();Atomics.store(s(),N+4>>2,-1),Atomics.store(s(),N+0>>2,1),wu(N+0,2147483647),Hd(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in Ee.pthreads){var $=Ee.pthreads[N];$&&$.worker&&Ee.returnWorkerToPool($.worker)}Ee.pthreads={};for(var B=0;B<Ee.unusedWorkers.length;++B){var K=Ee.unusedWorkers[B];K.terminate()}Ee.unusedWorkers=[];for(var B=0;B<Ee.runningWorkers.length;++B){var K=Ee.runningWorkers[B],$=K.pthread;Ee.freeThreadData($),K.terminate()}Ee.runningWorkers=[]},freeThreadData:function(N){if(!!N){if(N.threadInfoStruct){var $=n()[N.threadInfoStruct+100>>2];n()[N.threadInfoStruct+100>>2]=0,Wp($),Wp(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&Wp(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){Ee.runWithoutMainThreadQueuedCalls(function(){delete Ee.pthreads[N.pthread.threadInfoStruct],Ee.unusedWorkers.push(N),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(N),1),Ee.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){n()[MC>>2]=0;try{N()}finally{n()[MC>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,$){N.onmessage=function(B){var K=B.data,be=K.cmd;if(N.pthread&&(Ee.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=vu()){var he=Ee.pthreads[K.targetThread];he?he.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+be+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Ee.currentProxiedOperationCallerThread=void 0;return}if(be==="processQueuedMainThreadWork")Gy();else if(be==="spawnThread")zd(B.data);else if(be==="cleanupThread")Vx(K.thread);else if(be==="killThread")zx(K.thread);else if(be==="cancelThread")Bx(K.thread);else if(be==="loaded")N.loaded=!0,$&&$(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(be==="print")j("Thread "+K.threadId+": "+K.text);else if(be==="printErr")H("Thread "+K.threadId+": "+K.text);else if(be==="alert")alert("Thread "+K.threadId+": "+K.text);else if(be==="exit"){var xe=N.pthread&&Atomics.load(s(),N.pthread.threadInfoStruct+64>>2);xe&&Ee.returnWorkerToPool(N)}else if(be==="exitProcess")try{MB(K.returnCode)}catch(Se){if(Se instanceof jp)return;throw Se}else be==="cancelDone"?Ee.returnWorkerToPool(N):be==="objectTransfer"?Ee.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?N.postMessage(B.data):H("worker sent an unknown command "+be);Ee.currentProxiedOperationCallerThread=void 0},N.onerror=function(B){H("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},y&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("exit",function(B){})),N.postMessage({cmd:"load",urlOrBlob:i.mainScriptUrlOrBlob||r,wasmMemory:J,wasmModule:ie})},allocateUnusedWorker:function(){var N=k("tfjs-backend-wasm-threaded-simd.worker.js");Ee.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Ee.unusedWorkers.length==0&&(Ee.allocateUnusedWorker(),Ee.loadWasmModuleToWorker(Ee.unusedWorkers[0])),Ee.unusedWorkers.length>0?Ee.unusedWorkers.pop():null},busySpinWait:function(N){for(var $=performance.now()+N;performance.now()<$;);}};function Gx(N,$){OC(N,$),Cu(N)}i.establishStackSpace=Gx;function Wx(){return re}i.getNoExitRuntime=Wx;function Ux(N,$){return Mr.get(N)($)}i.invokeEntryPoint=Ux;function jx(N,$,B,K){si("Assertion failed: "+Ce(N)+", at: "+[$?Ce($):"unknown filename",B,K?Ce(K):"unknown function"])}function Hx(N,$){var B=_main(N,$)}var _l;y?_l=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:w?_l=function(){return performance.now()-i.__performance_now_clock_drift}:typeof dateNow!="undefined"?_l=dateNow:_l=function(){return performance.now()};function qx(N){return n()[TC()>>2]=N,N}function Kx(N,$){if(w)return ya(1,1,N,$)}function Xx(N,$){if(N==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=Ee.pthreads[N],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function Yx(){si()}function Zx(N,$,B){var K=ry($,B);return Rd[N].apply(null,K)}function Jx(N,$){}function Qx(N,$,B){if(N<=0||N>t().length||N&!0)return-28;if(h){if(Atomics.load(n(),N>>2)!=$)return-6;for(var be=performance.now(),he=be+B,xe=Atomics.exchange(n(),Nu>>2,N);;){if(be=performance.now(),be>he)return xe=Atomics.exchange(n(),Nu>>2,0),-73;if(xe=Atomics.exchange(n(),Nu>>2,0),xe==0)break;if(Gy(),Atomics.load(n(),N>>2)!=$)return-6;xe=Atomics.exchange(n(),Nu>>2,N)}return 0}else{var K=Atomics.wait(n(),N>>2,$,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function ey(N,$,B){o().copyWithin(N,$,$+B)}function ty(){return y?require("os").cpus().length:navigator.hardwareConcurrency}function ya(N,$){for(var B=arguments.length-2,K=Up(),be=B,he=Iu(be*8),xe=he>>3,Se=0;Se<B;Se++){var xt=arguments[2+Se];a()[xe+Se]=xt}var yr=FC(N,be,he,$);return Cu(K),yr}var Mp=[],Lp=[];function ry(N,$){Lp.length=0;var B;for($>>=2;B=o()[N++];){var K=B<105;K&&$&1&&$++,Lp.push(K?a()[$++>>1]:n()[$]),++$}return Lp}function oy(N,$,B){Mp.length=$;for(var K=B>>3,be=0;be<$;be++)Mp[be]=a()[K+be];var he=N<0,xe=he?Rd[-N-1]:Ny[N];return xe.apply(null,Mp)}function ny(){return o().length}function sy(N){try{return J.grow(N-We.byteLength+65535>>>16),rr(J.buffer),1}catch($){}}function iy(N){var $=ny();if(N<=$)return!1;var B=2147483648;if(N>B)return!1;for(var K=1;K<=4;K*=2){var be=$*(1+.2/K);be=Math.min(be,N+100663296);var he=Math.min(B,St(Math.max(N,be),65536)),xe=sy(he);if(xe)return!0}return!1}var Xe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Xe.eventHandlers.length-1;N>=0;--N)Xe._removeHandler(N);Xe.eventHandlers=[],Xe.deferredCalls=[]},registerRemoveEventListeners:function(){Xe.removeEventListenersRegistered||(bl.push(Xe.removeAllEventListeners),Xe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,$,B){function K(xe,Se){if(xe.length!=Se.length)return!1;for(var xt in xe)if(xe[xt]!=Se[xt])return!1;return!0}for(var be in Xe.deferredCalls){var he=Xe.deferredCalls[be];if(he.targetFunction==N&&K(he.argsList,B))return}Xe.deferredCalls.push({targetFunction:N,precedence:$,argsList:B}),Xe.deferredCalls.sort(function(xe,Se){return xe.precedence<Se.precedence})},removeDeferredCalls:function(N){for(var $=0;$<Xe.deferredCalls.length;++$)Xe.deferredCalls[$].targetFunction==N&&(Xe.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Xe.inEventHandler&&Xe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Xe.canPerformEventHandlerRequests())for(var N=0;N<Xe.deferredCalls.length;++N){var $=Xe.deferredCalls[N];Xe.deferredCalls.splice(N,1),--N,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,$){for(var B=0;B<Xe.eventHandlers.length;++B)Xe.eventHandlers[B].target==N&&(!$||$==Xe.eventHandlers[B].eventTypeString)&&Xe._removeHandler(B--)},_removeHandler:function(N){var $=Xe.eventHandlers[N];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Xe.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var $=function(be){++Xe.inEventHandler,Xe.currentEventHandler=N,Xe.runDeferredCalls(),N.handlerFunc(be),Xe.runDeferredCalls(),--Xe.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=$,N.target.addEventListener(N.eventTypeString,$,N.useCapture),Xe.eventHandlers.push(N),Xe.registerRemoveEventListeners();else for(var B=0;B<Xe.eventHandlers.length;++B)Xe.eventHandlers[B].target==N.target&&Xe.eventHandlers[B].eventTypeString==N.eventTypeString&&Xe._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(N,$,B,K,be){var he=Up(),xe=Iu(12);n()[xe>>2]=B,n()[xe+4>>2]=K,n()[xe+8>>2]=be,Wy(0,N,637534208,$,K,xe),Cu(he)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Ee.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function ay(N){var $=it(N)+1,B=kl($);return je(N,B,$),B}function ly(N,$,B,K){var be=Up(),he=Iu(12),xe=0;$&&(xe=ay($)),n()[he>>2]=xe,n()[he+4>>2]=B,n()[he+8>>2]=K,Wy(0,N,657457152,0,xe,he),Cu(be)}function uy(N,$,B,K){$=$?Ce($):"",ly(N,$,B,K)}function cy(N){return N>2?Ce(N):N}var py=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function my(N){N=cy(N);var $=py[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return $}function zp(N){return my(N)}function Fd(N,$,B){var K=zp(N);if(!K)return-4;if(K.canvasSharedPtr&&(n()[K.canvasSharedPtr>>2]=$,n()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var be=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var he=K.GLctxObject.GLctx.getParameter(2978);be=he[0]===0&&he[1]===0&&he[2]===K.width&&he[3]===K.height}K.width=$,K.height=B,be&&K.GLctxObject.GLctx.viewport(0,0,$,B)}else if(K.canvasSharedPtr){var xe=n()[K.canvasSharedPtr+8>>2];return uy(xe,N,$,B),1}else return-4;return 0}function Od(N,$,B){return w?ya(2,1,N,$,B):Fd(N,$,B)}function fy(N,$,B){var K=zp(N);return K?Fd(N,$,B):Od(N,$,B)}function dy(N){}function hy(N,$){}function gy(N){var $=N.getExtension("ANGLE_instanced_arrays");if($)return N.vertexAttribDivisor=function(B,K){$.vertexAttribDivisorANGLE(B,K)},N.drawArraysInstanced=function(B,K,be,he){$.drawArraysInstancedANGLE(B,K,be,he)},N.drawElementsInstanced=function(B,K,be,he,xe){$.drawElementsInstancedANGLE(B,K,be,he,xe)},1}function xy(N){var $=N.getExtension("OES_vertex_array_object");if($)return N.createVertexArray=function(){return $.createVertexArrayOES()},N.deleteVertexArray=function(B){$.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){$.bindVertexArrayOES(B)},N.isVertexArray=function(B){return $.isVertexArrayOES(B)},1}function yy(N){var $=N.getExtension("WEBGL_draw_buffers");if($)return N.drawBuffers=function(B,K){$.drawBuffersWEBGL(B,K)},1}function by(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function($){ft.lastError||(ft.lastError=$)},getNewId:function(N){for(var $=ft.counter++,B=N.length;B<$;B++)N[B]=null;return $},getSource:function(N,$,B,K){for(var be="",he=0;he<$;++he){var xe=K?n()[K+he*4>>2]:-1;be+=Ce(n()[B+he*4>>2],xe<0?void 0:xe)}return be},createContext:function(N,$){var B=N.getContext("webgl",$);if(!B)return 0;var K=ft.registerContext(B,$);return K},registerContext:function(N,$){var B=kl(8);n()[B+4>>2]=vu();var K={handle:B,attributes:$,version:$.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=K),ft.contexts[B]=K,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&ft.initExtensions(K),B},makeContextCurrent:function(N){return ft.currentContext=ft.contexts[N],i.ctx=ba=ft.currentContext&&ft.currentContext.GLctx,!(N&&!ba)},getContext:function(N){return ft.contexts[N]},deleteContext:function(N){ft.currentContext===ft.contexts[N]&&(ft.currentContext=null),typeof Xe=="object"&&Xe.removeAllHandlersOnTarget(ft.contexts[N].GLctx.canvas),ft.contexts[N]&&ft.contexts[N].GLctx.canvas&&(ft.contexts[N].GLctx.canvas.GLctxObject=void 0),Wp(ft.contexts[N].handle),ft.contexts[N]=null},initExtensions:function(N){if(N||(N=ft.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var $=N.GLctx;gy($),xy($),yy($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),by($);var B=$.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&$.getExtension(K)})}},populateUniformTable:function(N){for(var $=ft.programs[N],B=ft.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,be=ba.getProgramParameter($,35718),he=0;he<be;++he){var xe=ba.getActiveUniform($,he),Se=xe.name;B.maxUniformLength=Math.max(B.maxUniformLength,Se.length+1),Se.slice(-1)=="]"&&(Se=Se.slice(0,Se.lastIndexOf("[")));var xt=ba.getUniformLocation($,Se);if(xt){var yr=ft.getNewId(ft.uniforms);K[Se]=[xe.size,yr],ft.uniforms[yr]=xt;for(var ar=1;ar<xe.size;++ar){var _a=Se+"["+ar+"]";xt=ba.getUniformLocation($,_a),yr=ft.getNewId(ft.uniforms),ft.uniforms[yr]=xt}}}}},wy=["default","low-power","high-performance"];function _y(N,$){var B=$>>2,K=n()[B+(24>>2)],be={alpha:!!n()[B+(0>>2)],depth:!!n()[B+(4>>2)],stencil:!!n()[B+(8>>2)],antialias:!!n()[B+(12>>2)],premultipliedAlpha:!!n()[B+(16>>2)],preserveDrawingBuffer:!!n()[B+(20>>2)],powerPreference:wy[K],failIfMajorPerformanceCaveat:!!n()[B+(28>>2)],majorVersion:n()[B+(32>>2)],minorVersion:n()[B+(36>>2)],enableExtensionsByDefault:n()[B+(40>>2)],explicitSwapControl:n()[B+(44>>2)],proxyContextToMainThread:n()[B+(48>>2)],renderViaOffscreenBackBuffer:n()[B+(52>>2)]},he=zp(N);if(!he||be.explicitSwapControl)return 0;var xe=ft.createContext(he,be);return xe}function ky(N,$){return _y(N,$)}var _u={mappings:{},buffers:[null,[],[]],printChar:function(N,$){var B=_u.buffers[N];$===0||$===10?((N===1?j:H)(De(B,0)),B.length=0):B.push($)},varargs:void 0,get:function(){_u.varargs+=4;var N=n()[_u.varargs-4>>2];return N},getStr:function(N){var $=Ce(N);return $},get64:function(N,$){return N}};function Pd(N){return w?ya(3,1,N):0}function Md(N,$,B,K,be){if(w)return ya(4,1,N,$,B,K,be)}function Ld(N,$,B,K){if(w)return ya(5,1,N,$,B,K);for(var be=0,he=0;he<B;he++){for(var xe=n()[$+he*8>>2],Se=n()[$+(he*8+4)>>2],xt=0;xt<Se;xt++)_u.printChar(N,o()[xe+xt]);be+=Se}return n()[K>>2]=be,0}function vy(N){var $=Ee.threadExitHandlers.pop();N&&$()}function Cy(N,$){Ee.threadExitHandlers.push(function(){Mr.get(N)($)})}function zd(N){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var $=Ee.getNewWorker();if($.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";Ee.runningWorkers.push($);for(var B=kl(128*4),K=0;K<128;++K)n()[B+K*4>>2]=0;var be=N.stackBase+N.stackSize,he=Ee.pthreads[N.pthread_ptr]={worker:$,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},xe=he.threadInfoStruct>>2;Atomics.store(s(),xe+(64>>2),N.detached),Atomics.store(s(),xe+(100>>2),B),Atomics.store(s(),xe+(40>>2),he.threadInfoStruct),Atomics.store(s(),xe+(80>>2),N.stackSize),Atomics.store(s(),xe+(76>>2),be),Atomics.store(s(),xe+(104>>2),N.stackSize),Atomics.store(s(),xe+(104+8>>2),be),Atomics.store(s(),xe+(104+12>>2),N.detached);var Se=AC(),xt=Se+40;Atomics.store(s(),xe+(172>>2),xt),$.pthread=he;var yr={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};$.runPthread=function(){yr.time=performance.now(),$.postMessage(yr,N.transferList)},$.loaded&&($.runPthread(),delete $.runPthread)}function Iy(N,$,B,K){if(typeof SharedArrayBuffer=="undefined")return H("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return H("pthread_create called with a null thread pointer!"),28;var be=[],he=0;if(w&&(be.length===0||he))return RC(687865856,N,$,B,K);if(he)return he;var xe=0,Se=0,xt=0;$&&$!=-1?(xe=n()[$>>2],xe+=81920,Se=n()[$+8>>2],xt=n()[$+12>>2]!==0):xe=2097152;var yr=Se==0;yr?Se=PC(16,xe):(Se-=xe,fe(Se>0));for(var ar=kl(228),_a=0;_a<228>>2;++_a)s()[(ar>>2)+_a]=0;n()[N>>2]=ar,n()[ar+12>>2]=ar;var Su=ar+152;n()[Su>>2]=Su;var Lr={stackBase:Se,stackSize:xe,allocatedOwnStack:yr,detached:xt,startRoutine:B,pthread_ptr:ar,arg:K,transferList:be};return w?(Lr.cmd="spawnThread",postMessage(Lr,be)):zd(Lr),0}function Bd(N){if(w)return ya(6,1,N);switch(N){case 30:return 16384;case 85:var $=2147483648;return $/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return qx(28),-1}w||Ee.initMainThreadBlock();var ba,Ny=[null,Kx,Od,Pd,Md,Ld,Bd],Sy={e:jx,r:Hx,x:Xx,b:Yx,y:Zx,j:Jx,c:Qx,d:wu,f:_l,p:ey,z:ty,u:oy,q:iy,v:fy,i:dy,t:hy,w:ky,m:Pd,n:Md,g:Ld,o:Lx,a:J||i.wasmMemory,k:vy,l:Cy,h:Iy,s:Bd},SC=Mx(),Vd=i.___wasm_call_ctors=function(){return(Vd=i.___wasm_call_ctors=i.asm.A).apply(null,arguments)},Ty=i._init=function(){return(Ty=i._init=i.asm.B).apply(null,arguments)},Ay=i._register_tensor=function(){return(Ay=i._register_tensor=i.asm.C).apply(null,arguments)},Ey=i._dispose_data=function(){return(Ey=i._dispose_data=i.asm.D).apply(null,arguments)},Dy=i._dispose=function(){return(Dy=i._dispose=i.asm.E).apply(null,arguments)},$y=i._Abs=function(){return($y=i._Abs=i.asm.G).apply(null,arguments)},Ry=i._Add=function(){return(Ry=i._Add=i.asm.H).apply(null,arguments)},Fy=i._AddN=function(){return(Fy=i._AddN=i.asm.I).apply(null,arguments)},Oy=i._ArgMax=function(){return(Oy=i._ArgMax=i.asm.J).apply(null,arguments)},Py=i._AvgPool=function(){return(Py=i._AvgPool=i.asm.K).apply(null,arguments)},My=i._BatchMatMul=function(){return(My=i._BatchMatMul=i.asm.L).apply(null,arguments)},Ly=i._Ceil=function(){return(Ly=i._Ceil=i.asm.M).apply(null,arguments)},zy=i._ClipByValue=function(){return(zy=i._ClipByValue=i.asm.N).apply(null,arguments)},By=i._Conv2D=function(){return(By=i._Conv2D=i.asm.O).apply(null,arguments)},Gd=i._Conv2DBackpropInput=function(){return(Gd=i._Conv2DBackpropInput=i.asm.P).apply(null,arguments)},Wd=i._Cos=function(){return(Wd=i._Cos=i.asm.Q).apply(null,arguments)},Bp=i._CropAndResize=function(){return(Bp=i._CropAndResize=i.asm.R).apply(null,arguments)},ku=i._Cumsum=function(){return(ku=i._Cumsum=i.asm.S).apply(null,arguments)},Vy=i._DepthToSpace=function(){return(Vy=i._DepthToSpace=i.asm.T).apply(null,arguments)},Vp=i._DepthwiseConv2dNative=function(){return(Vp=i._DepthwiseConv2dNative=i.asm.U).apply(null,arguments)},Z=i._Equal=function(){return(Z=i._Equal=i.asm.V).apply(null,arguments)},se=i._Exp=function(){return(se=i._Exp=i.asm.W).apply(null,arguments)},ve=i._FlipLeftRight=function(){return(ve=i._FlipLeftRight=i.asm.X).apply(null,arguments)},at=i._Floor=function(){return(at=i._Floor=i.asm.Y).apply(null,arguments)},Xt=i._FloorDiv=function(){return(Xt=i._FloorDiv=i.asm.Z).apply(null,arguments)},zt=i._FusedBatchNorm=function(){return(zt=i._FusedBatchNorm=i.asm._).apply(null,arguments)},tt=i._FusedConv2D=function(){return(tt=i._FusedConv2D=i.asm.$).apply(null,arguments)},rt=i._FusedDepthwiseConv2D=function(){return(rt=i._FusedDepthwiseConv2D=i.asm.aa).apply(null,arguments)},vr=i._Gather=function(){return(vr=i._Gather=i.asm.ba).apply(null,arguments)},ii=i._GatherNd=function(){return(ii=i._GatherNd=i.asm.ca).apply(null,arguments)},ai=i._Greater=function(){return(ai=i._Greater=i.asm.da).apply(null,arguments)},Ud=i._GreaterEqual=function(){return(Ud=i._GreaterEqual=i.asm.ea).apply(null,arguments)},Gp=i._LeakyRelu=function(){return(Gp=i._LeakyRelu=i.asm.fa).apply(null,arguments)},xo=i._Less=function(){return(xo=i._Less=i.asm.ga).apply(null,arguments)},wa=i._LessEqual=function(){return(wa=i._LessEqual=i.asm.ha).apply(null,arguments)},jd=i._Log=function(){return(jd=i._Log=i.asm.ia).apply(null,arguments)},Hz=i._LogicalAnd=function(){return(Hz=i._LogicalAnd=i.asm.ja).apply(null,arguments)},qz=i._Max=function(){return(qz=i._Max=i.asm.ka).apply(null,arguments)},Kz=i._MaxPool=function(){return(Kz=i._MaxPool=i.asm.la).apply(null,arguments)},Xz=i._Maximum=function(){return(Xz=i._Maximum=i.asm.ma).apply(null,arguments)},Yz=i._Mean=function(){return(Yz=i._Mean=i.asm.na).apply(null,arguments)},Zz=i._Min=function(){return(Zz=i._Min=i.asm.oa).apply(null,arguments)},Jz=i._Minimum=function(){return(Jz=i._Minimum=i.asm.pa).apply(null,arguments)},Qz=i._Multiply=function(){return(Qz=i._Multiply=i.asm.qa).apply(null,arguments)},eB=i._Neg=function(){return(eB=i._Neg=i.asm.ra).apply(null,arguments)},tB=i._NonMaxSuppressionV3=function(){return(tB=i._NonMaxSuppressionV3=i.asm.sa).apply(null,arguments)},rB=i._NonMaxSuppressionV4=function(){return(rB=i._NonMaxSuppressionV4=i.asm.ta).apply(null,arguments)},oB=i._NonMaxSuppressionV5=function(){return(oB=i._NonMaxSuppressionV5=i.asm.ua).apply(null,arguments)},nB=i._NotEqual=function(){return(nB=i._NotEqual=i.asm.va).apply(null,arguments)},sB=i._OneHot=function(){return(sB=i._OneHot=i.asm.wa).apply(null,arguments)},iB=i._PadV2=function(){return(iB=i._PadV2=i.asm.xa).apply(null,arguments)},aB=i._Pow=function(){return(aB=i._Pow=i.asm.ya).apply(null,arguments)},lB=i._Prelu=function(){return(lB=i._Prelu=i.asm.za).apply(null,arguments)},uB=i._Prod=function(){return(uB=i._Prod=i.asm.Aa).apply(null,arguments)},cB=i._RealDiv=function(){return(cB=i._RealDiv=i.asm.Ba).apply(null,arguments)},pB=i._Relu=function(){return(pB=i._Relu=i.asm.Ca).apply(null,arguments)},mB=i._Relu6=function(){return(mB=i._Relu6=i.asm.Da).apply(null,arguments)},fB=i._ResizeBilinear=function(){return(fB=i._ResizeBilinear=i.asm.Ea).apply(null,arguments)},dB=i._Reverse=function(){return(dB=i._Reverse=i.asm.Fa).apply(null,arguments)},hB=i._RotateWithOffset=function(){return(hB=i._RotateWithOffset=i.asm.Ga).apply(null,arguments)},gB=i._Round=function(){return(gB=i._Round=i.asm.Ha).apply(null,arguments)},xB=i._Rsqrt=function(){return(xB=i._Rsqrt=i.asm.Ia).apply(null,arguments)},yB=i._ScatterNd=function(){return(yB=i._ScatterNd=i.asm.Ja).apply(null,arguments)},bB=i._SelectV2=function(){return(bB=i._SelectV2=i.asm.Ka).apply(null,arguments)},wB=i._Sigmoid=function(){return(wB=i._Sigmoid=i.asm.La).apply(null,arguments)},_B=i._Sin=function(){return(_B=i._Sin=i.asm.Ma).apply(null,arguments)},kB=i._Softmax=function(){return(kB=i._Softmax=i.asm.Na).apply(null,arguments)},vB=i._Sqrt=function(){return(vB=i._Sqrt=i.asm.Oa).apply(null,arguments)},CB=i._Square=function(){return(CB=i._Square=i.asm.Pa).apply(null,arguments)},IB=i._SquaredDifference=function(){return(IB=i._SquaredDifference=i.asm.Qa).apply(null,arguments)},NB=i._Step=function(){return(NB=i._Step=i.asm.Ra).apply(null,arguments)},SB=i._StridedSlice=function(){return(SB=i._StridedSlice=i.asm.Sa).apply(null,arguments)},TB=i._Sub=function(){return(TB=i._Sub=i.asm.Ta).apply(null,arguments)},AB=i._Sum=function(){return(AB=i._Sum=i.asm.Ua).apply(null,arguments)},EB=i._Tanh=function(){return(EB=i._Tanh=i.asm.Va).apply(null,arguments)},DB=i._Tile=function(){return(DB=i._Tile=i.asm.Wa).apply(null,arguments)},$B=i._TopK=function(){return($B=i._TopK=i.asm.Xa).apply(null,arguments)},RB=i._Transpose=function(){return(RB=i._Transpose=i.asm.Ya).apply(null,arguments)},FB=i.__FusedMatMul=function(){return(FB=i.__FusedMatMul=i.asm.Za).apply(null,arguments)},kl=i._malloc=function(){return(kl=i._malloc=i.asm._a).apply(null,arguments)},Wp=i._free=function(){return(Wp=i._free=i.asm.$a).apply(null,arguments)},TC=i.___errno_location=function(){return(TC=i.___errno_location=i.asm.ab).apply(null,arguments)},AC=i._emscripten_get_global_libc=function(){return(AC=i._emscripten_get_global_libc=i.asm.bb).apply(null,arguments)},vu=i._pthread_self=function(){return(vu=i._pthread_self=i.asm.cb).apply(null,arguments)},EC=i.___pthread_tsd_run_dtors=function(){return(EC=i.___pthread_tsd_run_dtors=i.asm.db).apply(null,arguments)},Gy=i._emscripten_main_thread_process_queued_calls=function(){return(Gy=i._emscripten_main_thread_process_queued_calls=i.asm.eb).apply(null,arguments)},OB=i._emscripten_current_thread_process_queued_calls=function(){return(OB=i._emscripten_current_thread_process_queued_calls=i.asm.fb).apply(null,arguments)},DC=i._emscripten_register_main_browser_thread_id=function(){return(DC=i._emscripten_register_main_browser_thread_id=i.asm.gb).apply(null,arguments)},$C=i.__emscripten_do_dispatch_to_thread=function(){return($C=i.__emscripten_do_dispatch_to_thread=i.asm.hb).apply(null,arguments)},RC=i._emscripten_sync_run_in_main_thread_4=function(){return(RC=i._emscripten_sync_run_in_main_thread_4=i.asm.ib).apply(null,arguments)},FC=i._emscripten_run_in_main_runtime_thread_js=function(){return(FC=i._emscripten_run_in_main_runtime_thread_js=i.asm.jb).apply(null,arguments)},Wy=i.__emscripten_call_on_thread=function(){return(Wy=i.__emscripten_call_on_thread=i.asm.kb).apply(null,arguments)},PB=i._emscripten_tls_init=function(){return(PB=i._emscripten_tls_init=i.asm.lb).apply(null,arguments)},Hd=i.__emscripten_thread_init=function(){return(Hd=i.__emscripten_thread_init=i.asm.mb).apply(null,arguments)},Up=i.stackSave=function(){return(Up=i.stackSave=i.asm.nb).apply(null,arguments)},Cu=i.stackRestore=function(){return(Cu=i.stackRestore=i.asm.ob).apply(null,arguments)},Iu=i.stackAlloc=function(){return(Iu=i.stackAlloc=i.asm.pb).apply(null,arguments)},OC=i._emscripten_stack_set_limits=function(){return(OC=i._emscripten_stack_set_limits=i.asm.qb).apply(null,arguments)},PC=i._memalign=function(){return(PC=i._memalign=i.asm.rb).apply(null,arguments)},MC=i.__emscripten_allow_main_runtime_queued_calls=9880,Nu=i.__emscripten_main_thread_futex=11368;i.cwrap=we,i.PThread=Ee,i.PThread=Ee,i.wasmMemory=J,i.ExitStatus=jp;var qd;function jp(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}wl=function N(){qd||Uy(),qd||(wl=N)};function Uy(N){if(N=N||m,ni>0)return;if(w){l(i),postMessage({cmd:"loaded"});return}if(Pp(),ni>0)return;function $(){qd||(qd=!0,i.calledRun=!0,!ue&&(xu(),Dx(),l(i),i.onRuntimeInitialized&&i.onRuntimeInitialized(),Qr()))}i.setStatus?(i.setStatus("Running..."),setTimeout(function(){setTimeout(function(){i.setStatus("")},1),$()},1)):$()}i.run=Uy;function MB(N,$){if(!($&&re&&N===0)){if(!$&&w)throw postMessage({cmd:"exitProcess",returnCode:N}),new jp(N);re||(Ee.terminateAllThreads(),ae=N,Sd(),i.onExit&&i.onExit(N),ue=!0),d(N,new jp(N))}}if(i.preInit)for(typeof i.preInit=="function"&&(i.preInit=[i.preInit]);i.preInit.length>0;)i.preInit.pop()();return w&&(re=!1,Ee.initWorker()),Uy(),e.ready}}();typeof Tx=="object"&&typeof wC=="object"?wC.exports=_C:typeof define=="function"&&define.amd?define([],function(){return _C}):typeof Tx=="object"&&(Tx.WasmBackendModuleThreadedSimd=_C)});var Gz=Wt((Ax,kC)=>{var vC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},o,n;t.ready=new Promise(function(Z,se){o=Z,n=se});var s={},a;for(a in t)t.hasOwnProperty(a)&&(s[a]=t[a]);var i=[],l="./this.program",u=function(Z,se){throw se},c=!1,p=!1,m=!1,f=!1;c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!c&&!m&&!p;var d="";function h(Z){return t.locateFile?t.locateFile(Z,d):d+Z}var g,y,b,w,_,k;m?(p?d=Op().dirname(d)+"/":d=__dirname+"/",g=function(se,ve){return _||(_=require("fs")),k||(k=Op()),se=k.normalize(se),_.readFileSync(se,ve?null:"utf8")},b=function(se){var ve=g(se,!0);return ve.buffer||(ve=new Uint8Array(ve)),j(ve.buffer),ve},process.argv.length>1&&(l=process.argv[1].replace(/\\/g,"/")),i=process.argv.slice(2),process.on("uncaughtException",function(Z){if(!(Z instanceof Vy))throw Z}),process.on("unhandledRejection",un),u=function(Z){process.exit(Z)},t.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(g=function(se){return read(se)}),b=function(se){var ve;return typeof readbuffer=="function"?new Uint8Array(readbuffer(se)):(ve=read(se,"binary"),j(typeof ve=="object"),ve)},typeof scriptArgs!="undefined"?i=scriptArgs:typeof arguments!="undefined"&&(i=arguments),typeof quit=="function"&&(u=function(Z){quit(Z)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(c||p)&&(p?d=self.location.href:typeof document!="undefined"&&document.currentScript&&(d=document.currentScript.src),r&&(d=r),d.indexOf("blob:")!==0?d=d.substr(0,d.lastIndexOf("/")+1):d="",g=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.send(null),se.responseText},p&&(b=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),y=function(Z,se,ve){var at=new XMLHttpRequest;at.open("GET",Z,!0),at.responseType="arraybuffer",at.onload=function(){if(at.status==200||at.status==0&&at.response){se(at.response);return}ve()},at.onerror=ve,at.send(null)},w=function(Z){document.title=Z});var D=t.print||console.log.bind(console),T=t.printErr||console.warn.bind(console);for(a in s)s.hasOwnProperty(a)&&(t[a]=s[a]);s=null,t.arguments&&(i=t.arguments),t.thisProgram&&(l=t.thisProgram),t.quit&&(u=t.quit);var R;t.wasmBinary&&(R=t.wasmBinary);var O=t.noExitRuntime||!0;typeof WebAssembly!="object"&&un("no native wasm support detected");var M,G=!1,W;function j(Z,se){Z||un("Assertion failed: "+se)}function H(Z){var se=t["_"+Z];return j(se,"Cannot call unknown function "+Z+", make sure it is exported"),se}function q(Z,se,ve,at,Xt){var zt={string:function(xo){var wa=0;if(xo!=null&&xo!==0){var jd=(xo.length<<2)+1;wa=Bp(jd),ie(xo,wa,jd)}return wa},array:function(xo){var wa=Bp(xo.length);return ue(xo,wa),wa}};function tt(xo){return se==="string"?re(xo):se==="boolean"?Boolean(xo):xo}var rt=H(Z),vr=[],ii=0;if(at)for(var ai=0;ai<at.length;ai++){var Ud=zt[ve[ai]];Ud?(ii===0&&(ii=Gd()),vr[ai]=Ud(at[ai])):vr[ai]=at[ai]}var Gp=rt.apply(null,vr);return Gp=tt(Gp),ii!==0&&Wd(ii),Gp}function X(Z,se,ve,at){ve=ve||[];var Xt=ve.every(function(tt){return tt==="number"}),zt=se!=="string";return zt&&Xt&&!at?H(Z):function(){return q(Z,se,ve,arguments,at)}}var oe=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Y(Z,se,ve){for(var at=se+ve,Xt=se;Z[Xt]&&!(Xt>=at);)++Xt;if(Xt-se>16&&Z.subarray&&oe)return oe.decode(Z.subarray(se,Xt));for(var zt="";se<Xt;){var tt=Z[se++];if(!(tt&128)){zt+=String.fromCharCode(tt);continue}var rt=Z[se++]&63;if((tt&224)==192){zt+=String.fromCharCode((tt&31)<<6|rt);continue}var vr=Z[se++]&63;if((tt&240)==224?tt=(tt&15)<<12|rt<<6|vr:tt=(tt&7)<<18|rt<<12|vr<<6|Z[se++]&63,tt<65536)zt+=String.fromCharCode(tt);else{var ii=tt-65536;zt+=String.fromCharCode(55296|ii>>10,56320|ii&1023)}}return zt}function re(Z,se){return Z?Y(ge,Z,se):""}function J(Z,se,ve,at){if(!(at>0))return 0;for(var Xt=ve,zt=ve+at-1,tt=0;tt<Z.length;++tt){var rt=Z.charCodeAt(tt);if(rt>=55296&&rt<=57343){var vr=Z.charCodeAt(++tt);rt=65536+((rt&1023)<<10)|vr&1023}if(rt<=127){if(ve>=zt)break;se[ve++]=rt}else if(rt<=2047){if(ve+1>=zt)break;se[ve++]=192|rt>>6,se[ve++]=128|rt&63}else if(rt<=65535){if(ve+2>=zt)break;se[ve++]=224|rt>>12,se[ve++]=128|rt>>6&63,se[ve++]=128|rt&63}else{if(ve+3>=zt)break;se[ve++]=240|rt>>18,se[ve++]=128|rt>>12&63,se[ve++]=128|rt>>6&63,se[ve++]=128|rt&63}}return se[ve]=0,ve-Xt}function ie(Z,se,ve){return J(Z,ge,se,ve)}function ue(Z,se){de.set(Z,se)}function ae(Z,se){return Z%se>0&&(Z+=se-Z%se),Z}var fe,de,ge,we,De,Ce,ze,je,it;function Nt(Z){fe=Z,t.HEAP8=de=new Int8Array(Z),t.HEAP16=we=new Int16Array(Z),t.HEAP32=Ce=new Int32Array(Z),t.HEAPU8=ge=new Uint8Array(Z),t.HEAPU16=De=new Uint16Array(Z),t.HEAPU32=ze=new Uint32Array(Z),t.HEAPF32=je=new Float32Array(Z),t.HEAPF64=it=new Float64Array(Z)}var St=t.INITIAL_MEMORY||16777216,We,lt=[],mt=[],Pt=[],ho=[],Kt=!1;mt.push({func:function(){$d()}});function Zr(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)go(t.preRun.shift());xa(lt)}function Tr(){Kt=!0,xa(mt)}function Po(){xa(Pt)}function rr(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)Mr(t.postRun.shift());xa(ho)}function go(Z){lt.unshift(Z)}function Mr(Z){ho.unshift(Z)}var xr=0,Jr=null,vo=null;function bl(Z){xr++,t.monitorRunDependencies&&t.monitorRunDependencies(xr)}function ga(Z){if(xr--,t.monitorRunDependencies&&t.monitorRunDependencies(xr),xr==0&&(Jr!==null&&(clearInterval(Jr),Jr=null),vo)){var se=vo;vo=null,se()}}t.preloadedImages={},t.preloadedAudios={};function un(Z){t.onAbort&&t.onAbort(Z),Z+="",T(Z),G=!0,W=1,Z="abort("+Z+"). Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(Z);throw n(se),se}function oi(Z,se){return String.prototype.startsWith?Z.startsWith(se):Z.indexOf(se)===0}var Pp="data:application/octet-stream;base64,";function xu(Z){return oi(Z,Pp)}var Dx="file://";function Sd(Z){return oi(Z,Dx)}var Qr="tfjs-backend-wasm.wasm";xu(Qr)||(Qr=h(Qr));function Td(Z){try{if(Z==Qr&&R)return new Uint8Array(R);if(b)return b(Z);throw"both async and sync fetching of the wasm failed"}catch(se){un(se)}}function $x(){if(!R&&(c||p)){if(typeof fetch=="function"&&!Sd(Qr))return fetch(Qr,{credentials:"same-origin"}).then(function(Z){if(!Z.ok)throw"failed to load wasm binary file at '"+Qr+"'";return Z.arrayBuffer()}).catch(function(){return Td(Qr)});if(y)return new Promise(function(Z,se){y(Qr,function(ve){Z(new Uint8Array(ve))},se)})}return Promise.resolve().then(function(){return Td(Qr)})}function ni(){var Z={a:eo};function se(tt,rt){var vr=tt.exports;t.asm=vr,M=t.asm.g,Nt(M.buffer),We=t.asm.m,ga("wasm-instantiate")}bl("wasm-instantiate");function ve(tt){se(tt.instance)}function at(tt){return $x().then(function(rt){return WebAssembly.instantiate(rt,Z)}).then(tt,function(rt){T("failed to asynchronously prepare wasm: "+rt),un(rt)})}function Xt(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!xu(Qr)&&!Sd(Qr)&&typeof fetch=="function"?fetch(Qr,{credentials:"same-origin"}).then(function(tt){var rt=WebAssembly.instantiateStreaming(tt,Z);return rt.then(ve,function(vr){return T("wasm streaming compile failed: "+vr),T("falling back to ArrayBuffer instantiation"),at(ve)})}):at(ve)}if(t.instantiateWasm)try{var zt=t.instantiateWasm(Z,se);return zt}catch(tt){return T("Module.instantiateWasm callback failed with error: "+tt),!1}return Xt().catch(n),{}}function xa(Z){for(;Z.length>0;){var se=Z.shift();if(typeof se=="function"){se(t);continue}var ve=se.func;typeof ve=="number"?se.arg===void 0?We.get(ve)():We.get(ve)(se.arg):ve(se.arg===void 0?null:se.arg)}}function wl(){un()}function Rx(Z,se,ve){ge.copyWithin(Z,se,se+ve)}function Fx(){return ge.length}function si(Z){try{return M.grow(Z-fe.byteLength+65535>>>16),Nt(M.buffer),1}catch(se){}}function Ad(Z){var se=Fx(),ve=2147483648;if(Z>ve)return!1;for(var at=1;at<=4;at*=2){var Xt=se*(1+.2/at);Xt=Math.min(Xt,Z+100663296);var zt=Math.min(ve,ae(Math.max(Z,Xt),65536)),tt=si(zt);if(tt)return!0}return!1}var yu={mappings:{},buffers:[null,[],[]],printChar:function(Z,se){var ve=yu.buffers[Z];se===0||se===10?((Z===1?D:T)(Y(ve,0)),ve.length=0):ve.push(se)},varargs:void 0,get:function(){yu.varargs+=4;var Z=Ce[yu.varargs-4>>2];return Z},getStr:function(Z){var se=re(Z);return se},get64:function(Z,se){return Z}};function Ed(Z){return 0}function Ox(Z,se,ve,at,Xt){}function Dd(Z,se,ve,at){for(var Xt=0,zt=0;zt<ve;zt++){for(var tt=Ce[se+zt*8>>2],rt=Ce[se+(zt*8+4)>>2],vr=0;vr<rt;vr++)yu.printChar(Z,ge[tt+vr]);Xt+=rt}return Ce[at>>2]=Xt,0}var eo={a:wl,d:Rx,e:Ad,f:Ed,c:Ox,b:Dd},Px=ni(),$d=t.___wasm_call_ctors=function(){return($d=t.___wasm_call_ctors=t.asm.h).apply(null,arguments)},Mx=t._init=function(){return(Mx=t._init=t.asm.i).apply(null,arguments)},Rd=t._register_tensor=function(){return(Rd=t._register_tensor=t.asm.j).apply(null,arguments)},Lx=t._dispose_data=function(){return(Lx=t._dispose_data=t.asm.k).apply(null,arguments)},bu=t._dispose=function(){return(bu=t._dispose=t.asm.l).apply(null,arguments)},wu=t._Abs=function(){return(wu=t._Abs=t.asm.n).apply(null,arguments)},zx=t._Add=function(){return(zx=t._Add=t.asm.o).apply(null,arguments)},Bx=t._AddN=function(){return(Bx=t._AddN=t.asm.p).apply(null,arguments)},Vx=t._ArgMax=function(){return(Vx=t._ArgMax=t.asm.q).apply(null,arguments)},Ee=t._AvgPool=function(){return(Ee=t._AvgPool=t.asm.r).apply(null,arguments)},Gx=t._BatchMatMul=function(){return(Gx=t._BatchMatMul=t.asm.s).apply(null,arguments)},Wx=t._Ceil=function(){return(Wx=t._Ceil=t.asm.t).apply(null,arguments)},Ux=t._ClipByValue=function(){return(Ux=t._ClipByValue=t.asm.u).apply(null,arguments)},jx=t._Conv2D=function(){return(jx=t._Conv2D=t.asm.v).apply(null,arguments)},Hx=t._Conv2DBackpropInput=function(){return(Hx=t._Conv2DBackpropInput=t.asm.w).apply(null,arguments)},_l=t._Cos=function(){return(_l=t._Cos=t.asm.x).apply(null,arguments)},qx=t._CropAndResize=function(){return(qx=t._CropAndResize=t.asm.y).apply(null,arguments)},Kx=t._Cumsum=function(){return(Kx=t._Cumsum=t.asm.z).apply(null,arguments)},Xx=t._DepthToSpace=function(){return(Xx=t._DepthToSpace=t.asm.A).apply(null,arguments)},Yx=t._DepthwiseConv2dNative=function(){return(Yx=t._DepthwiseConv2dNative=t.asm.B).apply(null,arguments)},Zx=t._Equal=function(){return(Zx=t._Equal=t.asm.C).apply(null,arguments)},Jx=t._Exp=function(){return(Jx=t._Exp=t.asm.D).apply(null,arguments)},Qx=t._FlipLeftRight=function(){return(Qx=t._FlipLeftRight=t.asm.E).apply(null,arguments)},ey=t._Floor=function(){return(ey=t._Floor=t.asm.F).apply(null,arguments)},ty=t._FloorDiv=function(){return(ty=t._FloorDiv=t.asm.G).apply(null,arguments)},ya=t._FusedBatchNorm=function(){return(ya=t._FusedBatchNorm=t.asm.H).apply(null,arguments)},Mp=t._FusedConv2D=function(){return(Mp=t._FusedConv2D=t.asm.I).apply(null,arguments)},Lp=t._FusedDepthwiseConv2D=function(){return(Lp=t._FusedDepthwiseConv2D=t.asm.J).apply(null,arguments)},ry=t._Gather=function(){return(ry=t._Gather=t.asm.K).apply(null,arguments)},oy=t._GatherNd=function(){return(oy=t._GatherNd=t.asm.L).apply(null,arguments)},ny=t._Greater=function(){return(ny=t._Greater=t.asm.M).apply(null,arguments)},sy=t._GreaterEqual=function(){return(sy=t._GreaterEqual=t.asm.N).apply(null,arguments)},iy=t._LeakyRelu=function(){return(iy=t._LeakyRelu=t.asm.O).apply(null,arguments)},Xe=t._Less=function(){return(Xe=t._Less=t.asm.P).apply(null,arguments)},ay=t._LessEqual=function(){return(ay=t._LessEqual=t.asm.Q).apply(null,arguments)},ly=t._Log=function(){return(ly=t._Log=t.asm.R).apply(null,arguments)},uy=t._LogicalAnd=function(){return(uy=t._LogicalAnd=t.asm.S).apply(null,arguments)},cy=t._Max=function(){return(cy=t._Max=t.asm.T).apply(null,arguments)},py=t._MaxPool=function(){return(py=t._MaxPool=t.asm.U).apply(null,arguments)},my=t._Maximum=function(){return(my=t._Maximum=t.asm.V).apply(null,arguments)},zp=t._Mean=function(){return(zp=t._Mean=t.asm.W).apply(null,arguments)},Fd=t._Min=function(){return(Fd=t._Min=t.asm.X).apply(null,arguments)},Od=t._Minimum=function(){return(Od=t._Minimum=t.asm.Y).apply(null,arguments)},fy=t._Multiply=function(){return(fy=t._Multiply=t.asm.Z).apply(null,arguments)},dy=t._Neg=function(){return(dy=t._Neg=t.asm._).apply(null,arguments)},hy=t._NonMaxSuppressionV3=function(){return(hy=t._NonMaxSuppressionV3=t.asm.$).apply(null,arguments)},gy=t._NonMaxSuppressionV4=function(){return(gy=t._NonMaxSuppressionV4=t.asm.aa).apply(null,arguments)},xy=t._NonMaxSuppressionV5=function(){return(xy=t._NonMaxSuppressionV5=t.asm.ba).apply(null,arguments)},yy=t._NotEqual=function(){return(yy=t._NotEqual=t.asm.ca).apply(null,arguments)},by=t._OneHot=function(){return(by=t._OneHot=t.asm.da).apply(null,arguments)},ft=t._PadV2=function(){return(ft=t._PadV2=t.asm.ea).apply(null,arguments)},wy=t._Pow=function(){return(wy=t._Pow=t.asm.fa).apply(null,arguments)},_y=t._Prelu=function(){return(_y=t._Prelu=t.asm.ga).apply(null,arguments)},ky=t._Prod=function(){return(ky=t._Prod=t.asm.ha).apply(null,arguments)},_u=t._RealDiv=function(){return(_u=t._RealDiv=t.asm.ia).apply(null,arguments)},Pd=t._Relu=function(){return(Pd=t._Relu=t.asm.ja).apply(null,arguments)},Md=t._Relu6=function(){return(Md=t._Relu6=t.asm.ka).apply(null,arguments)},Ld=t._ResizeBilinear=function(){return(Ld=t._ResizeBilinear=t.asm.la).apply(null,arguments)},vy=t._Reverse=function(){return(vy=t._Reverse=t.asm.ma).apply(null,arguments)},Cy=t._RotateWithOffset=function(){return(Cy=t._RotateWithOffset=t.asm.na).apply(null,arguments)},zd=t._Round=function(){return(zd=t._Round=t.asm.oa).apply(null,arguments)},Iy=t._Rsqrt=function(){return(Iy=t._Rsqrt=t.asm.pa).apply(null,arguments)},Bd=t._ScatterNd=function(){return(Bd=t._ScatterNd=t.asm.qa).apply(null,arguments)},ba=t._SelectV2=function(){return(ba=t._SelectV2=t.asm.ra).apply(null,arguments)},Ny=t._Sigmoid=function(){return(Ny=t._Sigmoid=t.asm.sa).apply(null,arguments)},Sy=t._Sin=function(){return(Sy=t._Sin=t.asm.ta).apply(null,arguments)},SC=t._Softmax=function(){return(SC=t._Softmax=t.asm.ua).apply(null,arguments)},Vd=t._Sqrt=function(){return(Vd=t._Sqrt=t.asm.va).apply(null,arguments)},Ty=t._Square=function(){return(Ty=t._Square=t.asm.wa).apply(null,arguments)},Ay=t._SquaredDifference=function(){return(Ay=t._SquaredDifference=t.asm.xa).apply(null,arguments)},Ey=t._Step=function(){return(Ey=t._Step=t.asm.ya).apply(null,arguments)},Dy=t._StridedSlice=function(){return(Dy=t._StridedSlice=t.asm.za).apply(null,arguments)},$y=t._Sub=function(){return($y=t._Sub=t.asm.Aa).apply(null,arguments)},Ry=t._Sum=function(){return(Ry=t._Sum=t.asm.Ba).apply(null,arguments)},Fy=t._Tanh=function(){return(Fy=t._Tanh=t.asm.Ca).apply(null,arguments)},Oy=t._Tile=function(){return(Oy=t._Tile=t.asm.Da).apply(null,arguments)},Py=t._TopK=function(){return(Py=t._TopK=t.asm.Ea).apply(null,arguments)},My=t._Transpose=function(){return(My=t._Transpose=t.asm.Fa).apply(null,arguments)},Ly=t.__FusedMatMul=function(){return(Ly=t.__FusedMatMul=t.asm.Ga).apply(null,arguments)},zy=t._malloc=function(){return(zy=t._malloc=t.asm.Ha).apply(null,arguments)},By=t._free=function(){return(By=t._free=t.asm.Ia).apply(null,arguments)},Gd=t.stackSave=function(){return(Gd=t.stackSave=t.asm.Ja).apply(null,arguments)},Wd=t.stackRestore=function(){return(Wd=t.stackRestore=t.asm.Ka).apply(null,arguments)},Bp=t.stackAlloc=function(){return(Bp=t.stackAlloc=t.asm.La).apply(null,arguments)};t.cwrap=X;var ku;function Vy(Z){this.name="ExitStatus",this.message="Program terminated with exit("+Z+")",this.status=Z}vo=function Z(){ku||Vp(),ku||(vo=Z)};function Vp(Z){if(Z=Z||i,xr>0||(Zr(),xr>0))return;function se(){ku||(ku=!0,t.calledRun=!0,!G&&(Tr(),Po(),o(t),t.onRuntimeInitialized&&t.onRuntimeInitialized(),rr()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),se()},1)):se()}if(t.run=Vp,t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();return Vp(),e.ready}}();typeof Ax=="object"&&typeof kC=="object"?kC.exports=vC:typeof define=="function"&&define.amd?define([],function(){return vC}):typeof Ax=="object"&&(Ax.WasmBackendModule=vC)});var jB=1e-7,HB=1e-4,vl=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},li=class{refCount(e){return Mo("refCount")}incRef(e){return Mo("incRef")}timerAvailable(){return!0}time(e){return Mo("time")}read(e){return Mo("read")}readSync(e){return Mo("readSync")}numDataIds(){return Mo("numDataIds")}disposeData(e,t){return Mo("disposeData")}write(e,t,o){return Mo("write")}move(e,t,o,n,s){return Mo("move")}memory(){return Mo("memory")}floatPrecision(){return Mo("floatPrecision")}epsilon(){return this.floatPrecision()===32?jB:HB}dispose(){return Mo("dispose")}};function Mo(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function zC(r){let e=r.length,t=0,o=0;for(;e>0;)o=Math.random()*e|0,e--,t=r[e],r[e]=r[o],r[o]=t}function qB(r,e){if(r.length!==e.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${e.length}`);let t=r.length,o,n,s=0;for(;t>0;)s=Math.random()*t|0,t--,o=r[t],n=e[t],r[t]=r[s],e[t]=e[s],r[s]=o,e[s]=n}function Eu(r,e,t){return Math.max(r,Math.min(e,t))}function KB(r){return r%2==0?r:r+1}function XB(r){let e=0;for(let t=0;t<r.length;t++)e+=r[t];return e}function YB(r,e){let t=Math.random();return e*t+(1-t)*r}function ZB(r,e){let t=0;for(let o=0;o<r.length;o++){let n=Number(r[o])-Number(e[o]);t+=n*n}return t}function A(r,e){if(!r)throw new Error(typeof e=="string"?e:e())}function vt(r,e,t=""){A(zr(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function Co(r){A(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function cn(r,e=[],t=!1){if(e==null&&(e=[]),Array.isArray(r)||or(r)&&!t)for(let o=0;o<r.length;++o)cn(r[o],e,t);else e.push(r);return e}function ut(r){if(r.length===0)return 1;let e=r[0];for(let t=1;t<r.length;t++)e*=r[t];return e}function JB(r){return r.length===0}function zr(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==e[t])return!1;return!0}function ot(r){return r%1==0}function QB(r){if(Math.tanh!=null)return Math.tanh(r);if(r===Infinity)return 1;if(r===-Infinity)return-1;{let e=Math.exp(2*r);return(e-1)/(e+1)}}function e3(r){let e=Math.ceil(Math.sqrt(r));return[e,Math.ceil(r/e)]}function t3(r){let e=new Uint32Array(r);for(let t=0;t<r;++t)e[t]=t;return zC(e),e}function Cl(r,e){return e<=r.length?r:r+" ".repeat(e-r.length)}function r3(r,e=o=>0,t){return new Promise((o,n)=>{let s=0,a=()=>{if(r()){o();return}s++;let i=e(s);if(t!=null&&s>=t){n();return}setTimeout(a,i)};a()})}function o3(r,e){let t=1,o=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)t*=r[s];else if(r[s]===-1){if(o!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${o} and dim ${s}`);o=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(o===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!=0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let n=r.slice();return n[o]=e/t,n}function Qt(r,e){let t=e.length;return r=r==null?e.map((o,n)=>n):[].concat(r),A(r.every(o=>o>=-t&&o<t),()=>`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),A(r.every(o=>ot(o)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(o=>o<0?t+o:o)}function jy(r,e){let t=[],o=[],n=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||n?null:Qt(e,r).sort(),a=0;for(let i=0;i<r.length;++i){if(s!=null){if(s[a]===i&&r[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${r[i]}' is not 1`);(s[a]==null||s[a]>i)&&r[i]===1&&(t.push(r[i]),o.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),o.push(i))}return{newShape:t,keptDims:o}}function Hy(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else throw new Error(`Unknown data type ${r}`);return t}function qy(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Ky(r,e){for(let t=0;t<r.length;t++){let o=r[t];if(isNaN(o)||!isFinite(o))throw Error(`A tensor of type ${e} being uploaded contains ${o}.`)}}function Xy(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function n3(r,e){return!(e==="complex64"||e==="float32"&&r!=="complex64"||e==="int32"&&r!=="float32"&&r!=="complex64"||e==="bool"&&r==="bool")}function or(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function Xd(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function Yy(r){if(r==null)return 0;let e=0;return r.forEach(t=>e+=t.length),e}function pn(r){return typeof r=="string"||r instanceof String}function BC(r){return typeof r=="boolean"}function VC(r){return typeof r=="number"}function Du(r){return Array.isArray(r)?Du(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":VC(r)?"float32":pn(r)?"string":BC(r)?"bool":"float32"}function bs(r){return!!(r&&r.constructor&&r.call&&r.apply)}function $u(r,e){for(let t=e;t<r;++t)if(r%t==0)return t;return r}function ws(r){let e=r.length;if(e<2)return[];let t=new Array(e-1);t[e-2]=r[e-1];for(let o=e-3;o>=0;--o)t[o]=t[o+1]*r[o+1];return t}function GC(r,e,t){let o=new Array;if(e.length===1){let n=e[0];for(let s=0;s<n;s++)o[s]=t[r+s]}else{let n=e[0],s=e.slice(1),a=s.reduce((i,l)=>i*l);for(let i=0;i<n;i++)o[i]=GC(r+i*a,s,t)}return o}function Il(r,e){if(r.length===0)return e[0];let t=r.reduce((o,n)=>o*n);if(t===0)return[];if(t!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}.`);return GC(0,r,e)}function Hp(r,e){let t=Ru(r,e);for(let o=0;o<t.length;o++)t[o]=1;return t}function Ru(r,e){if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${e}`)}function s3(r,e){let t=r.reduce((o,n)=>o*n,1);if(e==null||e==="float32")return Il(r,new Float32Array(t));if(e==="int32")return Il(r,new Int32Array(t));if(e==="bool")return Il(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function qp(r){r.forEach(e=>{A(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function i3(r,e,t){if(e===0)return 0;if(e===1)return r[0];let o=r[r.length-1];for(let n=0;n<r.length-1;++n)o+=t[n]*r[n];return o}function a3(r,e,t){if(e===0)return[];if(e===1)return[r];let o=new Array(e);for(let n=0;n<o.length-1;++n)o[n]=Math.floor(r/t[n]),r-=o[n]*t[n];return o[o.length-1]=r,o}function Kp(r){return r&&r.then&&typeof r.then=="function"}var WC="tfjsflags",Zy=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,o){if(this.flagRegistry[e]={evaluationFn:t,setHook:o},this.urlFlags[e]!=null){let n=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Kp(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=l3(this.global.location.search);WC in e&&e[WC].split(",").forEach(o=>{let[n,s]=o.split(":");this.urlFlags[n]=u3(n,s)})}};function l3(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...o)=>(c3(e,o[0],o[1]),o.join("="))),e}function c3(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function u3(r,e){if(e=e.toLowerCase(),e==="true"||e==="false")return e==="true";if(`${+e}`===e)return+e;throw new Error(`Could not parse value flag value ${e} for flag ${r}.`)}function U(){return UC}var UC=null;function jC(r){UC=r}var Jy;function Qy(){if(Jy==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");Jy=r}return Jy}function p3(){let r=Qy();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function Xp(r,e){let t=p3();if(t.has(r))return t.get(r);{let o=e();return t.set(r,o),t.get(r)}}var _s="Abs",ui="Acos",ci="Acosh",Io="Add",mn="AddN",Fu="All",Ou="Any",fn="ArgMax",ka="ArgMin",pi="Asin",mi="Asinh",fi="Atan",di="Atanh",hi="Atan2",dn="AvgPool",Pu="AvgPoolGrad",va="AvgPool3D",Mu="AvgPool3DGrad",hn="BatchMatMul",Ca="BatchToSpaceND",Lu="Bincount",HC="BroadcastTo",Lo="Cast",gn="Ceil",zo="ClipByValue",zu="Complex",Ia="ComplexAbs",ks="Concat",xn="Conv2D",Bu="Conv2DBackpropFilter",yn="Conv2DBackpropInput",Na="Conv3D",Vu="Conv3DBackpropFilterV2",Gu="Conv3DBackpropInputV2",bn="Cos",gi="Cosh",wn="Cumsum",xi="CropAndResize",Wu="DenseBincount",yi="DepthToSpace",_n="DepthwiseConv2dNative",Uu="DepthwiseConv2dNativeBackpropFilter",ju="DepthwiseConv2dNativeBackpropInput",Hu="Diag",Sa="Dilation2D",Yp="Dilation2DBackpropInput",Zp="Dilation2DBackpropFilter",kn="RealDiv",bi="Elu",qu="EluGrad",wi="Erf",_i="Equal",vn="Exp",vs="ExpandDims",ki="Expm1",Ku="FFT",Ta="Fill",vi="FlipLeftRight",Cn="Floor",In="FloorDiv",Nn="FusedBatchNorm",Cs="GatherV2",Ci="GatherNd",Ii="Greater",Sn="GreaterEqual",Bo="Identity",Xu="IFFT",Yu="Imag",Ni="IsFinite",Si="IsInf",Ti="IsNan",Tn="LeakyRelu",Ai="Less",Ei="LessEqual",Zu="LinSpace",An="Log",Di="Log1p",$i="LogicalAnd",Nl="LogicalNot",Sl="LogicalOr",qC="LogSoftmax",Aa="LRN",Ju="LRNGrad",En="Max",Dn="Maximum",$n="MaxPool",Qu="MaxPoolGrad",Ea="MaxPool3D",ec="MaxPool3DGrad",tc="MaxPoolWithArgmax",Rn="Mean",Fn="Min",On="Minimum",Da="MirrorPad",Ri="Mod",rc="Multinomial",Pn="Multiply",Is="Neg",Fi="NotEqual",Oi="NonMaxSuppressionV3",Pi="NonMaxSuppressionV4",Mi="NonMaxSuppressionV5",Ns="OnesLike",Mn="OneHot",Ss="Pack",Ln="PadV2",wee="Pool",zn="Pow",Bn="Prelu",Li="Prod",$a="Range",oc="Real",zi="Reciprocal",Vn="Relu",Ts="Reshape",Ra="ResizeNearestNeighbor",nc="ResizeNearestNeighborGrad",Gn="ResizeBilinear",sc="ResizeBilinearGrad",Wn="Relu6",Un="Reverse",jn="Round",Hn="Rsqrt",Bi="ScatterNd",As="Select",Vi="Selu",qn="Slice",Kn="Sin",Gi="Sinh",Wi="Sign",Xn="Sigmoid",Ui="Softplus",Yn="Sqrt",Zn="Sum",Fa="SpaceToBatchND",Es="SplitV",Jn="Softmax",Qn="SquaredDifference",Oa="Square",es="Sub",ic="SparseToDense",ji="StridedSlice",Hi="Tan",ts="Tanh",No="Tile",qi="TopK",ac="Transform",rs="Transpose",lc="Unique",Ds="Unpack",Pa="UnsortedSegmentSum",$s="ZerosLike",Vo="Step",Jp="FromPixels",Ki="RotateWithOffset",Rs="_FusedMatMul",Fs="FusedConv2D",Os="FusedDepthwiseConv2D";var uc=Xp("kernelRegistry",()=>new Map),Qp=Xp("gradRegistry",()=>new Map);function em(r,e){let t=eb(r,e);return uc.get(t)}function tb(r){return Qp.get(r)}function Yd(r){let e=uc.entries(),t=[];for(;;){let{done:o,value:n}=e.next();if(o)break;let[s,a]=n,[i]=s.split("_");i===r&&t.push(a)}return t}function Tl(r){let{kernelName:e,backendName:t}=r,o=eb(e,t);uc.has(o)&&console.warn(`The kernel '${e}' for backend '${t}' is already registered`),uc.set(o,r)}function KC(r){let{kernelName:e}=r;Qp.has(e)&&U().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${e}'`),Qp.set(e,r)}function Cee(r,e){let t=eb(r,e);if(!uc.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);uc.delete(t)}function Iee(r){if(!Qp.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);Qp.delete(r)}function Nee(r,e){Yd(r).forEach(o=>{let n=Object.assign({},o,{backendName:e});Tl(n)})}function eb(r,e){return`${e}_${r}`}var x={};Ze(x,{arraysEqual:()=>zr,assert:()=>A,assertNonNegativeIntegerDimensions:()=>qp,assertNonNull:()=>Co,assertShapesMatch:()=>vt,bytesFromStringArray:()=>Yy,bytesPerElement:()=>Xd,checkConversionForErrors:()=>Ky,clamp:()=>Eu,computeStrides:()=>ws,createScalarValue:()=>m3,createShuffledIndices:()=>t3,decodeString:()=>pc,distSquared:()=>ZB,encodeString:()=>Ma,fetch:()=>d3,flatten:()=>cn,getArrayFromDType:()=>qy,getTypedArrayFromDType:()=>Hy,hasEncodingLoss:()=>n3,indexToLoc:()=>a3,inferDtype:()=>Du,inferFromImplicitShape:()=>o3,isBoolean:()=>BC,isFunction:()=>bs,isInt:()=>ot,isNumber:()=>VC,isPromise:()=>Kp,isScalarShape:()=>JB,isString:()=>pn,isTypedArray:()=>or,isValidDtype:()=>Xy,locToIndex:()=>i3,makeOnesTypedArray:()=>Hp,makeZerosNestedTypedArray:()=>s3,makeZerosTypedArray:()=>Ru,nearestDivisor:()=>$u,nearestLargerEven:()=>KB,now:()=>Al,parseAxisParam:()=>Qt,randUniform:()=>YB,repeatedTry:()=>r3,rightPad:()=>Cl,shuffle:()=>zC,shuffleCombo:()=>qB,sizeFromShape:()=>ut,sizeToSquarishShape:()=>e3,squeezeShape:()=>jy,sum:()=>XB,tanh:()=>QB,toNestedArray:()=>Il,toTypedArray:()=>cc});function m3(r,e){return e==="string"?Ma(r):cc([r],e)}function f3(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function cc(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=cn(r)),U().getBool("DEBUG")&&Ky(r,e),f3(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let o=0;o<t.length;++o)Math.round(r[o])!==0&&(t[o]=1);return t}else throw new Error(`Unknown data type ${e}`)}function Al(){return U().platform.now()}function d3(r,e){return U().platform.fetch(r,e)}function Ma(r,e="utf-8"){return e=e||"utf-8",U().platform.encode(r,e)}function pc(r,e="utf-8"){return e=e||"utf-8",U().platform.decode(r,e)}var rb=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new XC)}profileKernel(e,t,o){let n,s=()=>{n=o()},a,i=Al();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let u of n)u.dataSync();a=Promise.resolve({kernelMs:Al()-i})}if(U().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<n.length;u++){let c=n[u];c.data().then(p=>{h3(p,c.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:o,timeMs:n,inputs:s,extraInfo:a}=e;o.forEach(i=>{Promise.all([i.data(),n,a]).then(l=>{this.logger.logKernelProfile(t,i,l[0],l[1],s,l[2])})})}};function h3(r,e,t){if(e!=="float32")return!1;for(let o=0;o<r.length;o++){let n=r[o];if(isNaN(n)||!isFinite(n))return console.warn(`Found ${n} in the result of '${t}'`),!0}return!1}var XC=class{logKernelProfile(e,t,o,n,s,a){let i=typeof n=="number"?Cl(`${n}ms`,9):n.error,l=Cl(e,25),u=t.rank,c=t.size,p=Cl(t.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||t.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${l} %c${i} %c${u}D ${p} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function YC(r,e,t){let o={},n={};for(let l=0;l<e.length;l++)o[e[l].id]=!0;for(let l=0;l<r.length;l++){let u=r[l],c=u.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<e.length;d++)if(o[m.id]){u.outputs.forEach(h=>o[h.id]=!0),f=!0,n[u.id]=!0;break}if(f)break}}let s={};s[t.id]=!0;let a={};for(let l=r.length-1;l>=0;l--){let u=r[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let m in c)s[c[m].id]=!0,a[u.id]=!0;break}}let i=[];for(let l=0;l<r.length;l++){let u=r[l];if(n[u.id]&&a[u.id]){let c={};for(let m in u.inputs){let f=u.inputs[m];o[f.id]&&(c[m]=f)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function ZC(r,e,t,o){for(let n=e.length-1;n>=0;n--){let s=e[n],a=[];if(s.outputs.forEach(l=>{let u=r[l.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let l in s.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!zr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let p=r[c.id];r[c.id]=o(p,u),p.dispose()}}}}var JC=20,tm=3,ob=7;function QC(r,e,t,o){let n=ws(e),s=g3(r,e,t,n),a=e.length,i=Zd(r,e,t,n,s),l=["Tensor"];return o&&(l.push(` dtype: ${t}`),l.push(` rank: ${a}`),l.push(` shape: [${e}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
`)),l.join(`
`)}function g3(r,e,t,o){let n=ut(e),s=o[o.length-1],a=new Array(s).fill(0),i=e.length,l=t==="complex64"?om(r):r;if(i>1)for(let u=0;u<n/s;u++){let c=u*s;for(let p=0;p<s;p++)a[p]=Math.max(a[p],rm(l[c+p],0,t).length)}return a}function rm(r,e,t){let o;return Array.isArray(r)?o=`${parseFloat(r[0].toFixed(ob))} + ${parseFloat(r[1].toFixed(ob))}j`:pn(r)?o=`'${r}'`:t==="bool"?o=e0(r):o=parseFloat(r.toFixed(ob)).toString(),Cl(o,e)}function e0(r){return r===0?"false":"true"}function Zd(r,e,t,o,n,s=!0){let a=t==="complex64"?2:1,i=e[0],l=e.length;if(l===0){if(t==="complex64"){let h=om(r);return[rm(h[0],0,t)]}return t==="bool"?[e0(r[0])]:[r[0].toString()]}if(l===1){if(i>JC){let g=tm*a,y=Array.from(r.slice(0,g)),b=Array.from(r.slice((i-tm)*a,i*a));return t==="complex64"&&(y=om(y),b=om(b)),["["+y.map((w,_)=>rm(w,n[_],t)).join(", ")+", ..., "+b.map((w,_)=>rm(w,n[i-tm+_],t)).join(", ")+"]"]}let h=t==="complex64"?om(r):Array.from(r);return["["+h.map((g,y)=>rm(g,n[y],t)).join(", ")+"]"]}let u=e.slice(1),c=o.slice(1),p=o[0]*a,m=[];if(i>JC){for(let h=0;h<tm;h++){let g=h*p,y=g+p;m.push(...Zd(r.slice(g,y),u,t,c,n,!1))}m.push("...");for(let h=i-tm;h<i;h++){let g=h*p,y=g+p;m.push(...Zd(r.slice(g,y),u,t,c,n,h===i-1))}}else for(let h=0;h<i;h++){let g=h*p,y=g+p;m.push(...Zd(r.slice(g,y),u,t,c,n,h===i-1))}let f=l===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
`;for(let h=2;h<l;h++)d+=`
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function om(r){let e=[];for(let t=0;t<r.length;t+=2)e.push([r[t],r[t+1]]);return e}var ct=class{constructor(e,t,o){if(this.dtype=t,this.shape=e.slice(),this.size=ut(e),o!=null){let n=o.length;A(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=o||qy(t,this.size),this.strides=ws(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let o=this.locToIndex(t);this.values[o]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let o=e[e.length-1];for(let n=0;n<e.length-1;++n)o+=this.strides[n]*e[n];return this.values[o]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let o=0;o<e.length-1;++o)t+=this.strides[o]*e[o];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let o=0;o<t.length-1;++o)t[o]=Math.floor(e/this.strides[o]),e-=t[o]*this.strides[o];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ps().makeTensor(this.values,this.shape,this.dtype)}},Ps=null,mc=null,x3=null;function t0(r){Ps=r}function r0(r){mc=r}function o0(r){x3=r}var Ve=class{constructor(e,t,o,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=ut(e),this.strides=ws(e),this.dataId=o,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return mc.buffer(this.shape,this.dtype,e)}bufferSync(){return mc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Il(this.shape,e)}arraySync(){return Il(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Ps().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(o=>pc(o))}catch(o){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ps().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>pc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ps().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ps().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return mc.print(this,e)}clone(){return this.throwIfDisposed(),mc.clone(this)}toString(e=!1){let t=this.dataSync();return QC(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),mc.cast(this,e)}variable(e=!0,t,o){return this.throwIfDisposed(),Ps().makeVariable(this,e,t,o)}};Object.defineProperty(Ve,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function F(){return Xp("Tensor",()=>Ve)}F();var El=class extends Ve{constructor(e,t,o,n){super(e.shape,e.dtype,e.dataId,n);this.trainable=t,this.name=o}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!zr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ps().disposeTensor(this),this.dataId=e.dataId,Ps().incRef(this,null)}dispose(){Ps().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(El,Symbol.hasInstance,{value:r=>r instanceof Ve&&r.assign!=null&&r.assign instanceof Function});var os={};Ze(os,{assertTypesMatch:()=>lb,getTensorsInContainer:()=>nm,isTensorInList:()=>b3,makeTypesMatch:()=>Ge});var n0;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(n0||(n0={}));var nb;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(nb||(nb={}));var sb;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(sb||(sb={}));var ib;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(ib||(ib={}));var ab;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(ab||(ab={}));var y3={float32:ib,int32:nb,bool:sb,complex64:ab};function br(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return y3[r][e]}function fc(r){return br(r,"int32")}function Ge(r,e){if(r.dtype===e.dtype)return[r,e];let t=br(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function lb(r,e){A(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function b3(r,e){return e.some(t=>t.id===r.id)}function nm(r){let e=[],t=new Set;return s0(r,e,t),e}function s0(r,e,t){if(r==null)return;if(r instanceof Ve){e.push(r);return}if(!w3(r))return;let o=r;for(let n in o){let s=o[n];t.has(s)||(t.add(s),s0(s,e,t))}}function w3(r){return Array.isArray(r)||typeof r=="object"}function ub(r){return r.kernelName!=null}var cb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Dl=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new cb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t];if(await this.initializeBackend(o).success){await this.setBackend(o);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,o=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:o},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:o}=this.initializeBackend(e);if(!(o?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new rb(this.backendInstance),!0}setupRegisteredKernels(){Yd(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Yd(e).forEach(o=>{o.disposeFunc!=null&&o.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let o=t.factory();if(o&&!(o instanceof li)&&typeof o.then=="function"){let n=++this.pendingBackendInitId,s=o.then(a=>n<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=o,{success:!0,asyncInit:!1}}catch(o){return console.warn(`Initialization of backend ${e} failed`),console.warn(o.stack||o.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t],{success:n,asyncInit:s}=this.initializeBackend(o);if(s||n)return{name:o,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let o=this.state.tensorInfo.get(t),n=o.backend,s=this.readSync(t),a=n.refCount(t);n.disposeData(t,!0),o.backend=e,e.move(t,s,o.shape,o.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let o=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");o=e}let n;return this.scopedRun(()=>this.startScope(o),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,o){e();try{let n=o();return t(),n}catch(n){throw t(),n}}nextTensorId(){return Dl.nextTensorId++}nextVariableId(){return Dl.nextVariableId++}clone(e){let t=E.runKernel(Bo,{x:e}),o={x:e},n=a=>({x:()=>{let i="float32",l={x:a},u={dtype:i};return E.runKernel(Lo,l,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,o,[t],n,s,{}),t}runKernel(e,t,o){if(!(em(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:o})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,o){let n=this.backend.numDataIds(),s=0;o.forEach(l=>{s+=l.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,o=[],n=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let l,u=ub(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(ub(e)){let{kernelName:d,inputs:h,attrs:g}=e;this.backendName==null&&this.backend;let y=em(d,this.backendName);A(y!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();l=y.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(l)?l:[l];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let _=w.map(k=>{if(k.rank!=null)return k;let{dataId:D,shape:T,dtype:R}=k;return this.makeTensorFromDataId(D,T,R)});if(n){let k=this.getTensorsForGradient(d,h,_);o=this.saveTensorsForBackwardMode(k)}return _}}else{let{forwardFunc:d}=e,h=g=>{!n||(o=g.map(y=>this.keep(this.clone(y))))};i=()=>{let g=this.backend.numDataIds();l=this.tidy(()=>d(this.backend,h));let y=Array.isArray(l)?l:[l];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,g,y),y}}let{inputs:c,attrs:p}=e,m=ub(e)?null:e.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(f=this.profiler.profileKernel(u,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),t=f.outputs)}),n&&this.addTapeNode(u,c,t,m,o,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:t.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(l)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(o=>this.keep(this.clone(o)))}getTensorsForGradient(e,t,o){let n=tb(e);if(n!=null){let s=n.inputsToSave||[],a=n.outputsToSave||[],i;n.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let l=o.filter((u,c)=>a[c]);return i.concat(l)}return[]}makeTensor(e,t,o,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");o=o||"float32",n=n||this.backend;let s=e;o==="string"&&pn(e[0])&&(s=e.map(l=>Ma(l)));let a=n.write(s,t,o),i=new Ve(t,o,a,this.nextTensorId());if(this.trackTensor(i,n),o==="string"){let l=this.state.tensorInfo.get(a),u=Yy(s);this.state.numBytes+=u-l.bytes,l.bytes=u}return i}makeTensorFromDataId(e,t,o,n){o=o||"float32";let s=new Ve(t,o,e,this.nextTensorId());return this.trackTensor(s,n),s}makeVariable(e,t=!0,o,n){o=o||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let s=new El(e,t,o,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let o=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(o=e.size*Xd(e.dtype)),this.state.numBytes+=o,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:o})),e instanceof El||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let o=e.size*Xd(e.dtype);this.state.numBytes-=o}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,o=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-o;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,o,n,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:o,saved:s},l=tb(e);l!=null&&(n=l.gradFunc),n!=null&&(i.gradient=u=>(u=u.map((c,p)=>{if(c==null){let m=o[p],f=Ru(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),n(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=nm(e),o=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!o.has(a.id)&&a.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===n.id&&this.track(s)})}gradients(e,t,o,n=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),o!=null&&o.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${o.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(s instanceof Ve,()=>"The result y returned by f() must be a tensor.");let a=YC(this.state.activeTape,t,s);if(!n&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=o==null?_3(s.shape):o,ZC(i,a,u=>this.tidy(u),k3);let l=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:l}})}customGrad(e){return A(bs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Ve),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let o,n={};t.forEach((i,l)=>{n[l]=i});let s=(i,l)=>(o=e(...t,l),A(o.value instanceof Ve,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(bs(o.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),o.value),a=(i,l)=>{let u=o.gradFunc(i,l),c=Array.isArray(u)?u:[u];A(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(c.every(m=>m instanceof Ve),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Al(),o=await this.backend.time(e);return o.wallMs=Al()-t,o}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new cb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Dl.nextTensorId=0;Dl.nextVariableId=0;function _3(r){let e=Hp(ut(r),"float32");return E.makeTensor(e,r,"float32")}function pb(){let r=Qy();if(r._tfengine==null){let e=new Zy(r);r._tfengine=new Dl(e)}return jC(r._tfengine.ENV),t0(()=>r._tfengine),r._tfengine}var E=pb();function k3(r,e){let t={a:r,b:e};return E.runKernel(Io,t)}var dc={};Ze(dc,{isBrowser:()=>mb,isMobile:()=>C3});function v3(){return typeof navigator!="undefined"&&navigator!=null}function C3(){if(v3()){let r=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(r)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(r.substr(0,4))}return!1}function mb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ns=U();ns.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ns.registerFlag("IS_BROWSER",()=>mb());ns.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ns.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ns.registerFlag("PROD",()=>!1);ns.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ns.getBool("DEBUG"));ns.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ns.registerFlag("IS_TEST",()=>!1);ns.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ns.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Cr(r,e){let t=r;if(or(r))return e==="string"?[]:[r.length];if(!Array.isArray(r))return[];let o=[];for(;Array.isArray(t)||or(t)&&e!=="string";)o.push(t.length),t=t[0];return Array.isArray(r)&&U().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&i0(r,o,[]),o}function i0(r,e,t){if(t=t||[],!Array.isArray(r)&&!or(r)){A(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}A(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),A(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let o=e.slice(1);for(let n=0;n<r.length;++n)i0(r[n],o,t.concat(n))}function a0(r,e,t,o){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==e||r==="numeric"&&e==="string")throw new Error(`Argument '${t}' passed to '${o}' must be ${r} tensor, but got ${e} tensor`)}}function v(r,e,t,o="numeric"){if(r instanceof Ve)return a0(o,r.dtype,e,t),r;let n=Du(r);if(n!=="string"&&["bool","int32","float32"].indexOf(o)>=0&&(n=o),a0(o,n,e,t),r==null||!or(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let l=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${l}'`)}let s=Cr(r,n);!or(r)&&!Array.isArray(r)&&(r=[r]);let i=n!=="string"?cc(r,n):cn(r,[],!0);return E.makeTensor(i,s,n)}function Xi(r,e,t,o="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>v(s,`${e}[${a}]`,t,o))}var I3="__op";function S(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],o=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+I3;let n=(...s)=>{E.startScope(t);try{let a=o(...s);return Kp(a)&&console.error("Cannot return a Promise inside of tidy."),E.endScope(a),a}catch(a){throw E.endScope(null),a}};return Object.defineProperty(n,"name",{value:t,configurable:!0}),n}function N3(r,e){let t=v(r,"real","complex"),o=v(e,"imag","complex");vt(t.shape,o.shape,`real and imag shapes, ${t.shape} and ${o.shape}, must match in call to tf.complex().`);let n={real:t,imag:o};return E.runKernel(zu,n)}var So=S({complex_:N3});function Br(r,e,t,o){if(o==null&&(o=Du(r)),o==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!or(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){qp(e);let n=ut(e),s=ut(t);A(n===s,()=>`Based on the provided shape, [${e}], the tensor should have ${n} values but has ${s}`);for(let a=0;a<t.length;++a){let i=t[a],l=a===t.length-1?i!==ut(e.slice(a)):!0;A(t[a]===e[a]||!l,()=>`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!or(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=o!=="string"?cc(r,o):cn(r,[],!0),E.makeTensor(r,e,o)}function Vr(r,e,t){let o=Cr(r,t);return Br(r,e,o,t)}var sm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Jd=4;async function l0(r,e){let t=[],o=[],n=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a<n.length;++a){let i=n[a],l=Array.isArray(r)?r[a].tensor:r[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let m=await l.bytes(),f=m.reduce((g,y)=>g+y.length,0)+Jd*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let y=m[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);d.set(b,h),h+=Jd,d.set(y,h),h+=y.length}p(d)});o.push(c)}else o.push(l.data());e!=null&&(u.group=e),t.push(u)}let s=await Promise.all(o);return{data:S3(s),specs:t}}function Qd(r,e){let t={},o,n=0;for(let s of e){let a=s.name,i=s.dtype,l=s.shape,u=ut(l),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=sm[p.dtype],f=r.slice(n,n+u*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")o===void 0&&(o=T3()),c=o(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);n+=u*m}else if(i==="string"){let p=ut(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(n,n+Jd))[0];n+=Jd;let d=new Uint8Array(r.slice(n,n+f));c.push(d),n+=f}}else{let p=sm[i],m=r.slice(n,n+u*p);if(i==="float32")c=new Float32Array(m);else if(i==="int32")c=new Int32Array(m);else if(i==="bool")c=new Uint8Array(m);else if(i==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let y=0;y<f.length;y++)f[y]=c[y*2],d[y]=c[y*2+1];let h=Vr(f,l,"float32"),g=Vr(d,l,"float32");t[a]=So(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);n+=u*p}i!=="complex64"&&(t[a]=Vr(c,l,i))}return t}function S3(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let e=0,t=[];r.forEach(s=>{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let o=new Uint8Array(e),n=0;return t.forEach(s=>{o.set(new Uint8Array(s.buffer),n),n+=s.byteLength}),o.buffer}var fb=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function u0(r){return fb?Buffer.byteLength(r):new Blob([r]).size}function c0(r){if(fb)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let o=0,n=e.length;o<n;o++)t+=String.fromCharCode(e[o]);return btoa(t)}function p0(r){if(fb){let o=Buffer.from(r,"base64");return o.buffer.slice(o.byteOffset,o.byteOffset+o.byteLength)}let e=atob(r),t=new Uint8Array(e.length);for(let o=0;o<e.length;++o)t.set([e.charCodeAt(o)],o);return t.buffer}function hc(r){if(r.length===1)return r[0];let e=0;r.forEach(n=>{e+=n.byteLength});let t=new Uint8Array(e),o=0;return r.forEach(n=>{t.set(new Uint8Array(n),o),o+=n.byteLength}),t.buffer}function db(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function Ms(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:u0(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:u0(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function A3(){let r=t=>{let o=t<<13,n=0;for(;(o&8388608)==0;)n-=8388608,o<<=1;return o&=~8388608,n+=947912704,o|n},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function E3(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function D3(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function T3(){let r=A3(),e=E3(),t=D3();return o=>{let n=new ArrayBuffer(4*o.length),s=new Uint32Array(n);for(let a=0;a<o.length;a++){let i=o[a],l=r[t[i>>10]+(i&1023)]+e[i>>10];s[a]=l}return new Float32Array(n)}}var Ct=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ct.instance==null&&(Ct.instance=new Ct),Ct.instance}static registerSaveRouter(e){Ct.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ct.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ct.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ct.getHandlers(e,"load",t)}static getHandlers(e,t,o){let n=[];return(t==="load"?Ct.getInstance().loadRouters:Ct.getInstance().saveRouters).forEach(a=>{let i=a(e,o);i!==null&&n.push(i)}),n}},m0=r=>Ct.registerSaveRouter(r),f0=r=>Ct.registerLoadRouter(r),d0=r=>Ct.getSaveHandlers(r),h0=(r,e)=>Ct.getLoadHandlers(r,e);var hb="tensorflowjs",gb=1,$l="models_store",La="model_info_store";function g0(){if(!U().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function xb(r){let e=r.result;e.createObjectStore($l,{keyPath:"modelPath"}),e.createObjectStore(La,{keyPath:"modelPath"})}var Yi=class{constructor(e){if(this.indexedDB=g0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((o,n)=>{let s=this.indexedDB.open(hb,gb);s.onupgradeneeded=()=>xb(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction($l,"readonly"),u=i.objectStore($l).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));o(u.result.modelArtifacts)},u.onerror=c=>(a.close(),n(u.error)),i.oncomplete=()=>a.close()}else{let i=Ms(t),l=a.transaction(La,"readwrite"),u=l.objectStore(La),c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;c.onsuccess=()=>{p=a.transaction($l,"readwrite");let f=p.objectStore($l).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});f.onsuccess=()=>o({modelArtifactsInfo:i}),f.onerror=d=>{u=l.objectStore(La);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),n(f.error)),h.onerror=g=>(a.close(),n(f.error))}},c.onerror=m=>(a.close(),n(c.error)),l.oncomplete=()=>{p==null?a.close():p.oncomplete=()=>a.close()}}},s.onerror=a=>n(s.error)})}};Yi.URL_SCHEME="indexeddb://";var x0=r=>U().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Yi.URL_SCHEME)?$3(r.slice(Yi.URL_SCHEME.length)):null;Ct.registerSaveRouter(x0);Ct.registerLoadRouter(x0);function $3(r){return new Yi(r)}function R3(r){return r.startsWith(Yi.URL_SCHEME)?r.slice(Yi.URL_SCHEME.length):r}var yb=class{constructor(){this.indexedDB=g0()}async listModels(){return new Promise((e,t)=>{let o=this.indexedDB.open(hb,gb);o.onupgradeneeded=()=>xb(o),o.onsuccess=()=>{let n=o.result,s=n.transaction(La,"readonly"),i=s.objectStore(La).getAll();i.onsuccess=()=>{let l={};for(let u of i.result)l[u.modelPath]=u.modelArtifactsInfo;e(l)},i.onerror=l=>(n.close(),t(i.error)),s.oncomplete=()=>n.close()},o.onerror=n=>t(o.error)})}async removeModel(e){return e=R3(e),new Promise((t,o)=>{let n=this.indexedDB.open(hb,gb);n.onupgradeneeded=()=>xb(n),n.onsuccess=()=>{let s=n.result,a=s.transaction(La,"readwrite"),i=a.objectStore(La),l=i.get(e),u;l.onsuccess=()=>{if(l.result==null)return s.close(),o(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),p=()=>{u=s.transaction($l,"readwrite");let f=u.objectStore($l).delete(e);f.onsuccess=()=>t(l.result.modelArtifactsInfo),f.onerror=d=>o(l.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),o(l.error))}},l.onerror=c=>(s.close(),o(l.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},n.onerror=s=>o(n.error)})}};var Zi="/",gc="tensorflowjs_models",y0="info",F3="model_topology",O3="weight_specs",P3="weight_data",M3="model_metadata";function b0(r){return{info:[gc,r,y0].join(Zi),topology:[gc,r,F3].join(Zi),weightSpecs:[gc,r,O3].join(Zi),weightData:[gc,r,P3].join(Zi),modelMetadata:[gc,r,M3].join(Zi)}}function L3(r){let e=r.split(Zi);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(Zi)}function z3(r){return r.startsWith(Ji.URL_SCHEME)?r.slice(Ji.URL_SCHEME.length):r}var Ji=class{constructor(e){if(!U().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=b0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),o=JSON.stringify(e.weightSpecs),n=Ms(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,o),this.LS.setItem(this.keys.weightData,c0(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:n}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},o=JSON.parse(this.LS.getItem(this.keys.topology));if(o==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=o;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=p0(a),t}};Ji.URL_SCHEME="localstorage://";var w0=r=>U().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Ji.URL_SCHEME)?B3(r.slice(Ji.URL_SCHEME.length)):null;Ct.registerSaveRouter(w0);Ct.registerLoadRouter(w0);function B3(r){return new Ji(r)}var bb=class{constructor(){A(U().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=gc+Zi,o=Zi+y0;for(let n=0;n<this.LS.length;++n){let s=this.LS.key(n);if(s.startsWith(t)&&s.endsWith(o)){let a=L3(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=z3(e);let t=b0(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let o=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),o}};var xc="://",Gr=class{constructor(){this.managers={}}static getInstance(){return Gr.instance==null&&(Gr.instance=new Gr),Gr.instance}static registerManager(e,t){A(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(xc)&&(e=e.slice(0,e.indexOf(xc))),A(e.length>0,()=>"scheme must not be an empty string.");let o=Gr.getInstance();A(o.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),o.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function eh(r){if(r.indexOf(xc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Gr.getSchemes().join(",")}`);return{scheme:r.split(xc)[0],path:r.split(xc)[1]}}async function _0(r,e,t=!1){A(r!==e,()=>`Old path and new path are the same: '${r}'`);let o=Ct.getLoadHandlers(r);A(o.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),A(o.length<2,()=>`Copying failed because more than one (${o.length}) load handlers for source URL ${r}.`);let n=o[0],s=Ct.getSaveHandlers(e);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),A(s.length<2,()=>`Copying failed because more than one (${o.length}) save handlers for destination URL ${e}.`);let a=s[0],i=eh(r).scheme,l=eh(r).path,u=i===eh(r).scheme,c=await n.load();t&&u&&await Gr.getManager(i).removeModel(l);let p=await a.save(c);return t&&!u&&await Gr.getManager(i).removeModel(l),p.modelArtifactsInfo}async function k0(){let r=Gr.getSchemes(),e={};for(let t of r){let o=await Gr.getManager(t).listModels();for(let n in o){let s=t+xc+n;e[s]=o[n]}}return e}async function v0(r){let e=eh(r);return Gr.getManager(e.scheme).removeModel(e.path)}async function C0(r,e){return _0(r,e,!1)}async function I0(r,e){return _0(r,e,!0)}var N0=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(U().get("IS_BROWSER")){U().setPlatform("browser",new N0);try{Gr.registerManager(Ji.URL_SCHEME,new bb)}catch(r){}try{Gr.registerManager(Yi.URL_SCHEME,new yb)}catch(r){}}var V3={importFetch:()=>S0()},wb;var T0=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return U().global.fetch!=null?U().global.fetch(e,t):(wb==null&&(wb=V3.importFetch()),wb(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};U().get("IS_NODE")&&U().setPlatform("node",new T0);function _e(r,e="float32",t){return e=e||"float32",qp(r),new ct(r,e,t)}function G3(r,e){let t=v(r,"x","cast");if(!Xy(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let o={x:t},n={dtype:e};return E.runKernel(Lo,o,n)}var ne=S({cast_:G3});function W3(r){let t={x:v(r,"x","clone","string_or_numeric")};return E.runKernel(Bo,t)}var Go=S({clone_:W3});function A0(r,e=!1){console.log(r.toString(e))}pb();var U3={buffer:_e,cast:ne,clone:Go,print:A0};r0(U3);var Ar={};Ze(Ar,{browserFiles:()=>$0,browserHTTPRequest:()=>O0,concatenateArrayBuffers:()=>hc,copyModel:()=>C0,decodeWeights:()=>Qd,encodeWeights:()=>l0,fromMemory:()=>M0,getLoadHandlers:()=>h0,getModelArtifactsInfoForJSON:()=>Ms,getSaveHandlers:()=>d0,http:()=>oh,isHTTPScheme:()=>rh,listModels:()=>k0,loadWeights:()=>R0,moveModel:()=>I0,registerLoadRouter:()=>f0,registerSaveRouter:()=>m0,removeModel:()=>v0,weightsLoaderFactory:()=>vb,withSaveHandler:()=>L0});var j3="model",H3=".json",q3=".weights.bin";function E0(r){return new Promise(e=>setTimeout(e)).then(r)}var za=class{constructor(e){if(!U().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(za.URL_SCHEME)&&(e=e.slice(za.URL_SCHEME.length)),(e==null||e.length===0)&&(e=j3),this.modelTopologyFileName=e+H3,this.weightDataFileName=e+q3}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let o=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await E0(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await E0(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ms(e)}}}};za.URL_SCHEME="downloads://";var D0=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((o,n)=>{let s=new FileReader;s.onload=a=>{let i=JSON.parse(a.target.result),l=i.modelTopology;if(l==null){n(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&o({modelTopology:l});let u=i.weightsManifest;if(u==null){n(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(u,t)}catch(d){n(d);return}let p=[],m=[],f=[];u.forEach(d=>{d.paths.forEach(h=>{m.push(h),f.push(null)}),p.push(...d.weights)}),u.forEach(d=>{d.paths.forEach(h=>{let g=new FileReader;g.onload=y=>{let b=y.target.result,w=m.indexOf(h);if(f[w]=b,f.indexOf(null)===-1){let _={modelTopology:l,weightSpecs:p,weightData:hc(f),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),o(_)}},g.onerror=y=>n(`Failed to weights data from file of path '${h}'.`),g.readAsArrayBuffer(c[h])})})},s.onerror=a=>n(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let o=[],n=t.map(a=>db(a.name)),s={};for(let a of e)a.paths.forEach(i=>{let l=db(i);if(o.indexOf(l)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${l}'`);if(o.push(l),n.indexOf(l)===-1)throw new Error(`Weight file with basename '${l}' is not provided.`);s[i]=t[n.indexOf(l)]});if(o.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${o.length}) and the number of weight files provided (${t.length}).`);return s}},X3=r=>U().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(za.URL_SCHEME)?K3(r.slice(za.URL_SCHEME.length)):null;Ct.registerSaveRouter(X3);function K3(r="model"){return new za(r)}function $0(r){return new D0(r)}function _b(r,e,t,o){a(r),t=t==null?0:t,o=o==null?1:o,i(t,o);let n=0,s=l=>(l.then(u=>{let c=t+ ++n/r.length*(o-t);return e(c),u}),l);function a(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),A(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(r.map(s))}async function kb(r,e){e==null&&(e={});let t=e.fetchFunc==null?U().platform.fetch:e.fetchFunc,o=r.map(p=>t(p,e.requestInit,{isBinary:!0})),n=0,s=.5,i=(e.onProgress==null?await Promise.all(o):await _b(o,e.onProgress,n,s)).map(p=>p.arrayBuffer()),l=.5,u=1;return e.onProgress==null?await Promise.all(i):await _b(i,e.onProgress,l,u)}async function R0(r,e="",t,o){return vb(a=>kb(a,{requestInit:o}))(r,e,t)}function vb(r){return async(e,t="",o)=>{let n=e.map(()=>!1),s={},a=o!=null?o.map(()=>!1):[],i=[];if(e.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=sm[y]*ut(g.shape),w=()=>{n[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};o!=null?o.forEach((_,k)=>{_===g.name&&(w(),a[k]=!0)}):w(),i.push(g.name),h+=b})}),!a.every(f=>f)){let f=o.filter((d,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=n.reduce((f,d,h)=>(d&&f.push(h),f),[]),u=[];l.forEach(f=>{e[f].paths.forEach(d=>{let h=t+(t.endsWith("/")?"":"/")+d;u.push(h)})});let c=await r(u),p={},m=0;return l.forEach(f=>{let d=e[f].paths.length,h=0;for(let _=0;_<d;_++)h+=c[m+_].byteLength;let g=new ArrayBuffer(h),y=new Uint8Array(g),b=0;for(let _=0;_<d;_++){let k=new Uint8Array(c[m+_]);y.set(k,b),b+=k.byteLength}s[f].forEach(_=>{let k=g.slice(_.groupOffset,_.groupOffset+_.sizeBytes),D=Qd(k,[_.manifestEntry]);for(let T in D)p[T]=D[T]}),m+=d}),p}}var Y3="application/octet-stream",Z3="application/json",th=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=U().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let o=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(n)],{type:Z3}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:Y3}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Ms(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let h=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?h+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":h+=" Please make sure the server is serving valid JSON for this request.",new Error(h)}let o=t.modelTopology,n=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,i=t.format,l=t.signature,u=t.userDefinedMetadata;if(o==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,p;n!=null&&([c,p]=await this.loadWeights(n));let m={modelTopology:o,weightSpecs:c,weightData:p,generatedBy:s,convertedBy:a,format:i};l!=null&&(m.signature=l),u!=null&&(m.userDefinedMetadata=u);let f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[o,n]=J3(t),s=this.weightPathPrefix||o,a=[];for(let c of e)a.push(...c.weights);let i=[],l=[];for(let c of e)for(let p of c.paths)this.weightUrlConverter!=null?l.push(this.weightUrlConverter(p)):i.push(s+p+n);this.weightUrlConverter&&i.push(...await Promise.all(l));let u=await kb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,hc(u)]}};th.URL_SCHEME_REGEX=/^https?:\/\//;function J3(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),o=r.substring(0,e),n=t>e?r.substring(t):"";return[o+"/",n]}function rh(r){return r.match(th.URL_SCHEME_REGEX)!=null}var F0=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(o=>rh(o)):t=rh(r),t)return oh(r,e)}return null};Ct.registerSaveRouter(F0);Ct.registerLoadRouter(F0);function oh(r,e){return new th(r,e)}function O0(r,e){return oh(r,e)}var nh=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},P0=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function M0(r,e,t,o){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new nh(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new nh({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new nh({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:o}))}function L0(r){return new P0(r)}var nV={};Ze(nV,{confusionMatrix:()=>oV});function Q3(r,e,t=!1,o=!1){let n=v(r,"a","matMul"),s=v(e,"b","matMul");[n,s]=Ge(n,s);let a={a:n,b:s},i={transposeA:t,transposeB:o};return E.runKernel(hn,a,i)}var Ue=S({matMul_:Q3});function eV(r,e,t=1,o=0){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let s={indices:v(r,"indices","oneHot","int32")},a={depth:e,onValue:t,offValue:o};return E.runKernel(Mn,s,a)}var Ls=S({oneHot_:eV});function tV(r,e){let t=v(r,"x","transpose");if(e==null&&(e=t.shape.map((s,a)=>a).reverse()),A(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of perm ${e}.`),e.forEach(s=>{A(s>=0&&s<t.rank,()=>`All entries in 'perm' must be between 0 and ${t.rank-1} but got ${e}`)}),t.rank<=1)return t.clone();let o={x:t},n={perm:e};return E.runKernel(rs,o,n)}var He=S({transpose_:tV});function rV(r,e,t){let o=v(r,"labels","confusionMatrix"),n=v(e,"predictions","confusionMatrix");A(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),A(o.rank===1,()=>`Expected the rank of labels to be 1, but got ${o.rank}`),A(n.rank===1,()=>`Expected the rank of predictions to be 1, but got ${n.rank}`),A(o.shape[0]===n.shape[0],()=>`Mismatch in the number of examples: ${o.shape[0]} vs. ${n.shape[0]}. Labels and predictions should have the same number of elements.`),A(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=Ls(ne(o,"int32"),t),a=Ls(ne(n,"int32"),t),i=He(s),l=Ue(i,a);return ne(l,"int32")}var oV=S({confusionMatrix_:rV});var Cb={};Ze(Cb,{fromPixels:()=>pV,fromPixelsAsync:()=>uV,toPixels:()=>cV});function z0(r,e,t){if(Co(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let o=Cr(r,t);if(o.length!==3&&o.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Br(r,e,o,t)}var yc;function B0(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,o=!1,n=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)o=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)n=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(n){let d=2;if(n&&r.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(em(Jp,E.backendName)!=null){let d={pixels:r},h={numChannels:e};return E.runKernel(Jp,d,h)}let[u,c]=n?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;a?p=r.getContext("2d").getImageData(0,0,u,c).data:o||t?p=r.data:(s||n||i)&&(yc==null&&(yc=document.createElement("canvas").getContext("2d")),yc.canvas.width=u,yc.canvas.height=c,yc.drawImage(r,0,0,u,c),p=yc.getImageData(0,0,u,c).data);let m;if(e===4)m=new Int32Array(p);else{let d=u*c;m=new Int32Array(d*e);for(let h=0;h<d;h++)for(let g=0;g<e;++g)m[h*e+g]=p[h*4+g]}return z0(m,[c,u,e],"int32")}function sV(r){return r!=null&&r.data instanceof Uint8Array}function iV(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function aV(r){return r!=null&&r.width!==0&&r.height!==0}function lV(r){return iV()&&!(r instanceof ImageBitmap)&&aV(r)&&!sV(r)}async function uV(r,e=3){let t=null;if(U().getBool("WRAP_TO_IMAGEBITMAP")&&lV(r)){let o;try{o=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(n){o=null}o!=null&&o.width===r.width&&o.height===r.height?t=o:t=r}else t=r;return B0(t,e)}async function cV(r,e){let t=v(r,"img","toPixels");if(!(r instanceof Ve)){let u=t;t=ne(u,"int32"),u.dispose()}if(t.rank!==2&&t.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${t.rank}.`);let[o,n]=t.shape.slice(0,2),s=t.rank===2?1:t.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(t.dtype!=="float32"&&t.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${t.dtype}. Please use float32 or int32 tensors.`);let a=await t.data(),i=t.dtype==="float32"?255:1,l=new Uint8ClampedArray(n*o*4);for(let u=0;u<o*n;++u){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=a[u*s+m];if(t.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(t.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*i,c[1]=f*i,c[2]=f*i):c[m]=f*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(e!=null){e.width=n,e.height=o;let u=e.getContext("2d"),c=new ImageData(l,n,o);u.putImageData(c,0,0)}return t!==r&&t.dispose(),l}var pV=S({fromPixels_:B0});var Ib={};Ze(Ib,{prepareAndValidate:()=>V0});function V0(r,e){let t=r.shape.length,o=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(o<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${o}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[o-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[o-1]} vs. ${t}`);if(ut(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let n=e.shape,s=n[n.length-1],a=1;for(let p=0;p<n.length-1;++p)a*=n[p];let i=r.shape,l=n.slice();l.pop();let u=1;for(let p=s;p<t;++p)u*=i[p],l.push(i[p]);let c=[...ws(r.shape).map(p=>p/u),1].slice(0,s);return[l,a,u,c]}var Nb={};Ze(Nb,{calculateShapes:()=>G0,validateInput:()=>sh,validateUpdateShape:()=>Sb});function Sb(r,e,t){let o=e.rank>1?e.shape[e.rank-1]:1,n=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${o}, and batchDim: ${n}.`;if(t.rank<n)throw new Error(s+` update.rank < ${n}. `);if(r.length<o+(t.rank-n))throw new Error(s+` Output shape length < ${o+(t.rank-n)}`);if(t.rank!==n+r.length-o)throw new Error(s+` update.rank != ${n+r.length-o}`);for(let a=0;a<n;++a)if(t.shape[a]!==e.shape[a])throw new Error(s+` updates.shape[${a}] (${t.shape[a]}) != indices.shape[${a}] (${e.shape[a]}).`);for(let a=0;a<t.rank-n;++a)if(t.shape[a+n]!==r[a+o])throw new Error(s+` updates.shape[${a+n}] (${t.shape[a+n]}) != shape[${a+n}] (${r[a+n]})`)}function sh(r,e,t){if(e.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${e.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(e.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${e.dtype}`);if(t.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);if(t.length===0){if(e.size===0)throw new Error(`Indices specified for empty output. indices shape: ${e.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}Sb(t,e,r)}function G0(r,e,t){let o=e.shape.length,n=o>1?e.shape[o-1]:1,s=t.length,a=1;for(let p=n;p<s;++p)a*=t[p];let i=n<1?1:n,l=ut(e.shape)/i,u=[...ws(t.slice(0,n)),1],c=ut(t);return{sliceRank:n,numUpdates:l,sliceSize:a,strides:u,outputSize:c}}var Yt={};Ze(Yt,{assertParamsValid:()=>mV,computeFlatOffset:()=>dV,computeOutShape:()=>W0,getNormalizedAxes:()=>J0,isSliceContinous:()=>fV,maskToAxes:()=>ih,parseSliceParams:()=>Tb,sliceInfo:()=>hV,startForAxis:()=>Y0,startIndicesWithElidedDims:()=>q0,stopForAxis:()=>Z0,stopIndicesWithElidedDims:()=>K0,stridesForAxis:()=>X0,stridesWithElidedDims:()=>U0});function mV(r,e,t){let o=r.shape.length;A(o===e.length,()=>`Error in slice${o}D: Length of begin ${e} must match the rank of the array (${o}).`),A(o===t.length,()=>`Error in slice${o}D: Length of size ${t} must match the rank of the array (${o}).`);for(let n=0;n<o;++n)A(e[n]+t[n]<=r.shape[n],()=>`Error in slice${o}D: begin[${n}] + size[${n}] (${e[n]+t[n]}) would overflow input.shape[${n}] (${r.shape[n]})`)}function ih(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function W0(r,e,t){let o=[];for(let n=0;n<r.length;n++)o[n]=Math.ceil((e[n]-r[n])/t[n]);return o}function U0(r,e,t,o){let n=[...r];for(let s=n.length;s<o.length;s++)n.push(1);for(let s=0;s<t;s++)s===0?n[e]=1:(n.splice(e,0,1),n.pop());return n}function j0(r,e,t){return t<=r?t:t-(e-1)}function H0(r,e){let t=[];for(let o=0;o<r;o++)t.push(e+o);return t}function J0(r,e,t,o,n,s,a,i,l){let u=r.length,c=new Array(u),p=new Array(u),m=new Array(u);if(e.length&&t>0){let f=e[0],d=t+1;c=q0(a,f,d,o,r),p=K0(i,f,d,n,r),m=U0(s,f,d,r)}else for(let f=0;f<u;f++)c[f]=Y0(a,o,s,r,f,l),p[f]=Z0(i,n,s,r,f,l),m[f]=X0(s,f,l);return{begin:c,end:p,strides:m}}function q0(r,e,t,o,n){let s=[...n],a=H0(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=0;else{let l=j0(e,t,i),u=o[l];r&1<<l&&(u=0),s[i]=u}return s}function K0(r,e,t,o,n){let s=[...n],a=H0(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=Number.MAX_SAFE_INTEGER;else{let l=j0(e,t,i),u=o[l];r&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[i]=u}for(let i=0;i<s.length;i++){let l=n[i];s[i]<0&&(s[i]+=l),s[i]=Eu(0,s[i],n[i])}return s}function X0(r,e,t){let o=r[e];return(t&1<<e||o==null)&&(o=1),o}function Y0(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),a=Eu(0,a,l-1),a}function Z0(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),i>0?a=Eu(0,a,l):a=Eu(-1,a,l-1),a}function fV(r,e,t){let o=t.length;for(let n=0;n<t.length;n++)if(t[n]>1){o=n;break}for(let n=o+1;n<t.length;n++)if(e[n]>0||t[n]!==r[n])return!1;return!0}function dV(r,e){let t=r.length>0?r[r.length-1]:1;for(let o=0;o<r.length-1;o++)t+=r[o]*e[o];return t}function Tb(r,e,t){let o,n=r.shape.length;typeof e=="number"?o=[e,...new Array(n-1).fill(0)]:e.length<n?o=e.concat(new Array(n-e.length).fill(0)):o=e.slice(),o.forEach(a=>{A(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(n).fill(-1):typeof t=="number"?s=[t,...new Array(n-1).fill(-1)]:t.length<n?s=t.concat(new Array(n-t.length).fill(-1)):s=t,s=s.map((a,i)=>a>=0?a:(A(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-o[i])),[o,s]}function hV(r,e,t,o,n,s,a,i,l){let u=e.slice(),c=t.slice(),p=o;o==null&&(p=new Array(u.length));let m=ih(a);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.length-u.length,d=ih(i),h=r.slice();d.forEach(T=>{u[T]=0,c[T]=1,h.splice(T,0,1)});let{begin:g,end:y,strides:b}=J0(h,m,f,u,c,p,n,s,a);u=g,c=y,p=b;let w=ih(l);w.forEach(T=>{c[T]=u[T]+1,p[T]=1});let _=W0(u,c,p),k=_.filter((T,R)=>w.indexOf(R)===-1);return{nonStrided:p.every(T=>T===1),$begin:u,$end:c,$strides:p,size:_,newShape:h,outShape:k}}var Q={};Ze(Q,{Serializable:()=>ah,SerializationMap:()=>Qi,registerClass:()=>to});var ah=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Qi=class{constructor(){this.classNameMap={}}static getMap(){return Qi.instance==null&&(Qi.instance=new Qi),Qi.instance}static register(e){Qi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function to(r){A(r.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),A(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Qi.register(r)}var gV={};Ze(gV,{TEST_EPSILON_FLOAT16:()=>Q0,encodeStrings:()=>eI,expectArrayBuffersEqual:()=>vV,expectArraysClose:()=>yV,expectArraysEqual:()=>wV,expectNumbersClose:()=>_V,expectPromiseToFail:()=>bV,expectValuesInRange:()=>kV,testEpsilon:()=>Ab});var xV=.001,Q0=.1;function yV(r,e,t){return t==null&&(t=Ab()),Eb(r,e,(o,n)=>Db(o,n,t))}function Ab(){return E.backend.floatPrecision()===32?xV:Q0}function Eb(r,e,t){let o=!0;if((or(r)||or(e))&&(o=!1),or(r)&&or(e)&&(o=!0),o){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=Cr(r),i=Cr(e);if(!zr(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let n=or(r)?r:cn(r),s=or(e)?e:cn(e);if(n.length!==s.length)throw new Error(`Arrays have different lengths actual: ${n.length} vs expected: ${s.length}.
Actual: ${n}.
Expected: ${s}.`);for(let a=0;a<s.length;++a){let i=n[a],l=s[a];if(!t(i,l))throw new Error(`Arrays differ: actual[${a}] = ${i}, expected[${a}] = ${l}.
Actual: ${n}.
Expected: ${s}.`)}}function bV(r,e){r().then(()=>e.fail(),()=>e())}function wV(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return pn(r)||pn(r[0])||pn(e)||pn(e[0])?Eb(r,t,(o,n)=>o==n):Eb(r,e,(o,n)=>Db(o,n,0))}function _V(r,e,t){if(t==null&&(t=Ab()),!Db(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`)}function Db(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function kV(r,e,t){for(let o=0;o<r.length;o++)if(r[o]<e||r[o]>t)throw new Error(`Value out of range:${r[o]} low: ${e}, high: ${t}`)}function vV(r,e){expect(new Float32Array(r)).toEqual(new Float32Array(e))}function eI(r){for(let e=0;e<r.length;e++){let t=r[e];Array.isArray(t)?eI(t):r[e]=Ma(t)}return r}var tI="3.3.0";function ene(){U().set("PROD",!0)}function tne(){U().set("DEBUG",!0)}function rne(){U().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function $b(r){U().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}o0($b);function one(){E.disposeVariables()}function Wo(){return E}function im(){return E.memory()}function nne(r){return E.profile(r)}function V(r,e){return E.tidy(r,e)}function Te(r){nm(r).forEach(t=>t.dispose())}function Et(r){return E.keep(r)}function sne(r){return E.time(r)}function CV(r){return E.setBackend(r)}function ine(){return E.ready()}function ane(){return E.backendName}function lne(r){E.removeBackend(r)}function une(r){return E.findBackend(r)}function cne(r){return E.findBackendFactory(r)}function bc(r,e,t=1){return E.registerBackend(r,e,t)}function rI(){return E.backend}function pne(r,e){U().setPlatform(r,e)}function IV(r,e){let t=v(r,"a","add"),o=v(e,"b","add");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(Io,n)}var ee=S({add_:IV});function NV(r,e){let t=v(r,"a","floorDiv"),o=v(e,"b","floorDiv");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(In,n)}var wc=S({floorDiv_:NV});function SV(r,e){let t=v(r,"a","div"),o=v(e,"b","div");if([t,o]=Ge(t,o),t.dtype==="int32"&&o.dtype==="int32")return wc(t,o);let n={a:t,b:o},s={};return E.runKernel(kn,n,s)}var me=S({div_:SV});function TV(r,e){let t=v(r,"a","mul"),o=v(e,"b","mul");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(Pn,n)}var P=S({mul_:TV});function AV(r){let e=v(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return E.runKernel(Ia,t)}else{let t={x:e};return E.runKernel(_s,t)}}var Tt=S({abs_:AV});function EV(r){let t={x:v(r,"x","acos")};return E.runKernel(ui,t)}var lh=S({acos_:EV});function DV(r){let t={x:v(r,"x","acosh")};return E.runKernel(ci,t)}var uh=S({acosh_:DV});function $V(r){A(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),A(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((n,s)=>v(n,`tensors${s}`,"addN")),t=e[0];e.forEach(n=>{if(n.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(n=>{if(!zr(n.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let o=e;return E.runKernel(mn,o)}var oI=S({addN_:$V});function RV(r,e=null,t=!1){let n={x:v(r,"x","all","bool")},s={axis:e,keepDims:t};return E.runKernel(Fu,n,s)}var _c=S({all_:RV});function FV(r,e=null,t=!1){let n={x:v(r,"x","any","bool")},s={axis:e,keepDims:t};return E.runKernel(Ou,n,s)}var Rl=S({any_:FV});function OV(r,e=0){let o={x:v(r,"x","argMax")},n={axis:e};return E.runKernel(fn,o,n)}var Fl=S({argMax_:OV});function PV(r,e=0){let o={x:v(r,"x","argMin")},n={axis:e};return E.runKernel(ka,o,n)}var ch=S({argMin_:PV});function MV(r){let t={x:v(r,"x","asin")};return E.runKernel(pi,t)}var ph=S({asin_:MV});function LV(r){let t={x:v(r,"x","asinh")};return E.runKernel(mi,t)}var mh=S({asinh_:LV});function zV(r){let t={x:v(r,"x","atan")};return E.runKernel(fi,t)}var fh=S({atan_:zV});function BV(r,e){let t=v(r,"a","atan2"),o=v(e,"b","atan2");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(hi,n)}var dh=S({atan2_:BV});function VV(r){let t={x:v(r,"x","atanh")};return E.runKernel(di,t)}var hh=S({atanh_:VV});function GV(r,e,t,o,n="NHWC",s){let a=r[3],i=[...e,a],l=nI(n);return Ol(r,i,t,s,o,null,null,l)}function Rb(r,e,t,o,n,s,a="channelsLast"){let[i,l]=gh(e),u;if(a==="channelsLast")u=[i,l,r[3],r[3]];else if(a==="channelsFirst")u=[i,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return Ol(r,u,t,o,n,s,!1,a)}function WV(r,e,t,o,n,s,a="NDHWC"){let[i,l,u]=Fb(e),c,p;if(a==="NDHWC")p="channelsLast",c=[i,l,u,r[4],r[4]];else if(a==="NCDHW")p="channelsFirst",c=[i,l,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return sI(r,c,t,o,n,!1,p,s)}function Ol(r,e,t,o,n,s,a=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=r;else if(i==="channelsFirst")[l,p,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,f,,d]=e,[h,g]=gh(t),[y,b]=gh(o),w=kc(m,y),_=kc(f,b),{padInfo:k,outHeight:D,outWidth:T}=UV(n,u,c,h,g,w,_,s,i),R=a?d*p:d,O;return i==="channelsFirst"?O=[l,R,D,T]:i==="channelsLast"&&(O=[l,D,T,R]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:D,outWidth:T,outChannels:R,padInfo:k,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:_,dilationHeight:y,dilationWidth:b,inShape:r,outShape:O,filterShape:e}}function sI(r,e,t,o,n,s=!1,a="channelsLast",i){let[l,u,c,p,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[l,u,c,p,m]=r;else if(a==="channelsFirst")[l,m,u,c,p]=r;else throw new Error(`Unknown dataFormat ${a}`);let[f,d,h,,g]=e,[y,b,w]=Fb(t),[_,k,D]=Fb(o),T=kc(f,_),R=kc(d,k),O=kc(h,D),{padInfo:M,outDepth:G,outHeight:W,outWidth:j}=jV(n,u,c,p,y,b,w,T,R,O,i),H=s?g*m:g,q;return a==="channelsFirst"?q=[l,H,G,W,j]:a==="channelsLast"&&(q=[l,G,W,j,H]),{batchSize:l,dataFormat:a,inDepth:u,inHeight:c,inWidth:p,inChannels:m,outDepth:G,outHeight:W,outWidth:j,outChannels:H,padInfo:M,strideDepth:y,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:T,effectiveFilterHeight:R,effectiveFilterWidth:O,dilationDepth:_,dilationHeight:k,dilationWidth:D,inShape:r,outShape:q,filterShape:e}}function HV(r,e,t,o,n){o==null&&(o=Ob(r,e,t));let s=r[0],a=r[1],i=Pl((s-e+2*o)/t+1,n),l=Pl((a-e+2*o)/t+1,n);return[i,l]}function qV(r,e,t,o,n,s){n==null&&(n=Ob(r,e,o));let a=r[0],i=r[1],l=r[2],u=Pl((a-e+2*n)/o+1,s),c=Pl((i-e+2*n)/o+1,s),p=Pl((l-e+2*n)/o+1,s);return[u,c,p,t]}function Ob(r,e,t,o=1){let n=kc(e,o);return Math.floor((r[0]*(t-1)-t+n)/2)}function gh(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function Fb(r){return typeof r=="number"?[r,r,r]:r}function kc(r,e){return e<=1?r:r+(r-1)*(e-1)}function UV(r,e,t,o,n,s,a,i,l){let u,c,p;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=HV([e,t],s,o,r,i);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(e/o),p=Math.ceil(t/n);let m=Math.max(0,(c-1)*o+s-e),f=Math.max(0,(p-1)*n+a-t),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),y=f-g;u={top:d,bottom:h,left:g,right:y,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/o),p=Math.ceil((t-a+1)/n);else if(typeof r=="object"){let m=l==="channelsLast"?r[1][0]:r[2][0],f=l==="channelsLast"?r[1][1]:r[2][1],d=l==="channelsLast"?r[2][0]:r[3][0],h=l==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=Pl((e-s+m+f)/o+1,i),p=Pl((t-a+d+h)/n+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:p}}function jV(r,e,t,o,n,s,a,i,l,u,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=qV([e,t,o,1],i,1,n,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(e/n),f=Math.ceil(t/s),d=Math.ceil(o/a);let h=(m-1)*n+i-e,g=(f-1)*s+l-t,y=(d-1)*a+u-o,b=Math.floor(h/2),w=h-b,_=Math.floor(g/2),k=g-_,D=Math.floor(y/2),T=y-D;p={top:_,bottom:k,left:D,right:T,front:b,back:w,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((e-i+1)/n),f=Math.ceil((t-l+1)/s),d=Math.ceil((o-u+1)/a);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function Pl(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function To(r){let[e,t,o]=gh(r);return e===1&&t===1&&o===1}function wr(r,e){return To(r)||To(e)}function nI(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function KV(r,e){let o={x:v(r,"x","reshape","string_or_numeric")},n={shape:e};return E.runKernel(Ts,o,n)}var L=S({reshape_:KV});function XV(r,e,t,o,n){let s=v(r,"x","avgPool","float32"),a=1;A(wr(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),n!=null&&A(ot(o),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=E.runKernel(dn,u,c);return p=ne(p,s.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ba=S({avgPool_:XV});function YV(r,e,t,o,n,s="NDHWC"){let a=v(r,"x","avgPool3d","float32"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),n!=null&&A(ot(o),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},p=E.runKernel(va,u,c);return p=ne(p,i.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var xh=S({avgPool3d_:YV});function ZV(r,e=0){A(r.length>=1,()=>"Pass at least one tensor to concat");let t=Xi(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),t.length===1)return Go(t[0]);let o=t,n={axis:e};return E.runKernel(ks,o,n)}var Je=S({concat_:ZV});function JV(r){let t={x:v(r,"x","sigmoid")};return E.runKernel(Xn,t)}var ro=S({sigmoid_:JV});function QV(r,e,t){let o=v(r,"x","slice","string_or_numeric");if(o.rank===0)throw new Error("Slicing scalar is not possible");let n={x:o},s={begin:e,size:t};return E.runKernel(qn,n,s)}var Re=S({slice_:QV});function eG(r){let t={x:v(r,"x","tanh")};return E.runKernel(ts,t)}var ea=S({tanh_:eG});function tG(r,e,t,o,n,s){let a=v(r,"forgetBias","basicLSTMCell"),i=v(e,"lstmKernel","basicLSTMCell"),l=v(t,"lstmBias","basicLSTMCell"),u=v(o,"data","basicLSTMCell"),c=v(n,"c","basicLSTMCell"),p=v(s,"h","basicLSTMCell"),m=Je([u,p],1),f=Ue(m,i),d=ee(f,l),h=d.shape[0],g=d.shape[1]/4,y=[h,g],b=Re(d,[0,0],y),w=Re(d,[0,g],y),_=Re(d,[0,g*2],y),k=Re(d,[0,g*3],y),D=ee(P(ro(b),ea(w)),P(c,ro(ee(a,_)))),T=P(ea(D),ro(k));return[D,T]}var Zie=S({basicLSTMCell_:tG});function rG(r,e,t){let o=v(r,"x","batchToSpaceND"),n=e.reduce((i,l)=>i*l);A(o.rank>=1+e.length,()=>`input rank is ${o.rank} but should be > than blockShape.length ${e.length}`),A(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),A(o.shape[0]%n==0,()=>`input tensor batch is ${o.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${n}`);let s={x:o},a={blockShape:e,crops:t};return E.runKernel(Ca,s,a)}var Va=S({batchToSpaceND_:rG});function iI(r){let e;return r.rank===0||r.rank===1?e=L(r,[1,1,1,r.size]):r.rank===2?e=L(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function oG(r,e,t,o,n,s){s==null&&(s=.001);let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;o!=null&&(c=v(o,"offset","batchNorm")),A(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:iI(a),scale:u,offset:c,mean:i,variance:l},f={varianceEpsilon:s},d=E.runKernel(Nn,m,f);return L(d,a.shape)}var ss=S({batchNorm_:oG});function nG(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),A(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),A(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),ss(a,i,l,c,u,s)}var aI=S({batchNorm2d_:nG});function sG(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),A(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),A(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),ss(a,i,l,c,u,s)}var lI=S({batchNorm3d_:sG});function iG(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),A(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),A(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),ss(a,i,l,c,u,s)}var uI=S({batchNorm4d_:iG});function aG(r,e,t){let o=v(r,"x","bincount"),n=v(e,"weights","bincount");A(o.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${o.dtype}`),A(t>=0,()=>`size must be non-negative, but got ${t}.`),A(n.size===o.size||n.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${o.shape}, weights shape: ${n.shape}.`);let s={x:o,weights:n},a={size:t};return E.runKernel(Lu,s,a)}var cI=S({bincount_:aG});function lG(r,e){let t=v(r,"broadcastTo","x"),o=t.shape;if(e.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${e}].`);if(e.length<t.rank)throw new Error(`broadcastTo(): shape.length=${e.length} < input.rank=${t.rank}.`);if(e.length>t.rank){let u=t.shape.slice();for(;u.length<e.length;)u.unshift(1);t=L(t,u)}let n=t.shape,s=Array.from(e);for(let u=e.length-1;u>=0;u--)if(n[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Go(t);let i={x:t},l={reps:s};return E.runKernel(No,i,l)}var Ml=S({broadcastTo_:lG});function uG(r){let t={x:v(r,"x","ceil")};return E.runKernel(gn,t)}var yh=S({ceil_:uG});function cG(r,e,t){let o=v(r,"x","clipByValue");A(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`);let n={x:o},s={clipValueMin:e,clipValueMax:t};return E.runKernel(zo,n,s)}var lr=S({clipByValue_:cG});function pG(r){return Je(r,0)}var pI=S({concat1d_:pG});function mG(r,e){return Je(r,e)}var mI=S({concat2d_:mG});function fG(r,e){return Je(r,e)}var fI=S({concat3d_:fG});function dG(r,e){return Je(r,e)}var dI=S({concat4d_:dG});function hG(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","conv2d"),l=v(e,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),A(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),a!=null&&A(ot(o),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p=n==="NHWC"?u.shape[3]:u.shape[1];A(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),A(wr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let m={x:u,filter:l},f={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},d=E.runKernel(xn,m,f);return c?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var oo=S({conv2d_:hG});function gG(r,e,t,o,n="NWC",s=1,a){let i=v(r,"x","conv1d"),l=v(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1]])),A(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),a!=null&&A(ot(o),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),A(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(wr(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),A(n==="NWC",()=>`Error in conv1d: got dataFormat of ${n} but only NWC is currently supported.`);let p=L(l,[1,l.shape[0],l.shape[1],l.shape[2]]),m=L(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=oo(m,p,[1,t],o,"NHWC",[1,s],a);return c?L(g,[g.shape[2],g.shape[3]]):L(g,[g.shape[0],g.shape[2],g.shape[3]])}var vc=S({conv1d_:gG});function xG(r,e,t,o,n,s="NHWC",a){A(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,l=e,u=!1;e.rank===3&&(u=!0,l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),A(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),A(p===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${t.shape[3]}.`),a!=null&&A(ot(n),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let m={dy:l,filter:t},f={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,inputShape:i},d=E.runKernel(yn,m,f);return u?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Cc=S({conv2DBackpropInput_:xG});function yG(r,e,t,o,n,s){let a=v(r,"x","conv2dTranspose"),i=v(e,"filter","conv2dTranspose");return Cc(t,a,i,o,n,"NHWC",s)}var Ic=S({conv2dTranspose_:yG});function bG(r,e,t,o,n="NDHWC",s=[1,1,1]){let a=v(r,"x","conv3d"),i=v(e,"filter","conv3d"),l=a,u=!1;a.rank===4&&(u=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),A(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),A(wr(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),A(n==="NDHWC",()=>`Error in conv3d: got dataFormat of ${n} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:t,pad:o,dataFormat:n,dilations:s},m=E.runKernel(Na,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var bh=S({conv3d_:bG});function wG(r,e,t,o,n){A(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let l=s[4],u=a.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),A(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),A(l===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${t.shape[3]}.`),A(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},p={pad:n,strides:o,inputShape:s},m=E.runKernel(Gu,c,p);return i?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var wh=S({conv3DBackpropInput_:wG});function _G(r,e,t,o,n){let s=v(r,"x","conv3dTranspose"),a=v(e,"filter","conv3dTranspose");return wh(t,s,a,o,n)}var eue=S({conv3dTranspose_:_G});function kG(r){let t={x:v(r,"x","cos")};return E.runKernel(bn,t)}var Ga=S({cos_:kG});function vG(r){let t={x:v(r,"x","cosh")};return E.runKernel(gi,t)}var Nc=S({cosh_:vG});function CG(r,e=0,t=!1,o=!1){let s={x:v(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:o};return E.runKernel(wn,s,a)}var Sc=S({cumsum_:CG});function IG(r,e,t,o=!1){let n=v(r,"x","denseBincount"),s=v(e,"weights","denseBincount");A(n.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${n.dtype}`),A(n.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${n.rank}.`),A(t>=0,()=>`size must be non-negative, but got ${t}.`),A(s.size===n.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${n.shape}, weights shape: ${s.shape}.`);let a={x:n,weights:s},i={size:t,binaryOutput:o};return E.runKernel(Wu,a,i)}var hI=S({denseBincount_:IG});function NG(r,e,t="NHWC"){let o=v(r,"x","depthToSpace"),n=t==="NHWC"?o.shape[1]:o.shape[2],s=t==="NHWC"?o.shape[2]:o.shape[3],a=t==="NHWC"?o.shape[3]:o.shape[1];A(n*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${n} and ${e} for depthToSpace with input shape
${o.shape}`),A(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${e} for depthToSpace with input shape
${o.shape}`),A(a%(e*e)==0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${o.shape}`);let i={x:o},l={blockSize:e,dataFormat:t};return E.runKernel(yi,i,l)}var _h=S({depthToSpace_:NG});function SG(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","depthwiseConv2d"),l=v(e,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),A(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),a!=null&&A(ot(o),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p={x:u,filter:l},m={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},f=E.runKernel(_n,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var zs=S({depthwiseConv2d_:SG});function TG(r){let t={x:v(r,"x","diag")};return E.runKernel(Hu,t)}var Bue=S({diag_:TG});function AG(r,e,t,o,n=[1,1],s="NHWC"){let a=v(r,"x","dilation2d"),i=v(e,"filter","dilation2d");A(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),A(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=a,u=!1;a.rank===3&&(l=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:t,pad:o,dilations:n},m=E.runKernel(Sa,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var kh=S({dilation2d_:AG});function EG(r,e){let t=r.length,o=[];for(let n=0;n<t;n++){let s=t-1-n,a=r[s]||1;(e[e.length-1-n]||1)>1&&a===1&&o.unshift(s)}return o}function yt(r,e){let t=[];for(let o=0;o<e.length;o++){let n=r[r.length-o-1],s=e.length-o-1,a=e[s];(n==null||n===1&&a>1)&&t.unshift(s)}return t}function Be(r,e){let t=[],o=Math.max(r.length,e.length);for(let n=0;n<o;n++){let s=r[r.length-n-1];s==null&&(s=1);let a=e[e.length-n-1];if(a==null&&(a=1),s===1)t.unshift(a);else if(a===1)t.unshift(s);else if(s!==a){let i=`Operands could not be broadcast together with shapes ${r} and ${e}.`;throw Error(i)}else t.unshift(s)}return t}function DG(r,e){let t=v(r,"a","equal"),o=v(e,"b","equal");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(_i,n)}var Ao=S({equal_:DG});function $G(r,e,t){let o=v(e,"a","where"),n=v(t,"b","where"),s=v(r,"condition","where","bool"),a=Be(o.shape,n.shape),i=Ml(o,a),l=Ml(n,a);s.rank===1&&A(s.shape[0]===o.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&vt(s.shape,l.shape,"Error in where: ");let u={condition:s,t:i,e:l};return E.runKernel(As,u)}var $t=S({where_:$G});function RG(r){let t={x:v(r,"x","zerosLike")};return E.runKernel($s,t)}var Ie=S({zerosLike_:RG});function FG(r,e){let t=v(r,"a","div"),o=v(e,"b","div");[t,o]=Ge(t,o);let n=me(t,o),s=Ie(n),a=Ao(o,s);return $t(a,s,n)}var vh=S({divNoNan_:FG});function OG(r,e){let t=v(r,"t1","dot"),o=v(e,"t2","dot");A((t.rank===1||t.rank===2)&&(o.rank===1||o.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${o.rank}.`);let n=t.rank===1?t.size:t.shape[1],s=o.rank===1?o.size:o.shape[0];if(A(n===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${n} and ${s}.`),t.rank===1&&o.rank===1){let a=L(t,[1,-1]),i=L(o,[-1,1]),l=Ue(a,i);return L(l,[])}else if(t.rank===1&&o.rank===2){let a=L(t,[1,-1]),i=L(o,[o.shape[0],o.shape[1]]),l=Ue(a,i);return L(l,[l.size])}else if(t.rank===2&&o.rank===1){let a=L(o,[-1,1]),i=Ue(t,a);return L(i,[i.size])}else{let a=L(o,[o.shape[0],o.shape[1]]);return Ue(t,a)}}var gI=S({dot_:OG});function PG(r){let t={x:v(r,"x","elu")};return E.runKernel(bi,t)}var Bs=S({elu_:PG});function MG(r){let e=v(r,"x","erf");A(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=ne(e,"float32"));let t={x:e};return E.runKernel(wi,t)}var Ch=S({erf_:MG});function LG(r){let t={x:v(r,"x","exp")};return E.runKernel(vn,t)}var er=S({exp_:LG});function zG(r,e=0){let t=v(r,"x","expandDims","string_or_numeric");A(e<=t.rank,()=>"Axis must be <= rank of the tensor");let o={input:t},n={dim:e};return E.runKernel(vs,o,n)}var ur=S({expandDims_:zG});function BG(r){let t={x:v(r,"x","expm1")};return E.runKernel(ki,t)}var Ih=S({expm1_:BG});function VG(r,e){let t=v(r,"x","tile","string_or_numeric");A(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let o={x:t},n={reps:e};return E.runKernel(No,o,n)}var Uo=S({tile_:VG});function GG(r,e,t,o="float32"){e==null&&(e=r);let n=_e([r,e],o),s=r<=e?r:e;for(let i=0;i<s;++i)n.set(1,i,i);let a=L(n.toTensor(),[r,e]);if(t==null)return a;if(t.length===1)return Uo(ur(a,0),[t[0],1,1]);if(t.length===2)return Uo(ur(ur(a,0),0),[t[0],t[1],1,1]);if(t.length===3)return Uo(ur(ur(ur(a,0),0),0),[t[0],t[1],t[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${t.length}D.`)}var am=S({eye_:GG});function Wa(r,e,t){let o={shape:r,value:e,dtype:t};return E.runKernel(Ta,{},o)}function WG(r){let t={x:v(r,"x","floor")};return E.runKernel(Cn,t)}var Vs=S({floor_:WG});function UG(r,e,t=0,o=0){let n=v(r,"x","gather"),s=v(e,"indices","gather","int32"),a={x:n,indices:s},i={axis:t,batchDims:o};return E.runKernel(Cs,a,i)}var is=S({gather_:UG});function jG(r,e){let t=v(r,"a","greater"),o=v(e,"b","greater");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Ii,n)}var nr=S({greater_:jG});function HG(r,e){let t=v(r,"a","greaterEqual"),o=v(e,"b","greaterEqual");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Sn,n)}var yo=S({greaterEqual_:HG});function qG(r){let t={input:v(r,"input","imag")};return E.runKernel(Yu,t)}var Tc=S({imag_:qG});function KG(r){let t={x:v(r,"x","isFinite")};return E.runKernel(Ni,t)}var xI=S({isFinite_:KG});function XG(r){let t={x:v(r,"x","isInf")};return E.runKernel(Si,t)}var yI=S({isInf_:XG});function YG(r){let t={x:v(r,"x","isNaN")};return E.runKernel(Ti,t)}var bI=S({isNaN_:YG});function ZG(r,e=.2){let o={x:v(r,"x","leakyRelu")},n={alpha:e};return E.runKernel(Tn,o,n)}var Ua=S({leakyRelu_:ZG});function JG(r,e){let t=v(r,"a","less"),o=v(e,"b","less");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Ai,n)}var Ac=S({less_:JG});function QG(r,e){let t=v(r,"a","lessEqual"),o=v(e,"b","lessEqual");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Ei,n)}var jo=S({lessEqual_:QG});function wI(r,e,t){if(t<=0)throw new Error("The number of values should be positive.");let o={start:r,stop:e,num:t};return E.runKernel(Zu,{},o)}function eW(r,e=5,t=1,o=1,n=.5){let s=v(r,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),A(ot(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=L(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:a},u={depthRadius:e,bias:t,alpha:o,beta:n},c=E.runKernel(Aa,l,u);return i?L(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Nh=S({localResponseNormalization_:eW});function tW(r){let t={x:v(r,"x","log")};return E.runKernel(An,t)}var cr=S({log_:tW});function rW(r){let t={x:v(r,"x","log1p")};return E.runKernel(Di,t)}var Ec=S({log1p_:rW});function Jme(r){return A(bs(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let o=v(e,"x","tf.grad","string_or_numeric"),n=t!=null?v(t,"dy","tf.grad"):null;return E.tidy(()=>{let{value:s,grads:a}=E.gradients(()=>r(o),[o],n);return n!=null&&vt(s.shape,n.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Sh(a),a[0]})}}function Qme(r){return A(bs(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{A(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let o=Xi(e,"args","tf.grads","string_or_numeric"),n=t!=null?v(t,"dy","tf.grads"):null;return E.tidy(()=>{let{value:s,grads:a}=E.gradients(()=>r(...o),o,n);return n!=null&&vt(s.shape,n.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Sh(a),a})}}function efe(r){return A(bs(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{A(e instanceof Ve,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:o,value:n}=E.gradients(()=>r(e),[e],t);return Sh(o),{grad:o[0],value:n}}}function tfe(r){return A(bs(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{A(Array.isArray(e)&&e.every(n=>n instanceof Ve),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let o=E.gradients(()=>r(...e),e,t);return t!=null&&vt(o.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Sh(o.grads),o}}function Pb(r,e){A(bs(r),()=>"The f passed in variableGrads(f) must be a function"),A(e==null||Array.isArray(e)&&e.every(u=>u instanceof El),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in E.registeredVariables)e.push(E.registeredVariables[u])}let o=t?e.filter(u=>!u.trainable):null,n=e.length;e=e.filter(u=>u.trainable),A(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${n} variables is trainable.`);let s=!0,{value:a,grads:i}=E.gradients(r,e,null,s);A(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let l={};return e.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),o!=null&&o.forEach(u=>l[u.name]=null),{value:a,grads:l}}function no(r){return E.customGrad(r)}function Sh(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function oW(r){let t={x:v(r,"x","neg")};return E.runKernel(Is,t)}var qe=S({neg_:oW});function nW(r){let t={x:v(r,"x","softplus")};return E.runKernel(Ui,t)}var Gs=S({softplus_:nW});function sW(r){let e=v(r,"x","logSigmoid");return no(o=>({value:qe(Gs(qe(o))),gradFunc:a=>P(a,ro(qe(o)))}))(e)}var _I=S({logSigmoid_:sW});function iW(r,e=null,t=!1){let n={x:v(r,"x","max")},s={reductionIndices:e,keepDims:t};return E.runKernel(En,n,s)}var pr=S({max_:iW});function aW(r,e){let t=v(r,"a","sub"),o=v(e,"b","sub");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(es,n)}var pe=S({sub_:aW});function lW(r,e=null,t=!1){let o=v(r,"x","sum");o.dtype==="bool"&&(o=ne(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return E.runKernel(Zn,n,s)}var ye=S({sum_:lW});function uW(r,e=-1){let t=v(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return no((n,s)=>{let a=!0,i=pr(n,e,!0),l=pe(n,i),u=pe(ne(l,"float32"),cr(ye(er(l),e,a)));return s([u]),{value:u,gradFunc:(p,m)=>{let[f]=m,d=!0,h=er(f);return pe(p,P(ye(p,e,d),h))}}})(t)}var Dc=S({logSoftmax_:uW});function Mb(r,e){for(let t=0;t<r.length;++t)if(r[r.length-t-1]!==e-1-t)return!1;return!0}function kI(r,e,t){let o=r.length+e.length,n=[],s=0,a=0;for(let i=0;i<o;i++)t.indexOf(i)===-1?n.push(r[s++]):n.push(e[a++]);return n}function Lb(r,e){let t=[],o=r.length;for(let s=0;s<o;s++)e.indexOf(s)===-1&&t.push(r[s]);let n=e.map(s=>r[s]);return[t,n]}function Ho(r,e){let t=e.map(o=>1);return kI(r,t,e)}function cW(r,e,t){A(Mb(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function zb(r,e){if(Mb(r,e))return null;let t=[];for(let o=0;o<e;++o)r.indexOf(o)===-1&&t.push(o);return r.forEach(o=>t.push(o)),t}function lm(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function pW(r,e){let t=[];for(let o=e-r;o<e;++o)t.push(o);return t}function mW(r,e=null,t=!1){let o=v(r,"x","logSumExp"),n=Qt(e,o.shape),s=pr(o,n,!0),a=pe(o,s),i=er(a),l=ye(i,n),u=cr(l),c=ee(L(s,u.shape),u);if(t){let p=Ho(c.shape,n);return L(c,p)}return c}var Th=S({logSumExp_:mW});function fW(r,e){let t=v(r,"a","logicalAnd","bool"),o=v(e,"b","logicalAnd","bool");Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel($i,n)}var _r=S({logicalAnd_:fW});function dW(r){let t={x:v(r,"x","logicalNot","bool")};return E.runKernel(Nl,t)}var ja=S({logicalNot_:dW});function hW(r,e){let t=v(r,"a","logicalOr","bool"),o=v(e,"b","logicalOr","bool");Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Sl,n)}var $c=S({logicalOr_:hW});function gW(r,e){let t=v(r,"a","logicalXor","bool"),o=v(e,"b","logicalXor","bool");return Be(t.shape,o.shape),_r($c(r,e),ja(_r(r,e)))}var vI=S({logicalXor_:gW});function xW(r,e,t,o,n){let s=v(r,"x","maxPool"),a=1,i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),A(wr(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),n!=null&&A(ot(o),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=E.runKernel($n,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ha=S({maxPool_:xW});function yW(r,e=[1,1,1],t,o,n,s="NDHWC"){let a=v(r,"x","maxPool3d"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),n!=null&&A(ot(o),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},p=E.runKernel(Ea,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Ah=S({maxPool3d_:yW});function bW(r,e,t,o,n=!1){let a={x:v(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:o,includeBatchInIndex:n},l=E.runKernel(tc,a,i);return{result:l[0],indexes:l[1]}}var CI=S({maxPoolWithArgmax_:bW});function wW(r,e){let t=v(r,"a","maximum"),o=v(e,"b","maximum");[t,o]=Ge(t,o),t.dtype==="bool"&&(t=ne(t,"int32"),o=ne(o,"int32")),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Dn,n)}var so=S({maximum_:wW});function _W(r,e=null,t=!1){let n={x:v(r,"x","mean")},s={axis:e,keepDims:t};return E.runKernel(Rn,n,s)}var bt=S({mean_:_W});function kW(r,e=null,t=!1){let n={x:v(r,"x","min")},s={axis:e,keepDims:t};return E.runKernel(Fn,n,s)}var ta=S({min_:kW});function vW(r,e){let t=v(r,"a","minimum"),o=v(e,"b","minimum");[t,o]=Ge(t,o),t.dtype==="bool"&&(t=ne(t,"int32"),o=ne(o,"int32")),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(On,n)}var Ws=S({minimum_:vW});function CW(r,e,t){A(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let o=v(r,"x","mirrorPad");if(o.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(e.length===o.rank,()=>`Padding doesn't match input. Must be ${o.rank}. Got ${e.length}.`);let n=t==="reflect"?1:0;for(let i=0;i<o.rank;i++)A(e[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(e[i][0]>=0&&e[i][0]<=o.shape[i]-n&&e[i][1]>=0&&e[i][1]<=o.shape[i]-n,()=>`Padding in dimension ${i} cannot be greater than or equal to ${o.shape[i]-n} or less than 0 for input of shape ${o.shape}`);let s={paddings:e,mode:t},a={x:o};return E.runKernel(Da,a,s)}var Eh=S({mirrorPad_:CW});function IW(r,e){let t=v(r,"a","mod"),o=v(e,"b","mod");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(Ri,n)}var Dh=S({mod_:IW});function NW(r){let e=v(r,"x","square"),t={};return E.runKernel("Square",{x:e},t)}var Me=S({square_:NW});function SW(r,e=null,t=!1){r=v(r,"x","moments");let o=Qt(e,r.shape),n=bt(r,o,t),s=n.shape;t||(s=Ho(n.shape,o));let a=Me(pe(ne(r,"float32"),L(n,s))),i=bt(a,o,t);return{mean:n,variance:i}}var um=S({moments_:SW});function TW(r,e,t,o){let n=v(e,"data","multiRNNCell"),s=Xi(t,"c","multiRNNCell"),a=Xi(o,"h","multiRNNCell"),i=n,l=[];for(let p=0;p<r.length;p++){let m=r[p](i,s[p],a[p]);l.push(m[0]),l.push(m[1]),i=m[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var Qhe=S({multiRNNCell_:TW});function AW(r,e,t,o=!1){let n=v(r,"logits","multinomial"),s=n.size,a=n.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let l={logits:a===1?L(n,[1,-1]):n},u={numSamples:e,seed:t,normalized:o},c=E.runKernel(rc,l,u);return a===1?L(c,[c.size]):c}var II=S({multinomial_:AW});function EW(r,e){let t=v(r,"a","notEqual"),o=v(e,"b","notEqual");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Fi,n)}var as=S({notEqual_:EW});function wt(r,e="float32"){if(e==="complex64"){let o=wt(r,"float32"),n=wt(r,"float32");return So(o,n)}let t=Ru(ut(r),e);return E.makeTensor(t,r,e)}function Er(r,e="float32"){if(e==="complex64"){let o=Er(r,"float32"),n=wt(r,"float32");return So(o,n)}let t=Hp(ut(r),e);return E.makeTensor(t,r,e)}function DW(r){let t={x:v(r,"x","onesLike")};return E.runKernel(Ns,t)}var sr=S({onesLike_:DW});function $W(r,e){let t=v(r,"v1","outerProduct"),o=v(e,"v2","outerProduct");A(t.rank===1&&o.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${o.rank}.`);let n=L(t,[-1,1]),s=L(o,[1,-1]);return Ue(n,s)}var Rge=S({outerProduct_:$W});function RW(r,e,t=0){let o=v(r,"x","pad");if(o.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let n={paddings:e,constantValue:t},s={x:o};return E.runKernel(Ln,s,n)}var Wr=S({pad_:RW});function FW(r,e,t=0){return A(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),Wr(r,[e],t)}var Wge=S({pad1d_:FW});function OW(r,e,t=0){return A(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Wr(r,e,t)}var Kge=S({pad2d_:OW});function PW(r,e,t=0){return A(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Wr(r,e,t)}var Qge=S({pad3d_:PW});function MW(r,e,t=0){return A(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Wr(r,e,t)}var nxe=S({pad4d_:MW});function LW(r,e,t){let o=v(r,"x","spaceToBatchND");A(o.rank>=1+e.length,()=>`input rank ${o.rank} should be > than [blockShape] ${e.length}`),A(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),A(o.shape.reduce((a,i,l)=>l>0&&l<=e.length?a&&(i+t[l-1][0]+t[l-1][1])%e[l-1]==0:a,!0),()=>`input spatial dimensions ${o.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let n={x:o},s={blockShape:e,paddings:t};return E.runKernel(Fa,n,s)}var qa=S({spaceToBatchND_:LW});function VW(r,e,t,o,n,s){n==null&&(n=[1,1]),s==null&&(s=1),o===0&&(o="valid");let a=v(r,"x","maxPool"),i=a,l=!1;a.rank===3&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A(wr(s,n),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${n}'`);let u=Rb(i.shape,e,s,n,o),c=[u.dilationHeight,u.dilationWidth],p;o==="same"?p=BW([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let m=c[0]===1&&c[1]===1,[f,d]=zW([u.inHeight,u.inWidth],c,p),h=m?o:"valid",g=m?i:qa(i,c,f),b=(t==="avg"?()=>Ba(g,e,s,h):()=>Ha(g,e,s,h))(),w=m?b:Va(b,c,d);return l?L(w,[w.shape[1],w.shape[2],w.shape[3]]):w}function zW(r,e,t){let o=t.map(c=>c[0]),n=t.map(c=>c[1]),s=r.concat(o,n),a=e.map((c,p)=>(c-s[p]%c)%c),i=n.map((c,p)=>c+a[p]),l=e.map((c,p)=>[o[p],i[p]]),u=e.map((c,p)=>[0,a[p]]);return[l,u]}function BW(r,e){let o=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),n=o.map(a=>Math.floor(a/2)),s=o.map((a,i)=>a-n[i]);return o.map((a,i)=>[n[i],s[i]])}var NI=S({pool_:VW});function GW(r,e){let t=v(r,"base","pow"),o=v(e,"exp","pow");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(zn,n)}var Ur=S({pow_:GW});function WW(r,e){let t=v(r,"x","prelu"),o=v(e,"alpha","prelu"),n={x:t,alpha:o};return E.runKernel(Bn,n)}var Ka=S({prelu_:WW});function UW(r,e=null,t=!1){let o=v(r,"x","prod");o.dtype==="bool"&&(o=ne(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return E.runKernel(Li,n,s)}var Rc=S({prod_:UW});function jW(r,e,t){let o=ut(r),n=null;if(t==null||t==="float32")n=new Float32Array(o);else if(t==="int32")n=new Int32Array(o);else if(t==="bool")n=new Uint8Array(o);else throw new Error(`Unknown data type ${t}`);for(let s=0;s<o;s++)n[s]=e();return E.makeTensor(n,r,t)}var Gxe=S({rand_:jW});var Rh=Au(qb());var Fc=class{constructor(e,t,o,n,s){this.mean=e,this.stdDev=t,this.dtype=o,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=Rh.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,o=!1;for(;!o;){let n,s,a;do n=2*this.random()-1,s=2*this.random()-1,a=n*n+s*s;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(o=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},Kb=class{constructor(e,t,o,n){this.alpha=e,this.beta=1/t,this.dtype=o;let s=n||Math.random();this.randu=Rh.alea(s.toString()),this.randn=new Fc(0,1,o,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,o,n,s,a;for(;;){do n=this.randn.nextValue(),a=1+this.c*n;while(a<=0);if(a*=a*a,e=n*n,t=1-.331*e*e,o=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<o)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},Xb=class{constructor(e=0,t=1,o,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=o,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Rh.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function JW(r,e,t=1,o="float32",n){if(t==null&&(t=1),o==null&&(o="float32"),o!=="float32"&&o!=="int32")throw new Error(`Unsupported data type ${o}`);let s=new Kb(e,t,o,n),a=_e(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var Jxe=S({randomGamma_:JW});function QW(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error(`Unsupported data type ${o}`);let s=new Fc(e,t,o,!1,n),a=_e(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var Yb=S({randomNormal_:QW});function e4(r,e=0,t=1,o="float32",n){let s=_e(r,o),a=new Xb(e,t,null,n);for(let i=0;i<s.values.length;i++)s.values[i]=a.nextValue();return s.toTensor()}var Us=S({randomUniform_:e4});function cm(r,e,t=1,o="float32"){if(t===0)throw new Error("Cannot have a step of zero");let n={start:r,stop:e,step:t,dtype:o};return E.runKernel($a,{},n)}function t4(r){let t={input:v(r,"input","real")};return E.runKernel(oc,t)}var zl=S({real_:t4});function r4(r){let t={x:v(r,"x","reciprocal")};return E.runKernel(zi,t)}var Fh=S({reciprocal_:r4});function o4(r){let t={x:v(r,"x","relu")};return E.runKernel(Vn,t)}var Dr=S({relu_:o4});function n4(r){let t={x:v(r,"x","relu6")};return E.runKernel(Wn,t)}var Oc=S({relu6_:n4});function s4(r,e){let o={x:v(r,"x","reverse")},n={dims:e};return E.runKernel(Un,o,n)}var Zt=S({reverse_:s4});function i4(r){let e=v(r,"x","reverse");return A(e.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),Zt(e,0)}var Bye=S({reverse1d_:i4});function a4(r,e){let t=v(r,"x","reverse");return A(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),Zt(t,e)}var Hye=S({reverse2d_:a4});function l4(r,e){let t=v(r,"x","reverse");return A(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),Zt(t,e)}var Jye=S({reverse3d_:l4});function u4(r,e){let t=v(r,"x","reverse");return A(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),Zt(t,e)}var nbe=S({reverse4d_:u4});function c4(r){let t={x:v(r,"x","round")};return E.runKernel(jn,t)}var Oh=S({round_:c4});function p4(r){let t={x:v(r,"x","rsqrt")};return E.runKernel(Hn,t)}var Pc=S({rsqrt_:p4});function le(r,e){if((or(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&or(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Br(r,[],[],e)}function m4(r){let t={x:v(r,"x","selu")};return E.runKernel(Vi,t)}var Mc=S({selu_:m4});function f4(r,e,t,o,n,s=[1,1],a="NHWC"){let i=v(r,"x","separableConv2d"),l=v(e,"depthwiseFilter","separableConv2d"),u=v(t,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),A(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=l.shape[2],f=l.shape[3];A(u.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${u.shape[2]}.`);let d=zs(c,l,o,n,a,s),g=oo(d,u,1,"valid",a);return p?L(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Ph=S({separableConv2d_:f4});async function d4(r,e){let t=v(r,"x","setdiff1d"),o=v(e,"y","setdiff1d");A(t.dtype===o.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${o.dtype}).`),A(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),A(o.rank===1,()=>`y should be 1D tensor, but got y (${o.shape}).`);let n=await t.data(),s=await o.data(),a=new Set(s),i=0;for(let c=0;c<n.length;c++)a.has(n[c])||i++;let l=new ct([i],t.dtype),u=new ct([i],"int32");for(let c=0,p=0;c<n.length;c++)a.has(n[c])||(l.values[p]=n[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var VI=d4;function h4(r){let t={x:v(r,"x","sign")};return E.runKernel(Wi,t)}var Mh=S({sign_:h4});function g4(r){let t={x:v(r,"x","sin")};return E.runKernel(Kn,t)}var Lc=S({sin_:g4});function x4(r){let t={x:v(r,"x","sinh")};return E.runKernel(Gi,t)}var zc=S({sinh_:x4});function y4(r,e,t){let o=v(r,"x","slice1d");return A(o.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${o.rank} tensor`),Re(o,[e],[t])}var Lh=S({slice1d_:y4});function b4(r,e,t){let o=v(r,"x","slice2d");return A(o.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var Zb=S({slice2d_:b4});function w4(r,e,t){let o=v(r,"x","slice3d");return A(o.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var zh=S({slice3d_:w4});function _4(r,e,t){let o=v(r,"x","slice4d");return A(o.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var pm=S({slice4d_:_4});function k4(r,e=-1){let t=v(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let o={logits:t},n={dim:e};return E.runKernel(Jn,o,n)}var Xa=S({softmax_:k4});function v4(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return E.runKernel(Ku,e)}var Ya=S({fft_:v4});function C4(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return E.runKernel(Xu,e)}var ra=S({ifft_:C4});function I4(r){let e=r.shape[r.shape.length-1],t=r.size/e,o;if(e<=2){let n=L(r,[t,e]);o=ra(n)}else{let n=[t,2*(e-1)],s=L(zl(r),[t,e]),a=L(Tc(r),[t,e]),i=Zt(Re(s,[0,1],[t,e-2]),1),l=P(Zt(Re(a,[0,1],[t,e-2]),1),le(-1)),u=Je([s,i],1),c=Je([a,l],1),p=L(So(u,c),[n[0],n[1]]);o=ra(p)}if(o=zl(o),r.rank===3&&r.shape[0]!==0){let n=o,s=r.shape[0];o=L(o,[s,o.shape[0]/s,o.shape[1]]),n.dispose()}return o}var Bc=S({irfft_:I4});function N4(r,e,t=0){let n={x:v(r,"x","split")},s={numOrSizeSplits:e,axis:t};return E.runKernel(Es,n,s)}var mr=S({split_:N4});function S4(r,e){A(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],o=r.size/t,n;if(e!=null&&e<t){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,n=Re(r,d,h),t=e}else if(e!=null&&e>t){let d=r.shape.map(h=>h);d[r.shape.length-1]=e-t,n=Je([r,wt(d)],r.shape.length-1),t=e}else n=r;let s=Ie(n),a=L(So(n,s),[o,t]),i=Ya(a),l=Math.floor(t/2)+1,u=zl(i),c=Tc(i),p=mr(u,[l,t-l],u.shape.length-1),m=mr(c,[l,t-l],c.shape.length-1),f=n.shape.slice();return f[n.shape.length-1]=l,L(So(p[0],m[0]),f)}var Za=S({rfft_:S4});function T4(r){let t={x:v(r,"x","sqrt")};return E.runKernel(Yn,t)}var _t=S({sqrt_:T4});function A4(r,e){let t=v(r,"a","squaredDifference"),o=v(e,"b","squaredDifference");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o},s={};return E.runKernel(Qn,n,s)}var Vc=S({squaredDifference_:A4});function E4(r,e){let t=v(r,"x","squeeze");return L(t,jy(t.shape,e).newShape)}var Eo=S({squeeze_:E4});function D4(r,e=0){let t=Xi(r,"tensors","stack","string_or_numeric");A(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&A(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let o=t,n={axis:e};return E.runKernel(Ss,o,n)}var Ut=S({stack_:D4});function $4(r,e=0){let o={x:v(r,"x","step")},n={alpha:e};return E.runKernel(Vo,o,n)}var js=S({step_:$4});function R4(r,e,t,o,n=0,s=0,a=0,i=0,l=0){let c={x:v(r,"x","stridedSlice")},p={begin:e,end:t,strides:o,beginMask:n,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:l};return E.runKernel(ji,c,p)}var Bh=S({stridedSlice_:R4});function F4(r){let t={x:v(r,"x","tan")};return E.runKernel(Hi,t)}var Vh=S({tan_:F4});function jt(r,e){Co(r);let t=Cr(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Br(r,null,t,e)}function oa(r,e,t){if(Co(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let o=Cr(r,t);if(o.length!==2&&o.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Br(r,e,o,t)}function rke(r,e,t){if(Co(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let o=Cr(r,t);if(o.length!==4&&o.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Br(r,e,o,t)}function ake(r,e,t){if(Co(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let o=Cr(r,t);if(o.length!==5&&o.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Br(r,e,o,t)}function mke(r,e,t){if(Co(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let o=Cr(r,t);if(o.length!==6&&o.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||o,Br(r,e,o,t)}function O4(r,e=1,t=!0){let o=v(r,"x","topk");if(o.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let n=o.shape[o.shape.length-1];if(e>n)throw new Error(`'k' passed to topk() must be <= the last dimension (${n}) but got ${e}`);let s={x:o},a={k:e,sorted:t},[i,l]=E.runKernel(qi,s,a);return{values:i,indices:l}}var Gh=S({topk_:O4});function P4(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Fc(e,t,o,!0,n),a=_e(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var Gc=S({truncatedNormal_:P4});function M4(r,e=0){let t=v(r,"x","unique","string_or_numeric");A(t.rank>0,()=>"The input tensor must be at least 1D");let o={x:t},n={axis:e},[s,a]=E.runKernel(lc,o,n);return{values:s,indices:a}}var mm=S({unique_:M4});function L4(r,e,t){let o=v(r,"x","unsortedSegmentSum"),n=v(e,"segmentIds","unsortedSegmentSum","int32");A(ot(t),()=>"numSegments must be of dtype int");let s={x:o,segmentIds:n},a={numSegments:t};return E.runKernel(Pa,s,a)}var Wh=S({unsortedSegmentSum_:L4});function z4(r,e=0){let t=v(r,"x","unstack","string_or_numeric");A(e>=-t.shape.length&&e<t.shape.length,()=>`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let o={value:t},n={axis:e};return E.runKernel(Ds,o,n)}var fr=S({unstack_:z4});function GI(r,e=!0,t,o){return E.makeVariable(r,e,t,o)}function Jb(r,e){let t=[];for(let s=0;s<e.length;s++)e[s]&&t.push(s);let o=_e(r,"int32"),n=_e([t.length,r.length],"int32");for(let s=0;s<t.length;s++){let a=o.indexToLoc(t[s]),i=s*r.length;n.values.set(a,i)}return n.toTensor()}async function B4(r){let e=v(r,"condition","whereAsync","bool"),t=await e.data(),o=Jb(e.shape,t);return r!==e&&e.dispose(),o}var Uh=B4;async function V4(r,e,t){let o=v(r,"tensor","boolMask"),n=v(e,"mask","boolMask","bool"),s=t==null?0:t,a=n.rank,i=o.shape;A(a>0,()=>"mask cannot be scalar"),vt(i.slice(s,s+a),n.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let h=s;h<s+a;h++)l*=i[h];let u=i.slice(0,s).concat([l],i.slice(s+a)),c=L(o,u),p=L(n,[-1]),m=await Uh(p),f=Eo(m,[1]),d=is(c,f,s);return r!==o&&o.dispose(),e!==n&&n.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var eve=V4;function G4(r,e="euclidean",t=null,o=!1){r=v(r,"x","norm");let n=WI(r,e,t),s=n.shape;if(o){let a=Qt(t,r.shape);s=Ho(n.shape,a)}return L(n,s)}function WI(r,e,t=null){if(r.rank===0)return Tt(r);if(r.rank!==1&&t===null)return WI(L(r,[-1]),e,t);if(r.rank===1||typeof t=="number"||Array.isArray(t)&&t.length===1){if(e===1)return ye(Tt(r),t);if(e===Infinity)return pr(Tt(r),t);if(e===-Infinity)return ta(Tt(r),t);if(e==="euclidean"||e===2)return _t(ye(Ur(Tt(r),le(2,"int32")),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}if(Array.isArray(t)&&t.length===2){if(e===1)return pr(ye(Tt(r),t[0]),t[1]-1);if(e===Infinity)return pr(ye(Tt(r),t[1]),t[0]);if(e===-Infinity)return ta(ye(Tt(r),t[1]),t[0]);if(e==="fro"||e==="euclidean")return _t(ye(Me(r),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}throw new Error(`Error in norm: invalid axis: ${t}`)}var Wc=S({norm_:G4});function W4(r,e,t,o,n=!0){let s=v(r,"v","movingAverage"),a=v(e,"x","movingAverage"),i=v(t,"decay","movingAverage");lb(s,a),A(zr(s.shape,a.shape),()=>"Shape mismatch in v and x");let l=le(1),u=pe(l,i),c=P(pe(a,s),u);if(n){A(o!=null,()=>"When using zeroDebias: true, step is required.");let p=v(o,"step","movingAverage");c=me(c,pe(l,Ur(i,p)))}return ee(s,c)}var Nve=S({movingAverage_:W4});function U4(r,e,t){let o=v(r,"indices","scatterND","int32"),n=v(e,"updates","scatterND");sh(n,o,t);let s={indices:o,updates:n},a={shape:t};return E.runKernel(Bi,s,a)}var UI=S({scatterND_:U4});function jI(r,e,t,o){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let n=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===n))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${n}]`);if(e.dtype!==o.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function j4(r,e,t,o=0){let n=v(r,"sparseIndices","sparseToDense","int32"),s=v(e,"sparseValues","sparseToDense"),a=v(o,"defaultValue","sparseToDense",s.dtype);jI(n,s,t,a);let i={sparseIndices:n,sparseValues:s,defaultValue:a},l={outputShape:t};return E.runKernel(ic,i,l)}var jh=S({sparseToDense_:j4});function H4(r,e){let t=v(e,"indices","gatherND","int32"),n={params:v(r,"x","gatherND"),indices:t};return E.runKernel(Ci,n)}var HI=S({gatherND_:H4});function qI(r,e){if(e==null)return r.shape.slice();if(zr(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let o=0;o<r.shape.length;o++)e[o]==null&&r.shape[o]!=null?t.push(r.shape[o]):t.push(e[o]);return t}return e}function q4(r,e,t,o){let n=v(r,"x","dropout");if(A(n.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${n.dtype} tensor instead.`),A(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof Ve?n.clone():n;let s=qI(n,t),a=1-e,i=me(Vs(ee(Us(s,0,1,"float32",o),a)),a);return P(n,i)}var KI=S({dropout_:q4});function XI(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function Hh(r,e,t){let o=1-r%2,n=new Float32Array(r);for(let s=0;s<r;++s){let a=2*Math.PI*s/(r+o-1);n[s]=e-t*Math.cos(a)}return jt(n,"float32")}async function K4(r,e,t=1){let o=v(r,"predictions","inTopK"),n=v(e,"targets","inTopK");A(o.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${o.rank}`),A(o.rank-1===n.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${o.rank} and targets rank ${n.rank}`),vt(o.shape.slice(0,o.shape.length-1),n.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=o.shape[o.shape.length-1];A(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await o.data(),i=await n.data(),[l,u]=[a.length/s,s],c=Hy("bool",l);for(let p=0;p<l;p++){let m=p*u,f=a.subarray(m,m+u),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<t;h++)if(d[h].index===i[p]){c[p]=1;break}}return r!==o&&o.dispose(),e!==n&&n.dispose(),Vr(c,n.shape,"bool")}var cCe=K4;var ls={};Ze(ls,{conv2d:()=>Z4,depthwiseConv2d:()=>tU,matMul:()=>oU});function X4(r,e,t,o,n,s="NHWC",a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]])),A(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];A(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),A(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),a!=null&&A(ot(n),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p={x:i,dy:l},m={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,filterShape:t};return E.runKernel(Bu,p,m)}var Uc=S({conv2DBackpropFilter_:X4});function Bl(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return P(r,js(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function Vl(r,e){let t=e,o=yt(r.shape,e.shape);return o.length>0&&(t=ye(t,o)),L(t,r.shape)}function Gl(r,e,t,o){if(e==="linear")return r;if(e==="relu")return Dr(r);if(e==="elu")return Bs(r);if(e==="relu6")return Oc(r);if(e==="prelu")return Ka(r,t);if(e==="leakyrelu")return Ua(r,o);throw new Error(`Unknown fused activation ${e}.`)}var Wl=(r,e)=>!(r>0)||e==="linear";function Y4({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Wl(E.state.gradientDepth,l)===!1){let k=oo(r,e,t,o,n,s,a);return i!=null&&(k=ee(k,i)),Gl(k,l,u,c)}let p=v(r,"x","conv2d"),m=v(e,"filter","conv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),a!=null&&A(ot(o),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),A(f.shape[3]===m.shape[2],()=>`Error in conv2d: depth of input (${f.shape[3]}) must match input depth for filter ${m.shape[2]}.`),A(wr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),A(n==="NHWC",()=>`Error in conv2d: got dataFormat of ${n} but only NHWC is currently supported.`);let h=Ol(f.shape,m.shape,t,s,o,a),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Ge(g,p),Be(h.outShape,g.shape));let y;u!=null&&(y=v(u,"prelu weights","fused conv2d"));let b=(k,D)=>{let[T,R,O,M]=D,G=Bl(k,O,l);A(To(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=Cc(R.shape,G,T,t,o),j=Uc(R,G,T.shape,t,o),H=[W,j];if(M!=null){let q=Vl(M,G);H.push(q)}return H},w={x:f,filter:m,bias:g,preluActivationWeights:y},_={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?no((D,T,R)=>{let O=E.runKernel(Fs,w,_);return R([T,D,O]),d&&(O=L(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:b}})(f,m):no((D,T,R,O)=>{let M=E.runKernel(Fs,w,_);return O([T,D,M,R]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var Z4=S({fusedConv2d_:Y4});function J4(r,e,t,o,n,s=[1,1],a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:l},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,filterShape:t};return E.runKernel(Uu,u,c)}var qh=S({depthwiseConv2dNativeBackpropFilter_:J4});function Q4(r,e,t,o,n,s=[1,1],a){let i=e,l=!1;e.rank===3&&(l=!0,i=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,inputShape:r},p=E.runKernel(ju,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Kh=S({depthwiseConv2dNativeBackpropInput_:Q4});function eU({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Wl(E.state.gradientDepth,l)===!1){let k=zs(r,e,t,o,n,s,a);return i!=null&&(k=ee(k,i)),Gl(k,l,u,c)}let p=v(r,"x","depthwiseConv2d"),m=v(e,"filter","depthwiseConv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),A(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),A(wr(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),a!=null&&A(ot(o),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${o}.`);let h=Ol(f.shape,m.shape,t,s,o,a,!0),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Ge(g,p),Be(h.outShape,g.shape));let y;u!=null&&(y=v(u,"prelu weights","fused depthwiseConv2d"));let b=(k,D)=>{A(To(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[T,R,O,M]=D,G=Bl(k,O,l),W=Kh(R.shape,G,T,t,o,s,a),j=qh(R,G,T.shape,t,o,s,a);if(M!=null){let H=Vl(g,G);return[W,j,H]}return[W,j]},w={x:f,filter:m,bias:g,preluActivationWeights:y},_={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?no((D,T,R)=>{let O=E.runKernel(Os,w,_);return R([T,D,O]),d&&(O=L(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:b}})(f,m):no((D,T,R,O)=>{let M=E.runKernel(Os,w,_);return O([T,D,M,R]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var tU=S({fusedDepthwiseConv2d_:eU});function rU({a:r,b:e,transposeA:t=!1,transposeB:o=!1,bias:n,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i}){if(Wl(E.state.gradientDepth,s)===!1){let M=Ue(r,e,t,o);return n!=null&&(M=ee(M,n)),Gl(M,s,a,i)}let l=v(r,"a","fused matMul"),u=v(e,"b","fused matMul");[l,u]=Ge(l,u);let c=t?l.shape[l.rank-2]:l.shape[l.rank-1],p=o?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?l.shape[l.rank-1]:l.shape[l.rank-2],f=o?u.shape[u.rank-2]:u.shape[u.rank-1],d=l.shape.slice(0,-2),h=u.shape.slice(0,-2),g=ut(d),y=ut(h);A(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),A(zr(d,h),()=>`Error in fused matMul: outer dimensions (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),A(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${t} and transposeB=${o} must match.`);let b=l.shape.slice(0,-2).concat([m,f]),w=t?L(l,[g,c,m]):L(l,[g,m,c]),_=o?L(u,[y,f,p]):L(u,[y,p,f]),k;n!=null&&(k=v(n,"bias","fused matMul"),[k]=Ge(k,l),Be(b,k.shape));let D;a!=null&&(D=v(a,"prelu weights","fused matMul"));let T=(M,G)=>{let[W,j,H,q]=G,X=Bl(L(M,H.shape),H,s),oe,Y;if(!t&&!o?(oe=Ue(X,j,!1,!0),Y=Ue(W,X,!0,!1)):!t&&o?(oe=Ue(X,j,!1,!1),Y=Ue(X,W,!0,!1)):t&&!o?(oe=Ue(j,X,!1,!0),Y=Ue(W,X,!1,!1)):(oe=Ue(j,X,!0,!0),Y=Ue(X,W,!0,!0)),n!=null){let re=Vl(q,X);return[oe,Y,re]}else return[oe,Y]},R={a:w,b:_,bias:k,preluActivationWeights:D},O={transposeA:t,transposeB:o,activation:s,leakyreluAlpha:i};return n==null?no((G,W,j)=>{let H=E.runKernel(Rs,R,O);return j([G,W,H]),{value:L(H,b),gradFunc:T}})(w,_):no((G,W,j,H)=>{let q=E.runKernel(Rs,R,O);return H([G,W,q,j]),{value:L(q,b),gradFunc:T}})(w,_,k)}var oU=S({fusedMatMul_:rU});function nU(r){return Hh(r,.54,.46)}var YI=S({hammingWindow_:nU});function sU(r){return Hh(r,.5,.5)}var Xh=S({hannWindow_:sU});function iU(r,e,t,o=!1,n=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Re(r,s,e)),s+=t;if(o)for(;s<r.size;){let i=s+e-r.size,l=Je([Re(r,s,e-i),Wa([i],n)]);a.push(l),s+=t}return a.length===0?oa([],[0,e]):L(Je(a),[a.length,e])}var Yh=S({frame_:iU});function aU(r,e,t,o,n=Xh){o==null&&(o=XI(e));let s=Yh(r,e,t),a=P(s,n(e)),i=[];for(let l=0;l<s.shape[0];l++)i.push(Za(Re(a,[l,0],[1,e]),o));return Je(i)}var ZI=S({stft_:aU});function lU(r,e,t,o,n="bilinear",s=0){let a=v(r,"image","cropAndResize"),i=v(e,"boxes","cropAndResize","float32"),l=v(t,"boxInd","cropAndResize","int32"),u=i.shape[0];A(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),A(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),A(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),A(o.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${o.length}.`),A(o[0]>=1&&o[1]>=1,()=>`cropSize must be atleast [1,1], but was ${o}`),A(n==="bilinear"||n==="nearest",()=>`method must be bilinear or nearest, but was ${n}`);let c={image:a,boxes:i,boxInd:l},p={method:n,extrapolationValue:s,cropSize:o};return E.runKernel(xi,c,p)}var JI=S({cropAndResize_:lU});function uU(r){let e=v(r,"image","flipLeftRight","float32");A(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return E.runKernel(vi,t,{})}var QI=S({flipLeftRight_:uU});function cU(r,e,t=0,o=.5){let n=v(r,"image","rotateWithOffset","float32");A(n.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${n.rank}.`);let s={image:n},a={radians:e,fillValue:t,center:o};return E.runKernel(Ki,s,a)}var eN=S({rotateWithOffset_:cU});function qo(r,e,t,o,n,s){o==null&&(o=.5),n==null&&(n=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),A(0<=o&&o<=1,()=>`iouThreshold must be in [0, 1], but was '${o}'`),A(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),A(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),A(e.rank===1,()=>"scores must be a 1D tensor"),A(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s}}function pU(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppression"),a=v(e,"scores","nonMaxSuppression"),i=qo(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l={maxOutputSize:t,iouThreshold:o,scoreThreshold:n};return E.runKernel(Oi,{boxes:s,scores:a},l)}var tN=S({nonMaxSuppression_:pU});function rN(r,e,t){let o=mU(r,e,t),n=o<0?-(o+1):o;r.splice(n,0,e)}function mU(r,e,t){return dU(r,e,t||fU)}function fU(r,e){return r>e?1:r<e?-1:0}function dU(r,e,t){let o=0,n=r.length,s=0,a=!1;for(;o<n;){s=o+(n-o>>>1);let i=t(e,r[s]);i>0?o=s+1:(n=s,a=!i)}return a?o:-o-1}function ew(r,e,t,o,n){return Qb(r,e,t,o,n,0)}function tw(r,e,t,o,n,s){return Qb(r,e,t,o,n,0,!1,s,!0)}function rw(r,e,t,o,n,s){return Qb(r,e,t,o,n,s,!0)}function Qb(r,e,t,o,n,s,a=!1,i=!1,l=!1){let u=[];for(let g=0;g<e.length;g++)e[g]>n&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(oN);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<t&&u.length>0;){let g=u.pop(),{score:y,boxIndex:b,suppressBeginIndex:w}=g;if(y<n)break;let _=!1;for(let k=p.length-1;k>=w;--k){let D=hU(r,b,p[k]);if(D>=o){_=!0;break}if(g.score=g.score*gU(o,c,D),g.score<=n)break}g.suppressBeginIndex=p.length,_||(g.score===y?(p.push(b),m.push(g.score)):g.score>n&&rN(u,g,oN))}let f=p.length,d=t-f;i&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return a&&(h.selectedScores=m),l&&(h.validOutputs=f),h}function hU(r,e,t){let o=r.subarray(e*4,e*4+4),n=r.subarray(t*4,t*4+4),s=Math.min(o[0],o[2]),a=Math.min(o[1],o[3]),i=Math.max(o[0],o[2]),l=Math.max(o[1],o[3]),u=Math.min(n[0],n[2]),c=Math.min(n[1],n[3]),p=Math.max(n[0],n[2]),m=Math.max(n[1],n[3]),f=(i-s)*(l-a),d=(p-u)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),y=Math.min(i,p),b=Math.min(l,m),w=Math.max(y-h,0)*Math.max(b-g,0);return w/(f+d-w)}function gU(r,e,t){let o=Math.exp(e*t*t);return t<=r?o:0}function oN(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function xU(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppressionAsync"),a=v(e,"scores","nonMaxSuppressionAsync"),i=qo(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l=await Promise.all([s.data(),a.data()]),u=l[0],c=l[1],{selectedIndices:p}=ew(u,c,t,o,n);return s!==r&&s.dispose(),a!==e&&a.dispose(),jt(p,"int32")}var nN=xU;function yU(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=qo(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s},p=E.runKernel(Mi,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var sN=S({nonMaxSuppressionWithScore_:yU});async function bU(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=qo(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:m,selectedScores:f}=rw(c,p,t,o,n,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:jt(m,"int32"),selectedScores:jt(f)}}var iN=bU;function wU(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=qo(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,m={boxes:a,scores:i},f={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=E.runKernel(Pi,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var aN=S({nonMaxSuppressionPadded_:wU});async function _U(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=qo(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[m,f]=await Promise.all([a.data(),i.data()]),{selectedIndices:d,validOutputs:h}=tw(m,f,u,c,p,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:jt(d,"int32"),validOutputs:le(h,"int32")}}var lN=_U;function kU(r,e,t=!1,o=!1){let n=v(r,"images","resizeBilinear");A(n.rank===3||n.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${n.rank}.`),A(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),A(o===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=E.runKernel(Gn,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Zh=S({resizeBilinear_:kU});function vU(r,e,t=!1,o=!1){let n=v(r,"images","resizeNearestNeighbor");A(n.rank===3||n.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${n.rank}.`),A(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),A(n.dtype==="float32"||n.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(o===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=E.runKernel(Ra,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Jh=S({resizeNearestNeighbor_:vU});function CU(r,e,t="nearest",o="constant",n=0,s){let a=v(r,"image","transform","float32"),i=v(e,"transforms","transform","float32");A(a.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${a.rank}.`),A(i.rank===2&&(i.shape[0]===a.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),A(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:a,transforms:i},u={interpolation:t,fillMode:o,fillValue:n,outputShape:s};return E.runKernel(ac,l,u)}var uN=S({transform_:CU});function IU(r,e,t){A(e%1==0,()=>`bandPart(): numLower must be an integer, got ${e}.`),A(t%1==0,()=>`bandPart(): numUpper must be an integer, got ${t}.`);let o=v(r,"a","bandPart");A(o.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${o.rank}.`);let n=o.shape,[s,a]=o.shape.slice(-2);if(!(e<=s))throw new Error(`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`);if(!(t<=a))throw new Error(`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`);e<0&&(e=s),t<0&&(t=a);let i=L(cm(0,s,1,"int32"),[-1,1]),l=cm(0,a,1,"int32"),u=pe(i,l),c=_r(jo(u,le(+e,"int32")),yo(u,le(-t,"int32"))),p=wt([s,a],o.dtype);return L(Ut(fr(L(o,[-1,s,a])).map(m=>$t(c,m,p))),n)}var cN=S({bandPart_:IU});function NU(r){let e;if(Array.isArray(r)){e=!1,A(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let n=r[0].shape[0];for(let s=1;s<r.length;++s)A(r[s].shape[0]===n,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${n})`)}else e=!0,r=mr(r,r.shape[0],0).map(n=>Eo(n,[0]));A(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],o=r;for(let n=0;n<r.length;++n)t.push(E.tidy(()=>{let s=o[n];if(n>0)for(let a=0;a<n;++a){let i=P(ye(P(t[a],s)),t[a]);s=pe(s,i)}return me(s,Wc(s,"euclidean"))}));return e?Ut(t,0):t}var pN=S({gramSchmidt_:NU});function SU(r,e=!1){if(A(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return mN(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((l,u)=>l*u),o=fr(L(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),n=[],s=[];o.forEach(l=>{let[u,c]=mN(l,e);n.push(u),s.push(c)});let a=L(Ut(n,0),r.shape),i=L(Ut(s,0),r.shape);return[a,i]}}function mN(r,e=!1){return E.tidy(()=>{A(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],o=r.shape[1],n=am(t),s=Go(r),a=oa([[1]],[1,1]),i=Go(a),l=t>=o?o:t;for(let u=0;u<l;++u){let c=s,p=i,m=n;[i,s,n]=E.tidy(()=>{let f=Re(s,[u,u],[t-u,1]),d=Wc(f),h=Re(s,[u,u],[1,1]),g=$t(nr(h,0),oa([[-1]]),oa([[1]])),y=pe(h,P(g,d)),b=me(f,y);b.shape[0]===1?i=Go(a):i=Je([a,Re(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=qe(me(Ue(g,y),d)),_=Re(s,[u,0],[t-u,o]),k=P(w,i),D=He(i);if(u===0)s=pe(_,Ue(k,Ue(D,_)));else{let O=pe(_,Ue(k,Ue(D,_)));s=Je([Re(s,[0,0],[u,o]),O],0)}let T=He(k),R=Re(n,[0,u],[t,n.shape[1]-u]);if(u===0)n=pe(R,Ue(Ue(R,i),T));else{let O=pe(R,Ue(Ue(R,i),T));n=Je([Re(n,[0,0],[t,u]),O],1)}return[i,s,n]}),Te([c,p,m])}return!e&&t>o&&(n=Re(n,[0,0],[t,o]),s=Re(s,[0,0],[o,o])),[n,s]})}var fN=S({qr_:SU});var Ht;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Ht||(Ht={}));function TU(r,e,t=Ht.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"losses","computeWeightedLoss"),n=null;e!=null&&(n=v(e,"weights","computeWeightedLoss"));let s=n==null?o:P(o,n);if(t===Ht.NONE)return s;if(t===Ht.SUM)return ye(s);if(t===Ht.MEAN){if(n==null)return bt(s);{let a=o.size/n.size,i=me(ye(s),ye(n));return a>1?me(i,le(a)):i}}if(t===Ht.SUM_BY_NONZERO_WEIGHTS){if(n==null)return me(ye(s),le(o.size));{let a=P(n,Er(o.shape)),i=ne(ye(as(a,le(0))),"float32");return me(ye(s),i)}}throw Error(`Unknown reduction: ${t}`)}var Ir=S({computeWeightedLoss_:TU});function AU(r,e,t,o=Ht.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","absoluteDifference"),s=v(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=v(t,"weights","absoluteDifference")),vt(n.shape,s.shape,"Error in absoluteDifference: ");let i=Tt(pe(n,s));return Ir(i,a,o)}var dN=S({absoluteDifference_:AU});function EU(r,e,t,o,n=Ht.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","cosineDistance"),a=v(e,"predictions","cosineDistance"),i=null;o!=null&&(i=v(o,"weights","cosineDistance")),vt(s.shape,a.shape,"Error in cosineDistance: ");let l=le(1),u=pe(l,ye(P(s,a),t,!0));return Ir(u,i,n)}var hN=S({cosineDistance_:EU});function DU(r,e,t,o=Ht.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","hingeLoss"),s=v(e,"predictions","hingeLoss"),a=null;t!=null&&(a=v(t,"weights","hingeLoss")),vt(n.shape,s.shape,"Error in hingeLoss: ");let i=le(1);n=pe(P(le(2),n),i);let l=Dr(pe(i,P(n,s)));return Ir(l,a,o)}var gN=S({hingeLoss_:DU});function $U(r,e,t,o=1,n=Ht.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","huberLoss"),a=v(e,"predictions","huberLoss"),i=null;t!=null&&(i=v(t,"weights","huberLoss")),vt(s.shape,a.shape,"Error in huberLoss: ");let l=le(o),u=Tt(pe(a,s)),c=Ws(u,l),p=pe(u,c),m=ee(P(le(.5),Me(c)),P(l,p));return Ir(m,i,n)}var xN=S({huberLoss_:$U});function RU(r,e,t,o=1e-7,n=Ht.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","logLoss"),a=v(e,"predictions","logLoss"),i=null;t!=null&&(i=v(t,"weights","logLoss")),vt(s.shape,a.shape,"Error in logLoss: ");let l=le(1),u=le(o),c=qe(P(s,cr(ee(a,u)))),p=P(pe(l,s),cr(ee(pe(l,a),u))),m=pe(c,p);return Ir(m,i,n)}var yN=S({logLoss_:RU});function FU(r,e,t,o=Ht.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","meanSquaredError"),s=v(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=v(t,"weights","meanSquaredError")),vt(n.shape,s.shape,"Error in meanSquaredError: ");let i=Vc(n,s);return Ir(i,a,o)}var bN=S({meanSquaredError_:FU});function OU(r,e){let t=v(r,"labels","sigmoidCrossEntropyWithLogits"),o=v(e,"logits","sigmoidCrossEntropyWithLogits");vt(t.shape,o.shape,"Error in sigmoidCrossEntropyWithLogits: ");let n=Dr(o),s=P(o,t),a=Ec(er(qe(Tt(o))));return ee(pe(n,s),a)}function PU(r,e,t,o=0,n=Ht.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"multiClassLabels","sigmoidCrossEntropy"),a=v(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","sigmoidCrossEntropy")),vt(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),o>0){let u=le(o),c=le(1),p=le(.5);s=ee(P(s,pe(c,u)),P(p,u))}let l=OU(s,a);return Ir(l,i,n)}var wN=S({sigmoidCrossEntropy_:PU});function MU(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return no((n,s,a)=>{let l=Th(s,[t],!0),u=pe(ne(s,"float32"),l);a([n,u]);let c=qe(P(u,n));return{value:ye(c,[t]),gradFunc:(f,d)=>{let[h,g]=d,y=Ho(f.shape,[t]);return[P(L(f,y),pe(ne(h,"float32"),er(g))),P(L(f,y),pe(er(g),ne(h,"float32")))]}}})(r,e)}function LU(r,e,t,o=0,n=Ht.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"onehotLabels","softmaxCrossEntropy"),a=v(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","softmaxCrossEntropy")),vt(s.shape,a.shape,"Error in softmaxCrossEntropy: "),o>0){let u=le(o),c=le(1),p=le(s.shape[1]);s=ee(P(s,pe(c,u)),me(u,p))}let l=MU(s,a);return Ir(l,i,n)}var _N=S({softmaxCrossEntropy_:LU});var oAe={fft:Ya,ifft:ra,rfft:Za,irfft:Bc},nAe={hammingWindow:YI,hannWindow:Xh,frame:Yh,stft:ZI},Hs={flipLeftRight:QI,resizeNearestNeighbor:Jh,resizeBilinear:Zh,rotateWithOffset:eN,cropAndResize:JI,nonMaxSuppression:tN,nonMaxSuppressionAsync:nN,nonMaxSuppressionWithScore:sN,nonMaxSuppressionWithScoreAsync:iN,nonMaxSuppressionPadded:aN,nonMaxSuppressionPaddedAsync:lN,transform:uN},kN={bandPart:cN,gramSchmidt:pN,qr:fN},sAe={absoluteDifference:dN,computeWeightedLoss:Ir,cosineDistance:hN,hingeLoss:gN,huberLoss:xN,logLoss:yN,meanSquaredError:bN,sigmoidCrossEntropy:wN,softmaxCrossEntropy:_N};var jr=class extends ah{minimize(e,t=!1,o){let{value:n,grads:s}=this.computeGradients(e,o);if(o!=null){let a=o.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Te(s),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Pb(e,t)}dispose(){this.iterations_!=null&&Te(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:le(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(jr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var fm=class extends jr{constructor(e,t,o=null){super();this.learningRate=e,this.rho=t,this.epsilon=o,this.accumulatedGrads=[],this.accumulatedUpdates=[],o==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${o}/accum_grad`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${o}/accum_var`,variable:V(()=>Ie(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedGrads[n].variable,u=this.accumulatedUpdates[n].variable;V(()=>{let c=ee(P(l,this.rho),P(Me(i),1-this.rho)),p=P(me(_t(ee(u,this.epsilon)),_t(ee(l,this.epsilon))),i),m=ee(P(u,this.rho),P(Me(p),1-this.rho));l.assign(c),u.assign(m);let f=ee(P(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Te(this.accumulatedGrads.map(e=>e.variable)),Te(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,o=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};fm.className="Adadelta";to(fm);var dm=class extends jr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o];if(this.accumulatedGrads[n]==null){let l=!1;this.accumulatedGrads[n]={originalName:`${o}/accumulator`,variable:V(()=>Wa(s.shape,this.initialAccumulatorValue).variable(l))}}let a=Array.isArray(e)?e[n].tensor:e[o];if(a==null)return;let i=this.accumulatedGrads[n].variable;V(()=>{let l=ee(i,Me(a));i.assign(l);let u=ee(P(me(a,_t(ee(l,E.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Te(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};dm.className="Adagrad";to(dm);var hm=class extends jr{constructor(e,t,o,n=null){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=le(t).variable(),this.accBeta2=le(o).variable()}),n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);V(()=>{let o=pe(1,this.accBeta1),n=pe(1,this.accBeta2);t.forEach((s,a)=>{let i=E.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:V(()=>Ie(i).variable(l))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:V(()=>Ie(i).variable(l))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedSecondMoment[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=ee(P(p,this.beta2),P(Me(u),1-this.beta2)),d=me(m,o),h=me(f,n);c.assign(m),p.assign(f);let g=ee(P(me(d,ee(_t(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Te(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(Ur(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ur(this.beta2,this.iterations_+1))});let t=e.length/2,o=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};hm.className="Adam";to(hm);var gm=class extends jr{constructor(e,t,o,n=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=le(0).variable(),this.accBeta1=le(t).variable()}),n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);V(()=>{let o=pe(1,this.accBeta1),n=me(-this.learningRate,ee(P(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=E.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ie(i).variable(l)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ie(i).variable(l)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedWeightedInfNorm[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=P(p,this.beta2),d=Tt(u),h=so(f,d);c.assign(m),p.assign(h);let g=ee(P(me(n,o),me(m,ee(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(ee(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Te(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};gm.className="Adamax";to(gm);var Ul=class extends jr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=Array.isArray(e)?e[n].tensor:e[o];if(s==null)return;let a=E.registeredVariables[o];V(()=>{let i=ee(P(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Et(le(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Ul.className="SGD";to(Ul);var xm=class extends Ul{constructor(e,t,o=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=o,this.accumulations=[],this.m=le(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o];if(this.accumulations[n]==null){let l=!1;this.accumulations[n]={originalName:`${o}/momentum`,variable:V(()=>Ie(s).variable(l))}}let a=this.accumulations[n].variable,i=Array.isArray(e)?e[n].tensor:e[o];i!=null&&V(()=>{let l,u=ee(P(this.m,a),i);this.useNesterov?l=ee(P(this.c,ee(i,P(u,this.m))),s):l=ee(P(this.c,u),s),a.assign(u),s.assign(l)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Te(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};xm.className="Momentum";to(xm);var ym=class extends jr{constructor(e,t=.9,o=0,n=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=o,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,n==null&&(this.epsilon=E.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${o}/rms`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${o}/momentum`,variable:V(()=>Ie(s).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${o}/mg`,variable:V(()=>Ie(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedMeanSquares[n].variable,u=this.accumulatedMoments[n].variable;V(()=>{let c=ee(P(l,this.decay),P(Me(i),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[n].variable,m=ee(P(p,this.decay),P(i,1-this.decay)),f=me(P(i,this.learningRate),_t(pe(c,ee(Me(m),this.epsilon)))),d=ee(P(u,this.momentum),f);l.assign(c),p.assign(m),u.assign(d);let h=pe(s,d);s.assign(h)}else{let p=ee(P(l,this.decay),P(Me(i),1-this.decay)),m=ee(P(u,this.momentum),me(P(i,this.learningRate),_t(ee(p,this.epsilon))));l.assign(p),u.assign(m);let f=pe(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Te(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Te(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Te(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,o=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ym.className="RMSProp";to(ym);var na=class{static sgd(e){return new Ul(e)}static momentum(e,t,o=!1){return new xm(e,t,o)}static rmsprop(e,t=.9,o=0,n=null,s=!1){return new ym(e,t,o,n,s)}static adam(e=.001,t=.9,o=.999,n=null){return new hm(e,t,o,n)}static adadelta(e=.001,t=.95,o=null){return new fm(e,t,o)}static adamax(e=.002,t=.9,o=.999,n=null,s=0){return new gm(e,t,o,n,s)}static adagrad(e,t=.1){return new dm(e,t)}};var jl={sgd:na.sgd,momentum:na.momentum,adadelta:na.adadelta,adagrad:na.adagrad,rmsprop:na.rmsprop,adamax:na.adamax,adam:na.adam};var zU=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function Qh(){return new Promise(r=>zU(()=>r()))}var I={};Ze(I,{ERF_A1:()=>YU,ERF_A2:()=>ZU,ERF_A3:()=>JU,ERF_A4:()=>QU,ERF_A5:()=>ej,ERF_P:()=>XU,PARALLELIZE_THRESHOLD:()=>eg,SELU_SCALE:()=>nw,SELU_SCALEALPHA:()=>ow,applyActivation:()=>Gl,assertAndGetBroadcastShape:()=>Be,assertAxesAreInnerMostDims:()=>cW,assertParamsConsistent:()=>BU,assignToTypedArray:()=>lj,axesAreInnerMostDims:()=>Mb,calculateShapes:()=>G0,combineLocations:()=>kI,complexWithEvenIndex:()=>sj,complexWithOddIndex:()=>ij,computeConv2DInfo:()=>Ol,computeConv3DInfo:()=>sI,computeDefaultPad:()=>Ob,computeDilation2DInfo:()=>GV,computeOptimalWindowSize:()=>GU,computeOutAndReduceShapes:()=>Lb,computeOutShape:()=>VU,computePool2DInfo:()=>Rb,computePool3DInfo:()=>WV,convertConv2DDataFormat:()=>nI,eitherStridesOrDilationsAreOne:()=>wr,expandShapeToKeepDim:()=>Ho,exponent:()=>cj,exponents:()=>uj,fromStringArrayToUint8:()=>gj,fromUint8ToStringArray:()=>hj,getAxesPermutation:()=>zb,getBroadcastDims:()=>EG,getComplexWithIndex:()=>aj,getFusedBiasGradient:()=>Vl,getFusedDyActivation:()=>Bl,getImageCenter:()=>WU,getInnerMostAxes:()=>pW,getPermuted:()=>jU,getReductionAxes:()=>yt,getReshaped:()=>UU,getReshapedPermuted:()=>HU,getSliceBeginCoords:()=>qU,getSliceSize:()=>KU,getUndoAxesPermutation:()=>lm,log:()=>rj,mergeRealAndImagArrays:()=>oj,prepareAndValidate:()=>V0,prepareSplitSize:()=>pj,segment_util:()=>vN,shouldFuse:()=>Wl,slice_util:()=>Yt,splitRealAndImagArrays:()=>nj,tupleValuesAreOne:()=>To,upcastType:()=>br,validateInput:()=>sh,validateUpdateShape:()=>Sb,warn:()=>tj});function BU(r,e){let t=r[0].length;r.forEach((n,s)=>{A(n.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),A(e>=0&&e<t,()=>`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let o=r[0];r.forEach((n,s)=>{for(let a=0;a<t;a++)A(a===e||n[a]===o[a],()=>`Error in concat${t}D: Shape of tensors[${s}] (${n}) does not match the shape of the rest (${o}) along the non-concatenated axis ${s}.`)})}function VU(r,e){let t=r[0].slice();for(let o=1;o<r.length;o++)t[e]+=r[o][e];return t}var eg=30;function GU(r){return r<=eg?r:$u(r,Math.floor(Math.sqrt(r)))}function WU(r,e,t){let o=t*(typeof r=="number"?r:r[0]),n=e*(typeof r=="number"?r:r[1]);return[o,n]}function UU(r,e,t,o=!0){let n=[];if(o)n=n.concat(e.slice(0)),n.push(r[0]/t),n=n.concat(r.slice(1));else{n=n.concat(r[0]);let s=e.length;for(let a=0;a<s;++a)n=n.concat([r[a+1]/e[a],e[a]]);n=n.concat(r.slice(s+1))}return n}function jU(r,e,t=!0){let o=[];if(t){o.push(e);for(let n=e+1;n<r;++n)n<=2*e?(o.push(n),o.push(n-(e+1))):o.push(n)}else{let n=[],s=[];for(let a=1;a<r;++a)a>=e*2+1||a%2==1?s.push(a):n.push(a);o.push(...n),o.push(0),o.push(...s)}return o}function HU(r,e,t,o=!0){let n=[];o?n.push(r[0]/t):n.push(r[0]*t);for(let s=1;s<r.length;++s)s<=e.length?o?n.push(e[s-1]*r[s]):n.push(r[s]/e[s-1]):n.push(r[s]);return n}function qU(r,e){let t=[0];for(let o=0;o<e;++o)t.push(r[o][0]);return t}function KU(r,e,t){let o=r.slice(0,1);for(let n=0;n<t;++n)o.push(r[n+1]-e[n][0]-e[n][1]);return o}var ow=1.7580993408473768,nw=1.0507009873554805;var XU=.3275911,YU=.254829592,ZU=-.284496736,JU=1.421413741,QU=-1.453152027,ej=1.061405429;function tj(...r){U().getBool("IS_TEST")||console.warn(...r)}function rj(...r){U().getBool("IS_TEST")||console.log(...r)}function oj(r,e){if(r.length!==e.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${e.length}.`);let t=new Float32Array(r.length*2);for(let o=0;o<t.length;o+=2)t[o]=r[o/2],t[o+1]=e[o/2];return t}function nj(r){let e=new Float32Array(r.length/2),t=new Float32Array(r.length/2);for(let o=0;o<r.length;o+=2)e[o/2]=r[o],t[o/2]=r[o+1];return{real:e,imag:t}}function sj(r){let e=Math.ceil(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=0;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function ij(r){let e=Math.floor(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=2;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function aj(r,e){let t=r[e*2],o=r[e*2+1];return{real:t,imag:o}}function lj(r,e,t,o){r[o*2]=e,r[o*2+1]=t}function uj(r,e){let t=new Float32Array(r/2),o=new Float32Array(r/2);for(let n=0;n<Math.ceil(r/2);n++){let s=(e?2:-2)*Math.PI*(n/r);t[n]=Math.cos(s),o[n]=Math.sin(s)}return{real:t,imag:o}}function cj(r,e,t){let o=(t?2:-2)*Math.PI*(r/e),n=Math.cos(o),s=Math.sin(o);return{real:n,imag:s}}function pj(r,e,t=0){let o=[];if(typeof e=="number")A(r.shape[t]%e==0,()=>"Number of splits must evenly divide the axis."),o=new Array(e).fill(r.shape[t]/e);else{let n=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);A(n<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,l)=>l>0?i+l:i);e[s]=r.shape[t]-a}A(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),o=e}return o}var vN={};Ze(vN,{collectGatherOpShapeInfo:()=>dj,computeOutShape:()=>fj,segOpComputeOptimalWindowSize:()=>mj});function mj(r,e){let t=!1,o;for(r<=eg?(o=r,t=!0):o=$u(r,Math.floor(Math.sqrt(r)));!t;)o>e||o===r?t=!0:o=$u(r,o+1);return o}function fj(r,e,t){let o=[],n=r.length;for(let s=0;s<n;s++)s!==e?o.push(r[s]):o.push(t);return o}function dj(r,e,t,o){let n=e.shape.length,s=r.shape.length;if(o!==0&&(o<-n||o>n))throw new Error(`Expect batchDims in the range of [-${n}, ${n}], but got ${o}`);if(o<0&&(o+=n),o>s)throw new Error(`batchDims (${o}) must be less than rank(x) (
${s}).`);if(t<o)throw new Error(`batchDims (${o}) must be less than or equal to axis (${t}).`);for(let p=0;p<o;++p)if(r.shape[p]!==e.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${e.shape[p]}.`);let a=r.shape[t],i=[],l=1,u=1,c=1;for(let p=0;p<o;++p)i.push(r.shape[p]),l*=r.shape[p];for(let p=o;p<t;p++)i.push(r.shape[p]),u*=r.shape[p];for(let p=o;p<n;p++)i.push(e.shape[p]);for(let p=t+1;p<s;p++)i.push(r.shape[p]),c*=r.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:a,outputShape:i}}function hj(r){try{return r.map(e=>pc(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function gj(r){return r.map(e=>Ma(e))}var $r={};Ze($r,{nonMaxSuppressionV3Impl:()=>ew,nonMaxSuppressionV4Impl:()=>tw,nonMaxSuppressionV5Impl:()=>rw,whereImpl:()=>Jb});var tg={kernelName:_s,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,js(ne(t,"float32"),-1))}}};var CN={kernelName:ui,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=Me(ne(t,"float32")),n=_t(pe(le(1),o));return qe(me(r,n))}}}};var IN={kernelName:ci,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=_t(pe(Me(ne(t,"float32")),1));return me(r,o)}}}};var NN={kernelName:Io,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=r,l=yt(t.shape,n);return l.length>0&&(i=ye(i,l)),L(i,t.shape)},b:()=>{let i=r,l=yt(o.shape,n);return l.length>0&&(i=ye(i,l)),L(i,o.shape)}}}};var SN={kernelName:mn,saveAllInputs:!0,gradFunc:(r,e)=>{let t={};return e.forEach((o,n)=>{t[n]=()=>r.clone()}),t}};var TN={kernelName:fn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ie(t)}}};var AN={kernelName:ka,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ie(t)}}};var EN={kernelName:pi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,_t(pe(le(1),Me(ne(t,"float32")))))}}};var DN={kernelName:mi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=_t(ee(le(1),Me(ne(t,"float32"))));return me(r,o)}}}};var $N={kernelName:hi,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=ee(Me(t),Me(o)),l=P(r,me(o,i)),u=yt(t.shape,n);return u.length>0&&(l=ye(l,u)),L(l,t.shape)},b:()=>{let i=ee(Me(t),Me(o)),l=qe(P(r,me(t,i))),u=yt(o.shape,n);return u.length>0&&(l=ye(l,u)),L(l,o.shape)}}}};var RN={kernelName:fi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(Me(ne(t,"float32")),1))}}};var FN={kernelName:di,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,pe(le(1),Me(ne(t,"float32"))))}}};function xj(r,e,t,o,n,s){let a=v(r,"dy","avgPool3dGrad"),i=v(e,"input","avgPool3dGrad"),l=a,u=i,c=!1;i.rank===4&&(c=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),u=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&A(ot(n),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${n}.`);let p={dy:l,input:u},m={filterSize:t,strides:o,pad:n,dimRoundingMode:s},f=E.runKernel(Mu,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var ON=S({avgPool3dGrad_:xj});var PN={kernelName:va,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a,dimRoundingMode:i}=t;return{x:()=>ON(r,o,n,s,a,i)}}};function yj(r,e,t,o,n){let s=v(r,"dy","avgPoolGrad"),a=v(e,"input","avgPoolGrad");A(a.rank===s.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${s.rank})`);let i=a,l=s,u=!1;a.rank===3&&(u=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),l=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:t,strides:o,pad:n},m=E.runKernel(Pu,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var MN=S({avgPoolGrad_:yj});var LN={kernelName:dn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a}=t;return{x:()=>MN(r,o,n,s,a)}}};var zN={kernelName:hn,inputsToSave:["a","b"],gradFunc:(r,e,t)=>{let[o,n]=e,{transposeA:s,transposeB:a}=t;return!s&&!a?{a:()=>Ue(r,n,!1,!0),b:()=>Ue(o,r,!0,!1)}:!s&&a?{a:()=>Ue(r,n,!1,!1),b:()=>Ue(r,o,!0,!1)}:s&&!a?{a:()=>Ue(n,r,!1,!0),b:()=>Ue(o,r,!1,!1)}:{a:()=>Ue(n,r,!0,!0),b:()=>Ue(r,o,!0,!0)}}};var BN={kernelName:Ca,gradFunc:(r,e,t)=>{let{blockShape:o,crops:n}=t;return{x:()=>qa(r,o,n)}}};var VN={kernelName:HC,gradFunc:(r,e,t)=>{let o=t,n=o.inputShape,s=o.shape,a=Array.from(s);for(let l=n.length-1;l>=0;l--)if(n[l]===s[l])a[l]=1;else if(n[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${s}].`);let i=[];for(let l=0;l<a.length;l++)a[l]>1&&i.push(l);return{x:()=>ye(r,i,!0)}}};var GN={kernelName:Lo,gradFunc:r=>({x:()=>r.clone()})};var WN={kernelName:gn,gradFunc:r=>({x:()=>Ie(r)})};var UN={kernelName:zo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{clipValueMin:n,clipValueMax:s}=t;return{x:()=>$t(_r(yo(o,n),jo(o,s)),r,Ie(r))}}};var jN={kernelName:Ia,inputsToSave:["x"],gradFunc:tg.gradFunc};var HN={kernelName:ks,saveAllInputs:!0,gradFunc:(r,e,t)=>{let o=e.map(l=>l.shape),{axis:n}=t,s=Qt(n,e[0].shape)[0],a=o.map(l=>l[s]);return mr(r,a,s).map(l=>()=>l)}};var qN={kernelName:xn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{dilations:s,strides:a,pad:i,dataFormat:l}=t;return A(To(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Cc(o.shape,r,n,a,i,l),filter:()=>Uc(o,r,n.shape,a,i,l)}}};var KN={kernelName:yn,inputsToSave:["dy","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{strides:s,pad:a,dataFormat:i,dimRoundingMode:l}=t;return{dy:()=>oo(r,n,s,a,i,1,l),filter:()=>Uc(r,o,n.shape,s,a,i,l)}}};function bj(r,e,t,o,n){let s=r;r.rank===4&&(s=L(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let a=e;a.rank===4&&(a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),A(t.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${t}.`),A(s.shape[4]===t[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${t[3]}.`),A(a.shape[4]===t[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${t[4]}).`);let i={x:s,dy:a},l={strides:o,pad:n,filterShape:t};return E.runKernel(Vu,i,l)}var XN=S({conv3DBackpropFilter_:bj});var YN={kernelName:Na,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s}=t;A(To(o),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${o}'`);let[a,i]=e;return{x:()=>wh(a.shape,r,i,n,s),filter:()=>XN(a,r,i.shape,n,s)}}};var ZN={kernelName:bn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(qe(Lc(ne(t,"float32"))),r)}}};var JN={kernelName:gi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(zc(ne(t,"float32")),r)}}};var QN={kernelName:wn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n,exclusive:s,reverse:a}=t;return{x:()=>{let i=zb([n],o.rank),l=Sc(r,n,s,!a);return i!=null&&(l=He(l,i)),l}}}};var eS={kernelName:_n,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s,dimRoundingMode:a}=t,i=o==null?[1,1]:o;A(To(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=e;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),A(wr(n,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'.`),a!=null&&A(ot(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),{x:()=>Kh(l.shape,r,u,n,s,o,a),filter:()=>qh(l,r,u.shape,n,s,o,a)}}};var tS={kernelName:Sa,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,s={x:o,filter:n,dy:r},a={x:o,filter:n,dy:r};return{x:()=>E.runKernel(Yp,s,t),filter:()=>E.runKernel(Zp,a,t)}}};var rS={kernelName:bi,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e,o={dy:r,y:t};return{x:()=>E.runKernel(qu,o)}}};var oS={kernelName:wi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=P(er(qe(Me(t))),2/Math.sqrt(Math.PI));return{x:()=>P(r,o)}}};var nS={kernelName:vn,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,t)}}};var sS={kernelName:vs,inputsToSave:["input"],gradFunc:(r,e)=>{let[t]=e;return{input:()=>L(r,t.shape)}}};var iS={kernelName:ki,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,er(t))}}};var aS={kernelName:Cn,gradFunc:r=>({x:()=>Ie(r)})};var lS={kernelName:In,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=me(r,ne(o,"float32")),l=yt(t.shape,n);return l.length>0?L(ye(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=yt(o.shape,n);l.length>0&&(i=L(ye(i,l),o.shape));let u=Me(o);return qe(me(i,ne(u,"float32")))}}}};var uS={kernelName:Nn,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,e,t)=>{let{varianceEpsilon:o}=t,[n,s,a,i]=e,l=i==null?le(1):i,u=yt(s.shape,n.shape),c=[];if(s.rank===1){for(let _=0;_<n.shape.length-1;++_)c.push(n.shape[_]);c.push(1)}let p=pe(n,s),m=P(r,l),f=Pc(ee(a,le(o))),d=P(P(P(f,f),f),le(-.5));return{x:()=>s.rank===1?L(P(P(r,Uo(L(f,[1,1,1,s.shape[0]]),c)),l),n.shape):L(P(P(r,f),l),n.shape),mean:()=>{let _=P(P(f,le(-1)),m);return s.rank===1&&(_=ye(_,u)),L(_,s.shape)},variance:()=>{let _=P(P(d,p),m);return s.rank===1&&(_=ye(_,u)),L(_,s.shape)},scale:()=>{let _=P(p,f),k=P(r,_);return s.rank===1&&(k=ye(k,u)),L(k,s.shape)},offset:()=>{let _=r;return s.rank===1&&(_=ye(_,u)),L(_,s.shape)}}}};var mS={kernelName:Cs,inputsToSave:["x","indices"],gradFunc:(r,e,t)=>{let[o,n]=e,{axis:s}=t,a=Qt(s,o.shape)[0];return{x:()=>{let l=o.shape,u=n.size,c=l.slice(0,a),p=c.length,m=l.slice(s,l.length).slice(1),f=m.length,d=cS(0,p),h=cS(p+1,p+1+f),g=pS([c,[u],m]),y=L(r,g),b=L(n,[u]),w=pS([[p],d,h]),_=He(y,w),k=Wh(_,b,o.shape[a]),D=lm(w);return k=He(k,D),k},indices:()=>n}}};function cS(r,e){let t=[];for(let o=r;o<e;++o)t.push(o);return t}function pS(r){let e=[];for(let t=0;t<r.length;++t)for(let o=0;o<r[t].length;++o)e.push(r[t][o]);return e}var fS={kernelName:Sn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>Ie(t),b:()=>Ie(o)}}};var dS={kernelName:Bo,gradFunc:r=>({x:()=>ne(r,"float32")})};var hS={kernelName:Ni,gradFunc:r=>({x:()=>Ie(r)})};var gS={kernelName:Si,gradFunc:r=>({x:()=>Ie(r)})};var xS={kernelName:Ti,gradFunc:r=>({x:()=>Ie(r)})};var yS={kernelName:Tn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{alpha:n}=t,s=nr(o,0);return{x:()=>$t(s,r,P(r,n))}}};var bS={kernelName:Di,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(t,1))}}};var wS={kernelName:An,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ne(t,"float32"))}}};var _S={kernelName:qC,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t;return{logits:()=>{let s=!0,a=er(o);return pe(r,P(ye(r,n,s),a))}}}};function wj(r,e,t,o=5,n=1,s=1,a=.5){let i={x:r,y:e,dy:t},l={depthRadius:o,bias:n,alpha:s,beta:a};return E.runKernel(Ju,i,l)}var kS=S({localResponseNormalizationBackprop_:wj});var vS={kernelName:Aa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{depthRadius:s,bias:a,alpha:i,beta:l}=t;return{x:()=>kS(o,n,r,s,a,i,l)}}};function rg(r,e,t,o){return e.rank<t.rank&&(e=L(e,Ho(e.shape,o))),r.rank<t.rank&&(r=L(r,Ho(r.shape,o))),{x:()=>P(r,ne(Ao(t,e),r.dtype))}}var sw={kernelName:En,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{reductionIndices:n}=o,s=e[0],a=e[1],i=Qt(n,s.shape),l=rg(r,a,s,i);return{x:()=>l.x()}}};var CS={kernelName:Dn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>P(r,ne(yo(t,o),"float32")),b:()=>P(r,ne(Ac(t,o),"float32"))}}};function _j(r,e,t,o,n,s,a){let i=v(r,"dy","maxPool3dGrad"),l=v(e,"input","maxPool3dGrad"),u=v(t,"output","maxPool3dGrad"),c=i,p=l,m=u,f=!1;l.rank===4&&(f=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=L(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=L(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),A(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),A(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),A(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),a!=null&&A(ot(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:p,output:m},h={filterSize:o,strides:n,pad:s,dimRoundingMode:a},g=E.runKernel(ec,d,h);return f?L(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var IS=S({maxPool3dGrad_:_j});var NS={kernelName:Ea,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=t;return{x:()=>IS(r,o,n,s,a,i,l)}}};function kj(r,e,t,o,n,s,a){let i=v(r,"dy","maxPoolGrad"),l=v(e,"input","maxPoolGrad"),u=v(t,"output","maxPoolGrad");A(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),A(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),a!=null&&A(ot(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let c={dy:i,input:l,output:u},p={filterSize:o,strides:n,pad:s,dimRoundingMode:a};return E.runKernel(Qu,c,p)}var SS=S({maxPoolGrad_:kj});var TS={kernelName:$n,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i}=t;return{x:()=>SS(r,o,n,s,a,i)}}};var AS={kernelName:Rn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t,s=Qt(n,o.shape),i=Lb(o.shape,s)[1],l=ut(i);return{x:()=>{let c=o.shape.slice();s.forEach(f=>{c[f]=1});let p=L(r,c);return me(P(p,Er(o.shape,"float32")),l)}}}};var ES={kernelName:Fn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{axis:n}=o,[s,a]=e,i=Qt(n,s.shape),l=rg(r,a,s,i);return{x:()=>l.x()}}};var DS={kernelName:On,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>P(r,ne(jo(t,o),"float32")),b:()=>P(r,ne(nr(t,o),"float32"))}}};var $S={kernelName:Da,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Re(r,s,o.shape)}}};var RS={kernelName:Ri,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=yt(t.shape,n);return i.length>0?L(ye(r,i),t.shape):r},b:()=>{let i=P(r,qe(Vs(me(t,o)))),l=yt(o.shape,n);return l.length>0?L(ye(i,l),o.shape):i}}}};var FS={kernelName:Pn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=P(r,ne(o,"float32")),l=yt(t.shape,n);return l.length>0?L(ye(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=yt(o.shape,n);return l.length>0?L(ye(i,l),o.shape):i}}}};var OS={kernelName:Is,gradFunc:r=>({x:()=>qe(r)})};var PS={kernelName:Mn,inputsToSave:["indices"],gradFunc:(r,e)=>{let t=e[0];return{indices:()=>wt(t.shape,"float32")}}};var MS={kernelName:Ns,gradFunc:r=>({x:()=>Ie(r)})};var LS={kernelName:Ss,saveAllInputs:!0,gradFunc:(r,e,t)=>{let{axis:o}=t;return fr(r,o).map(s=>()=>s)}};var iw={kernelName:Ln,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Re(r,s,o.shape)}}};var zS={kernelName:zn,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,e)=>{let[t,o,n]=e,s=t,a=o,i=Be(s.shape,a.shape);return{a:()=>{let c=ne(a,"float32"),p=P(r,P(c,Ur(s,pe(c,le(1))))),m=yt(s.shape,i);return m.length>0&&(p=ye(p,m)),L(p,s.shape)},b:()=>{let c=nr(s,0),p=$t(c,cr(s),Ie(s)),m=P(r,P(n,p)),f=yt(a.shape,i);return f.length>0&&(m=ye(m,f)),L(m,a.shape)}}}};var BS={kernelName:Bn,inputsToSave:["x","alpha"],gradFunc:(r,e)=>{let[t,o]=e,n=nr(t,0);return{x:()=>$t(n,r,P(r,o)),alpha:()=>{let s=$t(n,Ie(r),P(r,t)),a=yt(o.shape,r.shape);return a.length>0&&(s=ye(s,a)),L(s,o.shape)}}}};var VS={kernelName:kn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=me(r,ne(o,"float32")),l=yt(t.shape,n);return l.length>0?L(ye(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=yt(o.shape,n);l.length>0&&(i=L(ye(i,l),o.shape));let u=Me(o);return qe(me(i,ne(u,"float32")))}}}};var GS={kernelName:zi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,qe(Me(t)))}}};var WS={kernelName:Wn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=P(jo(t,6),js(t));return{x:()=>P(r,ne(o,"float32"))}}};var US={kernelName:Vn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,ne(js(t),"float32"))}}};var jS={kernelName:Ts,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>L(r,t.shape)}}};var HS={kernelName:Gn,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>E.runKernel(sc,n,t)}}};var qS={kernelName:Ra,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>E.runKernel(nc,n,t)}}};var KS={kernelName:Un,gradFunc:(r,e,t)=>{let{dims:o}=t,n=Qt(o,r.shape);return{x:()=>Zt(r,n)}}};var XS={kernelName:jn,gradFunc:r=>({x:()=>Ie(r)})};var YS={kernelName:Hn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>qe(me(r,P(Ur(t,1.5),2)))}}};var ZS={kernelName:As,inputsToSave:["condition"],gradFunc:(r,e)=>{let[t]=e;return{condition:()=>ne(Ie(t),"float32"),t:()=>P(r,ne(t,r.dtype)),e:()=>P(r,ne(ja(t),r.dtype))}}};var JS={kernelName:Vi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=nr(t,le(0)),n=le(ow),s=le(nw),a=P(r,s),i=P(P(r,n),er(ne(t,"float32")));return $t(o,a,i)}}}};var QS={kernelName:Xn,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(t,pe(le(1),t)))}}};var eT={kernelName:Wi,gradFunc:r=>({x:()=>Ie(r)})};var tT={kernelName:Kn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(Ga(ne(t,"float32")),r)}}};var rT={kernelName:Gi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(Nc(ne(t,"float32")),r)}}};var oT={kernelName:qn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{begin:n,size:s}=t,a=o.shape,[i,l]=Tb(o,n,s),u=[];for(let c=0;c<r.rank;c++)u.push([i[c],a[c]-i[c]-l[c]]);return{x:()=>Wr(r,u)}}};var nT={kernelName:Jn,outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{dim:n}=t,s=!0,a=P(r,o);return{logits:()=>pe(a,P(ye(a,[n],s),o))}}};var sT={kernelName:Ui,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,ro(t))}}};var aw={kernelName:Fa,gradFunc:(r,e,t)=>{let{blockShape:o,paddings:n}=t;return{x:()=>Va(r,o,n)}}};var lw={kernelName:Es,gradFunc:(r,e,t)=>{let{axis:o}=t;return{x:()=>Je(r,o)}}};var iT={kernelName:Yn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,P(_t(ne(t,"float32")),2))}}};var aT={kernelName:Oa,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(ne(t,"float32"),2))}}};var lT={kernelName:Qn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=le(2);return{a:()=>P(r,P(n,pe(t,o))),b:()=>P(r,P(n,pe(o,t)))}}};var uT={kernelName:Vo,gradFunc:r=>({x:()=>Ie(r)})};var cT={kernelName:es,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=r,l=yt(t.shape,n);return l.length>0&&(i=ye(i,l)),L(i,t.shape)},b:()=>{let i=r,l=yt(o.shape,n);return l.length>0&&(i=ye(i,l)),L(qe(i),o.shape)}}}};var pT={kernelName:Zn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,n=o.shape.slice(),{axis:s}=t;Qt(s,o.shape).forEach(u=>{n[u]=1});let i=L(r,n),l=P(i,Er(o.shape,"float32"));return{x:()=>l}}};var mT={kernelName:Hi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,Me(Ga(t)))}}};var fT={kernelName:ts,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(pe(le(1),Me(t)),r)}}};var dT={kernelName:No,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{reps:n}=t;return{x:()=>{let a=Ie(o);if(o.rank===1)for(let i=0;i<n[0];++i)a=ee(a,Re(r,[i*o.shape[0]],[o.shape[0]]));else if(o.rank===2)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1]],[o.shape[0],o.shape[1]]));else if(o.rank===3)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)for(let u=0;u<n[2];++u)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1],u*o.shape[2]],[o.shape[0],o.shape[1],o.shape[2]]));else if(o.rank===4)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)for(let u=0;u<n[2];++u)for(let c=0;c<n[3];++c)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1],u*o.shape[2],c*o.shape[3]],[o.shape[0],o.shape[1],o.shape[2],o.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${o.rank} tensors yet.`);return a}}}};var hT={kernelName:rs,gradFunc:(r,e,t)=>{let o=t,{perm:n}=o,s=lm(n);return{x:()=>He(r,s)}}};var gT={kernelName:Ds,gradFunc:(r,e,t)=>{let o=t,{axis:n}=o;return{value:()=>Ut(r,n)}}};var xT={kernelName:Pa,inputsToSave:["segmentIds"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>vj(r,t)}}};function vj(r,e){let t=so(e,Ie(e)),o=is(r,t),n=yo(e,le(0,"int32")),s=o.rank-n.rank;for(let i=0;i<s;++i)n=ur(n,i+1);n=_r(n,Er(o.shape,"bool"));let a=Ie(o);return $t(n,o,a)}var yT={kernelName:$s,gradFunc:r=>({x:()=>Ie(r)})};var Cj=[tg,CN,IN,NN,SN,TN,AN,EN,DN,$N,RN,FN,PN,LN,zN,BN,VN,GN,WN,UN,jN,HN,KN,qN,YN,ZN,JN,QN,eS,tS,VS,rS,oS,nS,sS,iS,lS,aS,uS,mS,fS,dS,hS,gS,xS,yS,bS,wS,_S,vS,sw,sw,CS,NS,TS,AS,ES,DS,$S,RS,FS,OS,PS,MS,LS,iw,iw,zS,BS,GS,WS,US,jS,HS,qS,KS,XS,YS,ZS,JS,QS,eT,tT,rT,oT,nT,sT,aw,aw,lw,lw,iT,lT,aT,uT,cT,pT,mT,fT,dT,hT,gT,xT,yT];for(let r of Cj)KC(r);F().prototype.abs=function(){return this.throwIfDisposed(),Tt(this)};F().prototype.acos=function(){return this.throwIfDisposed(),lh(this)};F().prototype.acosh=function(){return this.throwIfDisposed(),uh(this)};F().prototype.add=function(r){return this.throwIfDisposed(),ee(this,r)};F().prototype.all=function(r,e){return this.throwIfDisposed(),_c(this,r,e)};F().prototype.any=function(r,e){return this.throwIfDisposed(),Rl(this,r,e)};F().prototype.argMax=function(r){return this.throwIfDisposed(),Fl(this,r)};F().prototype.argMin=function(r){return this.throwIfDisposed(),ch(this,r)};F().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),L(this,[])};F().prototype.asType=function(r){return this.throwIfDisposed(),ne(this,r)};F().prototype.as1D=function(){return this.throwIfDisposed(),L(this,[this.size])};F().prototype.as2D=function(r,e){return this.throwIfDisposed(),L(this,[r,e])};F().prototype.as3D=function(r,e,t){return this.throwIfDisposed(),L(this,[r,e,t])};F().prototype.as4D=function(r,e,t,o){return this.throwIfDisposed(),L(this,[r,e,t,o])};F().prototype.as5D=function(r,e,t,o,n){return this.throwIfDisposed(),L(this,[r,e,t,o,n])};F().prototype.asin=function(){return this.throwIfDisposed(),ph(this)};F().prototype.asinh=function(){return this.throwIfDisposed(),mh(this)};F().prototype.atan=function(){return this.throwIfDisposed(),fh(this)};F().prototype.atan2=function(r){return this.throwIfDisposed(),dh(this,r)};F().prototype.atanh=function(){return this.throwIfDisposed(),hh(this)};F().prototype.avgPool=function(r,e,t,o){return this.throwIfDisposed(),Ba(this,r,e,t,o)};F().prototype.batchToSpaceND=function(r,e){return this.throwIfDisposed(),Va(this,r,e)};F().prototype.batchNorm=function(r,e,t,o,n){return this.throwIfDisposed(),ss(this,r,e,t,o,n)};F().prototype.broadcastTo=function(r){return this.throwIfDisposed(),Ml(this,r)};F().prototype.cast=function(r){return this.throwIfDisposed(),ne(this,r)};F().prototype.ceil=function(){return this.throwIfDisposed(),yh(this)};F().prototype.clipByValue=function(r,e){return this.throwIfDisposed(),lr(this,r,e)};F().prototype.concat=function(r,e){return this.throwIfDisposed(),r instanceof Ve&&(r=[r]),Je([this,...r],e)};F().prototype.conv1d=function(r,e,t,o,n,s){return this.throwIfDisposed(),vc(this,r,e,t,o,n,s)};F().prototype.conv2dTranspose=function(r,e,t,o,n){return this.throwIfDisposed(),Ic(this,r,e,t,o,n)};F().prototype.conv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),oo(this,r,e,t,o,n,s)};F().prototype.cos=function(){return this.throwIfDisposed(),Ga(this)};F().prototype.cosh=function(){return this.throwIfDisposed(),Nc(this)};F().prototype.cumsum=function(r,e,t){return this.throwIfDisposed(),Sc(this,r,e,t)};F().prototype.depthToSpace=function(r,e){return this.throwIfDisposed(),_h(this,r,e)};F().prototype.depthwiseConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),zs(this,r,e,t,o,n,s)};F().prototype.dilation2d=function(r,e,t,o,n){return this.throwIfDisposed(),kh(this,r,e,t,o,n)};F().prototype.divNoNan=function(r){return this.throwIfDisposed(),vh(this,r)};F().prototype.div=function(r){return this.throwIfDisposed(),me(this,r)};F().prototype.dot=function(r){return this.throwIfDisposed(),gI(this,r)};F().prototype.elu=function(){return this.throwIfDisposed(),Bs(this)};F().prototype.equal=function(r){return this.throwIfDisposed(),Ao(this,r)};F().prototype.erf=function(){return this.throwIfDisposed(),Ch(this)};F().prototype.exp=function(){return this.throwIfDisposed(),er(this)};F().prototype.expandDims=function(r){return this.throwIfDisposed(),ur(this,r)};F().prototype.expm1=function(){return this.throwIfDisposed(),Ih(this)};F().prototype.fft=function(){return this.throwIfDisposed(),Ya(this)};F().prototype.flatten=function(){return this.throwIfDisposed(),L(this,[this.size])};F().prototype.floor=function(){return this.throwIfDisposed(),Vs(this)};F().prototype.floorDiv=function(r){return this.throwIfDisposed(),wc(this,r)};F().prototype.gather=function(r,e){return this.throwIfDisposed(),is(this,r,e)};F().prototype.greaterEqual=function(r){return this.throwIfDisposed(),yo(this,r)};F().prototype.greater=function(r){return this.throwIfDisposed(),nr(this,r)};F().prototype.ifft=function(){return this.throwIfDisposed(),ra(this)};F().prototype.irfft=function(){return this.throwIfDisposed(),Bc(this)};F().prototype.isFinite=function(){return this.throwIfDisposed(),xI(this)};F().prototype.isInf=function(){return this.throwIfDisposed(),yI(this)};F().prototype.isNaN=function(){return this.throwIfDisposed(),bI(this)};F().prototype.leakyRelu=function(r){return this.throwIfDisposed(),Ua(this,r)};F().prototype.lessEqual=function(r){return this.throwIfDisposed(),jo(this,r)};F().prototype.less=function(r){return this.throwIfDisposed(),Ac(this,r)};F().prototype.localResponseNormalization=function(r,e,t,o){return this.throwIfDisposed(),Nh(this,r,e,t,o)};F().prototype.logSigmoid=function(){return this.throwIfDisposed(),_I(this)};F().prototype.logSoftmax=function(r){return this.throwIfDisposed(),Dc(this,r)};F().prototype.logSumExp=function(r,e){return this.throwIfDisposed(),Th(this,r,e)};F().prototype.log=function(){return this.throwIfDisposed(),cr(this)};F().prototype.log1p=function(){return this.throwIfDisposed(),Ec(this)};F().prototype.logicalAnd=function(r){return this.throwIfDisposed(),_r(this,r)};F().prototype.logicalNot=function(){return this.throwIfDisposed(),ja(this)};F().prototype.logicalOr=function(r){return this.throwIfDisposed(),$c(this,r)};F().prototype.logicalXor=function(r){return this.throwIfDisposed(),vI(this,r)};F().prototype.matMul=function(r,e,t){return this.throwIfDisposed(),Ue(this,r,e,t)};F().prototype.maxPool=function(r,e,t,o){return this.throwIfDisposed(),Ha(this,r,e,t,o)};F().prototype.max=function(r,e){return this.throwIfDisposed(),pr(this,r,e)};F().prototype.maximum=function(r){return this.throwIfDisposed(),so(this,r)};F().prototype.mean=function(r,e){return this.throwIfDisposed(),bt(this,r,e)};F().prototype.min=function(r,e){return this.throwIfDisposed(),ta(this,r,e)};F().prototype.minimum=function(r){return this.throwIfDisposed(),Ws(this,r)};F().prototype.mirrorPad=function(r,e){return this.throwIfDisposed(),Eh(this,r,e)};F().prototype.mod=function(r){return this.throwIfDisposed(),Dh(this,r)};F().prototype.mul=function(r){return this.throwIfDisposed(),P(this,r)};F().prototype.neg=function(){return this.throwIfDisposed(),qe(this)};F().prototype.norm=function(r,e,t){return this.throwIfDisposed(),Wc(this,r,e,t)};F().prototype.notEqual=function(r){return this.throwIfDisposed(),as(this,r)};F().prototype.oneHot=function(r,e=1,t=0){return this.throwIfDisposed(),Ls(this,r,e,t)};F().prototype.onesLike=function(){return this.throwIfDisposed(),sr(this)};F().prototype.pad=function(r,e){return this.throwIfDisposed(),Wr(this,r,e)};F().prototype.pool=function(r,e,t,o,n){return this.throwIfDisposed(),NI(this,r,e,t,o,n)};F().prototype.pow=function(r){return this.throwIfDisposed(),Ur(this,r)};F().prototype.prelu=function(r){return this.throwIfDisposed(),Ka(this,r)};F().prototype.prod=function(r,e){return this.throwIfDisposed(),Rc(this,r,e)};F().prototype.reciprocal=function(){return this.throwIfDisposed(),Fh(this)};F().prototype.relu=function(){return this.throwIfDisposed(),Dr(this)};F().prototype.relu6=function(){return this.throwIfDisposed(),Oc(this)};F().prototype.reshapeAs=function(r){return this.throwIfDisposed(),L(this,r.shape)};F().prototype.reshape=function(r){return this.throwIfDisposed(),L(this,r)};F().prototype.resizeBilinear=function(r,e,t){return this.throwIfDisposed(),Zh(this,r,e,t)};F().prototype.resizeNearestNeighbor=function(r,e,t){return this.throwIfDisposed(),Jh(this,r,e,t)};F().prototype.reverse=function(r){return this.throwIfDisposed(),Zt(this,r)};F().prototype.rfft=function(){return this.throwIfDisposed(),Za(this)};F().prototype.round=function(){return this.throwIfDisposed(),Oh(this)};F().prototype.rsqrt=function(){return this.throwIfDisposed(),Pc(this)};F().prototype.selu=function(){return this.throwIfDisposed(),Mc(this)};F().prototype.separableConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Ph(this,r,e,t,o,n,s)};F().prototype.sigmoid=function(){return this.throwIfDisposed(),ro(this)};F().prototype.sign=function(){return this.throwIfDisposed(),Mh(this)};F().prototype.sin=function(){return this.throwIfDisposed(),Lc(this)};F().prototype.sinh=function(){return this.throwIfDisposed(),zc(this)};F().prototype.slice=function(r,e){return this.throwIfDisposed(),Re(this,r,e)};F().prototype.softmax=function(r){return this.throwIfDisposed(),Xa(this,r)};F().prototype.softplus=function(){return this.throwIfDisposed(),Gs(this)};F().prototype.spaceToBatchND=function(r,e){return this.throwIfDisposed(),qa(this,r,e)};F().prototype.split=function(r,e){return this.throwIfDisposed(),mr(this,r,e)};F().prototype.sqrt=function(){return this.throwIfDisposed(),_t(this)};F().prototype.square=function(){return this.throwIfDisposed(),Me(this)};F().prototype.squaredDifference=function(r){return this.throwIfDisposed(),Vc(this,r)};F().prototype.squeeze=function(r){return this.throwIfDisposed(),Eo(this,r)};F().prototype.stack=function(r,e){this.throwIfDisposed();let t=r instanceof Ve?[this,r]:[this,...r];return Ut(t,e)};F().prototype.step=function(r){return this.throwIfDisposed(),js(this,r)};F().prototype.stridedSlice=function(r,e,t,o,n,s,a,i){return this.throwIfDisposed(),Bh(this,r,e,t,o,n,s,a,i)};F().prototype.sub=function(r){return this.throwIfDisposed(),pe(this,r)};F().prototype.sum=function(r,e){return this.throwIfDisposed(),ye(this,r,e)};F().prototype.tan=function(){return this.throwIfDisposed(),Vh(this)};F().prototype.tanh=function(){return this.throwIfDisposed(),ea(this)};F().prototype.tile=function(r){return this.throwIfDisposed(),Uo(this,r)};F().prototype.toBool=function(){return this.throwIfDisposed(),ne(this,"bool")};F().prototype.toFloat=function(){return this.throwIfDisposed(),ne(this,"float32")};F().prototype.toInt=function(){return this.throwIfDisposed(),ne(this,"int32")};F().prototype.topk=function(r,e){return this.throwIfDisposed(),Gh(this,r,e)};F().prototype.transpose=function(r){return this.throwIfDisposed(),He(this,r)};F().prototype.unique=function(r){return this.throwIfDisposed(),mm(this,r)};F().prototype.unsortedSegmentSum=function(r,e){return this.throwIfDisposed(),Wh(this,r,e)};F().prototype.unstack=function(r){return this.throwIfDisposed(),fr(this,r)};F().prototype.where=function(r,e){return this.throwIfDisposed(),$t(r,this,e)};F().prototype.zerosLike=function(){return this.throwIfDisposed(),Ie(this)};var CT={};Ze(CT,{maxNorm:()=>Nj,minMaxNorm:()=>Aj,nonNeg:()=>Tj,unitNorm:()=>Sj});var uw;function Jt(){return uw==null&&(uw=rI().epsilon()),uw}function Hr(){return"channelsLast"}var bo=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,bo.prototype)}},Rr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Rr.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},Ne=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ne.prototype)}},bm=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,bm.prototype)}};function Ko(r,e){if(Array.isArray(r)){let t=[];for(let o=0;o<e;o++)t=t.concat(r);return t}else{let t=new Array(e);return t.fill(r),t}}function Do(r,e){if(!r)throw new bm(e)}function cw(r,e){let t=0;for(let o of r)o===e&&t++;return t}function dr(r){return r.length===1?r[0]:r}function dt(r){return Array.isArray(r)?r:[r]}function Xo(r){let t=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function sa(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(e,t)=>t.toUpperCase())}var Yo={};function jc(r){if(r==null)return null;let e={};return e.className=r.getClassName(),e.config=r.getConfig(),e}function pw(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(e=>pw(e));else{let e=Object.keys(r);for(let t of e){let o=r[t];o!=null&&typeof o=="object"&&(!Array.isArray(o)&&o.type==="ndarray"&&typeof o.value=="number"?r[t]=o.value:pw(o))}}}function qs(r,e={},t={},o="object",n=!1){if(typeof r=="string"){let s=r,a;if(s in t)a=t[s];else if(s in Yo)a=Yo[s];else if(a=e[s],a==null)throw new z(`Unknown ${o}: ${r}. This may be due to one of the following reasons:
1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{let s=r;if(s.className==null||s.config==null)throw new z(`${o}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let a=s.className,i,l;if(a in t?[i,l]=t[a]:a in Yo?[i,l]=Yo.className:a in e&&([i,l]=e[a]),i==null)throw new z(`Unknown ${o}: ${a}. This may be due to one of the following reasons:
1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let f of Object.keys(Yo))u[f]=Yo[f];for(let f of Object.keys(t))u[f]=t[f];let c=s.config;c.customObjects=u;let p=Object.assign({},Yo);for(let f of Object.keys(t))Yo[f]=t[f];pw(s.config);let m=l(i,s.config,t,n);return Yo=Object.assign({},p),m}else{let u=Object.assign({},Yo);for(let p of Object.keys(t))Yo[p]=t[p];let c=new i(s.config);return Yo=Object.assign({},u),c}}}function Ij(r,e){return r<e?-1:r>e?1:0}function wm(r,e){return-1*Ij(r,e)}function Zo(r){if(r==null)return r;let e=[];for(let t of r)e.indexOf(t)===-1&&e.push(t);return e}function bT(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let e in r)if(r.hasOwnProperty(e))return!1;return!0}function Ks(r,e,t){if(t!=null&&r.indexOf(t)<0)throw new z(`${t} is not a valid ${e}. Valid values are ${r} or null/undefined.`)}function og(r,e,t=0,o=Infinity){return Do(t>=0),Do(o>=t),Array.isArray(r)&&r.length>=t&&r.length<=o&&r.every(n=>typeof n===e)}function Bt(r,e){Array.isArray(r)?(x.assert(r.length>0,()=>`${e} is unexpectedly an empty array.`),r.forEach((t,o)=>Bt(t,`element ${o+1} of ${e}`))):x.assert(Number.isInteger(r)&&r>0,()=>`Expected ${e} to be a positive integer, but got ${wT(r)}.`)}function wT(r){return r===null?"null":Array.isArray(r)?"["+r.map(e=>wT(e)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function _T(r,e){let t=x.now(),o;return(...s)=>{let a=x.now();return a-t<e||(t=a,o=r(...s)),o}}function ng(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}function mw(r,e){return V(()=>_t(ye(P(r,r),e,!0)))}var Hc=class extends Q.Serializable{getConfig(){return{}}},_m=class extends Hc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=mw(e,this.axis),o=lr(t,0,this.maxValue);return P(e,me(o,ee(Jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};_m.className="MaxNorm";Q.registerClass(_m);var km=class extends Hc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>me(e,ee(Jt(),mw(e,this.axis))))}getConfig(){return{axis:this.axis}}};km.className="UnitNorm";Q.registerClass(km);var vm=class extends Hc{apply(e){return Dr(e)}};vm.className="NonNeg";Q.registerClass(vm);var Cm=class extends Hc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=mw(e,this.axis),o=ee(P(this.rate,lr(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,me(o,ee(Jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Cm.className="MinMaxNorm";Q.registerClass(Cm);var kT={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Rt(r){return jc(r)}function vT(r,e={}){return qs(r,Q.SerializationMap.getMap().classNameMap,e,"constraint")}function Ft(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in kT?kT[r]:r,config:{}};return vT(t)}else return r instanceof Hc?r:vT(r)}function Nj(r){return new _m(r)}function Sj(r){return new km(r)}function Tj(){return new vm}function Aj(r){return new Cm(r)}var jT={};Ze(jT,{constant:()=>Mj,glorotNormal:()=>Uj,glorotUniform:()=>Wj,heNormal:()=>jj,heUniform:()=>Hj,identity:()=>Vj,leCunNormal:()=>qj,leCunUniform:()=>Kj,ones:()=>Pj,orthogonal:()=>Xj,randomNormal:()=>zj,randomUniform:()=>Lj,truncatedNormal:()=>Bj,varianceScaling:()=>Gj,zeros:()=>Oj});var IT=["channelsFirst","channelsLast"],NT=["nearest","bilinear"],ST=["valid","same","causal"],TT=["max","avg"],AT=["sum","mul","concat","ave"];var qc=new Map;function Dt(r){Ks(IT,"DataFormat",r)}function ET(r){Ks(NT,"InterpolationFormat",r)}function qr(r){Ks(ST,"PaddingMode",r)}function fw(r){Ks(TT,"PoolMode",r)}var Im=[],DT="/";function us(r,e){Im.push(r);try{let t=e();return Im.pop(),t}catch(t){throw Im.pop(),t}}function Ej(){return Im.length===0?"":Im.join(DT)+DT}function sg(r){if(!$T(r))throw new Error("Not a valid tensor name: '"+r+"'");return Ej()+r}function ig(r){if(!$T(r))throw new Error("Not a valid tensor name: '"+r+"'");qc.has(r)||qc.set(r,0);let e=qc.get(r);if(qc.set(r,qc.get(r)+1),e>0){let t=`${r}_${e}`;return qc.set(t,1),t}else return r}var Dj=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function $T(r){return!!r.match(Dj)}function RT(r){return r===parseInt(r.toString(),10)}function Jo(r,e,t){e==null&&(e=0),t==null&&(t=r.length);let o=1;for(let n=e;n<t;++n)o*=r[n];return o}function FT(r){return r=Array.isArray(r)?new Float32Array(r):r,jt(r)}function Hl(r){return ta(FT(r)).dataSync()[0]}function cs(r){return pr(FT(r)).dataSync()[0]}function Fr(r,e){if(e<r)throw new z(`end (${e}) < begin (${r}) is forbidden.`);let t=[];for(let o=r;o<e;++o)t.push(o);return t}function ia(r,e){return r.asType(e)}function aa(r,e=-1){let t=r.shape.slice();return e<0&&(e=t.length+e+1),t.splice(e,0,1),r.reshape(t)}function OT(r,e){return V(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let t=aa(r,1);return ag(t,[1,e,1])})}function PT(r){let e=[Jo(r.shape)];return r.reshape(e)}function MT(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let e=[r.shape[0],Jo(r.shape,1)];return r.reshape(e)}function la(r,e,t){return V(()=>{switch(r.rank){case 1:return Lh(r,e,t);case 2:return Zb(r,[e,0],[t,r.shape[1]]);case 3:return zh(r,[e,0,0],[t,r.shape[1],r.shape[2]]);case 4:return pm(r,[e,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Re(r,[e,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Re(r,[e,0,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function dw(r,e,t){return V(()=>{switch(r.rank){case 1:return Lh(r,e,t);case 2:return Zb(r,[0,e],[r.shape[0],t]);case 3:return zh(r,[0,0,e],[r.shape[0],r.shape[1],t]);case 4:return pm(r,[0,0,0,e],[r.shape[0],r.shape[1],r.shape[2],t]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Nm(r,e,t,o){return V(()=>{switch(r.rank){case 1:return Lh(r,e,t);case 2:switch(o){case 1:return la(r,e,t);case 2:return dw(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}case 3:switch(o){case 1:return la(r,e,t);case 2:return zh(r,[0,e,0],[r.shape[0],t,r.shape[2]]);case 3:return dw(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}case 4:switch(o){case 1:return la(r,e,t);case 2:return pm(r,[0,e,0,0],[r.shape[0],t,r.shape[2],r.shape[3]]);case 3:return pm(r,[0,0,e,0],[r.shape[0],r.shape[1],t,r.shape[3]]);case 4:return dw(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Kc(r,e=-1){let t;return e<0&&(t=r[0].rank,t!==0?e=t:e=0),e===r[0].rank&&(e=-1),Je(r,e)}function hw(r,e){switch(r.rank){case 1:return pI([r,e]);case 2:return mI([r,e],0);case 3:return fI([r,e],0);case 4:return dI([r,e],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function ag(r,e){if(Array.isArray(e)||(e=[e]),r.rank!==e.length)throw new z(`The length of input n (${e.length}) does not match the number of dimensions in input x (${r.rank})`);return Uo(r,e)}function Xc(r,e=0,t=1,o,n){return Yb(r,e,t,o,n)}function Qo(r,e,t,o){if(r.rank<2||e.rank<2)throw new Ne(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${e.shape}`);if(e.rank>=3){let n=r.shape.slice(-1)[0],s=e.shape.slice(-2)[0];if(n!==s)throw new Ne(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${e.shape}`)}if(r.rank===2&&e.rank===2){let n=!1,s=!1;return ls.matMul({a:r,b:e,transposeA:n,transposeB:s,bias:o?gw(r.rank,o,Hr()):null,activation:t})}else{let n=r.shape.slice(),s=n.pop();r=r.reshape([-1,s]);let a=e.shape.slice(),i=a.pop(),l=a.pop(),u=[...a,i],c=Array.from({length:e.rank},(d,h)=>h===0?e.rank-2:h<=e.rank-2?h-1:h);e=e.transpose(c).reshape([l,-1]);let p=[...n,...u],m=!1,f=!1;return ls.matMul({a:r,b:e,transposeA:m,transposeB:f,bias:o?gw(r.rank,o,Hr()):null,activation:t}).reshape(p)}}function lg(r,e,t){return V(()=>(Array.isArray(e)?e=jt(e,"int32"):e=e.toInt(),is(r,e,t)))}function ql(r){return P(r,r)}function gw(r,e,t){let o=e.shape;if(e.rank!==1&&e.rank!==r)throw new z(`Unexpected bias dimensions: ${e.rank}; expected it to be 1 or ${r}`);if(r===5){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1,1]):e.reshape([1,o[3],o[0],o[1],o[2]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===4){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1]):e.reshape([1,o[2],o[0],o[1]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===3){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1]):e.reshape([1,o[1],o[0]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,o[0]]):e.reshape([1].concat(o))}else if(r<3)return e;throw new z(`Unsupported input rank by biasAdd: ${e.rank}`)}function io(r,e,t){return V(()=>(t==null&&(t=Hr()),Dt(t),r.add(gw(r.rank,e,t))))}function LT(r,e=1){if(e!==1)throw new Ne(`Support for alpha values other than 1 (${e}) is not implemented yet.`);return Bs(r)}function zT(r){return V(()=>me(r,Tt(r).add(1)))}function ug(r,e,t,o){return V(()=>KI(r,e,t,o))}function BT(r){return V(()=>{let e=ee(.5,P(.2,r));return lr(e,0,1)})}function Ja(r,e,t=!1){return t?r():e()}var VT=["fanIn","fanOut","fanAvg"],GT=["normal","uniform","truncatedNormal"];function $j(r){Ks(VT,"FanMode",r)}function Rj(r){Ks(GT,"Distribution",r)}var ao=class extends Q.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Sm=class extends ao{apply(e,t){return wt(e,t)}};Sm.className="Zeros";Q.registerClass(Sm);var Kl=class extends ao{apply(e,t){return Er(e,t)}};Kl.className="Ones";Q.registerClass(Kl);var Tm=class extends ao{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return V(()=>P(le(this.value),Er(e,t)))}getConfig(){return{value:this.value}}};Tm.className="Constant";Q.registerClass(Tm);var Am=class extends ao{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Us(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Am.className="RandomUniform";Q.registerClass(Am);var Em=class extends ao{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ne(`randomNormal does not support dType ${t}.`);return Xc(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Em.className="RandomNormal";Q.registerClass(Em);var Dm=class extends ao{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ne(`truncatedNormal does not support dType ${t}.`);return Gc(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Dm.className="TruncatedNormal";Q.registerClass(Dm);var $m=class extends ao{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return V(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,am(e[0]))})}getConfig(){return{gain:this.gain}}};$m.className="Identity";Q.registerClass($m);function Fj(r,e="channelsLast"){let t,o;if(Dt(e),r.length===2)t=r[0],o=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(e==="channelsFirst"){let n=Jo(r,2);t=r[1]*n,o=r[0]*n}else if(e==="channelsLast"){let n=Jo(r,0,r.length-2);t=r[r.length-2]*n,o=r[r.length-1]*n}}else{let n=Jo(r);t=Math.sqrt(n),o=Math.sqrt(n)}return[t,o]}var Or=class extends ao{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,$j(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Rj(this.distribution),this.seed=e.seed}apply(e,t){let o=Fj(e),n=o[0],s=o[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,n):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(n+s)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ne(`${this.getClassName()} does not support dType ${t}.`);return Gc(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return Us(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Or.className="VarianceScaling";Q.registerClass(Or);var Yc=class extends Or{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Or.className}};Yc.className="GlorotUniform";Q.registerClass(Yc);var Zc=class extends Or{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Or.className}};Zc.className="GlorotNormal";Q.registerClass(Zc);var Jc=class extends Or{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Or.className}};Jc.className="HeNormal";Q.registerClass(Jc);var Qc=class extends Or{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Or.className}};Qc.className="HeUniform";Q.registerClass(Qc);var ep=class extends Or{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Or.className}};ep.className="LeCunNormal";Q.registerClass(ep);var tp=class extends Or{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Or.className}};tp.className="LeCunNormal";Q.registerClass(tp);var Rm=class extends ao{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ne("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return V(()=>{if(e.length<2)throw new Ne("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let o=e[0]>e[1]?[e[1],e[0]]:e,n=Xc(o,0,1,"float32"),s=kN.gramSchmidt(n);return e[0]>e[1]&&(s=s.transpose()),P(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Rm.className="Orthogonal";Q.registerClass(Rm);var WT={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function UT(r,e={}){return qs(r,Q.SerializationMap.getMap().classNameMap,e,"initializer")}function kt(r){return jc(r)}function pt(r){if(typeof r=="string"){let e=r in WT?WT[r]:r;if(e==="GlorotNormal")return new Zc;if(e==="GlorotUniform")return new Yc;if(e==="HeNormal")return new Jc;if(e==="HeUniform")return new Qc;if(e==="LeCunNormal")return new ep;if(e==="LeCunUniform")return new tp;{let t={};return t.className=e,t.config={},UT(t)}}else return r instanceof ao?r:UT(r)}function Oj(){return new Sm}function Pj(){return new Kl}function Mj(r){return new Tm(r)}function Lj(r){return new Am(r)}function zj(r){return new Em(r)}function Bj(r){return new Dm(r)}function Vj(r){return new $m(r)}function Gj(r){return new Or(r)}function Wj(r){return new Yc(r)}function Uj(r){return new Zc(r)}function jj(r){return new Jc(r)}function Hj(r){return new Qc(r)}function qj(r){return new ep(r)}function Kj(r){return new tp(r)}function Xj(r){return new Rm(r)}var k1={};Ze(k1,{Layer:()=>Oe,RNN:()=>wo,RNNCell:()=>il,activation:()=>xq,add:()=>Nq,alphaDropout:()=>uK,average:()=>Sq,averagePooling1d:()=>r_,averagePooling2d:()=>o_,averagePooling3d:()=>n_,avgPool1d:()=>Pq,avgPool2d:()=>Lq,avgPool3d:()=>Bq,avgPooling1d:()=>Mq,avgPooling2d:()=>zq,avgPooling3d:()=>Vq,batchNormalization:()=>Rq,bidirectional:()=>tK,concatenate:()=>Tq,conv1d:()=>uq,conv2d:()=>cq,conv2dTranspose:()=>pq,conv3d:()=>mq,convLstm2d:()=>Zq,convLstm2dCell:()=>Jq,cropping2D:()=>dq,dense:()=>yq,depthwiseConv2d:()=>gq,dot:()=>$q,dropout:()=>bq,elu:()=>oq,embedding:()=>Iq,flatten:()=>_q,gaussianDropout:()=>lK,gaussianNoise:()=>aK,globalAveragePooling1d:()=>Gq,globalAveragePooling2d:()=>Wq,globalMaxPool1d:()=>oK,globalMaxPool2d:()=>nK,globalMaxPooling1d:()=>v1,globalMaxPooling2d:()=>C1,gru:()=>jq,gruCell:()=>Hq,input:()=>Aw,inputLayer:()=>rq,layerNormalization:()=>Fq,leakyReLU:()=>sq,lstm:()=>qq,lstmCell:()=>Kq,masking:()=>cK,maxPool1d:()=>sK,maxPool2d:()=>iK,maxPooling1d:()=>I1,maxPooling2d:()=>N1,maxPooling3d:()=>Uq,maximum:()=>Aq,minimum:()=>Eq,multiply:()=>Dq,permute:()=>Cq,prelu:()=>iq,reLU:()=>nq,repeatVector:()=>kq,reshape:()=>vq,rnn:()=>Qq,separableConv2d:()=>fq,simpleRNN:()=>Xq,simpleRNNCell:()=>Yq,softmax:()=>aq,spatialDropout1d:()=>wq,stackedRNNCells:()=>eK,thresholdedReLU:()=>lq,timeDistributed:()=>rK,upSampling2d:()=>hq,zeroPadding2d:()=>Oq});var Yj=0;function cg(){return Yj++}var pg={};function Qa(r=""){return r in pg||(pg[r]=0),pg[r]+=1,r+pg[r].toString()}function mg(r){return Array.isArray(r)&&Array.isArray(r[0])}function rp(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Fe(r){let e;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);e=r[0]}else e=r;return e}function Ye(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function op(r){let e=0;for(let t of r)t.shape.length===0?e+=1:e+=t.shape.reduce((o,n)=>o*n);return e}var HT="Variable",fg=class{constructor(e,t="float32",o=HT,n=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=cg(),o=o==null?HT:o,this.originalName=sg(o),this.name=ig(this.originalName),this.trainable_=n,this.constraint=s,this.val=GI(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Zj(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Zj(r,e){if(r.shape.toString()!==e.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(e.shape))}function Fm(r){return r.map(e=>e.read())}function np(r){r.forEach(e=>{e[0].write(e[1])})}var At=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Kr=class{constructor(e,t,o,n,s,a,i){this.dtype=e,this.shape=t,this.sourceLayer=o,this.inputs=n,this.callArgs=s,this.outputTensorIndex=i,this.id=cg(),a!=null&&(this.originalName=sg(a),this.name=ig(this.originalName)),this.rank=t.length}},Jj=0,el=class{constructor(e,t){this.callArgs=t,this.id=Jj++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let o of e.inboundLayers)o!=null&&o.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Qj=0,Oe=class extends Q.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Qj++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let o=this.getClassName();t=Xo(o)+"_"+Qa(o)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let o;if(e.batchInputShape!=null)o=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),o=[s].concat(e.inputShape)}this.batchInputShape=o;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Rr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return dr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return dr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new bo(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new bo(`Layer ${this.name} is not connected, no input to return.`);return dr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new bo(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new bo(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return dr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=dt(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let o=0;o<e.length;o++){let n=e[o],s=t[o];if(s==null)continue;let a=n.rank;if(s.ndim!=null&&a!==s.ndim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&n.dtype!==s.dtype)throw new z(`Input ${o} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${n.dtype}.`);if(s.axes){let i=n.shape;for(let l in s.axes){let u=Number(l),c=s.axes[l],p=u>=0?i[u]:i[i.length+u];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${c} but got shape ${i}.`)}}if(s.shape!=null)for(let i=0;i<s.shape.length;++i){let l=s.shape[i],u=n.shape[i];if(l!=null&&u!=null&&l!==u)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let o=dt(e),n=!0;for(let a of o)if(!(a instanceof Kr)){n=!1;break}let s=!0;for(let a of o)if(a instanceof Kr){s=!1;break}if(n===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return us(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of dt(e))a.push(i.shape);this.build(dr(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),i=dt(a),l=[];for(let u of i)o.indexOf(u)!==-1&&(u=u.clone()),l.push(u);if(a=dr(l),this.activityRegularizer!=null)throw new Ne("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=eH(e),i=this.computeOutputShape(a),l,u=tH(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?l=i.map((c,p)=>new Kr(u,c,this,dt(e),t,this.name,p)):l=new Kr(u,i,this,dt(e),t,this.name),this.addInboundNode(e,l,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Ne("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return l}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((o,n)=>{o!=null&&e[n]!=null&&e[n]!==o&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new bo(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let o=JSON.stringify(t.outputShapes);e.indexOf(o)===-1&&e.push(o)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new bo(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Rr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return op(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Fm(e?this.trainableWeights:this.weights)}setWeights(e){V(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let o=[],n=Fm(t);for(let s=0;s<n.length;++s){let a=n[s],i=t[s],l=e[s];if(!x.arraysEqual(a.shape,l.shape))throw new z(`Layer weight shape ${a.shape} not compatible with provided weight shape ${l.shape}`);o.push([i,l])}np(o)})}addWeight(e,t,o,n,s,a,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new z(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),o==null&&(o="float32"),this.fastWeightInitDuringBuild&&(n=pt("zeros"));let l=n.apply(t,o),u=new fg(l,o,e,a,i);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(o=>{if(o!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,o,n,s,a,i=null){let l=dt(e);t=dt(t),o=dt(o),n=dt(n),s=rp(s),a=rp(a);let u=[],c=[],p=[];for(let m of l)u.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new el({outboundLayer:this,inboundLayers:u,nodeIndices:c,tensorIndices:p,inputTensors:l,outputTensors:t,inputMasks:o,outputMasks:n,inputShapes:s,outputShapes:a},i);for(let m=0;m<t.length;m++)t[m].sourceLayer=this,t[m].nodeIndex=this.inboundNodes.length-1,t[m].tensorIndex=m}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function eH(r){r=dt(r);let e=[];for(let t of r)e.push(t.shape);return dr(e)}function tH(r){return"float32"}function xw(r,e,t){if((e==null||t!=null&&t>0)&&(e=r.sourceLayer,t=r.nodeIndex),e.inboundNodes.length===0)return[r];{let o=e.inboundNodes[t];if(o.inboundLayers.length===0)return o.inputTensors;{let n=[];for(let s=0;s<o.inboundLayers.length;s++){let a=o.inputTensors[s],i=o.inboundLayers[s],l=o.nodeIndices[s],u=xw(a,i,l);for(let c of u)n.indexOf(c)===-1&&n.push(c)}return n}}}var Xs=class extends Oe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Qa("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let o=e.dtype||"float32";this.batchInputShape=t,this.dtype=o,this.inputSpec=[{shape:t}];let n=new Kr(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new el({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Xs.className="InputLayer";Q.registerClass(Xs);function dg(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let e=r.batchShape;r.shape!=null&&e==null&&(e=[null].concat(r.shape));let t=r.dtype;return t==null&&(t="float32"),new Xs({batchInputShape:e,name:r.name,dtype:t,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}async function Ys(r){if(r==null)return;let e=[],t=[],o=[];for(let n in r){let s=r[n];if(typeof s!="number"){let a=s;e.push(a.data()),t.push(n),o.push(a)}}if(e.length>0){let n=await Promise.all(e);for(let s=0;s<n.length;++s)r[t[s]]=n[s][0];Te(o)}}function hg(r){if(r!=null)for(let e in r){let t=r[e];typeof t!="number"&&t.dispose()}}var qT;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(qT||(qT={}));var rH=125,tl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},yw=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},KT=class extends tl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let o=t.size==null?0:t.size;this.seen+=o;for(let n in t){let s=t[n];if(typeof s=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+s*o;else{let a;n in this.totals?a=this.totals[n]:this.totals[n]=0;let i=V(()=>ee(this.totals[n],P(s,o)));this.totals[n]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let o of this.params.metrics)this.totals[o]!=null&&(typeof this.totals[o]=="number"?t[o]=this.totals[o]/this.seen:V(()=>{let n=P(me(1,this.seen),this.totals[o]);t[o]=n,this.totals[o].dispose(),Et(t[o])}))}},bw=class extends tl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let o in t)this.history[o]==null&&(this.history[o]=[]),this.history[o].push(t[o])}async syncData(){let e=[],t=[],o=[];for(let s in this.history){let a=this.history[s];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let l=a[i];e.push(l.data()),t.push(s),o.push(i)}}let n=await Promise.all(e);for(let s=0;s<n.length;++s)this.history[t[s]][o[s]].dispose(),this.history[t[s]][o[s]]=n[s][0]}},ww=class extends tl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=rH),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");x.isNumber(this.yieldEvery)&&(this.maybeWait=_T(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,o){let n=[];this.yield!=null&&(await Ys(o),n.push(this.yield(e,t,o))),n.push(Qh()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ys(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let o=[];this.epochEnd!=null&&(await Ys(t),o.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&o.push(Qh()),await Promise.all(o)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ys(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let o=[];this.batchEnd!=null&&(await Ys(t),o.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?o.push(Qh()):x.isNumber(this.yieldEvery)&&o.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(o)}async onTrainBegin(e){this.trainBegin!=null&&(await Ys(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ys(e),await this.trainEnd(e))}};function gg(r,e){return r==null&&(r={}),r instanceof tl?[r]:Array.isArray(r)&&r[0]instanceof tl?r:dt(r).map(o=>new ww(o,e))}var lo=class{constructor(){}static registerCallbackConstructor(e,t){x.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),lo.checkForDuplicate(t),lo.constructors[e]==null&&(lo.constructors[e]=[]),lo.constructors[e].push(t)}static checkForDuplicate(e){for(let t in lo.constructors)lo.constructors[+t].forEach(n=>{if(n===e)throw new z("Duplicate callback constructor.")})}static clear(){lo.constructors={}}static createCallbacks(e){let t=[];for(let o in lo.constructors){let n=+o;e>=n&&t.push(...lo.constructors[n])}return t.map(o=>new o)}};lo.constructors={};function xg(r,e,t,o,n,s,a,i,l){let u=new bw,c=[new KT,...lo.createCallbacks(e)];r!=null&&c.push(...r),c.push(u);let p=new yw(c);return p.setParams({epochs:t,initialEpoch:o,samples:n,steps:s,batchSize:a,verbose:e,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Xr(r,e={},t=!1){return qs(r,Q.SerializationMap.getMap().classNameMap,e,"layer",t)}function Om(r,e){return V(()=>{r.dtype!=="float32"&&(r=r.asType("float32"));let t=ye(ql(r),e,!0),o=Wa(t.shape,Jt()),n=_t(so(t,o));return me(r,n)})}function Zs(r,e){return V(()=>bt(ql(pe(e,r)),-1))}function sp(r,e){return V(()=>bt(Tt(pe(e,r)),-1))}function rl(r,e){return V(()=>{let t=pe(r,e),o=lr(Tt(r),Jt(),Number.MAX_VALUE),n=Tt(me(t,o));return P(100,bt(n,-1))})}function oH(r,e){return V(()=>{let t=lr(e,Jt(),Number.MAX_VALUE),o=cr(ee(1,t)),n=lr(r,Jt(),Number.MAX_VALUE),s=cr(ee(1,n));return bt(ql(pe(o,s)),-1)})}function nH(r,e){return V(()=>{let t=so(0,pe(1,P(r,e)));return bt(ql(t),-1)})}function sH(r,e){return V(()=>{let t=so(0,pe(1,P(r,e)));return bt(t,-1)})}function iH(r,e){return V(()=>{let t=ye(P(r,e),-1),o=pr(P(pe(1,r),e),-1);return so(0,ee(1,pe(o,t)))})}function aH(r,e){return V(()=>{let t=Math.log(2),o=pe(e,r),n=pe(ee(o,Gs(P(-2,o))),t);return bt(n,-1)})}function Xl(r,e,t=!1){return V(()=>{if(t)e=Xa(e);else{let o=ye(e,e.shape.length-1,!0);e=me(e,o)}return e=lr(e,Jt(),1-Jt()),qe(ye(P(r.toFloat(),cr(e)),e.shape.length-1))})}function ip(r,e,t=!1){return V(()=>{let o=Vs(PT(r)).toInt();e=lr(e,Jt(),1-Jt());let n=e.shape,s=Ls(o,n[n.length-1]).reshape(n);return Xl(s,e,t)})}function lH(r,e){if(!x.arraysEqual(r.shape,e.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(e.shape)}`);return V(()=>{let t=e.relu(),o=e.abs().neg();return t.sub(e.mul(r)).add(o.exp().log1p())})}function ap(r,e){return V(()=>{let t;return t=lr(e,Jt(),1-Jt()),t=cr(me(t,pe(1,t))),bt(lH(r,t),-1)})}function uH(r,e){return V(()=>{let t=lr(r,Jt(),1),o=lr(e,Jt(),1);return ye(P(r,cr(me(t,o))),-1)})}function cH(r,e){return V(()=>{let t=cr(ee(Jt(),e));return bt(pe(e,P(r,t)),-1)})}function Pm(r,e){return V(()=>{let t=Om(r,-1),o=Om(e,-1),n=P(t,o);return qe(ye(n,-1))})}var Mm={meanSquaredError:Zs,meanAbsoluteError:sp,meanAbsolutePercentageError:rl,meanSquaredLogarithmicError:oH,squaredHinge:nH,hinge:sH,categoricalHinge:iH,logcosh:aH,categoricalCrossentropy:Xl,sparseCategoricalCrossentropy:ip,binaryCrossentropy:ap,kullbackLeiblerDivergence:uH,poisson:cH,cosineProximity:Pm};function yg(r){if(typeof r=="string"){if(r in Mm)return Mm[r];let e=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(e=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(e)}else return r}function Lm(r,e){return V(()=>{let t=P(.5,sr(e)),o=ia(nr(e,t),r.dtype);return bt(Ao(r,o),-1)})}function zm(r,e){return V(()=>ia(Ao(Fl(r,-1),Fl(e,-1)),"float32"))}function XT(r,e){return V(()=>_r(r.equal(1),e.equal(1)).sum().cast("float32"))}function pH(r,e){return V(()=>_r(r.equal(1),e.equal(0)).sum().cast("float32"))}function mH(r,e){return V(()=>_r(r.equal(0),e.equal(1)).sum().cast("float32"))}function _w(r,e){return V(()=>{let t=XT(r,e),o=mH(r,e),n=t.add(o);return $t(nr(n,0),t.div(n),0).cast("float32")})}function YT(r,e){return V(()=>{let t=XT(r,e),o=pH(r,e),n=t.add(o);return $t(nr(n,0),t.div(n),0).cast("float32")})}function bg(r,e){return ap(r,e)}function wg(r,e){return r.rank===e.rank&&(r=r.squeeze([r.rank-1])),e=e.argMax(-1),e.dtype!==r.dtype&&(e=e.asType(r.dtype)),Ao(r,e).asType("float32")}var fH=Zs,dH=Zs,hH=sp,gH=sp,xH=rl,yH=rl,Bm=Xl,bH=Pm,kw=ip,_g={binaryAccuracy:Lm,categoricalAccuracy:zm,precision:_w,categoricalCrossentropy:Bm,sparseCategoricalCrossentropy:kw,mse:fH,MSE:dH,mae:hH,MAE:gH,mape:xH,MAPE:yH,cosine:bH};function ZT(r){if(typeof r=="string"&&r in _g)return _g[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function Vm(r){if(Do(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let e;for(let t of Object.keys(Mm))if(Mm[t]===r){e=t;break}if(e!==void 0)return e;for(let t of Object.keys(_g))if(_g[t]===r){e=t;break}return e!==void 0?e:r.name}}function JT(r){let e={Adagrad:()=>jl.adagrad(.01),Adadelta:()=>jl.adadelta(1,.95,Jt()),Adam:()=>jl.adam(.001,.9,.999,Jt()),Adamax:()=>jl.adamax(.002,.9,.999,Jt(),0),RMSProp:()=>jl.rmsprop(.001,.9,0,Jt()),SGD:()=>jl.sgd(.01)};if(e.adagrad=e.Adagrad,e.adadelta=e.Adadelta,e.adam=e.Adam,e.adamax=e.Adamax,e.rmsprop=e.RMSProp,e.sgd=e.SGD,r in e)return e[r]();throw new z(`Unknown Optimizer ${r}`)}var QT=1*1024*1024;function Cw(r,e,t=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!vw(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(t){let o=JSON.stringify(r);o.length>QT&&console.warn(`User-defined metadata of model "${e}" is too large in size (length=${o.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${QT}.`)}}function vw(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let e=Object.keys(r);for(let t of e)if(typeof t!="string"||!vw(r[t]))return!1;return!0}else if(Array.isArray(r)){for(let e of r)if(!vw(e))return!1;return!0}else return!1;else{let e=typeof r;return e==="string"||e==="number"||e==="boolean"}}function e1(r,e,t,o=console.log){let n=_H(r),s=["Layer (type)","Output shape","Param #"];n?(e=e||65,t=t||[.45,.85,1]):(e=e||98,t=t||[.33,.55,.67,1]),t[t.length-1]<=1&&(t=t.map(c=>Math.floor(e*c)));let a;if(!n){s.push("Receives inputs"),a=[];for(let c in r.nodesByDepth)a.push(...r.nodesByDepth[c])}o("_".repeat(e)),kg(s,t,o),o("=".repeat(e));let i=r.layers;for(let c=0;c<i.length;++c)n?kH(i[c],t,o):vH(i[c],t,a,o),o((c===i.length-1?"=":"_").repeat(e));r.checkTrainableWeightsConsistency();let l=wH(r),u=op(r.nonTrainableWeights);o(`Total params: ${l+u}`),o(`Trainable params: ${l}`),o(`Non-trainable params: ${u}`),o("_".repeat(e))}function wH(r){let e;return r.collectedTrainableWeights!=null?e=op(r.collectedTrainableWeights):e=op(r.trainableWeights),e}function _H(r){let e=!0,t=[],o=[];for(let n in r.nodesByDepth)t.push(r.nodesByDepth[n]);for(let n of t){if(n.length>1||n.length===1&&n[0].inboundLayers.length>1){e=!1;break}o.push(...n)}if(e)for(let n of r.layers){let s=!1;for(let a of n.inboundNodes)if(o.indexOf(a)!==-1)if(s){e=!1;break}else s=!0;if(!e)break}return e}function kg(r,e,t=console.log){let o="";for(let n=0;n<r.length;++n)n>0&&(o=o.slice(0,o.length-1)+" "),o+=r[n],o=o.slice(0,e[n]),o+=" ".repeat(e[n]-o.length);t(o)}function kH(r,e,t){let o;try{o=JSON.stringify(r.outputShape)}catch(i){o="multiple"}let n=r.name,s=r.getClassName(),a=[`${n} (${s})`,o,r.countParams().toString()];kg(a,e,t)}function vH(r,e,t,o){let n;try{n=JSON.stringify(r.outputShape)}catch(c){n="multiple"}let s=[];for(let c of r.inboundNodes)if(!(t!=null&&t.length>0&&t.indexOf(c)===-1))for(let p=0;p<c.inboundLayers.length;++p){let m=c.inboundLayers[p].name,f=c.nodeIndices[p],d=c.tensorIndices[p];s.push(`${m}[${f}][${d}]`)}let a=r.name,i=r.getClassName(),l=s.length===0?"":s[0],u=[`${a} (${i})`,n,r.countParams().toString(),l];kg(u,e,o);for(let c=1;c<s.length;++c)kg(["","","",s[c]],e,o)}function t1(r,e,t){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&e===0&&typeof t=="string"}function Yl(r,e){if(r===null)return null;if(typeof r=="string")return sa(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],o=r.length;for(let n=0;n<o;++n){let s=r[n];t1(e,n,s)?t.push(s):t.push(Yl(s,e))}return t}else{let t={};for(let o of Object.keys(r)){let n=r[o];if(o==="name"&&typeof n=="string")t[o]=n;else{let s=sa(o);t[s]=Yl(n,s)}}return t}}function vg(r,e){if(r==null)return null;if(typeof r=="string")return Xo(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],o=r.length;for(let n=0;n<o;++n){let s=r[n];t1(e,n,s)?t.push(s):t.push(vg(s,e))}return t}else{let t={};for(let o of Object.keys(r)){let n=r[o],s=Xo(o);(o==="name"||o==="className")&&typeof n=="string"?t[s]=n:t[s]=vg(n,o)}return t}}var Zl="3.3.0";function CH(r,e){if(r.dtype==null||r.dtype===e.dtype)return e;try{return ne(e,r.dtype)}catch(t){throw new z(`The dtype of the feed (${e.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var ps=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ps)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,o){if(this.id2Value[e.id]==null)this.id2Value[e.id]=CH(e,t),this.name2Id[e.name]=e.id,o!=null&&(this.id2Mask[e.id]=o);else throw new z(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Kr){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Kr){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Te(this.id2Mask)}},Iw={},r1={};function Jl(r,e,t,o){let n=t==null?!1:t.training,s=Array.isArray(r),a=s?r:[r],i=a.map(d=>d.name),l=[],u=e.names();for(let d of i)u.indexOf(d)!==-1?l.push(e.getValue(d)):l.push(null);o!=null&&(o.maxNumTensors=-Infinity,o.minNumTensors=Infinity);let c=i.join(",")+"|"+e.names().join(","),p,m;if(Iw[c]==null){let d=IH(a,e);p=d.sorted,m=d.recipientCounts,Iw[c]=p,r1[c]=m}p=Iw[c],m={},n||Object.assign(m,r1[c]);let f=new ps(e);for(let d=0;d<p.length;++d){if(o!=null){let O=im().numTensors;O>o.maxNumTensors&&(o.maxNumTensors=O),O<o.minNumTensors&&(o.minNumTensors=O)}let h=p[d],g=h.sourceLayer;if(g instanceof Xs)continue;let y=[],b=[],w=[],_=!1;for(let O of h.inputs){let M=f.getValue(O),G=f.getMask(O);y.push(M),b.push(G),G!=null&&(_=!0),n||(m[O.name]--,m[O.name]===0&&!e.hasKey(O)&&i.indexOf(O.name)===-1&&!M.isDisposed&&O.sourceLayer.stateful!==!0&&w.push(M))}_&&(t=t||{},t.mask=b[0]);let k=dt(g.apply(y,t)),D=null;g.supportsMasking&&(D=g.computeMask(y,b));let T=NH(h),R=Array.isArray(T)?T:[T];for(let O=0;O<R.length;++O){f.hasKey(R[O])||f.add(R[O],k[O],Array.isArray(D)?D[0]:D);let M=i.indexOf(R[O].name);M!==-1&&(l[M]=k[O])}n||Te(w)}return f.disposeMasks(),s?l:l[0]}function IH(r,e){x.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let t=[],o={};if(r.length===1){let n=o1(r[0],e);t=n.sorted,o=n.recipientMap}else{let n=new Set;for(let s of r){let{sorted:a,recipientMap:i}=o1(s,e);for(let l of a)n.has(l.name)||(t.push(l),n.add(l.name));for(let l in i)o[l]==null&&(o[l]=new Set),i[l].forEach(u=>o[l].add(u))}}return{sorted:t,recipientCounts:SH(o)}}function SH(r){let e={};for(let t in r)e[t]=r[t].size;return e}function o1(r,e){let t=new Set,o=[],n={};for(let i of e.names())t.add(i);let s=[],a=[];for(s.push(r);s.length>0;){let i=s[s.length-1];if(t.has(i.name)){s.pop();continue}let l=a[a.length-1]===s.length-1;if(i.inputs.length===0||l)s.pop(),o.push(i),t.add(i.name),l&&a.pop();else{a.push(s.length-1);for(let u of i.inputs)n[u.name]==null&&(n[u.name]=new Set),n[u.name].add(i.name),!t.has(u.name)&&s.push(u)}}return{sorted:o,recipientMap:n}}function NH(r){let e;if(r.sourceLayer.inboundNodes.length===1)e=r.sourceLayer.output;else{let t=null;for(let o=0;o<r.sourceLayer.inboundNodes.length;++o)for(let n of r.sourceLayer.inboundNodes[o].outputTensors)if(n.id===r.id){t=o;break}e=r.sourceLayer.getOutputAt(t)}return e}var $o=class extends Oe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Qa(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Zo(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);Zo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,_=b.nodeIndex,k=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(k)}for(let b of this.inputs){let w=b.sourceLayer,_=b.nodeIndex,k=b.tensorIndex;Do(_===0,"input layer has >1 nodes"),Do(k===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(k)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof Xs))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},o={},n={},s={},a={},i=[],l=(b,w,_,k,D,T)=>{(k==null||D==null||T==null)&&(k=b.sourceLayer,D=b.nodeIndex,T=b.tensorIndex);let R=k.inboundNodes[D];if(_.indexOf(R)!==-1)throw new Rr(`The tensor ${b.name} at layer "${k.name}" is part of a cycle.`);if(w.indexOf(R)!==-1)return;this.containerNodes.add($o.nodeKey(k,D)),k.id in a||(a[k.id]=Object.keys(a).length),_.indexOf(R)===-1&&_.push(R);let O=R.inboundLayers.length;for(let M=0;M<O;M++){let G=R.inputTensors[M],W=R.inboundLayers[M],j=R.nodeIndices[M],H=R.tensorIndices[M];l(G,w,_,W,j,H)}for(w.push(R);_.indexOf(R)>=0;)_.splice(_.indexOf(R),1);i.push(R)},u=[],c=[];for(let b of this.outputs)l(b,u,c);let p=i.slice().reverse();for(let b of p){o[b.id]=b,b.id in t||(t[b.id]=0);let w=t[b.id],_=n[b.outboundLayer.id]==null?0:n[b.outboundLayer.id];w=Math.max(w,_),n[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=w;for(let k=0;k<b.inboundLayers.length;k++){let D=b.inboundLayers[k],T=b.nodeIndices[k],R=D.inboundNodes[T],O=t[R.id]==null?0:t[R.id];t[R.id]=Math.max(w+1,O),o[R.id]=R}}let m={};for(let b in t){let w=t[b];w in m||(m[w]=[]),m[w].push(o[b])}let f={};for(let b in n){let w=n[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(wm);this.layers=[];for(let b of d){let w=f[b];w.sort((_,k)=>{let D=a[_.id],T=a[k.id];return D<T?-1:D>T?1:0});for(let _ of w)_ instanceof $o&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(wm);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let _=w.outboundLayer;if(_!=null){for(let k of w.inputTensors)if(h.indexOf(k)===-1)throw new Rr(`Graph disconnected: cannot obtain value for tensor ${k} at layer "${_.name}". The following previous layers were accessed without issue: ${g}`);for(let k of w.outputTensors)h.push(k);g.push(_.name)}}this.nodesByDepth=m;let y=this.layers.map(b=>b.name);for(let b of y){let w=y.filter(_=>_===b).length;if(w!==1)throw new Rr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(y))}this.outboundNodes=[],this.inboundNodes=[],new el({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(o=>o.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.layers)t.push(...o.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let o={},n=0;for(let a of this.layers)for(let i of a.weights){if(o[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);o[i.originalName]=i,n++}let s=[];for(let a in e){let i=a;if(o[a]==null){let l=a.split("/");i=l.slice(0,-2).concat([l[l.length-1]]).join("/")}if(o[i]!=null)s.push([o[i],e[a]]);else if(t)throw new z(`Provided weight data has no target variable: ${a}`);delete o[i]}if(t){let a=[];for(let i in o)a.push(i);if(a.length>0)throw new z(`${a.length} of ${n} weights are not set: ${a}`)}np(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Zl}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let o=vg(this.updatedConfig());return t?JSON.stringify(o):o}call(e,t){return V(()=>{e=dt(e);let o=new ps;for(let n=0;n<this.inputs.length;++n)o.add(this.inputs[n],e[n]);return Jl(this.outputs,o,t)})}computeMask(e,t){return V(()=>{e=dt(e);let o;return t==null?o=Ko(null,e.length):o=dt(t),this.runInternalGraph(e,o)[1]})}computeOutputShape(e){let t=rp(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let o={};for(let i=0;i<t.length;i++){let l=this.inputLayers[i],u=t[i],c=l.name+"_0_0";o[c]=u}let n=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(wm);if(n.length>1)for(let i of n){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<u.inboundLayers.length;h++){let g=u.inboundLayers[h],y=u.nodeIndices[h],b=u.tensorIndices[h],w=`${g.name}_${y}_${b}`,_=o[w];p.push(_)}let m=c.computeOutputShape(dr(p)),f=rp(m),d=c.inboundNodes.indexOf(u);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;o[g]=f[h]}}}let s=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let l=this.outputLayers[i],u=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],p=`${l.name}_${u}_${c}`;a.push(p)}for(let i=0;i<a.length;i++){let l=a[i];Do(l in o),s.push(o[l])}return dr(s)}runInternalGraph(e,t){t==null&&(t=Ko(null,e.length));let o={};for(let l=0;l<this.inputs.length;++l){let u=this.inputs[l],c=e[l],p=t[l];o[u.id]=[c,p]}let n=Object.keys(this.nodesByDepth).map(l=>parseInt(l,10)).sort(wm);for(let l of n){let u=this.nodesByDepth[l];for(let c of u){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in o&&d.push(o[h.id]);if(d.length===m.length){let h={},g,y,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[_,k]=d[0];h.mask==null&&(h.mask=k),b=dt(p.call(_,h)),w=dt(p.computeMask(_,k)),g=[_],y=[k]}else g=d.map(_=>_[0]),y=d.map(_=>_[1]),h.mask==null&&(h.mask=y),b=dt(p.call(g,h)),w=dt(p.computeMask(g,y));if(p.activityRegularizer)throw new Ne("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<f.length;++_){let k=f[_],D=b[_],T=w[_];o[k.id]=[D,T]}}}}let s=[],a=[],i=[];for(let l of this.outputs){Do(l.id in o,`Could not compute output ${l.name} : ${l.id}`);let[u,c]=o[l.id];i.push(u.shape),s.push(u),a.push(c)}return[s,a,i]}buildNodeConversionMap(e){let t={},o;for(let n of this.layers){o=n instanceof $o?1:0;for(let s=0;s<n.inboundNodes.length;s++){let a=$o.nodeKey(n,s);this.containerNodes.has(a)&&(t[a]=o,o+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new z(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new z("Provide either a layer name or layer index");for(let o of this.layers)if(o.name===e)return o;throw new z(`No such layer: ${e}`)}calculateLosses(){return V(()=>{let e=[];for(let t of this.layers)for(let o=0;o<t.inboundNodes.length;++o){let n=$o.nodeKey(t,o);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),o=[];for(let a of this.layers){let i=a.getClassName(),l=a.getConfig(),u=[];for(let p=0;p<a.inboundNodes.length;p++){let m=a.inboundNodes[p],f=$o.nodeKey(a,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let y=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],_=$o.nodeKey(y,b),k=t[_];k==null&&(k=0),h.push([y.name,k,w,d])}u.push(h)}}}let c={};c.name=a.name,c.className=i,c.config=l,c.inboundNodes=u,o.push(c)}e.layers=o;let n=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],l=this.inputLayersNodeIndices[a],u=$o.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.inputLayersTensorIndices[a];n.push([i.name,c,p])}e.inputLayers=n;let s=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],l=this.outputLayersNodeIndices[a],u=$o.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.outputLayersTensorIndices[a];s.push([i.name,c,p])}return e.outputLayers=s,e}static fromConfig(e,t,o={},n=!1){let s={},a={};function i(g,y){g.name in a?a[g.name].push(y):a[g.name]=[y]}function l(g,y){let b=[],w;for(let _ of y){let k=_[0],D=_[1],T=_[2];if(w=_[3]==null?{}:_[3],!(k in s)){i(g,y);return}let R=s[k];if(R.inboundNodes.length<=D){i(g,y);return}let O=R.inboundNodes[D];b.push(O.outputTensors[T])}b.length>0&&g.apply(dr(b),w)}function u(g){let y=g.name,b=Xr(g,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(n),s[y]=b,g.inboundNodes.forEach(_=>{if(!(_ instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${_}`);i(b,_)})}let c=t.name,p=t.layers;for(let g of p)u(g);for(;!bT(a);)for(let g of p){let y=s[g.name];if(y.name in a){let b=a[y.name];delete a[y.name];for(let w of b)l(y,w)}}let m=[],f=[],d=t.inputLayers;for(let g of d){let y=g[0],b=g[1],w=g[2];Do(y in s);let k=s[y].inboundNodes[b].outputTensors;m.push(k[w])}let h=t.outputLayers;for(let g of h){let y=g[0],b=g[1],w=g[2];Do(y in s);let k=s[y].inboundNodes[b].outputTensors;f.push(k[w])}return new e({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function TH(r,e,t){let o=e.length;if(r==null||Array.isArray(r)&&r.length===0)return e.map(n=>null);if(o===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&e[0]in r?[r[e[0]]]:[r];if(Array.isArray(r)){if(r.length!==o)throw new Error(`Provided ${t} is an array of ${r.length} element(s), but the model has ${o} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let n=[];return e.forEach(s=>{s in r?n.push(r[s]):n.push(null)}),n}else throw new Error(`The model has multiple (${o}) outputs, so ${t} must be either an array with ${o} elements or an object with ${e} keys. Provided ${t} not understood: ${JSON.stringify(r)}`)}function Cg(r,e){return TH(r,e,"classWeight")}async function Ig(r,e,t,o){if(e!=null||o!=null)throw new Error("Support sampleWeight is not implemented yet");if(t!=null){let n=V(()=>{if(r.shape.length===1)return r.clone();if(r.shape.length===2)if(r.shape[1]>1){let i=1;return r.argMax(i)}else{if(r.shape[1]===1)return r.reshape([r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await n.data());Te(n);let a=[];return s.forEach(i=>{if(t[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);a.push(t[i])}),jt(a,"float32")}else return null}function n1(r,e){return P(r,e)}var AH=32;function i1(r,e){let t,o,n=e;t=n.xs,o=n.ys,x.assert(t!=null&&o!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${e}`);let s=s1("input",r.inputNames,t),a=s1("output",r.outputNames,o),i=s[0].shape[0];x.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),x.assert(a.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let l=0;l<s.length;l++)x.assert(s[l].shape[0]===i,()=>`Batch size mismatch: input ${r.inputNames[l]} has ${s[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);for(let l=0;l<a.length;l++)x.assert(a[l].shape[0]===i,()=>`Batch size mismatch: output ${r.outputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);return{xs:s,ys:a}}function s1(r,e,t){if(t instanceof Ve)return[t];if(Array.isArray(t))return x.assert(t.length===e.length,()=>`Received an array of ${t.length} Tensors, but expected ${e.length} to match the ${r} keys ${e}.`),t;{let o=[];for(let n of e){if(t[n]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${n}'.`);o.push(t[n])}return o}}function EH(r){if(r.length===3)throw new Ne("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function l1(r,e,t){let o=t.batchesPerEpoch!=null;if(x.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),x.assert(t!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),x.assert(t.epochs!=null&&t.epochs>0&&Number.isInteger(t.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${t.epochs}`),x.assert(!o||t.batchesPerEpoch>0&&Number.isInteger(t.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${t.batchesPerEpoch}`),x.assert(t.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let n=t.validationData!=null,s,a;if(n)if(a1(t.validationData))x.assert(t.validationBatches==null||t.validationBatches>0&&Number.isInteger(t.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${t.validationBatches}`);else{let g=EH(t.validationData);s=g.xs,a=g.ys}let i=r.makeTrainFunction(),l=r.getDedupedMetricsNames(),u;n?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=gg(t.callbacks,t.yieldEvery),p=t.verbose==null?1:t.verbose,{callbackList:m,history:f}=xg(c,p,t.epochs,null,null,DH(e,t),null,n,u);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=t.initialEpoch==null?0:t.initialEpoch,h=await e.iterator();for(;d<t.epochs;){let g={};await m.onEpochBegin(d);let y=0,b=0;for(o||(h=await e.iterator());o?y<t.batchesPerEpoch:!0;){let w=await h.next();if(o&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${t.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${t.batchesPerEpoch*t.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:_,ys:k}=i1(r,w.value),D={};D.batch=b,D.size=_[0].shape[0],await m.onBatchBegin(b,D);let T=[];if(t.classWeight!=null){let M=Cg(t.classWeight,r.outputNames);for(let G=0;G<M.length;++G)T.push(await Ig(k[G],null,M[G]))}let R=_.concat(k).concat(T),O=i(R);Te(R);for(let M=0;M<l.length;++M){let G=l[M],W=O[M];D[G]=W,Et(W)}await m.onBatchEnd(b,D),hg(D),b++,y++}if(o?y>=t.batchesPerEpoch:w.done){if(n){let _;a1(t.validationData)?_=dt(await r.evaluateDataset(t.validationData,{batches:t.validationBatches})):_=dt(r.evaluate(s,a,{batchSize:t.validationBatchSize==null?AH:t.validationBatchSize,verbose:0}));for(let k=0;k<r.metricsNames.length;++k)g[`val_${r.metricsNames[k]}`]=_[k]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function DH(r,e){let t=null;return e.batchesPerEpoch!=null?t=e.batchesPerEpoch:Number.isFinite(r.size)&&(t=r.size),t}function a1(r){return typeof r.iterator=="function"}function $H(r){return typeof r.next=="function"}async function u1(r,e,t){t=t||{};let o=t.batches!=null,n=r.testFunction,s=[];if(t.verbose>0)throw new Ne("Verbose mode is not implemented yet.");x.assert(!o||t.batches>0&&Number.isInteger(t.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(t.batches)}`);let a=$H(e)?e:await e.iterator(),i=0,l=0;for(;o?l<t.batches:!0;){let u=await a.next();if(s=V(()=>{if(u.value){let{xs:c,ys:p}=i1(r,u.value),m=c.concat(p),f=V(()=>n(m));if(Te(m),l===0)for(let h=0;h<f.length;++h)s.push(le(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],y=s[h];s[h]=V(()=>ee(s[h],P(d,g))),l>0&&Te(y)}Te(f),i+=d,++l}return s}),u.done){o&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${t.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=me(s[u],i),Te(c)}return dr(s)}function Ng(r){x.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function lp(r,e,t){return r==null?[null]:Array.isArray(r)?r.map(o=>la(o,e,t-e)):la(r,e,t-e)}function Sg(r,e){return V(()=>r==null?null:Array.isArray(r)?r.map(t=>Sg(t,e)):lg(r,e.dtype==="int32"?e:e.toInt()))}function Tg(r,e){let t=[],o=0,n=null;for(;o<r;)n=o+e,n>=r&&(n=r),t.push([o,n]),o=n;return t}async function RH(r,e,t,o,n,s,a,i,l,u,c,p,m,f,d){n==null&&(n=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(l!=null&&u!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(t,n,f,"steps_per_epoch"),y;g!=null&&(y=Fr(0,g)),a==null&&(a=1);let{callbackList:b,history:w}=xg(i,a,s,m,g,f,n,h,p);b.setModel(r),r.history=w,await b.onTrainBegin(),r.stopTraining_=!1;for(let _=m;_<s;++_){await b.onEpochBegin(_);let k={};if(f!=null)throw new Ne("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Ne("batch shuffling is not implemneted yet");c&&x.shuffle(y);let D=jt(y),T=Tg(g,n);for(let R=0;R<T.length;++R){let O={};if(await b.onBatchBegin(R,O),V(()=>{let M=T[R][0],G=T[R][1],W=la(D,M,G-M);O.batch=R,O.size=G-M;let j=Sg(t,W),H=e(j);for(let q=0;q<o.length;++q){let X=o[q],oe=H[q];O[X]=oe,Et(oe)}if(R===T.length-1&&h){let q=r.testLoop(l,u,n);for(let X=0;X<o.length;++X){let oe=o[X],Y=q[X];Et(Y),k["val_"+oe]=Y}}}),await b.onBatchEnd(R,O),hg(O),r.stopTraining_)break}D.dispose()}if(await b.onEpochEnd(_,k),r.stopTraining_)break}return await b.onTrainEnd(),await r.history.syncData(),r.history}async function c1(r,e,t,o={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let n,s,a,i,l,u,c;try{let p=o.batchSize==null?32:o.batchSize;Ng(p);let m=!1,f=await r.standardizeUserData(e,t,o.sampleWeight,o.classWeight,m,p);n=f[0],s=f[1],c=f[2];let d=!1,h;if(o.validationData!=null&&o.validationData.length>0){if(d=!0,o.validationData.length===2)a=o.validationData[0],i=o.validationData[1];else throw o.validationData.length===3?new Ne("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${o.validationData} is invalid.`);let T=!0,R=await r.standardizeUserData(a,i,null,null,T,p);l=R[0],u=R[1],h=l.concat(u)}else if(o.validationSplit!=null&&o.validationSplit>0&&o.validationSplit<1){d=!0;let T=Math.floor(n[0].shape[0]*(1-o.validationSplit)),R=n[0].shape[0];l=lp(n,T,R),n=lp(n,0,T),u=lp(s,T,R),s=lp(s,0,T),h=l.concat(u)}else o.validationSteps!=null&&(d=!0);let g=n.concat(s).concat(c);r.checkTrainableWeightsConsistency();let y=r.makeTrainFunction(),b=r.getDedupedMetricsNames(),w,_;d?(r.makeTestFunction(),w=r.testFunction,_=b.slice().concat(b.map(T=>"val_"+T))):(w=null,h=[],_=b.slice());let k=gg(o.callbacks,o.yieldEvery);return await RH(r,y,g,b,p,o.epochs,o.verbose,k,w,h,o.shuffle,_,o.initialEpoch,null,null)}finally{r.isTraining=!1,ol(n,e),ol(s,t),ol(l,a),ol(u,i),c!=null&&Te(c)}}function Nw(r){let e=[];r instanceof Ve&&(r=[r]);for(let t=0;t<r.length;++t){let o=r[t];if(o.rank===1)e.push(aa(o,1));else{if(o.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");e.push(o)}}return e}function ol(r,e){if(r==null)return;let t=[];if(e instanceof Ve)t.push(e.id);else if(Array.isArray(e))e.forEach(n=>t.push(n.id));else if(e!=null)for(let n in e){let s=e[n];t.push(s.id)}let o=[];if(r instanceof Ve)t.indexOf(r.id)===-1&&o.push(r);else if(Array.isArray(r))r.forEach(n=>{t.indexOf(n.id)===-1&&o.push(n)});else if(r!=null)for(let n in r){let s=r[n];t.indexOf(s.id)===-1&&o.push(s)}o.forEach(n=>{n.isDisposed||n.dispose()})}function FH(r){return r instanceof Ve}function Sw(r){return Array.isArray(r)}function p1(r){return!FH(r)&&!Sw(r)}function m1(r,e,t,o=!0,n=""){if(e==null||e.length===0){if(r!=null){let a=!1;if(Sw(r)&&r.length>0)a=!0;else if(p1(r)){for(let i in r)if(r.hasOwnProperty(i)){a=!0;break}}else a=!0;if(a)throw new z(`Error when checking model ${n} expected no data, but got ${r}`)}return[]}if(r==null)return e.map(a=>null);let s;if(p1(r)){r=r,s=[];for(let a of e){if(r[a]==null)throw new z(`No data provided for "${a}". Need data for each key in: ${e}`);s.push(r[a])}}else if(Sw(r)){if(r=r,r.length!==e.length)throw new z(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${e.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,e.length>1)throw new z(`The model ${n} expects ${e.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=Nw(s),t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${n}: expected ${e[a]} to have ${t[a].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<t[a].length;++l){if(l===0&&!o)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c>=0&&u!==c)throw new z(`Error when checking ${n}: expected ${e[a]} to have shape [${t[a]}], but got array with shape [${i.shape}].`)}}return s}function OH(r,e,t){let o=Zo(r.map(s=>s.shape[0]));o.sort();let n=Zo(e.map(s=>s.shape[0]));if(n.sort(),o.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(n.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(o.length>0&&n.length>0&&!x.arraysEqual(o,n))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${o[0]} input sample(s) and ${n[0]} target sample(s).`)}function PH(r,e,t){let o=[Zs,ap,Xl];for(let n=0;n<r.length;++n){let s=r[n],a=e[n],i=t[n];if(a!=null){if(a===Xl&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(o.indexOf(a)!==-1){let l=s.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],m=u[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function f1(r,e,t,o=!0,n=""){let s;if(Array.isArray(r)){if(r.length!==e.length)throw new z(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${e.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(e.length>1)throw new z(`The model expects ${e.length} ${n} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${n}: expected ${e[a]} to have ${t[a].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<t[a].length;++l){if(l===0&&!o)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c!==u)throw new z(`Error when checking ${n}: expected ${e[a]} to have shape ${JSON.stringify(t[a])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function MH(r,e){if(r==null||Array.isArray(r)&&r.length===0)return e.map(o=>[]);let t;if(typeof r=="string"||typeof r=="function")t=[r];else if(Array.isArray(r)||typeof r=="object")t=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(t))return e.map(o=>t);{let o=[];for(let n of e){let s=t.hasOwnProperty(n)?t[n]:[];Array.isArray(s)||(s=[s]),o.push(s)}return o}}var LH="layers-model",Ro=class extends $o{constructor(e){super(e);this.isTraining=!1}summary(e,t,o=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");e1(this,e,t,o)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=JT(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof jr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new z(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(yg(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>yg(i))}else{let a=yg(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],l=this.outputNames[a];this.feedOutputNames.push(l),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let o=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],us("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(o.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let n=MH(e.metrics,this.outputNames),s=(a,i,l)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([l,a])};us("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(o.indexOf(a)!==-1)continue;let i=n[a];(u=>{let c="",p,m,f;for(let d of u){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[a];g[g.length-1]===1||this.lossFunctions[a]===ap?["accuracy","acc"].indexOf(d)!==-1?m=Lm:["crossentropy","ce"].indexOf(d)!==-1&&(m=bg):this.lossFunctions[a]===ip?["accuracy","acc"].indexOf(d)!==-1?m=wg:["crossentropy","ce"].indexOf(d)!==-1&&(m=kw):["accuracy","acc"].indexOf(d)!==-1?m=zm:["crossentropy","ce"].indexOf(d)!==-1&&(m=Bm);let y;["accuracy","acc"].indexOf(d)!==-1?y="acc":["crossentropy","ce"].indexOf(d)!==-1&&(y="ce"),f=m,p=c+y}else f=ZT(d),p=c+Vm(d);let h;us(p,()=>{h=f}),s(a,p,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,o={}){let n=o.batchSize==null?32:o.batchSize;Ng(n);let s=!0,a=this.standardizeUserDataXY(e,t,s,n);try{let i=a[0].concat(a[1]);this.makeTestFunction();let l=this.testFunction,u=this.testLoop(l,i,n,o.verbose,o.steps);return dr(u)}finally{ol(a[0],e),ol(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),u1(this,e,t)}checkNumSamples(e,t,o,n="steps"){let s;if(o!=null){if(s=null,t!=null)throw new z(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let o=Array.isArray(t),n=o?t:[t],s=this.retrieveSymbolicTensors(n),a=new ps;if(e instanceof Ve&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let l=0;l<this.inputs.length;++l)a.add(this.inputs[l],e[l])}else for(let l of this.inputs){let u=e[l.name];if(u==null)throw new z(`No value is provided for the model's input ${l.name}`);a.add(l,u)}let i=Jl(s,a);return o?i:i[0]}retrieveSymbolicTensors(e){let t=Ko(null,e.length),o=e.length;for(let n of this.layers){let s=Array.isArray(n.output)?n.output:[n.output],a=s.map(i=>i.name);for(let i=0;i<e.length;++i){let l=a.indexOf(e[i]);if(l!==-1&&(t[i]=s[l],o--),o===0)break}if(o===0)break}if(o>0){let n=[];throw t.forEach((s,a)=>{s==null&&n.push(e[a])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,o=!1){return V(()=>{let n=this.checkNumSamples(e);if(o)throw new Ne("Verbose predictLoop() is not implemented yet.");let s=Tg(n,t),a=this.outputs.map(i=>[]);for(let i=0;i<s.length;++i)V(()=>{let u=s[i][0],c=s[i][1],p=lp(e,u,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new ps(m);return Jl(this.outputs,f)}).forEach((u,c)=>a[c].push(u));return dr(a.map(i=>Je(i,0)))})}predict(e,t={}){let o=Nw(e);f1(o,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return Ng(n),this.predictLoop(o,n)}finally{ol(o,e)}}predictOnBatch(e){f1(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,o=!0,n){if(this.optimizer_==null)throw new Rr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===ip?s.push(i.slice(0,i.length-1).concat([1])):s.push(i)}if(e=m1(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=m1(t,this.feedOutputNames,s,!1,"target"),OH(e,t,null),PH(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,o,n,s=!0,a){let[i,l]=this.standardizeUserDataXY(e,t,s,a);if(o!=null)throw new Error("sample weight is not supported yet.");let u=null;if(n!=null){let c=Cg(n,this.outputNames);u=[];for(let p=0;p<c.length;++p)u.push(await Ig(l[p],null,c[p]))}return[i,l,u]}testLoop(e,t,o,n=0,s){return V(()=>{let a=this.checkNumSamples(t,o,s,"steps"),i=[];if(n>0)throw new Ne("Verbose mode is not implemented yet.");if(s!=null)throw new Ne("steps mode in testLoop() is not implemented yet");{let l=Tg(a,o),u=jt(Fr(0,a));for(let c=0;c<l.length;++c){let p=l[c][0],m=l[c][1],f=la(u,p,m-p),d=Sg(t,f),h=e(d);if(c===0)for(let g=0;g<h.length;++g)i.push(le(0));for(let g=0;g<h.length;++g){let y=h[g];i[g]=ee(i[g],P(m-p,y))}}for(let c=0;c<i.length;++c)i[c]=me(i[c],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let o=0;o<e.length;++o){let n=e[o],s=n;cw(e,n)>1&&(s+=`_${cw(e.slice(0,o),n)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],o=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:o[h]});let m=new ps(p),f=Jl(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let y=this.lossFunctions[h](n[h],f[h]);s[h]!=null&&(y=n1(y,s[h]));let b=bt(y);t.push(b),h===0?d=y:d=ee(d,y)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=t[h];else{let y=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=bt(y(n[b],f[b]))}Et(g),a.push(g)}return d=bt(d),this.calculateLosses().forEach(h=>{d=ee(d,h)}),d},l=this.collectedTrainableWeights.map(p=>p.read()),u=!0;return[this.optimizer_.minimize(i,u,l)].concat(a)}}makeTestFunction(){this.testFunction=e=>V(()=>{let t=[],o,n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:n[u]});let i=new ps(a),l=Jl(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let c=this.lossFunctions[u],p=bt(c(s[u],l[u]));u===0?o=p:o=ee(o,p),t.push(o)}for(let u=0;u<this.metricsTensors.length;++u){let c=this.metricsTensors[u][0],p=this.metricsTensors[u][1],m=bt(c(s[p],l[p]));t.push(m)}return t})}async fit(e,t,o={}){return c1(this,e,t,o)}async fitDataset(e,t){return l1(this,e,t)}async trainOnBatch(e,t){let o=await this.standardizeUserData(e,t),n=o[0],s=o[1],i=this.makeTrainFunction()(n.concat(s)),l=[];for(let u of i){let c=await u.data();l.push(c[0])}return Te(i),dr(l)}getNamedWeights(e){let t=[],o=e!=null&&e.trainableOnly,n=o?this.trainableWeights:this.weights,s=this.getWeights(o);for(let a=0;a<n.length;++a)o&&!n[a].trainable||t.push({name:n[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=im().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-im().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Xo(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Xo(t))}else{let t=Object.keys(this.loss);e={};let o=this.loss;for(let n of t)if(typeof o[n]=="string")e[n]=Xo(o[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Xo(Vm(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Xo(Vm(e)));{let e={};for(let t in this.metrics)e[t]=Xo(Vm(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Yl(e.optimizer_config),o=Xr(t),n;if(typeof e.loss=="string")n=sa(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(a=>sa(a));else if(e.loss!=null){n={};for(let a in e.loss)n[a]=sa(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>sa(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=sa(e.metrics[a])}this.compile({loss:n,metrics:s,optimizer:o})}async save(e,t){if(typeof e=="string"){let u=Ar.getSaveHandlers(e);if(u.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new z(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let o=await Ar.encodeWeights(this.getNamedWeights(t)),n=!1,s=null,i={modelTopology:this.toJSON(s,n),format:LH,generatedBy:`TensorFlow.js tfjs-layers v${Zl}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:c,specs:p}=await Ar.encodeWeights(await this.optimizer.getWeights(),u);o.specs.push(...p),o.data=Ar.concatenateArrayBuffers([o.data,c])}if(this.userDefinedMetadata!=null){let u=!0;Cw(this.userDefinedMetadata,this.name,u),i.userDefinedMetadata=this.userDefinedMetadata}return i.weightData=o.data,i.weightSpecs=o.specs,e.save(i)}setUserDefinedMetadata(e){Cw(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Ro.className="Model";Q.registerClass(Ro);var Tw=class extends Ro{};Tw.className="Functional";Q.registerClass(Tw);async function d1(r,e){"modelTopology"in r||(r={modelTopology:r}),r=r;let t=r.modelTopology;t.model_config!=null&&(t=t.model_config);let o=Yl(t),n=Xr(o,e);if(r.weightsManifest!=null){let s=await Ar.loadWeights(r.weightsManifest,r.pathPrefix,n.weights.map(i=>i.originalName)),a={};for(let i of n.weights)a[i.originalName]=s[i.originalName];n.loadWeights(a),Te(s)}return n}async function h1(r,e){if(e==null&&(e={}),typeof r=="string"){let t=Ar.getLoadHandlers(r,e);if(t.length===0)t.push(Ar.browserHTTPRequest(r,e));else if(t.length>1)throw new z(`Found more than one (${t.length}) load handlers for URL '${r}'`);r=t[0]}return zH(r,void 0,e)}async function zH(r,e,t){if(t==null&&(t={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let o=await r.load(),n=o.modelTopology;n.model_config!=null&&(n=n.model_config);let s=t.strict==null?!0:t.strict,a=o.weightData!=null&&o.weightSpecs!=null&&s,i=Xr(Yl(n),e,a),l=o.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),o.userDefinedMetadata!=null&&i.setUserDefinedMetadata(o.userDefinedMetadata),o.weightData!=null){if(o.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=BH(o.weightData,o.weightSpecs);i.loadWeights(u,s),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Te(u),Te(c.map(p=>p.tensor))}return i}function BH(r,e){let t=Ar.decodeWeights(r,e),o={},n=[];return e.forEach(s=>{s.group==="optimizer"?n.push({name:s.name,tensor:t[s.name]}):o[s.name]=t[s.name]}),{modelWeights:o,optimizerWeights:n}}var ua=class extends Ro{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Qa("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(o=>o<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof ua||e instanceof Ro,o;if(t){if(o=e,o.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(o.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=dg({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=o.outputs,this.inputs=o.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=xw(this.outputs[0])}this.inboundNodes=[],new el({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ko(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Ye(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Ro({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,o=console.log){this.built||this.build(),super.summary(e,t,o)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,o={}){if(!this.built)throw new Rr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,o)}async evaluateDataset(e,t){if(!this.built)throw new Rr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,o={}){if(!this.built)throw new Rr("The model needs to be compiled before being used.");return this.model.fit(e,t,o)}async fitDataset(e,t){if(!this.built)throw new Rr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,o={},n=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=t}else x.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof ua))throw new Ne(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let l of s){let c=Xr(l,void 0,n);n&&c.setFastWeightInitDuringBuild(!0),i.add(c)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let o={};o.className=t.getClassName(),o.config=t.getConfig(),e.push(o)}return{name:this.name,layers:e}}};ua.className="Sequential";Q.registerClass(ua);function VH(r){return new Ro(r)}function GH(r){return new ua(r)}function WH(r,e){return e==null&&(e={}),h1(r,e)}function Aw(r){return dg(r)}function UH(r,e){lo.registerCallbackConstructor(r,e)}var uo=class extends Q.Serializable{getConfig(){return{}}},Ew=class extends uo{apply(e,t=1){return LT(e,t)}};Ew.className="elu";Q.registerClass(Ew);var Dw=class extends uo{apply(e){return Mc(e)}};Dw.className="selu";Q.registerClass(Dw);var $w=class extends uo{apply(e){return Dr(e)}};$w.className="relu";Q.registerClass($w);var Rw=class extends uo{apply(e){return V(()=>Ws(6,Dr(e)))}};Rw.className="relu6";Q.registerClass(Rw);var Fw=class extends uo{apply(e){return e}};Fw.className="linear";Q.registerClass(Fw);var Ow=class extends uo{apply(e){return ro(e)}};Ow.className="sigmoid";Q.registerClass(Ow);var Pw=class extends uo{apply(e){return BT(e)}};Pw.className="hardSigmoid";Q.registerClass(Pw);var Mw=class extends uo{apply(e){return Gs(e)}};Mw.className="softplus";Q.registerClass(Mw);var Lw=class extends uo{apply(e){return zT(e)}};Lw.className="softsign";Q.registerClass(Lw);var zw=class extends uo{apply(e){return ea(e)}};zw.className="tanh";Q.registerClass(zw);var Gm=class extends uo{apply(e,t=-1){return Xa(e,t)}};Gm.className="softmax";Q.registerClass(Gm);var Bw=class extends uo{apply(e,t=-1){return Dc(e,t)}};Bw.className="logSoftmax";Q.registerClass(Bw);var Vw=class extends uo{apply(e,t=1){return V(()=>ro(e.mul(t)).mul(e))}};Vw.className="swish";Q.registerClass(Vw);function ms(r){return r.getClassName()}function Gw(r,e={}){return qs(r,Q.SerializationMap.getMap().classNameMap,e,"activation")}function fs(r){if(r==null){let e={};return e.className="linear",e.config={},Gw(e)}if(typeof r=="string"){let e={};return e.className=r,e.config={},Gw(e)}else return r instanceof uo?r:Gw(r)}function Ww(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var Uw=class extends Q.Serializable{},Ql=class extends Uw{constructor(e){super();Ww(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return V(()=>{let t=wt([1]);return this.hasL1&&(t=ee(t,ye(P(this.l1,Tt(e))))),this.hasL2&&(t=ee(t,ye(P(this.l2,ql(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Ql.className="L1L2";Q.registerClass(Ql);function g1(r){return Ww(r),new Ql({l1:r!=null?r.l1:null,l2:0})}function x1(r){return Ww(r),new Ql({l2:r!=null?r.l2:null,l1:0})}var y1={l1l2:"L1L2"};function st(r){return jc(r)}function b1(r,e={}){return qs(r,Q.SerializationMap.getMap().classNameMap,e,"regularizer")}function ht(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in y1?y1[r]:r,config:{}};return b1(t)}else return r instanceof Uw?r:b1(r)}var Wm=class extends Oe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Fe(e);let o=Dr(e);return this.maxValue!=null&&(o=lr(o,0,this.maxValue)),o}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Wm.className="ReLU";Q.registerClass(Wm);var Um=class extends Oe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Fe(e);return Ua(o,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Um.className="LeakyReLU";Q.registerClass(Um);var jm=class extends Oe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=ht(e.alphaRegularizer),this.alphaConstraint=Ft(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Ye(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let o={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)o[n]=e[n];this.inputSpec=[new At({ndim:e.length,axes:o})],this.built=!0}call(e,t){return e=Fe(e),Ka(e,this.alpha.read())}getConfig(){let e={alphaInitializer:kt(this.alphaInitializer),alphaRegularizer:st(this.alphaRegularizer),alphaConstraint:Rt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};jm.className="PReLU";Q.registerClass(jm);var Hm=class extends Oe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Ne(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Fe(e);return Bs(o)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Hm.className="ELU";Q.registerClass(Hm);var qm=class extends Oe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let o=Fe(e);return o.mul(ia(o.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};qm.className="ThresholdedReLU";Q.registerClass(qm);var Km=class extends Oe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Gm().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let o=Fe(e);return this.softmax(o,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Km.className="Softmax";Q.registerClass(Km);function nl(r,e,t){if(typeof r=="number")return Ko(r,e);if(r.length!==e)throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${r.length} elements.`);for(let o=0;o<e;++o){let n=r[o];if(!RT(n))throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${JSON.stringify(r)} including a non-integer number ${n}`)}return r}function co(r,e,t,o,n=1){if(r==null)return r;let s=e+(e-1)*(n-1),a;return t==="same"?a=r:a=r-s+1,Math.floor((a+o-1)/o)}function Xm(r,e,t,o){if(r==null)return null;if(o==="valid")r=r*e+cs([t-e,0]);else if(o==="same")r=r*e;else throw new z(`Unsupport padding mode: ${o}.`);return r}function Ym(r,e){return V(()=>(Dt(e),e==="channelsFirst"?He(r,[0,2,3,1]):r))}function jw(r,e){return V(()=>(Dt(e),e==="channelsFirst"?He(r,[0,2,3,4,1]):r))}function jH(r,e,t,o=1,n="valid",s,a=1){return V(()=>{if(s==null&&(s=Hr()),Dt(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(e.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${e.shape.length} instead`);if(t!=null&&t.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s==="channelsFirst"&&(r=He(r,[0,2,1])),n==="causal")throw new Ne("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=vc(r,e,o,n==="same"?"same":"valid","NWC",a);return t!=null&&(i=io(i,t)),i})}function w1(r,e,t,o=[1,1],n="valid",s,a,i=null){return V(()=>{if(s==null&&(s=Hr()),Dt(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let l=Ym(r,s);if(n==="causal")throw new Ne("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ls.conv2d({x:l,filter:e,strides:o,pad:n==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:t,activation:i}),s==="channelsFirst"&&(l=He(l,[0,3,1,2])),l})}function HH(r,e,t,o=[1,1,1],n="valid",s,a){return V(()=>{if(s==null&&(s=Hr()),Dt(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let i=jw(r,s);if(n==="causal")throw new Ne("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=bh(i,e,o,n==="same"?"same":"valid","NDHWC",a),t!=null&&(i=io(i,t)),s==="channelsFirst"&&(i=He(i,[0,4,1,2,3])),i})}var up=class extends Oe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",up.verifyArgs(t),this.rank=e,Bt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ne(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=nl(t.kernelSize,e,"kernelSize"),this.strides=nl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,qr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Dt(this.dataFormat),this.activation=fs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ft(t.biasConstraint),this.biasRegularizer=ht(t.biasRegularizer),this.activityRegularizer=ht(t.activityRegularizer),this.dilationRate=nl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Do("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!og(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ms(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),biasConstraint:Rt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},eu=class extends up{constructor(e,t){super(e,t);this.kernel=null,eu.verifyArgs(t),this.filters=t.filters,Bt(this.filters,"filters"),this.kernelInitializer=pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ft(t.kernelConstraint),this.kernelRegularizer=ht(t.kernelRegularizer)}build(e){e=Ye(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let o=e[t],n=this.kernelSize.concat([o,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:o}}],this.built=!0}call(e,t){return V(()=>{e=Fe(e);let o,n=this.bias==null?null:this.bias.read(),s=ng(this.activation.getClassName());if(s!=null&&this.rank===2)o=w1(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)o=jH(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)o=w1(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)o=HH(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ne("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(o=this.activation.apply(o))}return o})}computeOutputShape(e){e=Ye(e);let t=[],o=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<o.length;++s){let a=co(o[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){let e={filters:this.filters,kernelInitializer:kt(this.kernelInitializer),kernelRegularizer:st(this.kernelRegularizer),kernelConstraint:Rt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},sl=class extends eu{constructor(e){super(2,e);sl.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!og(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};sl.className="Conv2D";Q.registerClass(sl);var tu=class extends eu{constructor(e){super(3,e);tu.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};tu.className="Conv3D";Q.registerClass(tu);var Zm=class extends sl{constructor(e){super(e);if(this.inputSpec=[new At({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Ye(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let o=e[t],n=this.kernelSize.concat([this.filters,o]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new At({ndim:4,axes:{[t]:o}})],this.built=!0}call(e,t){return V(()=>{let o=Fe(e);if(o.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${o.shape.length}`);let n=o.shape,s=n[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let l=n[a],u=n[i],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=Xm(l,m,c,this.padding),h=Xm(u,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(o=He(o,[0,2,3,1]));let y=Ic(o,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(y=He(y,[0,3,1,2])),this.bias!=null&&(y=io(y,this.bias.read(),this.dataFormat)),this.activation!=null&&(y=this.activation.apply(y)),y})}computeOutputShape(e){e=Ye(e);let t=e.slice(),o,n,s;this.dataFormat==="channelsFirst"?(o=1,n=2,s=3):(o=3,n=1,s=2);let a=this.kernelSize[0],i=this.kernelSize[1],l=this.strides[0],u=this.strides[1];return t[o]=this.filters,t[n]=Xm(t[n],l,a,this.padding),t[s]=Xm(t[s],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Zm.className="Conv2DTranspose";Q.registerClass(Zm);var Hw=class extends eu{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=ht(t.depthwiseRegularizer),this.depthwiseConstraint=Ft(t.depthwiseConstraint),this.pointwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=ht(t.pointwiseRegularizer),this.pointwiseConstraint=Ft(t.pointwiseConstraint)}build(e){if(e=Ye(e),e.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let o=e[t],n=this.kernelSize.concat([o,this.depthMultiplier]),s=[];for(let i=0;i<this.rank;++i)s.push(1);s.push(o*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new At({ndim:this.rank+2,axes:{[t]:o}})],this.built=!0}call(e,t){return V(()=>{e=Fe(e);let o;if(this.rank===1)throw new Ne("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=He(e,[0,2,3,1])),o=Ph(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(o=io(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),this.dataFormat==="channelsFirst"&&(o=He(o,[0,3,1,2])),o})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=st(this.depthwiseRegularizer),e.pointwiseRegularizer=st(this.pointwiseRegularizer),e.depthwiseConstraint=Rt(this.depthwiseConstraint),e.pointwiseConstraint=Rt(this.pointwiseConstraint),e}};Hw.className="SeparableConv";var Jm=class extends Hw{constructor(e){super(2,e)}};Jm.className="SeparableConv2D";Q.registerClass(Jm);var ru=class extends eu{constructor(e){super(1,e);ru.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!og(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};ru.className="Conv1D";Q.registerClass(ru);var Qm=class extends Oe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return V(()=>{if(e=Fe(e),this.dataFormat==="channelsLast"){let o=Nm(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Nm(o,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let o=Nm(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Nm(o,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Qm.className="Cropping2D";Q.registerClass(Qm);var ef=class extends Oe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,ET(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],o=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,o]}else{let t=e[1]==null?null:this.size[0]*e[1],o=e[2]==null?null:this.size[1]*e[2];return[e[0],t,o,e[3]]}}call(e,t){return V(()=>{let o=Fe(e),n=o.shape;if(this.dataFormat==="channelsFirst"){o=He(o,[0,2,3,1]);let s=this.size[0]*n[2],a=this.size[1]*n[3],i=this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a]);return He(i,[0,3,1,2])}else{let s=this.size[0]*n[1],a=this.size[1]*n[2];return this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ef.className="UpSampling2D";Q.registerClass(ef);function qH(r,e,t=[1,1],o="valid",n,s){return V(()=>{n==null&&(n=Hr()),Dt(n);let a=Ym(r,n);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(e.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${e.rank}-D`);return a=zs(a,e,t,o==="same"?"same":"valid","NHWC",s),n==="channelsFirst"&&(a=He(a,[0,3,1,2])),a})}var tf=class extends up{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ft(e.depthwiseConstraint),this.depthwiseRegularizer=ht(e.depthwiseRegularizer)}build(e){if(e=Ye(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let o=e[t],n=[this.kernelSize[0],this.kernelSize[1],o,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[o*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{e=Fe(e);let o=qH(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(o=io(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),o})}computeOutputShape(e){e=Ye(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=co(t,this.kernelSize[0],this.padding,this.strides[0]),a=co(o,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,s,a]:[e[0],s,a,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=st(this.depthwiseRegularizer),e.depthwiseConstraint=Rt(this.depthwiseRegularizer),e}};tf.className="DepthwiseConv2D";Q.registerClass(tf);function qw(r,e,t,o){if(Array.isArray(r)){if(e!=null||t!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");o!=null&&(t=r.slice(r.length-o,r.length),r=r.slice(0,r.length-o)),r.length>1&&(e=r.slice(1,r.length)),r=r[0]}function n(s){return s==null||Array.isArray(s)?s:[s]}return e=n(e),t=n(t),{inputs:r,initialState:e,constants:t}}function Kw(r,e,t,o=!1,n,s,a=!1,i=!1){return V(()=>{let l=e.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Fr(2,l));if(e=He(e,u),s!=null)throw new Ne("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),n!=null&&(n=n.asType("bool").asType("float32"),n.rank===l-1&&(n=ur(n,-1)),n=He(n,u)),o&&(e=Zt(e,0),n!=null&&(n=Zt(n,0)));let c=[],p,m=t,f=e.shape[0],d=fr(e),h;n!=null&&(h=fr(n));for(let y=0;y<f;++y){let b=d[y],w=V(()=>r(b,m));if(n==null)p=w[0],m=w[1];else{let _=V(()=>{let k=h[y],D=sr(k).sub(k),T=w[0].mul(k).add(m[0].mul(D)),R=m.map((O,M)=>w[1][M].mul(k).add(O.mul(D)));return{output:T,newStates:R}});p=_.output,m=_.newStates}i&&c.push(p)}let g;return i&&(g=Ut(c,1)),[p,g,m]})}var wo=class extends Oe{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new cp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new At({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Fr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){mg(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let o=t[0],n;if(this.returnSequences?n=[e[0],e[1],o]:n=[e[0],o],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[n].concat(s)}else return n}computeMask(e,t){return V(()=>{Array.isArray(t)&&(t=t[0]);let o=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(s=>null);return[o].concat(n)}else return o})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let o=0;o<e;++o)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Ne("Constants support is not implemented in RNN yet.");mg(e)&&(e=e[0]),e=e;let o=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new At({shape:[o,null,...n]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new Ne("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!x.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new At({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new bo("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape[0];if(o==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>wt([o,n])):this.states_=[wt([o,this.cell.stateSize])];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>wt([o,n])):this.states_[0]=wt([o,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let n=0;n<this.states_.length;++n){let s=e[n],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,i=[o,a];if(!x.arraysEqual(s.shape,i))throw new z(`State ${n} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${s.shape}`);this.states_[n]=s}}this.states_=this.states_.map(n=>Et(n.clone()))})}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=qw(e,o,n,this.numConstants);e=s.inputs,o=s.initialState,n=s.constants;let a=[],i=[];if(o!=null){t.initialState=o,a=a.concat(o),this.stateSpec=[];for(let u of o)this.stateSpec.push(new At({shape:u.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,a=a.concat(n),this.numConstants=n.length),a[0]instanceof Kr){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;e=Fe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new z(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},u=Kw((d,h)=>{let g=this.cell.call([d].concat(h),i);return[g[0],g.slice(1)]},e,s,this.goBackwards,o,null,this.unroll,this.returnSequences),c=u[0],p=u[1],m=u[2];this.stateful&&this.resetStates(m,n);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(e){return V(()=>{let t=wt(e.shape);return t=ye(t,[1,2]),t=aa(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(o=>o>1?ag(t,[1,o]):t):this.cell.stateSize>1?[ag(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let o=this.cell.getConfig();return this.getClassName()===wo.className&&(t.cell={className:this.cell.getClassName(),config:o}),Object.assign({},o,e,t)}static fromConfig(e,t,o={}){let n=t.cell,s=Xr(n,o);return new e(Object.assign(t,{cell:s}))}};wo.className="RNN";Q.registerClass(wo);var il=class extends Oe{},pp=class extends il{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Bt(this.units,"units"),this.activation=fs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=ht(e.kernelRegularizer),this.recurrentRegularizer=ht(e.recurrentRegularizer),this.biasRegularizer=ht(e.biasRegularizer),this.kernelConstraint=Ft(e.kernelConstraint),this.recurrentConstraint=Ft(e.recurrentConstraint),this.biasConstraint=Ft(e.biasConstraint),this.dropout=Hl([1,cs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,cs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Ye(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let o=e[1];e=e[0];let n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ca({ones:()=>sr(e),rate:this.dropout,training:n})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ca({ones:()=>sr(o),rate:this.recurrentDropout,training:n}));let s,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?s=Qo(P(e,a),this.kernel.read()):s=Qo(e,this.kernel.read()),this.bias!=null&&(s=io(s,this.bias.read())),i!=null&&(o=P(o,i));let l=ee(s,Qo(o,this.recurrentKernel.read()));return this.activation!=null&&(l=this.activation.apply(l)),[l,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ms(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Rt(this.kernelConstraint),recurrentConstraint:Rt(this.recurrentConstraint),biasConstraint:Rt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};pp.className="SimpleRNNCell";Q.registerClass(pp);var rf=class extends wo{constructor(e){e.cell=new pp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return new e(t)}};rf.className="SimpleRNN";Q.registerClass(rf);var mp=class extends il{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Bt(this.units,"units"),this.activation=fs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=fs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=ht(e.kernelRegularizer),this.recurrentRegularizer=ht(e.recurrentRegularizer),this.biasRegularizer=ht(e.biasRegularizer),this.kernelConstraint=Ft(e.kernelConstraint),this.recurrentConstraint=Ft(e.recurrentConstraint),this.biasConstraint=Ft(e.biasConstraint),this.dropout=Hl([1,cs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,cs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Ye(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training==null?!1:t.training,n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ca({ones:()=>sr(e),rate:this.dropout,training:o,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ca({ones:()=>sr(n),rate:this.recurrentDropout,training:o,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,i,l,u;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let c=Qo(e,this.kernel.read());this.useBias&&(c=io(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=P(n,a[0]));let p=this.recurrentKernel.read(),[m,f]=mr(p,[2*this.units,this.units],p.rank-1),d=Qo(n,m),[h,g,y]=mr(c,3,c.rank-1),[b,w]=mr(d,2,d.rank-1);i=this.recurrentActivation.apply(ee(h,b)),l=this.recurrentActivation.apply(ee(g,w));let _=Qo(P(l,n),f);u=this.activation.apply(ee(y,_));let k=ee(P(i,n),P(ee(1,qe(i)),u));return[k,k]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ms(this.activation),recurrentActivation:ms(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Rt(this.kernelConstraint),recurrentConstraint:Rt(this.recurrentConstraint),biasConstraint:Rt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};mp.className="GRUCell";Q.registerClass(mp);var of=class extends wo{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new mp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};of.className="GRU";Q.registerClass(of);var al=class extends il{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Bt(this.units,"units"),this.activation=fs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=fs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=ht(e.kernelRegularizer),this.recurrentRegularizer=ht(e.recurrentRegularizer),this.biasRegularizer=ht(e.biasRegularizer),this.kernelConstraint=Ft(e.kernelConstraint),this.recurrentConstraint=Ft(e.recurrentConstraint),this.biasConstraint=Ft(e.biasConstraint),this.dropout=Hl([1,cs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,cs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Ye(e);let o=e[e.length-1];this.kernel=this.addWeight("kernel",[o,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;n=new(t=class extends ao{apply(l,u){let c=s.apply([a]),p=new Kl().apply([a]),m=s.apply([a*2]);return hw(hw(c,p),m)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return V(()=>{let o=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ca({ones:()=>sr(e),rate:this.dropout,training:o,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ca({ones:()=>sr(n),rate:this.recurrentDropout,training:o,count:4}));let a=this.dropoutMask,i=this.recurrentDropoutMask,l,u,c,p;0<this.dropout&&this.dropout<1&&(e=P(e,a[0]));let m=Qo(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=P(n,i[0])),m=ee(m,Qo(n,this.recurrentKernel.read())),this.useBias&&(m=io(m,this.bias.read()));let[f,d,h,g]=mr(m,4,m.rank-1);l=this.recurrentActivation.apply(f),u=this.recurrentActivation.apply(d),c=ee(P(u,s),P(l,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let y=P(p,this.activation.apply(c));return[y,y,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ms(this.activation),recurrentActivation:ms(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Rt(this.kernelConstraint),recurrentConstraint:Rt(this.recurrentConstraint),biasConstraint:Rt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};al.className="LSTMCell";Q.registerClass(al);var nf=class extends wo{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new al(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};nf.className="LSTM";Q.registerClass(nf);var cp=class extends il{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return V(()=>{e=e;let o=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(o.splice(0,i.stateSize.length)):n.push(o.splice(0,1));n.reverse();let s=[],a;for(let i=0;i<this.cells.length;++i){let l=this.cells[i];o=n[i],i===0?a=[e[0]].concat(o):a=[a[0]].concat(o),a=l.call(a,t),s.push(a.slice(1))}o=[];for(let i of s.slice().reverse())o.push(...i);return[a[0]].concat(o)})}build(e){mg(e)&&(e=e[0]),e=e;let t;this.cells.forEach((o,n)=>{us(`RNNCell_${n}`,()=>{o.build(e),Array.isArray(o.stateSize)?t=o.stateSize[0]:t=o.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,o={}){let n=[];for(let s of t.cells)n.push(Xr(s,o));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.cells)t.push(...o.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Fm(e)}setWeights(e){let t=[];for(let o of this.cells){let n=o.weights.length,s=e.splice(n);for(let a=0;a<o.weights.length;++a)t.push([o.weights[a],s[a]])}np(t)}};cp.className="StackedRNNCells";Q.registerClass(cp);function ca(r){let{ones:e,rate:t,training:o=!1,count:n=1}=r,s=()=>ug(e(),t),a=()=>Ja(s,e,o);return!n||n<=1?Et(a().clone()):Array(n).fill(void 0).map(a).map(l=>Et(l.clone()))}var KH=function(r,e){var t={};for(var o in r)Object.prototype.hasOwnProperty.call(r,o)&&e.indexOf(o)<0&&(t[o]=r[o]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var n=0,o=Object.getOwnPropertySymbols(r);n<o.length;n++)e.indexOf(o[n])<0&&Object.prototype.propertyIsEnumerable.call(r,o[n])&&(t[o[n]]=r[o[n]]);return t};var Xw=class extends wo{constructor(e){if(e.unroll)throw new Ne("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ne("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new At({ndim:5})]}call(e,t){return V(()=>{if(this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return V(()=>{let{stateSize:t}=this.cell,o=e.shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)],a=wt(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new bo("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)];if(o[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>wt(s)):this.states_=[wt(s)];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>wt(s)):this.states_[0]=wt(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let i=0;i<this.states_.length;++i){let l=e[i],u=s;if(!x.arraysEqual(l.shape,u))throw new z(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${l.shape}`);this.states_[i]=l}}this.states_=this.states_.map(i=>Et(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:o,kernelSize:n,padding:s,strides:a,dilationRate:i}=this.cell,l=t==="channelsFirst",u=e[l?3:2],c=e[l?4:3],p=co(u,n[0],s,a[0],i[0]),m=co(c,n[1],s,a[1],i[1]);return[...e.slice(0,2),...l?[o,p,m]:[p,m,o]]}};Xw.className="ConvRNN2D";var fp=class extends al{constructor(e){let{filters:t,kernelSize:o,strides:n,padding:s,dataFormat:a,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Bt(this.filters,"filters"),this.kernelSize=nl(o,2,"kernelSize"),this.kernelSize.forEach(l=>Bt(l,"kernelSize")),this.strides=nl(n||1,2,"strides"),this.strides.forEach(l=>Bt(l,"strides")),this.padding=s||"valid",qr(this.padding),this.dataFormat=a||"channelsLast",Dt(this.dataFormat),this.dilationRate=nl(i||1,2,"dilationRate"),this.dilationRate.forEach(l=>Bt(l,"dilationRate"))}build(e){var t;e=Ye(e);let o=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[o]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[o]}`);let n=e[o],s=4,a=this.kernelSize.concat([n,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let l;if(this.unitForgetBias){let u=this.biasInitializer,c=this.filters;l=new(t=class extends ao{apply(m,f){let d=u.apply([c]),h=Er([c]),g=u.apply([c*2]);return Kc([d,h,g])}},t.className="CustomInit",t)}else l=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,l,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return V(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training||!1,n=e[0],s=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ca({ones:()=>sr(n),rate:this.dropout,training:o,count:i}));let l=this.dropoutMask,u=(J,ie,ue)=>!ie||!ie[ue]?J:P(ie[ue],J),c=u(n,l,0),p=u(n,l,1),m=u(n,l,2),f=u(n,l,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ca({ones:()=>sr(s),rate:this.recurrentDropout,training:o,count:i}));let d=this.recurrentDropoutMask,h=u(s,d,0),g=u(s,d,1),y=u(s,d,2),b=u(s,d,3),w=3,[_,k,D,T]=mr(this.kernel.read(),i,w),[R,O,M,G]=this.useBias?mr(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,_,R,this.padding),p=this.inputConv(p,k,O,this.padding),m=this.inputConv(m,D,M,this.padding),f=this.inputConv(f,T,G,this.padding);let[W,j,H,q]=mr(this.recurrentKernel.read(),i,w);h=this.recurrentConv(h,W),g=this.recurrentConv(g,j),y=this.recurrentConv(y,H),b=this.recurrentConv(b,q);let X=this.recurrentActivation.apply(ee(c,h)),oe=this.recurrentActivation.apply(ee(p,g)),Y=ee(P(oe,a),P(X,this.activation.apply(ee(m,y)))),re=P(this.recurrentActivation.apply(ee(f,b)),this.activation.apply(Y));return[re,re,Y]})}getConfig(){let e=super.getConfig(),{units:t}=e,o=KH(e,["units"]),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},o,n)}inputConv(e,t,o,n){let s=oo(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return o?io(s,o,this.dataFormat):s}recurrentConv(e,t){return oo(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};fp.className="ConvLSTM2DCell";Q.registerClass(fp);var sf=class extends Xw{constructor(e){let t=new fp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};sf.className="ConvLSTM2D";Q.registerClass(sf);var dp=class extends Oe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,o=[];for(let n=0;n<this.noiseShape.length;++n)o.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return o}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);if(0<this.rate&&this.rate<1){let n=t.training==null?!1:t.training,s=this.getNoiseShape(o);return Ja(()=>ug(o,this.rate,s,this.seed),()=>o,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};dp.className="Dropout";Q.registerClass(dp);var af=class extends dp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};af.className="SpatialDropout1D";Q.registerClass(af);var lf=class extends Oe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Bt(this.units,"units"),this.activation=fs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ft(e.kernelConstraint),this.biasConstraint=Ft(e.biasConstraint),this.kernelRegularizer=ht(e.kernelRegularizer),this.biasRegularizer=ht(e.biasRegularizer),this.activityRegularizer=ht(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Ye(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Ye(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=ng(this.activation.getClassName()),s;return n!=null?s=Qo(o,this.kernel.read(),n,this.bias?this.bias.read():null):(s=Qo(o,this.kernel.read()),this.bias!=null&&(s=io(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:ms(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Rt(this.kernelConstraint),biasConstraint:Rt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};lf.className="Dense";Q.registerClass(lf);var uf=class extends Oe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Ye(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Jo(e,1)]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);if(this.dataFormat==="channelsFirst"&&o.rank>1){let n=[0];for(let s=2;s<o.rank;++s)n.push(s);n.push(1),o=o.transpose(n)}return MT(o)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};uf.className="Flatten";Q.registerClass(uf);var cf=class extends Oe{constructor(e){super(e);this.supportsMasking=!0,this.activation=fs(e.activation)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return this.activation.apply(o)})}getConfig(){let e={activation:ms(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};cf.className="Activation";Q.registerClass(cf);var pf=class extends Oe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return V(()=>(e=Fe(e),OT(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};pf.className="RepeatVector";Q.registerClass(pf);var mf=class extends Oe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let o="Total size of new array must be unchanged.",n=t.slice(),s=1,a=null;for(let l=0;l<n.length;++l){let u=n[l];if(this.isUnknown(u))if(a===null)a=l;else throw new z("Can only specifiy one unknown dimension.");else s*=u}let i=Jo(e);if(a!==null){if(s===0||i%s!=0)throw new z(o);n[a]=i/s}else if(i!==s)throw new z(o);return n}computeOutputShape(e){let t=!1;for(let o=0;o<e.length;++o)if(this.isUnknown(e[o])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=o.shape,s=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return o.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};mf.className="Reshape";Q.registerClass(mf);var ff=class extends Oe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Fr(1,e.dims.length+1);if(!x.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new At({ndim:this.dims.length+1})]}computeOutputShape(e){e=Ye(e);let t=e.slice();return this.dims.forEach((o,n)=>{t[n+1]=e[o]}),t}call(e,t){return He(Fe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};ff.className="Permute";Q.registerClass(ff);var df=class extends Oe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let o=Fe(e),n=-1;return Rl(as(o,this.maskValue),n)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=-1,s=!0,a=Rl(as(o,this.maskValue),n,s);return o.mul(a.asType(o.dtype))})}};df.className="Masking";Q.registerClass(df);var hf=class extends Oe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(dt(e.inputLength))}this.inputDim=e.inputDim,Bt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Bt(this.outputDim,"outputDim"),this.embeddingsInitializer=pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=ht(e.embeddingsRegularizer),this.activityRegularizer=ht(e.activityRegularizer),this.embeddingsConstraint=Ft(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return V(()=>this.maskZero?(e=Fe(e),as(e,Ie(e))):null)}computeOutputShape(e){if(e=Ye(e),this.inputLength==null)return[...e,this.outputDim];let t=dt(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let o=0;for(let n=0;n<t.length;++n){let s=t[n],a=e[n+1];if(s!=null&&a!=null&&s!==a)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[o]=a),o++}}return[e[0],...t,this.outputDim]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return o.dtype!=="int32"&&(o=ia(o,"int32")),lg(this.embeddings.read(),o.as1D()).reshape(Ye(this.computeOutputShape(o.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:st(this.embeddingsRegularizer),activityRegularizer:st(this.activityRegularizer),embeddingsConstraint:Rt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};hf.className="Embedding";Q.registerClass(hf);var ll=class extends Oe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Ne}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let o=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){let s=e[e.length-t.length+n],a=t[n];if(s==null||a==null||s<0||a<0)o.push(null);else if(s===1)o.push(a);else if(a===1)o.push(s);else{if(s!==a)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));o.push(s)}}return o}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Ye(e)]),e=e,e.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=Zo(t),t.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let o=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);o=this.computeElementwiseOpOutputShape(o,a)}let n=e.map(s=>s.length);e.indexOf(null)===-1&&Zo(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return V(()=>{if(e=e,this.reshapeRequired){let o=[],n=e.map(s=>s.rank);if(n.indexOf(null)===-1){let s=cs(n);for(let a of e){let i=a.rank;for(let l=0;l<s-i;++l)a=aa(a,1);o.push(a)}return this.mergeFunction(o)}else{let s=!1;for(let l of e){let u=l.rank;if(u==null){let c=l.shape,p=c[0],m=c.slice(1).concat([p]),f=l.reshape([p].concat(Jo(c.slice(1))));f=He(f,[1,0]),f=f.reshape(m),o.push(f),s=!0}else if(u>1){let c=Fr(1,u).concat([0]);o.push(He(l,c)),s=!0}else o.push(l)}let a=this.mergeFunction(o),i=a.rank;if(s){if(i==null){let l=a.shape,u=l.length,c=l[u-1],p=[c].concat(l.slice(0,l.length-1));a=He(a.reshape([-1,c]),[1,0]).reshape(p)}else if(i>1){let l=[i-1].concat(Fr(0,i-1));a=He(a,l)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){let s=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let o=[];for(let n of e)n!=null&&n[0]!==null&&o.push(n[0]);return o=Zo(o),o.length===1?t=o.concat(t):t=[null].concat(t),t}computeMask(e,t){return V(()=>{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:ur(n,0));let o=t[0];for(let n=1;n<t.length-1;++n)o=_r(o,t[n]);return o})}},gf=class extends ll{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=ee(t,e[o]);return t})}};gf.className="Add";Q.registerClass(gf);var xf=class extends ll{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=P(t,e[o]);return t})}};xf.className="Multiply";Q.registerClass(xf);var yf=class extends ll{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=ee(t,e[o]);return P(1/e.length,t)})}};yf.className="Average";Q.registerClass(yf);var bf=class extends ll{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let o=1;o<e.length;++o)t=so(t,e[o]);return t})}};bf.className="Maximum";Q.registerClass(bf);var wf=class extends ll{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let o=1;o<e.length;++o)t=Ws(t,e[o]);return t})}};wf.className="Minimum";Q.registerClass(wf);var _f=class extends ll{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let n of e)if(n!=null){t=!1;break}if(t)return;let o=[];for(let n=0;n<e.length;++n){let s=e[n].slice();s.splice(this.axis,1);let a=!1;for(let i of o)if(x.arraysEqual(i,s)){a=!0;break}a||o.push(s)}if(o.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return V(()=>Kc(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,o=t[0].slice(),n=this.axis<0?o.length+this.axis:this.axis;for(let s of t.slice(1)){if(o[n]==null||s[n]==null){o[n]=null;break}o[n]+=s[n]}return o}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return V(()=>{let o=!0;if(t.forEach(a=>{if(a!=null){o=!1;return}}),o)return null;let n=[];for(let a=0;a<e.length;++a)t[a]==null?n.push(sr(e[a]).asType("bool")):t[a].rank<e[a].rank?n.push(ur(t[a],-1)):n.push(t[a]);let s=Je(n,this.axis);return _c(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};_f.className="Concatenate";Q.registerClass(_f);function kf(r,e){for(;r<0;)r+=e;return r}function XH(r,e,t){if(r.shape.length>3||e.shape.length>3)throw new Ne("batchDot is not implemented for tensors of 4D or higher rank yet");if(x.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),x.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${e.shape.length}`),typeof t=="number"&&(t=[t,t]),r.dtype==="complex64"||e.dtype==="complex64")throw new Ne("batchDot is not implemented for complex64-type Tensors yet.");let o=r.shape.length,n=e.shape.length;t==null&&(t=[o-1,n-2]);let s=t;return V(()=>{let a;if(o>n){a=o-n;let l=[];for(let u=0;u<a;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else if(n>o){a=n-o;let l=[];for(let u=0;u<a;++u)l.push(1);r=r.reshape(r.shape.concat(l))}else a=0;let i;if(r.shape.length===2&&e.shape.length===2)s[0]===s[1]?i=r.mul(e).sum(s[0]):i=r.transpose([1,0]).mul(e).sum(s[1]);else{let l=s[0]!==r.shape.length-1,u=s[1]===e.shape.length-1;i=r.matMul(e,l,u)}if(a>0){let l;o>n?l=o+n-3:l=o-1;let u=[];for(let c=l;c<l+a;++c)u.push(c);i=i.squeeze(u)}return i.shape.length===1&&(i=i.expandDims(1)),i})}var vf=class extends ll{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){x.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],o=e[1];if(t.length>3||o.length>3)throw new Ne("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);if(t[n[0]]!==o[n[1]])throw new z(`Dimension incompatibility: ${t[n[0]]} !== ${o[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],o=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((s,a)=>kf(s,e[a].shape.length)):n=[kf(this.axes,t.shape.length),kf(this.axes,o.shape.length)],this.normalize&&(t=Om(t,n[0]),o=Om(o,n[1])),XH(t,o,n)}interpretAxes(e,t){let o;return Array.isArray(this.axes)?o=this.axes:o=[kf(this.axes,e.length),kf(this.axes,t.length)],o}computeOutputShape(e){x.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),o=e[1].slice();if(t.length>3||o.length>3)throw new Ne("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);t.splice(n[0],1),o.splice(n[1],1),o.splice(0,1);let s=t.concat(o);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};vf.className="Dot";Q.registerClass(vf);var Cf=class extends Oe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return Ja(()=>Xc(o.shape,0,this.stddev).add(o),()=>o,t.training||!1)})}};Cf.className="GaussianNoise";Q.registerClass(Cf);var If=class extends Oe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return this.rate>0&&this.rate<1?Ja(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return o.mul(Xc(o.shape,1,s))},()=>o,t.training||!1):o})}};If.className="GaussianDropout";Q.registerClass(If);var Nf=class extends Oe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Fe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{if(this.rate<1&&this.rate>0){let o=this._getNoiseShape(e);return Ja(()=>{let s=Fe(e),a=1.6732632423543772,i=1.0507009873554805,l=-a*i,u=yo(Us(o),this.rate);u=ia(u,"float32");let c=((1-this.rate)*(1+this.rate*l**2))**-.5,p=-c*l*this.rate;return s.mul(u).add(u.add(-1).mul(l)).mul(c).add(p)},()=>Fe(e),t.training||!1)}return e})}};Nf.className="AlphaDropout";Q.registerClass(Nf);function Sf(r,e,t,o,n,s=.001){let a;if(r.rank===2)a=aI(r,e,t,o,n,s);else if(r.rank===3)a=lI(r,e,t,o,n,s);else if(r.rank===4)a=uI(r,e,t,o,n,s);else throw new Ne(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return a}function YH(r,e,t,o,n=.001){return V(()=>{let s=um(r,o),a=s.mean,i=s.variance;return[Sf(r,a,i,t,e,n),a,i]})}function ZH(r,e,t,o,n=.001){return V(()=>{let s=um(r,o),a=s.mean,i=s.variance,l=[];for(let d of Fr(0,r.rank))o.indexOf(d)!==-1?l.push(1):l.push(r.shape[d]);let u=a.reshape(l),c=i.reshape(l),p=e==null?null:e.reshape(l),m=t==null?null:t.reshape(l);return[Sf(r,u,c,m,p,n),a,i]})}function JH(r,e,t,o,n=.001){return x.arraysEqual(o.slice().sort(),Fr(0,r.rank-1))?YH(r,e,t,o,n):ZH(r,e,t,o,n)}var Tf=class extends Oe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Ft(e.betaConstraint),this.gammaConstraint=Ft(e.gammaConstraint),this.betaRegularizer=ht(e.betaRegularizer),this.gammaRegularizer=ht(e.gammaRegularizer)}build(e){e=Ye(e);let t=this.axis>=0?this.axis:this.axis+e.length,o=e[t];if(o==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new At({ndim:e.length,axes:{[t]:o}})];let n=[o];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return V(()=>{let o=t.training==null?!1:t.training,n=Fe(e),s=n.shape,a=s.length,i=Fr(0,a),l=this.axis>=0?this.axis:this.axis+a;i.splice(l,1);let u=Ko(1,a);u[l]=s[l];let c=i.slice();c.sort();let p=!x.arraysEqual(c,Fr(0,a).slice(0,a-1)),m=()=>{if(p){let b=this.movingMean.read().reshape(u),w=this.movingVariance.read().reshape(u),_=this.center?this.beta.read().reshape(u):null,k=this.scale?this.gamma.read().reshape(u):null;return Sf(n,b,w,_,k,this.epsilon)}else return Sf(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!o)return m();let[f,d,h]=JH(n,this.gamma.read(),this.beta.read(),i,this.epsilon),g=(b,w,_)=>{V(()=>{let k=1-_,D=b.read(),T=D.sub(w).mul(k);b.write(D.sub(T))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:st(this.betaRegularizer),gammaRegularizer:st(this.gammaRegularizer),betaConstraint:Rt(this.betaConstraint),gammaConstraint:Rt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Tf.className="BatchNormalization";Q.registerClass(Tf);var Af=class extends Oe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.betaRegularizer=ht(e.betaRegularizer),this.gammaRegularizer=ht(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Ye(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Zo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let o=this.axis.map(s=>e[s]),n=!0;this.scale?this.gamma=this.addWeight("gamma",o,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",o,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let o=Fe(e),n=o.shape,s=n.length;return V(()=>{let a=!0,{mean:i,variance:l}=um(o,this.axis,a),u=Ko(1,s);for(let h of this.axis)u[h]=n[h];let c=h=>h!=null&&h.shape.length!==s&&this.axis!==[s-1]?h.reshape(u):h,p=c(this.gamma.read()),m=c(this.beta.read()),f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(n[h]),d.push(1)):(f.push(1),d.push(n[h]));return i=i.tile(f),l=l.tile(f),p=p.tile(d),m=m.tile(d),Sf(o,i,l,m,p,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),betaRegularizer:st(this.betaRegularizer),gammaRegularizer:st(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Af.className="LayerNormalization";Q.registerClass(Af);function QH(r,e,t){return V(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(e==null&&(e=[[1,1],[1,1]]),e.length!==2||e[0].length!==2||e[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(t==null&&(t=Hr()),t!=="channelsLast"&&t!=="channelsFirst")throw new z(`Unknown data format: ${t}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let o;return t==="channelsFirst"?o=[[0,0],[0,0],e[0],e[1]]:o=[[0,0],e[0],e[1],[0,0]],Wr(r,o)})}var Ef=class extends Oe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Hr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,o;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],o=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);o=e.padding[1]}this.padding=[t,o]}this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){e=Ye(e);let t,o;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?o=e[3]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],e[1],t,o]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?o=e[2]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],t,o,e[3]])}call(e,t){return V(()=>QH(Fe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ef.className="ZeroPadding2D";Q.registerClass(Ef);function Ag(r,e,t,o,n,s){return V(()=>{Dt(n),fw(s),qr(o),t==null&&(t=[1,1]),o==null&&(o="valid"),n==null&&(n=Hr()),s==null&&(s="max"),r=Ym(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=Ha(r,e,t,i):a=Ba(r,e,t,i),n==="channelsFirst"&&(a=He(a,[0,3,1,2])),a})}function _1(r,e,t,o,n,s){return V(()=>{Dt(n),fw(s),qr(o),t==null&&(t=[1,1,1]),o==null&&(o="valid"),n==null&&(n=Hr()),s==null&&(s="max"),r=jw(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=Ah(r,e,t,i):a=xh(r,e,t,i),n==="channelsFirst"&&(a=He(a,[0,4,1,2,3])),a})}var Yw=class extends Oe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Bt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Bt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,qr(this.padding),this.inputSpec=[new At({ndim:3})]}computeOutputShape(e){e=Ye(e);let t=co(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return V(()=>{this.invokeCallHook(e,t),e=aa(Fe(e),2);let o=this.poolingFunction(Fe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Eo(o,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Df=class extends Yw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Dt(s),qr(n),Ag(e,t,o,n,s,"max")}};Df.className="MaxPooling1D";Q.registerClass(Df);var $f=class extends Yw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Dt(s),qr(n),Ag(e,t,o,n,s,"avg")}};$f.className="AveragePooling1D";Q.registerClass($f);var Zw=class extends Oe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Bt(this.poolSize,"poolSize"),Bt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),qr(this.padding),this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){e=Ye(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=co(t,this.poolSize[0],this.padding,this.strides[0]),o=co(o,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o]:[e[0],t,o,e[3]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Rf=class extends Zw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Dt(s),qr(n),Ag(e,t,o,n,s,"max")}};Rf.className="MaxPooling2D";Q.registerClass(Rf);var Ff=class extends Zw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Dt(s),qr(n),Ag(e,t,o,n,s,"avg")}};Ff.className="AveragePooling2D";Q.registerClass(Ff);var Jw=class extends Oe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Bt(this.poolSize,"poolSize"),Bt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),qr(this.padding),this.inputSpec=[new At({ndim:5})]}computeOutputShape(e){e=Ye(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=co(t,this.poolSize[0],this.padding,this.strides[0]),o=co(o,this.poolSize[1],this.padding,this.strides[1]),n=co(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o,n]:[e[0],t,o,n,e[4]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Of=class extends Jw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Dt(s),qr(n),_1(e,t,o,n,s,"max")}};Of.className="MaxPooling3D";Q.registerClass(Of);var Pf=class extends Jw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Dt(s),qr(n),_1(e,t,o,n,s,"avg")}};Pf.className="AveragePooling3D";Q.registerClass(Pf);var Qw=class extends Oe{constructor(e){super(e);this.inputSpec=[new At({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ne}},Mf=class extends Qw{constructor(e){super(e||{})}call(e,t){return V(()=>{let o=Fe(e);return bt(o,1)})}};Mf.className="GlobalAveragePooling1D";Q.registerClass(Mf);var Lf=class extends Qw{constructor(e){super(e||{})}call(e,t){return V(()=>{let o=Fe(e);return pr(o,1)})}};Lf.className="GlobalMaxPooling1D";Q.registerClass(Lf);var e_=class extends Oe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ne}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},zf=class extends e_{call(e,t){return V(()=>{let o=Fe(e);return this.dataFormat==="channelsLast"?bt(o,[1,2]):bt(o,[2,3])})}};zf.className="GlobalAveragePooling2D";Q.registerClass(zf);var Bf=class extends e_{call(e,t){return V(()=>{let o=Fe(e);return this.dataFormat==="channelsLast"?pr(o,[1,2]):pr(o,[2,3])})}};Bf.className="GlobalMaxPooling2D";Q.registerClass(Bf);var t_=class extends Oe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,o={}){let n=t.layer,s=Xr(n,o);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},Vf=class extends t_{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=Ye(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Ye(e);let t=[e[0]].concat(e.slice(2)),o=this.layer.computeOutputShape(t),n=e[1];return[o[0],n].concat(o.slice(1))}call(e,t){return V(()=>(e=Fe(e),Kw((a,i)=>[Fe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Vf.className="TimeDistributed";Q.registerClass(Vf);function eq(r){Ks(AT,"BidirectionalMergeMode",r)}var tq="concat",Gf=class extends t_{constructor(e){super(e);let t=e.layer.getConfig(),o={};o.className=e.layer.getClassName(),o.config=t,this.forwardLayer=Xr(o),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=Xr(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?tq:e.mergeMode,eq(this.mergeMode),e.weights)throw new Ne("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,o=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,o)),this.backwardLayer.setWeights(e.slice(o))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let o,n,s;return this.returnState&&(s=t.slice(1)),o=t[0],o=o,this.mergeMode==="concat"?(o[o.length-1]*=2,n=[o]):this.mergeMode==null?n=[o,o.slice()]:n=[o],this.returnState?this.mergeMode==null?n.concat(s).concat(s.slice()):[o].concat(s).concat(s.slice()):dr(n)}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=qw(e,o,n,this.numConstants);if(e=s.inputs,o=s.initialState,n=s.constants,Array.isArray(e)&&(o=e.slice(1),e=e[0]),(o==null||o.length===0)&&n==null)return super.apply(e,t);let a=[],i=[];if(o!=null){let u=o.length;if(u%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=o,a.push(...o);let c=o.map(p=>new At({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,u/2),this.backwardLayer.stateSpec=c.slice(u/2),i.push(...c)}if(n!=null)throw new Ne("Support for constants in Bidirectional layers is not implemented yet.");let l=a[0]instanceof Kr;for(let u of a)if(u instanceof Kr!==l)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(l){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let o=t.initialState,n,s;if(o==null)n=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let l=o.slice(0,o.length/2),u=o.slice(o.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:l})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(n)&&(a=n.slice(1).concat(s.slice(1))),n=n[0],s=s[0]),this.returnSequences&&(s=Zt(s,1));let i;return this.mergeMode==="concat"?i=Kc([n,s]):this.mergeMode==="sum"?i=ee(n,s):this.mergeMode==="ave"?i=P(.5,ee(n,s)):this.mergeMode==="mul"?i=P(n,s):this.mergeMode==null&&(i=[n,s]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){us(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),us(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let o;if(this.returnSequences?this.mergeMode==null?o=[t,t]:o=t:this.mergeMode==null?o=[null,null]:o=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(o)?o.concat(s).concat(s):[o].concat(s).concat(s)}else return o}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let o=Xr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ne("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=o,new e(n)}};Gf.className="Bidirectional";Q.registerClass(Gf);function rq(r){return new Xs(r)}function oq(r){return new Hm(r)}function nq(r){return new Wm(r)}function sq(r){return new Um(r)}function iq(r){return new jm(r)}function aq(r){return new Km(r)}function lq(r){return new qm(r)}function uq(r){return new ru(r)}function cq(r){return new sl(r)}function pq(r){return new Zm(r)}function mq(r){return new tu(r)}function fq(r){return new Jm(r)}function dq(r){return new Qm(r)}function hq(r){return new ef(r)}function gq(r){return new tf(r)}function xq(r){return new cf(r)}function yq(r){return new lf(r)}function bq(r){return new dp(r)}function wq(r){return new af(r)}function _q(r){return new uf(r)}function kq(r){return new pf(r)}function vq(r){return new mf(r)}function Cq(r){return new ff(r)}function Iq(r){return new hf(r)}function Nq(r){return new gf(r)}function Sq(r){return new yf(r)}function Tq(r){return new _f(r)}function Aq(r){return new bf(r)}function Eq(r){return new wf(r)}function Dq(r){return new xf(r)}function $q(r){return new vf(r)}function Rq(r){return new Tf(r)}function Fq(r){return new Af(r)}function Oq(r){return new Ef(r)}function r_(r){return new $f(r)}function Pq(r){return r_(r)}function Mq(r){return r_(r)}function o_(r){return new Ff(r)}function Lq(r){return o_(r)}function zq(r){return o_(r)}function n_(r){return new Pf(r)}function Bq(r){return n_(r)}function Vq(r){return n_(r)}function Gq(r){return new Mf(r)}function Wq(r){return new zf(r)}function v1(r){return new Lf(r)}function C1(r){return new Bf(r)}function I1(r){return new Df(r)}function N1(r){return new Rf(r)}function Uq(r){return new Of(r)}function jq(r){return new of(r)}function Hq(r){return new mp(r)}function qq(r){return new nf(r)}function Kq(r){return new al(r)}function Xq(r){return new rf(r)}function Yq(r){return new pp(r)}function Zq(r){return new sf(r)}function Jq(r){return new fp(r)}function Qq(r){return new wo(r)}function eK(r){return new cp(r)}function tK(r){return new Gf(r)}function rK(r){return new Vf(r)}var oK=v1,nK=C1,sK=I1,iK=N1;function aK(r){return new Cf(r)}function lK(r){return new If(r)}function uK(r){return new Nf(r)}function cK(r){return new df(r)}var S1={};Ze(S1,{MAPE:()=>_K,MSE:()=>CK,binaryAccuracy:()=>pK,binaryCrossentropy:()=>mK,categoricalAccuracy:()=>dK,categoricalCrossentropy:()=>hK,cosineProximity:()=>yK,mape:()=>kK,meanAbsoluteError:()=>bK,meanAbsolutePercentageError:()=>wK,meanSquaredError:()=>vK,mse:()=>IK,precision:()=>gK,recall:()=>xK,sparseCategoricalAccuracy:()=>fK});function pK(r,e){return Lm(r,e)}function mK(r,e){return bg(r,e)}function fK(r,e){return wg(r,e)}function dK(r,e){return zm(r,e)}function hK(r,e){return Bm(r,e)}function gK(r,e){return _w(r,e)}function xK(r,e){return YT(r,e)}function yK(r,e){return Pm(r,e)}function bK(r,e){return sp(r,e)}function wK(r,e){return rl(r,e)}function _K(r,e){return rl(r,e)}function kK(r,e){return rl(r,e)}function vK(r,e){return Zs(r,e)}function CK(r,e){return Zs(r,e)}function IK(r,e){return Zs(r,e)}var T1={};Ze(T1,{modelFromJSON:()=>d1});var A1={};Ze(A1,{l1:()=>SK,l1l2:()=>NK,l2:()=>TK});function NK(r){return new Ql(r)}function SK(r){return g1(r)}function TK(r){return x1(r)}var s_=class extends tl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Ro))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Eg(r,e){return r<e}function E1(r,e){return r>e}var i_=class extends s_{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Ne("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Eg:this.mode==="max"?this.monitorFunc=E1:this.monitor.indexOf("acc")!==-1?this.monitorFunc=E1:this.monitorFunc=Eg,this.monitorFunc===Eg&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Eg?Infinity:-Infinity}async onEpochEnd(e,t){await Ys(t);let o=this.getMonitorValue(t);o!=null&&(this.monitorFunc(o-this.minDelta,this.best)?(this.best=o,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function AK(r){return new i_(r)}var EK={earlyStopping:AK};var en;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(en||(en={}));var D1;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(D1||(D1={}));var a_={};function DK(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};a_[r]=t}function Dg(r){return a_[r]}function $K(r){delete a_[r]}function C(r,e,t,o,n){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd;if(s.type==="tensor")return hr(e.inputNames[s.inputIndexStart],t,o,n);if(s.type==="tensors")return e.inputNames.slice(i,l).map(m=>hr(m,t,o,n));let u=hr(e.inputNames.slice(i)[0],t,o,n),c=u.dataSync();return s.type==="number"?c[0]:x.toNestedArray(u.shape,c)}let a=e.attrParams[r];return a&&a.value}function hr(r,e,t,o){let[n,s]=Yr(r);if(o!=null){let i=o.getHashTableHandleByName(n);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[$g(n,i)]);return a!==void 0?e[$g(n,a)][s]:void 0}function $1(r,e,t){return e[$g(r,t.currentContextId)]}function ds(r,e){let[t,o]=Yr(r);return[$g(t,e&&e.currentContextId),o]}function $g(r,e){return e?`${r}-${e}`:r}function Yr(r){let e=r.split(":");return e.length===1?[r,0]:[e[0],Number(e[e.length-1])]}function Wf(r,e,t){let o=C("pad",r,e,t);if(o==="explicit"){o=C("explicitPaddings",r,e,t);let n=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)n[s][0]=o[s*2],n[s][1]=o[s*2+1];return n}return o}function hs(r){return r.kept?r:Go(r)}var l_={};Ze(l_,{json:()=>RK});var RK=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var u_={};Ze(u_,{json:()=>FK});var FK=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var c_={};Ze(c_,{json:()=>OK});var OK=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var p_={};Ze(p_,{json:()=>PK});var PK=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var m_={};Ze(m_,{json:()=>MK});var MK=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var f_={};Ze(f_,{json:()=>LK});var LK=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var d_={};Ze(d_,{json:()=>zK});var zK=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var h_={};Ze(h_,{json:()=>BK});var BK=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var g_={};Ze(g_,{json:()=>VK});var VK=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}];var x_={};Ze(x_,{json:()=>GK});var GK=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var y_={};Ze(y_,{json:()=>WK});var WK=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var b_={};Ze(b_,{json:()=>UK});var UK=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var w_={};Ze(w_,{json:()=>jK});var jK=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var __={};Ze(__,{json:()=>HK});var HK=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var k_={};Ze(k_,{json:()=>qK});var qK=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var v_={};Ze(v_,{json:()=>KK});var KK=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var C_={};Ze(C_,{json:()=>XK});var XK=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var Rg=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[l_,u_,c_,p_,m_,f_,d_,y_,x_,h_,b_,w_,__,k_,v_,C_,g_],t=[].concat(...e.map(o=>o.json));this.opMappers=t.reduce((o,n)=>(o[n.tfOpName]=n,o),{})}transformGraph(e,t={}){let o=e.node,n=[],s=[],a=[],i=o.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?n.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),l=[],u=[],c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach(y=>{let[b]=ds(y);g.inputs.push(i[b]),i[b].children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(p).forEach(h=>{let[g]=ds(h),y=i[g];y!=null&&(y.signatureKey=p[h],u.push(y))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=ds(h),y=i[g];y&&(y.signatureKey=c[h],l.push(y))}):l=n;let f={};e.library!=null&&e.library.function!=null&&(f=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:i,inputs:l,outputs:u,weights:s,placeholders:n,signature:t,functions:f};return a.length>0&&(d.initNodes=a),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,o)=>(t[e[o].name]=o,t),{})}mapNode(e){let t=Dg(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let o={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.substr(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(o.inputParams=t.inputs.reduce((n,s)=>(n[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},n),{})),t.attrs!=null&&(o.attrParams=t.attrs.reduce((n,s)=>{let a=s.type,i;switch(s.type){case"string":i=Fg(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Fg(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=Vg(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Vg(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=Pg(e.attr,s.tfName,s.defaultValue||0),i===void 0&&!!s.tfDeprecatedName&&(i=Pg(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=Bg(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Bg(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=Og(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Og(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=Wg(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Wg(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=zg(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=zg(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=Gg(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Gg(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=Mg(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Mg(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=Lg(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Lg(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=R1(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=R1(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return n[s.name]={value:i,type:a},n},{})),o}mapFunction(e){let t=e.nodeDef,o=[],n=[],s={};t!=null&&(s=t.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&n.push(p[m.name]),p),{}));let a=[],i=[];e.signature.inputArg.forEach(p=>{let[m]=ds(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:I_(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,a.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach(f=>{let[d]=ds(f);m.inputs.push(s[d]),s[d].children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(p=>{let[m,f]=ds(u[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,i.push(d))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:n,placeholders:o,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o),t),{}),outputs:e.signature.outputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o,e.ret),t),{})}}mapArgToTensorInfo(e,t){let o=e.name;return t!=null&&(o=t[o]),{name:o,dtype:e.type}}};function YK(r){let e=U().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function F1(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):YK(r);return e?t:t.toLowerCase()}function Fg(r,e,t,o=!1){let n=r[e];return n!=null?F1(n.s,o):t}function Og(r,e,t){let o=r[e];return o?o.b:t}function Pg(r,e,t){let o=r[e]||{},n=o.i!=null?o.i:o.f!=null?o.f:t;return typeof n=="number"?n:parseInt(n,10)}function I_(r){switch(typeof r=="string"&&(r=en[r]),r){case en.DT_FLOAT:return"float32";case en.DT_INT32:case en.DT_INT64:case en.DT_INT8:case en.DT_UINT8:return"int32";case en.DT_BOOL:return"bool";case en.DT_DOUBLE:return"float32";case en.DT_STRING:return"string";default:return null}}function R1(r,e,t){let o=r[e];return o&&o.func?o.func.name:t}function Mg(r,e,t){let o=r[e];return o&&o.type?I_(o.type):t}function Lg(r,e,t){let o=r[e];return o&&o.list&&o.list.type?o.list.type.map(n=>I_(n)):t}function O1(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function zg(r,e,t){let o=r[e];return o&&o.shape?O1(o.shape):t}function Bg(r,e,t){let o=r[e];return o?((o.list.f&&o.list.f.length?o.list.f:o.list.i)||[]).map(n=>typeof n=="number"?n:parseInt(n,10)):t}function Vg(r,e,t,o=!1){let n=r[e];return n&&n.list&&n.list.s?n.list.s.map(s=>F1(s,o)):t}function Gg(r,e,t){let o=r[e];return o&&o.list&&o.list.shape?o.list.shape.map(n=>O1(n)):t}function Wg(r,e,t){let o=r[e];return o&&o.list&&o.list.b?o.list.b:t}var N_=class{constructor(e,t,o){this.node=e,this.tensorMap=t,this.context=o,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,s)=>(n[s]=this.getAttr(s),n),{}))}getInput(e){return hr(e,this.tensorMap,this.context)}getAttr(e,t){let o=this.node.rawAttrs[e];if(o.tensor!=null)return hr(e,this.tensorMap,this.context);if(o.i!=null||o.f!=null)return Pg(this.node.rawAttrs,e,t);if(o.s!=null)return Fg(this.node.rawAttrs,e,t);if(o.b!=null)return Og(this.node.rawAttrs,e,t);if(o.shape!=null)return zg(this.node.rawAttrs,e,t);if(o.type!=null)return Mg(this.node.rawAttrs,e,t);if(o.list!=null){if(o.list.i!=null||o.list.f!=null)return Bg(this.node.rawAttrs,e,t);if(o.list.s!=null)return Vg(this.node.rawAttrs,e,t);if(o.list.shape!=null)return Gg(this.node.rawAttrs,e,t);if(o.list.b!=null)return Wg(this.node.rawAttrs,e,t);if(o.list.type!=null)return Lg(this.node.rawAttrs,e,t)}return t}};var P1=(r,e,t)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[ee(C("a",r,e,t),C("b",r,e,t))];case"AddN":return[oI(C("tensors",r,e,t))];case"FloorMod":case"Mod":return[Dh(C("a",r,e,t),C("b",r,e,t))];case"Mul":return[P(C("a",r,e,t),C("b",r,e,t))];case"RealDiv":case"Div":return[me(C("a",r,e,t),C("b",r,e,t))];case"DivNoNan":return[vh(C("a",r,e,t),C("b",r,e,t))];case"FloorDiv":return[wc(C("a",r,e,t),C("b",r,e,t))];case"Sub":return[pe(C("a",r,e,t),C("b",r,e,t))];case"Minimum":return[Ws(C("a",r,e,t),C("b",r,e,t))];case"Maximum":return[so(C("a",r,e,t),C("b",r,e,t))];case"Pow":return[Ur(C("a",r,e,t),C("b",r,e,t))];case"SquaredDifference":return[Vc(C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var M1=(r,e,t)=>{switch(r.op){case"Abs":case"ComplexAbs":return[Tt(C("x",r,e,t))];case"Acos":return[lh(C("x",r,e,t))];case"Acosh":return[uh(C("x",r,e,t))];case"Asin":return[ph(C("x",r,e,t))];case"Asinh":return[mh(C("x",r,e,t))];case"Atan":return[fh(C("x",r,e,t))];case"Atan2":return[dh(C("x",r,e,t),C("y",r,e,t))];case"Atanh":return[hh(C("x",r,e,t))];case"Ceil":return[yh(C("x",r,e,t))];case"Complex":return[So(C("real",r,e,t),C("imag",r,e,t))];case"Cos":return[Ga(C("x",r,e,t))];case"Cosh":return[Nc(C("x",r,e,t))];case"Elu":return[Bs(C("x",r,e,t))];case"Erf":return[Ch(C("x",r,e,t))];case"Exp":return[er(C("x",r,e,t))];case"Expm1":return[Ih(C("x",r,e,t))];case"Floor":return[Vs(C("x",r,e,t))];case"Log":return[cr(C("x",r,e,t))];case"Log1p":return[Ec(C("x",r,e,t))];case"Imag":return[Tc(C("x",r,e,t))];case"Neg":return[qe(C("x",r,e,t))];case"Reciprocal":return[Fh(C("x",r,e,t))];case"Real":return[zl(C("x",r,e,t))];case"Relu":return[Dr(C("x",r,e,t))];case"Round":return[Oh(C("x",r,e,t))];case"Selu":return[Mc(C("x",r,e,t))];case"Sigmoid":return[ro(C("x",r,e,t))];case"Sin":return[Lc(C("x",r,e,t))];case"Sign":return[Mh(C("x",r,e,t))];case"Sinh":return[zc(C("x",r,e,t))];case"Softplus":return[Gs(C("x",r,e,t))];case"Sqrt":return[_t(C("x",r,e,t))];case"Square":return[Me(C("x",r,e,t))];case"Tanh":return[ea(C("x",r,e,t))];case"Tan":return[Vh(C("x",r,e,t))];case"ClipByValue":return[lr(C("x",r,e,t),C("clipValueMin",r,e,t),C("clipValueMax",r,e,t))];case"Relu6":return[Oc(C("x",r,e,t))];case"Rsqrt":return[Pc(hr(r.inputNames[0],e,t))];case"Prod":return[Rc(C("x",r,e,t),C("axes",r,e,t))];case"LeakyRelu":return[Ua(C("x",r,e,t),C("alpha",r,e,t))];case"Prelu":return[Ka(C("x",r,e,t),C("alpha",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function _o(r,e,t=""){if(!(typeof r=="number"||typeof e=="number")){x.assert(r.length===e.length,()=>t+` Shapes ${r} and ${e} must match`);for(let o=0;o<r.length;o++){let n=r[o],s=e[o];x.assert(n<0||s<0||n===s,()=>t+` Shapes ${r} and ${e} must match`)}}}function L1(r){return!(typeof r=="number"||r.some(e=>e<0))}function hp(r,e,t){let o=Ug(r,t),n=!L1(o);if(n&&e.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${o}`);if(n&&e.forEach(s=>{o=Ug(s.shape,o)}),!L1(o))throw new Error(`Non-fully-defined elementShape: ${o}`);return o}function Ug(r,e){if(typeof r=="number")return e;if(typeof e=="number")return r;if(r.length!==e.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${e}`);let t=[];for(let o=0;o<r.length;++o){let n=r[o],s=e[o];if(n>=0&&s>=0&&n!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${e}`);t[o]=n>=0?n:s}return t}var S_=class{constructor(e,t,o,n,s,a,i){this.name=e,this.dtype=t,this.maxSize=o,this.elementShape=n,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=le(0),Et(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let o=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),_o(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),o.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(o.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);o.tensor=t,Et(t),o.written=!0,this.tensors[e]=o}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((o,n)=>this.write(o,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return Vr([],[0].concat(this.elementShape));let o=this.readMany(e);return _o(this.elementShape,o[0].shape,"TensorArray shape mismatch: "),Ut(o,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Vr([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let o=this.readMany(t);return _o(this.elementShape,o[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${o[0].shape})`),Je(o,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let o=Math.max(...e);if(!this.dynamicSize&&o>=this.maxSize)throw new Error(`Max index must be < array size (${o} vs. ${this.maxSize})`);this.writeMany(e,fr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let o=0,n=e.map(l=>(o+=l,o));if(o!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${o}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=o===0?0:t.size/o,a=[];V(()=>{t=L(t,[1,o,s]);for(let l=0;l<e.length;++l){let u=l===0?0:n[l-1],c=[0,u,0],p=[1,e[l],s];a[l]=L(Re(t,c,p),this.elementShape)}return a});let i=[];for(let l=0;l<e.length;l++)i[l]=l;this.writeMany(i,a)}};var ou=class{constructor(e,t,o,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=o,e!=null&&e.forEach(s=>{if(o!==s.dtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${s.dtype}`);_o(t,s.shape,"TensorList shape mismatch: "),Et(s)}),this.idTensor=le(0),this.maxNumElements=n,Et(this.idTensor)}get id(){return this.idTensor.id}copy(){return new ou([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,o=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(o!==-1&&this.tensors.length!==o)throw new Error(`Operation expected a list with ${o} elements but got a list with ${this.tensors.length} elements.`);_o(e,this.elementShape,"TensorList shape mismatch: ");let n=hp(this.elementShape,this.tensors,e);return V(()=>{let s=this.tensors.map(a=>L(a,n));return Ut(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let o=hp(this.elementShape,this.tensors,e),n=this.tensors.pop();return _o(n.shape,e,"TensorList shape mismatch: "),L(n,o)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(_o(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Et(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,o){if(o!==this.elementDtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);_o(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=hp(this.elementShape,this.tensors,t);return L(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);_o(this.elementShape,t.shape,"TensorList shape mismatch: "),Et(t),this.tensors[e]=t}gather(e,t,o){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);_o(this.elementShape,o,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=hp(this.elementShape,this.tensors,o);return e.length===0?Vr([],[0].concat(n)):V(()=>{let s=e.map(a=>L(this.tensors[a],n));return Ut(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);_o(this.elementShape,t,"TensorList shape mismatch: ");let o=hp(this.elementShape,this.tensors,t);return this.size()===0?Vr([],[0].concat(o)):V(()=>{let n=this.tensors.map(s=>L(s,o));return Je(n,0)})}};function z1(r,e,t){let o=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let n=r.shape.slice(1);_o(n,e,"TensorList shape mismatch: ");let s=fr(r);return new ou(s,e,o)}function B1(r,e,t){return new ou([],r,e,t)}function V1(r,e,t,o){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let n=Math.max(...e);if(o!=null&&o!==-1&&n>=o)throw new Error(`Max index must be < array size (${n} vs. ${o})`);let s=new ou([],t,r.dtype,o),a=fr(r,0);return e.forEach((i,l)=>{s.setItem(i,a[l])}),s}function G1(r,e,t){let o=0,n=e.map(c=>(o+=c,o));if(o!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${o}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),a=Ug(s,t),i=o===0?0:r.size/o,l=V(()=>{let c=[];r=L(r,[1,o,i]);for(let p=0;p<e.length;++p){let m=p===0?0:n[p-1],f=[0,m,0],d=[1,e[p],i];c[p]=L(Re(r,f,d),a)}return r.dispose(),c}),u=new ou([],t,r.dtype,e.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var W1=async(r,e,t)=>{switch(r.op){case"If":case"StatelessIf":{let o=C("thenBranch",r,e,t),n=C("elseBranch",r,e,t),s=C("cond",r,e,t),a=C("args",r,e,t);return(await s.data())[0]?t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let o=C("body",r,e,t),n=C("cond",r,e,t),s=C("args",r,e,t),a=await t.functionMap[n].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),l=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let p=u.map(f=>f.id);c.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);l=await m[0].data(),m.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return u}case"LoopCond":{let o=C("pred",r,e,t);return[hs(o)]}case"Switch":{let o=C("pred",r,e,t),n=C("data",r,e,t);return n.kept||(n=hs(n)),(await o.data())[0]?[void 0,n]:[n,void 0]}case"Merge":{let o=r.inputNames.find(n=>hr(n,e,t)!==void 0);if(o){let n=hr(o,e,t);return[hs(n)]}return}case"Enter":{let o=C("frameName",r,e,t),n=C("tensor",r,e,t);return t.enterFrame(o),[hs(n)]}case"Exit":{let o=C("tensor",r,e,t);return t.exitFrame(),[hs(o)]}case"NextIteration":{let o=C("tensor",r,e,t);return t.nextIteration(),[hs(o)]}case"TensorArrayV3":{let o=C("size",r,e,t),n=C("dtype",r,e,t),s=C("elementShape",r,e,t),a=C("dynamicSize",r,e,t),i=C("clearAfterRead",r,e,t),l=C("identicalElementShapes",r,e,t),u=C("name",r,e,t),c=new S_(u,n,o,s,l,a,i);return t.addTensorArray(c),[c.idTensor,le(1)]}case"TensorArrayWriteV3":{let o=C("tensorArrayId",r,e,t),n=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(o.id);return a.write(n,s),[a.idTensor]}case"TensorArrayReadV3":{let o=C("tensorArrayId",r,e,t),n=C("index",r,e,t);return[t.getTensorArray(o.id).read(n)]}case"TensorArrayGatherV3":{let o=C("tensorArrayId",r,e,t),n=C("indices",r,e,t),s=C("dtype",r,e,t);return[t.getTensorArray(o.id).gather(n,s)]}case"TensorArrayScatterV3":{let o=C("tensorArrayId",r,e,t),n=C("indices",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(o.id);return a.scatter(n,s),[a.idTensor]}case"TensorArrayConcatV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id),s=C("dtype",r,e,t);return[n.concat(s)]}case"TensorArraySplitV3":{let o=C("tensorArrayId",r,e,t),n=C("tensor",r,e,t),s=C("lengths",r,e,t),a=t.getTensorArray(o.id);return a.split(s,n),[a.idTensor]}case"TensorArraySizeV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return[le(n.size(),"int32")]}case"TensorArrayCloseV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return n.clearAndClose(),[n.idTensor]}case"TensorListSetItem":{let o=C("tensorListId",r,e,t),n=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorList(o.id);return a.setItem(n,s),[a.idTensor]}case"TensorListGetItem":{let o=C("tensorListId",r,e,t),n=C("index",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(o.id).getItem(n,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let o=C("indices",r,e,t),n=C("tensor",r,e,t),s=C("elementShape",r,e,t),a=C("numElements",r,e,t),i=V1(n,o,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let o=C("elementShape",r,e,t),n=C("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=C(s,r,e,t),i=B1(o,n,a);return t.addTensorList(i),[i.idTensor]}case"TensorListGather":{let o=C("tensorListId",r,e,t),n=C("indices",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(o.id).gather(n,a,s)]}case"TensorListStack":{let o=C("tensorListId",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=C("numElements",r,e,t);return[t.getTensorList(o.id).stack(n,s,a)]}case"TensorListFromTensor":{let o=C("tensor",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=z1(o,n,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":{let o=C("tensorListId",r,e,t),n=t.getTensorList(o.id),s=C("dtype",r,e,t),a=C("elementShape",r,e,t);return[n.concat(s,a)]}case"TensorListPushBack":{let o=C("tensorListId",r,e,t),n=C("tensor",r,e,t),s=t.getTensorList(o.id);return s.pushBack(n),[s.idTensor]}case"TensorListPopBack":{let o=C("tensorListId",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t);return[t.getTensorList(o.id).popBack(n,s)]}case"TensorListSplit":{let o=C("tensor",r,e,t),n=C("elementShape",r,e,t),s=C("lengths",r,e,t),a=G1(o,s,n);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function U1(r,e,t){let[o,n]=C("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=o==="fusedbatchnorm",l=C("numArgs",r,e,t);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(i)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=C("strides",r,e,t),c=Wf(r,e,t),p=C("dataFormat",r,e,t).toUpperCase(),m=C("dilations",r,e,t),[f,d]=C("args",r,e,t),h=C("leakyreluAlpha",r,e,t);return{stride:u,pad:c,dataFormat:p,dilations:m,biasArg:f,preluArg:d,activationFunc:n,leakyreluAlpha:h}}var j1=(r,e,t)=>{switch(r.op){case"Conv1D":{let o=C("stride",r,e,t),n=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilation",r,e,t);return[vc(C("x",r,e,t),C("filter",r,e,t),o,n,s,a)]}case"Conv2D":{let o=C("strides",r,e,t),n=Wf(r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[oo(C("x",r,e,t),C("filter",r,e,t),[o[1],o[2]],n,s,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=U1(r,e,t);return[ls.conv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=U1(r,e,t);return[ls.depthwiseConv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let o=C("outputShape",r,e,t),n=C("strides",r,e,t),s=Wf(r,e,t);return[Ic(C("x",r,e,t),C("filter",r,e,t),o,[n[1],n[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let o=C("strides",r,e,t),n=Wf(r,e,t),s=C("dilations",r,e,t),a=C("dataFormat",r,e,t).toUpperCase();return[zs(C("input",r,e,t),C("filter",r,e,t),[o[1],o[2]],n,a,[s[1],s[2]])]}case"Conv3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[bh(C("x",r,e,t),C("filter",r,e,t),[o[1],o[2],o[3]],n,s,[a[1],a[2],a[3]])]}case"AvgPool":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Ba(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPool":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Ha(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPoolWithArgmax":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t),a=C("includeBatchInIndex",r,e,t),{result:i,indexes:l}=CI(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n,a);return[i,l]}case"AvgPool3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[xh(C("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"MaxPool3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Ah(C("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"Dilation2D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("dilations",r,e,t),a=o[1],i=o[2],l=s[1],u=s[2];return[kh(C("x",r,e,t),C("filter",r,e,t),[a,i],n,[l,u],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var H1=(r,e,t)=>{switch(r.op){case"Fill":{let o=C("shape",r,e,t),n=C("dtype",r,e,t),s=C("value",r,e,t);return[Wa(o,s,n)]}case"LinSpace":{let o=C("start",r,e,t),n=C("stop",r,e,t),s=C("num",r,e,t);return[wI(o,n,s)]}case"Multinomial":{let o=C("logits",r,e,t),n=C("numSamples",r,e,t),s=C("seed",r,e,t);return[II(o,n,s)]}case"OneHot":{let o=C("indices",r,e,t),n=C("depth",r,e,t),s=C("onValue",r,e,t),a=C("offValue",r,e,t);return[Ls(o,n,s,a)]}case"Ones":return[Er(C("shape",r,e,t),C("dtype",r,e,t))];case"OnesLike":return[sr(C("x",r,e,t))];case"RandomUniform":return[Us(C("shape",r,e,t),C("minval",r,e,t),C("maxval",r,e,t),C("dtype",r,e,t))];case"Range":{let o=C("start",r,e,t),n=C("stop",r,e,t),s=C("step",r,e,t);return[cm(o,n,s,C("dtype",r,e,t))]}case"TruncatedNormal":{let o=C("shape",r,e,t),n=C("mean",r,e,t),s=C("stdDev",r,e,t),a=C("seed",r,e,t);return[Gc(o,n,s,C("dtype",r,e,t),a)]}case"Zeros":return[wt(C("shape",r,e,t),C("dtype",r,e,t))];case"ZerosLike":return[Ie(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function T_(r,e,t){let o=C("boxes",r,e,t),n=C("scores",r,e,t),s=C("maxOutputSize",r,e,t),a=C("iouThreshold",r,e,t),i=C("scoreThreshold",r,e,t),l=C("softNmsSigma",r,e,t);return{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}}var q1=async(r,e,t)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}=T_(r,e,t),u=await Hs.nonMaxSuppressionWithScoreAsync(o,n,s,a,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=T_(r,e,t),l=C("padToMaxOutputSize",r,e,t),u=await Hs.nonMaxSuppressionPaddedAsync(o,n,s,a,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=T_(r,e,t);return[await Hs.nonMaxSuppressionAsync(o,n,s,a,i)]}case"Where":{let o=ne(C("condition",r,e,t),"bool"),n=[await Uh(o)];return o.dispose(),n}case"ListDiff":return VI(C("x",r,e,t),C("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var K1=(r,e,t)=>{switch(r.op){case"TopKV2":{let o=C("x",r,e,t),n=C("k",r,e,t),s=C("sorted",r,e,t),a=Gh(o,n,s);return[a.values,a.indices]}case"Unique":{let o=C("x",r,e,t),n=mm(o);return[n.values,n.indices]}case"UniqueV2":{let o=C("x",r,e,t),n=C("axis",r,e,t),s=mm(o,n);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var X1=(r,e,t)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let o=C("default",r,e,t);return[hr(r.name,e,t)||o];case"Placeholder":return[hr(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=C("x",r,e,t);return[hs(u)]}case"IdentityN":return C("x",r,e,t).map(u=>hs(u));case"Snapshot":let n=C("x",r,e,t);return[hs(n)];case"Shape":return[jt(C("x",r,e,t).shape,"int32")];case"ShapeN":return C("x",r,e,t).map(u=>jt(u.shape));case"Size":return[le(C("x",r,e,t).size,"int32")];case"Rank":return[le(C("x",r,e,t).rank,"int32")];case"NoOp":return[le(1)];case"Print":let s=C("x",r,e,t),a=C("data",r,e,t),i=C("message",r,e,t),l=C("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<a.length;u++)console.log(Array.prototype.slice.call(a[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var A_=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=le(0),this.tensorMap=new Map,Et(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return le(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),V(()=>{let n=fr(t),s=o.length,a=n.length;x.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i<s;i++){let l=o[i],u=n[i];Et(u),this.tensorMap.set(l,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return V(()=>{let n=[];for(let s=0;s<o.length;s++){let a=o[s],i=this.findWithDefault(a,t);n.push(i)}return Ut(n)})}findWithDefault(e,t){let o=this.tensorMap.get(e);return o!=null?o:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}};var Y1=async(r,e,t,o)=>{switch(r.op){case"HashTable":case"HashTableV2":{let n=C("keyDType",r,e,t),s=C("valueDType",r,e,t),a=new A_(n,s);return o.addHashTable(r.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{let n=C("tableHandle",r,e,t,o),s=C("keys",r,e,t),a=C("values",r,e,t);return[await o.getHashTableById(n.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let n=C("tableHandle",r,e,t,o),s=C("keys",r,e,t),a=C("defaultValue",r,e,t);return[await o.getHashTableById(n.id).find(s,a)]}case"LookupTableSize":case"LookupTableSizeV2":{let n=C("tableHandle",r,e,t,o);return[o.getHashTableById(n.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Z1=(r,e,t)=>{switch(r.op){case"ResizeBilinear":{let o=C("images",r,e,t),n=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[Hs.resizeBilinear(o,[n[0],n[1]],s,a)]}case"ResizeNearestNeighbor":{let o=C("images",r,e,t),n=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[Hs.resizeNearestNeighbor(o,[n[0],n[1]],s,a)]}case"CropAndResize":{let o=C("image",r,e,t),n=C("boxes",r,e,t),s=C("boxInd",r,e,t),a=C("cropSize",r,e,t),i=C("method",r,e,t),l=C("extrapolationValue",r,e,t);return[Hs.cropAndResize(o,n,s,a,i,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var J1=(r,e,t)=>{switch(r.op){case"Equal":return[Ao(C("a",r,e,t),C("b",r,e,t))];case"NotEqual":return[as(C("a",r,e,t),C("b",r,e,t))];case"Greater":return[nr(C("a",r,e,t),C("b",r,e,t))];case"GreaterEqual":return[yo(C("a",r,e,t),C("b",r,e,t))];case"Less":return[Ac(C("a",r,e,t),C("b",r,e,t))];case"LessEqual":return[jo(C("a",r,e,t),C("b",r,e,t))];case"LogicalAnd":return[_r(C("a",r,e,t),C("b",r,e,t))];case"LogicalNot":return[ja(C("a",r,e,t))];case"LogicalOr":return[$c(C("a",r,e,t),C("b",r,e,t))];case"Select":case"SelectV2":return[$t(C("condition",r,e,t),C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Q1=(r,e,t)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ue(C("a",r,e,t),C("b",r,e,t),C("transposeA",r,e,t),C("transposeB",r,e,t))];case"Transpose":return[He(C("x",r,e,t),C("perm",r,e,t))];case"_FusedMatMul":let[o,n]=C("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=C("numArgs",r,e,t),l=C("leakyreluAlpha",r,e,t);if(s){if(a&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=C("args",r,e,t);return[ls.matMul({a:C("a",r,e,t),b:C("b",r,e,t),transposeA:C("transposeA",r,e,t),transposeB:C("transposeB",r,e,t),bias:u,activation:n,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var eA=(r,e,t)=>{switch(r.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[ss(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"FusedBatchNormV3":return[ss(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"LRN":return[Nh(C("x",r,e,t),C("radius",r,e,t),C("bias",r,e,t),C("alpha",r,e,t),C("beta",r,e,t))];case"Softmax":return[Xa(C("x",r,e,t))];case"LogSoftmax":return[Dc(C("x",r,e,t))];case"SparseToDense":return[jh(C("sparseIndices",r,e,t),C("outputShape",r,e,t),C("sparseValues",r,e,t),C("defaultValue",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var tA=(r,e,t)=>{switch(r.op){case"Max":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[pr(C("x",r,e,t),a,i)]}case"Mean":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[bt(C("x",r,e,t),a,i)]}case"Min":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ta(C("x",r,e,t),a,i)]}case"Sum":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ye(C("x",r,e,t),a,i)]}case"All":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[_c(C("x",r,e,t),a,i)]}case"Any":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[Rl(C("x",r,e,t),a,i)]}case"ArgMax":{let a=C("axis",r,e,t);return[Fl(C("x",r,e,t),a)]}case"ArgMin":{let a=C("axis",r,e,t);return[ch(C("x",r,e,t),a)]}case"Prod":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[Rc(C("x",r,e,t),a,i)]}case"Cumsum":{let a=C("axis",r,e,t),i=C("exclusive",r,e,t),l=C("reverse",r,e,t);return[Sc(C("x",r,e,t),a,i,l)]}case"Bincount":let o=C("x",r,e,t),n=C("weights",r,e,t),s=C("size",r,e,t);return[cI(o,n,s)];case"DenseBincount":{let a=C("x",r,e,t),i=C("weights",r,e,t),l=C("size",r,e,t),u=C("binaryOutput",r,e,t);return[hI(a,i,l,u)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var rA=(r,e,t)=>{switch(r.op){case"ConcatV2":case"Concat":{let o=C("n",r,e,t),n=C("axis",r,e,t),s=C("tensors",r,e,t);return s=s.slice(0,o),[Je(s,n)]}case"Gather":{let o=C("x",r,e,t),n=C("indices",r,e,t);return[is(o,ne(n,"int32"),0)]}case"GatherV2":{let o=C("axis",r,e,t),n=C("batchDims",r,e,t),s=C("x",r,e,t),a=C("indices",r,e,t);return[is(s,ne(a,"int32"),o,n)]}case"Reverse":{let o=C("dims",r,e,t),n=[];for(let a=0;a<o.length;a++)o[a]&&n.push(a);let s=C("x",r,e,t);return[Zt(s,n)]}case"ReverseV2":{let o=C("axis",r,e,t),n=C("x",r,e,t);return[Zt(n,o)]}case"Slice":{let o=C("begin",r,e,t),n=C("size",r,e,t);return[Re(C("x",r,e,t),o,n)]}case"StridedSlice":{let o=C("begin",r,e,t),n=C("end",r,e,t),s=C("strides",r,e,t),a=C("beginMask",r,e,t),i=C("endMask",r,e,t),l=C("ellipsisMask",r,e,t),u=C("newAxisMask",r,e,t),c=C("shrinkAxisMask",r,e,t),p=C("x",r,e,t);return[Bh(p,o,n,s,a,i,l,u,c)]}case"Pack":return V(()=>{let o=C("axis",r,e,t),n=C("tensors",r,e,t),s=n[0].shape,a=Eo(n[0]).shape,i=n.map(l=>{let u=x.arraysEqual(l.shape,s);if(!u&&!x.arraysEqual(Eo(l).shape,a))throw new Error("the input tensors shape does not match");return u?l:L(l,s)});return[Ut(i,o)]});case"Unpack":{let o=C("axis",r,e,t),n=C("tensor",r,e,t);return fr(n,o)}case"Tile":{let o=C("reps",r,e,t);return[Uo(C("x",r,e,t),o)]}case"Split":case"SplitV":{let o=C("axis",r,e,t),n=C("numOrSizeSplits",r,e,t),s=C("x",r,e,t);return mr(s,n,o)}case"ScatterNd":{let o=C("indices",r,e,t),n=C("values",r,e,t),s=C("shape",r,e,t);return[UI(o,n,s)]}case"GatherNd":{let o=C("x",r,e,t),n=C("indices",r,e,t);return[HI(o,n)]}case"SparseToDense":{let o=C("sparseIndices",r,e,t),n=C("outputShape",r,e,t),s=C("sparseValues",r,e,t),a=C("defaultValue",r,e,t);return[jh(o,s,n,s.dtype===a.dtype?a:ne(a,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var oA=(r,e,t)=>{switch(r.op){case"FFT":return[Ya(C("x",r,e,t))];case"IFFT":return[ra(C("x",r,e,t))];case"RFFT":return[Za(C("x",r,e,t))];case"IRFFT":return[Bc(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var nA=(r,e,t)=>{switch(r.op){case"Cast":return[ne(C("x",r,e,t),C("dtype",r,e,t))];case"ExpandDims":{let o=C("axis",r,e,t);return[ur(C("x",r,e,t),o)]}case"Squeeze":{let o=C("axis",r,e,t);return[Eo(C("x",r,e,t),o)]}case"Reshape":return[L(C("x",r,e,t),C("shape",r,e,t))];case"MirrorPad":return[Eh(C("x",r,e,t),C("padding",r,e,t),C("mode",r,e,t))];case"PadV2":case"Pad":return[Wr(C("x",r,e,t),C("padding",r,e,t),C("constantValue",r,e,t))];case"SpaceToBatchND":{let o=C("blockShape",r,e,t),n=C("paddings",r,e,t);return[qa(C("x",r,e,t),o,n)]}case"BatchToSpaceND":{let o=C("blockShape",r,e,t),n=C("crops",r,e,t);return[Va(C("x",r,e,t),o,n)]}case"DepthToSpace":{let o=C("blockSize",r,e,t),n=C("dataFormat",r,e,t).toUpperCase();return[_h(C("x",r,e,t),o,n)]}case"BroadcastTo":return[Ml(C("x",r,e,t),C("shape",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function E_(r,e,t,o){let n=((s,a,i)=>{switch(s.category){case"arithmetic":return V(()=>P1(s,a,i));case"basic_math":return V(()=>M1(s,a,i));case"control":return W1(s,a,i);case"convolution":return V(()=>j1(s,a,i));case"creation":return V(()=>H1(s,a,i));case"dynamic":return q1(s,a,i);case"evaluation":return V(()=>K1(s,a,i));case"image":return V(()=>Z1(s,a,i));case"graph":return V(()=>X1(s,a,i));case"logical":return V(()=>J1(s,a,i));case"matrices":return V(()=>Q1(s,a,i));case"normalization":return V(()=>eA(s,a,i));case"reduction":return V(()=>tA(s,a,i));case"slice_join":return V(()=>rA(s,a,i));case"spectral":return V(()=>oA(s,a,i));case"transformation":return V(()=>nA(s,a,i));case"hash_table":return Y1(s,a,i,o);case"custom":let l=Dg(s.op);if(l&&l.customExecutor)return l.customExecutor(new N_(s,a,i));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return x.isPromise(n)?n.then(s=>[].concat(s)):[].concat(n)}var jg=class{constructor(e={},t={},o={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=o,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let o=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(o))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function $_(r,e,t,o){let n=new Set,s=[],a=null,i=null,l=new Set,u=Object.keys(r).map(m=>Yr(m)[0]),c=[];o!=null&&(c=o.map(m=>Yr(m.name)[0]));let p=[...e];for(;p.length>0;){let m=p.pop();if((D_(m)||ZK(m)||JK(m))&&a==null&&(a=m,i=a.children.map(f=>f.name).filter(f=>n.has(f))),n.add(m.name),t[m.name]==null&&u.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{l.has(f.name)||(l.add(f.name),p.push(f))})}}return{inputs:r,outputs:e,usedNodes:n,missingInputs:s,dynamicNode:a,syncInputs:i}}function sA(r,e,t){let{usedNodes:o,inputs:n}=t,s=[],a=Object.keys(n).map(c=>Yr(c)[0]).map(c=>r.nodes[c]),i=r.initNodes;a.forEach(c=>{o.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{o.has(c.name)&&s.push(c)}),i!=null&&i.forEach(c=>{o.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),e[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&o.has(p.name)&&p.inputs.every(m=>l.has(m.name))&&s.push(p)})}return u}var QK=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],e6=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],t6=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function D_(r){return QK.indexOf(r.op)>=0}function ZK(r){return e6.indexOf(r.op)>=0}function JK(r){return t6.indexOf(r.op)>=0}var gp=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(o=>{this._functionExecutorMap[o]=new gp(e.functions[o],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(o=>e[o].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let o=e.map(s=>s.name).sort(),n=t.map(s=>s.name).sort();return o.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let o=$_(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:s,syncInputs:a}=o;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(n.length>0){let i=t.map(u=>u.name),l=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${l}]. Missing the following inputs: [${n}]`)}return sA(this.graph,this.weightMap,o)}execute(e,t){e=this.mapInputs(e);let o=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=o.map(p=>this.graph.nodes[Yr(p)[0]]),s=t.map(p=>Yr(p)[0]),a=s.map(p=>this.graph.nodes[p]);a.length===0&&(a=this._outputs);let i=this.getCompilationKey(n,a),l=this.compiledMap.get(i);l==null&&(l=this.compile(e,a),this.compiledMap.set(i,l));let u={},c={};return V(()=>{let p=new jg(this.weightMap,u,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(e).forEach(h=>{let[g,y]=Yr(h),b=[];b[y]=e[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<l.length;h++){let g=l[h];if(!m[g.name]){let y=E_(g,m,p,this._resourceManager);if(x.isPromise(y))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=y,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),t.map(h=>hr(h,m,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(o=>e[o]).map(o=>o.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,o,n,s,a,i){t.category==="control"||a.indexOf(e)!==-1||(o[e].forEach(l=>{l!=null&&(i[l.id]=(i[l.id]||0)+t.children.length)}),t.inputs.forEach(l=>{if(l.category!=="control"){let u=$1(l.name,o,n);u!=null&&u.forEach(c=>{if(c&&!s.has(c.id)){let p=i[c.id];p===1?(c.dispose(),delete i[c.id]):p!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,o=!1,n={},s={}){o||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new jg(this.weightMap,n,s,this.functionExecutorMap),i=await this.executeWithControlFlow(e,a,t,o),l=t.map(m=>hr(m,i,a)),u=l.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),p=new Set([...u,...c,...this.weightIds]);return Object.keys(i).forEach(m=>{i[m].forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(p),l}async executeFunctionAsync(e,t,o){let n=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(n,this.outputNodes,!0,t,o)}async executeWithControlFlow(e,t,o,n){let s=Object.keys(e),a=s.map(w=>this.graph.nodes[Yr(w)[0]]),i=o.map(w=>Yr(w)[0]),l=i.map(w=>this.graph.nodes[w]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:c,dynamicNode:p,syncInputs:m}=$_(e,l,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(w=>({node:w,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(w=>{let[_,k]=Yr(w),D=[];D[k]=e[w],d[_]=D});let h={},g=this.getFrozenTensorIds(d),y={};for(;f.length>0;){let w=this.processStack(a,f,t,d,y,g,i,h,u);await Promise.all(w)}p==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=l.filter(w=>!D_(w)&&!hr(w.name,d,t)).map(w=>w.name);if(b.length>0){let w="";throw p!=null&&(w=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${w}`)}return d}processStack(e,t,o,n,s,a,i,l,u){let c=[];for(;t.length>0;){let p=t.pop();o.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&C("isConstant",p.node,n,o)&&([m]=ds(p.node.name,o)),n[p.node.name]==null){let f=E_(p.node,n,o,this._resourceManager);m||([m]=ds(p.node.name,o));let d=o.currentContext;x.isPromise(f)?c.push(f.then(h=>(n[m]=h,o.currentContext=d,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u),h))):(n[m]=f,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u))}else this.processChildNodes(p.node,t,o,n,s,u)}return c}processChildNodes(e,t,o,n,s,a){e.children.forEach(i=>{let[l]=ds(i.name,o);s[l]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!hr(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})):i.inputNames.every(u=>!!hr(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let o=e[t],[n]=Yr(t),s=this.graph.nodes[n];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===o.shape.length&&o.shape.every((l,u)=>a[u]===-1||a[u]===l);x.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${o.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&x.assert(o.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${o.dtype}`)})}mapInputs(e){let t={};for(let o in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[o]!=null){let n=this._signature.inputs[o];t[n.name]=e[o]}else t[o]=e[o];return t}checkInputs(e){let t=Object.keys(e).filter(o=>{let[n]=Yr(o);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[o]=Yr(t);if(!this.graph.nodes[o])throw new Error(`The output '${t}' is not found in the graph`)})}};var R_=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var r6="?tfjs-format=file",o6="model.json",F_=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new R_}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Ar.browserHTTPRequest(e,this.loadOptions);else{let t=Ar.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Ar.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,o;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?o=this.artifacts.userDefinedMetadata.signature:o=this.artifacts.signature,this.signature=o,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=Ar.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new gp(Rg.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=Rg.Instance.transformGraph(e.modelInitializer);this.initializer=new gp(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let o=Ar.getSaveHandlers(e);if(o.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(o.length>1)throw new Error(`Found more than one (${o.length}) save handlers for URL '${e}'`);e=o[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ve)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,o,n)=>(t[o]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=this.executor.execute(e,t);return o.length>1?o:o[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=await this.executor.executeAsync(e,t);return o.length>1?o:o[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,o)=>(t[o]=[e[o]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function n6(r,e={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&r.load==null&&(r.endsWith("/")||(r=r+"/"),r=`${r}${o6}${r6}`);let t=new F_(r,e);return await t.load(),t}var O_="3.3.0";var oE={};Ze(oE,{CSVDataset:()=>Kf,Dataset:()=>Js,FileDataSource:()=>Qf,TextLineDataset:()=>Hf,URLDataSource:()=>ed,array:()=>GA,csv:()=>JA,func:()=>QA,generator:()=>eE,microphone:()=>rE,version_data:()=>Qg,webcam:()=>tE,zip:()=>WA});var VA=Au(G_());var NA=Au(G_());function _A(r,e){return qg(r,e)}function qg(r,e,t=new Map,o=new Set){if(r==null)return null;if(o.has(r))throw new Error("Circular references are not supported.");if(t.has(r))return t.get(r);let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(n.recurse)if(ul(r)){let s=Array.isArray(r)?[]:{};o.add(r);for(let a in r){let i=r[a],l=qg(i,e,t,o);s[a]=l}return o.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return t.set(r,n.value),n.value}function vA(r,e=W_){return kA(r,e)}function kA(r,e,t=new Set){let o=r[0];if(t.has(o))throw new Error("Circular references are not supported.");let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(n.recurse)if(ul(o)){let s=Array.isArray(o)?[]:{};t.add(o);for(let a in o){let i=r.map(u=>u[a]),l=kA(i,e,t);s[a]=l}return t.delete(o),s}else throw new Error(`Can't recurse into non-iterable type: ${o}`);else return n.value}function W_(r){return r===null?null:ul(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function Kg(r,e){let t=new Map;qg(r,e,t);for(let n of Array.from(t.keys())){let s=t.get(n);if(x.isPromise(s)){let a=await s;t.set(n,a)}}return qg(r,e,t)}function ul(r){return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Ve))}function CA(r){return r==null||p6(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Ve||x.isTypedArray(r)}function p6(r){return r===null||typeof r!="object"&&typeof r!="function"}function IA(r){return _A(r,m6)}function m6(r){return r instanceof Ve?{value:r.clone(),recurse:!1}:ul(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var Uf=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),o=this.get(t);return this.set(t,this.pop()),o}};var xp=class extends Uf{constructor(){super(xp.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),o=this.length();for(let n=0;n<o;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=o}};xp.INITIAL_CAPACITY=32;function U_(r){return new SA(r)}function jf(r){return new TA(r)}function AA(r,e){return new j_(r,e)}function DA(r,e=pa.FAIL){return new EA(r,e)}var qt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],o=await e.next();for(;!o.done;)t.push(o.value),o=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),o=e(t.value);for(;!t.done&&o;)t=await this.next(),o=e(t.value)}handleErrors(e){return new LA(this,e)}filter(e){return new PA(this,e)}map(e){return new MA(this,e)}mapAsync(e){return new H_(this,e)}serialMapAsync(e){return new H_(this,e).serial()}flatmap(e){return new zA(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new OA(this,e,t)}columnMajorBatch(e,t=!0,o=W_){return this.rowMajorBatch(e,t).map(s=>vA(s,o))}concatenate(e,t){return new j_(U_([this,e]),t)}take(e){return e<0||e==null?this:new FA(this,e)}skip(e){return e<0||e==null?this:new RA(this,e)}prefetch(e){return new q_(this,e)}shuffle(e,t){return new BA(this,e,t)}serial(){return new $A(this)}},SA=class extends qt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:IA(e),done:!1}}},TA=class extends qt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},$A=class extends qt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},RA=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Te(e.value)}return this.upstream.next()}},FA=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},OA=class extends qt{constructor(e,t,o=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=o,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},PA=class extends qt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Te(e.value)}}},MA=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=os.getTensorsInContainer(e.value),o=this.transform(e.value),n=os.getTensorsInContainer(o);for(let s of t)os.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},LA=class extends qt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},H_=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=os.getTensorsInContainer(e.value),o=await this.transform(e.value),n=os.getTensorsInContainer(o);for(let s of t)os.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},yp=class extends qt{constructor(){super();this.outputQueue=new xp,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},zA=class extends yp{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=os.getTensorsInContainer(e.value),o=this.transform(e.value),n=os.getTensorsInContainer(o);this.outputQueue.pushAll(o);for(let s of t)os.isTensorInList(s,n)||s.dispose();return!0}},j_=class extends qt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let o=await this.moreIterators.next();if(o.done)return{value:null,done:!0};this.iterator=o.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},pa;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(pa||(pa={}));var EA=class extends qt{constructor(e,t=pa.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,o=0;function n(a){return a instanceof qt?{value:a.next().then(l=>(t++,l.done&&o++,l.value)),recurse:!1}:{value:null,recurse:!0}}let s=await Kg(this.iterators,n);if(t===o)return{value:null,done:!0};if(o>0)switch(this.mismatchMode){case pa.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case pa.SHORTEST:return{value:null,done:!0};case pa.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},q_=class extends qt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new Uf(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},BA=class extends q_{constructor(e,t,o){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=NA.alea(o||x.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}};var Js=class{constructor(){this.size=null}batch(e,t=!0){let o=this;x.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let n;return this.size===Infinity||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),po(async()=>(await o.iterator()).columnMajorBatch(e,t,f6),n)}concatenate(e){let t=this,o;return this.size===Infinity||e.size===Infinity?o=Infinity:this.size!=null&&e.size!=null?o=this.size+e.size:o=null,po(async()=>(await t.iterator()).concatenate(await e.iterator()),o)}filter(e){let t=this,o;return this.size===Infinity?o=Infinity:o=null,po(async()=>(await t.iterator()).filter(n=>V(()=>e(n))),o)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return po(async()=>(await t.iterator()).map(o=>V(()=>e(o))),this.size)}mapAsync(e){let t=this;return po(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return po(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,o;return this.size!=null&&e>0?o=this.size*e:e===0?o=0:this.size!=null&&(e===void 0||e<0)?o=Infinity:o=null,po(async()=>{let n=jf(async()=>({value:await t.iterator(),done:!1}));return AA(n.take(e))},o)}skip(e){let t=this,o;return this.size!=null&&e>=0&&this.size>=e?o=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?o=0:o=null,po(async()=>(await t.iterator()).skip(e),o)}shuffle(e,t,o=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,s=VA.alea(t||x.now().toString());return po(async()=>{let a=s.int32();return o&&(a+=s.int32()),(await n.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,o;return this.size!=null&&this.size>e?o=e:this.size!=null&&this.size<=e?o=this.size:o=null,po(async()=>(await t.iterator()).take(e),o)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Js.MAX_BUFFER_SIZE=1e4;function po(r,e=null){return new class extends Js{constructor(){super(...arguments);this.size=e}async iterator(){return r()}}}function GA(r){return po(async()=>U_(r),r.length)}function WA(r){if(!ul(r))throw new Error("The argument to zip() must be an object or array.");let e;if(Array.isArray(r))for(let t=0;t<r.length;t++)e=e==null?r[t].size:Math.min(e,r[t].size);else if(r instanceof Object)for(let t in r)e=e==null?r[t].size:Math.min(e,r[t].size);return po(async()=>{let t=await Kg(r,o=>{if(o instanceof Js)return{value:o.iterator(),recurse:!1};if(ul(o))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return DA(t,pa.SHORTEST)},e)}function f6(r){if(r===null)return null;let e=r[0];return CA(e)?{value:d6(r),recurse:!1}:{value:null,recurse:!0}}function d6(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Ve?Ut(r):Vr(r)}var Hf=class extends Js{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(n=>(n.endsWith("\r")&&(n=n.slice(0,-1)),n))}};var Xg='"',qf=Symbol("out"),UA=Symbol("field"),Yg=Symbol("quote"),K_=Symbol("quoteafterquote"),jA=Symbol("quoteinquote"),Kf=class extends Js{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Hf(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(x.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&x.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,s)=>(n[s]=n[s]+1||1,n),{}),o=Object.keys(t).filter(n=>t[n]>1);if(x.assert(o.length===0,()=>"Duplicate column names found: "+o.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let o=t.value;return this.parseRow(o,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),o={},n={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let l=t[s],u=null;if(l==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let c=Number(l);if(isNaN(c))i&&i.dtype==="bool"?u=this.getBoolean(l):u=l;else if(!i||!i.dtype)u=c;else switch(i.dtype){case"float32":u=c;break;case"int32":u=Math.floor(c);break;case"bool":u=this.getBoolean(l);break;default:u=c}}i&&i.isLabel?n[a]=u:o[a]=u}}return Object.keys(n).length===0?o:{xs:o,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let o=[],n=0,s=e.length,a=qf;for(let i=0;i<s;i++)switch(a){case qf:switch(e.charAt(i)){case Xg:n=i+1,a=Yg;break;case this.delimiter:if(n=i+1,this.delimiter===" "&&this.delimWhitespace)break;o.push(""),a=qf;break;default:a=UA,n=i;break}break;case UA:switch(e.charAt(i)){case this.delimiter:o.push(e.substring(n,i)),a=qf,n=i+1;break;default:}break;case Yg:switch(e.charAt(i)){case Xg:a=K_;break;default:}break;case K_:switch(e.charAt(i)){case this.delimiter:o.push(e.substring(n,i-1)),a=qf,n=i+1;break;case Xg:a=Yg;break;default:a=jA;break}break;case jA:switch(e.charAt(i)){case Xg:a=Yg;break;default:}break;default:}if(a===K_?o.push(e.substring(n,s-1)):o.push(e.substring(n)),t&&o.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${o}`);return o}};var Xf=class extends qt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(U().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Xf(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(o){throw new Error(`Error thrown while initializing video stream: ${o.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,o=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(o.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(o.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],o=0;return new Promise(n=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++o===this.numFrames&&(clearInterval(s),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,o=new Float32Array(e.length*t);return e.forEach((n,s)=>o.set(n,s*t)),o}getTensorFromAudioDataArray(e,t){let o=new Float32Array(x.sizeFromShape(t));return o.set(e,o.length-e.length),Vr(o,t)}};var Yf=class extends qt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=jt([0],"int32"),this.webcamConfig.centerCrop){let o=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-o)/2,a=(1-n)/2,i=s+o,l=n+a;this.cropBox=oa([a,s,l,i],[1,4])}else this.cropBox=oa([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(U().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let o=new Yf(e,t);return await o.start(),o}async start(){this.webcamConfig.facingMode&&x.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Cb.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return V(()=>{let t=ur(ne(e,"float32"),0),o;o=Hs.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=o.shape;return L(o,n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var Zf=class{};var Zg=class extends qt{split(e){return new HA(this,e)}},HA=class extends Zg{constructor(e,t){super();this.upstream=e,this.impl=new qA(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},qA=class extends yp{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let o of t.slice(0,-1))this.outputQueue.push(o);return this.carryover=t[t.length-1],!0}};var X_=class extends qt{decodeUTF8(){return new XA(this)}},XA=class extends Zg{constructor(e){super();this.upstream=e,this.impl=new YA(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},YA=class extends yp{constructor(e){super();if(this.upstream=e,U().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=KA();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let o;return U().get("IS_BROWSER")?o=this.decoder.decode(t,{stream:!0}):o=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(o),!0}};var Jf=class extends X_{constructor(e,t={}){super();this.file=e,this.options=t,x.assert(e instanceof Uint8Array||(U().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,o)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,n)));else{let s=new FileReader;s.onload=i=>{let l=s.result;if(l instanceof ArrayBuffer&&(l=new Uint8Array(l)),!(l instanceof Uint8Array))return o(new TypeError("FileReader returned unknown type."));t(l)},s.onabort=i=>o(new Error("Aborted")),s.onerror=i=>o(new Error(i.type));let a=this.file.slice(this.offset,n);s.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function ZA(r,e={}){let t,o;typeof r=="string"?t=r:(t=r.url,o=h6(r));let n=await x.fetch(t,o);if(n.ok){let s=new Uint8Array(await n.arrayBuffer());return new Jf(s,e)}else throw new Error(n.statusText)}var h6=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function Jg(r){return typeof r=="string"&&r.substr(0,7)==="file://"}var Qf=class extends Zf{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Jg(this.input)&&U().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new Jf(this.input,this.options)}};var ed=class extends Zf{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Jg(this.url)?new Qf(this.url,this.fileOptions).iterator():ZA(this.url,this.fileOptions)}};function JA(r,e={}){return new Kf(new ed(r),e)}function QA(r){let e=jf(r);return po(async()=>e)}function eE(r){return po(async()=>{let e=await r();return jf(()=>e.next())})}async function tE(r,e){return Yf.create(r,e)}async function rE(r){return Xf.create(r)}var Qg="3.3.0";function te(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&x.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var g6=$r.whereImpl,bp=class extends li{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new vl(this,Wo())}nextDataId(){return bp.nextDataId++}write(e,t,o){this.firstUse&&(this.firstUse=!1,U().get("IS_NODE")&&I.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:o,refCount:1}),n}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&x.isString(o[0])){let s=o.map(a=>x.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,o,n,s){this.data.set(e,{values:t,dtype:n,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:o}=this.data.get(e);if(t==="complex64"){let n=this.readSync(o.real.dataId),s=this.readSync(o.imag.dataId);return I.mergeRealAndImagArrays(n,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>x.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return _e(e.shape,e.dtype,o)}makeOutput(e,t,o){let n=this.write(e,t,o);return Wo().makeTensorFromDataId(n,t,o,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:o}=this.data.get(e);o!=null&&(this.disposeData(o.real.dataId,!0),this.disposeData(o.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=x.now();return e(),{kernelMs:x.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){te([e],"where");let t=this.readSync(e.dataId);return g6(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};bp.nextDataId=0;var ak={};Ze(ak,{addImpl:()=>cE,bincountImpl:()=>td,bincountReduceImpl:()=>Y_,ceilImpl:()=>mE,concatImpl:()=>Z_,expImpl:()=>dE,expm1Impl:()=>gE,floorImpl:()=>yE,gatherV2Impl:()=>Q_,greaterImpl:()=>wE,lessImpl:()=>kE,linSpaceImpl:()=>ek,logImpl:()=>CE,maxImpl:()=>tk,maximumImpl:()=>NE,minimumImpl:()=>TE,multiplyImpl:()=>ex,negImpl:()=>DE,notEqualImpl:()=>RE,prodImpl:()=>PE,rangeImpl:()=>rk,rsqrtImpl:()=>LE,simpleAbsImpl:()=>nE,sliceImpl:()=>BE,squaredDifferenceImpl:()=>GE,stridedSliceImpl:()=>ok,subImpl:()=>UE,tileImpl:()=>nk,topKImpl:()=>sk,transposeImpl:()=>od,uniqueImpl:()=>ik});function nE(r){let e=new Float32Array(r.length);for(let t=0;t<r.length;++t)e[t]=Math.abs(r[t]);return e}var x6=r=>{let{x:e}=r.inputs,t=r.backend;te(e,"abs");let o=new Float32Array(x.sizeFromShape(e.shape)),n=t.data.get(e.dataId).values;return o=nE(n),t.makeOutput(o,e.shape,"float32")},sE={kernelName:_s,backendName:"cpu",kernelFunc:x6};function Ke(r){return(e,t,o,n,s)=>{let a=I.assertAndGetBroadcastShape(e,t),i=a.length,l=x.computeStrides(a),u=x.sizeFromShape(a),c=x.getTypedArrayFromDType(s,u),p=e.length,m=t.length,f=x.computeStrides(e),d=x.computeStrides(t),h=I.getBroadcastDims(e,a),g=I.getBroadcastDims(t,a);if(h.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=r(o[y%o.length],n[y%n.length]);else for(let y=0;y<c.length;++y){let b=x.indexToLoc(y,i,l),w=b.slice(-p);h.forEach(T=>w[T]=0);let _=x.locToIndex(w,p,f),k=b.slice(-m);g.forEach(T=>k[T]=0);let D=x.locToIndex(k,m,d);c[y]=r(o[_],n[D])}return[c,a]}}function ir(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,i=t.makeTensorInfo(o.shape,"complex64"),l=t.data.get(i.dataId);return l.complexTensorInfos={real:t.makeTensorInfo(o.shape,"float32",s),imag:t.makeTensorInfo(n.shape,"float32",a)},i}var iE={kernelName:zu,backendName:"cpu",kernelFunc:ir};function wp(r,e,t="float32"){if(t==="complex64"){let n=wp(r,e,"float32"),s=wp(r,e,"float32");return ir({inputs:{real:n,imag:s},backend:r})}let o=x.makeZerosTypedArray(x.sizeFromShape(e),t);return r.makeTensorInfo(e,t,o)}function Nr(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var aE={kernelName:Bo,backendName:"cpu",kernelFunc:Nr};function tn(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.real,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var lE={kernelName:oc,backendName:"cpu",kernelFunc:tn};function rn(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Nr({inputs:{x:n},backend:t});let a=wp(t,n.shape,n.dtype),i=rn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=ir({inputs:{real:i,imag:a},backend:t});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=tn({inputs:{input:n},backend:t}),i=rn({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!x.hasEncodingLoss(n.dtype,s)){let a=Nr({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32"){let a=t.data.get(n.dataId).values,i=Int32Array.from(a);return t.makeTensorInfo(n.shape,"int32",i)}if(s==="bool"){let a=t.data.get(n.dataId).values,i=x.toTypedArray([0],n.dtype),[l,u]=Ke((c,p)=>c!==p?1:0)(n.shape,[],a,i,"bool");return t.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var uE={kernelName:Lo,backendName:"cpu",kernelFunc:rn};function et(r,e,t,o){return t==null?({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;te([a,i],r);let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}:({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=rn({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=l.data.get(p.dataId).values,d=l.data.get(m.dataId).values,h=rn({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(h.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=l.data.get(y.dataId).values,_=l.data.get(b.dataId).values,[k,D,T]=t(a.shape,i.shape,f,d,w,_),R=l.makeTensorInfo(T,"float32",k),O=l.makeTensorInfo(T,"float32",D),M=ir({inputs:{real:R,imag:O},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(h),l.disposeIntermediateTensorInfo(R),l.disposeIntermediateTensorInfo(O),M}else{let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}}}function _p(r){return(e,t,o,n,s,a)=>{let i=I.assertAndGetBroadcastShape(e,t),l=x.sizeFromShape(i),u=i.length,c=x.computeStrides(i),p=x.getTypedArrayFromDType("float32",l),m=x.getTypedArrayFromDType("float32",l),f=I.getBroadcastDims(e,i),d=I.getBroadcastDims(t,i),h=I.mergeRealAndImagArrays(o,n),g=I.mergeRealAndImagArrays(s,a),y=e.length,b=x.computeStrides(e),w=t.length,_=x.computeStrides(t);if(f.length+d.length===0)for(let k=0;k<p.length;k++){let D=k%h.length,T=k%g.length,R=r(h[D*2],h[D*2+1],g[T*2],g[T*2+1]);p[k]=R.real,m[k]=R.imag}else for(let k=0;k<p.length;k++){let D=x.indexToLoc(k,u,c),T=D.slice(-y);f.forEach(W=>T[W]=0);let R=x.locToIndex(T,y,b),O=D.slice(-w);d.forEach(W=>O[W]=0);let M=x.locToIndex(O,w,_),G=r(h[R*2],h[R*2+1],g[M*2],g[M*2+1]);p[k]=G.real,m[k]=G.imag}return[p,m,i]}}var cE=Ke((r,e)=>r+e),y6=_p((r,e,t,o)=>({real:r+t,imag:e+o})),ma=et(Io,cE,y6),pE={kernelName:Io,backendName:"cpu",kernelFunc:ma};function td(r,e,t,o,n){let s=x.sizeFromShape(o),a=x.makeZerosTypedArray(n,t);for(let i=0;i<r.length;i++){let l=r[i];if(l<0)throw new Error("Input x must be non-negative!");l>=n||(s>0?a[l]+=e[i]:a[l]+=1)}return a}function Y_(r,e,t,o=!1){let n=r.shape[0],s=r.shape[1],a=_e([n,t],e.dtype);for(let i=0;i<n;i++)for(let l=0;l<s;l++){let u=r.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=t||(o?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,l),i,u):a.set(a.get(i,u)+1,i,u))}return a}function on(r){return(e,t,o)=>{let n=x.getTypedArrayFromDType(t,e.length);for(let s=0;s<e.length;++s)n[s]=r(e[s],o);return n}}function $e(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=x.sizeFromShape(a.shape),c=t||a.dtype,p=x.getArrayFromDType(c,u);for(let m=0;m<u;++m)p[m]=e(l[m],n);return i.makeTensorInfo(a.shape,c,p)}}function nn(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=t||a.dtype,c=e(l,u,n);return i.makeTensorInfo(a.shape,u,c)}}var mE=on(r=>Math.ceil(r)),b6=nn(gn,mE),fE={kernelName:gn,backendName:"cpu",kernelFunc:b6};function Z_(r,e,t,o){let n=x.getArrayFromDType(t,x.sizeFromShape(e));if(o&&t!=="string"){let s=0;r.forEach(a=>{let i=x.sizeFromShape(a.shape);n.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?I.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let p=0;p<a.shape[1];++p)n[c+p]=i[l++]}s+=a.shape[1]})}return n}var dE=on(r=>Math.exp(r)),J_=nn(vn,dE),hE={kernelName:vn,backendName:"cpu",kernelFunc:J_};var gE=on(r=>Math.expm1(r)),w6=nn(ki,gE),xE={kernelName:ki,backendName:"cpu",kernelFunc:w6};var yE=on(r=>Math.floor(r)),_6=nn(Cn,yE),bE={kernelName:Cn,backendName:"cpu",kernelFunc:_6};function Q_(r,e,t){let o=_e(t,r.dtype);for(let n=0;n<o.size;++n){let a=o.indexToLoc(n).slice(),i=a[0],l=a[2],u=e.locToIndex([i,l]);a[2]=e.values[u];let c=r.locToIndex(a);o.values[n]=r.values[c]}return o}var wE=Ke((r,e)=>r>e?1:0),k6=et(Ii,wE,null,"bool"),_E={kernelName:Ii,backendName:"cpu",kernelFunc:k6};var kE=Ke((r,e)=>r<e?1:0),v6=et(Ai,kE,null,"bool"),vE={kernelName:Ai,backendName:"cpu",kernelFunc:v6};function ek(r,e,t){let o=(e-r)/(t-1),n=x.makeZerosTypedArray(t,"float32");n[0]=r;for(let s=1;s<n.length;s++)n[s]=n[s-1]+o;return n}var CE=on(r=>Math.log(r)),C6=nn(An,CE),IE={kernelName:An,backendName:"cpu",kernelFunc:C6};function tk(r,e,t,o){let n=x.getTypedArrayFromDType(o,x.sizeFromShape(t));for(let s=0;s<n.length;++s){let a=s*e,i=r[a];for(let l=0;l<e;++l){let u=r[a+l];u>i&&(i=u)}n[s]=i}return n}var NE=Ke((r,e)=>Math.max(r,e)),I6=et(Dn,NE),SE={kernelName:Dn,backendName:"cpu",kernelFunc:I6};var TE=Ke((r,e)=>Math.min(r,e)),N6=et(On,TE),AE={kernelName:On,backendName:"cpu",kernelFunc:N6};var ex=Ke((r,e)=>r*e),S6=_p((r,e,t,o)=>({real:r*t-e*o,imag:r*o+e*t})),rd=et(Pn,ex,S6),EE={kernelName:Pn,backendName:"cpu",kernelFunc:rd};function DE(r,e,t){let o=x.createScalarValue(-1,t);return ex([],e,o,r,t)}function T6(r){let{inputs:e,backend:t}=r,{x:o}=e;te(o,"neg");let n=t.data.get(o.dataId).values,[s,a]=DE(n,o.shape,o.dtype);return t.makeTensorInfo(a,o.dtype,s)}var $E={kernelName:Is,backendName:"cpu",kernelFunc:T6};var RE=Ke((r,e)=>r!==e?1:0),A6=et(Fi,RE,null,"bool"),FE={kernelName:Fi,backendName:"cpu",kernelFunc:A6};function od(r,e,t,o,n){let s=e.length,a=x.sizeFromShape(e),i=x.computeStrides(e),l=x.computeStrides(n),u=x.getTypedArrayFromDType(t,x.sizeFromShape(n));for(let c=0;c<a;++c){let p=x.indexToLoc(c,s,i),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[o[d]];let f=x.locToIndex(m,s,l);u[f]=r[c]}return u}function tr(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{perm:s}=t;te(n,"transpose");let a=n.shape.length,i=new Array(a);for(let p=0;p<i.length;p++)i[p]=n.shape[s[p]];let l=o.data.get(n.dataId).values,u=od(l,n.shape,n.dtype,s,i);return{dataId:o.write(u,i,n.dtype),shape:i,dtype:n.dtype}}var OE={kernelName:rs,backendName:"cpu",kernelFunc:tr};function PE(r,e,t,o){let[n,s]=I.computeOutAndReduceShapes(r,o),a=br(e,"int32"),i=x.makeZerosTypedArray(x.sizeFromShape(n),a),l=x.sizeFromShape(s);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let m=0;m<l;++m)p*=t[c+m];i[u]=p}return{outVals:i,outShape:n,outDtype:a}}function E6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"prod");let i=n.shape.length,l=x.parseAxisParam(s,n.shape),u=I.getAxesPermutation(l,i),c=l,p=n,m=[];u!=null&&(p=tr({inputs:{x:n},backend:t,attrs:{perm:u}}),m.push(p),c=I.getInnerMostAxes(c.length,i));let f=t.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=PE(p.shape,p.dtype,f,c),y=h;return a&&(y=I.expandShapeToKeepDim(h,l)),m.forEach(b=>t.disposeIntermediateTensorInfo(b)),t.makeTensorInfo(y,g,d)}var ME={kernelName:Li,backendName:"cpu",kernelFunc:E6};function rk(r,e,t,o){let n=r===e,s=r<e&&t<0,a=e<r&&t>1;if(n||s||a)return x.makeZerosTypedArray(0,o);let i=Math.abs(Math.ceil((e-r)/t)),l=x.makeZerosTypedArray(i,o);e<r&&t===1&&(t=-1),l[0]=r;for(let u=1;u<l.length;u++)l[u]=l[u-1]+t;return l}var LE=on(r=>1/Math.sqrt(r)),D6=nn(Hn,LE),zE={kernelName:Hn,backendName:"cpu",kernelFunc:D6};function BE(r,e,t,o,n){let s=Yt.isSliceContinous(o,e,t),a=x.sizeFromShape(t),i=x.computeStrides(o);if(s){let p=Yt.computeFlatOffset(e,i);return n==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=n==="string"?I.fromUint8ToStringArray(r):r,u=_e(o,n,l),c=_e(t,n);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+e[h]);c.set(u.get(...f),...m)}return n==="string"?I.fromStringArrayToUint8(c.values):c.values}function sn(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o;te(n,"slice");let[i,l]=Yt.parseSliceParams(n,s,a);Yt.assertParamsValid(n,i,l);let u=t.data.get(n.dataId).values,c=BE(u,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,c)}var VE={kernelName:qn,backendName:"cpu",kernelFunc:sn};var GE=Ke((r,e)=>{let t=r-e;return t*t}),$6=et(Qn,GE),WE={kernelName:Qn,backendName:"cpu",kernelFunc:$6};function ok(r,e,t,o){let n=_e(r,e.dtype);for(let s=0;s<n.size;s++){let a=n.indexToLoc(s),i=new Array(a.length);for(let l=0;l<i.length;l++)i[l]=a[l]*t[l]+o[l];n.set(e.get(...i),...a)}return n}var UE=Ke((r,e)=>r-e),R6=_p((r,e,t,o)=>({real:r-t,imag:e-o})),nd=et(es,UE,R6),jE={kernelName:es,backendName:"cpu",kernelFunc:nd};function nk(r,e){let t=new Array(r.rank);for(let n=0;n<t.length;n++)t[n]=r.shape[n]*e[n];let o=_e(t,r.dtype);for(let n=0;n<o.values.length;++n){let s=o.indexToLoc(n),a=new Array(r.rank);for(let l=0;l<a.length;l++)a[l]=s[l]%r.shape[l];let i=r.locToIndex(a);o.values[n]=r.values[i]}return o}function sk(r,e,t,o,n){let s=e[e.length-1],[a,i]=[r.length/s,s],l=x.getTypedArrayFromDType(t,a*o),u=x.getTypedArrayFromDType("int32",a*o);for(let p=0;p<a;p++){let m=p*i,f=r.subarray(m,m+i),d=[];for(let b=0;b<f.length;b++)d.push({value:f[b],index:b});d.sort((b,w)=>w.value-b.value);let h=p*o,g=l.subarray(h,h+o),y=u.subarray(h,h+o);for(let b=0;b<o;b++)g[b]=d[b].value,y[b]=d[b].index}let c=e.slice();return c[c.length-1]=o,[_e(c,t,l),_e(c,"int32",u)]}function ik(r,e,t,o){let n=x.parseAxisParam(e,t)[0],s=[1,t[0],1];for(let d=0;d<n;d++)s[0]*=t[d];s[1]=t[n];for(let d=n+1;d<t.length;d++)s[2]*=t[d];let a={},i=new Int32Array(t[n]),l=new ct(s,o,r),u=[],c=s[0]===1&&s[2]===1;for(let d=0;d<t[n];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,d,b));h=g.join(",")}if(a[h]!==void 0)i[d]=a[h];else{let g=Object.keys(a).length;a[h]=g,i[d]=g,u.push(d)}}let p=s.slice();p[1]=Object.keys(a).length;let m=new ct(p,o);u.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)m.set(l.get(g,d,y),g,h,y)});let f=t.slice();return f[n]=p[1],{outputValues:m.values,outputShape:f,indices:i}}var HE="3.3.0";bc("cpu",()=>new bp,1);var lk=$e(bi,r=>r>=0?r:Math.exp(r)-1),qE={kernelName:bi,backendName:"cpu",kernelFunc:lk};function uk(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o;te([n],"leakyRelu");let a=x.sizeFromShape(n.shape),i=t.data.get(n.dataId).values,l=x.getTypedArrayFromDType("float32",a);for(let u=0;u<i.length;u++)l[u]=i[u]<0?s*i[u]:i[u];return t.makeTensorInfo(n.shape,"float32",l)}var KE={kernelName:Tn,backendName:"cpu",kernelFunc:uk};var F6=Ke((r,e)=>r<0?e*r:r);function ck(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e;te([o,n],"prelu");let s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,[i,l]=F6(o.shape,n.shape,s,a,o.dtype);return t.makeTensorInfo(l,o.dtype,i)}var XE={kernelName:Bn,backendName:"cpu",kernelFunc:ck};var pk=$e(Vn,r=>Math.max(0,r)),YE={kernelName:Vn,backendName:"cpu",kernelFunc:pk};var mk=$e(Wn,r=>Math.min(Math.max(0,r),6)),ZE={kernelName:Wn,backendName:"cpu",kernelFunc:mk};function kp(r,e,t,o,n){if(t==="linear")return Nr({inputs:{x:e},backend:r});if(t==="relu")return pk({inputs:{x:e},backend:r});if(t==="elu")return lk({inputs:{x:e},backend:r});if(t==="relu6")return mk({inputs:{x:e},backend:r});if(t==="prelu")return ck({inputs:{x:e,alpha:o},backend:r});if(t==="leakyrelu")return uk({inputs:{x:e},backend:r,attrs:{alpha:n}});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function Qe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=x.sizeFromShape(n.shape),i=x.inferFromImplicitShape(s,a),l=x.sizeFromShape(i);x.assert(a===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${n.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(n.dataId);let u=t.data.get(n.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:n.dataId,shape:i,dtype:n.dtype}}var JE={kernelName:Ts,backendName:"cpu",kernelFunc:Qe};function fk(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;te([n,s],"matMul");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=x.sizeFromShape(d),y=x.sizeFromShape(h),b=g===y||g===1||y===1;x.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>y?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);x.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let k=a?[g,c,m]:[g,m,c],D=i?[y,f,p]:[y,p,f],T=Qe({inputs:{x:n},backend:t,attrs:{shape:k}}),R=Qe({inputs:{x:s},backend:t,attrs:{shape:D}}),O=a?T.shape[1]:T.shape[2],M=a?T.shape[2]:T.shape[1],G=i?R.shape[1]:R.shape[2],W=Math.max(g,y),j=t.data.get(T.dataId).values,H=t.data.get(R.dataId).values,q=x.computeStrides(T.shape),X=x.computeStrides(R.shape),[oe,Y,re]=a?[q[0],1,q[1]]:[q[0],q[1],1],[J,ie,ue]=i?[1,X[1],X[0]]:[X[1],1,X[0]],ae=M*G,fe=_e([W,M,G],T.dtype),de=fe.values,ge=t.blockSize;for(let we=0;we<W;we++)for(let De=0;De<M;De+=ge)for(let Ce=0;Ce<G;Ce+=ge)for(let ze=0;ze<O;ze+=ge){let je=Math.min(De+ge,M),it=Math.min(Ce+ge,G),Nt=Math.min(ze+ge,O);for(let St=De;St<je;St++)for(let We=Ce;We<it;We++){let lt=0;for(let mt=ze;mt<Nt;mt++){let Pt=Math.min(we,g-1)*oe,ho=Math.min(we,y-1)*ue,Kt=j[Pt+St*Y+mt*re],Zr=H[mt*J+We*ie+ho];lt+=Kt*Zr}de[we*ae+(St*G+We)]+=lt}}return t.disposeIntermediateTensorInfo(T),t.disposeIntermediateTensorInfo(R),t.makeTensorInfo(_,fe.dtype,fe.values)}var QE={kernelName:hn,backendName:"cpu",kernelFunc:fk};function O6(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m,f,d,h=[];m=fk({inputs:{a:n,b:s},attrs:{transposeA:l,transposeB:u},backend:t}),a&&(f=ma({inputs:{a:m,b:a},backend:t}),h.push(m),m=f),c&&(d=kp(t,m,c,i,p),h.push(m),m=d);for(let y of h)t.disposeIntermediateTensorInfo(y);return m}var e2={kernelName:Rs,backendName:"cpu",kernelFunc:O6};var P6=$e(ui,r=>Math.acos(r)),t2={kernelName:ui,backendName:"cpu",kernelFunc:P6};var M6=$e(ci,r=>Math.acosh(r)),r2={kernelName:ci,backendName:"cpu",kernelFunc:M6};function L6(r){let{inputs:e,backend:t}=r,o=e;te(e,"addN");let n=o.map(i=>t.data.get(i.dataId).values),s=_e(o[0].shape,o[0].dtype),a=s.values;for(let i=0;i<o.length;i++){let l=n[i];for(let u=0;u<a.length;u++)a[u]+=l[u]}return t.makeTensorInfo(s.shape,s.dtype,s.values)}var o2={kernelName:mn,backendName:"cpu",kernelFunc:L6};function z6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"all");let i=x.parseAxisParam(s,n.shape),l=i,u=I.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=tr({inputs:{x:n},backend:t,attrs:{perm:u}}),l=I.getInnerMostAxes(l.length,n.shape.length)),I.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,m]=I.computeOutAndReduceShapes(c.shape,l),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];w=w&&k}d[y]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let y=I.expandShapeToKeepDim(p,i),b=Qe({inputs:{x:g},backend:t,attrs:{shape:y}});return t.disposeIntermediateTensorInfo(g),b}return g}var n2={kernelName:Fu,backendName:"cpu",kernelFunc:z6};function B6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"any");let i=x.parseAxisParam(s,n.shape),l=i,u=I.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=tr({inputs:{x:n},backend:t,attrs:{perm:u}}),l=I.getInnerMostAxes(l.length,n.shape.length)),I.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,m]=I.computeOutAndReduceShapes(c.shape,l),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];w=w||k}d[y]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let y=I.expandShapeToKeepDim(p,i),b=Qe({inputs:{x:g},backend:t,attrs:{shape:y}});return t.disposeIntermediateTensorInfo(g),b}return g}var s2={kernelName:Ou,backendName:"cpu",kernelFunc:B6};function V6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;te(n,"argMax");let a=x.parseAxisParam(s,n.shape),i=I.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=tr({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=I.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],I.assertAxesAreInnerMostDims("argMax",a,l.shape.length);let[c,p]=I.computeOutAndReduceShapes(l.shape,a),m=x.sizeFromShape(c),f=x.makeZerosTypedArray(m,"int32"),d=x.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let y=g*d,b=h[y],w=0;for(let _=0;_<d;++_){let k=h[y+_];k>b&&(b=k,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var i2={kernelName:fn,backendName:"cpu",kernelFunc:V6};function G6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;te(n,"argMin");let a=x.parseAxisParam(s,n.shape),i=I.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=tr({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=I.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],I.assertAxesAreInnerMostDims("argMin",a,l.shape.length);let[c,p]=I.computeOutAndReduceShapes(l.shape,a),m=x.sizeFromShape(c),f=x.makeZerosTypedArray(m,"int32"),d=x.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let y=g*d,b=h[y],w=0;for(let _=0;_<d;++_){let k=h[y+_];k<b&&(b=k,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var a2={kernelName:ka,backendName:"cpu",kernelFunc:G6};var W6=$e(pi,r=>Math.asin(r)),l2={kernelName:pi,backendName:"cpu",kernelFunc:W6};var U6=$e(mi,r=>Math.asinh(r)),u2={kernelName:mi,backendName:"cpu",kernelFunc:U6};var j6=$e(fi,r=>Math.atan(r)),c2={kernelName:fi,backendName:"cpu",kernelFunc:j6};var H6=Ke((r,e)=>Math.atan2(r,e)),q6=et(hi,H6),p2={kernelName:hi,backendName:"cpu",kernelFunc:q6};var K6=$e(di,r=>Math.atanh(r)),m2={kernelName:di,backendName:"cpu",kernelFunc:K6};function vp(r,e,t,o,n,s){let a=n.strideHeight,i=n.strideWidth,l=n.dilationHeight,u=n.dilationWidth,c=n.effectiveFilterHeight,p=n.effectiveFilterWidth,m=n.padInfo.top,f=n.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=_e(n.outShape,t),g=h.values,y=n.outShape[1]*n.outShape[2]*n.outShape[3],b=n.outShape[2]*n.outShape[3],w=n.outShape[3];for(let _=0;_<n.batchSize;++_){let k=_*y,D=_*o[0];for(let T=0;T<n.inChannels;++T)for(let R=0;R<n.outHeight;++R){let O=R*a-m,M=Math.max(0,O),G=Math.min(n.inHeight,c+O),W=k+R*b;for(let j=0;j<n.outWidth;++j){let H=j*i-f,q=Math.max(0,H),X=Math.min(n.inWidth,p+H),oe=d,Y=0,re=0;for(let ie=M;ie<G;ie+=l){let ue=D+ie*o[1];for(let ae=q;ae<X;ae+=u){let fe=ue+ae*o[2],de=r[fe+T];s==="max"&&de>oe?oe=de:s==="avg"&&(Y+=de,re++)}if(isNaN(oe))break}let J=W+j*w+T;g[J]=s==="avg"?Y/re:oe}}}return h}function tx(r,e,t,o,n=!1,s=!1){let a=_e(o.outShape,"int32"),i=o.strideHeight,l=o.strideWidth,u=o.dilationHeight,c=o.dilationWidth,p=o.effectiveFilterHeight,m=o.effectiveFilterWidth,f=o.padInfo.top,d=o.padInfo.left,h=_e(e,t,r);for(let g=0;g<o.batchSize;++g)for(let y=0;y<o.inChannels;++y)for(let b=0;b<o.outHeight;++b){let w=b*i-f,_=w;for(;_<0;)_+=u;let k=Math.min(o.inHeight,p+w);for(let D=0;D<o.outWidth;++D){let T=D*l-d,R=T;for(;R<0;)R+=c;let O=Math.min(o.inWidth,m+T),M=Number.NEGATIVE_INFINITY,G=-1;for(let W=_;W<k;W+=u){let j=W-w;for(let H=R;H<O;H+=c){let q=H-T,X=h.get(g,W,H,y);X>M&&(M=X,n?G=s?((g*o.inHeight+W)*o.inWidth+H)*o.inChannels+y:(W*o.inWidth+H)*o.inChannels+y:G=j*m+q)}}a.set(G,g,b,D,y)}}return a}function rx(r,e,t,o,n,s){let a=n.strideDepth,i=n.strideHeight,l=n.strideWidth,u=n.dilationDepth,c=n.dilationHeight,p=n.dilationWidth,m=n.effectiveFilterDepth,f=n.effectiveFilterHeight,d=n.effectiveFilterWidth,h=n.padInfo.front,g=n.padInfo.top,y=n.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=_e(n.outShape,t),_=w.values,k=n.outShape[1]*n.outShape[2]*n.outShape[3]*n.outShape[4],D=n.outShape[2]*n.outShape[3]*n.outShape[4],T=n.outShape[3]*n.outShape[4],R=n.outShape[4];for(let O=0;O<n.batchSize;++O){let M=O*k,G=O*o[0];for(let W=0;W<n.inChannels;++W)for(let j=0;j<n.outDepth;++j){let H=j*a-h,q=H;for(;q<0;)q+=u;let X=Math.min(n.inDepth,m+H),oe=M+j*D;for(let Y=0;Y<n.outHeight;++Y){let re=Y*i-g,J=re;for(;J<0;)J+=c;let ie=Math.min(n.inHeight,f+re),ue=oe+Y*T;for(let ae=0;ae<n.outWidth;++ae){let fe=ae*l-y,de=fe;for(;de<0;)de+=p;let ge=Math.min(n.inWidth,d+fe),we=ue+ae*R,De=b,Ce=0,ze=0;for(let it=q;it<X;it+=u){let Nt=G+it*o[1];for(let St=J;St<ie;St+=c){let We=Nt+St*o[2];for(let lt=de;lt<ge;lt+=p){let mt=We+lt*o[3],Pt=r[mt+W];if(s==="max"&&Pt>De?De=Pt:s==="avg"&&(Ce+=Pt,ze++),isNaN(De))break}if(isNaN(De))break}if(isNaN(De))break}let je=we+W;_[je]=s==="avg"?Ce/ze:De}}}}return w}function f2(r,e){let t=_e(e.outShape,"int32"),o=e.strideDepth,n=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,m=e.padInfo.front,f=e.padInfo.top,d=e.padInfo.left;for(let h=0;h<e.batchSize;++h)for(let g=0;g<e.inChannels;++g)for(let y=0;y<e.outDepth;++y){let b=y*o-m,w=b;for(;w<0;)w+=a;let _=Math.min(e.inDepth,u+b);for(let k=0;k<e.outHeight;++k){let D=k*n-f,T=D;for(;T<0;)T+=i;let R=Math.min(e.inHeight,c+D);for(let O=0;O<e.outWidth;++O){let M=O*s-d,G=M;for(;G<0;)G+=l;let W=Math.min(e.inWidth,p+M),j=Number.NEGATIVE_INFINITY,H=-1;for(let q=w;q<_;q+=a){let X=q-b;for(let oe=T;oe<R;oe+=i){let Y=oe-D;for(let re=G;re<W;re+=l){let J=re-M,ie=r.get(h,q,oe,re,g);ie>=j&&(j=ie,H=X*c*p+Y*c+J)}}}t.set(H,h,y,k,O,g)}}}return t}function X6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;te(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;x.assert(I.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=I.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))p=Nr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=x.computeStrides(n.shape),d=vp(m,n.shape,n.dtype,f,c,"avg");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var d2={kernelName:dn,backendName:"cpu",kernelFunc:X6};function Y6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o;te(n,"avgPool3d");let c=I.computePool3DInfo(n.shape,s,a,1,i,l,u),p=t.data.get(n.dataId).values,m=rx(p,n.shape,n.dtype,x.computeStrides(n.shape),c,"avg");return t.makeTensorInfo(m.shape,"float32",m.values)}var h2={kernelName:va,backendName:"cpu",kernelFunc:Y6};function Z6(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=o;te([n,s],"avgPool3DGrad");let c=I.computePool3DInfo(s.shape,a,i,1,l,u),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,_=c.effectiveFilterDepth,k=c.effectiveFilterHeight,D=c.effectiveFilterWidth,T=_-1-c.padInfo.front,R=D-1-c.padInfo.left,O=k-1-c.padInfo.top,M=_e(s.shape,"float32"),G=1/(d*h*g),W=t.bufferSync(n);for(let j=0;j<c.batchSize;++j)for(let H=0;H<c.inChannels;++H)for(let q=0;q<c.inDepth;++q)for(let X=0;X<c.inHeight;++X)for(let oe=0;oe<c.inWidth;++oe){let Y=q-T,re=X-O,J=oe-R,ie=0;for(let ue=0;ue<_;ue+=y){let ae=(Y+ue)/p;if(!(ae<0||ae>=c.outDepth||Math.floor(ae)!==ae))for(let fe=0;fe<k;fe+=b){let de=(re+fe)/m;if(!(de<0||de>=c.outHeight||Math.floor(de)!==de))for(let ge=0;ge<D;ge+=w){let we=(J+ge)/f;if(we<0||we>=c.outWidth||Math.floor(we)!==we)continue;ie+=W.get(j,ae,de,we,H)}}}M.set(ie*G,j,q,X,oe,H)}return t.makeTensorInfo(M.shape,M.dtype,M.values)}var g2={kernelName:Mu,backendName:"cpu",kernelFunc:Z6};function J6(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;te([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=I.computePool2DInfo(a.shape,i,l,1,u),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,_=y-1-c.padInfo.top,k=_e(a.shape,"float32"),D=1/(f*d),T=t.data.get(n.dataId).values,R=_e(n.shape,"float32",T);for(let O=0;O<c.batchSize;++O)for(let M=0;M<c.inChannels;++M)for(let G=0;G<c.inHeight;++G)for(let W=0;W<c.inWidth;++W){let j=G-_,H=W-w,q=0;for(let X=0;X<y;X+=h){let oe=(j+X)/p;if(!(oe<0||oe>=c.outHeight||Math.floor(oe)!==oe))for(let Y=0;Y<b;Y+=g){let re=(H+Y)/m;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;q+=R.get(O,oe,re,M)}}k.set(q*D,O,G,W,M)}return t.makeTensorInfo(k.shape,k.dtype,k.values)}var x2={kernelName:Pu,backendName:"cpu",kernelFunc:J6};function Q6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,scale:s,offset:a,mean:i,variance:l}=e;x.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),x.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),x.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),te([n,i,l,s,a],"batchNorm");let{varianceEpsilon:u}=o;u==null&&(u=.001);let c=t.data.get(n.dataId).values,p=t.data.get(i.dataId).values,m=t.data.get(l.dataId).values,f=s?t.data.get(s.dataId).values:new Float32Array([1]),d=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,y=f.length,b=m.length,w=p.length,_=0,k=0,D=0,T=0;for(let R=0;R<c.length;++R)h[R]=d[_++]+(c[R]-p[k++])*f[D++]/Math.sqrt(m[T++]+u),_>=g&&(_=0),k>=w&&(k=0),D>=y&&(D=0),T>=b&&(T=0);return t.makeTensorInfo(n.shape,n.dtype,h)}var y2={kernelName:Nn,backendName:"cpu",kernelFunc:Q6};function e5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;te([n],"batchToSpaceND");let i=s.reduce((y,b)=>y*b),l=I.getReshaped(n.shape,s,i),u=I.getPermuted(l.length,s.length),c=I.getReshapedPermuted(n.shape,s,i),p=I.getSliceBeginCoords(a,s.length),m=I.getSliceSize(c,a,s.length),f=Qe({inputs:{x:n},backend:t,attrs:{shape:l}}),d=tr({inputs:{x:f},backend:t,attrs:{perm:u}}),h=Qe({inputs:{x:d},backend:t,attrs:{shape:c}}),g=sn({inputs:{x:h},backend:t,attrs:{begin:p,size:m}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var b2={kernelName:Ca,backendName:"cpu",kernelFunc:e5};function t5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.data.get(n.dataId).values,l=t.data.get(s.dataId).values,u=td(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var w2={kernelName:Lu,backendName:"cpu",kernelFunc:t5};var r5=$e(zo,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r<t.clipValueMin?t.clipValueMin:r}),_2={kernelName:zo,backendName:"cpu",kernelFunc:r5};var o5=r=>{let{x:e}=r.inputs,t=r.backend,o=new Float32Array(x.sizeFromShape(e.shape)),n=t.data.get(e.dataId),s=n.complexTensorInfos.real,a=n.complexTensorInfos.imag,i=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];o[u]=Math.hypot(c,p)}return t.makeOutput(o,e.shape,"float32")},k2={kernelName:Ia,backendName:"cpu",kernelFunc:o5};function Qs(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.imag,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var v2={kernelName:Yu,backendName:"cpu",kernelFunc:Qs};function cl(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=x.parseAxisParam(n,e[0].shape)[0],a=I.computeOutShape(e.map(h=>h.shape),s);if(x.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(h=>x.sizeFromShape(h.shape)>0);if(i.length===1)return Nr({inputs:{x:i[0]},backend:t});let l=i.map(h=>h.shape);if(I.assertParamsConsistent(l,s),i[0].dtype==="complex64"){let h=i.map(_=>tn({inputs:{input:_},backend:t})),g=i.map(_=>Qs({inputs:{input:_},backend:t})),y=cl({inputs:h,backend:t,attrs:{axis:s}}),b=cl({inputs:g,backend:t,attrs:{axis:s}}),w=ir({inputs:{real:y,imag:b},backend:t});return h.forEach(_=>t.disposeIntermediateTensorInfo(_)),g.forEach(_=>t.disposeIntermediateTensorInfo(_)),t.disposeIntermediateTensorInfo(y),t.disposeIntermediateTensorInfo(b),w}let u=i.map(h=>{let g=x.sizeFromShape(h.shape.slice(s));return Qe({inputs:{x:h},backend:t,attrs:{shape:[-1,g]}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));a=I.computeOutShape(u.map(h=>h.shape),1);let p=u[0].shape[0]===1,m=Z_(c,a,e[0].dtype,p),f=I.computeOutShape(i.map(h=>h.shape),s),d=t.makeTensorInfo(f,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var C2={kernelName:ks,backendName:"cpu",kernelFunc:cl};function dk(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o;te([n,s],"conv2d");let p=I.convertConv2DDataFormat(l),m=I.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,y=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",_=new ct(m.outShape,n.dtype),k=x.computeStrides(n.shape),D=x.computeStrides(s.shape),T=k[0],R=w?k[1]:k[2],O=w?k[2]:1,M=w?1:k[1],G=_.strides[0],W=w?_.strides[1]:_.strides[2],j=w?_.strides[2]:1,H=w?1:_.strides[1],q=t.data.get(n.dataId).values,X=t.data.get(s.dataId).values,oe=_.values;for(let Y=0;Y<m.batchSize;++Y){let re=Y*T,J=Y*G;for(let ie=0;ie<m.outHeight;++ie){let ue=J+ie*W,ae=ie*m.strideHeight-b;for(let fe=0;fe<f;++fe){let de=ae+fe*h;if(de<0||de>=m.inHeight)continue;let ge=fe*D[0],we=re+de*R;for(let De=0;De<m.outWidth;++De){let Ce=ue+De*j,ze=De*m.strideWidth-y;for(let je=0;je<d;++je){let it=ze+je*g;if(it<0||it>=m.inWidth)continue;let Nt=ge+je*D[1],St=we+it*O,We=Nt;for(let lt=0;lt<m.inChannels;++lt){let mt=q[St+lt*M];for(let Pt=0;Pt<m.outChannels;++Pt)oe[Ce+Pt*H]+=mt*X[We+Pt];We+=m.outChannels}}}}}}return t.makeTensorInfo(_.shape,_.dtype,oe)}var I2={kernelName:xn,backendName:"cpu",kernelFunc:dk};function n5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o;te([n,s],"conv2dBackpropFilter");let p=I.convertConv2DDataFormat(l),m=I.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,y=m.dataFormat==="channelsLast",b=new ct(m.filterShape,"float32"),w=m.padInfo.left,_=m.padInfo.top,k=t.data.get(n.dataId).values,D=t.data.get(s.dataId).values,T=new ct(n.shape,n.dtype,k),R=new ct(s.shape,s.dtype,D);for(let O=0;O<h;++O){let M=Math.max(0,Math.ceil((_-O)/f)),G=Math.min(m.outHeight,(m.inHeight+_-O)/f);for(let W=0;W<g;++W){let j=Math.max(0,Math.ceil((w-W)/d)),H=Math.min(m.outWidth,(m.inWidth+w-W)/d);for(let q=0;q<m.inChannels;++q)for(let X=0;X<m.outChannels;++X){let oe=0;for(let Y=0;Y<m.batchSize;++Y)for(let re=M;re<G;++re){let J=O+re*f-_;for(let ie=j;ie<H;++ie){let ue=W+ie*d-w;y?oe+=T.get(Y,J,ue,q)*R.get(Y,re,ie,X):oe+=T.get(Y,q,J,ue)*R.get(Y,X,re,ie)}}b.set(oe,O,W,q,X)}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var N2={kernelName:Bu,backendName:"cpu",kernelFunc:n5};function s5(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o;te([n,s],"conv2dBackpropInput");let p=x.computeStrides(s.shape),m=x.computeStrides(n.shape),f=I.convertConv2DDataFormat(u),d=I.computeConv2DInfo(a,s.shape,i,1,l,c,!1,f),h=new ct(d.inShape,"float32"),g=h.values,y=t.data.get(n.dataId).values,b=t.data.get(s.dataId).values,[w,_,k]=p,{batchSize:D,filterHeight:T,filterWidth:R,inChannels:O,inHeight:M,inWidth:G,outChannels:W,outHeight:j,outWidth:H,strideHeight:q,strideWidth:X}=d;f=d.dataFormat;let oe=T-1-d.padInfo.top,Y=R-1-d.padInfo.left,re=f==="channelsLast",J=h.strides[0],ie=re?h.strides[1]:h.strides[2],ue=re?h.strides[2]:1,ae=re?1:h.strides[1],fe=m[0],de=re?m[1]:m[2],ge=re?m[2]:1,we=re?1:m[1];for(let De=0;De<D;++De)for(let Ce=0;Ce<O;++Ce)for(let ze=0;ze<M;++ze){let je=ze-oe,it=Math.max(0,Math.ceil(je/q)),Nt=Math.min(j,(T+je)/q);for(let St=0;St<G;++St){let We=St-Y,lt=Math.max(0,Math.ceil(We/X)),mt=Math.min(H,(R+We)/X),Pt=0;for(let Kt=it;Kt<Nt;++Kt){let Zr=Kt*q-je;for(let Tr=lt;Tr<mt;++Tr){let Po=Tr*X-We,rr=fe*De+de*Kt+ge*Tr,go=w*(T-1-Zr)+_*(R-1-Po)+k*Ce;for(let Mr=0;Mr<W;++Mr){let xr=y[rr+we*Mr],Jr=b[go+Mr];Pt+=xr*Jr}}}let ho=J*De+ie*ze+ue*St+ae*Ce;g[ho]=Pt}}return t.makeTensorInfo(h.shape,h.dtype,h.values)}var S2={kernelName:yn,backendName:"cpu",kernelFunc:s5};function i5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o;te([n,s],"conv3d");let u=I.computeConv3DInfo(n.shape,s.shape,a,l,i),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=u,y=g.front,b=g.left,w=g.top,_=new ct(u.outShape,n.dtype),k=t.data.get(n.dataId).values,D=t.data.get(s.dataId).values,T=_.values,R=x.computeStrides(n.shape),O=x.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let G=M*R[0],W=M*_.strides[0];for(let j=0;j<u.outDepth;++j){let H=W+j*_.strides[1],q=j*u.strideDepth-y;for(let X=0;X<c;++X){let oe=q+X*f;if(oe<0||oe>=u.inDepth)continue;let Y=X*O[0],re=G+oe*R[1];for(let J=0;J<u.outHeight;++J){let ie=H+J*_.strides[2],ue=J*u.strideHeight-w;for(let ae=0;ae<p;++ae){let fe=ue+ae*d;if(fe<0||fe>=u.inHeight)continue;let de=Y+ae*O[1],ge=re+fe*R[2];for(let we=0;we<u.outWidth;++we){let De=ie+we*u.outChannels,Ce=we*u.strideWidth-b;for(let ze=0;ze<m;++ze){let je=Ce+ze*h;if(je<0||je>=u.inWidth)continue;let it=de+ze*O[2],Nt=ge+je*u.inChannels,St=it;for(let We=0;We<u.inChannels;++We){let lt=k[Nt+We];for(let mt=0;mt<u.outChannels;++mt)T[De+mt]+=lt*D[St+mt];St+=u.outChannels}}}}}}}}return t.makeTensorInfo(_.shape,_.dtype,_.values)}var T2={kernelName:Na,backendName:"cpu",kernelFunc:i5};function a5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o;te([n,s],"conv3dBackpropFilterV2");let u=x.computeStrides(n.shape),c=x.computeStrides(s.shape),p=I.computeConv3DInfo(n.shape,l,a,1,i),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,y=p.filterWidth,b=new ct(p.filterShape,"float32"),w=b.values,[_,k,D,T]=b.strides,R=t.data.get(s.dataId).values,[O,M,G,W]=c,j=t.data.get(n.dataId).values,[H,q,X,oe]=u,Y=p.padInfo.front,re=p.padInfo.left,J=p.padInfo.top;for(let ie=0;ie<h;++ie){let ue=Math.max(0,Math.ceil((Y-ie)/m)),ae=Math.min(p.outDepth,(p.inDepth+Y-ie)/m),fe=ie*_;for(let de=0;de<g;++de){let ge=Math.max(0,Math.ceil((J-de)/f)),we=Math.min(p.outHeight,(p.inHeight+J-de)/f),De=de*k+fe;for(let Ce=0;Ce<y;++Ce){let ze=Math.max(0,Math.ceil((re-Ce)/d)),je=Math.min(p.outWidth,(p.inWidth+re-Ce)/d),it=Ce*D+De;for(let Nt=0;Nt<p.inChannels;++Nt){let St=Nt*T+it;for(let We=0;We<p.outChannels;++We){let lt=0;for(let mt=0;mt<p.batchSize;++mt){let Pt=mt*H,ho=mt*O;for(let Kt=ue;Kt<ae;++Kt){let Tr=(ie+Kt*m-Y)*q+Pt,Po=Kt*M+ho;for(let rr=ge;rr<we;++rr){let Mr=(de+rr*f-J)*X+Tr,xr=rr*G+Po;for(let Jr=ze;Jr<je;++Jr){let bl=(Ce+Jr*d-re)*oe+Mr,ga=Jr*W+xr;lt+=j[bl+Nt]*R[ga+We]}}}}w[St+We]=lt}}}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var A2={kernelName:Vu,backendName:"cpu",kernelFunc:a5};function l5(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o;te([n],"conv3dBackpropInputV2");let u=x.computeStrides(n.shape),c=x.computeStrides(s.shape),p=I.computeConv3DInfo(l,s.shape,i,1,a),m=new ct(p.inShape,"float32"),f=m.values,[d,h,g,y]=m.strides,b=t.data.get(n.dataId).values,[w,_,k,D]=u,T=t.data.get(s.dataId).values,[R,O,M,G]=c,{batchSize:W,filterDepth:j,filterHeight:H,filterWidth:q,inChannels:X,inDepth:oe,inHeight:Y,inWidth:re,outChannels:J,outDepth:ie,outHeight:ue,outWidth:ae,strideDepth:fe,strideHeight:de,strideWidth:ge}=p,we=j-1-p.padInfo.front,De=H-1-p.padInfo.top,Ce=q-1-p.padInfo.left;for(let ze=0;ze<W;++ze)for(let je=0;je<X;++je)for(let it=0;it<oe;++it){let Nt=it-we,St=Math.max(0,Math.ceil(Nt/fe)),We=Math.min(ie,(j+Nt)/fe);for(let lt=0;lt<Y;++lt){let mt=lt-De,Pt=Math.max(0,Math.ceil(mt/de)),ho=Math.min(ue,(H+mt)/de);for(let Kt=0;Kt<re;++Kt){let Zr=Kt-Ce,Tr=Math.max(0,Math.ceil(Zr/ge)),Po=Math.min(ae,(q+Zr)/ge),rr=0;for(let go=St;go<We;++go){let Mr=go*fe-Nt;for(let xr=Pt;xr<ho;++xr){let Jr=xr*de-mt;for(let vo=Tr;vo<Po;++vo){let bl=vo*ge-Zr,ga=w*ze+_*go+k*xr+D*vo,un=R*(j-1-Mr)+O*(H-1-Jr)+M*(q-1-bl)+G*je;for(let oi=0;oi<J;++oi){let Pp=b[ga+oi],xu=T[un+oi];rr+=Pp*xu}}}}f[d*ze+h*it+g*lt+y*Kt+je]=rr}}}return t.makeTensorInfo(m.shape,m.dtype,m.values)}var E2={kernelName:Gu,backendName:"cpu",kernelFunc:l5};var u5=$e(bn,r=>Math.cos(r)),D2={kernelName:bn,backendName:"cpu",kernelFunc:u5};var c5=$e(gi,r=>Math.cosh(r)),$2={kernelName:gi,backendName:"cpu",kernelFunc:c5};function p5(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,[c,p,m,f]=n.shape,d=s.shape[0],[h,g]=i,y=_e([d,h,g,f],"float32"),b=t.data.get(s.dataId).values,w=t.data.get(a.dataId).values,_=t.data.get(n.dataId).values,k=x.computeStrides(n.shape),D=x.computeStrides(y.shape);for(let T=0;T<d;T++){let R=T*4,O=b[R],M=b[R+1],G=b[R+2],W=b[R+3],j=w[T];if(j>=c)continue;let H=h>1?(G-O)*(p-1)/(h-1):0,q=g>1?(W-M)*(m-1)/(g-1):0;for(let X=0;X<h;X++){let oe=h>1?O*(p-1)+X*H:.5*(O+G)*(p-1);if(oe<0||oe>p-1){for(let Y=0;Y<g;Y++)for(let re=0;re<f;re++){let J=re+Y*D[2]+X*D[1]+T*D[0];y.values[J]=u}continue}if(l==="bilinear"){let Y=Math.floor(oe),re=Math.ceil(oe),J=oe-Y;for(let ie=0;ie<g;ie++){let ue=g>1?M*(m-1)+ie*q:.5*(M+W)*(m-1);if(ue<0||ue>m-1){for(let ge=0;ge<f;ge++){let we=ge+ie*D[2]+X*D[1]+T*D[0];y.values[we]=u}continue}let ae=Math.floor(ue),fe=Math.ceil(ue),de=ue-ae;for(let ge=0;ge<f;ge++){let we=ge+ae*k[2]+Y*k[1]+j*k[0],De=_[we];we=ge+fe*k[2]+Y*k[1]+j*k[0];let Ce=_[we];we=ge+ae*k[2]+re*k[1]+j*k[0];let ze=_[we];we=ge+fe*k[2]+re*k[1]+j*k[0];let je=_[we],it=De+(Ce-De)*de,Nt=ze+(je-ze)*de;we=ge+ie*D[2]+X*D[1]+T*D[0],y.values[we]=it+(Nt-it)*J}}}else for(let Y=0;Y<g;++Y){let re=g>1?M*(m-1)+Y*q:.5*(M+W)*(m-1);if(re<0||re>m-1){for(let ue=0;ue<f;ue++){let ae=ue+Y*D[2]+X*D[1]+T*D[0];y.values[ae]=u}continue}let J=Math.round(re),ie=Math.round(oe);for(let ue=0;ue<f;ue++){let ae=ue+J*k[2]+ie*k[1]+j*k[0],fe=ue+Y*D[2]+X*D[1]+T*D[0];y.values[fe]=_[ae]}}}}return t.makeTensorInfo(y.shape,y.dtype,y.values)}var R2={kernelName:xi,backendName:"cpu",kernelFunc:p5};function m5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;te(n,"cumsum");let l=I.getAxesPermutation([s],n.shape.length),u=n;l!=null&&(u=tr({inputs:{x:n},backend:t,attrs:{perm:l}}));let c=I.getInnerMostAxes(1,n.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=br(u.dtype,"int32"),m=x.makeZerosTypedArray(x.sizeFromShape(u.shape),p),f=t.data.get(u.dataId).values,d=u.shape[u.shape.length-1],h=i?(y,b)=>y+d-b-1:(y,b)=>y+b;for(let y=0;y<f.length;y+=d)for(let b=0;b<d;b++){let w=h(y,b);if(b===0)m[w]=a?0:f[w];else{let _=h(y,b-1);m[w]=a?f[_]+m[_]:f[w]+m[_]}}let g=t.makeTensorInfo(u.shape,p,m);if(l!=null){let y=I.getUndoAxesPermutation(l),b=tr({inputs:{x:g},backend:t,attrs:{perm:y}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),b}return g}var F2={kernelName:wn,backendName:"cpu",kernelFunc:m5};function f5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=td(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=Y_(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var O2={kernelName:Wu,backendName:"cpu",kernelFunc:f5};function d5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;x.assert(a==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`),x.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=n.shape[1],u=n.shape[2],c=n.shape[3],p=l*s,m=u*s,f=c/(s*s),d=t.data.get(n.dataId).values,h=new Float32Array(i*p*m*f),g=0;for(let y=0;y<i;++y)for(let b=0;b<p;++b){let w=Math.floor(b/s),_=b%s;for(let k=0;k<m;++k){let D=Math.floor(k/s),T=k%s,R=(_*s+T)*f;for(let O=0;O<f;++O){let G=O+R+c*(D+u*(w+l*y));h[g++]=d[G]}}}return t.makeTensorInfo([i,p,m,f],n.dtype,h)}var P2={kernelName:yi,backendName:"cpu",kernelFunc:d5};function hk(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=o;te([n,s],"depthwiseConv2DNative");let c=x.computeStrides(n.shape),p=x.computeStrides(s.shape),m=l;m==null&&(m=[1,1]),x.assert(I.eitherStridesOrDilationsAreOne(a,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let f=I.computeConv2DInfo(n.shape,s.shape,a,m,i,u,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:y,padInfo:b}=f,w=b.left,_=b.top,k=f.outChannels/f.inChannels,D=new ct(f.outShape,n.dtype),T=t.data.get(n.dataId).values,R=t.data.get(s.dataId).values,O=D.values;for(let M=0;M<f.batchSize;++M){let G=M*c[0],W=M*D.strides[0];for(let j=0;j<f.outHeight;++j){let H=W+j*D.strides[1],q=j*f.strideHeight-w;for(let X=0;X<d;++X){let oe=q+X*g;if(oe<0||oe>=f.inHeight)continue;let Y=X*p[0],re=G+oe*c[1];for(let J=0;J<f.outWidth;++J){let ie=H+J*D.strides[2],ue=J*f.strideWidth-_;for(let ae=0;ae<h;++ae){let fe=ue+ae*y;if(fe<0||fe>=f.inWidth)continue;let de=Y+ae*p[1],ge=re+fe*f.inChannels,we=ie,De=de;for(let Ce=0;Ce<f.inChannels;++Ce){let ze=T[ge+Ce];for(let je=0;je<k;++je)O[we+je]+=ze*R[De+je];we+=k,De+=k}}}}}}return t.makeTensorInfo(D.shape,D.dtype,D.values)}var M2={kernelName:_n,backendName:"cpu",kernelFunc:hk};function h5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o;te([n,s],"depthwiseConv2dNativeBackpropFilter");let p=I.computeConv2DInfo(n.shape,c,a,i,l,u,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new ct(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,_=t.data.get(n.dataId).values,k=new ct(n.shape,n.dtype,_),D=t.data.get(s.dataId).values,T=new ct(s.shape,s.dtype,D);for(let R=0;R<d;++R){let O=Math.max(0,Math.ceil((b-R)/m)),M=Math.min(p.outHeight,(p.inHeight+b-R)/m);for(let G=0;G<h;++G){let W=Math.max(0,Math.ceil((y-G)/f)),j=Math.min(p.outWidth,(p.inWidth+y-G)/f);for(let H=0;H<p.outChannels;++H){let q=Math.trunc(H/w),X=H%w,oe=0;for(let Y=0;Y<p.batchSize;++Y)for(let re=O;re<M;++re){let J=R+re*m-b;for(let ie=W;ie<j;++ie){let ue=G+ie*f-y;oe+=k.get(Y,J,ue,q)*T.get(Y,re,ie,H)}}g.set(oe,R,G,q,X)}}}return t.makeTensorInfo(g.shape,g.dtype,g.values)}var L2={kernelName:Uu,backendName:"cpu",kernelFunc:h5};function g5(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o;te([n,s],"depthwiseConv2DNativeBackpropInput");let p=x.computeStrides(n.shape),m=x.computeStrides(s.shape),f=I.computeConv2DInfo(c,s.shape,a,i,l,u,!0),d=new ct(f.inShape,"float32"),h=d.values,[g,y,b]=d.strides,w=t.data.get(n.dataId).values,[_,k,D]=p,T=t.data.get(s.dataId).values,[R,O,M]=m,{batchSize:G,filterHeight:W,filterWidth:j,inChannels:H,inHeight:q,inWidth:X,outChannels:oe,outHeight:Y,outWidth:re,strideHeight:J,strideWidth:ie}=f,ue=W-1-f.padInfo.top,ae=j-1-f.padInfo.left,fe=oe/H;for(let de=0;de<G;++de)for(let ge=0;ge<H;++ge)for(let we=0;we<q;++we){let De=we-ue,Ce=Math.max(0,Math.ceil(De/J)),ze=Math.min(Y,(W+De)/J);for(let je=0;je<X;++je){let it=je-ae,Nt=Math.max(0,Math.ceil(it/ie)),St=Math.min(re,(j+it)/ie),We=0;for(let lt=Ce;lt<ze;++lt){let mt=lt*J-De;for(let Pt=Nt;Pt<St;++Pt){let ho=Pt*ie-it,Kt=_*de+k*lt+D*Pt,Zr=R*(W-1-mt)+O*(j-1-ho)+M*ge;for(let Tr=0;Tr<fe;++Tr){let Po=ge*fe+Tr,rr=w[Kt+Po],go=T[Zr+Tr];We+=rr*go}}}h[g*de+y*we+b*je+ge]=We}}return t.makeTensorInfo(d.shape,d.dtype,d.values)}var z2={kernelName:ju,backendName:"cpu",kernelFunc:g5};function x5(r){let{inputs:e,backend:t}=r,{x:o}=e,n=x.sizeFromShape(o.shape),s=t.data.get(o.dataId).values,a=_e([n,n],o.dtype),i=a.values;for(let u=0;u<s.length;u++)i[u*n+u]=s[u];let l=[...o.shape,...o.shape];return t.makeTensorInfo(l,a.dtype,a.values)}var B2={kernelName:Hu,backendName:"cpu",kernelFunc:x5};var V2={kernelName:Sa,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n}=r,{strides:s,pad:a,dilations:i}=t,l=e,u=l.data.get(o.dataId).values,c=o.shape.length,p=l.data.get(n.dataId).values,m=n.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:y,outWidth:b,padInfo:w,strideHeight:_,strideWidth:k,filterHeight:D,filterWidth:T,dilationHeight:R,dilationWidth:O,outShape:M}=I.computeDilation2DInfo(o.shape,n.shape,s,a,"NHWC",i),G=x.sizeFromShape(M),W=M.length,j=x.getArrayFromDType(o.dtype,G);for(let q=0;q<f;++q)for(let X=0;X<y;++X){let oe=X*_-w.top;for(let Y=0;Y<b;++Y){let re=Y*k-w.left;for(let J=0;J<g;++J){let ie=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<D;++ae){let fe=oe+ae*R;if(fe>=0&&fe<d)for(let de=0;de<T;++de){let ge=re+de*O;if(ge>=0&&ge<h){let we=x.locToIndex([q,fe,ge,J],c,x.computeStrides(o.shape)),De=x.locToIndex([ae,de,J],m,x.computeStrides(n.shape)),Ce=u[we]+p[De];Ce>ie&&(ie=Ce)}}}let ue=x.locToIndex([q,X,Y,J],W,x.computeStrides(M));j[ue]=ie}}}return{dataId:l.write(x.toTypedArray(j,o.dtype),M,o.dtype),shape:M,dtype:o.dtype}}};var G2={kernelName:Zp,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=x.toNestedArray(o.shape,u.data.get(o.dataId).values),p=x.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:y,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:k,filterWidth:D,dilationHeight:T,dilationWidth:R,outShape:O}=I.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);x.assert(s.rank===O.length,()=>`Error in ${Zp}, dy must have the same rank as output ${O.length}, but got ${s.rank}`);let M=x.toNestedArray(O,u.data.get(s.dataId).values),G=x.makeZerosNestedTypedArray(n.shape,n.dtype);for(let j=0;j<m;++j)for(let H=0;H<g;++H){let q=H*w-b.top;for(let X=0;X<y;++X){let oe=X*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,J=0,ie=0;for(let ue=0;ue<k;++ue){let ae=q+ue*T;if(ae>=0&&ae<f)for(let fe=0;fe<D;++fe){let de=oe+fe*R;if(de>=0&&de<d){let ge=c[j][ae][de][Y]+p[ue][fe][Y];ge>re&&(re=ge,J=ue,ie=fe)}}}G[J][ie][Y]+=M[j][H][X][Y]}}}return{dataId:u.write(x.toTypedArray(G,o.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var W2={kernelName:Yp,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=x.toNestedArray(o.shape,u.data.get(o.dataId).values),p=x.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:y,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:k,filterWidth:D,dilationHeight:T,dilationWidth:R,outShape:O}=I.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);x.assert(s.rank===O.length,()=>`Error in ${Yp}, dy must have the same rank as output ${O.length}, but got ${s.rank}`);let M=x.toNestedArray(O,u.data.get(s.dataId).values),G=x.makeZerosNestedTypedArray(o.shape,o.dtype);for(let j=0;j<m;++j)for(let H=0;H<g;++H){let q=H*w-b.top;for(let X=0;X<y;++X){let oe=X*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,J=q<0?0:q,ie=oe<0?0:oe;for(let ue=0;ue<k;++ue){let ae=q+ue*T;if(ae>=0&&ae<f)for(let fe=0;fe<D;++fe){let de=oe+fe*R;if(de>=0&&de<d){let ge=c[j][ae][de][Y]+p[ue][fe][Y];ge>re&&(re=ge,J=ae,ie=de)}}}G[j][J][ie][Y]+=M[j][H][X][Y]}}}return{dataId:u.write(x.toTypedArray(G,o.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};function y5(r){let{inputs:e,backend:t}=r,{dy:o,y:n}=e;te([o,n],"eluGrad");let s=new Float32Array(x.sizeFromShape(n.shape)),a=t.data.get(n.dataId).values,i=t.data.get(o.dataId).values;for(let l=0;l<a.length;++l){let u=a[l];u>=1?s[l]=i[l]:s[l]=i[l]*(u+1)}return t.makeTensorInfo(n.shape,"float32",s)}var U2={kernelName:qu,backendName:"cpu",kernelFunc:y5};var b5=Ke((r,e)=>r===e?1:0),gk=et(_i,b5,null,"bool"),j2={kernelName:_i,backendName:"cpu",kernelFunc:gk};var w5=I.ERF_P,_5=I.ERF_A1,k5=I.ERF_A2,v5=I.ERF_A3,C5=I.ERF_A4,I5=I.ERF_A5,N5=$e(wi,r=>{let e=Math.sign(r),t=Math.abs(r),o=1/(1+w5*t);return e*(1-((((I5*o+C5)*o+v5)*o+k5)*o+_5)*o*Math.exp(-t*t))}),H2={kernelName:wi,backendName:"cpu",kernelFunc:N5};function Cp(r){let{inputs:e,backend:t,attrs:o}=r,{input:n}=e,{dim:s}=o,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(x.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Qe({inputs:{x:n},backend:t,attrs:{shape:i}})}var q2={kernelName:vs,backendName:"cpu",kernelFunc:Cp};var S5=Ke((r,e)=>r/e),sd=et(kn,S5),id={kernelName:kn,backendName:"cpu",kernelFunc:sd};function ox(r,e,t){let o=r.shape,n=o[0],s=o[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,l=a.complexTensorInfos.imag,u=[n,s],c=x.sizeFromShape(u),p=x.getTypedArrayFromDType("float32",c),m=x.getTypedArrayFromDType("float32",c);for(let g=0;g<n;g++){let y=sn({inputs:{x:i},backend:t,attrs:{begin:[g,0],size:[1,s]}}),b=sn({inputs:{x:l},backend:t,attrs:{begin:[g,0],size:[1,s]}}),w=ir({inputs:{real:y,imag:b},backend:t}),{real:_,imag:k}=T5(w,e,t),D=I.mergeRealAndImagArrays(_,k);for(let T=0;T<s;T++){let R=I.getComplexWithIndex(D,T);p[g*s+T]=R.real,m[g*s+T]=R.imag}t.disposeIntermediateTensorInfo(y),t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(w)}let f=t.makeTensorInfo(u,"float32",p),d=t.makeTensorInfo(u,"float32",m),h=ir({inputs:{real:f,imag:d},backend:t});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),h}function T5(r,e,t){let o=x.sizeFromShape(r.shape),n=t.data.get(r.dataId),s=t.data.get(n.complexTensorInfos.real.dataId).values,a=t.data.get(n.complexTensorInfos.imag.dataId).values;if(A5(o)){let i=xk(s,a,o,e,t),l=[r.shape[0],r.shape[1]];if(e){let u=t.makeTensorInfo(l,"float32",i.real),c=t.makeTensorInfo(l,"float32",i.imag),p=t.makeTensorInfo([],"float32",x.createScalarValue(o,"float32")),m=Nr({inputs:{x:p},backend:t}),f=id.kernelFunc({inputs:{a:u,b:p},backend:t}),d=id.kernelFunc({inputs:{a:c,b:m},backend:t}),h=t.data.get(f.dataId).values,g=t.data.get(d.dataId).values;return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return i}else{let i=I.mergeRealAndImagArrays(s,a),l=E5(i,o,e);return I.splitRealAndImagArrays(l)}}function A5(r){return(r&r-1)==0}function xk(r,e,t,o,n){if(t===1)return{real:r,imag:e};let s=I.mergeRealAndImagArrays(r,e),a=t/2,i=I.complexWithEvenIndex(s),l=i.real,u=i.imag,c=[l.length],p=n.makeTensorInfo(c,"float32",l),m=n.makeTensorInfo(c,"float32",u),f=ir({inputs:{real:p,imag:m},backend:n}),d=I.complexWithOddIndex(s),h=d.real,g=d.imag,y=[h.length],b=n.makeTensorInfo(y,"float32",h),w=n.makeTensorInfo(y,"float32",g),_=ir({inputs:{real:b,imag:w},backend:n}),k=xk(l,u,a,o,n),D=k.real,T=k.imag,R=[D.length],O=n.makeTensorInfo(R,"float32",D),M=n.makeTensorInfo(R,"float32",T),G=ir({inputs:{real:O,imag:M},backend:n}),W=xk(h,g,a,o,n),j=W.real,H=W.imag,q=[j.length],X=n.makeTensorInfo(q,"float32",j),oe=n.makeTensorInfo(q,"float32",H),Y=ir({inputs:{real:X,imag:oe},backend:n}),re=I.exponents(t,o),J=[re.real.length],ie=n.makeTensorInfo(J,"float32",re.real),ue=n.makeTensorInfo(J,"float32",re.imag),ae=ir({inputs:{real:ie,imag:ue},backend:n}),fe=rd({inputs:{a:ae,b:Y},backend:n}),de=ma({inputs:{a:G,b:fe},backend:n}),ge=nd({inputs:{a:G,b:fe},backend:n}),we=tn({inputs:{input:de},backend:n}),De=tn({inputs:{input:ge},backend:n}),Ce=Qs({inputs:{input:de},backend:n}),ze=Qs({inputs:{input:ge},backend:n}),je=cl({inputs:[we,De],backend:n,attrs:{axis:0}}),it=cl({inputs:[Ce,ze],backend:n,attrs:{axis:0}}),Nt=n.data.get(je.dataId).values,St=n.data.get(it.dataId).values;return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(O),n.disposeIntermediateTensorInfo(M),n.disposeIntermediateTensorInfo(G),n.disposeIntermediateTensorInfo(X),n.disposeIntermediateTensorInfo(oe),n.disposeIntermediateTensorInfo(Y),n.disposeIntermediateTensorInfo(ie),n.disposeIntermediateTensorInfo(ue),n.disposeIntermediateTensorInfo(ae),n.disposeIntermediateTensorInfo(fe),n.disposeIntermediateTensorInfo(de),n.disposeIntermediateTensorInfo(ge),n.disposeIntermediateTensorInfo(we),n.disposeIntermediateTensorInfo(Ce),n.disposeIntermediateTensorInfo(De),n.disposeIntermediateTensorInfo(ze),n.disposeIntermediateTensorInfo(je),n.disposeIntermediateTensorInfo(it),{real:Nt,imag:St}}function E5(r,e,t){let o=new Float32Array(e*2);for(let n=0;n<e;n++){let s=0,a=0;for(let i=0;i<e;i++){let l=I.exponent(n*i,e,t),u=I.getComplexWithIndex(r,i);s+=u.real*l.real-u.imag*l.imag,a+=u.real*l.imag+u.imag*l.real}t&&(s/=e,a/=e),I.assignToTypedArray(o,s,a,n)}return o}function D5(r){let{inputs:e,backend:t}=r,{input:o}=e,n=x.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=Qe({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=ox(i,!1,t),u=Qe({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var K2={kernelName:Ku,backendName:"cpu",kernelFunc:D5};function ad(r){let{backend:e,attrs:t}=r,{shape:o,value:n,dtype:s}=t,a=s||x.inferDtype(n),i=x.getArrayFromDType(a,x.sizeFromShape(o));return $5(i,n,a),e.makeTensorInfo(o,a,i)}var X2={kernelName:Ta,backendName:"cpu",kernelFunc:ad};function $5(r,e,t){r.fill(e)}var Y2={kernelName:vi,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,n=t,s=x.getTypedArrayFromDType(o.dtype,x.sizeFromShape(o.shape)),[a,i,l,u]=o.shape,c=n.data.get(o.dataId).values;for(let m=0;m<a;m++){let f=m*l*i*u;for(let d=0;d<i;d++){let h=d*(l*u);for(let g=0;g<l;g++){let y=g*u;for(let b=0;b<u;b++){let _=[a,d,g,b][2],k=Math.round(l-_),D=f+h+y+b,T=c[D];if(k>=0&&k<l){let R=k*u,O=f+h+R+b;T=c[O]}s[D]=T}}}}return{dataId:n.write(s,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var R5=Ke((r,e)=>Math.floor(r/e)),F5=et(In,R5,null,"int32"),Z2={kernelName:In,backendName:"cpu",kernelFunc:F5};function O5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=dk({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=ma({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=kp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var J2={kernelName:Fs,backendName:"cpu",kernelFunc:O5};function P5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=hk({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=ma({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=kp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var Q2={kernelName:Os,backendName:"cpu",kernelFunc:P5};function M5(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=x.sizeFromShape(o.shape),a=n.shape,i=a[a.length-1],[l,u,c,p]=I.prepareAndValidate(o,n);if(u===0)return t.makeTensorInfo(l,o.dtype,[]);let m=_e([u,c],o.dtype),f=t.data.get(n.dataId).values,d=t.data.get(o.dataId).values;for(let h=0;h<u;h++){let g=[],y=0;for(let b=0;b<i;b++){let w=f[h*i+b];y+=w*p[b],g.push(w)}if(y<0||y>=s/c)throw new Error(`Invalid indices: ${g} does not index into ${o.shape}`);for(let b=0;b<c;b++)m.values[h*c+b]=d[y*c+b]}return t.makeTensorInfo(l,m.dtype,m.values)}var eD={kernelName:Ci,backendName:"cpu",kernelFunc:M5};function L5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o;te([n,s],"gatherV2");let l=i;i==null&&(l=0);let u=x.sizeFromShape(s.shape),c=x.parseAxisParam(a,n.shape)[0],p=I.segment_util.collectGatherOpShapeInfo(n,s,c,l),m=Qe({inputs:{x:n},backend:t,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),f=Qe({inputs:{x:s},backend:t,attrs:{shape:[p.batchSize,u/p.batchSize]}}),d=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],h=t.bufferSync(f),g=t.bufferSync(m),y=Q_(g,h,d);return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.makeTensorInfo(p.outputShape,y.dtype,y.values)}var tD={kernelName:Cs,backendName:"cpu",kernelFunc:L5};var z5=Ke((r,e)=>r>=e?1:0),B5=et(Sn,z5,null,"bool"),rD={kernelName:Sn,backendName:"cpu",kernelFunc:B5};function V5(r){let{inputs:e,backend:t}=r,{input:o}=e,n=x.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=Qe({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=ox(i,!0,t),u=Qe({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var oD={kernelName:Xu,backendName:"cpu",kernelFunc:V5};var G5=$e(Ni,r=>Number.isFinite(r)?1:0,"bool"),nD={kernelName:Ni,backendName:"cpu",kernelFunc:G5};var W5=$e(Si,r=>Math.abs(r)===Infinity?1:0,"bool"),sD={kernelName:Si,backendName:"cpu",kernelFunc:W5};var U5=$e(Ti,r=>Number.isNaN(r)?1:0,"bool"),iD={kernelName:Ti,backendName:"cpu",kernelFunc:U5};var j5=Ke((r,e)=>r<=e?1:0),H5=et(Ei,j5,null,"bool"),aD={kernelName:Ei,backendName:"cpu",kernelFunc:H5};function q5(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=ek(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var lD={kernelName:Zu,backendName:"cpu",kernelFunc:q5};var K5=$e(Di,r=>Math.log1p(r)),uD={kernelName:Di,backendName:"cpu",kernelFunc:K5};var X5=Ke((r,e)=>r&&e),Y5=et($i,X5,null,"bool"),cD={kernelName:$i,backendName:"cpu",kernelFunc:Y5};var Z5=$e(Nl,r=>r?0:1,"bool"),pD={kernelName:Nl,backendName:"cpu",kernelFunc:Z5};var J5=Ke((r,e)=>r||e),Q5=et(Sl,J5,null,"bool"),mD={kernelName:Sl,backendName:"cpu",kernelFunc:Q5};function eX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o;te(n,"LRN");let u=n.shape[3],c=u-1,p=t.data.get(n.dataId).values,m=x.sizeFromShape(n.shape),f=new Float32Array(m);function d(h){let g=h%u,y=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;y<=b;y++){let _=p[y];w+=_*_}return w}for(let h=0;h<m;h++){let g=d(h),y=p[h]*Math.pow(a+i*g,-l);f[h]=y}return t.makeTensorInfo(n.shape,n.dtype,f)}var fD={kernelName:Aa,backendName:"cpu",kernelFunc:eX};function tX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o;te(a,"LRNGrad");let p=x.sizeFromShape(a.shape),m=a.shape[3],f=t.data.get(a.dataId).values,d=t.data.get(n.dataId).values,h=t.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let b=0;b<y;b++){let w=b%m,_=b-w+Math.max(0,w-i),k=b-w+Math.min(m,w+i+1),D=0;for(let T=_;T<k;T++)D+=Math.pow(d[T],2);D=u*D+l;for(let T=_;T<k;T++){let R=-2*u*c*d[T]*h[b]/D;b===T&&(R+=Math.pow(D,-c)),R*=f[b],g[T]+=R}}return t.makeTensorInfo(a.shape,n.dtype,g)}var dD={kernelName:Ju,backendName:"cpu",kernelFunc:tX};function yk(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=t,l=n.shape,u=l.length,c=x.parseAxisParam(s,l),p=c,m=I.getAxesPermutation(p,u),f=i.data.get(n.dataId).values;if(m!=null){let _=new Array(u);for(let k=0;k<_.length;k++)_[k]=l[m[k]];f=od(f,l,n.dtype,m,_),p=I.getInnerMostAxes(p.length,u),l=_}te(n,"max"),I.assertAxesAreInnerMostDims("max",p,u);let[d,h]=I.computeOutAndReduceShapes(l,p),g=x.sizeFromShape(h),y=tk(f,g,d,n.dtype),b=i.write(y,d,n.dtype),w=d;return a&&(w=I.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:n.dtype}}var hD={kernelName:En,backendName:"cpu",kernelFunc:yk};function rX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;te(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;x.assert(I.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=I.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))p=Nr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=x.computeStrides(n.shape),d=vp(m,n.shape,n.dtype,f,c,"max");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var gD={kernelName:$n,backendName:"cpu",kernelFunc:rX};function oX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o;te(n,"maxPool3d");let c=I.computePool3DInfo(n.shape,s,a,1,i,l,u),p=t.data.get(n.dataId).values,m=rx(p,n.shape,n.dtype,x.computeStrides(n.shape),c,"max");return t.makeTensorInfo(m.shape,"float32",m.values)}var xD={kernelName:Ea,backendName:"cpu",kernelFunc:oX};function nX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=o;te([n,s],"maxPool3DGrad");let c=I.computePool3DInfo(s.shape,a,i,1,l,u),p=t.bufferSync(s),m=f2(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,_=c.effectiveFilterHeight,k=c.effectiveFilterWidth,D=w-1-c.padInfo.front,T=k-1-c.padInfo.left,R=_-1-c.padInfo.top,O=_e(s.shape,"float32"),M=t.bufferSync(n);for(let G=0;G<c.batchSize;++G)for(let W=0;W<c.inChannels;++W)for(let j=0;j<c.inDepth;++j)for(let H=0;H<c.inHeight;++H)for(let q=0;q<c.inWidth;++q){let X=j-D,oe=H-R,Y=q-T,re=0;for(let J=0;J<w;J+=g){let ie=(X+J)/f;if(!(ie<0||ie>=c.outDepth||Math.floor(ie)!==ie))for(let ue=0;ue<_;ue+=y){let ae=(oe+ue)/d;if(!(ae<0||ae>=c.outHeight||Math.floor(ae)!==ae))for(let fe=0;fe<k;fe+=b){let de=(Y+fe)/h;if(de<0||de>=c.outWidth||Math.floor(de)!==de)continue;let ge=w*_*k-1-m.get(G,ie,ae,de,W),we=J*_*k+ue*k+fe,De=ge===we?1:0;if(De===0)continue;re+=M.get(G,ie,ae,de,W)*De}}}O.set(re,G,j,H,q,W)}return t.makeTensorInfo(O.shape,O.dtype,O.values)}var yD={kernelName:ec,backendName:"cpu",kernelFunc:nX};function sX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;te([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=I.computePool2DInfo(i.shape,l,u,1,c,p),f=t.data.get(i.dataId).values,d=_e(m.outShape,i.dtype,tx(f,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,y=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,_=m.effectiveFilterWidth,k=_-1-m.padInfo.left,D=w-1-m.padInfo.top,T=_e(i.shape,"float32"),R=t.data.get(n.dataId).values,O=_e(n.shape,"float32",R);for(let M=0;M<m.batchSize;++M)for(let G=0;G<m.inChannels;++G)for(let W=0;W<m.inHeight;++W)for(let j=0;j<m.inWidth;++j){let H=W-D,q=j-k,X=0;for(let oe=0;oe<w;oe+=y){let Y=(H+oe)/h;if(!(Y<0||Y>=m.outHeight||Math.floor(Y)!==Y))for(let re=0;re<_;re+=b){let J=(q+re)/g;if(J<0||J>=m.outWidth||Math.floor(J)!==J)continue;let ie=w*_-1-d.get(M,Y,J,G),ue=oe*_+re,ae=ie===ue?1:0;if(ae===0)continue;X+=O.get(M,Y,J,G)*ae}}T.set(X,M,W,j,G)}return t.makeTensorInfo(T.shape,T.dtype,T.values)}var bD={kernelName:Qu,backendName:"cpu",kernelFunc:sX};function wD(r,e,t,o,n){let s=x.computeStrides(e),a=vp(r,e,t,s,n,"max"),i=tx(r,e,t,n,!0,o);return[a.values,i.values]}var _D={kernelName:tc,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;te(o,"MaxPoolWithArgmax");let u=l.data.get(o.dataId).values,c=I.computePool2DInfo(o.shape,n,s,[1,1],a),[p,m]=wD(u,o.shape,o.dtype,i,c),f=l.write(p,c.outShape,o.dtype),d=l.write(m,c.outShape,o.dtype);return[{dataId:f,shape:c.outShape,dtype:o.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function su(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"sum");let i;n.dtype==="bool"?i=rn({inputs:{x:n},backend:t,attrs:{dtype:"int32"}}):i=Nr({inputs:{x:n},backend:t});let l=i.shape.length,u=x.parseAxisParam(s,i.shape),c=I.getAxesPermutation(u,l),p=u,m=i;c!=null&&(m=tr({inputs:{x:i},backend:t,attrs:{perm:c}}),p=I.getInnerMostAxes(p.length,l)),I.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=I.computeOutAndReduceShapes(m.shape,p),h=I.upcastType(m.dtype,"int32"),g=wp(t,f,h),y=x.sizeFromShape(d),b=t.data.get(g.dataId).values,w=t.data.get(m.dataId).values;for(let _=0;_<b.length;++_){let k=_*y,D=0;for(let T=0;T<y;++T)D+=w[k+T];b[_]=D}if(a){let _=I.expandShapeToKeepDim(g.shape,u),k=g;g=Qe({inputs:{x:g},backend:t,attrs:{shape:_}}),t.disposeIntermediateTensorInfo(k)}return t.disposeIntermediateTensorInfo(i),c!=null&&t.disposeIntermediateTensorInfo(m),g}var kD={kernelName:Zn,backendName:"cpu",kernelFunc:su};function iX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=x.parseAxisParam(s,n.shape),u=I.computeOutAndReduceShapes(n.shape,i)[1],c=x.sizeFromShape(u),p=[],m=t.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=rn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}});p.push(f);let d=sd({inputs:{a:f,b:m},backend:t});p.push(d);let h=su({inputs:{x:d},backend:t,attrs:{axis:s,keepDims:a}});return p.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}var vD={kernelName:Rn,backendName:"cpu",kernelFunc:iX};function aX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"min");let i=x.parseAxisParam(s,n.shape),l=i,u=I.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=tr({inputs:{x:n},backend:t,attrs:{perm:u}}),l=I.getInnerMostAxes(l.length,n.shape.length)),I.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,m]=I.computeOutAndReduceShapes(c.shape,l),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];k<w&&(w=k)}d[y]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let y=I.expandShapeToKeepDim(p,i),b=Qe({inputs:{x:g},backend:t,attrs:{shape:y}});return t.disposeIntermediateTensorInfo(g),b}return g}var CD={kernelName:Fn,backendName:"cpu",kernelFunc:aX};function lX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,mode:a}=o;te(n,"mirrorPad");let i=s.map((w,_)=>w[0]+n.shape[_]+w[1]),l=s.map(w=>w[0]),u=s.map((w,_)=>w[0]+n.shape[_]),c=a==="reflect"?0:1,p=t.data.get(n.dataId).values,m=n.shape.length,f=x.computeStrides(n.shape),d=x.sizeFromShape(i),h=i.length,g=x.computeStrides(i),y=x.getTypedArrayFromDType(n.dtype,d);for(let w=0;w<d;w++){let _=x.indexToLoc(w,h,g);for(let D=0;D<h;D++)_[D]<l[D]?_[D]=l[D]*2-_[D]-c:_[D]>=u[D]&&(_[D]=(u[D]-1)*2-_[D]+c);_=_.map((D,T)=>D-l[T]);let k=x.locToIndex(_,m,f);y[w]=p[k]}return{dataId:t.write(y,i,n.dtype),shape:i,dtype:n.dtype}}var ID={kernelName:Da,backendName:"cpu",kernelFunc:lX};var uX=Ke((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),cX=et(Ri,uX),ND={kernelName:Ri,backendName:"cpu",kernelFunc:cX};var TD=Au(qb());function bk(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=n.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let l=x.parseAxisParam([i],n.shape),u=yk({inputs:{x:n},backend:t,attrs:{reductionIndices:l,keepDims:!1}}),c=I.expandShapeToKeepDim(u.shape,l),p=Qe({inputs:{x:u},backend:t,attrs:{shape:c}}),m=nd({inputs:{a:n,b:p},backend:t}),f=J_({inputs:{x:m},backend:t}),d=su({inputs:{x:f},backend:t,attrs:{axis:l,keepDims:!1}}),h=Qe({inputs:{x:d},backend:t,attrs:{shape:c}}),g=sd({inputs:{a:f,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var SD={kernelName:Jn,backendName:"cpu",kernelFunc:bk};function pX(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o;te(n,"multinomial");let l=i?n:bk({inputs:{logits:n},backend:t,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=t.data.get(l.dataId).values,m=[u,s],f=x.makeZerosTypedArray(x.sizeFromShape(m),"int32");for(let d=0;d<u;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let y=TD.alea(a.toString()),b=d*s;for(let w=0;w<s;++w){let _=y();f[b+w]=g.length;for(let k=0;k<g.length;k++)if(_<g[k]){f[b+w]=k;break}}}return i||t.disposeIntermediateTensorInfo(l),t.makeTensorInfo(m,"int32",f)}var AD={kernelName:rc,backendName:"cpu",kernelFunc:pX};var mX=$r.nonMaxSuppressionV3Impl;function fX(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o;te(n,"NonMaxSuppression");let u=t.data.get(n.dataId).values,c=t.data.get(s.dataId).values,{selectedIndices:p}=mX(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var ED={kernelName:Oi,backendName:"cpu",kernelFunc:fX};var dX=$r.nonMaxSuppressionV4Impl;function hX(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o;te(n,"NonMaxSuppressionPadded");let c=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=dX(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var DD={kernelName:Pi,backendName:"cpu",kernelFunc:hX};var gX=$r.nonMaxSuppressionV5Impl;function xX(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o;te(n,"NonMaxSuppressionWithScore");let c=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:y}=gX(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var $D={kernelName:Mi,backendName:"cpu",kernelFunc:xX};function yX(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o;te(n,"oneHot");let l=x.sizeFromShape(n.shape),u=new Float32Array(l*s);u.fill(i);let c=t.data.get(n.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<s&&(u[p*s+c[p]]=a);return t.makeTensorInfo([...n.shape,s],"int32",u)}var RD={kernelName:Mn,backendName:"cpu",kernelFunc:yX};function ld(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(o.dtype==="complex64"){let n=tn({inputs:{input:o},backend:t}),s=ld({inputs:{x:n},backend:t}),a=Qs({inputs:{input:o},backend:t}),i=ld({inputs:{x:a},backend:t}),l=ir({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return ad({backend:t,attrs:{shape:o.shape,value:0,dtype:o.dtype}})}var FD={kernelName:$s,backendName:"cpu",kernelFunc:ld};function OD(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(o.dtype==="complex64"){let n=tn({inputs:{input:o},backend:t}),s=OD({inputs:{x:n},backend:t}),a=Qs({inputs:{input:o},backend:t}),i=ld({inputs:{x:a},backend:t}),l=ir({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return ad({backend:t,attrs:{shape:o.shape,value:1,dtype:o.dtype}})}var PD={kernelName:Ns,backendName:"cpu",kernelFunc:OD};function wk(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Cp({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Cp({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=cl({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var MD={kernelName:Ss,backendName:"cpu",kernelFunc:wk};function bX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o;te(n,"pad");let i=s.map((b,w)=>b[0]+n.shape[w]+b[1]),l=s.map(b=>b[0]),u=t.data.get(n.dataId).values,c=x.sizeFromShape(n.shape),p=n.shape.length,m=x.computeStrides(n.shape),f=x.sizeFromShape(i),d=i.length,h=x.computeStrides(i),g=x.getTypedArrayFromDType(n.dtype,f);a!==0&&g.fill(a);for(let b=0;b<c;b++){let _=x.indexToLoc(b,p,m).map((D,T)=>D+l[T]),k=x.locToIndex(_,d,h);g[k]=u[b]}return{dataId:t.write(g,i,n.dtype),shape:i,dtype:n.dtype}}var nx={kernelName:Ln,backendName:"cpu",kernelFunc:bX};var wX=Ke((r,e)=>Math.pow(r,e)),_X=et(zn,wX),LD={kernelName:zn,backendName:"cpu",kernelFunc:_X};function kX(r){let{backend:e,attrs:t}=r,{start:o,stop:n,dtype:s,step:a}=t,i=rk(o,n,a,s);return e.makeTensorInfo([i.length],s,i)}var zD={kernelName:$a,backendName:"cpu",kernelFunc:kX};var vX=$e(zi,r=>1/r),BD={kernelName:zi,backendName:"cpu",kernelFunc:vX};function CX(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;te(n,"resizeBilinear");let l=x.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(x.sizeFromShape([p,u,c,d])),y=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=0,_=y[0]/b[0],k=y[1]/b[1];for(let D=0;D<p;D++)for(let T=0;T<u;T++){let R;a?R=_*(T+.5)-.5:R=_*T;let O=Math.max(0,Math.floor(R)),M=R-O,G=Math.min(m-1,Math.ceil(R)),W=D*l[0]+O*l[1],j=D*l[0]+G*l[1];for(let H=0;H<c;H++){let q;a?q=k*(H+.5)-.5:q=k*H;let X=Math.max(0,Math.floor(q)),oe=q-X,Y=Math.min(f-1,Math.ceil(q)),re=W+X*l[2],J=j+X*l[2],ie=W+Y*l[2],ue=j+Y*l[2];for(let ae=0;ae<d;ae++){let fe=h[re+ae],de=h[J+ae],ge=h[ie+ae],we=h[ue+ae],De=fe+(ge-fe)*oe,Ce=de+(we-de)*oe,ze=De+(Ce-De)*M;g[w++]=ze}}}return t.makeTensorInfo([p,u,c,d],"float32",g)}var VD={kernelName:Gn,backendName:"cpu",kernelFunc:CX};function IX(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;te([s,n],"resizeBilinearGrad");let i=x.computeStrides(n.shape),[l,u,c,p]=n.shape,[,m,f]=s.shape,d=new Float32Array(l*u*c*p),h=[a&&m>1?u-1:u,a&&f>1?c-1:c],g=[a&&m>1?m-1:m,a&&f>1?f-1:f],y=h[0]/g[0],b=h[1]/g[1],w=t.data.get(s.dataId).values,_=0;for(let k=0;k<l;k++){let D=k*i[0];for(let T=0;T<m;T++){let R=T*y,O=Math.floor(R),M=Math.min(Math.ceil(R),u-1),G=D+O*i[1],W=D+M*i[1],j=R-O,H=1-j;for(let q=0;q<f;q++){let X=q*b,oe=Math.floor(X),Y=Math.min(Math.ceil(X),c-1),re=X-oe,J=1-re,ie=G+oe*i[2],ue=G+Y*i[2],ae=W+oe*i[2],fe=W+Y*i[2],de=H*J,ge=H*re,we=j*J,De=j*re;for(let Ce=0;Ce<p;Ce++){let ze=w[_++];d[ie+Ce]+=ze*de,d[ue+Ce]+=ze*ge,d[ae+Ce]+=ze*we,d[fe+Ce]+=ze*De}}}}return t.makeTensorInfo([l,c,u,p],"float32",d)}var GD={kernelName:sc,backendName:"cpu",kernelFunc:IX};function NX(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;te(n,"resizeNearestNeighbor");let l=x.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(p*u*c*d),y=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=y[0]/b[0],_=y[1]/b[1],k=0;for(let D=0;D<p;D++){let T=D*l[0];for(let R=0;R<u;R++){let O=a?w*(R+.5):w*R,M=Math.min(m-1,s?Math.round(O):Math.floor(O));a&&(M=Math.max(0,M));let G=T+M*l[1];for(let W=0;W<c;W++){let j=a?_*(W+.5):_*W,H=Math.min(f-1,s?Math.round(j):Math.floor(j));a&&(H=Math.max(0,H));let q=G+H*l[2];for(let X=0;X<d;X++){let oe=h[q+X];g[k++]=oe}}}}return t.makeTensorInfo([p,u,c,d],n.dtype,g)}var WD={kernelName:Ra,backendName:"cpu",kernelFunc:NX};function SX(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;te([s,n],"resizeNearestNeighborGrad");let i=x.computeStrides(n.shape),l=x.computeStrides(s.shape),[u,c,p,m]=n.shape,[,f,d]=s.shape,h=new Float32Array(u*c*p*m),g=t.data.get(s.dataId).values,y=[a&&f>1?c-1:c,a&&d>1?p-1:p],b=[a&&f>1?f-1:f,a&&d>1?d-1:d],w=y[0]/b[0],_=y[1]/b[1],k=1/w,D=1/_,T=Math.ceil(k)*2+2,R=Math.ceil(D)*2+2;for(let O=0;O<u;O++){let M=O*i[0];for(let G=0;G<c;G++){let W=M+G*i[1],j=Math.floor(G*k),H=Math.floor(j-T/2);for(let q=0;q<p;q++){let X=W+q*i[2],oe=Math.floor(q*D),Y=Math.floor(oe-R/2);for(let re=0;re<m;re++){let J=0;for(let ie=0;ie<T;ie++){let ue=ie+H;if(ue<0||ue>=f)continue;let ae=M+ue*l[1],fe=ue*w,de=Math.min(c-1,a?Math.round(fe):Math.floor(fe));if(G===de)for(let ge=0;ge<R;ge++){let we=ge+Y;if(we<0||we>=d)continue;let De=ae+we*l[2],Ce=we*_,ze=Math.min(p-1,a?Math.round(Ce):Math.floor(Ce));q===ze&&(J+=g[De+re])}}h[X+re]=J}}}}return t.makeTensorInfo(n.shape,n.dtype,h)}var UD={kernelName:nc,backendName:"cpu",kernelFunc:SX};function TX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o;te(n,"reverse");let a=n.shape.length,i=x.parseAxisParam(s,n.shape);if(a===0)return Nr({inputs:{x:n},backend:t});let l=new ct(n.shape,n.dtype),u=t.bufferSync(n);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),m=p.slice();i.forEach(f=>m[f]=n.shape[f]-1-m[f]),l.set(u.get(...m),...p)}return t.makeTensorInfo(l.shape,l.dtype,l.values)}var jD={kernelName:Un,backendName:"cpu",kernelFunc:TX};var HD={kernelName:Ki,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=x.getTypedArrayFromDType(o.dtype,x.sizeFromShape(o.shape)),[u,c,p,m]=o.shape,[f,d]=I.getImageCenter(a,c,p),h=255,g=Math.sin(n),y=Math.cos(n),b=i.data.get(o.dataId).values;for(let _=0;_<u;_++){let k=_*p*c*m;for(let D=0;D<c;D++){let T=D*(p*m);for(let R=0;R<p;R++){let O=R*m;for(let M=0;M<m;M++){let G=[u,D,R,M],W=G[2],j=G[1],H=(W-f)*y-(j-d)*g,q=(W-f)*g+(j-d)*y;H=Math.round(H+f),q=Math.round(q+d);let X=s;if(typeof s!="number"&&(M===3?X=h:X=s[M]),H>=0&&H<p&&q>=0&&q<c){let Y=q*(p*m),re=H*m,J=k+Y+re+M;X=b[J]}let oe=k+T+O+M;l[oe]=X}}}}return{dataId:i.write(l,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var AX=$e(jn,r=>{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2==0?e:e+1}),qD={kernelName:jn,backendName:"cpu",kernelFunc:AX};function sx(r,e,t,o,n,s,a,i,l,u){let c=[o/n,n],p=r.values,m=e.values;if(o===0)return _e(t,e.dtype);let f=_e(c,e.dtype);f.values.fill(l);for(let d=0;d<s;d++){let h=[],g=0;for(let y=0;y<a;y++){let b=p[d*a+y];h.push(b),g+=b*i[y]}if(g<0||g>=o/n)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let y=0;y<n;y++)u?f.values[g*n+y]+=m[d*n+y]:f.values[g*n+y]=e.rank===0?m[0]:m[d*n+y]}return f}function EX(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=I.calculateShapes(s,n,a),m=!0,f=t.bufferSync(n),d=t.bufferSync(s),h=sx(f,d,a,p,u,l,i,c,0,m);return t.makeTensorInfo(a,h.dtype,h.values)}var KD={kernelName:Bi,backendName:"cpu",kernelFunc:EX};function DX(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e;te([o,n,s],"select");let a=o.shape.length,i=t.data.get(o.dataId).values,l=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=br(n.dtype,s.dtype),p=x.makeZerosTypedArray(x.sizeFromShape(n.shape),c),m=0,f=a===0||a>1||n.shape.length===1?1:x.sizeFromShape(n.shape.slice(1));for(let d=0;d<i.length;d++)for(let h=0;h<f;h++)i[d]===1?p[m++]=l[d]:p[m++]=u[d];return t.makeTensorInfo(n.shape,c,p)}var XD={kernelName:As,backendName:"cpu",kernelFunc:DX};var $X=I.SELU_SCALEALPHA,RX=I.SELU_SCALE,FX=$e(Vi,r=>r>=0?RX*r:$X*(Math.exp(r)-1)),YD={kernelName:Vi,backendName:"cpu",kernelFunc:FX};var OX=$e(Xn,r=>1/(1+Math.exp(-r))),ZD={kernelName:Xn,backendName:"cpu",kernelFunc:OX};var PX=$e(Wi,r=>r<0?-1:r>0?1:0),JD={kernelName:Wi,backendName:"cpu",kernelFunc:PX};var MX=$e(Kn,r=>Math.sin(r)),QD={kernelName:Kn,backendName:"cpu",kernelFunc:MX};var LX=$e(Gi,r=>Math.sinh(r)),e$={kernelName:Gi,backendName:"cpu",kernelFunc:LX};var zX=11920928955078125e-23,t$=Math.log(zX)+2,BX=$e(Ui,r=>{let e=r>-t$,t=r<t$,o=Math.exp(r),n;return t?n=o:e?n=r:n=Math.log(1+o),n}),r$={kernelName:Ui,backendName:"cpu",kernelFunc:BX};function VX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;te([n],"spaceToBatchND");let i=x.sizeFromShape(s),l=[[0,0]];l.push(...a);for(let D=1+s.length;D<n.shape.length;++D)l.push([0,0]);let u=nx.kernelFunc({inputs:{x:n},backend:t,attrs:{paddings:l,constantValue:0}}),c=I.getReshaped(u.shape,s,i,!1),p=I.getPermuted(c.length,s.length,!1),m=I.getReshapedPermuted(u.shape,s,i,!1),h=Qe({inputs:{x:u},backend:t,attrs:{shape:c}}),b=tr({inputs:{x:h},backend:t,attrs:{perm:p}}),k=Qe({inputs:{x:b},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(b),k}var o$={kernelName:Fa,backendName:"cpu",kernelFunc:VX};function GX(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=I.calculateShapes(s,n,i),f=!1,d=t.bufferSync(n),h=t.bufferSync(s),g=t.data.get(a.dataId).values[0],y=sx(d,h,i,m,c,u,l,p,g,f);return t.makeTensorInfo(i,y.dtype,y.values)}var n$={kernelName:ic,backendName:"cpu",kernelFunc:GX};function WX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=x.parseAxisParam(a,n.shape)[0],l=I.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=sn({inputs:{x:n},backend:t,attrs:{begin:u,size:m}});return u[i]+=p,f})}var s$={kernelName:Es,backendName:"cpu",kernelFunc:WX};var UX=$e(Yn,r=>Math.sqrt(r)),i$={kernelName:Yn,backendName:"cpu",kernelFunc:UX};var a$={kernelName:Oa,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,o=e;te(t,"square");let n=o.data.get(t.dataId).values,s=new Float32Array(n.length);for(let i=0;i<n.length;++i){let l=n[i];s[i]=l*l}return{dataId:o.write(s,t.shape,t.dtype),shape:t.shape,dtype:t.dtype}}};var jX=$e(Vo,(r,e)=>{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),l$={kernelName:Vo,backendName:"cpu",kernelFunc:jX};function HX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o;te(n,"stridedSlice");let{nonStrided:f,$begin:d,$strides:h,size:g,newShape:y,outShape:b}=Yt.sliceInfo(n.shape,s,a,i,l,u,c,p,m),w=Qe({inputs:{x:n},backend:t,attrs:{shape:y}}),_;if(f){let D=sn({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=Qe({inputs:{x:D},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(D)}else if(b.some(D=>D===0))_=t.makeTensorInfo(b,n.dtype,[]);else{let D=t.bufferSync(w),T=ok(b,D,h,d);_=t.makeTensorInfo(T.shape,T.dtype,T.values)}let k=Qe({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),k}var u$={kernelName:ji,backendName:"cpu",kernelFunc:HX};var qX=$e(Hi,r=>Math.tan(r)),c$={kernelName:Hi,backendName:"cpu",kernelFunc:qX};var KX=$e(ts,r=>Math.tanh(r)),p$={kernelName:ts,backendName:"cpu",kernelFunc:KX};function XX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;te(n,"tile");let a=nk(t.bufferSync(n),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var m$={kernelName:No,backendName:"cpu",kernelFunc:XX};function YX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o;te(n,"topk");let i=t.data.get(n.dataId).values,[l,u]=sk(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var f$={kernelName:qi,backendName:"cpu",kernelFunc:YX};function QX(r){let{inputs:e,attrs:t,backend:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=t,[c,p,m,f]=n.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],y=x.computeStrides(n.shape),b=y[0],w=y[1],_=y[2],k=x.getTypedArrayFromDType(n.dtype,x.sizeFromShape(g));k.fill(l);let D=o.data.get(n.dataId).values,T=o.data.get(s.dataId).values;for(let O=0;O<c;++O){let M=s.shape[0]===1?T:T.subarray(O*8,O*8+8);for(let G=0;G<d;++G)for(let W=0;W<h;++W)for(let j=0;j<f;++j){let H,q=M[6]*W+M[7]*G+1;if(q===0)continue;let X=(M[0]*W+M[1]*G+M[2])/q,oe=(M[3]*W+M[4]*G+M[5])/q,Y=d$(X,m,i),re=d$(oe,p,i);switch(a){case"nearest":H=ZX(D,p,m,b,w,_,O,re,Y,j,l);break;case"bilinear":H=JX(D,p,m,b,w,_,O,re,Y,j,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${a}`)}let J=O*b+G*w+W*_+j;k[J]=H}return o.makeTensorInfo(g,n.dtype,k)}return{dataId:o.write(k,g,n.dtype),shape:n.shape,dtype:n.dtype}}var h$={kernelName:ac,backendName:"cpu",kernelFunc:QX};function d$(r,e,t){switch(t){case"reflect":return e8(r,e);case"wrap":return t8(r,e);case"nearest":return o8(r,e);case"constant":default:return r8(r,e)}}function e8(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let o=2*e;t<o&&(t=o*Math.trunc(-t/o)+t),t=t<-e?t+o:-t-1}else if(t>e-1)if(e<=1)t=0;else{let o=2*e;t-=o*Math.trunc(t/o),t>=e&&(t=o-t-1)}return x.clamp(0,t,e-1)}function t8(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let o=e-1;t+=e*(Math.trunc(-t/o)+1)}else if(t>e-1)if(e<=1)t=0;else{let o=e-1;t-=e*Math.trunc(t/o)}return x.clamp(0,t,e-1)}function r8(r,e){return r}function o8(r,e){return x.clamp(0,r,e-1)}function ud(r,e,t,o,n,s,a,i,l,u,c){let p=a*o+i*n+l*s+u;return 0<=i&&i<e&&0<=l&&l<t?r[p]:c}function ZX(r,e,t,o,n,s,a,i,l,u,c){let p=Math.round(i),m=Math.round(l);return ud(r,e,t,o,n,s,a,p,m,u,c)}function JX(r,e,t,o,n,s,a,i,l,u,c){let p=Math.floor(i),m=Math.floor(l),f=p+1,d=m+1,h=(d-l)*ud(r,e,t,o,n,s,a,p,m,u,c)+(l-m)*ud(r,e,t,o,n,s,a,p,d,u,c),g=(d-l)*ud(r,e,t,o,n,s,a,f,m,u,c)+(l-m)*ud(r,e,t,o,n,s,a,f,d,u,c);return(f-i)*h+(i-p)*g}function n8(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;te(s,"unique");let a=o.data.get(s.dataId).values,{outputValues:i,outputShape:l,indices:u}=ik(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var g$={kernelName:lc,backendName:"cpu",kernelFunc:n8};function s8(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape.length,i=n.shape[s],l=new Array(a-1),u=0;for(let f=0;f<a;f++)f!==s&&(l[u++]=n.shape[f]);let c=new Array(a).fill(0),p=n.shape.slice();p[s]=1;let m=new Array(i);for(let f=0;f<m.length;f++){c[s]=f;let d=sn({inputs:{x:n},backend:t,attrs:{begin:c,size:p}});m[f]=Qe({inputs:{x:d},backend:t,attrs:{shape:l}}),t.disposeIntermediateTensorInfo(d)}return m}var x$={kernelName:Ds,backendName:"cpu",kernelFunc:s8};function i8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o;te(n,"unsortedSegmentSum");let i=n.shape.length,l=s.shape.length,u=[],c=[],p=i-l,m=s;for(let d=0;d<p;++d){let h=Cp({inputs:{input:m},backend:t,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<a;++d){let h=x.createScalarValue(d,"int32"),g=t.makeTensorInfo([],"int32",h),y=gk({inputs:{a:g,b:m},backend:t}),b=rn({inputs:{x:y},backend:t,attrs:{dtype:"float32"}}),w=rd({inputs:{a:b,b:n},backend:t}),_=su({inputs:{x:w},backend:t,attrs:{axis:0,keepDims:!1}});u.push(_),c.push(g),c.push(y),c.push(b),c.push(w),c.push(_)}let f=wk({inputs:u,backend:t,attrs:{axis:0}});return c.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var y$={kernelName:Pa,backendName:"cpu",kernelFunc:i8};var a8=[e2,sE,t2,r2,pE,o2,n2,s2,i2,a2,l2,u2,c2,p2,m2,d2,h2,g2,x2,QE,y2,b2,w2,uE,fE,_2,iE,k2,C2,N2,S2,I2,A2,E2,T2,D2,$2,R2,F2,O2,P2,M2,L2,z2,B2,V2,W2,G2,id,qE,U2,j2,H2,hE,q2,xE,K2,X2,Y2,bE,Z2,J2,Q2,eD,tD,_E,rD,aE,oD,v2,nD,sD,iD,KE,vE,aD,lD,IE,uD,cD,pD,mD,fD,dD,SE,gD,xD,yD,bD,_D,hD,vD,CD,AE,ID,ND,AD,EE,$E,ED,DD,$D,FE,RD,PD,MD,nx,LD,XE,ME,zD,lE,BD,YE,ZE,JE,VD,GD,WD,UD,jD,HD,qD,zE,KD,XD,YD,ZD,JD,QD,e$,VE,SD,r$,o$,n$,s$,i$,a$,WE,l$,u$,jE,kD,c$,p$,m$,f$,OE,h$,g$,x$,y$,FD];for(let r of a8)Tl(r);var iu={},_k={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function b$(r,e){iu[r]=e}function Fo(r){if(!(r in iu)){let t=l8(r);if(t!==null)iu[r]=t;else return console.log("Could not get context for WebGL version",r),null}let e=iu[r];return e.isContextLost()?(delete iu[r],Fo(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),iu[r])}function u8(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function l8(r){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=u8(r);return e.addEventListener("webglcontextlost",t=>{t.preventDefault(),delete iu[r]},!1),r===1?e.getContext("webgl",_k)||e.getContext("experimental-webgl",_k):e.getContext("webgl2",_k)}var pl;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(pl||(pl={}));var Sr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Sr||(Sr={}));var kr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(kr||(kr={}));function au(r,e){return[e,r]}function w$(r,e){return r*e}function ml(r){let e=x.sizeFromShape(r),t=Math.ceil(e/4);return x.sizeToSquarishShape(t)}function ei(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function _$(r,e){let[t,o]=ei(r,e);return t*o*4}function cd(r,e){let t=r,o,n,s,a,i,l,u,c,p,m;return U().getNumber("WEBGL_VERSION")===2?(o=t.R32F,n=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,p=t.HALF_FLOAT,m=t.FLOAT):(o=r.RGBA,n=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,p=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT),l=r.RGBA,{internalFormatFloat:o,internalFormatHalfFloat:n,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function Ae(r,e){let t=e();return U().getBool("DEBUG")&&c8(r),t}function c8(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+p8(r,e))}var m8=596e-10,f8=65504;function k$(r){return!!(U().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||m8<Math.abs(r)&&Math.abs(r)<f8)}function p8(r,e){switch(e){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${e}`}}function pd(r,e){return fa(r,()=>r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function v$(r,e){let t=fa(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ae(r,()=>r.shaderSource(t,e)),Ae(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function C$(r,e){let t=fa(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ae(r,()=>r.shaderSource(t,e)),Ae(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw d8(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var h8=/ERROR: [0-9]+:([0-9]+):/g;function d8(r,e){let t=h8.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let o=+t[1],n=r.split(`
`),s=n.length.toString().length+2,a=n.map((p,m)=>x.rightPad((m+1).toString(),s)+p),i=0;for(let p=0;p<a.length;p++)i=Math.max(a[p].length,i);let l=a.slice(0,o-1),u=a.slice(o-1,o),c=a.slice(o);console.log(l.join(`
`)),console.log(e.split(`
`)[0]),console.log(`%c ${x.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function I$(r){return fa(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function N$(r,e){if(Ae(r,()=>r.linkProgram(e)),r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function ix(r,e){if(Ae(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function S$(r,e){let t=fa(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ae(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Ae(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function T$(r,e){let t=fa(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ae(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),Ae(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function A$(r){return fa(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function E$(r,e){let t=U().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let o=`[${r}x${e}]`;throw new Error("Requested texture size "+o+" is invalid.")}if(r>t||e>t){let o=`[${r}x${e}]`,n=`[${t}x${t}]`;throw new Error("Requested texture size "+o+" greater than WebGL maximum on this browser / GPU "+n+".")}}function D$(r){return fa(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function kk(r,e,t,o,n,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(Ae(r,()=>r.bindBuffer(r.ARRAY_BUFFER,o)),Ae(r,()=>r.vertexAttribPointer(i,n,r.FLOAT,!1,s,a)),Ae(r,()=>r.enableVertexAttribArray(i)),!0)}function x8(r,e,t){g8(r,t),Ae(r,()=>r.activeTexture(r.TEXTURE0+t)),Ae(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function $$(r,e,t){return fa(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function R$(r,e,t){return r.getUniformLocation(e,t)}function F$(r,e,t,o){Ae(r,()=>x8(r,e,o)),Ae(r,()=>r.uniform1i(t,o))}function ax(r,e,t){Ae(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),Ae(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function vk(r,e){Ae(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),Ae(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function md(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+y8(r,e))}function y8(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function fa(r,e,t){let o=Ae(r,()=>e());if(o==null)throw new Error(t);return o}function g8(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,o=e+r.TEXTURE0;if(o<r.TEXTURE0||o>t){let n=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${n}.`)}}function fl(r,e=2){return x.sizeFromShape(r.slice(0,r.length-e))}function dl(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function lx(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[fl(r),...dl(r)]),e}function O$(r,e=!1){let t=U().getNumber("WEBGL_MAX_TEXTURE_SIZE");e&&(t=t*2,r=r.map((n,s)=>s>=r.length-2?x.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=x.squeezeShape(r).newShape);let o=x.sizeFromShape(r);if(r.length<=1&&o<=t)return[1,o];if(r.length===2&&r[0]<=t&&r[1]<=t)return r;if(r.length===3&&r[0]*r[1]<=t&&r[2]<=t)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=t&&r[1]*r[2]<=t)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t)return[r[0],r[1]*r[2]*r[3]];if(e){let n=fl(r),s=2,a=2;return r.length&&([s,a]=dl(r)),o=n*(s/2)*(a/2),x.sizeToSquarishShape(o).map(i=>i*2)}return x.sizeToSquarishShape(o)}function ux(r){return r%2==0}function lu(r,e){if(r=r.slice(-2),e=e.slice(-2),x.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r.slice(-1)[0],o=e.slice(-1)[0];if(t===o||ux(t)&&ux(o)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&ux(r[0])&&ux(e[0])}var Ck,Ik;function P$(r){if(Ck==null){let e=Fo(r);Ck=e.getParameter(e.MAX_TEXTURE_SIZE)}return Ck}function M$(r){if(Ik==null){let e=Fo(r);Ik=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Ik)}function L$(r){if(r===0)return 0;let e,t=Fo(r);return Oo(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:Oo(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function Oo(r,e){return r.getExtension(e)!=null}function Nk(r){try{if(Fo(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function z$(r){if(r===0)return!1;let e=Fo(r);if(r===1){if(!Oo(e,"OES_texture_float"))return!1}else if(!Oo(e,"EXT_color_buffer_float"))return!1;return Sk(e)}function B$(r){if(r===0)return!1;let e=Fo(r);if(r===1){if(!Oo(e,"OES_texture_float")||!Oo(e,"WEBGL_color_buffer_float"))return!1}else{if(Oo(e,"EXT_color_buffer_float"))return Sk(e);let o="EXT_color_buffer_half_float";if(Oo(e,o)){let n=e.getExtension(o);return b8(e,n)}return!1}return Sk(e)}function Sk(r){let e=cd(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t);let o=1,n=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,o,n,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function b8(r,e){let t=cd(r,e),o=r.createTexture();r.bindTexture(r.TEXTURE_2D,o);let n=1,s=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,n,s,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,o,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(o),r.deleteFramebuffer(a),i}function V$(r){return r!==2?!1:Fo(r).fenceSync!=null}function ti(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&x.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Pe=U();Pe.registerFlag("HAS_WEBGL",()=>Pe.getNumber("WEBGL_VERSION")>0);Pe.registerFlag("WEBGL_VERSION",()=>Nk(2)?2:Nk(1)?1:0);Pe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Pe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Pe.get("WEBGL_VERSION")===2);Pe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Pe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Pe.registerFlag("WEBGL_PACK",()=>Pe.getBool("HAS_WEBGL"));Pe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_CLIP",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Pe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_REDUCE",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_CONV_IM2COL",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>P$(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>M$(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Pe.getNumber("WEBGL_VERSION");return r===0?0:L$(r)});Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Pe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!dc.isMobile());Pe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>z$(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Pe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Pe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Pe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>B$(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>V$(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Pe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Pe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Pe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>dc.isMobile()&&Pe.getBool("IS_CHROME")?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});function Ot(){let r,e,t,o,n,s,a,i,l,u;return U().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",o="in",n="texture",s="outputColor",a="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(r="",e="attribute",t="varying",o="varying",n="texture2D",s="gl_FragColor",a="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:r,attribute:e,varyingVs:t,varyingFs:o,texture2D:n,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function gs(r,e,t="index"){let o=x.computeStrides(e);return o.map((n,s)=>{let a=`int ${r[s]} = ${t} / ${n}`,i=s===o.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${n}`:`index -= ${r[s]} * ${n}`;return`${a}; ${i};`}).join("")}function Ip(r){let e=x.computeStrides(r).map(t=>t.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z;
}
`}var cx=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;var Tk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=pl.DENSE;let t=ml(e),o=Ot();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${gs(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${o.output} = result;
}
`}};var Ak=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=pl.DENSE;let t=ml(e),o=Ot();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${gs(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${o.output} = result;
}
`}};var Ek=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Sr.DOWNLOAD;let t=Ot();this.outputShape=e,this.userCode=`
${cx}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}};var Dk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Sr.DOWNLOAD;let t=Ot();this.outputShape=e,this.userCode=`
${cx}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}};var $k=class{constructor(e,t,o=!1){this.variableNames=["A"];let n=Ot(),[s,a]=t;this.outputShape=e;let i="result";o&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${Ip(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${a};
int c = imod(flatIndex, ${a});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${i}, 0., 0., 0.);
}
`}};var Rk=class{constructor(e,t,o=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let n=Ot(),[s,a]=t;this.outputShape=e;let i="",l="result";o&&(l="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let c=0;c<=1;c++){let p=u*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${u} < ${e[1]}) {
localCoords[1] += ${u};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${a};
c = imod(flatIndex, ${a});
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
values = ${n.texture2D}(A, uv);
if(offset == 0) {
result[${p}] = values[0];
} else if(offset == 1) {
result[${p}] = values[1];
} else if(offset == 2) {
result[${p}] = values[2];
} else {
result[${p}] = values[3];
}
}
}
`}this.userCode=`
${Ip(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${n.output} = ${l};
}
`}};function G$(r){let e=Ot(),t=`${e.version}
precision highp float;
${e.attribute} vec3 clipSpacePos;
${e.attribute} vec2 uv;
${e.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return v$(r,t)}function W$(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return S$(r,e)}function U$(r){let e=new Uint16Array([0,1,2,2,1,3]);return T$(r,e)}function fd(r,e,t,o,n,s){E$(e,t);let a=A$(r),i=r.TEXTURE_2D;return Ae(r,()=>r.bindTexture(i,a)),Ae(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),Ae(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),Ae(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),Ae(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),Ae(r,()=>r.texImage2D(i,0,o,e,t,0,n,s,null)),Ae(r,()=>r.bindTexture(r.TEXTURE_2D,null)),a}function Fk(r){return r.internalFormatFloat}function j$(r,e,t,o){let[n,s]=au(e,t);return fd(r,n,s,Fk(o),o.textureFormatFloat,r.FLOAT)}function Ok(r){return r.internalFormatHalfFloat}function H$(r,e,t,o){let[n,s]=au(e,t);return fd(r,n,s,Ok(o),o.textureFormatFloat,o.textureTypeHalfFloat)}function Pk(r){return r.downloadTextureFormat}function q$(r,e,t,o){let[n,s]=au(e,t);return fd(r,n,s,Pk(o),r.RGBA,r.UNSIGNED_BYTE)}function Mk(r){return r.internalFormatPackedFloat}function K$(r,e,t,o){let[n,s]=ei(e,t);return fd(r,n,s,Mk(o),r.RGBA,r.FLOAT)}function Lk(r){return r.internalFormatPackedHalfFloat}function X$(r,e,t,o){let[n,s]=ei(e,t);return fd(r,n,s,Lk(o),r.RGBA,o.textureTypeHalfFloat)}function Y$(r,e,t){let o=0,n=3*4,s=3*4+2*4;return Ae(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),kk(r,e,"clipSpacePos",t,3,s,o)&&kk(r,e,"uv",t,2,s,n)}function Z$(r,e,t,o,n,s){Ae(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,l;n instanceof Uint8Array?(a=new Uint8Array(t*o*4),i=r.UNSIGNED_BYTE,l=r.RGBA):(a=new Float32Array(t*o*4),i=r.FLOAT,l=s.internalFormatPackedFloat),a.set(n),Ae(r,()=>r.texImage2D(r.TEXTURE_2D,0,l,t,o,0,r.RGBA,i,a)),Ae(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function J$(r,e,t){Ae(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?Ae(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):Ae(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),Ae(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Q$(r,e,t,o){let n=r.createBuffer();Ae(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,n));let i=4*4*e*t;return Ae(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),Ae(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),Ae(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),n}function eR(r,e,t){let o=r,n=new Float32Array(t);return o.bindBuffer(o.PIXEL_PACK_BUFFER,e),o.getBufferSubData(o.PIXEL_PACK_BUFFER,0,n),o.bindBuffer(o.PIXEL_PACK_BUFFER,null),n}function tR(r,e,t,o){let[n,s]=au(e,t),a=4,i=new Uint8Array(w$(e*t,a));return Ae(r,()=>r.readPixels(0,0,n,s,o.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function rR(r,e,t,o,n,s,a,i){let l=r,u=new Float32Array(_$(s,a));return l.bindBuffer(l.PIXEL_PACK_BUFFER,e),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function oR(r,e,t){let o=new Float32Array(e*t*4);return Ae(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,o)),o}var zk=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=U().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,b$(t,e)):this.gl=Fo(t);let o="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(U().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=pd(this.gl,s),Oo(this.gl,a))this.textureHalfFloatExtension=pd(this.gl,a);else if(U().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(o),Oo(this.gl,n))this.colorBufferHalfFloatExtension=pd(this.gl,n);else if(U().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(o="EXT_color_buffer_float",Oo(this.gl,o))this.colorBufferFloatExtension=this.gl.getExtension(o);else if(Oo(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=W$(this.gl),this.indexBuffer=U$(this.gl),this.framebuffer=D$(this.gl),this.textureConfig=cd(this.gl,this.textureHalfFloatExtension)}get debug(){return U().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ae(e,()=>e.finish()),Ae(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ae(e,()=>e.deleteFramebuffer(this.framebuffer)),Ae(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ae(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ae(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),j$(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),H$(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),q$(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),J$(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,o,n){this.throwIfDisposed(),Z$(this.gl,e,t,o,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),X$(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),K$(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(vk(this.gl,this.framebuffer),this.outputTexture=null),Ae(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,o){return this.downloadMatrixDriver(e,()=>tR(this.gl,t,o,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,o,n,s,a){return rR(this.gl,e,t,o,n,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return eR(this.gl,e,t)}createBufferFromTexture(e,t,o){this.bindTextureToFrameBuffer(e);let n=Q$(this.gl,t,o,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,o;if(U().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,s=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),o=()=>{let a=n.clientWaitSync(s,0,0);return a===n.ALREADY_SIGNALED||a===n.CONDITION_SATISFIED},t=s}else U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),o=()=>this.isQueryAvailable(t,U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):o=()=>!0;return{query:t,isFencePassed:o}}downloadMatrixFromPackedTexture(e,t,o){return this.downloadMatrixDriver(e,()=>oR(this.gl,t,o))}createProgram(e){this.throwIfDisposed();let t=this.gl,o=C$(t,e),n=G$(t),s=I$(t);return Ae(t,()=>t.attachShader(s,n)),Ae(t,()=>t.attachShader(s,o)),N$(t,s),this.debug&&ix(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=Y$(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ae(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&ix(this.gl,this.program),Ae(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,o=!0){return this.throwIfDisposed(),o?$$(this.gl,e,t):R$(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ae(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,o){this.throwIfDisposed(),this.throwIfNoProgram(),F$(this.gl,e,t,o)}setOutputMatrixTexture(e,t,o){this.setOutputMatrixTextureDriver(e,o,t)}setOutputPackedMatrixTexture(e,t,o){this.throwIfDisposed();let[n,s]=ei(t,o);this.setOutputMatrixTextureDriver(e,n,s)}setOutputMatrixWriteRegion(e,t,o,n){this.setOutputMatrixWriteRegionDriver(o,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,o,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&ix(this.gl,this.program),md(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ae(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ae(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=pd(this.gl,U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.createQuery();return o.beginQuery(n.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,o=this.getQueryTimerExtensionWebGL2();t.endQuery(o.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await x.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let o=this.gl;return o.getQueryParameter(e,o.QUERY_RESULT)/1e6}else{let o=this.getQueryTimerExtensionWebGL1();return o.getQueryObjectEXT(e,o.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.getQueryParameter(e,o.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let o=this.getQueryTimerExtensionWebGL1(),n=o.getQueryObjectEXT(e,o.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=w8(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:o}=this.itemsToPoll[t];o()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&x.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),ax(this.gl,e,this.framebuffer),this.debug&&md(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(ax(this.gl,this.outputTexture,this.framebuffer),this.debug&&md(this.gl)):vk(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let o=t();return this.unbindTextureToFrameBuffer(),o}setOutputMatrixTextureDriver(e,t,o){this.throwIfDisposed();let n=this.gl;ax(n,e,this.framebuffer),this.debug&&md(n),this.outputTexture=e,Ae(n,()=>n.viewport(0,0,t,o)),Ae(n,()=>n.scissor(0,0,t,o))}setOutputMatrixWriteRegionDriver(e,t,o,n){this.throwIfDisposed(),Ae(this.gl,()=>this.gl.scissor(e,t,o,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function w8(r){let e=0;for(;e<r.length&&r[e]();++e);return e-1}var{getBroadcastDims:nR}=I;function sR(r,e,t,o){let n=[];r.forEach(d=>{let h=x.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?n.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(n.push(`uniform sampler2D ${d.name};`),n.push(`uniform int offset${d.name};`))});let s=n.join(`
`),a=r.map(d=>_8(d,e,o)).join(`
`),i=e.texShape,l=Ot(),u=C8(l),c,p,m=S8(l);return e.isPacked?(c=k8(e.logicalShape,i),p=N8(l)):(c=v8(e.logicalShape,i),p=I8(l)),o&&(m+=T8),[m,u,p,s,c,a,t].join(`
`)}function Np(r){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return A8(r);case 1:return E8(r);case 2:return D8(r);case 3:return $8(r);case 4:return R8(r);case 5:return F8(r);case 6:return O8(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function iR(r){switch(r.shapeInfo.logicalShape.length){case 0:return P8(r);case 1:return M8(r);case 2:return L8(r);case 3:return z8(r);default:return B8(r)}}function _8(r,e,t=!1){let o="";t?o+=iR(r):o+=Np(r);let n=r.shapeInfo.logicalShape,s=e.logicalShape;return n.length<=s.length&&(t?o+=V8(r,e):o+=G8(r,e)),o}function k8(r,e){switch(r.length){case 0:return aR();case 1:return W8(r,e);case 2:return H8(r,e);case 3:return U8(r,e);default:return j8(r,e)}}function v8(r,e){switch(r.length){case 0:return aR();case 1:return q8(r,e);case 2:return J8(r,e);case 3:return K8(r,e);case 4:return X8(r,e);case 5:return Y8(r,e);case 6:return Z8(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function C8(r){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${r.texture2D}(textureSampler, uv).r;
}
`}function I8(r){return`
void setOutput(float val) {
${r.output} = vec4(val, 0, 0, 0);
}
`}function N8(r){return`
void setOutput(vec4 val) {
${r.output} = val;
}
`}function S8(r){return`${r.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${r.varyingFs} vec2 resultUV;
${r.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${r.defineSpecialNaN}
${r.defineSpecialInf}
${r.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${Q8}
${eY}
${tY}
`}var Q8=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,eY=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,tY=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,T8=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function aR(){return`
int getOutputCoords() {
return 0;
}
`}function W8(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return t[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return 2 * (resTexRC.x * ${t[1]} + resTexRC.y);
}
`}function q8(r,e){return e[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${e[1]}.0);
}
`:e[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${e[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
return resTexRC.x * ${e[1]} + resTexRC.y;
}
`}function U8(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[2]/2),n=o*Math.ceil(r[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int b = index / ${n};
index -= b * ${n};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec3(b, r, c);
}
`}function K8(r,e){let t=gs(["r","c","d"],r);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec3(r, c, d);
}
`}function j8(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[r.length-1]/2),n=o*Math.ceil(r[r.length-2]/2),s=n,a="",i="b, r, c";for(let l=2;l<r.length-1;l++)s*=r[r.length-l-1],a=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+a,i=`b${l}, `+i;return`
ivec${r.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
int b = index / ${n};
index -= b * ${n};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec${r.length}(${i});
}
`}function X8(r,e){let t=gs(["r","c","d","d2"],r);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec4(r, c, d, d2);
}
`}function Y8(r,e){let t=gs(["r","c","d","d2","d3"],r);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]},
${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function Z8(r,e){let t=gs(["r","c","d","d2","d3","d4"],r);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function H8(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];if(x.arraysEqual(r,e))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`;let o=Math.ceil(r[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec2(r, c);
}
`}function J8(r,e){return x.arraysEqual(r,e)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]}));
}
`:r[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:r[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
int r = index / ${r[1]};
int c = index - r * ${r[1]};
return ivec2(r, c);
}
`}function uu(r){return`offset${r}`}function P8(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=Ot();return`
vec4 ${t}() {
return ${o.texture2D}(${e}, halfCR);
}
`}function A8(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${t}() {return ${e};}`;let[o,n]=r.shapeInfo.texShape;if(o===1&&n===1)return`
float ${t}() {
return sampleTexture(${e}, halfCR);
}
`;let[s,a]=r.shapeInfo.texShape,i=uu(e);return`
float ${t}() {
vec2 uv = uvFromFlat(${s}, ${a}, ${i});
return sampleTexture(${e}, uv);
}
`}function M8(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=r.shapeInfo.texShape,n=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],s=Ot();return`
vec4 ${t}(int index) {
vec2 uv = packedUVfrom1D(
${n[0]}, ${n[1]}, index);
return ${s.texture2D}(${e}, uv);
}
`}function E8(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
float ${t}(int index) {
${Sp(r)}
}
`;let o=r.shapeInfo.texShape,n=o[0],s=o[1];if(s===1&&n===1)return`
float ${t}(int index) {
return sampleTexture(${e}, halfCR);
}
`;let a=uu(e);return s===1?`
float ${t}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${n}.0);
return sampleTexture(${e}, uv);
}
`:n===1?`
float ${t}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${e}, uv);
}
`:`
float ${t}(int index) {
vec2 uv = uvFromFlat(${n}, ${s}, index + ${a});
return sampleTexture(${e}, uv);
}
`}function L8(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=n[0],a=n[1],i=Ot();if(n!=null&&x.arraysEqual(e,n))return`
vec4 ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${s}.0);
return ${i.texture2D}(${t}, uv);
}
`;let l=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)],u=Math.ceil(e[1]/2);return`
vec4 ${o}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
return ${i.texture2D}(${t}, uv);
}
`}function D8(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape;if(n!=null&&x.arraysEqual(e,n)){let p=n[0],m=n[1];return`
float ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`}let{newShape:s,keptDims:a}=x.squeezeShape(e),i=s;if(i.length<e.length){let p=Tp(r,i),m=["row","col"];return`
${Np(p)}
float ${o}(int row, int col) {
return ${o}(${Ap(m,a)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
${Sp(r)}
}
`;let l=n[0],u=n[1],c=uu(t);return u===1?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${t}, uv);
}
`:l===1?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${o}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${e[1]} + col + ${c};
vec2 uv = uvFromFlat(${l}, ${u}, index);
return sampleTexture(${t}, uv);
}
`}function z8(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)];if(e[0]===1){let p=e.slice(1),m=[1,2],f=Tp(r,p),d=["b","row","col"];return`
${iR(f)}
vec4 ${o}(int b, int row, int col) {
return ${o}(${Ap(d,m)});
}
`}let a=s[0],i=s[1],l=Math.ceil(e[2]/2),u=l*Math.ceil(e[1]/2),c=Ot();return`
vec4 ${o}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${a}, ${i}, ${u}, ${l}, b, row, col);
return ${c.texture2D}(${t}, uv);
}
`}function $8(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[1]*e[2],s=e[2],{newShape:a,keptDims:i}=x.squeezeShape(e),l=a;if(l.length<e.length){let d=Tp(r,l),h=["row","col","depth"];return`
${Np(d)}
float ${o}(int row, int col, int depth) {
return ${o}(${Ap(h,i)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${n}, ${s}, 1)));
${Sp(r)}
}
`;let u=r.shapeInfo.texShape,c=u[0],p=u[1],m=r.shapeInfo.flatOffset;if(p===n&&m==null)return`
float ${o}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;if(p===s&&m==null)return`
float ${o}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;let f=uu(t);return`
float ${o}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n} + col * ${s} + depth + ${f};
vec2 uv = uvFromFlat(${c}, ${p}, index);
return sampleTexture(${t}, uv);
}
`}function B8(r){let e=r.shapeInfo.logicalShape,t=e.length,o=r.name,n="get"+o.charAt(0).toUpperCase()+o.slice(1),s=r.shapeInfo.texShape,a=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],i=a[0],l=a[1],u=Math.ceil(e[t-1]/2),c=u*Math.ceil(e[t-2]/2),p="int b, int row, int col",m=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let d=2;d<t-1;d++)p=`int b${d}, `+p,c*=e[t-d-1],m=`b${d} * ${c} + `+m;let f=Ot();return`
vec4 ${n}(${p}) {
int index = ${m};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${i});
return ${f.texture2D}(${o}, uv);
}
`}function R8(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[3],s=e[2]*n,a=e[1]*s,{newShape:i,keptDims:l}=x.squeezeShape(e);if(i.length<e.length){let d=Tp(r,i),h=["row","col","depth","depth2"];return`
${Np(d)}
float ${o}(int row, int col, int depth, int depth2) {
return ${o}(${Ap(h,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${a}, ${s}, ${n}, 1)));
${Sp(r)}
}
`;let u=r.shapeInfo.flatOffset,c=r.shapeInfo.texShape,p=c[0],m=c[1];if(m===a&&u==null)return`
float ${o}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${n}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;if(m===n&&u==null)return`
float ${o}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${e[1]*e[2]}, ${e[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;let f=uu(t);return`
float ${o}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} +
depth * ${n} + depth2;
vec2 uv = uvFromFlat(${p}, ${m}, index + ${f});
return sampleTexture(${t}, uv);
}
`}function F8(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[4],s=e[3]*n,a=e[2]*s,i=e[1]*a,{newShape:l,keptDims:u}=x.squeezeShape(e);if(l.length<e.length){let h=Tp(r,l),g=["row","col","depth","depth2","depth3"];return`
${Np(h)}
float ${o}(int row, int col, int depth, int depth2, int depth3) {
return ${o}(${Ap(g,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${a}, ${s}, ${n})) +
depth3;
${Sp(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===i&&c==null)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${a}, ${s}, ${n}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;if(f===n&&c==null)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]},
${e[2]*e[3]}, ${e[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;let d=uu(t);return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${a} + depth * ${s} +
depth2 * ${n} + depth3 + ${d};
vec2 uv = uvFromFlat(${m}, ${f}, index);
return sampleTexture(${t}, uv);
}
`}function O8(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),{newShape:n,keptDims:s}=x.squeezeShape(e);if(n.length<e.length){let g=Tp(r,n),y=["row","col","depth","depth2","depth3","depth4"];return`
${Np(g)}
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${o}(${Ap(y,s)});
}
`}let a=e[5],i=e[4]*a,l=e[3]*i,u=e[2]*l,c=e[1]*u;if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${a}, 1)));
${Sp(r)}
}
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${i}, ${a})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;if(d===a&&p==null)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]*e[4]},
${e[2]*e[3]*e[4]},
${e[3]*e[4]},
${e[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;let h=uu(t);return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${i} + depth3 * ${a} + depth4 + ${h};
vec2 uv = uvFromFlat(${f}, ${d}, index);
return sampleTexture(${t}, uv);
}
`}function Sp(r){let e=r.name,t=x.sizeFromShape(r.shapeInfo.logicalShape);return t<2?`return ${e};`:`
for (int i = 0; i < ${t}; i++) {
if (i == index) {
return ${e}[i];
}
}
`}function V8(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=r.shapeInfo.logicalShape.length,a=e.logicalShape.length,i=nR(r.shapeInfo.logicalShape,e.logicalShape),l=Le(a),u=a-s,c,p=["x","y","z","w","u","v"];s===0?c="":a<2&&i.length>=1?c="coords = 0;":c=i.map(b=>`coords.${p[b+u]} = 0;`).join(`
`);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+u]}`).join(", ");let f="return outputValue;",h=x.sizeFromShape(r.shapeInfo.logicalShape)===1,y=x.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!y)f=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(h&&!y)a===1?f=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:f=`
return vec4(outputValue.x);
`;else if(i.length){let b=s-2,w=s-1;i.indexOf(b)>-1&&i.indexOf(w)>-1?f="return vec4(outputValue.x);":i.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${n}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${o}(${m});
${f}
}
`}function G8(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,l=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===l&&r.shapeInfo.flatOffset==null&&x.arraysEqual(a,s))return`
float ${n}() {
return sampleTexture(${t}, resultUV);
}
`;let u=Le(l),c=nR(r.shapeInfo.logicalShape,e.logicalShape),p=l-i,m,f=["x","y","z","w","u","v"];i===0?m="":l<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
`);let d="";return l<2&&i>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
float ${n}() {
${u} coords = getOutputCoords();
${m}
return get${o}(${d});
}
`}function Le(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function Tp(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function Ap(r,e){return e.map(t=>r[t]).join(", ")}function lR(r,e,t,o){let n=e.userCode,s=t.map((f,d)=>{let h={logicalShape:f.shape,texShape:f.isUniform?null:f.texData.texShape,isUniform:f.isUniform,isPacked:f.isUniform?!1:f.texData.isPacked,flatOffset:null};return f.texData!=null&&f.texData.slice!=null&&f.texData.slice.flatOffset>0&&(h.flatOffset=f.texData.slice.flatOffset),{name:e.variableNames[d],shapeInfo:h}}),a=s.map(f=>f.shapeInfo),i={logicalShape:o.shape,texShape:o.texData.texShape,isUniform:!1,isPacked:o.texData.isPacked,flatOffset:null},l=sR(s,i,n,e.packedInputs),u=r.createProgram(l),c=null,p=r.getUniformLocation(u,"NAN",!1);U().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(u,"INFINITY",!1));let m={};for(let f=0;f<e.variableNames.length;f++){let d=e.variableNames[f],h=!1;m[d]=r.getUniformLocation(u,d,h),m[`offset${d}`]=r.getUniformLocation(u,`offset${d}`,h)}return{program:e,source:l,webGLProgram:u,uniformLocations:m,inShapeInfos:a,outShapeInfo:i,infLoc:c,nanLoc:p}}function uR(r,e){if(r.length!==e.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${e.length} inputs`);r.forEach((t,o)=>{let n=t.logicalShape,s=e[o],a=s.shape;if(!x.arraysEqual(n,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${n} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,l=s.isUniform?null:s.texData.texShape;if(!x.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function cR(r,e,t,o,n){uR(e.inShapeInfos,t),uR([e.outShapeInfo],[o]);let s=o.texData.texture,a=o.texData.texShape;o.texData.isPacked?r.setOutputPackedMatrixTexture(s,a[0],a[1]):r.setOutputMatrixTexture(s,a[0],a[1]),r.setProgram(e.webGLProgram),U().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,Infinity),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN),t.forEach((i,l)=>{let u=e.program.variableNames[l],c=e.uniformLocations[u],p=e.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(x.sizeFromShape(i.shape)<2)r.gl.uniform1f(c,i.uniformValues[0]);else{let m=i.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),r.gl.uniform1fv(c,m)}return}i.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,i.texData.slice.flatOffset),r.setInputMatrixTexture(i.texData.texture,c,l)}}),n!=null&&n(r,e.webGLProgram),r.executeProgram()}function pR(r,e,t){let o="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,l=a.isUniform?"uniform":a.texData.texShape;o+=`${a.shape}_${l}_${i}`});let n=r.userCode,s=r.constructor.name;return s+="_"+o+"_"+n,s}var{addImpl:mR,bincountImpl:px,bincountReduceImpl:fR,ceilImpl:dR,concatImpl:hR,expImpl:gR,expm1Impl:xR,floorImpl:yR,gatherV2Impl:bR,greaterImpl:wR,lessImpl:_R,linSpaceImpl:kR,logImpl:vR,maxImpl:CR,maximumImpl:IR,minimumImpl:NR,multiplyImpl:SR,negImpl:TR,prodImpl:AR,rangeImpl:ER,rsqrtImpl:DR,simpleAbsImpl:mx,sliceImpl:$R,stridedSliceImpl:RR,subImpl:FR,tileImpl:OR,topKImpl:PR,transposeImpl:Ep,uniqueImpl:MR}=ak;function Bk(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function Vt(r,e){return e===1?[r]:Bk(r,e)}function LR(r,e){if(r===1)return"rc";let t="";for(let o=0;o<r;o++)t+=e[o],o<r-1&&(t+=",");return t}var Vk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let o=Vt("rc",t),n=Le(t),s=rY(t,e,o),a=oY(t,e[e.length-1],e[e.length-2],o),i=nY(e,o);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${s}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${i}));
}
}
`}}};function sY(r,e){let t=[];for(let o=0;o<=1;o++)for(let n=0;n<=1;n++){let s=`${o===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let a=2;a<r;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}function rY(r,e,t){if(r===1)return`rc > ${e[0]}`;let o="";for(let n=r-2;n<r;n++)o+=`${t[n]} >= ${e[n]}`,n<r-1&&(o+="||");return o}function oY(r,e,t,o){if(r===1)return"";let n=o.slice(-2);return`
int r = ${n[0]};
int c = ${n[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${e};
bool rEdge = rp1 >= ${t};
`}function nY(r,e){let t=r.length,o=sY(t,e);return t===1?`getA(rc),
rc + 1 >= ${r[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${o[0]}),
cEdge ? 0. : getA(${o[1]}),
rEdge ? 0. : getA(${o[2]}),
rEdge || cEdge ? 0. : getA(${o[3]})`}var dd=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let o="";for(let n=0;n<4;n++){let s="thisRC = rc;";n%2==1&&(s+="thisRC.z += 1;"),n>1&&(s+="thisRC.y += 1;"),o+=`
${s}
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${n}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${n>0?"}":""}
`}this.userCode=`
${iY(t)}
${Ip(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${o}
setOutput(result);
}
`}};function iY(r){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${gs(["r","c","d"],r)}
return ivec3(r, c, d);
}
`}var Gk=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,o){let n=BR(t,o),s=VR(e,n,o);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=zR(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,o);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let l=this.freeTextures[s].shift();return this.usedTextures[s].push(l),l}let i;return n===kr.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===kr.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===kr.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===kr.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===kr.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,o,n){if(this.freeTextures==null)return;let s=BR(o,n),a=VR(t,s,n);a in this.freeTextures||(this.freeTextures[a]=[]);let i=zR(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,n),l=U().get("WEBGL_DELETE_TEXTURE_THRESHOLD");l!==-1&&this._numBytesAllocated>l?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function aY(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;throw new Error(`Unknown internal format ${e}`)}function zR(r,e,t,o,n){let s=lY(e,o),a;if(n){let[l,u]=ei(r[0],r[1]);a=l*u}else{let[l,u]=au(r[0],r[1]);a=l*u}let i=aY(t,s);return a*i}function lY(r,e){switch(r){case kr.PACKED_2X2_FLOAT32:return Mk(e);case kr.PACKED_2X2_FLOAT16:return Lk(e);case kr.UNPACKED_FLOAT32:return Fk(e);case kr.UNPACKED_FLOAT16:return Ok(e);case kr.PACKED_4X1_UNSIGNED_BYTE:return Pk(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function uY(r){return U().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?kr.PACKED_2X2_FLOAT32:kr.UNPACKED_FLOAT32:r?kr.PACKED_2X2_FLOAT16:kr.UNPACKED_FLOAT16}function BR(r,e){if(r===Sr.UPLOAD)return kr.PACKED_2X2_FLOAT32;if(r===Sr.RENDER||r==null)return uY(e);if(r===Sr.DOWNLOAD||r===Sr.PIXELS)return kr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function VR(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var mo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},gr="if (isnan(x)) return x;",GR="return x;",Wk="return abs(x);";var WR="return (x >= 0.0) ? x : (exp(x) - 1.0);",UR=gr+`
return (x < 0.0) ? 0.0 : x;
`,jR=gr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,hd="return x;";var HR="return x;",qR=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,KR=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,XR=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,xs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}};var Uk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,o=Vt("rc",t),n=Le(t),s=LR(t,o),a=o.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${i}));
}
`}};var cY=$r.whereImpl,pY=1e-7,mY=1e-4,fx={};function fY(r){return r in fx||(fx[r]={}),fx[r]}var dY=128,hY=600;function gY(){return U().global.screen==null?1024:U().global.screen.height*U().global.screen.width*window.devicePixelRatio*hY/1024/1024}var Dp=class extends li{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!U().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Fo(U().getNumber("WEBGL_VERSION"));this.binaryCache=fY(U().getNumber("WEBGL_VERSION")),this.gpgpu=new zk(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new Gk(this.gpgpu),this.numMBBeforeWarning=gY(),this.texData=new vl(this,Wo())}nextDataId(){return Dp.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,o){if((U().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||U().getBool("DEBUG"))&&this.checkNumericalProblems(e),o==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:o,values:e,usage:Sr.UPLOAD,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,o,n,s){if(U().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:o,dtype:n,values:t,usage:Sr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:o,dtype:n,complexTensorInfos:s,slice:a,shape:i,isPacked:l}=t;if(a!=null){let m;l?m=new xs(i,hd):m=new mo(i,hd);let f=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:n}],n),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(o!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return o;let u=this.activeTimers!=null,c;u&&(c=x.now());let p;if(n==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=I.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=x.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(h=>d.push(h))}let t=this.texData.get(e),{values:o,shape:n,slice:s,dtype:a,complexTensorInfos:i,isPacked:l}=t;if(s!=null){let d;l?d=new xs(n,hd):d=new mo(n,hd);let h=this.runWebGLProgram(d,[{dataId:e,shape:n,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(o!=null)return this.convertAndCacheOnCPU(e);if(!U().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&U().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&U().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(d.texture,...ml(n))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(a==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=d[0],g=d[1];p=I.mergeRealAndImagArrays(h,g)}else if(u==null)p=this.getValuesFromTexture(e);else{let d=x.sizeFromShape(n);p=this.gpgpu.downloadFloat32MatrixFromBuffer(u,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let m=this.convertAndCacheOnCPU(e,p),f=this.pendingRead.get(e);return this.pendingRead.delete(e),f.forEach(d=>d(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Wo().removeDataId(e,this),this.pendingDeletes--),m}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>x.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return _e(e.shape,e.dtype,o)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let o=e[t];if(!k$(o))throw U().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${o} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${o} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:o,isPacked:n}=this.texData.get(e),s=x.sizeFromShape(t);if(U().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(e),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture,...ml(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let a=U().getBool("WEBGL_PACK")&&n===!0,i=a?lx(t):t,l=a?new Dk(i):new Ek(i),u=this.runWebGLProgram(l,[{shape:i,dtype:o,dataId:e}],"float32"),c=this.texData.get(u.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),p}timerAvailable(){return U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,o=[],n=!1;this.programTimersStack==null?(this.programTimersStack=o,n=!0):this.activeTimers.push(o),this.activeTimers=o,e();let s=x.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=x.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let l=await Promise.all(s);i.kernelMs=x.sum(l),i.getExtraProfileInfo=()=>l.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:x.now(),endMs:null}}endTimer(e){return U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=x.now(),e)}async getQueryTime(e){if(U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:o}=this.texData.get(e);return o!=null&&(this.disposeData(o.real.dataId,t),this.disposeData(o.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:o,texShape:n,usage:s,isPacked:a,slice:i}=this.texData.get(e),l=i&&i.origDataId||e,u=this.dataRefCount.get(l);u>1?this.dataRefCount.set(l,u-1):(this.dataRefCount.delete(l),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,o),this.textureManager.releaseTexture(t,n,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return U().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Wo().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=dY){let o=this.getCPUBackend();return!U().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&o==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),o!=null&&e.every(n=>this.texData.get(n.dataId).texture==null&&x.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){I.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return cY(e.shape,t)}packedUnaryOp(e,t,o){let n=new xs(e.shape,t),s=this.compileAndRun(n,[e],o);return Wo().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=mx(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(U().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Wk,e.dtype);let t=new mo(e.shape,Wk),o=this.compileAndRun(t,[e]);return Wo().makeTensorFromDataId(o.dataId,o.shape,o.dtype)}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&x.isString(o[0])){let s=o.map(a=>x.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,o){let{dataId:n}=this.makeTensorInfo(e,t,o);return Wo().makeTensorFromDataId(n,e,t,this)}unpackTensor(e){let t=new Uk(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Vk(e.shape),o=!0;return this.runWebGLProgram(t,[e],e.dtype,null,o)}packedReshape(e,t){let o=[fl(e.shape),...dl(e.shape)],n={dtype:e.dtype,shape:o,dataId:e.dataId},s=[fl(t),...dl(t)],a=new dd(s,o),i=!0,l=this.runWebGLProgram(a,[n],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:o,shape:n,dtype:s}=t,a=lx(n),i;o?i=new Ak(a):i=new Tk(a);let l=!0,u=this.runWebGLProgram(i,[{shape:a,dtype:s,dataId:e}],s,null,l);return{dtype:s,shape:n,dataId:u.dataId}}runWebGLProgram(e,t,o,n,s=!1){let a=this.makeTensorInfo(e.outputShape,o),i=this.texData.get(a.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===pl.DENSE){let g=ml(e.outputShape);i.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),x.sizeFromShape(a.shape)===0)return i.values=x.getTypedArrayFromDType(a.dtype,0),a;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&x.sizeFromShape(g.shape)<=U().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}else if(!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!lu(y.shape,g.shape)){let b=g,w=g.shape;g.shape=y.shape,g=this.packedReshape(g,w),l.push(g),y=this.texData.get(g.dataId),b.shape=w}return this.uploadToGPU(g.dataId),{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:i,isUniform:!1},p=pR(e,u,c),m=this.getAndSaveBinary(p,()=>lR(this.gpgpu,e,u,c)),f=this.activeTimers!=null,d;f&&(d=this.startTimer()),cR(this.gpgpu,m,u,c,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),f&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)}));let h=U().get("WEBGL_FLUSH_THRESHOLD");if(h>0){let g=x.now();g-this.lastGlFlushTime>h&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!U().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let g=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),g}return a}compileAndRun(e,t,o,n,s=!1){return o=o||t[0].dtype,this.runWebGLProgram(e,t,o,n,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(U().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!U().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=U().getBool("DEBUG");U().set("DEBUG",!1);let t=this.abs(le(1e-8)).dataSync()[0];if(U().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?pY:mY}uploadToGPU(e){let t=this.texData.get(e),{shape:o,dtype:n,values:s,texture:a,usage:i,isPacked:l}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=x.now());let p=t.texShape;if(p==null&&(p=O$(o,l),t.texShape=p),s!=null){let m=lx(o),f,d=p[1],h=p[0],g=s instanceof Uint8Array;l?([d,h]=ei(p[0],p[1]),f=new Rk(m,[h,d],g)):f=new $k(m,[h,d],g);let y=this.makeTensorInfo([h,d],n);g?this.texData.get(y.dataId).usage=Sr.PIXELS:this.texData.get(y.dataId).usage=Sr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),d,h,s);let b=!0,w=this.runWebGLProgram(f,[y],n,null,b),_=this.texData.get(w.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(y),this.texData.delete(w.dataId),t.values=null,u&&(this.uploadWaitMs+=x.now()-c)}else{let m=this.acquireTexture(p,i,n,l);t.texture=m}}convertAndCacheOnCPU(e,t){let o=this.texData.get(e),{dtype:n}=o;return this.releaseGPUData(e),t!=null&&(o.values=xY(t,n)),o.values}acquireTexture(e,t,o,n){if(this.numBytesInGPU+=this.computeBytes(e,o),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*x.bytesPerElement(t)}};Dp.nextDataId=0;function xY(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let o=0;o<t.length;++o)t[o]=Math.round(r[o]);return t}else throw new Error(`Unknown dtype ${e}`)}var YR="3.3.0";dc.isBrowser()&&bc("webgl",()=>new Dp,2);var dx=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;var an=class{constructor(e,t,o){this.variableNames=["A","B"],this.outputShape=I.assertAndGetBroadcastShape(t,o),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}};var hl=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;var ys=class{constructor(e,t,o,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=I.assertAndGetBroadcastShape(t,o);let s=this.outputShape.length,a="";if(n)if(s===0||x.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${Le(s)} coords = getOutputCoords();
`,s===1)a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let l=Vt("coords",s);a+=`
bool nextRowOutOfBounds =
(${l[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${l[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function Gt(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var ZR={kernelName:Bo,backendName:"webgl",kernelFunc:Gt};function fo(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.makeTensorInfo(o.shape,"complex64"),a=t.texData.get(s.dataId),i=Gt({inputs:{x:o},backend:t}),l=Gt({inputs:{x:n},backend:t});return a.complexTensorInfos={real:i,imag:l},s}var JR={kernelName:zu,backendName:"webgl",kernelFunc:fo};var jk="return (a < 0.) ? b * a : a;",Hk=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function yY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o,a=t.makeTensorInfo([],"float32",x.createScalarValue(s,"float32")),i=U().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ys(Hk,n.shape,a.shape):new an(jk,n.shape,a.shape),l=t.runWebGLProgram(i,[n,a],n.dtype);return t.disposeIntermediateTensorInfo(a),l}var QR={kernelName:Tn,backendName:"webgl",kernelFunc:yY};var qk="return (a < 0.) ? b * a : a;",Kk=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function bY(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=U().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ys(Kk,o.shape,n.shape):new an(qk,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)}var eF={kernelName:Bn,backendName:"webgl",kernelFunc:bY};var hx="if (isnan(x)) return x;",tF=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,rF=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function ke({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:o}){return({inputs:n,backend:s})=>{let{x:a}=n,i=s,l=o||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let p=i.texData.get(a.dataId),m=t(p.values,l);return i.makeTensorInfo(a.shape,l,m)}let u=U().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new xs(a.shape,e):c=new mo(a.shape,r),i.runWebGLProgram(c,[a],l)}}function nt({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:o=!1,cpuKernelImpl:n,dtype:s}){return({inputs:a,backend:i})=>{let{a:l,b:u}=a,c=i;if(o&&l.dtype==="complex64"){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,y]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[_,k]=w,D={dataId:_.dataId,dtype:_.dtype,shape:l.shape},T={dataId:k.dataId,dtype:k.dtype,shape:u.shape},R=new an(r,l.shape,u.shape);return c.runWebGLProgram(R,[D,T],br(_.dtype,k.dtype))}),b=fo({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),b}let p=s||br(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&n!=null){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,y]=n(l.shape,u.shape,d.values,h.values,p),b=c.makeTensorInfo(y,p),w=c.texData.get(b.dataId);return w.values=g,b}let m=U().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,f;return m?f=new ys(e,l.shape,u.shape,t):f=new an(r,l.shape,u.shape),c.runWebGLProgram(f,[l,u],p)}}function gl(r,e=!1){if(r==="linear")return e?HR:GR;if(r==="relu")return e?KR:UR;if(r==="elu")return e?qR:WR;if(r==="relu6")return e?XR:jR;if(r==="prelu")return e?Kk:qk;if(r==="leakyrelu")return e?Hk:jk;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var gd=class{constructor(e,t,o,n=!1,s=!1,a=!1,i=null,l=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=o;let c=n?e[1]:e[2],p=Math.ceil(c/2),m=n?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",y="";i&&(l?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:u?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:g=`vec4 activation(vec4 x) {
${i}
}`,y="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let w="rc.x",_="rc.x";e[0]<t[0]?w=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${g}
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${w};
int batchB = ${_};
vec4 a = getMatrixA(batchA, ${m});
vec4 b = getMatrixB(batchB, ${f});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${d[0]} * ${h[0]});
result += (${d[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${y}
setOutput(result);
}
`}};var Xk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},gx=class{constructor(e,t,o){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=I.assertAndGetBroadcastShape(t,o),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}};var oF="return a * b;";function Yk(r){let{inputs:e,backend:t}=r,{a:o,b:n}=e,s=I.upcastType(o.dtype,n.dtype);if(o.dtype==="complex64"){let i=t.texData.get(o.dataId),l=t.texData.get(n.dataId),u=new gx(Xk.REAL,o.shape,n.shape),c=new gx(Xk.IMAG,o.shape,n.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:o.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:n.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:n.shape}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=fo({inputs:{real:m,imag:f},backend:t});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}if(t.shouldExecuteOnCPU([o,n])){let i=t.texData.get(o.dataId),l=t.texData.get(n.dataId),[u,c]=SR(o.shape,n.shape,i.values,l.values,s),p=t.makeTensorInfo(c,s),m=t.texData.get(p.dataId);return m.values=u,p}let a;return U().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new ys(oF,o.shape,n.shape):a=new an(oF,o.shape,n.shape),t.runWebGLProgram(a,[o,n],s)}var nF={kernelName:Pn,backendName:"webgl",kernelFunc:Yk};function sF(r,e,t){let o=[fl(r.shape),...dl(r.shape)],n={dtype:r.dtype,shape:o,dataId:r.dataId},s=[fl(e),...dl(e)],a=new dd(s,o),i=!0,l=t.runWebGLProgram(a,[n],r.dtype,null,i);return{dataId:l.dataId,shape:e,dtype:l.dtype}}function ce(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=t,i=x.sizeFromShape(n.shape),l=x.inferFromImplicitShape(s,i),u=x.sizeFromShape(l);x.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${n.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(n.dataId);return c.isPacked&&!lu(n.shape,l)&&!(c.texture!==null&&lu(c.shape,l))?sF(n,l,a):(a.incRef(n.dataId),{dataId:n.dataId,shape:l,dtype:n.dtype})}var iF={kernelName:Ts,backendName:"webgl",kernelFunc:ce};var xx=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i=Math.floor(o/4)*4,l=o%4,u="sumValue += dot(values, ones);";if(t!=null){let p=1/t;u=`sumValue += dot(values * ${x.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%o>0&&(c=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${u}
}
int inIdx = inOffset + ${i};
if (${l===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${u}
} else if (${l===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${u}
} else if (${l===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${u}
}
setOutput(sumValue);
}
`}};var Zk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i="0.0",l="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",l="min"):t==="max"&&(i="-1.0 / 1e-20",l="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(o/4)*4,p=o%4,m=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${l}(values, minMaxValue);
}
`,f="vec4";t==="all"?(i="1.0",m=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,f="bvec4"):t==="any"&&(i="0.0",m=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,f="bvec4");let d="";s%o>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
${f} values = ${f}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${m}
} else if (${p===2}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${m}
} else if (${p===3}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${m}
}
setOutput(${u});
}
`}};function wY(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],o=I.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:o,outSize:Math.ceil(t/o)})}return e}function ko(r,e,t,o){let n=wY(r.shape),s=r;for(let a=0;a<n.length;a++){let{inSize:i,windowSize:l,outSize:u}=n[a],c,p;t==="mean"?c=a===0?new xx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},i):new xx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u}):c=new Zk({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},t),p=s,s=o.runWebGLProgram(c,[s],e),p.dataId!==r.dataId&&o.disposeIntermediateTensorInfo(p)}return s}var Jk=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[t[a]];this.outputShape=o,this.rank=o.length;let n=Le(this.rank),s=_Y(t);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function _Y(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],o=new Array(e);for(let n=0;n<r.length;n++)o[r[n]]=t[n];return o.join()}var Qk=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let o=new Array(e.length);for(let c=0;c<o.length;c++)o[c]=e[t[c]];if(this.outputShape=o,this.rank=o.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=Le(this.rank),s=Bk("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=s[c];let i=`vec2(${a.slice(-2).join()})`,l=`++${s[this.rank-1]} < ${o[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${u};
if(${l}) {
result[1] = ${u};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${o[this.rank-2]}) {
result[2] = ${u};
if(${l}) {
result[3] = ${u};
}
}
setOutput(result);
}
`}};function xl(r,e,t){let o=U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Qk(r.shape,e):new Jk(r.shape,e);return t.runWebGLProgram(o,[r],r.dtype)}function aF(r,e,t,o){let n=e,s=r.shape.length,a=x.parseAxisParam(n,r.shape),i=a,l=I.getAxesPermutation(i,s),u=l!=null,c=r;u&&(c=xl(r,l,o),i=I.getInnerMostAxes(i.length,s)),I.assertAxesAreInnerMostDims("sum",i,s);let[p,m]=I.computeOutAndReduceShapes(c.shape,i),f=p;t&&(f=I.expandShapeToKeepDim(p,a));let d=x.sizeFromShape(m),g=x.sizeFromShape(r.shape)/d,y=ce({inputs:{x:c},attrs:{shape:[g,d]},backend:o}),b=fc(r.dtype),w=ko(y,b,"sum",o),_=ce({inputs:{x:w},attrs:{shape:f},backend:o});return o.disposeIntermediateTensorInfo(y),o.disposeIntermediateTensorInfo(w),u&&o.disposeIntermediateTensorInfo(c),_}function xd(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;return aF(n,s,a,t)}var lF={kernelName:Zn,backendName:"webgl",kernelFunc:xd};function Mt(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{perm:s}=o,a=t,i=n.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=n.shape[s[c]];let u;if(a.shouldExecuteOnCPU([n])){let p=a.texData.get(n.dataId).values,m=Ep(p,n.shape,n.dtype,s,l);u=a.makeTensorInfo(l,n.dtype);let f=a.texData.get(u.dataId);f.values=m}else u=xl(n,s,a);return u}var uF={kernelName:rs,backendName:"webgl",kernelFunc:Mt};var ev=1e3;function cu({a:r,b:e,transposeA:t,transposeB:o,backend:n,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:l=null}){let u=r.shape.length,c=e.shape.length,p=t?r.shape[u-2]:r.shape[u-1],m=o?e.shape[c-1]:e.shape[c-2],f=t?r.shape[u-1]:r.shape[u-2],d=o?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),y=x.sizeFromShape(h),b=x.sizeFromShape(g),w=y===b||y===1||b===1;x.assert(u>=2&&c>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${h}) and (${g}).`);let k=(y>b?r.shape.slice(0,-2):e.shape.slice(0,-2)).concat([f,d]);x.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${o} must match.`);let D=t?[y,p,f]:[y,f,p],T=o?[b,d,m]:[b,m,d],R=ce({inputs:{x:r},backend:n,attrs:{shape:D}}),O=ce({inputs:{x:e},backend:n,attrs:{shape:T}}),M=[R,O],G=Math.max(y,b),W=t?R.shape[1]:R.shape[2],j=s!=null,H=a!=null,q=l==="leakyrelu",X=l!=null?gl(l,!0):null,oe=j||H||q||X!=null,Y;if((f===1||d===1)&&W>ev&&oe===!1){let J=R,ie=O;t&&(J=Mt({inputs:{x:R},backend:n,attrs:{perm:[0,2,1]}}),M.push(J)),o&&(ie=Mt({inputs:{x:O},backend:n,attrs:{perm:[0,2,1]}}),M.push(ie));let ue=d!==1,ae=d===1,fe=J;ue&&(fe=ce({inputs:{x:J},backend:n,attrs:{shape:[G,W,1]}}),M.push(fe));let de=d===1?2:1,ge=ie;ae&&(ge=ce({inputs:{x:ie},backend:n,attrs:{shape:[G,1,W]}}),M.push(ge));let we=Yk({inputs:{a:fe,b:ge},backend:n});Y=xd({inputs:{x:we},backend:n,attrs:{axis:de,keepDims:!0}}),M.push(we)}else{let J=br(r.dtype,e.dtype),ie=new gd(D,T,[G,f,d],t,o,j,X,H,q),ue=[R,O];if(s!=null&&ue.push(s),H&&ue.push(a),q){let ae=n.makeTensorInfo([],"float32",x.createScalarValue(i,"float32"));ue.push(ae),M.push(ae)}Y=n.runWebGLProgram(ie,ue,J)}let re=ce({inputs:{x:Y},backend:n,attrs:{shape:k}});M.push(Y);for(let J of M)n.disposeIntermediateTensorInfo(J);return re}function kY(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o;return cu({a:n,b:s,transposeA:l,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var cF={kernelName:Rs,backendName:"webgl",kernelFunc:kY};var pF="return abs(x);";function vY(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])&&o.dtype!=="complex64"){let s=t.texData.get(o.dataId),a=mx(s.values);return t.makeTensorInfo(o.shape,o.dtype,a)}let n;return U().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new xs(o.shape,pF):n=new mo(o.shape,pF),t.runWebGLProgram(n,[o],o.dtype)}var mF={kernelName:_s,backendName:"webgl",kernelFunc:vY};var CY=gr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,IY=ke({opSnippet:CY}),fF={kernelName:ui,backendName:"webgl",kernelFunc:IY};var NY=gr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,SY=ke({opSnippet:NY}),dF={kernelName:ci,backendName:"webgl",kernelFunc:SY};var hF="return a + b;",TY=nt({opSnippet:hF,packedOpSnippet:hF,supportsComplex:!0,cpuKernelImpl:mR}),gF={kernelName:Io,backendName:"webgl",kernelFunc:TY};var tv=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`float v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${o.join(`
`)}
float result = ${n};
setOutput(result);
}
`}};var rv=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`vec4 v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${o.join(`
`)}
vec4 result = ${n};
setOutput(result);
}
`}};function yx(r){let{inputs:e,backend:t}=r,o=e;if(o.length===1)return Gt({inputs:{x:o[0]},backend:t});if(o.length>U().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(o.length/2),u=yx({inputs:o.slice(0,l),backend:t}),c=yx({inputs:o.slice(l),backend:t});return yx({inputs:[u,c],backend:t})}let n=o.map(l=>l.dtype).reduce((l,u)=>br(l,u)),s=o.map(l=>l.shape),i=U().getBool("WEBGL_PACK")?new rv(o[0].shape,s):new tv(o[0].shape,s);return t.runWebGLProgram(i,o,n)}var xF={kernelName:mn,backendName:"webgl",kernelFunc:yx};function AY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=x.parseAxisParam(s,n.shape),u=l,c=I.getAxesPermutation(u,i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=I.getInnerMostAxes(u.length,i)),I.assertAxesAreInnerMostDims("all",u,i);let[m,f]=I.computeOutAndReduceShapes(p.shape,u),d=x.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=ko(h,h.dtype,"all",t),y;if(a){let b=I.expandShapeToKeepDim(m,l);y=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else y=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),y}var yF={kernelName:Fu,backendName:"webgl",kernelFunc:AY};function EY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=x.parseAxisParam(s,n.shape),u=l,c=I.getAxesPermutation(u,i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=I.getInnerMostAxes(u.length,i)),I.assertAxesAreInnerMostDims("any",u,i);let[m,f]=I.computeOutAndReduceShapes(p.shape,u),d=x.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=ko(h,h.dtype,"any",t),y;if(a){let b=I.expandShapeToKeepDim(m,l);y=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else y=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),y}var bF={kernelName:Ou,backendName:"webgl",kernelFunc:EY};var ov=class{constructor(e,t,o){this.variableNames=["A"];let{windowSize:n,batchSize:s,outSize:a}=e;o||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",l=o?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${n}; i++) {
int inIdx = ${l};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}};var nv=class{constructor(e,t,o,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,x.assert(e.length>2,()=>`Packed arg${o.charAt(0).toUpperCase()+o.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,l=i.length,u=Le(l),c=Vt("coords",l),p,m;if(a===1){m=l+1;let R=Le(m);p=`
${R} sourceLocR = ${R}(${c.join()}, 0);
++${c[l-1]};
${R} sourceLocG = ${R}(${c.join()}, 0);
++${c[l-2]};
${R} sourceLocA = ${R}(${c.join()}, 0);
--${c[l-1]};
${R} sourceLocB = ${R}(${c.join()}, 0);
--${c[l-2]};`}else m=l,p=`
${u} sourceLocR = coords;
++${c[l-1]};
${u} sourceLocG = coords;
++${c[l-2]};
${u} sourceLocA = coords;
--${c[l-1]};
${u} sourceLocB = coords;
--${c[l-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(R=>"int "+R),g=Vt("sourceLocR",m-1).concat("inIdx.r"),y=Vt("sourceLocG",m-1).concat("inIdx.g"),b=Vt("sourceLocB",m-1).concat("inIdx.b"),w=Vt("sourceLocA",m-1).concat("inIdx.a"),_=o==="max"?"greaterThan":"lessThan",k=n?"":`
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${w.join()})));`,D=`vec4(
getAChannel(${g.join()}),
hasNextCol ? getAChannel(${y.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,T=n?"":`
float getBestIndicesAChannel(${h.join()}) {
return getChannel(getBestIndicesA(${f.join()}),
vec2(${f.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${h.join()}) {
return getChannel(getA(${f.join()}),
vec2(${f.slice(-2).join()}));
}
${T}
void main() {
${u} coords = getOutputCoords();
bool hasNextCol = ${c[l-1]} < ${i[l-1]-1};
bool hasNextRow = ${c[l-2]} < ${i[l-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
sourceLocB${d}, sourceLocA${d}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${D};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${k}
vec4 candidate = ${D};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function wF(r,e,t,o=null){let n=e.shape[0],s=e.shape[1];o!=null&&(n=o.shape[0],s=o.shape[1]);let a=I.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:n,outSize:Math.ceil(s/a)},l=new ov(i,t,o==null),u=[e];o!=null&&u.push(o);let c=r.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=wF(r,e,t,c);return r.disposeIntermediateTensorInfo(c),p}function _F(r,e,t,o=null){let n=o!=null?o.shape:e.shape,s=n[n.length-1],a=I.computeOptimalWindowSize(s),i=new nv(n,a,t,o==null),l=o==null?[e]:[e,o],u=r.runWebGLProgram(i,l,"int32");if(u.shape.length===e.shape.length){let c=_F(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function bx(r,e,t,o){let n=[t];if(I.assertAxesAreInnerMostDims("arg"+o.charAt(0).toUpperCase()+o.slice(1),n,e.shape.length),!U().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],[a,i]=I.computeOutAndReduceShapes(e.shape,n),l=x.sizeFromShape(i),u=ce({inputs:{x:e},backend:r,attrs:{shape:[-1,l]}});s.push(u);let c=wF(r,u,o);s.push(c);let p=ce({inputs:{x:c},backend:r,attrs:{shape:a}});return s.forEach(m=>r.disposeIntermediateTensorInfo(m)),p}return _F(r,e,o)}function DY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=x.parseAxisParam(s,n.shape),i=I.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Mt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=I.getInnerMostAxes(a.length,l.shape.length)),I.assertAxesAreInnerMostDims("argMax",[a[0]],l.shape.length);let c=bx(t,l,a[0],"max");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var kF={kernelName:fn,backendName:"webgl",kernelFunc:DY};function $Y(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=x.parseAxisParam(s,n.shape),i=I.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Mt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=I.getInnerMostAxes(a.length,l.shape.length)),I.assertAxesAreInnerMostDims("argMin",[a[0]],l.shape.length);let c=bx(t,l,a[0],"min");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var vF={kernelName:ka,backendName:"webgl",kernelFunc:$Y};var RY=gr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,FY=ke({opSnippet:RY}),CF={kernelName:pi,backendName:"webgl",kernelFunc:FY};var OY=gr+"return log(x + sqrt(x * x + 1.0));",PY=ke({opSnippet:OY}),IF={kernelName:mi,backendName:"webgl",kernelFunc:PY};var MY=gr+`
return atan(x);
`,LY=ke({opSnippet:MY}),NF={kernelName:fi,backendName:"webgl",kernelFunc:LY};var zY=tF+`
return atan(a, b);
`,BY=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+rF+`
return result;
`,VY=nt({opSnippet:zY,packedOpSnippet:BY}),SF={kernelName:hi,backendName:"webgl",kernelFunc:VY};var GY=gr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,WY=ke({opSnippet:GY}),TF={kernelName:di,backendName:"webgl",kernelFunc:WY};var ri=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,y=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),o){let R=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?s?g:y:`wR * ${m} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let k=Math.floor(a/4)*4,D=a%4,T=`
if (${h}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${T}
}
int xC = xCCorner + ${k};
if (${D===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${D===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${T}
} else if (${D===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${T}
}
}
setOutput(${_});
}
`}},pu=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,l=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,m=e.dilationWidth,f=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,y=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let w=t==="avg",_="0.0";if(w||(_="-1.0 / 1e-20"),o){let M=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${y}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${m}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${M} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${h} +
wR * ${h} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let k="max",D=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(D="avgValue / count");let T=Math.floor(a/4)*4,R=a%4,O=`
if (${w}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${k}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${y}, ${b});
const float initializationValue = ${_};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${_});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${m};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
);
${O}
}
int xC = xCCorner + ${T};
if (${R===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${O}
} else if (${R===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
initializationValue,
initializationValue
);
${O}
} else if (${R===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
initializationValue
);
${O}
}
}
setOutput(${D});
}
}
`}};function UY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;ti(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;x.assert(I.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=I.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))return Gt({inputs:{x:n},backend:t});let p=new ri(c,"avg",!1);return t.runWebGLProgram(p,[n],"float32")}var AF={kernelName:dn,backendName:"webgl",kernelFunc:UY};function jY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o,c=[1,1,1],p=I.computePool3DInfo(n.shape,s,a,c,i,l,u),m=new pu(p,"avg",!1);return t.runWebGLProgram(m,[n],"float32")}var EF={kernelName:va,backendName:"webgl",kernelFunc:jY};var sv=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=l-1-e.padInfo.top,p=u-1-e.padInfo.left,m=1/(t*o);this.userCode=`
const ivec2 pads = ivec2(${c}, ${p});
const float avgMultiplier = float(${m});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},iv=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,d=p-1-e.padInfo.front,h=m-1-e.padInfo.top,g=f-1-e.padInfo.left,y=1/(t*o*n);this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${g});
const float avgMultiplier = float(${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${l}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${m};
wR += ${u}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${f};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function HY(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=I.computePool3DInfo(a.shape,i,l,p,u,c),f=new iv(m);return t.runWebGLProgram(f,[n],a.dtype)}var DF={kernelName:Mu,backendName:"webgl",kernelFunc:HY};function qY(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;ti([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=I.computePool2DInfo(a.shape,i,l,1,u),p=new sv(c);return t.runWebGLProgram(p,[n],a.dtype)}var $F={kernelName:Pu,backendName:"webgl",kernelFunc:qY};function KY(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;return cu({a:n,b:s,transposeA:a,transposeB:i,backend:t})}var RF={kernelName:hn,backendName:"webgl",kernelFunc:KY};var av=class{constructor(e,t,o,n,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],I.assertAndGetBroadcastShape(e,t),I.assertAndGetBroadcastShape(e,o);let i="0.0";n!=null&&(I.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="1.0";s!=null&&(I.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${l};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}};var lv=class{constructor(e,t,o,n,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],I.assertAndGetBroadcastShape(e,t),I.assertAndGetBroadcastShape(e,o);let i="vec4(0.0)";n!=null&&(I.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="vec4(1.0)";s!=null&&(I.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${l};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}};var XY=({inputs:r,backend:e,attrs:t})=>{let{x:o,mean:n,variance:s,offset:a,scale:i}=r;x.assert(n.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),x.assert(a==null||n.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),x.assert(i==null||n.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=t;l==null&&(l=.001);let u=[o,n,s],c=null;a!=null&&(c=a.shape,u.push(a));let p=null;i!=null&&(p=i.shape,u.push(i));let m=U().getBool("WEBGL_PACK_NORMALIZATION")?new lv(o.shape,n.shape,s.shape,c,p,l):new av(o.shape,n.shape,s.shape,c,p,l);return e.runWebGLProgram(m,u,u[0].dtype)},FF={kernelName:Nn,backendName:"webgl",kernelFunc:XY};var uv=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Le(this.rank),o=`uniform int start[${this.rank}];`,n=YY(this.rank),s,a=e.map((i,l)=>`sourceLoc.${cv[l]} = start[${l}] + coords.${cv[l]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${a.join(`
`)}
`,this.userCode=`
${o}
void main() {
${s}
setOutput(getSource(${n}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},cv=["x","y","z","w","u","v"];function YY(r){if(r===1)return"sourceLoc";if(r<=6)return cv.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var pv=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=Le(this.rank),o=Vt("coords",this.rank),n=Vt("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,a=`getChannel(getSource(${n.join()}), ${s})`,i=`
result.x = ${a};
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.y = ${a};
--${n[this.rank-1]};
}
`,l=this.rank===1?"":`
--${o[this.rank-1]};
if (++${o[this.rank-2]} < ${e[this.rank-2]}) {
++${n[this.rank-2]};
result.z = ${a};
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.w = ${a};
}
}
`,u=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${n[p]} = ${o[p]} + start[${p}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${u}
vec4 result = vec4(0.);
${i}
${l}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function ZY(r,e,t,o){let n=o.texData.get(r.dataId),s=o.makeTensorInfo(t,r.dtype),a=o.texData.get(s.dataId);Object.assign(a,n),a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=Yt.computeFlatOffset(e,x.computeStrides(r.shape));n.slice&&(i+=n.slice.flatOffset),a.slice={flatOffset:i,origDataId:n.slice&&n.slice.origDataId||r.dataId};let l=o.dataRefCount.get(a.slice.origDataId)||1;return o.dataRefCount.set(a.slice.origDataId,l+1),s}function da(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o,[i,l]=Yt.parseSliceParams(n,s,a);if(Yt.assertParamsValid(n,i,l),x.sizeFromShape(l)===0)return t.makeTensorInfo(l,n.dtype,[]);if(t.shouldExecuteOnCPU([n])||n.dtype==="string"){let p=t.texData.get(n.dataId),m=$R(p.values,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,m)}let{isPacked:u}=t.texData.get(n.dataId),c=Yt.isSliceContinous(n.shape,i,l);if(u||!c){let p=U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pv(l):new uv(l),m=p.getCustomSetupFunc(i);return t.runWebGLProgram(p,[n],n.dtype,m)}return t.uploadToGPU(n.dataId),ZY(n,i,l,t)}var OF={kernelName:qn,backendName:"webgl",kernelFunc:da};var JY=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;x.assert(n.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((b,w)=>b*w),l=I.getReshaped(n.shape,s,i),u=I.getPermuted(l.length,s.length),c=I.getReshapedPermuted(n.shape,s,i),p=I.getSliceBeginCoords(a,s.length),m=I.getSliceSize(c,a,s.length),f=[],d=ce({inputs:{x:n},backend:t,attrs:{shape:l}}),h=Mt({inputs:{x:d},backend:t,attrs:{perm:u}}),g=ce({inputs:{x:h},backend:t,attrs:{shape:c}}),y=da({inputs:{x:g},backend:t,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>t.disposeIntermediateTensorInfo(b)),y},PF={kernelName:Ca,backendName:"webgl",kernelFunc:JY};function QY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.readSync(n.dataId),l=t.readSync(s.dataId),u=px(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var MF={kernelName:Lu,backendName:"webgl",kernelFunc:QY};var e7="return float(a != b);",mv=nt({opSnippet:e7,dtype:"bool"}),LF={kernelName:Fi,backendName:"webgl",kernelFunc:mv};function ha(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return Gt({inputs:{x:n.complexTensorInfos.real},backend:t})}var zF={kernelName:oc,backendName:"webgl",kernelFunc:ha};var t7="return float(int(x));";function BF(r,e){let t=new mo(r.shape,t7),o=e.runWebGLProgram(t,[r],"int32");return{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}function fv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Gt({inputs:{x:n},backend:t});let a=wt(n.shape),i=fv({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=fo({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=ha({inputs:{input:n},backend:t}),i=fv({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!x.hasEncodingLoss(n.dtype,s)){let a=Gt({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32")return BF(n,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",x.getTypedArrayFromDType("bool",1)),l=mv({inputs:{a:n,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),l}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var VF={kernelName:Lo,backendName:"webgl",kernelFunc:fv};var GF="return ceil(x);",r7=ke({opSnippet:GF,packedOpSnippet:GF,cpuKernelImpl:dR}),WF={kernelName:gn,backendName:"webgl",kernelFunc:r7};var dv=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};var hv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};function o7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i;U().getBool("WEBGL_PACK_CLIP")?i=new hv(n.shape):i=new dv(n.shape);let l=i.getCustomSetupFunc(s,a);return t.runWebGLProgram(i,[n],n.dtype,l)}var UF={kernelName:zo,backendName:"webgl",kernelFunc:o7};var gv=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function jF(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function n7(r){let{inputs:e,backend:t}=r,{x:o}=e,n=t.texData.get(o.dataId),s=new gv(o.shape),a=[jF(o,n.complexTensorInfos.real),jF(o,n.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var HF={kernelName:Ia,backendName:"webgl",kernelFunc:n7};var xv=class{constructor(e){this.outputShape=[],this.outputShape=I.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let o=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];o.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let n=t.length,s=t[t.length-1];o.push(`else setOutput(getT${n}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${o.join(`
`)}
}
`}};var yv=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=I.computeOutShape(e,t);let o=this.outputShape,n=o.length,s=Le(n),a=Vt("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((h,g)=>`T${g}`);let l=new Array(e.length-1);l[0]=e[0][t];for(let h=1;h<l.length;h++)l[h]=l[h-1]+e[h][t];let u=i[t],c=i.slice(-2),p=i.join(),m=`if (${u} < ${l[0]}) {
return getChannel(
getT0(${p}), vec2(${c.join()}));
}`;for(let h=1;h<l.length;h++){let g=l[h-1];m+=`
if (${u} < ${l[h]} && ${u} >= ${l[h-1]}) {
return getChannel(
getT${h}(${wx(i,u,g)}),
vec2(${wx(c,u,g)}));
}`}let f=l.length,d=l[l.length-1];m+=`
return getChannel(
getT${f}(${wx(i,u,d)}),
vec2(${wx(c,u,d)}));`,this.userCode=`
float getValue(${i.map(h=>"int "+h)}) {
${m}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[n-1]} = ${a[n-1]} + 1;
if (${a[n-1]} < ${o[n-1]}) {
result.g = getValue(${a});
}
${a[n-2]} = ${a[n-2]} + 1;
if (${a[n-2]} < ${o[n-2]}) {
result.a = getValue(${a});
}
${a[n-1]} = ${a[n-1]} - 1;
if (${a[n-2]} < ${o[n-2]} &&
${a[n-1]} < ${o[n-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function wx(r,e,t){let o=r.indexOf(e);return r.map((s,a)=>a===o?`${s} - ${t}`:s).join()}function mu(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return Gt({inputs:{x:n.complexTensorInfos.imag},backend:t})}var qF={kernelName:Yu,backendName:"webgl",kernelFunc:mu};function fu(r,e,t){let o=r[0].dtype;if(o==="complex64"){let u=r.map(d=>ha({inputs:{input:d},backend:t})),c=r.map(d=>mu({inputs:{input:d},backend:t})),p=fu(u,e,t),m=fu(c,e,t),f=fo({inputs:{real:p,imag:m},backend:t});return u.forEach(d=>t.disposeIntermediateTensorInfo(d)),c.forEach(d=>t.disposeIntermediateTensorInfo(d)),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),f}if(o==="string"){let{tensors2D:u,outShape:c}=KF(r,e,t),p=u.map(g=>({vals:t.readSync(g.dataId),shape:g.shape})),m=u[0].shape[0]===1,f=hR(p,c,o,m),d=I.computeOutShape(r.map(g=>g.shape),e),h=t.makeTensorInfo(d,o,f);return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}if(r.length>U().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(r.length/2),c=fu(r.slice(0,u),e,t),p=fu(r.slice(u),e,t),m=fu([c,p],e,t);return t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),m}if(U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let u=new yv(r.map(c=>c.shape),e);return t.runWebGLProgram(u,r,o)}let{tensors2D:n,outShape:s}=KF(r,e,t),a=new xv(n.map(u=>u.shape)),i=t.runWebGLProgram(a,n,o);n.forEach(u=>t.disposeIntermediateTensorInfo(u));let l=ce({inputs:{x:i},attrs:{shape:s},backend:t});return t.disposeIntermediateTensorInfo(i),l}function KF(r,e,t){let o=I.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>ce({inputs:{x:s},attrs:{shape:[-1,x.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:o}}function bv(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=x.parseAxisParam(n,e[0].shape)[0],a=I.computeOutShape(e.map(u=>u.shape),s);if(x.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(u=>x.sizeFromShape(u.shape)>0);if(i.length===1)return Gt({inputs:{x:i[0]},backend:t});let l=i.map(u=>u.shape);return I.assertParamsConsistent(l,s),fu(i,s,t)}var XF={kernelName:ks,backendName:"webgl",kernelFunc:bv};var yd=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,l=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",y=g?1:2,b=g?2:3,w=g?3:1,_="",k="";o&&(n?_=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?_=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${o}
}`:_=`
float activation(float x) {
${o}
}
`,k="result = activation(result);");let D=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${_}
const ivec2 strides = ivec2(${l}, ${u});
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${w}];
ivec2 xRCCorner =
ivec2(coords[${y}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${g}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${h===1}) {
if (${g}) {
dotProd +=
getX(batch, xR, xC, ${d}) *
getW(wR, wC, ${d}, d2);
} else {
dotProd +=
getX(batch, ${d}, xR, xC) *
getW(wR, wC, ${d}, d2);
}
} else if (${h===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2)
);
if (${g}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${h===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2),
getW(wR, wC, ${d} + 2, d2)
);
if (${g}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1),
getX(batch, xR, xC, ${d} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC),
getX(batch, ${d} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${D}
${k}
setOutput(result);
}
`}},wv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,o=e.padInfo.top,n=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${a}, ${i});
const ivec3 pads = ivec3(${t}, ${o}, ${n});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${l};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${h===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${d}) *
getW(wF, wR, wC, ${d}, d2);
} else if (${h===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${h===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1),
getX(batch, xF, xR, xC, ${d} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2),
getW(wF, wR, wC, ${d} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}};var _v=class{constructor(e,t,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:n,inChannels:s,strideWidth:a,strideHeight:i,padInfo:l,outWidth:u,dilationWidth:c,dilationHeight:p,dataFormat:m}=o,{left:f,top:d}=l,h=s*n,g=Ot(),y=m==="channelsLast",b=y?0:1,w=y?1:2,_="";for(let k=0;k<=1;k++)for(let D=0;D<=1;D++)_+=`
blockIndex = rc.y + ${D};
pos = rc.x + ${k};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${u})) * ${i} - ${d};
d0 = offsetY + ${p} * (pos / ${h});
if(d0 < ${t[b]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${u}.) * ${a}. - ${f}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${h}.) / ${s}.));
if(d1 < ${t[w]} && d1 >= 0) {
ch = int(mod(float(pos), ${s}.));
if (${y}) {
innerDims = vec2(d1, ch);
result[${k*2+D}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${k*2+D}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${_}
${g.output} = result;
}
`}};function _x({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let l=r.shape,u=o.texData.get(r.dataId),c=t.inChannels,p=l[0]*l[1]*l[2],m=t.outChannels,f=t.dataFormat==="channelsLast",d=!1,h=!1,g,y=[],b=(p===1||m===1)&&c>ev,w=l[2]%2!=0&&!!u.isPacked;if(b||!U().getBool("WEBGL_LAZILY_UNPACK")||!U().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let _=f?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],k=ce({inputs:{x:r},backend:o,attrs:{shape:[1,_,t.inChannels]}}),D=ce({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}}),T=cu({a:k,b:D,transposeA:d,transposeB:h,backend:o,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=ce({inputs:{x:T},backend:o,attrs:{shape:t.outShape}}),y.push(k),y.push(D),y.push(T)}else{let _=f?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),k={dataId:r.dataId,shape:[1,_,t.inChannels],dtype:r.dtype},D=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,x.assert(lu(u.shape,k.shape),()=>`packed reshape ${u.shape} to ${k.shape} isn't free`);let T=ce({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}});y.push(T);let R=cu({a:k,b:T,backend:o,transposeA:d,transposeB:h,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),O=o.texData.get(R.dataId);x.assert(O.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=D,O.shape=t.outShape,g=Gt({inputs:{x:R},backend:o}),g.shape=t.outShape,y.push(R)}for(let _ of y)o.disposeIntermediateTensorInfo(_);return g}function kx({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=t,d=f==="channelsLast",h=l*u*c,g=m*p,y=[h,g],b=!0,w=!1,_=[],k=ce({inputs:{x:r},backend:o,attrs:{shape:r.shape.slice(1)}}),D=ce({inputs:{x:e},backend:o,attrs:{shape:[1,h,x.sizeFromShape(e.shape)/h]}});_.push(k),_.push(D);let T=new _v(y,k.shape,t),R=o.runWebGLProgram(T,[k],"float32"),O=ce({inputs:{x:R},backend:o,attrs:{shape:[1,y[0],y[1]]}});_.push(R),_.push(O);let M=n!=null,G=s!=null,W=i==="leakyrelu",j=i?gl(i,!0):null,H=new gd(O.shape,D.shape,[1,g,t.outChannels],b,w,M,j,G,W),q=[O,D];if(n&&q.push(n),G&&q.push(s),W){let re=o.makeTensorInfo([],"float32",x.createScalarValue(a,"float32"));q.push(re),_.push(re)}let X=o.runWebGLProgram(H,q,"float32"),oe=d?[1,m,p,t.outChannels]:[1,t.outChannels,m,p],Y=ce({inputs:{x:X},backend:o,attrs:{shape:oe}});_.push(X);for(let re of _)o.disposeIntermediateTensorInfo(re);return Y}function s7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o,p=I.convertConv2DDataFormat(l),m=I.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=_x({x:n,filter:s,convInfo:m,backend:t});else if(U().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)f=kx({x:n,filter:s,convInfo:m,backend:t});else{let h=new yd(m);f=t.runWebGLProgram(h,[n,s],"float32")}let d=ce({inputs:{x:f},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(f),d}var YF={kernelName:xn,backendName:"webgl",kernelFunc:s7};var kv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},vv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,l=o-1-e.padInfo.left,u=a?1:2,c=a?2:3,p=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},Cv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${s};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${o} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},Iv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=t-1-e.padInfo.front,u=o-1-e.padInfo.top,c=n-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${l}, ${u}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${o}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${o} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function i7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o,p=I.convertConv2DDataFormat(l),m=I.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),f=new kv(m);return t.runWebGLProgram(f,[n,s],"float32")}var ZF={kernelName:Bu,backendName:"webgl",kernelFunc:i7};function a7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o,p=I.convertConv2DDataFormat(u),m=I.computeConv2DInfo(a,s.shape,i,1,l,c,!1,p),f=new vv(m);return t.runWebGLProgram(f,[n,s],"float32")}var JF={kernelName:yn,backendName:"webgl",kernelFunc:a7};function l7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=I.computeConv3DInfo(n.shape,s.shape,a,l,i),c=new wv(u);return t.runWebGLProgram(c,[n,s],"float32")}var QF={kernelName:Na,backendName:"webgl",kernelFunc:l7};function u7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o,u=I.computeConv3DInfo(n.shape,l,a,1,i),c=new Cv(u);return t.runWebGLProgram(c,[n,s],"float32")}var eO={kernelName:Vu,backendName:"webgl",kernelFunc:u7};function c7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o,u=I.computeConv3DInfo(l,s.shape,i,1,a),c=new Iv(u);return t.runWebGLProgram(c,[n,s],"float32")}var tO={kernelName:Gu,backendName:"webgl",kernelFunc:c7};var p7=hx+`
return cos(x);
`,m7=ke({opSnippet:p7}),rO={kernelName:bn,backendName:"webgl",kernelFunc:m7};var f7=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,d7=ke({opSnippet:f7}),oO={kernelName:gi,backendName:"webgl",kernelFunc:d7};var Nv=class{constructor(e,t,o,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,l,u]=e,[c]=t,[p,m]=o;this.outputShape=[c,p,m,u];let f=n==="bilinear"?1:0,[d,h]=[`${i-1}.0`,`${l-1}.0`],[g,y,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,_,k]=m>1?[`${(l-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
const float height_ratio = float(${g});
const float width_ratio = float(${w});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${y};
float width_scale = ${_};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${d} ) {
setOutput(float(${s}));
return;
}
float in_x = ${k};
if( in_x < 0.0 || in_x > ${h} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${f} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}};var h7=r=>{let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,c=new Nv(n.shape,s.shape,i,l,u);return t.runWebGLProgram(c,[n,s,a],"float32")},nO={kernelName:xi,backendName:"webgl",kernelFunc:h7};var vx=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=e;let n=e.length,s=t?"0.0":`getX(${sO(n,"coords")})`,a=e[e.length-1],i="",l="";t?(i=o?`end != ${a-1}`:"end != 0",l=o?"end + 1":"end - 1"):(i=o?`end + pow2 < ${a}`:"end >= pow2",l=o?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${Le(n)} coords = getOutputCoords();
int end = ${iO(n,"coords")};
float val = ${s};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${l};
${iO(n,"coords")} = idx;
val += getX(${sO(n,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.index==null&&(this.index=t.getUniformLocation(o,"index")),t.gl.uniform1f(this.index,e)}}};function sO(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function iO(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function g7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length,u=I.getAxesPermutation([s],l),c=n;u!=null&&(c=Mt({inputs:{x:n},backend:t,attrs:{perm:u}}));let p=I.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${n.shape.length-1} but got axis=${s}`);let m=c.shape[p],f=Gt({inputs:{x:c},backend:t});for(let d=0;d<=Math.ceil(Math.log2(m))-1;d++){let h=new vx(c.shape,!1,i),g=h.getCustomSetupFunc(d),y=f;f=t.runWebGLProgram(h,[f],f.dtype,g),t.disposeIntermediateTensorInfo(y)}if(a){let d=new vx(c.shape,a,i),h=f;f=t.runWebGLProgram(d,[f],f.dtype),t.disposeIntermediateTensorInfo(h)}if(u!=null){let d=I.getUndoAxesPermutation(u),h=Mt({inputs:{x:f},backend:t,attrs:{perm:d}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(c),h}return f}var aO={kernelName:wn,backendName:"webgl",kernelFunc:g7};function x7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.readSync(n.dataId),u=t.readSync(s.dataId),c=px(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=fR(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var lO={kernelName:Wu,backendName:"webgl",kernelFunc:x7};var Sv=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=o,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function y7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;x.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=new Sv(d,s,a);return t.runWebGLProgram(h,[n],n.dtype)}var uO={kernelName:yi,backendName:"webgl",kernelFunc:y7};var bd=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=e.outChannels/e.inChannels,y="",b="";o&&(n?y=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?y=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${o}
}`:y=`
float activation(float x) {
${o}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${g};
int q = d2 - d1 * ${g};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${m};
if (xR < 0 || xR >= ${a}) {
continue;
}
for (int wC = 0; wC < ${h}; wC++) {
int xC = xCCorner + wC * ${f};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}};var wd=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=h,y="int xR; int xC; int xCOffset;";for(let k=0;k<d;k++)for(let D=0;D<h;D++)y+=`
vec4 xTexelR${k}C${D*2} = vec4(0.);
vec4 wR${k}C${D} = vec4(0.);
vec4 xR${k}C${D} = vec4(0.);`;for(let k=0;k<d;k++)for(let D=0;D<g;D++){let T=D*2;if(y+=`
xR = xRCorner + ${k*m};
xC = xCCorner + ${T*f};
`,p===1){if(T<h&&(u%2==1?y+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${k}C${T}.zw = vec2(0.);
}
} else {
xTexelR${k}C${T} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${k}C${T} = vec4(previous.zw, xTexelR${k}C${T}.xy);
} else {
xR${k}C${T} = vec4(0, 0, xTexelR${k}C${T}.xy);
}
`:y+=`
if(xR >= 0 && xR < ${a} && xC >= 0 && xC < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xC, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
xR${k}C${T} = xTexelR${k}C${T};
`,T+1<h)){let R=u%2==0?x.nearestLargerEven(f):f;f%2==0&&u%2==1||f%2!=0&&u%2!=1?(y+=`
xCOffset = xC + ${u%2} + ${R};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xCOffset, d1);
}
`,f>1&&(y+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
`),y+=`
xR${k}C${T+1} = vec4(
xTexelR${k}C${T}.zw, xTexelR${k}C${T+2}.xy);
`):y+=`
xCOffset = xC + ${R};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xCOffset, d1);
}
xR${k}C${T+1} = xTexelR${k}C${T+2};
`}}else T<h&&(y+=`
if(xR >= 0 && xR < ${a}) {
`,u%2==1?(y+=`
xCOffset = xC + 1 - ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${k}C${T+2} = vec4(0.);
}
xR${k}C${T} = vec4(
xTexelR${k}C${T}.zw, xTexelR${k}C${T+2}.zw);
`,T+1<h&&(y+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${k}C${T+1} = vec4(xTexelR${k}C${T+2}.xy, final.xy);
`)):(y+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xC, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
xCOffset = xC + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${T+2} = vec4(0.);
}
xR${k}C${T} = vec4(
xTexelR${k}C${T}.xy, xTexelR${k}C${T+2}.xy);
`,T+1<h&&(y+=`
xR${k}C${T+1} = vec4(
xTexelR${k}C${T}.zw, xTexelR${k}C${T+2}.zw);
`)),y+="}");T<h&&(y+=`
vec4 wTexelR${k}C${T} = getW(${k}, ${T}, d1, q);
wR${k}C${T} = vec4(wTexelR${k}C${T}.xz, wTexelR${k}C${T}.xz);
`,T+1<h&&(y+=`
vec4 wTexelR${k}C${T+1} = getW(${k}, ${T+1}, d1, q);
wR${k}C${T+1} =
vec4(wTexelR${k}C${T+1}.xz, wTexelR${k}C${T+1}.xz);`))}for(let k=0;k<d;k++)for(let D=0;D<h;D++)y+=`dotProd += xR${k}C${D} * wR${k}C${D};`;let b="",w="";o&&(n?b=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?b=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:b=`vec4 activation(vec4 x) {
${o}
}`,w="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${b}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${y}
vec4 result = dotProd;
${_}
${w}
setOutput(result);
}
`}};function b7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=o,c=l;c==null&&(c=[1,1]),x.assert(I.eitherStridesOrDilationsAreOne(a,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let p=I.computeConv2DInfo(n.shape,s.shape,a,c,i,u,!0),m;return U().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?m=new wd(p):m=new bd(p),t.runWebGLProgram(m,[n,s],"float32")}var cO={kernelName:_n,backendName:"webgl",kernelFunc:b7};var Tv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Av=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=o-1-e.padInfo.left,l=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${l}; dm++) {
int d2 = d1 * ${l} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function w7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o,p=I.computeConv2DInfo(n.shape,c,a,i,l,u,!0),m=new Tv(p);return t.runWebGLProgram(m,[n,s],"float32")}var pO={kernelName:Uu,backendName:"webgl",kernelFunc:w7};function _7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o,p=I.computeConv2DInfo(c,s.shape,a,i,l,u,!0),m=new Av(p);return t.runWebGLProgram(m,[n,s],"float32")}var mO={kernelName:ju,backendName:"webgl",kernelFunc:_7};var Ev=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function k7(r){let{inputs:e,backend:t}=r,{x:o}=e,n=[...o.shape,...o.shape],s=x.sizeFromShape(o.shape),a=ce({inputs:{x:o},backend:t,attrs:{shape:[s]}}),i=new Ev(s),l=t.runWebGLProgram(i,[a],a.dtype),u=ce({inputs:{x:l},backend:t,attrs:{shape:n}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(l),u}var fO={kernelName:Hu,backendName:"webgl",kernelFunc:k7};var Dv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:o,padInfo:n,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:l,dilationHeight:u,dilationWidth:c}=e,{top:p,left:m}=n;this.userCode=`
const ivec2 strides = ivec2(${s}, ${a});
const ivec2 pads = ivec2(${p}, ${m});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${u};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${l}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${o}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function v7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=I.computeDilation2DInfo(n.shape,s.shape,a,i,"NHWC",l),c,p=new Dv(u);c=t.runWebGLProgram(p,[n,s],"float32");let m=ce({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var dO={kernelName:Sa,backendName:"webgl",kernelFunc:v7};var C7="return (x >= 0.0) ? x : (exp(x) - 1.0);",I7=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,N7=ke({opSnippet:C7,packedOpSnippet:I7}),hO={kernelName:bi,backendName:"webgl",kernelFunc:N7};var S7="return (b >= 1.0) ? a : a * (b + 1.0);",T7=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,A7=r=>{let{inputs:e,backend:t}=r,{dy:o,y:n}=e,s=U().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ys(T7,o.shape,n.shape):new an(S7,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)},gO={kernelName:qu,backendName:"webgl",kernelFunc:A7};var E7=`
return vec4(equal(a, b));
`,D7="return float(a == b);",$7=nt({opSnippet:D7,packedOpSnippet:E7,dtype:"bool"}),xO={kernelName:_i,backendName:"webgl",kernelFunc:$7};var R7=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${I.ERF_P};
float a1 = ${I.ERF_A1};
float a2 = ${I.ERF_A2};
float a3 = ${I.ERF_A3};
float a4 = ${I.ERF_A4};
float a5 = ${I.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,F7=ke({opSnippet:R7}),yO={kernelName:wi,backendName:"webgl",kernelFunc:F7};var bO="return exp(x);",$v=ke({opSnippet:bO,packedOpSnippet:bO,cpuKernelImpl:gR}),wO={kernelName:vn,backendName:"webgl",kernelFunc:$v};function Cx(r){let{inputs:e,attrs:t,backend:o}=r,{dim:n}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),l=n;return n<0&&(x.assert(-(a+1)<=n,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+n+1),i.splice(l,0,1),ce({inputs:{x:s},backend:o,attrs:{shape:i}})}var _O={kernelName:vs,backendName:"webgl",kernelFunc:Cx};var kO="return exp(x) - 1.0;",O7=ke({opSnippet:kO,packedOpSnippet:kO,cpuKernelImpl:xR}),vO={kernelName:ki,backendName:"webgl",kernelFunc:O7};var Ix=class{constructor(e,t,o){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let s=o?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=o?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${n});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${n}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function Nx(r,e,t){let o=t.texData.get(r.dataId),n=x.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=n/s,i=ce({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),l=i.shape,u=new Ix("real",l,e),c=new Ix("imag",l,e),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:l},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:l}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=fo({inputs:{real:m,imag:f},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f);let h=ce({inputs:{x:d},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(d),h}function P7(r){let{inputs:e,backend:t}=r,{input:o}=e;return Nx(o,!1,t)}var CO={kernelName:Ku,backendName:"webgl",kernelFunc:P7};var Rv=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function _d(r){let{backend:e,attrs:t}=r,{shape:o,value:n}=t,{dtype:s}=t;if(s=s||x.inferDtype(n),s==="string"){let a=x.getArrayFromDType(s,x.sizeFromShape(o));return a.fill(n),e.makeTensorInfo(o,s,a)}else{let a=new Rv(o,n),i=a.getCustomSetupFunc(n);return e.runWebGLProgram(a,[],s,i)}}var IO={kernelName:Ta,backendName:"webgl",kernelFunc:_d};var Fv=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}};var NO={kernelName:vi,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,o=e,n=new Fv(t.shape);return o.runWebGLProgram(n,[t],t.dtype)}};var SO="return floor(x);",M7=ke({opSnippet:SO,packedOpSnippet:SO,cpuKernelImpl:yR}),TO={kernelName:Cn,backendName:"webgl",kernelFunc:M7};var L7=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,z7=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,B7=nt({opSnippet:L7,packedOpSnippet:z7,dtype:"int32"}),AO={kernelName:In,backendName:"webgl",kernelFunc:B7};var Ov=class{constructor(e){this.variableNames=["A"];let t=Ot(),[o,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${o}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}};var Pv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Ot(),[o,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}.0, ${o}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}};var EO={kernelName:Jp,backendName:"webgl",kernelFunc:V7},$p;function V7(r){let{inputs:e,backend:t,attrs:o}=r,{pixels:n}=e,{numChannels:s}=o,a=typeof HTMLVideoElement!="undefined"&&n instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&n instanceof HTMLImageElement,[l,u]=a?[n.videoWidth,n.videoHeight]:[n.width,n.height],c=[u,l],p=[u,l,s];(i||a)&&($p==null&&($p=document.createElement("canvas").getContext("2d")),$p.canvas.width=l,$p.canvas.height=u,$p.drawImage(n,0,0,l,u),n=$p.canvas);let m=t.makeTensorInfo(c,"int32");t.texData.get(m.dataId).usage=Sr.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(m.dataId),n);let f=U().getBool("WEBGL_PACK")?new Pv(p):new Ov(p),d=t.runWebGLProgram(f,[m],"int32");return t.disposeData(m.dataId),d}function G7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=I.convertConv2DDataFormat(c),g=I.computeConv2DInfo(n.shape,s.shape,l,p,u,m,!1,h),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=_x({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else if(U().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)y=kx({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else{let _=a!=null,k=i!=null,D=f==="leakyrelu",T=f?gl(f,!1):null,R=new yd(g,_,T,k,D),O=[n,s];if(a&&O.push(a),i&&O.push(i),D){let M=t.makeTensorInfo([],"float32",x.createScalarValue(d,"float32"));O.push(M),b.push(M)}y=t.runWebGLProgram(R,O,"float32")}let w=ce({inputs:{x:y},backend:t,attrs:{shape:g.outShape}});return b.push(y),b.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var DO={kernelName:Fs,backendName:"webgl",kernelFunc:G7};function W7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=o,d=[],h=c;h==null&&(h=[1,1]),x.assert(I.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let g=I.computeConv2DInfo(n.shape,s.shape,l,h,u,p,!0),y=U().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=m?gl(m,y):null,w=[n,s],_=a!=null,k=i!=null,D=m==="leakyrelu";if(_&&w.push(a),k&&w.push(i),D){let O=t.makeTensorInfo([],"float32",x.createScalarValue(f,"float32"));w.push(O),d.push(O)}let T;y?T=new wd(g,_,b,k,D):T=new bd(g,_,b,k,D);let R=t.runWebGLProgram(T,w,"float32");return d.forEach(O=>t.disposeIntermediateTensorInfo(O)),R}var $O={kernelName:Os,backendName:"webgl",kernelFunc:W7};var Mv=class{constructor(e,t,o){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=o;let n=Le(t.length),s=Le(o.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${n} strides = ${n}(${this.strides});
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function U7(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=n.shape,a=s[s.length-1],[i,l,u,c]=I.prepareAndValidate(o,n),p=ce({inputs:{x:n},backend:t,attrs:{shape:[l,a]}}),m=ce({inputs:{x:o},backend:t,attrs:{shape:[x.sizeFromShape(o.shape)/u,u]}}),f=new Mv(a,c,[l,u]),d=t.runWebGLProgram(f,[m,p],m.dtype),h=ce({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),h}var RO={kernelName:Ci,backendName:"webgl",kernelFunc:U7};var Lv=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let o=Le(this.rank),n=j7(e,2);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${n}));
}
`}};function j7(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[];for(let n=0;n<r.length;n++)n===2?o.push("int(getIndices(resRC.x, resRC.z))"):o.push(`${t[n]}`);return o.join()}function H7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o,l=x.parseAxisParam(a,n.shape)[0],u=I.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=x.sizeFromShape(s.shape),p=[],m=ce({inputs:{x:n},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),f=ce({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(m),p.push(f);let d=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([n,s])||n.dtype==="string"){let b=t.bufferSync(f),w=t.bufferSync(m),_=bR(w,b,d);return p.forEach(k=>t.disposeIntermediateTensorInfo(k)),t.makeTensorInfo(u.outputShape,_.dtype,_.values)}let h=new Lv(m.shape,d),g=t.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let y=ce({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return p.forEach(b=>t.disposeIntermediateTensorInfo(b)),y}var FO={kernelName:Cs,backendName:"webgl",kernelFunc:H7};var q7="return float(a > b);",K7=`
return vec4(greaterThan(a, b));
`,X7=nt({opSnippet:q7,packedOpSnippet:K7,cpuKernelImpl:wR,dtype:"bool"}),OO={kernelName:Ii,backendName:"webgl",kernelFunc:X7};var Y7="return float(a >= b);",Z7=`
return vec4(greaterThanEqual(a, b));
`,J7=nt({opSnippet:Y7,packedOpSnippet:Z7,dtype:"bool"}),PO={kernelName:Sn,backendName:"webgl",kernelFunc:J7};function Q7(r){let{inputs:e,backend:t}=r,{input:o}=e;return Nx(o,!0,t)}var MO={kernelName:Xu,backendName:"webgl",kernelFunc:Q7};var eZ="return float(!isnan(x) && !isinf(x));",tZ=ke({opSnippet:eZ,dtype:"bool"}),LO={kernelName:Ni,backendName:"webgl",kernelFunc:tZ};var rZ="return float(isinf(x));",oZ=ke({opSnippet:rZ,dtype:"bool"}),zO={kernelName:Si,backendName:"webgl",kernelFunc:oZ};var nZ="return float(isnan(x));",sZ=ke({opSnippet:nZ,dtype:"bool"}),BO={kernelName:Ti,backendName:"webgl",kernelFunc:sZ};var iZ="return float(a < b);",aZ=`
return vec4(lessThan(a, b));
`,lZ=nt({opSnippet:iZ,packedOpSnippet:aZ,cpuKernelImpl:_R,dtype:"bool"}),VO={kernelName:Ai,backendName:"webgl",kernelFunc:lZ};var uZ="return float(a <= b);",cZ=`
return vec4(lessThanEqual(a, b));
`,pZ=nt({opSnippet:uZ,packedOpSnippet:cZ,dtype:"bool"}),GO={kernelName:Ei,backendName:"webgl",kernelFunc:pZ};function mZ(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=kR(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var WO={kernelName:Zu,backendName:"webgl",kernelFunc:mZ};var fZ=`if (x < 0.0) return NAN;
return log(x);`,dZ=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,hZ=ke({opSnippet:fZ,packedOpSnippet:dZ,cpuKernelImpl:vR}),UO={kernelName:An,backendName:"webgl",kernelFunc:hZ};var gZ="return log(1.0 + x);",xZ=ke({opSnippet:gZ}),jO={kernelName:Di,backendName:"webgl",kernelFunc:xZ};var yZ="return float(a >= 1.0 && b >= 1.0);",bZ=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,wZ=nt({opSnippet:yZ,packedOpSnippet:bZ,dtype:"bool"}),HO={kernelName:$i,backendName:"webgl",kernelFunc:wZ};var _Z="return float(!(x >= 1.0));",kZ=ke({opSnippet:_Z}),qO={kernelName:Nl,backendName:"webgl",kernelFunc:kZ};var vZ="return float(a >= 1.0 || b >= 1.0);",CZ=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,IZ=nt({opSnippet:vZ,packedOpSnippet:CZ,dtype:"bool"}),KO={kernelName:Sl,backendName:"webgl",kernelFunc:IZ};var zv=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${l};
setOutput(val);
}
`}};var Bv=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${l};
setOutput(result);
}
`}};var NZ=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o,u=U().getBool("WEBGL_PACK_NORMALIZATION")?new Bv(n.shape,s,a,i,l):new zv(n.shape,s,a,i,l);return t.runWebGLProgram(u,[n],n.dtype)},XO={kernelName:Aa,backendName:"webgl",kernelFunc:NZ};var Vv=class{constructor(e,t,o,n,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=o,this.alpha=n,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${n}) * norm + float(${o});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${n})
* float(${s})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}};var SZ=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o,p=new Vv(n.shape,i,l,u,c);return t.runWebGLProgram(p,[n,s,a],n.dtype)},YO={kernelName:Ju,backendName:"webgl",kernelFunc:SZ};function ZO(r,e,t,o){let n=x.sizeFromShape(e),a=x.sizeFromShape(r.shape)/n,i=ce({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=ko(i,r.dtype,"max",o),u=ce({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}function Gv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=n.shape.length,l=x.parseAxisParam(s,n.shape),u=l,c=I.getAxesPermutation(u,i),p=c!=null,m=t.shouldExecuteOnCPU([n]),f=n;if(p){if(m){let w=t.texData.get(f.dataId).values,_=new Array(i);for(let T=0;T<_.length;T++)_[T]=n.shape[c[T]];let k=Ep(w,n.shape,n.dtype,c,_);f=t.makeTensorInfo(_,n.dtype);let D=t.texData.get(f.dataId);D.values=k}else f=xl(n,c,t);u=I.getInnerMostAxes(u.length,i)}I.assertAxesAreInnerMostDims("max",u,i);let[d,h]=I.computeOutAndReduceShapes(f.shape,u),g=d;a&&(g=I.expandShapeToKeepDim(d,l));let y;if(m){let w=t.texData.get(f.dataId).values,_=CR(w,x.sizeFromShape(h),g,n.dtype);y=t.makeTensorInfo(g,n.dtype);let k=t.texData.get(y.dataId);k.values=_}else y=ZO(f,h,g,t);return p&&t.disposeIntermediateTensorInfo(f),y}var JO={kernelName:En,backendName:"webgl",kernelFunc:Gv};var TZ=dx+`
return max(a, b);
`,AZ=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+hl+`
return result;
`,EZ=nt({opSnippet:TZ,packedOpSnippet:AZ,cpuKernelImpl:IR}),QO={kernelName:Dn,backendName:"webgl",kernelFunc:EZ};function DZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;ti(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;x.assert(I.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=I.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))return Gt({inputs:{x:n},backend:t});let p=new ri(c,"max",!1);return t.runWebGLProgram(p,[n],n.dtype)}var eP={kernelName:$n,backendName:"webgl",kernelFunc:DZ};function $Z(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dataFormat:l,dimRoundingMode:u}=o,c=[1,1,1],p=I.computePool3DInfo(n.shape,s,a,c,i,u,l),m=new pu(p,"max",!1);return t.runWebGLProgram(m,[n],n.dtype)}var tP={kernelName:Ea,backendName:"webgl",kernelFunc:$Z};var Wv=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,o=e.strideWidth,n=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,l=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${n}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},Uv=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=l-1-e.padInfo.front,m=u-1-e.padInfo.top,f=c-1-e.padInfo.left,d=l*u*c-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${m}, ${f});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${l};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${u};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${d} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${u} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function RZ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=I.computePool3DInfo(a.shape,i,l,p,u,c),f=new pu(m,"max",!0),d=t.runWebGLProgram(f,[a],a.dtype),h=new Uv(m),g=t.runWebGLProgram(h,[n,d],a.dtype);return t.disposeIntermediateTensorInfo(d),g}var rP={kernelName:ec,backendName:"webgl",kernelFunc:RZ};function FZ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;ti([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=I.computePool2DInfo(i.shape,l,u,1,c,p),f=!0,d=new ri(m,"max",f),h=t.runWebGLProgram(d,[i],i.dtype),g=new Wv(m),y=t.runWebGLProgram(g,[n,h],i.dtype);return t.disposeIntermediateTensorInfo(h),y}var oP={kernelName:Qu,backendName:"webgl",kernelFunc:FZ};function nP(r,e,t,o){let n=new ri(t,"max",!1),s=o.runWebGLProgram(n,[r],"float32");n=new ri(t,"max",!0,!0,e);let a=o.runWebGLProgram(n,[r],"float32");return[s,a]}var sP={kernelName:tc,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;x.assert(o.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.shape.length}.`);let u=[1,1];x.assert(I.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=I.computePool2DInfo(o.shape,n,s,u,a),[p,m]=nP(o,i,c,l);return[p,m]}};function iP(r,e,t,o){let n=x.sizeFromShape(e),a=x.sizeFromShape(r.shape)/n,i=ce({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=ko(i,"float32","mean",o),u=ce({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}var aP={kernelName:Rn,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{keepDims:n,axis:s}=e,a=t,i=o.shape.length,l=x.parseAxisParam(s,o.shape),u=l,c=I.getAxesPermutation(u,i),p=c!=null,m=a.shouldExecuteOnCPU([o]),f=[],d=o;if(p){if(m){let _=a.texData.get(d.dataId).values,k=new Array(i);for(let R=0;R<k.length;R++)k[R]=o.shape[c[R]];let D=Ep(_,o.shape,o.dtype,c,k);d=a.makeTensorInfo(k,o.dtype);let T=a.texData.get(d.dataId);T.values=D}else d=xl(o,c,a);f.push(d),u=I.getInnerMostAxes(u.length,i)}I.assertAxesAreInnerMostDims("sum",u,i);let[h,g]=I.computeOutAndReduceShapes(d.shape,u),y=h;n&&(y=I.expandShapeToKeepDim(h,l));let b=iP(d,g,y,a);for(let w of f)a.disposeIntermediateTensorInfo(w);return b}};function OZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=x.parseAxisParam(s,n.shape),u=l,c=I.getAxesPermutation(u,i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=I.getInnerMostAxes(u.length,n.shape.length)),I.assertAxesAreInnerMostDims("min",u,i);let[m,f]=I.computeOutAndReduceShapes(p.shape,u),d=x.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=ko(h,h.dtype,"min",t),y;if(a){let b=I.expandShapeToKeepDim(m,l);y=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else y=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),y}var lP={kernelName:Fn,backendName:"webgl",kernelFunc:OZ};var PZ=dx+`
return min(a, b);
`,MZ=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+hl+`
return result;
`,LZ=nt({opSnippet:PZ,packedOpSnippet:MZ,cpuKernelImpl:NR}),uP={kernelName:On,backendName:"webgl",kernelFunc:LZ};var jv=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((c,p)=>c[0]+e[p]+c[1]);let n=e.length,s=Le(n),a=t.map(c=>c[0]).join(","),i=t.map((c,p)=>c[0]+e[p]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),u=o==="reflect"?0:1;if(n===1){this.userCode=`
int start = ${a};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${u};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${u};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${n}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${u};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
}
}
${s} coords = outC - start;
setOutput(getX(${l}));
}
`}};var Hv=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,h)=>d[0]+e[h]+d[1]);let n=e.length,s=Le(n),a=t.map(d=>d[0]).join(","),i=t.map((d,h)=>d[0]+e[h]).join(","),l=Vt("rc",n),u=Vt("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=o==="reflect"?0:1,f="";if(n===1){let d=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${m};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${m};
}
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
`}else{let d=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${m}) +
gte * ((end - 1) * 2 - source + ${m});
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
rc = outputLoc;
${l[n-2]} += 1;
if(${l[n-2]} < ${this.outputShape[n-2]}) {
${d}
result[2] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[3] = getChannel(getX(${u.join()}), ${p});
}
}
`}this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${f}
setOutput(result);
}
`}};var zZ=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{paddings:n,mode:s}=t,a=U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Hv(o.shape,n,s):new jv(o.shape,n,s);return e.runWebGLProgram(a,[o],o.dtype)},cP={kernelName:Da,backendName:"webgl",kernelFunc:zZ};var BZ=`if (b == 0.0) return NAN;
return mod(a, b);`,VZ=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+hl+`
return result;
`,GZ=nt({opSnippet:BZ,packedOpSnippet:VZ}),pP={kernelName:Ri,backendName:"webgl",kernelFunc:GZ};var qv=class{constructor(e,t,o){this.variableNames=["probs"],this.outputShape=[e,o],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,o)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(o,"seed")),t.gl.uniform1f(this.seedLoc,e)}}};var WZ=`
if (a == b) {
return 1.0;
};
return a / b;`,UZ=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,Kv=nt({opSnippet:WZ,packedOpSnippet:UZ,checkOutOfBounds:!0}),mP={kernelName:kn,backendName:"webgl",kernelFunc:Kv};var fP="return a - b;",Xv=nt({opSnippet:fP,packedOpSnippet:fP,supportsComplex:!0,cpuKernelImpl:FR}),dP={kernelName:es,backendName:"webgl",kernelFunc:Xv};function Yv(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=x.parseAxisParam([s],n.shape),i=Gv({inputs:{x:n},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),l=I.expandShapeToKeepDim(i.shape,a),u=ce({inputs:{x:i},backend:t,attrs:{shape:l}}),c=Xv({inputs:{a:n,b:u},backend:t}),p=$v({inputs:{x:c},backend:t}),m=xd({inputs:{x:p},backend:t,attrs:{axis:a,keepDims:!1}}),f=ce({inputs:{x:m},backend:t,attrs:{shape:l}}),d=Kv({inputs:{a:p,b:f},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}var hP={kernelName:Jn,backendName:"webgl",kernelFunc:Yv};function jZ(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o,l=i?n:Yv({inputs:{logits:n},backend:t,attrs:{dim:n.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new qv(u,c,s),m=p.getCustomSetupFunc(a),f=t.runWebGLProgram(p,[l],"int32",m);return i||t.disposeIntermediateTensorInfo(l),f}var gP={kernelName:rc,backendName:"webgl",kernelFunc:jZ};var xP="return -x;";function HZ(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])){let s=t.texData.get(o.dataId),[a,i]=TR(s.values,o.shape,o.dtype);return t.makeTensorInfo(i,o.dtype,a)}let n;return U().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new xs(o.shape,xP):n=new mo(o.shape,xP),t.runWebGLProgram(n,[o],o.dtype)}var yP={kernelName:Is,backendName:"webgl",kernelFunc:HZ};var qZ=$r.nonMaxSuppressionV3Impl;function KZ(r){I.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o,u=t.readSync(n.dataId),c=t.readSync(s.dataId),{selectedIndices:p}=qZ(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var bP={kernelName:Oi,backendName:"webgl",kernelFunc:KZ};var XZ=$r.nonMaxSuppressionV4Impl;function YZ(r){I.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=XZ(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var wP={kernelName:Pi,backendName:"webgl",kernelFunc:YZ};var ZZ=$r.nonMaxSuppressionV5Impl;function JZ(r){I.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:y}=ZZ(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var _P={kernelName:Mi,backendName:"webgl",kernelFunc:JZ};var Zv=class{constructor(e,t,o,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${n}), float(${o}),
float(index == coords.y)));
}
`}};var QZ=r=>{let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=x.sizeFromShape(n.shape),u=new Zv(l,s,a,i),c=ce({inputs:{x:n},backend:t,attrs:{shape:[l]}}),p=t.runWebGLProgram(u,[c],n.dtype);t.disposeIntermediateTensorInfo(c);let m=[...n.shape,s],f=ce({inputs:{x:p},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(p),f},kP={kernelName:Mn,backendName:"webgl",kernelFunc:QZ};function kd(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="complex64"){let n=ha({inputs:{input:o},backend:t}),s=kd({inputs:{x:n},backend:t}),a=mu({inputs:{input:o},backend:t}),i=kd({inputs:{x:a},backend:t}),l=fo({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return _d({attrs:{shape:o.shape,dtype:o.dtype,value:o.dtype==="string"?"":0},backend:t})}var vP={kernelName:$s,backendName:"webgl",kernelFunc:kd};function CP(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(o.dtype==="complex64"){let n=ha({inputs:{input:o},backend:t}),s=CP({inputs:{x:n},backend:t}),a=mu({inputs:{input:o},backend:t}),i=kd({inputs:{x:a},backend:t}),l=fo({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return _d({attrs:{shape:o.shape,dtype:o.dtype,value:1},backend:t})}var IP={kernelName:Ns,backendName:"webgl",kernelFunc:CP};function e9(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Cx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Cx({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=bv({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var NP={kernelName:Ss,backendName:"webgl",kernelFunc:e9};var Jv=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let n=e.length,s=Le(n),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
int start = ${a};
int end = ${i};
uniform float value;
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
uniform float value;
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${s} coords = outC - start;
setOutput(getX(${l}));
}
}
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var Qv=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let n=e.length,s=Le(n),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),l=Vt("rc",n),u=Vt("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${l[n-1]} += 1;
if(${c}) {
`,n===1?"":`}
rc = outputLoc;
${l[n-2]} += 1;
if(${l[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${l[n-1]} += 1;
if(${c}) {`],f=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=n===1?2:4;h<g;h++)d+=`
${m[h]}
if (${f}) {
result[${h}] = float(value);
} else {
${s} source = rc - start;
result[${h}] = getChannel(getX(${u.join()}), ${p});
}
`;d+=n===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
uniform float value;
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var eC=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o,i=U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Qv(n.shape,s,a):new Jv(n.shape,s,a),l=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[n],n.dtype,l)},SP={kernelName:Ln,backendName:"webgl",kernelFunc:eC};var t9=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,r9=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+hl+`
return result;
`,o9=nt({opSnippet:t9,packedOpSnippet:r9}),TP={kernelName:zn,backendName:"webgl",kernelFunc:o9};function n9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=[],u=x.parseAxisParam(s,n.shape),c=u,p=I.getAxesPermutation(c,i),m=n;p!=null&&(m=Mt({inputs:{x:n},backend:t,attrs:{perm:p}}),c=I.getInnerMostAxes(c.length,i),l.push(m)),I.assertAxesAreInnerMostDims("prod",c,i);let f;if(t.shouldExecuteOnCPU([m])){let d=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:y}=AR(m.shape,m.dtype,d,c);f=t.makeTensorInfo(g,y,h)}else{let[d,h]=I.computeOutAndReduceShapes(m.shape,c),g=x.sizeFromShape(h),y=ce({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),b=fc(n.dtype),w=ko(y,b,"prod",t);f=ce({inputs:{x:w},backend:t,attrs:{shape:d}}),l.push(y),l.push(w)}if(a){l.push(f);let d=I.expandShapeToKeepDim(f.shape,u);f=ce({inputs:{x:f},backend:t,attrs:{shape:d}})}return l.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var AP={kernelName:Li,backendName:"webgl",kernelFunc:n9};var tC=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=ER(o,n,s,a);return e.makeTensorInfo([i.length],a,i)},EP={kernelName:$a,backendName:"webgl",kernelFunc:tC};var s9="return 1.0 / x;",i9=ke({opSnippet:s9}),DP={kernelName:zi,backendName:"webgl",kernelFunc:i9};var a9=gr+`
return (x < 0.0) ? 0.0 : x;
`,l9=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,u9=ke({opSnippet:a9,packedOpSnippet:l9}),$P={kernelName:Vn,backendName:"webgl",kernelFunc:u9};var c9=gr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,p9=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,m9=ke({opSnippet:c9,packedOpSnippet:p9}),RP={kernelName:Wn,backendName:"webgl",kernelFunc:m9};var rC=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}};var oC=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${l}.0,
${l}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${u-1};
bool hasNextRow = coords.z < ${o-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function f9(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=U().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new oC(n.shape,l,u,s,a):new rC(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],"float32")}var FP={kernelName:Gn,backendName:"webgl",kernelFunc:f9};var nC=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function d9(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new nC(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var OP={kernelName:sc,backendName:"webgl",kernelFunc:d9};var sC=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m=n?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function h9(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=new sC(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],n.dtype)}var PP={kernelName:Ra,backendName:"webgl",kernelFunc:h9};var iC=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${l[0]}) *
(float(dyR) / float(${u[0]}));
float sourceFracCol =
float(${l[1]}) *
(float(dyC) / float(${u[1]}));
int sourceNearestRow = int(min(
float(int(${n}) - 1),
${o} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${o} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function g9(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new iC(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var MP={kernelName:nc,backendName:"webgl",kernelFunc:g9};var aC=class{constructor(e,t){this.variableNames=["x"];let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);if(this.outputShape=e,o===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,l)=>n(l)).join(","),a=Le(o);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}};var lC=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);this.outputShape=e;let n=Vt("rc",o),s=`${n[o-1]} + 1 < ${this.outputShape[o-1]}`,a=`${n[o-2]} + 1 < ${this.outputShape[o-2]}`,i=Le(o);o===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${l(n.slice())};
if(${s}){
result.g = ${u(n.slice())};
}
if(${a}) {
result.b = ${c(n.slice())};
if(${s}) {
result.a = ${p(n.slice())};
}
}
setOutput(result);
}
`;function l(d){return m(d)}function u(d){return d[o-1]="("+d[o-1]+" + 1)",m(d)}function c(d){return d[o-2]="("+d[o-2]+" + 1)",m(d)}function p(d){return d[o-1]="("+d[o-1]+" + 1)",d[o-2]="("+d[o-2]+" + 1)",m(d)}function m(d){let h=e.map((b,w)=>f(w,d)),g=h.join(","),y=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${y}))`}function f(d,h){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${h[d]} - 1`:`${h[d]}`}}};function x9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=n.shape.length,i=x.parseAxisParam(s,n.shape);if(a===0)return Gt({inputs:{x:n},backend:t});let l=U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new lC(n.shape,i):new aC(n.shape,i);return t.runWebGLProgram(l,[n],n.dtype)}var LP={kernelName:Un,backendName:"webgl",kernelFunc:x9};var uC=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let o=e[1],n=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
uniform vec4 params;
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${s}
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${o}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}getCustomSetupFunc(e,t,o,n){return(s,a)=>{this.paramsLoc==null&&(this.paramsLoc=s.getUniformLocationNoThrow(a,"params")),s.gl.uniform4f(this.paramsLoc,e,t,o,n)}}};var zP={kernelName:Ki,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=new uC(o.shape,s),[u,c]=I.getImageCenter(a,o.shape[1],o.shape[2]),p=l.getCustomSetupFunc(u,c,Math.sin(n),Math.cos(n));return i.runWebGLProgram(l,[o],o.dtype,p)}};var y9=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,b9=ke({opSnippet:y9}),BP={kernelName:jn,backendName:"webgl",kernelFunc:b9};var w9="return inversesqrt(x);",_9=ke({opSnippet:w9,cpuKernelImpl:DR}),VP={kernelName:Hn,backendName:"webgl",kernelFunc:_9};var vd=class{constructor(e,t,o,n,s,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let l=Le(s.length),u=Le(a.length),c="";o===1?c="i":o===2&&(c="i, j");let p=`getIndices(${c})`,m="";n===1?m="i":n===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=t>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${s});
void main() {
${u} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${d};
}
if (flattenedIndex == coords[0]) {
sum += ${f};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function k9(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=I.calculateShapes(s,n,a),m=[p/u,u];if(p===0)return t.makeTensorInfo(a,n.dtype);let f=ce({inputs:{x:n},backend:t,attrs:{shape:[l,i]}}),d=ce({inputs:{x:s},backend:t,attrs:{shape:[l,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g=new vd(l,i,f.shape.length,d.shape.length,c,m),y=t.runWebGLProgram(g,[d,f,h],d.dtype),b=ce({inputs:{x:y},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(y),t.disposeIntermediateTensorInfo(h),b}var GP={kernelName:Bi,backendName:"webgl",kernelFunc:k9};var cC=class{constructor(e,t,o){this.variableNames=["c","a","b"],this.outputShape=t;let n,s;if(o>4)throw Error(`Where for rank ${o} is not yet supported`);if(o===1)s="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],l=[],u=[];for(let c=0;c<t.length;c++)u.push(`${i[c]}`),c<e&&l.push(`${i[c]}`);n=l.join(),s=u.join()}let a=Le(o);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${n});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function v9(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=new cC(o.shape.length,n.shape,n.shape.length);return t.runWebGLProgram(a,[o,n,s],br(n.dtype,s.dtype))}var WP={kernelName:As,backendName:"webgl",kernelFunc:v9};var C9=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${I.SELU_SCALEALPHA};
float scale = ${I.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,I9=ke({opSnippet:C9}),UP={kernelName:Vi,backendName:"webgl",kernelFunc:I9};var N9="return 1.0 / (1.0 + exp(-1.0 * x));",S9=ke({opSnippet:N9}),jP={kernelName:Xn,backendName:"webgl",kernelFunc:S9};var T9=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,A9=ke({opSnippet:T9}),HP={kernelName:Wi,backendName:"webgl",kernelFunc:A9};var E9=hx+`
return sin(x);
`,D9=ke({opSnippet:E9}),qP={kernelName:Kn,backendName:"webgl",kernelFunc:D9};var $9=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,R9=ke({opSnippet:$9}),KP={kernelName:Gi,backendName:"webgl",kernelFunc:R9};var F9=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,O9=ke({opSnippet:F9}),XP={kernelName:Ui,backendName:"webgl",kernelFunc:O9};var P9=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;x.assert(n.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...a);for(let y=1+s.length;y<n.shape.length;++y)l.push([0,0]);let u=[],c=eC({inputs:{x:n},backend:t,attrs:{paddings:l,constantValue:0}}),p=I.getReshaped(c.shape,s,i,!1),m=I.getPermuted(p.length,s.length,!1),f=I.getReshapedPermuted(c.shape,s,i,!1),d=ce({inputs:{x:c},backend:t,attrs:{shape:p}}),h=Mt({inputs:{x:d},backend:t,attrs:{perm:m}}),g=ce({inputs:{x:h},backend:t,attrs:{shape:f}});return u.push(c),u.push(d),u.push(h),u.forEach(y=>t.disposeIntermediateTensorInfo(y)),g},YP={kernelName:Fa,backendName:"webgl",kernelFunc:P9};function M9(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=I.calculateShapes(s,n,i),m=!1,f=new vd(u,l,n.shape.length,s.shape.length,c,[p,1],m),d=t.runWebGLProgram(f,[s,n,a],s.dtype),h=ce({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(d),h}var ZP={kernelName:ic,backendName:"webgl",kernelFunc:M9};function L9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=x.parseAxisParam(a,n.shape)[0],l=I.prepareSplitSize(n,s,i),u=n.shape.length,c=new Array(u).fill(0),p=n.shape.slice();return l.map(m=>{let f=[...p];f[i]=m;let d=da({inputs:{x:n},backend:t,attrs:{begin:c,size:f}});return c[i]+=m,d})}var JP={kernelName:Es,backendName:"webgl",kernelFunc:L9};var z9="return sqrt(x);",B9=ke({opSnippet:z9}),QP={kernelName:Yn,backendName:"webgl",kernelFunc:B9};var V9="return x * x;",G9=ke({opSnippet:V9}),eM={kernelName:Oa,backendName:"webgl",kernelFunc:G9};var tM="return (a - b) * (a - b);",W9=nt({opSnippet:tM,packedOpSnippet:tM}),rM={kernelName:Qn,backendName:"webgl",kernelFunc:W9};function U9({inputs:r,attrs:e,backend:t}){let{x:o}=r,n=gr+`
return x > 0.0 ? 1.0 : float(${e.alpha});
`,s=new mo(o.shape,n);return t.runWebGLProgram(s,[o],o.dtype)}var oM={kernelName:Vo,backendName:"webgl",kernelFunc:U9};var pC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=o;let n=o.length,s=Le(o.length),a=Le(o.length),i="";if(n===1)i="coords * strides + begin";else{let l=0;i=o.map((u,c)=>(l++,o.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${l-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${e});
${s} strides = ${s}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function j9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,{nonStrided:f,$begin:d,$strides:h,size:g,newShape:y,outShape:b}=Yt.sliceInfo(n.shape,s,a,i,l,u,c,p,m),w=ce({inputs:{x:n},backend:t,attrs:{shape:y}}),_;if(f){let D=da({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=ce({inputs:{x:D},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(D)}else if(b.some(D=>D===0))_=t.makeTensorInfo(b,n.dtype,[]);else if(t.shouldExecuteOnCPU([w])){let R=t.texData.get(w.dataId).values,O=_e(w.shape,w.dtype,R),M=RR(b,O,h,d);_=t.makeTensorInfo(b,w.dtype,M.values)}else{let T=new pC(d,h,b);_=t.runWebGLProgram(T,[w],w.dtype)}let k=ce({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),k}var nM={kernelName:ji,backendName:"webgl",kernelFunc:j9};var H9="return tan(x);",q9=ke({opSnippet:H9}),sM={kernelName:Hi,backendName:"webgl",kernelFunc:q9};var K9=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,X9=ke({opSnippet:K9}),iM={kernelName:ts,backendName:"webgl",kernelFunc:X9};var mC=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[a]*t[a];this.outputShape=o,this.rank=o.length;let n=Le(this.rank),s=Y9(e);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function Y9(r){let e=r.length;if(e>5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],o=[];for(let n=0;n<r.length;n++)o.push(`imod(${t[n]}, ${r[n]})`);return o.join()}function fC(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;if(n.dtype==="string"){let u=t.readSync(n.dataId).map(m=>x.decodeString(m)),c=_e(n.shape,n.dtype,u),p=OR(c,s);return t.makeTensorInfo(p.shape,p.dtype,p.values)}let a=new mC(n.shape,s);return t.runWebGLProgram(a,[n],n.dtype)}var aM={kernelName:No,backendName:"webgl",kernelFunc:fC};function Z9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o,i=t.readSync(n.dataId),[l,u]=PR(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var lM={kernelName:qi,backendName:"webgl",kernelFunc:Z9};var dC=class{constructor(e,t,o,n,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=o==="nearest"?1:2,l;switch(n){case"constant":l=1;break;case"reflect":l=2;break;case"wrap":l=3;break;case"nearest":l=4;break;default:l=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${l} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${l} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${l} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${s});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${s});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function J9(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=o,[c,p,m,f]=n.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],y=new dC(p,m,a,i,l,g);return t.runWebGLProgram(y,[n,s],"float32")}var uM={kernelName:ac,backendName:"webgl",kernelFunc:J9};function Q9(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;ti(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=o.readSync(s.dataId),{outputValues:i,outputShape:l,indices:u}=MR(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var cM={kernelName:lc,backendName:"webgl",kernelFunc:Q9};function eJ(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n,i=a.shape.length,l=n.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let p=[],m=new Array(i).fill(0),f=a.shape.slice();f[s]=1;let d=new Array(l);for(let h=0;h<d.length;h++){m[s]=h;let g=da({inputs:{x:a},backend:t,attrs:{begin:m,size:f}}),y=ce({inputs:{x:g},backend:t,attrs:{shape:u}});d[h]=y,p.push(g)}return p.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var pM={kernelName:Ds,backendName:"webgl",kernelFunc:eJ};var hC=class{constructor(e,t){this.variableNames=["x","segmentIds"];let o=e.windowSize,n=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/o);this.outputShape=[n,i];let l="0.0",u="sumValue",c=Math.floor(o/4)*4,p=o%4,m=`
sumValue += dot(values, segFilter);
`,f="";s%o>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let d="";s%o>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${l};
float getValue(int batch, int inIdx) {
${f}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${d}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${o}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${m}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${m}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${m}
}
setOutput(${u});
}
`}};function tJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o,i=n.shape.length,l=[],u=0,c=I.getAxesPermutation([u],i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),l.push(p),u=I.getInnerMostAxes(1,i)[0]);let m=I.segment_util.computeOutShape(p.shape,u,a),f=x.sizeFromShape([p.shape[u]]),d=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,f]}});l.push(d);let h=fc(n.dtype),g=(_,k,D,T,R)=>{let O=_.shape[0],M=_.shape[1],G=I.segment_util.segOpComputeOptimalWindowSize(M,R),W={windowSize:G,inSize:M,batchSize:O,numSegments:R},j=new hC(W,k),H=t.compileAndRun(j,[_,D],T);if(l.push(H),H.shape[1]===R)return H;let q=tC({backend:t,attrs:{start:0,stop:R,step:1,dtype:"float32"}}),X=fC({inputs:{x:q},backend:t,attrs:{reps:[M/G]}});return l.push(q),l.push(X),g(H,k,X,T,R)},y=g(d,"unsortedSegmentSum",s,h,a),b=ce({inputs:{x:y},backend:t,attrs:{shape:m}}),w=b;if(c!=null){l.push(b);let _=I.getUndoAxesPermutation(c);w=Mt({inputs:{x:w},backend:t,attrs:{perm:_}})}return l.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var mM={kernelName:Pa,backendName:"webgl",kernelFunc:tJ};var rJ=[XO,YO,cF,mF,fF,dF,gF,xF,yF,bF,kF,vF,CF,IF,SF,NF,TF,EF,AF,DF,$F,RF,FF,PF,MF,VF,WF,UF,HF,JR,XF,ZF,JF,YF,eO,tO,QF,rO,oO,nO,aO,lO,uO,pO,mO,cO,fO,dO,hO,gO,xO,yO,wO,_O,vO,CO,IO,NO,TO,AO,EO,DO,$O,RO,FO,OO,PO,ZR,MO,qF,LO,zO,BO,QR,VO,GO,WO,jO,UO,HO,qO,KO,JO,tP,eP,rP,oP,sP,QO,aP,lP,uP,cP,pP,gP,nF,yP,bP,wP,_P,LF,kP,IP,NP,SP,TP,eF,AP,EP,zF,mP,DP,RP,$P,iF,FP,OP,PP,MP,LP,zP,BP,VP,GP,WP,UP,jP,HP,qP,KP,OF,hP,XP,YP,ZP,JP,QP,eM,rM,oM,nM,dP,lF,sM,iM,aM,lM,uM,uF,cM,pM,mM,vP];for(let r of rJ)Tl(r);var fM="3.3.0";var a2t={"tfjs-core":tI,"tfjs-backend-cpu":HE,"tfjs-backend-webgl":YR,"tfjs-data":Qg,"tfjs-layers":Zl,"tfjs-converter":O_,tfjs:fM};var Lt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(Lt||(Lt={}));var yl;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu"})(yl||(yl={}));var dM;function oJ(r){dM=r.wasm.cwrap(Rs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function nJ(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m=t.dataIdMap.get(n.dataId).id,f=t.dataIdMap.get(s.dataId).id,d=0;if(a!=null){let R=t.dataIdMap.get(a.dataId);if(R.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${R.shape.length}.`);d=R.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=yl[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?n.shape[2]:n.shape[1],b=u?s.shape[1]:s.shape[2],w=n.shape[0],_=t.makeOutput([w,y,b],n.dtype),k=t.dataIdMap.get(_.dataId).id,D=new Uint8Array(new Int32Array(n.shape).buffer),T=new Uint8Array(new Int32Array(s.shape).buffer);return dM(m,D,n.shape.length,f,T,s.shape.length,l,u,g,d,h,p||0,k),_}var hM={kernelName:Rs,backendName:"wasm",setupFunc:oJ,kernelFunc:nJ};function It(r){let e;function t(n){e=n.wasm.cwrap(r,null,["number","number"])}function o(n){let{backend:s,inputs:{x:a}}=n,i=s.dataIdMap.get(a.dataId).id,l=s.makeOutput(a.shape,a.dtype),u=s.dataIdMap.get(l.dataId).id;return x.sizeFromShape(l.shape)===0||e(i,u),l}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:o}}var gM=It(_s);function gt(r,e,t){let o;function n(a){o=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:l}=a,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,f=t!=null?t:u.dtype,d=I.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(d,f);if(x.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),b=i.dataIdMap.get(h.dataId).id,w=()=>o(p,g,u.shape.length,m,y,c.shape.length,Lt[u.dtype],b);if(e&&u.dtype==="float32")return w(),h;let _=I.getBroadcastDims(u.shape,d),k=I.getBroadcastDims(c.shape,d),D=_.every((R,O)=>R===O),T=k.every((R,O)=>R===O);if(D&&T)return w(),h;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${r}.`)}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:s}}var sJ=!0,xM=gt(Io,sJ);var yM;function iJ(r){yM=r.wasm.cwrap(mn,null,["array","number","number","number"])}function aJ(r){let{inputs:e,backend:t}=r,o=t.makeOutput(e[0].shape,e[0].dtype);if(x.sizeFromShape(o.shape)===0)return o;let n=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(n).buffer),a=t.dataIdMap.get(o.dataId).id;return yM(s,n.length,Lt[o.dtype],a),o}var bM={kernelName:mn,backendName:"wasm",setupFunc:iJ,kernelFunc:aJ};function du(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype),n=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(o).set(n),o}var wM={kernelName:Bo,backendName:"wasm",kernelFunc:du};var _M;function lJ(r){_M=r.wasm.cwrap(rs,null,["number","array","number","number","number","array","number"])}function Rp(r){let{inputs:e,backend:t,attrs:o}=r,[n,s]=cJ(e.x.shape,o.perm),a=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(a=!1);let i=uJ(e.x.shape,o.perm),l={dataId:e.x.dataId,shape:n,dtype:e.x.dtype};if(a){let d=du({inputs:e,backend:t});return d.shape=i,d}let u=t.makeOutput(i,l.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(l.shape).buffer);return _M(c,f,l.shape.length,Lt[l.dtype],p,m,s.length),u}function uJ(r,e){let t=new Array(r.length);for(let o=0;o<t.length;o++)t[o]=r[e[o]];return t}function cJ(r,e){let t=[],o=[];for(let n=0;n<r.length;++n)r[n]!==1&&t.push(r[n]),r[e[n]]!==1&&o.push(e[n]);for(let n=0;n<o.length;++n){let s=-1;for(let a=0;a<o.length;++a)o[a]>=n&&(s===-1||o[s]>o[a])&&(s=a);o[s]=n}return[t,o]}var kM={kernelName:rs,backendName:"wasm",kernelFunc:Rp,setupFunc:lJ};function ln(r,e,t){let o=r.shape,n=r.shape.length,s=x.parseAxisParam(e,o),a=s,i=I.getAxesPermutation(a,n),l=null,u=!1;if(i!=null){let c=new Array(n);for(let f=0;f<c.length;f++)c[f]=o[i[f]];a=I.getInnerMostAxes(a.length,n),l=Rp({inputs:{x:r},attrs:{perm:i},backend:t});let p=t.dataIdMap.get(r.dataId).id;t.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:a,inputWasTransposed:u}}var vM;function pJ(r){vM=r.wasm.cwrap(fn,null,["number","number","number","number","number"])}function mJ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=a,l=s,{transposed:u,axes:c,inputWasTransposed:p}=ln(s,n,e);if(p){let y=e.dataIdMap.get(u.dataId).id;y!==a&&(l=u,i=y)}let m=l.shape.slice(0,-1),f=e.makeOutput(m,"int32"),d=e.dataIdMap.get(f.dataId).id,h=x.sizeFromShape(f.shape),g=l.shape[c[0]];return vM(i,Lt[l.dtype],h,g,d),p&&e.disposeData(u.dataId),f}var CM={kernelName:fn,backendName:"wasm",kernelFunc:mJ,setupFunc:pJ};var IM;function fJ(r){IM=r.wasm.cwrap(dn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function dJ(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=I.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let _=o.makeOutput(c.outShape,"float32"),k=o.dataIdMap.get(_.dataId).id;return IM(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,y,b,w,k),_}var NM={kernelName:dn,backendName:"wasm",setupFunc:fJ,kernelFunc:dJ};function Pr(r){let{inputs:e,attrs:t}=r,{x:o}=e,{shape:n}=t,s=x.sizeFromShape(o.shape),a=x.inferFromImplicitShape(n,s);return x.assert(s===x.sizeFromShape(a),()=>`new shape: ${a}, old shape: ${o.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(o.dataId),{dataId:o.dataId,shape:a,dtype:o.dtype}}var SM={kernelName:Ts,backendName:"wasm",kernelFunc:Pr};var TM;function hJ(r){TM=r.wasm.cwrap(hn,null,["number","array","number","number","array","number","number","number","number"])}function gJ(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=x.sizeFromShape(d),y=x.sizeFromShape(h),b=g===y||g===1||y===1;x.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>y?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);x.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let k=a?[g,c,m]:[g,m,c],D=i?[y,f,p]:[y,p,f],T=Pr({inputs:{x:n},backend:t,attrs:{shape:k}}),R=Pr({inputs:{x:s},backend:t,attrs:{shape:D}}),O=t.dataIdMap.get(T.dataId).id,M=t.dataIdMap.get(R.dataId).id,G=a?T.shape[2]:T.shape[1],W=i?R.shape[1]:R.shape[2],j=Math.max(g,y),H=t.makeOutput([j,G,W],T.dtype),q=t.dataIdMap.get(H.dataId).id,X=new Uint8Array(new Int32Array(T.shape).buffer),oe=new Uint8Array(new Int32Array(R.shape).buffer);return TM(O,X,T.shape.length,M,oe,R.shape.length,a,i,q),t.disposeData(T.dataId),t.disposeData(R.dataId),H.shape=_,H}var AM={kernelName:hn,backendName:"wasm",setupFunc:hJ,kernelFunc:gJ};function hu(r){let{inputs:{x:e},attrs:{dtype:t},backend:o}=r,n=o.makeOutput(e.shape,t),s=o.typedArrayFromHeap(e);return o.typedArrayFromHeap(n).set(s),n}var EM={kernelName:Lo,backendName:"wasm",kernelFunc:hu};var DM=It(gn);var $M;function xJ(r){$M=r.wasm.cwrap(zo,null,["number","number","number","number"])}function yJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i=t.dataIdMap.get(n.dataId).id,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(l.dataId).id;return $M(i,s,a,u),l}var RM={kernelName:zo,backendName:"wasm",setupFunc:xJ,kernelFunc:yJ};function FM(r,e,t,o){let n=x.getArrayFromDType(t,x.sizeFromShape(e));if(o&&t!=="string"){let s=0;r.forEach(a=>{let i=x.sizeFromShape(a.shape);n.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?I.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let p=0;p<a.shape[1];++p)n[c+p]=i[l++]}s+=a.shape[1]})}return n}function OM(r,e,t,o){let n=r===e,s=r<e&&t<0,a=e<r&&t>1;if(n||s||a)return x.makeZerosTypedArray(0,o);let i=Math.abs(Math.ceil((e-r)/t)),l=x.makeZerosTypedArray(i,o);e<r&&t===1&&(t=-1),l[0]=r;for(let u=1;u<l.length;u++)l[u]=l[u-1]+t;return l}function gC(r,e,t,o,n){let s=Yt.isSliceContinous(o,e,t),a=x.sizeFromShape(t),i=x.computeStrides(o);if(s){let p=Yt.computeFlatOffset(e,i);return n==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=n==="string"?I.fromUint8ToStringArray(r):r,u=_e(o,n,l),c=_e(t,n);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+e[h]);c.set(u.get(...f),...m)}return n==="string"?I.fromStringArrayToUint8(c.values):c.values}function xC(r){let{inputs:e,backend:t}=r,o=x.parseAxisParam(r.attrs.axis,e[0].shape)[0],n=I.computeOutShape(e.map(f=>f.shape),o),s=e.filter(f=>x.sizeFromShape(f.shape)>0);if(s.length===1)return du({inputs:{x:s[0]},backend:t});let a=t.makeOutput(n,e[0].dtype);if(x.sizeFromShape(n)===0)return a;let i=s.map(f=>f.shape);if(I.assertParamsConsistent(i,o),s[0].dtype==="string"){let f=s.map(w=>{let _=x.sizeFromShape(w.shape.slice(o));return Pr({inputs:{x:w},backend:t,attrs:{shape:[-1,_]}})}),d=f.map(w=>({vals:t.readSync(w.dataId),shape:w.shape}));n=I.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=FM(d,n,e[0].dtype,h),y=I.computeOutShape(s.map(w=>w.shape),o);a.shape=y;let b=t.dataIdMap.get(a.dataId);return b.stringBytes=I.fromStringArrayToUint8(g),f.forEach(w=>t.disposeData(w.dataId)),a}let l=x.sizeFromShape(s[0].shape.slice(0,o)),u=0,c=s.map(f=>{let d=x.sizeFromShape(f.shape.slice(o));return u+=d,d}),p=s.map(f=>t.typedArrayFromHeap(f)),m=t.typedArrayFromHeap(a);for(let f=0;f<l;f++){let d=f*u;for(let h=0;h<p.length;h++){let g=c[h],y=f*g,b=p[h].subarray(y,y+g);m.set(b,d),d+=g}}return a}var PM={kernelName:ks,backendName:"wasm",kernelFunc:xC};var MM;function bJ(r){MM=r.wasm.cwrap(xn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wJ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:m}=t,f=I.convertConv2DDataFormat(m),d=I.computeConv2DInfo(n.shape,s.shape,l,u,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,y=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,_=d.padInfo.left,k=d.dilationHeight,D=d.dilationWidth,T=d.strideHeight,R=d.strideWidth,O=d.inChannels,M=d.outChannels,G=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let W=o.makeOutput(d.outShape,"float32"),j=o.dataIdMap.get(W.dataId).id;return MM(a,n.shape[0],n.shape[1],n.shape[2],i,h,g,y,b,w,_,G,k,D,T,R,O,M,j),W}var LM={kernelName:xn,backendName:"wasm",setupFunc:bJ,kernelFunc:wJ};var zM;function _J(r){zM=r.wasm.cwrap(yn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function kJ(r){let{backend:e,inputs:t,attrs:o}=r,{dy:n,filter:s}=t,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=o,p=1,m=I.convertConv2DDataFormat(l),f=I.computeConv2DInfo(c,s.shape,a,p,i,u,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:y,inHeight:b,inWidth:w,outChannels:_,outHeight:k,outWidth:D,strideHeight:T,strideWidth:R}=f,O=h-1-f.padInfo.top,M=g-1-f.padInfo.left,G=f.dataFormat==="channelsLast",W=x.computeStrides(f.inShape),j=x.computeStrides(n.shape),[H,q,X]=x.computeStrides(s.shape),oe=W[0],Y=G?W[1]:W[2],re=G?W[2]:1,J=G?1:W[1],ie=j[0],ue=G?j[1]:j[2],ae=G?j[2]:1,fe=G?1:j[1],de=e.makeOutput(f.inShape,"float32"),ge=e.dataIdMap.get(de.dataId).id,we=e.dataIdMap.get(n.dataId).id,De=e.dataIdMap.get(s.dataId).id;return zM(we,De,d,h,g,b,w,y,k,D,_,T,R,O,M,H,q,X,oe,Y,re,J,ie,ue,ae,fe,ge),de}var BM={kernelName:yn,backendName:"wasm",setupFunc:_J,kernelFunc:kJ};var VM=It(bn);var yC;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(yC||(yC={}));var GM;function vJ(r){GM=r.wasm.cwrap(xi,null,["number","number","number","number","array","number","number","number","number","number"])}function CJ(r){let{backend:e,inputs:t,attrs:o}=r,{method:n,extrapolationValue:s,cropSize:a}=o,{image:i,boxes:l,boxInd:u}=t,c=l.shape[0],[p,m]=a,f=[c,p,m,i.shape[3]],d=e.dataIdMap.get(i.dataId),h;i.dtype!=="float32"&&(h=hu({backend:e,inputs:{x:i},attrs:{dtype:"float32"}}),d=e.dataIdMap.get(h.dataId));let g=d.id,y=e.dataIdMap.get(l.dataId).id,b=e.dataIdMap.get(u.dataId).id,w=e.makeOutput(f,"float32"),_=e.dataIdMap.get(w.dataId).id,k=new Uint8Array(new Int32Array(i.shape).buffer);return GM(g,y,b,c,k,p,m,yC[n],s,_),h!=null&&e.disposeData(h.dataId),w}var WM={kernelName:xi,backendName:"wasm",setupFunc:vJ,kernelFunc:CJ};var UM;function IJ(r){UM=r.wasm.cwrap(wn,null,["number","number","number","number","number","number"])}function NJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length;x.assert(n.dtype==="float32"||n.dtype==="int32",()=>`cumsum does not support ${n.dtype} tensors in the WASM backend`);let u=I.getAxesPermutation([s],l),c=n;u!==null&&(c=Rp({inputs:{x:n},attrs:{perm:u},backend:t}));let p=I.getInnerMostAxes(1,l)[0];I.assertAxesAreInnerMostDims("cumsum",[p],l);let m=t.makeOutput(c.shape,c.dtype),f=c.shape[p],d=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;UM(d,a?1:0,i?1:0,f,h,Lt[n.dtype]);let g=m;if(u!==null){let y=I.getUndoAxesPermutation(u);g=Rp({inputs:{x:m},attrs:{perm:y},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var jM={kernelName:wn,backendName:"wasm",setupFunc:IJ,kernelFunc:NJ};var HM;function SJ(r){HM=r.wasm.cwrap(yi,null,["number","number","number","array","number","array","array","number","number"])}function TJ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{blockSize:s,dataFormat:a}=o;x.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=e.makeOutput(d,"float32"),y=e.dataIdMap.get(n.dataId).id,b=new Uint8Array(new Int32Array(x.computeStrides(n.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),_=new Uint8Array(new Int32Array(x.computeStrides(d)).buffer),k=e.dataIdMap.get(h.dataId).id;return HM(y,s,a==="NHWC"?1:0,b,n.shape.length-1,w,_,d.length,k),h}var qM={kernelName:yi,backendName:"wasm",setupFunc:SJ,kernelFunc:TJ};var KM;function AJ(r){KM=r.wasm.cwrap(_n,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function EJ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=t,m=u==null?[1,1]:u,f=I.computeConv2DInfo(n.shape,s.shape,l,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,y=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,_=f.dilationHeight,k=f.dilationWidth,D=f.strideHeight,T=f.strideWidth,R=f.inChannels,O=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let G=o.makeOutput(f.outShape,"float32"),W=o.dataIdMap.get(G.dataId).id;return KM(a,n.shape[0],n.shape[1],n.shape[2],i,d,h,g,y,b,w,M,_,k,D,T,R,O,W),G}var XM={kernelName:_n,backendName:"wasm",setupFunc:AJ,kernelFunc:EJ};var DJ=!1,YM=gt(_i,DJ,"bool");var ZM=It(vn);function Sx(r){let{inputs:e,attrs:t,backend:o}=r,{input:n}=e,{dim:s}=t,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(x.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Pr({inputs:{x:n},backend:o,attrs:{shape:i}})}var JM={kernelName:vs,backendName:"wasm",kernelFunc:Sx};function $J(r){let{attrs:{shape:e,value:t,dtype:o},backend:n}=r,s=n.makeOutput(e,o);return n.typedArrayFromHeap(s).fill(t),s}var QM={kernelName:Ta,backendName:"wasm",kernelFunc:$J};var eL;function RJ(r){eL=r.wasm.cwrap(vi,null,["number","number","number","number","number","number"])}function FJ(r){let{inputs:e,backend:t}=r,{image:o}=e,n=t.makeOutput(o.shape,o.dtype),s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,[i,l,u,c]=o.shape;return eL(s,i,l,u,c,a),n}var tL={kernelName:vi,backendName:"wasm",kernelFunc:FJ,setupFunc:RJ};var rL=It(Cn);var OJ=!1,oL=gt(In,OJ);var nL;function PJ(r){nL=r.wasm.cwrap(Nn,null,["number","number","number","number","number","number","number"])}function MJ(r){let{backend:e,inputs:t,attrs:o}=r,{varianceEpsilon:n}=o,{x:s,mean:a,variance:i,offset:l,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,p=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,f=l!=null?e.dataIdMap.get(l.dataId).id:0,d=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(x.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return nL(c,p,m,f,d,n,g),h}var sL={kernelName:Nn,backendName:"wasm",setupFunc:PJ,kernelFunc:MJ};var iL;function LJ(r){iL=r.wasm.cwrap(Fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zJ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=I.computeConv2DInfo(n.shape,s.shape,l,c,u,m),g=yl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let y=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=o.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let k=h.filterHeight,D=h.filterWidth,T=h.padInfo.top,R=h.padInfo.right,O=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,W=h.dilationWidth,j=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,oe=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=o.makeOutput(h.outShape,"float32"),ie=o.dataIdMap.get(J.dataId).id,ue=i==null?0:o.dataIdMap.get(i.dataId).id;return iL(y,oe,Y,re,b,k,D,_,T,R,O,M,X,G,W,j,H,q,w,g,ue,d||0,ie),J}var aL={kernelName:Fs,backendName:"wasm",setupFunc:LJ,kernelFunc:zJ};var lL;function BJ(r){lL=r.wasm.cwrap(Os,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function VJ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=I.computeConv2DInfo(n.shape,s.shape,l,c,u,m,!0),g=yl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=o.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let k=h.filterHeight,D=h.filterWidth,T=h.padInfo.top,R=h.padInfo.right,O=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,W=h.dilationWidth,j=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,oe=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=o.makeOutput(h.outShape,"float32"),ie=o.dataIdMap.get(J.dataId).id,ue=i==null?0:o.dataIdMap.get(i.dataId).id;return lL(y,oe,Y,re,b,k,D,_,T,R,O,M,X,G,W,j,H,q,w,g,ue,d||0,ie),J}var uL={kernelName:Os,backendName:"wasm",setupFunc:BJ,kernelFunc:VJ};var cL;function GJ(r){cL=r.wasm.cwrap(Ci,null,["number","number","number","number","number","number","array","number"])}function WJ(r){let{backend:e,inputs:t}=r,{params:o,indices:n}=t,[s,a,i,l]=Ib.prepareAndValidate(o,n),u=e.makeOutput(s,o.dtype);if(a===0)return u;let c=n.shape,p=c[c.length-1],f=e.dataIdMap.get(o.dataId).id,h=e.dataIdMap.get(n.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=e.dataIdMap.get(u.dataId).id;return cL(f,Lt[o.dtype],h,a,p,i,g,y),u}var pL={kernelName:Ci,backendName:"wasm",setupFunc:GJ,kernelFunc:WJ};var mL;function UJ(r){mL=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function jJ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n,indices:s}=t,{axis:a,batchDims:i}=o,l=x.parseAxisParam(a,n.shape)[0],u=I.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=Pr({inputs:{x:n},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:e}),p=x.sizeFromShape(s.shape),m=Pr({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:e}),f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],d=e.makeOutput(f,n.dtype);if(x.sizeFromShape(n.shape)===0)return d;let h=c.shape.length-1,y=e.dataIdMap.get(c.dataId).id,w=e.dataIdMap.get(m.dataId).id,_=e.dataIdMap.get(d.dataId).id,k=new Uint8Array(new Int32Array(x.computeStrides(c.shape)).buffer),D=new Uint8Array(new Int32Array(x.computeStrides(f)).buffer);return mL(y,Lt[n.dtype],k,h,w,u.batchSize,D,_),e.disposeData(c.dataId),e.disposeData(m.dataId),d.shape=u.outputShape,d}var fL={kernelName:Cs,backendName:"wasm",setupFunc:UJ,kernelFunc:jJ};var HJ=!1,dL=gt(Ii,HJ,"bool");var qJ=!1,hL=gt(Sn,qJ,"bool");var gL;function KJ(r){gL=r.wasm.cwrap(Tn,null,["number","number","number"])}function XJ(r){let{inputs:{x:e},attrs:{alpha:t},backend:o}=r,n=o.dataIdMap.get(e.dataId).id,s=o.makeOutput(e.shape,e.dtype);if(x.sizeFromShape(e.shape)!==0){let a=o.dataIdMap.get(s.dataId).id;gL(n,t,a)}return s}var xL={kernelName:Tn,backendName:"wasm",setupFunc:KJ,kernelFunc:XJ};var YJ=!1,yL=gt(Ai,YJ,"bool");var ZJ=!1,bL=gt(Ei,ZJ,"bool");var wL=It(An);var JJ=!1,_L=gt($i,JJ,"bool");var kL;function QJ(r){kL=r.wasm.cwrap(En,null,["number, number, number"])}function eQ(r){let{backend:e,inputs:t,attrs:o}=r,{reductionIndices:n,keepDims:s}=o,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=ln(a,n,e);if(f){let w=e.dataIdMap.get(c.dataId).id;u=c,l=w}let d=u.shape.length;I.assertAxesAreInnerMostDims("max",p,d);let[h,g]=I.computeOutAndReduceShapes(u.shape,p),y=x.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(x.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;kL(l,y,w)}if(f&&e.disposeData(c.dataId),s){let w=I.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var vL={kernelName:En,backendName:"wasm",setupFunc:QJ,kernelFunc:eQ};var tQ=!1,CL=gt(Dn,tQ);var IL;function rQ(r){IL=r.wasm.cwrap($n,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oQ(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=I.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,_=c.strideWidth,k=c.inChannels,D=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let T=o.makeOutput(c.outShape,"float32"),R=o.dataIdMap.get(T.dataId).id;return IL(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,y,b,w,_,k,D,R),T}var NL={kernelName:$n,backendName:"wasm",setupFunc:rQ,kernelFunc:oQ};var SL;function nQ(r){SL=r.wasm.cwrap(Rn,null,["number, number, number"])}function sQ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=ln(a,n,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=I.getInnerMostAxes(d.length,u.shape.length))}I.assertAxesAreInnerMostDims("mean",d,u.shape.length);let[h,g]=I.computeOutAndReduceShapes(u.shape,d),y=x.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=hu({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),l=e.dataIdMap.get(b.dataId).id);let w=e.makeOutput(h,"float32");if(x.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(w.dataId).id;SL(l,y,_)}if(f&&e.disposeData(c.dataId),s){let _=I.expandShapeToKeepDim(w.shape,m);w.shape=_}return u.dtype!=="float32"&&e.disposeData(b.dataId),w}var TL={kernelName:Rn,backendName:"wasm",setupFunc:nQ,kernelFunc:sQ};var AL;function iQ(r){AL=r.wasm.cwrap(Fn,null,["number, number, number"])}function aQ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=ln(a,n,e);if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w)}let d=u.shape.length;I.assertAxesAreInnerMostDims("min",p,d);let[h,g]=I.computeOutAndReduceShapes(u.shape,p),y=x.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(x.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;AL(l,y,w)}if(f&&e.disposeData(c.dataId),s){let w=I.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var EL={kernelName:Fn,backendName:"wasm",setupFunc:iQ,kernelFunc:aQ};var lQ=!1,DL=gt(On,lQ);var uQ=!0,$L=gt(Pn,uQ);var RL=It(Is);function Fp(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),o=t[0],n=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:o,selectedSize:n,pSelectedScores:s,pValidOutputs:a}}var FL;function cQ(r){FL=r.wasm.cwrap(Oi,"number",["number","number","number","number","number"])}function pQ(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a}=o,{boxes:i,scores:l}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(l.dataId).id,p=FL(u,c,s,n,a),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Fp(e,p);return e.wasm._free(d),e.wasm._free(h),e.makeOutput([f],"int32",m)}var OL={kernelName:Oi,backendName:"wasm",setupFunc:cQ,kernelFunc:pQ};var PL;function mQ(r){PL=r.wasm.cwrap(Pi,"number",["number","number","number","number","number","bool"])}function fQ(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=PL(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Fp(e,m);e.wasm._free(h);let y=e.makeOutput([d],"int32",f),b=e.makeOutput([],"int32",g);return[y,b]}var ML={kernelName:Pi,backendName:"wasm",setupFunc:mQ,kernelFunc:fQ};var LL;function dQ(r){LL=r.wasm.cwrap(Mi,"number",["number","number","number","number","number","number"])}function hQ(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=LL(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Fp(e,m);e.wasm._free(g);let y=e.makeOutput([d],"int32",f),b=e.makeOutput([d],"float32",h);return[y,b]}var zL={kernelName:Mi,backendName:"wasm",setupFunc:dQ,kernelFunc:hQ};var gQ=!1,BL=gt(Fi,gQ,"bool");var VL;function xQ(r){VL=r.wasm.cwrap(Mn,null,["number","number","number","number","number"])}function yQ(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=t.makeOutput([...n.shape,s],"int32"),u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(n.dataId).id;return VL(p,s,a,i,u),l}var GL={kernelName:Mn,backendName:"wasm",setupFunc:xQ,kernelFunc:yQ};function bQ(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(1),o}var WL={kernelName:Ns,backendName:"wasm",kernelFunc:bQ};function wQ(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Sx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Sx({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=xC({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeData(c.dataId)),u}var UL={kernelName:Ss,backendName:"wasm",kernelFunc:wQ};var jL;function _Q(r){jL=r.wasm.cwrap(Ln,null,["number","array","number","number","array","array","number","number"])}function kQ(r){let{inputs:{x:e},backend:t,attrs:{paddings:o,constantValue:n}}=r,s=o.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=o.map(d=>d[0]),p=o.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return jL(a,u,e.shape.length,Lt[e.dtype],m,f,n,l),i}var HL={kernelName:Ln,backendName:"wasm",kernelFunc:kQ,setupFunc:_Q};var vQ=!1,qL=gt(zn,vQ);var KL;function CQ(r){KL=r.wasm.cwrap(Bn,null,["number","number","number"])}function IQ(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,i=t.makeOutput(o.shape,"float32"),l=t.dataIdMap.get(i.dataId).id;return KL(s,a,l),i}var XL={kernelName:Bn,backendName:"wasm",setupFunc:CQ,kernelFunc:IQ};var YL;function NQ(r){YL=r.wasm.cwrap(Li,null,["number","number","number","number"])}function SQ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=ln(a,n,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=I.getInnerMostAxes(d.length,u.shape.length))}I.assertAxesAreInnerMostDims("prod",d,u.shape.length);let[h,g]=I.computeOutAndReduceShapes(u.shape,d),y=x.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(x.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;YL(l,y,Lt[b.dtype],w)}if(f&&e.disposeData(c.dataId),s){let w=I.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var ZL={kernelName:Li,backendName:"wasm",setupFunc:NQ,kernelFunc:SQ};var TQ=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=OM(o,n,s,a),l=e.makeOutput([i.length],a);return e.typedArrayFromHeap(l).set(i),l},JL={kernelName:$a,backendName:"wasm",kernelFunc:TQ};var AQ=!0,QL=gt(kn,AQ);var ez=It(Vn);var tz=It(Wn);var rz;function EQ(r){rz=r.wasm.cwrap(Gn,null,["number","number","number","number","number","number","number","number","number","number"])}function DQ(r){let{backend:e,inputs:t,attrs:o}=r,{images:n}=t,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,[c,p,m,f]=n.shape,d=[c,l,u,f],h=e.dataIdMap.get(n.dataId),g;h.dtype!=="float32"&&(g=hu({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let y=h.id,b=e.makeOutput(d,"float32");if(x.sizeFromShape(n.shape)===0)return b;let w=e.dataIdMap.get(b.dataId).id;return rz(y,c,p,m,f,l,u,s?1:0,a?1:0,w),g!=null&&e.disposeData(g.dataId),b}var oz={kernelName:Gn,backendName:"wasm",setupFunc:EQ,kernelFunc:DQ};var nz;function $Q(r){nz=r.wasm.cwrap(Un,null,["number","array","number","array","number","number"])}function RQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=x.parseAxisParam(s,n.shape);if(n.shape.length===0)return du({inputs:{x:n},backend:t});let i=t.makeOutput(n.shape,n.dtype),l=t.dataIdMap.get(n.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(n.shape).buffer);nz(l,c,a.length,p,n.shape.length,u);let m=Pr({inputs:{x:i},attrs:{shape:n.shape},backend:t});return t.disposeData(i.dataId),m}var sz={kernelName:Un,backendName:"wasm",kernelFunc:RQ,setupFunc:$Q};var iz;function FQ(r){iz=r.wasm.cwrap(Ki,null,["number","number","number","number","number","number","number","number","array","number","number"])}function OQ(r){let{inputs:e,backend:t,attrs:o}=r,{image:n}=e,{radians:s,fillValue:a,center:i}=o,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(l.dataId).id,[p,m,f,d]=n.shape,[h,g]=I.getImageCenter(i,m,f),y=a===0,b=255,w=typeof a=="number"?[a,a,a,y?0:b]:[...a,b],_=new Uint8Array(new Int32Array(w).buffer);return iz(u,p,m,f,d,s,h,g,_,w.length,c),l}var az={kernelName:Ki,backendName:"wasm",kernelFunc:OQ,setupFunc:FQ};var lz=It(jn);var uz=It(Hn);var cz;function PQ(r){cz=r.wasm.cwrap(Bi,null,["number","number","number","number","number","number","array","number","number"])}function MQ(r){let{backend:e,inputs:t,attrs:o}=r,{indices:n,updates:s}=t,{shape:a}=o,i=e.makeOutput(a,s.dtype);if(x.sizeFromShape(a)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=Nb.calculateShapes(s,n,a),d=e.dataIdMap.get(n.dataId).id,g=e.dataIdMap.get(s.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),b=e.dataIdMap.get(i.dataId).id;return cz(d,g,Lt[s.dtype],l,u,c,y,m,b),i}var pz={kernelName:Bi,backendName:"wasm",setupFunc:PQ,kernelFunc:MQ};var mz;function LQ(r){mz=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function zQ(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=t.dataIdMap.get(o.dataId).id,i=t.dataIdMap.get(n.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(n.shape,n.dtype),c=t.dataIdMap.get(u.dataId).id,p=o.shape.length,m=n.shape.length,f=p===0||p>1||m===1?1:x.sizeFromShape(n.shape.slice(1));return mz(a,i,l,f,c),u}var fz={kernelName:As,backendName:"wasm",kernelFunc:zQ,setupFunc:LQ};var dz;function BQ(r){dz=r.wasm.cwrap(Xn,null,["number","number"])}function VQ(r){let{backend:e,inputs:{x:t}}=r,o=e.dataIdMap.get(t.dataId).id,n=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(n.dataId).id;return x.sizeFromShape(n.shape)===0||dz(o,s),n}var hz={kernelName:"Sigmoid",backendName:"wasm",setupFunc:BQ,kernelFunc:VQ};var gz=It(Kn);function gu(r){let{inputs:{x:e},attrs:{begin:t,size:o},backend:n}=r,[s,a]=Yt.parseSliceParams(e,t,o),i=Yt.isSliceContinous(e.shape,s,a),l=n.readSync(e.dataId),u=n.makeOutput(a,e.dtype),c=x.computeStrides(e.shape),p=n.dataIdMap.get(u.dataId);if(i){let d=Yt.computeFlatOffset(s,c);return e.dtype==="string"?p.stringBytes=l.slice(d,d+x.sizeFromShape(a)):n.typedArrayFromHeap(u).set(l.subarray(d,d+x.sizeFromShape(a))),u}if(e.dtype==="string"){let d=gC(l,s,a,e.shape,e.dtype);return p.stringBytes=d,u}let m=n.typedArrayFromHeap(u),f=e.shape.length;if(f===2)GQ(l,c[0],m,s,a);else if(f===3)WQ(l,c[0],c[1],m,s,a);else if(f===4)UQ(l,c[0],c[1],c[2],m,s,a);else{let d=gC(l,s,a,e.shape,e.dtype);m.set(d)}return u}function GQ(r,e,t,o,n){let s=0,a=o[0],i=o[1],l=a+n[0];for(let u=a;u<l;u++){let c=u*e+i;t.set(r.subarray(c,c+n[1]),s),s+=n[1]}}function WQ(r,e,t,o,n,s){let a=0,i=n[0],l=n[1],u=n[2],c=i+s[0],p=l+s[1];for(let m=i;m<c;m++)for(let f=l;f<p;f++){let d=m*e+f*t+u;o.set(r.subarray(d,d+s[2]),a),a+=s[2]}}function UQ(r,e,t,o,n,s,a){let i=0,l=s[0],u=s[1],c=s[2],p=l+a[0],m=u+a[1],f=c+a[2],d=s[3];for(let h=l;h<p;h++)for(let g=u;g<m;g++)for(let y=c;y<f;y++){let b=h*e+g*t+y*o+d;n.set(r.subarray(b,b+a[3]),i),i+=a[3]}}var xz={kernelName:qn,backendName:"wasm",kernelFunc:gu};var yz;function jQ(r){yz=r.wasm.cwrap(Jn,null,["number","number","number","number"])}function HQ(r){let{backend:e,inputs:{logits:t},attrs:{dim:o}}=r,n=e.dataIdMap.get(t.dataId).id,s=e.makeOutput(t.shape,t.dtype),a=e.dataIdMap.get(s.dataId).id,i=t.shape[o],l=x.sizeFromShape(t.shape)/i;return x.sizeFromShape(s.shape)===0||yz(n,a,i,l),s}var bz={kernelName:Jn,backendName:"wasm",setupFunc:jQ,kernelFunc:HQ};function qQ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=t,i=x.parseAxisParam(a,n.shape)[0],l=I.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=gu({inputs:{x:n},attrs:{begin:u,size:m},backend:o});return u[i]+=p,f})}var wz={kernelName:Es,backendName:"wasm",kernelFunc:qQ};var _z=It(Yn);var kz=It(Oa);var KQ=!0,vz=gt(Qn,KQ);var Cz;function XQ(r){Cz=r.wasm.cwrap(Vo,null,["number","number","number"])}function YQ(r){let{backend:e,inputs:t,attrs:o}=r,{alpha:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),l=e.dataIdMap.get(i.dataId).id;return Cz(a,n,l),i}var Iz={kernelName:Vo,backendName:"wasm",setupFunc:XQ,kernelFunc:YQ};var Nz;function ZQ(r){Nz=r.wasm.cwrap(ji,null,["number","array","number","array","array","array","array","array","number","number"])}function JQ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{begin:s,end:a,strides:i}=o;i==null&&(i=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,f=I.slice_util.maskToAxes(c);if(f.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&m!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=n.shape.length-s.length,h=I.slice_util.maskToAxes(p),g=n.shape.slice();h.forEach(G=>{s[G]=0,a[G]=1,g.splice(G,0,1)});let y=Pr({inputs:{x:n},attrs:{shape:g},backend:e}),{begin:b,end:w,strides:_}=I.slice_util.getNormalizedAxes(y.shape,f,d,s,a,i,l,u,c);s=b,a=w,i=_;let k=I.slice_util.maskToAxes(m);k.forEach(G=>{a[G]=s[G]+1,i[G]=1});let D=I.slice_util.computeOutShape(s,a,i),T=D.filter((G,W)=>k.indexOf(W)===-1);if(i.every(G=>G===1)){let G=gu({inputs:{x:y},attrs:{begin:s,size:D},backend:e});e.disposeData(y.dataId);let W=Pr({inputs:{x:G},attrs:{shape:T},backend:e});return e.disposeData(G.dataId),W}let O=e.makeOutput(T,"float32");if(!T.some(G=>G===0)){let G=e.dataIdMap.get(y.dataId).id,W=new Uint8Array(new Int32Array(x.computeStrides(y.shape)).buffer),j=new Uint8Array(new Int32Array(s).buffer),H=new Uint8Array(new Int32Array(a).buffer),q=new Uint8Array(new Int32Array(i).buffer),X=new Uint8Array(new Int32Array(T).buffer),oe=new Uint8Array(new Int32Array(x.computeStrides(T)).buffer),Y=e.dataIdMap.get(O.dataId).id;Nz(G,W,y.shape.length,j,H,q,X,oe,T.length,Y)}e.disposeData(y.dataId);let M=Pr({inputs:{x:O},attrs:{shape:T},backend:e});return e.disposeData(O.dataId),M}var Sz={kernelName:ji,backendName:"wasm",setupFunc:ZQ,kernelFunc:JQ};var QQ=!0,Tz=gt(es,QQ);var Az;function eee(r){Az=r.wasm.cwrap(Zn,null,["number, number, number"])}function tee(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=ln(a,n,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=I.getInnerMostAxes(d.length,u.shape.length))}I.assertAxesAreInnerMostDims("sum",d,u.shape.length);let[h,g]=I.computeOutAndReduceShapes(u.shape,d),y=x.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(x.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;Az(l,y,w)}if(f&&e.disposeData(c.dataId),s){let w=I.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var Ez={kernelName:Zn,backendName:"wasm",setupFunc:eee,kernelFunc:tee};var Dz=It(ts);var $z;function ree(r){$z=r.wasm.cwrap(No,null,["number","array","number","array","number","number"])}function oee(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,s=t.dataIdMap.get(n.dataId).id,{reps:a}=o,i=new Array(n.shape.length);for(let m=0;m<i.length;m++)i[m]=n.shape[m]*a[m];let l=new Uint8Array(new Int32Array(n.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=t.makeOutput(i,n.dtype),p=t.dataIdMap.get(c.dataId).id;return $z(s,l,n.shape.length,u,i.length,Lt[c.dtype],p),c}var Rz={kernelName:No,backendName:"wasm",setupFunc:ree,kernelFunc:oee};var Fz;function nee(r){Fz=r.wasm.cwrap(qi,null,["number","array","number","number","number","bool","number","number"])}var see=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{k:n,sorted:s}=t,a=e.dataIdMap.get(o.dataId).id,i=new Uint8Array(new Int32Array(o.shape).buffer),l=o.shape.slice();l[l.length-1]=n;let u=e.makeOutput(l,o.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.makeOutput(l,"int32"),m=e.dataIdMap.get(p.dataId).id;return Fz(a,i,o.shape.length,Lt[o.dtype],n,s,c,m),[u,p]},Oz={kernelName:qi,backendName:"wasm",setupFunc:nee,kernelFunc:see};function iee(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape[s],i=n.shape.length,l=new Array(i-1),u=0;for(let f=0;f<i;f++)f!==s&&(l[u++]=n.shape[f]);let c=new Array(a),p=new Array(i).fill(0),m=n.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=gu({inputs:{x:n},attrs:{begin:p,size:m},backend:t});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:l}))}var Pz={kernelName:Ds,backendName:"wasm",kernelFunc:iee};function aee(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(0),o}var Mz={kernelName:$s,backendName:"wasm",kernelFunc:aee};var lee=[gM,xM,bM,CM,NM,AM,EM,DM,RM,PM,LM,BM,VM,WM,jM,qM,XM,YM,ZM,JM,QM,tL,rL,oL,hM,sL,aL,uL,pL,fL,dL,hL,wM,xL,yL,bL,wL,_L,vL,CL,NL,TL,EL,DL,$L,RL,OL,ML,zL,BL,GL,WL,UL,HL,qL,XL,ZL,JL,QL,ez,tz,SM,oz,sz,az,uz,lz,pz,fz,hz,gz,xz,bz,wz,_z,kz,vz,Iz,Sz,Tz,Ez,Dz,Rz,Oz,kM,Pz,Mz];for(let r of lee)Tl(r);var bC=U();bC.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));bC.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(bC.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var CC=Au(Bz());var Vz='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';var Wz=Au(Gz());var IC=class extends li{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new vl(this,Wo())}write(e,t,o){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,o,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=x.now();return e(),{kernelMs:x.now()-t}}move(e,t,o,n,s){let a=this.dataIdNextNumber++;if(n==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:o,dtype:n,memoryOffset:null,refCount:s});return}let i=x.sizeFromShape(o),l=i*x.bytesPerElement(n),u=this.wasm._malloc(l);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:o,dtype:n,refCount:s}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,l),u)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:o,shape:n,stringBytes:s}=this.dataIdMap.get(e);if(o==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+x.sizeFromShape(n)*x.bytesPerElement(o));return uee(a.buffer,o)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let o=this.dataIdMap.get(e);if(o.refCount--,!t&&o.refCount>0)return!1;this.wasm._free(o.memoryOffset),this.wasm.tfjs.disposeData(o.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,o){let n;if(o==null)n=this.write(null,e,t);else{let s=this.dataIdNextNumber++;n={id:s},this.dataIdMap.set(n,{id:s,memoryOffset:o,shape:e,dtype:t,refCount:1});let a=x.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,o)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:o}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(o),a=x.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,s,a);case"int32":return new Int32Array(n,s,a);case"bool":return new Uint8Array(n,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function cee(r){return(e,t)=>(x.fetch(r,{credentials:"same-origin"}).then(o=>{o.ok||e.env.a(`failed to load wasm binary file at '${r}'`),o.arrayBuffer().then(n=>{WebAssembly.instantiate(n,e).then(s=>{t(s.instance)})})}),{})}function Uz(r,e,t){if(Ex!=null)return Ex;let o="tfjs-backend-wasm.wasm";return r&&e?o="tfjs-backend-wasm-threaded-simd.wasm":r&&(o="tfjs-backend-wasm-simd.wasm"),Cd!=null&&Cd[o]!=null?Cd[o]:t+o}async function jz(){let[r,e]=await Promise.all([U().getAsync("WASM_HAS_SIMD_SUPPORT"),U().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,o)=>{let n={};n.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Vz,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?Uz(r,e,Id!=null?Id:l):l+i},NC&&(n.instantiateWasm=cee(Uz(r,e,Id!=null?Id:"")));let s=!1;n.onAbort=()=>{if(s||Nd)return;Nd=!0,o({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let a;e&&r&&Ex==null?(n.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+CC.default.toString()],{type:"text/javascript"}),a=(0,CC.default)(n)):a=(0,Wz.default)(n),a.then(i=>{s=!0,Nd=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},t({wasm:i})})})}function uee(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var pee=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Ex=null,Id=null,Cd={},Nd=!1,NC=!1;function JPt(r,e=!1){if($b("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Nd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Ex=r,NC=e}function QPt(r,e=!1){if(Nd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")Id=r;else{Cd=r;let t=pee.filter(o=>Cd[o]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}NC=e}var tMt="3.3.0";var mee=2;bc("wasm",async()=>{let{wasm:r}=await jz();return new IC(r)},mee);export{_s as Abs,ui as Acos,ci as Acosh,fm as AdadeltaOptimizer,dm as AdagradOptimizer,hm as AdamOptimizer,gm as AdamaxOptimizer,Io as Add,mn as AddN,Fu as All,Ou as Any,fn as ArgMax,ka as ArgMin,pi as Asin,mi as Asinh,fi as Atan,hi as Atan2,di as Atanh,dn as AvgPool,va as AvgPool3D,Mu as AvgPool3DGrad,Pu as AvgPoolGrad,IC as BackendWasm,hn as BatchMatMul,Ca as BatchToSpaceND,Lu as Bincount,HC as BroadcastTo,s_ as Callback,yw as CallbackList,Lo as Cast,gn as Ceil,zo as ClipByValue,zu as Complex,Ia as ComplexAbs,ks as Concat,xn as Conv2D,Bu as Conv2DBackpropFilter,yn as Conv2DBackpropInput,Na as Conv3D,Vu as Conv3DBackpropFilterV2,Gu as Conv3DBackpropInputV2,bn as Cos,gi as Cosh,xi as CropAndResize,wn as Cumsum,ww as CustomCallback,vl as DataStorage,Wu as DenseBincount,yi as DepthToSpace,_n as DepthwiseConv2dNative,Uu as DepthwiseConv2dNativeBackpropFilter,ju as DepthwiseConv2dNativeBackpropInput,Hu as Diag,Sa as Dilation2D,Zp as Dilation2DBackpropFilter,Yp as Dilation2DBackpropInput,UC as ENV,i_ as EarlyStopping,bi as Elu,qu as EluGrad,Zy as Environment,_i as Equal,wi as Erf,vn as Exp,vs as ExpandDims,ki as Expm1,Ku as FFT,Ta as Fill,vi as FlipLeftRight,Cn as Floor,In as FloorDiv,Jp as FromPixels,Nn as FusedBatchNorm,Fs as FusedConv2D,Os as FusedDepthwiseConv2D,Ci as GatherNd,Cs as GatherV2,F_ as GraphModel,Ii as Greater,Sn as GreaterEqual,bw as History,Xu as IFFT,Bo as Identity,Yu as Imag,At as InputSpec,Ni as IsFinite,Si as IsInf,Ti as IsNan,li as KernelBackend,Aa as LRN,Ju as LRNGrad,fg as LayerVariable,Ro as LayersModel,Tn as LeakyRelu,Ai as Less,Ei as LessEqual,Zu as LinSpace,An as Log,Di as Log1p,qC as LogSoftmax,$i as LogicalAnd,Nl as LogicalNot,Sl as LogicalOr,En as Max,$n as MaxPool,Ea as MaxPool3D,ec as MaxPool3DGrad,Qu as MaxPoolGrad,tc as MaxPoolWithArgmax,Dn as Maximum,Rn as Mean,Fn as Min,On as Minimum,Da as MirrorPad,Ri as Mod,xm as MomentumOptimizer,rc as Multinomial,Pn as Multiply,Is as Neg,Oi as NonMaxSuppressionV3,Pi as NonMaxSuppressionV4,Mi as NonMaxSuppressionV5,Fi as NotEqual,I3 as OP_SCOPE_SUFFIX,Mn as OneHot,Ns as OnesLike,jr as Optimizer,Ss as Pack,Ln as PadV2,wee as Pool,zn as Pow,Bn as Prelu,Li as Prod,ym as RMSPropOptimizer,wo as RNN,$a as Range,n0 as Rank,oc as Real,kn as RealDiv,zi as Reciprocal,Ht as Reduction,Vn as Relu,Wn as Relu6,Ts as Reshape,Gn as ResizeBilinear,sc as ResizeBilinearGrad,Ra as ResizeNearestNeighbor,nc as ResizeNearestNeighborGrad,Un as Reverse,Ki as RotateWithOffset,jn as Round,Hn as Rsqrt,Ul as SGDOptimizer,Bi as ScatterNd,As as Select,Vi as Selu,ua as Sequential,Xn as Sigmoid,Wi as Sign,Kn as Sin,Gi as Sinh,qn as Slice,Jn as Softmax,Ui as Softplus,Fa as SpaceToBatchND,ic as SparseToDense,Es as SplitV,Yn as Sqrt,Oa as Square,Qn as SquaredDifference,Vo as Step,ji as StridedSlice,es as Sub,Zn as Sum,Kr as SymbolicTensor,Hi as Tan,ts as Tanh,Ve as Tensor,ct as TensorBuffer,No as Tile,qi as TopK,ac as Transform,rs as Transpose,lc as Unique,Ds as Unpack,Pa as UnsortedSegmentSum,El as Variable,$s as ZerosLike,Rs as _FusedMatMul,Tt as abs,lh as acos,uh as acosh,ee as add,oI as addN,_c as all,Rl as any,Fl as argMax,ch as argMin,ph as asin,mh as asinh,fh as atan,dh as atan2,hh as atanh,Ba as avgPool,xh as avgPool3d,rI as backend,I as backend_util,Zie as basicLSTMCell,ss as batchNorm,aI as batchNorm2d,lI as batchNorm3d,uI as batchNorm4d,Va as batchToSpaceND,cI as bincount,eve as booleanMaskAsync,Ml as broadcastTo,Cb as browser,_e as buffer,EK as callbacks,ne as cast,yh as ceil,lr as clipByValue,Go as clone,So as complex,Je as concat,pI as concat1d,mI as concat2d,fI as concat3d,dI as concat4d,CT as constraints,vc as conv1d,oo as conv2d,Ic as conv2dTranspose,bh as conv3d,eue as conv3dTranspose,Nee as copyRegisteredKernels,Ga as cos,Nc as cosh,Hh as cosineWindow,Sc as cumsum,no as customGrad,oE as data,hI as denseBincount,$b as deprecationWarn,_h as depthToSpace,zs as depthwiseConv2d,$K as deregisterOp,dc as device_util,Bue as diag,kh as dilation2d,rne as disableDeprecationWarnings,Te as dispose,one as disposeVariables,me as div,vh as divNoNan,gI as dot,KI as dropout,Bs as elu,tne as enableDebugMode,ene as enableProdMode,XI as enclosingPowerOfTwo,Wo as engine,U as env,Ao as equal,Ch as erf,er as exp,ur as expandDims,Ih as expm1,am as eye,Ya as fft,Wa as fill,une as findBackend,cne as findBackendFactory,Vs as floor,wc as floorDiv,ls as fused,is as gather,HI as gatherND,Ib as gather_util,ane as getBackend,tb as getGradient,em as getKernel,Yd as getKernelsForBackend,Jme as grad,Qme as grads,nr as greater,yo as greaterEqual,ra as ifft,Tc as imag,Hs as image,cCe as inTopKAsync,jT as initializers,Aw as input,Ar as io,Bc as irfft,xI as isFinite,yI as isInf,bI as isNaN,Et as keep,$r as kernel_impls,k1 as layers,Ua as leakyRelu,Ac as less,jo as lessEqual,kN as linalg,wI as linspace,n6 as loadGraphModel,WH as loadLayersModel,Nh as localResponseNormalization,cr as log,Ec as log1p,_I as logSigmoid,Dc as logSoftmax,Th as logSumExp,_r as logicalAnd,ja as logicalNot,$c as logicalOr,vI as logicalXor,sAe as losses,Ue as matMul,nV as math,pr as max,Ha as maxPool,Ah as maxPool3d,CI as maxPoolWithArgmax,so as maximum,bt as mean,im as memory,S1 as metrics,ta as min,Ws as minimum,Eh as mirrorPad,Dh as mod,VH as model,T1 as models,um as moments,Nve as movingAverage,P as mul,Qhe as multiRNNCell,II as multinomial,qe as neg,Qh as nextFrame,Wc as norm,as as notEqual,Ls as oneHot,Er as ones,sr as onesLike,S as op,Rge as outerProduct,Wr as pad,Wge as pad1d,Kge as pad2d,Qge as pad3d,nxe as pad4d,NI as pool,Ur as pow,Ka as prelu,A0 as print,Rc as prod,nne as profile,Gxe as rand,Jxe as randomGamma,Yb as randomNormal,Us as randomUniform,cm as range,ine as ready,zl as real,Fh as reciprocal,bc as registerBackend,UH as registerCallbackConstructor,KC as registerGradient,Tl as registerKernel,DK as registerOp,A1 as regularizers,Dr as relu,Oc as relu6,lne as removeBackend,L as reshape,Zt as reverse,Bye as reverse1d,Hye as reverse2d,Jye as reverse3d,nbe as reverse4d,Za as rfft,Oh as round,Pc as rsqrt,le as scalar,UI as scatterND,Nb as scatter_util,Mc as selu,Ph as separableConv2d,GH as sequential,Q as serialization,CV as setBackend,pne as setPlatform,JPt as setWasmPath,QPt as setWasmPaths,VI as setdiff1dAsync,ro as sigmoid,Mh as sign,nAe as signal,Lc as sin,zc as sinh,Re as slice,Lh as slice1d,Zb as slice2d,zh as slice3d,pm as slice4d,Yt as slice_util,Xa as softmax,Gs as softplus,qa as spaceToBatchND,jh as sparseToDense,oAe as spectral,mr as split,_t as sqrt,Me as square,Vc as squaredDifference,Eo as squeeze,Ut as stack,js as step,Bh as stridedSlice,pe as sub,ye as sum,fc as sumOutType,Vh as tan,ea as tanh,Vr as tensor,jt as tensor1d,oa as tensor2d,z0 as tensor3d,rke as tensor4d,ake as tensor5d,mke as tensor6d,os as tensor_util,gV as test_util,V as tidy,Uo as tile,sne as time,Gh as topk,jl as train,He as transpose,Gc as truncatedNormal,mm as unique,Iee as unregisterGradient,Cee as unregisterKernel,Wh as unsortedSegmentSum,fr as unstack,br as upcastType,x as util,efe as valueAndGrad,tfe as valueAndGrads,GI as variable,Pb as variableGrads,a2t as version,O_ as version_converter,tI as version_core,Zl as version_layers,tMt as version_wasm,$t as where,Uh as whereAsync,wt as zeros,Ie as zerosLike};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=tfjs.esm.js.map