face-api/dist/face-api.js

4820 lines
1.2 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var faceapi=(()=>{var k0=Object.defineProperty;var FA=e=>k0(e,"__esModule",{value:!0});var Li=typeof require!="undefined"?require:e=>{throw new Error('Dynamic require of "'+e+'" is not supported')};var bp=(e,t)=>{FA(e);for(var n in t)k0(e,n,{get:t[n],enumerable:!0})};var Vce={};bp(Vce,{AgeGenderNet:()=>Im,BoundingBox:()=>$u,Box:()=>it,ComposableTask:()=>_r,ComputeAllFaceDescriptorsTask:()=>Sa,ComputeFaceDescriptorsTaskBase:()=>$m,ComputeSingleFaceDescriptorTask:()=>Ca,DetectAllFaceLandmarksTask:()=>Dm,DetectAllFacesTask:()=>Kd,DetectFaceLandmarksTaskBase:()=>Fm,DetectFacesTaskBase:()=>Pm,DetectSingleFaceLandmarksTask:()=>Rm,DetectSingleFaceTask:()=>Om,Dimensions:()=>Tn,FACE_EXPRESSION_LABELS:()=>Xw,FaceDetection:()=>yt,FaceDetectionNet:()=>TE,FaceExpressionNet:()=>wm,FaceExpressions:()=>Ia,FaceLandmark68Net:()=>zu,FaceLandmark68TinyNet:()=>Sm,FaceLandmarkNet:()=>fE,FaceLandmarks:()=>fr,FaceLandmarks5:()=>Q_,FaceLandmarks68:()=>Du,FaceMatch:()=>Md,FaceMatcher:()=>Lm,FaceRecognitionNet:()=>Wu,Gender:()=>Ms,LabeledBox:()=>Ld,LabeledFaceDescriptors:()=>Rs,NetInput:()=>Ps,NeuralNetwork:()=>cn,ObjectDetection:()=>wa,Point:()=>Re,PredictedBox:()=>eE,Rect:()=>Fu,SsdMobilenetv1:()=>wi,SsdMobilenetv1Options:()=>Nr,TinyFaceDetector:()=>ju,TinyFaceDetectorOptions:()=>Am,TinyYolov2:()=>Gu,TinyYolov2Options:()=>ps,allFaces:()=>Lce,allFacesSsdMobilenetv1:()=>WE,allFacesTinyYolov2:()=>Mce,awaitMediaLoaded:()=>Uw,bufferToImage:()=>Gw,computeFaceDescriptor:()=>Ice,createCanvas:()=>bi,createCanvasFromMedia:()=>Wd,createFaceDetectionNet:()=>gce,createFaceRecognitionNet:()=>ace,createSsdMobilenetv1:()=>CE,createTinyFaceDetector:()=>Bce,createTinyYolov2:()=>vce,detectAllFaces:()=>Mm,detectFaceLandmarks:()=>BE,detectFaceLandmarksTiny:()=>kce,detectLandmarks:()=>Pce,detectSingleFace:()=>Oce,draw:()=>Qw,env:()=>Ye,euclideanDistance:()=>u0,extendWithAge:()=>Nm,extendWithFaceDescriptor:()=>Tm,extendWithFaceDetection:()=>fi,extendWithFaceExpressions:()=>km,extendWithFaceLandmarks:()=>Bu,extendWithGender:()=>_m,extractFaceTensors:()=>Pu,extractFaces:()=>Ru,fetchImage:()=>jie,fetchJson:()=>qw,fetchNetWeights:()=>qie,fetchOrThrow:()=>Os,fetchVideo:()=>Kie,getContext2dOrThrow:()=>Mn,getMediaDimensions:()=>gi,imageTensorToCanvas:()=>Hw,imageToSquare:()=>jw,inverseSigmoid:()=>Bie,iou:()=>Fw,isMediaElement:()=>pm,isMediaLoaded:()=>zd,isWithAge:()=>oce,isWithFaceDetection:()=>ls,isWithFaceExpressions:()=>Yw,isWithFaceLandmarks:()=>vi,isWithGender:()=>ice,loadAgeGenderModel:()=>Fce,loadFaceDetectionModel:()=>Dce,loadFaceExpressionModel:()=>$ce,loadFaceLandmarkModel:()=>_ce,loadFaceLandmarkTinyModel:()=>Ece,loadFaceRecognitionModel:()=>Ace,loadSsdMobilenetv1Model:()=>zE,loadTinyFaceDetectorModel:()=>Tce,loadTinyYolov2Model:()=>Nce,loadWeightMap:()=>Kw,locateFaces:()=>Rce,matchDimensions:()=>Xie,minBbox:()=>Dw,nets:()=>Ze,nonMaxSuppression:()=>Rw,normalize:()=>Hr,padToSquare:()=>Pw,predictAgeAndGender:()=>Cce,recognizeFaceExpressions:()=>Sce,resizeResults:()=>VE,resolveInput:()=>mi,shuffleArray:()=>Lie,sigmoid:()=>Od,ssdMobilenetv1:()=>LE,tf:()=>Nw,tinyFaceDetector:()=>xce,tinyYolov2:()=>wce,toNetInput:()=>ft,utils:()=>$w,validateConfig:()=>a0,version:()=>Wce});var Nw={};bp(Nw,{Abs:()=>Vi,Acos:()=>Ui,Acosh:()=>Gi,AdadeltaOptimizer:()=>Vh,AdagradOptimizer:()=>Uh,AdamOptimizer:()=>Gh,AdamaxOptimizer:()=>Hh,Add:()=>Ks,AddN:()=>Da,All:()=>Hi,Any:()=>ji,ArgMax:()=>Ra,ArgMin:()=>pl,Asin:()=>qi,Asinh:()=>Ki,Atan:()=>Xi,Atan2:()=>Zi,Atanh:()=>Yi,AvgPool:()=>Pa,AvgPool3D:()=>hl,AvgPool3DGrad:()=>Cp,AvgPoolGrad:()=>Sp,BackendWasm:()=>Z_,BatchMatMul:()=>Oa,BatchToSpaceND:()=>Ji,Bincount:()=>Tp,BroadcastArgs:()=>bb,BroadcastTo:()=>W0,Callback:()=>qS,CallbackList:()=>BI,Cast:()=>Ma,Ceil:()=>La,ClipByValue:()=>Xs,Complex:()=>Np,ComplexAbs:()=>fl,Concat:()=>Qi,Conv2D:()=>Ba,Conv2DBackpropFilter:()=>_p,Conv2DBackpropInput:()=>za,Conv3D:()=>ml,Conv3DBackpropFilterV2:()=>Ep,Conv3DBackpropInputV2:()=>Ap,Cos:()=>Wa,Cosh:()=>Va,CropAndResize:()=>ec,Cumsum:()=>Ua,CustomCallback:()=>WI,DataStorage:()=>vp,DenseBincount:()=>$p,DepthToSpace:()=>tc,DepthwiseConv2dNative:()=>Ga,DepthwiseConv2dNativeBackpropFilter:()=>Fp,DepthwiseConv2dNativeBackpropInput:()=>Dp,Diag:()=>Rp,Dilation2D:()=>gl,Dilation2DBackpropFilter:()=>Op,Dilation2DBackpropInput:()=>Pp,ENV:()=>Fa,EarlyStopping:()=>XS,Einsum:()=>Mp,Elu:()=>ja,EluGrad:()=>Lp,Environment:()=>B0,Equal:()=>rc,Erf:()=>nc,Exp:()=>qa,ExpandDims:()=>sc,Expm1:()=>ac,FFT:()=>Bp,Fill:()=>bl,FlipLeftRight:()=>oc,Floor:()=>Ka,FloorDiv:()=>Xa,FromPixels:()=>oh,FusedBatchNorm:()=>Ya,FusedConv2D:()=>$o,FusedDepthwiseConv2D:()=>Fo,GPGPUContext:()=>j2,GatherNd:()=>cc,GatherV2:()=>ic,GraphModel:()=>NC,Greater:()=>uc,GreaterEqual:()=>Za,History:()=>zI,IFFT:()=>zp,Identity:()=>Ja,Imag:()=>Wp,InputSpec:()=>Ot,IsFinite:()=>lc,IsInf:()=>dc,IsNan:()=>pc,KernelBackend:()=>ul,LRN:()=>xl,LRNGrad:()=>Up,LayerVariable:()=>RI,LayersModel:()=>_s,LeakyRelu:()=>Qa,Less:()=>hc,LessEqual:()=>fc,LinSpace:()=>Vp,Log:()=>eo,Log1p:()=>mc,LogSoftmax:()=>V0,LogicalAnd:()=>gc,LogicalNot:()=>yl,LogicalOr:()=>vl,MathBackendCPU:()=>Df,MathBackendWebGL:()=>Xf,Max:()=>to,MaxPool:()=>ro,MaxPool3D:()=>wl,MaxPool3DGrad:()=>Hp,MaxPoolGrad:()=>Gp,MaxPoolWithArgmax:()=>jp,Maximum:()=>no,Mean:()=>so,Min:()=>ao,Minimum:()=>oo,MirrorPad:()=>io,Mod:()=>bc,MomentumOptimizer:()=>jh,Multinomial:()=>qp,Multiply:()=>co,Neg:()=>yc,NonMaxSuppressionV3:()=>xc,NonMaxSuppressionV4:()=>wc,NonMaxSuppressionV5:()=>kc,NotEqual:()=>vc,OP_SCOPE_SUFFIX:()=>r1,OneHot:()=>uo,OnesLike:()=>Ic,Optimizer:()=>Cs,Pack:()=>Sc,PadV2:()=>lo,Pool:()=>O$,Pow:()=>po,Prelu:()=>ho,Prod:()=>Cc,RMSPropOptimizer:()=>qh,RNN:()=>os,Range:()=>kl,Rank:()=>kb,Real:()=>Kp,RealDiv:()=>Ha,Reciprocal:()=>Tc,Reduction:()=>xn,Relu:()=>fo,Relu6:()=>go,Reshape:()=>Nc,ResizeBilinear:()=>mo,ResizeBilinearGrad:()=>Yp,ResizeNearestNeighbor:()=>Il,ResizeNearestNeighborGrad:()=>Xp,Reverse:()=>bo,RotateWithOffset:()=>Vc,Round:()=>yo,Rsqrt:()=>vo,SGDOptimizer:()=>Xl,ScatterNd:()=>_c,Select:()=>Ec,Selu:()=>Ac,Sequential:()=>du,Sigmoid:()=>wo,Sign:()=>Dc,Sin:()=>xo,Sinh:()=>Fc,Slice:()=>$c,Softmax:()=>So,Softplus:()=>Rc,SpaceToBatchND:()=>Pc,SparseFillEmptyRows:()=>Zp,SparseReshape:()=>Jp,SparseSegmentMean:()=>Qp,SparseSegmentSum:()=>eh,SparseToDense:()=>th,SplitV:()=>Oc,Sqrt:()=>ko,Square:()=>Sl,SquaredDifference:()=>Co,Step:()=>Zs,StridedSlice:()=>Mc,StringNGrams:()=>nh,StringSplit:()=>rh,StringToHashBucketFast:()=>sh,Sub:()=>To,Sum:()=>Io,SymbolicTensor:()=>Br,Tan:()=>No,Tanh:()=>_o,Tensor:()=>Ee,TensorBuffer:()=>Bt,Tile:()=>Ys,TopK:()=>Lc,Transform:()=>Bc,Transpose:()=>Eo,Unique:()=>ah,Unpack:()=>zc,UnsortedSegmentSum:()=>Cl,Variable:()=>Qs,ZerosLike:()=>Wc,_FusedMatMul:()=>Ao,abs:()=>zt,acos:()=>W1,acosh:()=>V1,add:()=>Y,addN:()=>U1,all:()=>Yb,any:()=>xh,argMax:()=>Xc,argMin:()=>G1,asin:()=>H1,asinh:()=>j1,atan:()=>q1,atan2:()=>K1,atanh:()=>X1,avgPool:()=>vr,avgPool3d:()=>Qb,backend:()=>z1,backend_util:()=>_,basicLSTMCell:()=>kR,batchNorm:()=>aa,batchNorm2d:()=>Q1,batchNorm3d:()=>ek,batchNorm4d:()=>tk,batchToSpaceND:()=>kh,bincount:()=>ey,booleanMaskAsync:()=>RO,broadcastArgs:()=>nk,broadcastTo:()=>zl,browser:()=>Lo,buffer:()=>Be,callbacks:()=>YU,cast:()=>ce,ceil:()=>rk,clipByValue:()=>rn,clone:()=>xs,complex:()=>ea,concat:()=>et,concat1d:()=>sk,concat2d:()=>ak,concat3d:()=>ok,concat4d:()=>ik,constraints:()=>hI,conv1d:()=>ty,conv2d:()=>Dt,conv2dTranspose:()=>ry,conv3d:()=>sy,conv3dTranspose:()=>uk,copyRegisteredKernels:()=>B$,cos:()=>Ih,cosh:()=>ay,cosineWindow:()=>Ay,cumsum:()=>oy,customGrad:()=>Qr,data:()=>_C,denseBincount:()=>lk,deprecationWarn:()=>Kb,depthToSpace:()=>dk,depthwiseConv2d:()=>Wo,deregisterOp:()=>JU,device_util:()=>Pl,diag:()=>JR,dilation2d:()=>pk,disableDeprecationWarnings:()=>RD,dispose:()=>Ae,disposeVariables:()=>PD,div:()=>ge,divNoNan:()=>hk,dot:()=>oP,dropout:()=>Vk,einsum:()=>fk,elu:()=>Wl,enableDebugMode:()=>DD,enableProdMode:()=>FD,enclosingPowerOfTwo:()=>Uk,engine:()=>ws,env:()=>Q,equal:()=>sr,erf:()=>mk,exp:()=>bn,expandDims:()=>yn,expm1:()=>gk,eye:()=>iy,fft:()=>Rh,fill:()=>vn,findBackend:()=>VD,findBackendFactory:()=>UD,floor:()=>Vl,floorDiv:()=>Xb,forceHalfFloat:()=>nN,fused:()=>ia,gather:()=>Jc,gatherND:()=>Wk,gather_util:()=>Wb,getBackend:()=>zD,getGradient:()=>yb,getKernel:()=>ih,getKernelsForBackend:()=>ch,gpgpu_util:()=>E2,grad:()=>$P,grads:()=>FP,greater:()=>Gn,greaterEqual:()=>Vo,ifft:()=>jl,imag:()=>Sh,image:()=>qn,inTopKAsync:()=>HO,initializers:()=>xI,input:()=>lS,io:()=>Kt,irfft:()=>Sy,isFinite:()=>wP,isInf:()=>IP,isNaN:()=>bk,keep:()=>Xt,kernel_impls:()=>ts,layers:()=>$I,leakyRelu:()=>Ch,less:()=>cy,lessEqual:()=>Uo,linalg:()=>Qk,linspace:()=>yk,loadGraphModel:()=>tH,loadLayersModel:()=>oV,localResponseNormalization:()=>vk,log:()=>ar,log1p:()=>Th,logSigmoid:()=>LP,logSoftmax:()=>uy,logSumExp:()=>Sk,logicalAnd:()=>Fr,logicalNot:()=>_h,logicalOr:()=>py,logicalXor:()=>YP,losses:()=>EL,matMul:()=>De,math:()=>w1,max:()=>$r,maxPool:()=>Rt,maxPool3d:()=>hy,maxPoolWithArgmax:()=>Ck,maximum:()=>ks,mean:()=>At,memory:()=>yh,meshgrid:()=>n3,metrics:()=>GS,min:()=>Eh,minimum:()=>Ul,mirrorPad:()=>Tk,mod:()=>Nk,model:()=>sV,models:()=>HS,moments:()=>Ah,movingAverage:()=>MO,mul:()=>V,multiRNNCell:()=>l3,multinomial:()=>_k,neg:()=>Tt,nextFrame:()=>Kh,norm:()=>_y,notEqual:()=>eu,oneHot:()=>Ll,ones:()=>Hn,onesLike:()=>or,op:()=>W,outerProduct:()=>m3,pad:()=>wr,pad1d:()=>y3,pad2d:()=>x3,pad3d:()=>k3,pad4d:()=>S3,pool:()=>E3,pow:()=>oa,prelu:()=>Fh,print:()=>m1,prod:()=>fy,profile:()=>OD,rand:()=>R3,randomGamma:()=>L3,randomNormal:()=>Ek,randomUniform:()=>tu,range:()=>nu,ready:()=>BD,real:()=>Gl,reciprocal:()=>Ak,registerBackend:()=>vh,registerCallbackConstructor:()=>iV,registerGradient:()=>U0,registerKernel:()=>Nl,registerOp:()=>ZU,regularizers:()=>jS,relu:()=>qe,relu6:()=>by,removeBackend:()=>WD,reshape:()=>U,reverse:()=>ir,reverse1d:()=>q3,reverse2d:()=>X3,reverse3d:()=>Z3,reverse4d:()=>Q3,rfft:()=>Ph,round:()=>yy,rsqrt:()=>vy,scalar:()=>ke,scatterND:()=>zk,scatter_util:()=>Vb,selu:()=>xy,separableConv2d:()=>ru,sequential:()=>aV,serialization:()=>ae,setBackend:()=>LD,setPlatform:()=>GD,setWasmPath:()=>Fie,setWasmPaths:()=>Die,setWebGLContext:()=>QT,setdiff1dAsync:()=>$k,shared:()=>zx,sigmoid:()=>xr,sign:()=>Fk,signal:()=>_L,sin:()=>wy,sinh:()=>ky,slice:()=>We,slice1d:()=>Dh,slice2d:()=>Iy,slice3d:()=>su,slice4d:()=>Hl,slice_util:()=>mn,softmax:()=>es,softplus:()=>Qc,spaceToBatchND:()=>$h,sparse:()=>Kl,sparseToDense:()=>Ey,spectral:()=>NL,split:()=>jn,sqrt:()=>ln,square:()=>ut,squaredDifference:()=>Cy,squeeze:()=>Is,stack:()=>Pt,step:()=>ql,stridedSlice:()=>Dk,string:()=>Wh,sub:()=>he,sum:()=>ve,sumOutType:()=>hh,tan:()=>Rk,tanh:()=>Zc,tensor:()=>Vn,tensor1d:()=>Ue,tensor2d:()=>Dr,tensor3d:()=>gh,tensor4d:()=>Rr,tensor5d:()=>CO,tensor6d:()=>TO,tensor_util:()=>Er,test_util:()=>M1,tidy:()=>M,tile:()=>Un,time:()=>MD,topk:()=>Pk,train:()=>jo,transpose:()=>Oe,truncatedNormal:()=>Oh,unique:()=>Ty,unregisterGradient:()=>L$,unregisterKernel:()=>M$,unsortedSegmentSum:()=>Ok,unstack:()=>ht,upcastType:()=>yr,util:()=>w,valueAndGrad:()=>DP,valueAndGrads:()=>RP,variable:()=>Mk,variableGrads:()=>xk,version:()=>Oie,version_converter:()=>nH,version_core:()=>$D,version_cpu:()=>V6,version_layers:()=>dv,version_wasm:()=>Rie,version_webgl:()=>m9,webgl:()=>g9,webgl_util:()=>JT,where:()=>gn,whereAsync:()=>Ny,zeros:()=>wt,zerosLike:()=>He});var DA=Object.create,yp=Object.defineProperty,RA=Object.getOwnPropertyDescriptor,PA=Object.getOwnPropertyNames,OA=Object.getPrototypeOf,MA=Object.prototype.hasOwnProperty,I0=e=>yp(e,"__esModule",{value:!0}),Bi=typeof Li!="undefined"?Li:e=>{throw new Error('Dynamic require of "'+e+'" is not supported')},xt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Fe=(e,t)=>{I0(e);for(var n in t)yp(e,n,{get:t[n],enumerable:!0})},LA=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of PA(t))!MA.call(e,r)&&r!=="default"&&yp(e,r,{get:()=>t[r],enumerable:!(n=RA(t,r))||n.enumerable});return e},Ea=e=>LA(I0(yp(e!=null?DA(OA(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),BA=xt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=r;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(P){}function r(P,T,L){this.low=P|0,this.high=T|0,this.unsigned=!!L}r.prototype.__isLong__,Object.defineProperty(r.prototype,"__isLong__",{value:!0});function s(P){return(P&&P.__isLong__)===!0}r.isLong=s;var a={},o={};function i(P,T){var L,G,j;return T?(P>>>=0,(j=0<=P&&P<256)&&(G=o[P],G)?G:(L=u(P,(P|0)<0?-1:0,!0),j&&(o[P]=L),L)):(P|=0,(j=-128<=P&&P<128)&&(G=a[P],G)?G:(L=u(P,P<0?-1:0,!1),j&&(a[P]=L),L))}r.fromInt=i;function c(P,T){if(isNaN(P))return T?x:v;if(T){if(P<0)return x;if(P>=g)return R}else{if(P<=-b)return O;if(P+1>=b)return F}return P<0?c(-P,T).neg():u(P%m|0,P/m|0,T)}r.fromNumber=c;function u(P,T,L){return new r(P,T,L)}r.fromBits=u;var l=Math.pow;function d(P,T,L){if(P.length===0)throw Error("empty string");if(P==="NaN"||P==="Infinity"||P==="+Infinity"||P==="-Infinity")return v;if(typeof T=="number"?(L=T,T=!1):T=!!T,L=L||10,L<2||36<L)throw RangeError("radix");var G;if((G=P.indexOf("-"))>0)throw Error("interior hyphen");if(G===0)return d(P.substring(1),T,L).neg();for(var j=c(l(L,8)),q=v,K=0;K<P.length;K+=8){var ee=Math.min(8,P.length-K),te=parseInt(P.substring(K,K+ee),L);if(ee<8){var ne=c(l(L,ee));q=q.mul(ne).add(c(te))}else q=q.mul(j),q=q.add(c(te))}return q.unsigned=T,q}r.fromString=d;function p(P,T){return typeof P=="number"?c(P,T):typeof P=="string"?d(P,T):u(P.low,P.high,typeof T=="boolean"?T:P.unsigned)}r.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,b=g/2,y=i(f),v=i(0);r.ZERO=v;var x=i(0,!0);r.UZERO=x;var k=i(1);r.ONE=k;var C=i(1,!0);r.UONE=C;var N=i(-1);r.NEG_ONE=N;var F=u(4294967295|0,2147483647|0,!1);r.MAX_VALUE=F;var R=u(4294967295|0,4294967295|0,!0);r.MAX_UNSIGNED_VALUE=R;var O=u(0,2147483648|0,!1);r.MIN_VALUE=O;var $=r.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},$.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(O)){var L=c(T),G=this.div(L),j=G.mul(L).sub(this);return G.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var q=c(l(T,6),this.unsigned),K=this,ee="";;){var te=K.div(q),ne=K.sub(te.mul(q)).toInt()>>>0,re=ne.toString(T);if(K=te,K.isZero())return re+ee;for(;re.length<6;)re="0"+re;ee=""+re+ee}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,L=31;L>0&&(T&1<<L)==0;L--);return this.high!=0?L+33:L+1},$.isZero=function(){return this.high===0&&this.low===0},$.eqz=$.isZero,$.isNegative=function(){return!this.unsigned&&this.high<0},$.isPositive=function(){return this.unsigned||this.high>=0},$.isOdd=function(){return(this.low&1)==1},$.isEven=function(){return(this.low&1)==0},$.equals=function(T){return s(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},$.eq=$.equals,$.notEquals=function(T){return!this.eq(T)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(T){return this.comp(T)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(T){return this.comp(T)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(T){return this.comp(T)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(T){return this.comp(T)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(T){if(s(T)||(T=p(T)),this.eq(T))return 0;var L=this.isNegative(),G=T.isNegative();return L&&!G?-1:!L&&G?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(k)},$.neg=$.negate,$.add=function(T){s(T)||(T=p(T));var L=this.high>>>16,G=this.high&65535,j=this.low>>>16,q=this.low&65535,K=T.high>>>16,ee=T.high&65535,te=T.low>>>16,ne=T.low&65535,re=0,J=0,oe=0,ie=0;return ie+=q+ne,oe+=ie>>>16,ie&=65535,oe+=j+te,J+=oe>>>16,oe&=65535,J+=G+ee,re+=J>>>16,J&=65535,re+=L+K,re&=65535,u(oe<<16|ie,re<<16|J,this.unsigned)},$.subtract=function(T){return s(T)||(T=p(T)),this.add(T.neg())},$.sub=$.subtract,$.multiply=function(T){if(this.isZero())return v;if(s(T)||(T=p(T)),n){var L=n.mul(this.low,this.high,T.low,T.high);return u(L,n.get_high(),this.unsigned)}if(T.isZero())return v;if(this.eq(O))return T.isOdd()?O:v;if(T.eq(O))return this.isOdd()?O:v;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return c(this.toNumber()*T.toNumber(),this.unsigned);var G=this.high>>>16,j=this.high&65535,q=this.low>>>16,K=this.low&65535,ee=T.high>>>16,te=T.high&65535,ne=T.low>>>16,re=T.low&65535,J=0,oe=0,ie=0,ue=0;return ue+=K*re,ie+=ue>>>16,ue&=65535,ie+=q*re,oe+=ie>>>16,ie&=65535,ie+=K*ne,oe+=ie>>>16,ie&=65535,oe+=j*re,J+=oe>>>16,oe&=65535,oe+=q*ne,J+=oe>>>16,oe&=65535,oe+=K*te,J+=oe>>>16,oe&=65535,J+=G*re+j*ne+q*te+K*ee,J&=65535,u(ie<<16|ue,J<<16|oe,this.unsigned)},$.mul=$.multiply,$.divide=function(T){if(s(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var L=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(L,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?x:v;var G,j,q;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return x;if(T.gt(this.shru(1)))return C;q=x}else{if(this.eq(O)){if(T.eq(k)||T.eq(N))return O;if(T.eq(O))return k;var K=this.shr(1);return G=K.div(T).shl(1),G.eq(v)?T.isNegative()?k:N:(j=this.sub(T.mul(G)),q=G.add(j.div(T)),q)}else if(T.eq(O))return this.unsigned?x:v;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();q=v}for(j=this;j.gte(T);){G=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var ee=Math.ceil(Math.log(G)/Math.LN2),te=ee<=48?1:l(2,ee-48),ne=c(G),re=ne.mul(T);re.isNegative()||re.gt(j);)G-=te,ne=c(G,this.unsigned),re=ne.mul(T);ne.isZero()&&(ne=k),q=q.add(ne),j=j.sub(re)}return q},$.div=$.divide,$.modulo=function(T){if(s(T)||(T=p(T)),n){var L=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(L,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(T){return s(T)||(T=p(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},$.or=function(T){return s(T)||(T=p(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},$.xor=function(T){return s(T)||(T=p(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},$.shiftLeft=function(T){return s(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):u(0,this.low<<T-32,this.unsigned)},$.shl=$.shiftLeft,$.shiftRight=function(T){return s(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(T){if(s(T)&&(T=T.toInt()),T&=63,T===0)return this;var L=this.high;if(T<32){var G=this.low;return u(G>>>T|L<<32-T,L>>>T,this.unsigned)}else return T===32?u(L,0,this.unsigned):u(L>>>T-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var T=this.high,L=this.low;return[L&255,L>>>8&255,L>>>16&255,L>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},$.toBytesBE=function(){var T=this.high,L=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,L>>>24,L>>>16&255,L>>>8&255,L&255]},r.fromBytes=function(T,L,G){return G?r.fromBytesLE(T,L):r.fromBytesBE(T,L)},r.fromBytesLE=function(T,L){return new r(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,L)},r.fromBytesBE=function(T,L){return new r(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],L)}}}),zA=xt({"(disabled):node_modules/.pnpm/node-fetch@2.6.2/node_modules/node-fetch/browser.js"(){}}),WA=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,r,s){function a(u){var l=this,d=c();l.next=function(){var p=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=p-(l.c=p|0)},l.c=1,l.s0=d(" "),l.s1=d(" "),l.s2=d(" "),l.s0-=d(u),l.s0<0&&(l.s0+=1),l.s1-=d(u),l.s1<0&&(l.s1+=1),l.s2-=d(u),l.s2<0&&(l.s2+=1),d=null}function o(u,l){return l.c=u.c,l.s0=u.s0,l.s1=u.s1,l.s2=u.s2,l}function i(u,l){var d=new a(u),p=l&&l.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function c(){var u=4022871197,l=function(d){d=d.toString();for(var p=0;p<d.length;p++){u+=d.charCodeAt(p);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return l}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),VA=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(c){var u=this,l="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},c===(c|0)?u.x=c:l+=c;for(var d=0;d<l.length+64;d++)u.x^=l.charCodeAt(d)|0,u.next()}function o(c,u){return u.x=c.x,u.y=c.y,u.z=c.z,u.w=c.w,u}function i(c,u){var l=new a(c),d=u&&u.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var h=l.next()>>>11,f=(l.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=l.next,p.quick=p,d&&(typeof d=="object"&&o(d,l),p.state=function(){return o(l,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),UA=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(c){var u=this,l="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,c===(c|0)?u.x=c:l+=c;for(var d=0;d<l.length+64;d++)u.x^=l.charCodeAt(d)|0,d==l.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(c,u){return u.x=c.x,u.y=c.y,u.z=c.z,u.w=c.w,u.v=c.v,u.d=c.d,u}function i(c,u){var l=new a(c),d=u&&u.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var h=l.next()>>>11,f=(l.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=l.next,p.quick=p,d&&(typeof d=="object"&&o(d,l),p.state=function(){return o(l,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),GA=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(c){var u=this;u.next=function(){var d=u.x,p=u.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,u.i=p+1&7,f};function l(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}l(u,c)}function o(c,u){return u.x=c.x.slice(),u.i=c.i,u}function i(c,u){c==null&&(c=+new Date);var l=new a(c),d=u&&u.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var h=l.next()>>>11,f=(l.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=l.next,p.quick=p,d&&(d.x&&o(d,l),p.state=function(){return o(l,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),HA=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(c){var u=this;u.next=function(){var d=u.w,p=u.X,h=u.i,f,m;return u.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,u.i=h,m+(d^d>>>16)|0};function l(d,p){var h,f,m,g,b,y=[],v=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,v=Math.max(v,p.length)),m=0,g=-32;g<v;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(b=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=f+b,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=b,d.X=y,d.i=m}l(u,c)}function o(c,u){return u.i=c.i,u.w=c.w,u.X=c.X.slice(),u}function i(c,u){c==null&&(c=+new Date);var l=new a(c),d=u&&u.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var h=l.next()>>>11,f=(l.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=l.next,p.quick=p,d&&(d.X&&o(d,l),p.state=function(){return o(l,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),jA=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(c){var u=this,l="";u.next=function(){var p=u.b,h=u.c,f=u.d,m=u.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,u.b=p=p<<20^p>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-p|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,c===Math.floor(c)?(u.a=c/4294967296|0,u.b=c|0):l+=c;for(var d=0;d<l.length+20;d++)u.b^=l.charCodeAt(d)|0,u.next()}function o(c,u){return u.a=c.a,u.b=c.b,u.c=c.c,u.d=c.d,u}function i(c,u){var l=new a(c),d=u&&u.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var h=l.next()>>>11,f=(l.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=l.next,p.quick=p,d&&(typeof d=="object"&&o(d,l),p.state=function(){return o(l,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),S0=xt({"(disabled):crypto"(){}}),qA=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r){var s=this,a=256,o=6,i=52,c="random",u=r.pow(a,o),l=r.pow(2,i),d=l*2,p=a-1,h;function f(k,C,N){var F=[];C=C==!0?{entropy:!0}:C||{};var R=y(b(C.entropy?[k,x(n)]:k==null?v():k,3),F),O=new m(F),$=function(){for(var P=O.g(o),T=u,L=0;P<l;)P=(P+L)*a,T*=a,L=O.g(1);for(;P>=d;)P/=2,T/=2,L>>>=1;return(P+L)/T};return $.int32=function(){return O.g(4)|0},$.quick=function(){return O.g(4)/4294967296},$.double=$,y(x(O.S),n),(C.pass||N||function(P,T,L,G){return G&&(G.S&&g(G,O),P.state=function(){return g(O,{})}),L?(r[c]=P,T):P})($,R,"global"in C?C.global:this==r,C.state)}r["seed"+c]=f;function m(k){var C,N=k.length,F=this,R=0,O=F.i=F.j=0,$=F.S=[];for(N||(k=[N++]);R<a;)$[R]=R++;for(R=0;R<a;R++)$[R]=$[O=p&O+k[R%N]+(C=$[R])],$[O]=C;(F.g=function(P){for(var T,L=0,G=F.i,j=F.j,q=F.S;P--;)T=q[G=p&G+1],L=L*a+q[p&(q[G]=q[j=p&j+T])+(q[j]=T)];return F.i=G,F.j=j,L})(a)}function g(k,C){return C.i=k.i,C.j=k.j,C.S=k.S.slice(),C}function b(k,C){var N=[],F=typeof k,R;if(C&&F=="object")for(R in k)try{N.push(b(k[R],C-1))}catch(O){}return N.length?N:F=="string"?k:k+"\0"}function y(k,C){for(var N=k+"",F,R=0;R<N.length;)C[p&R]=p&(F^=C[p&R]*19)+N.charCodeAt(R++);return x(C)}function v(){try{var k;return h&&(k=h.randomBytes)?k=k(a):(k=new Uint8Array(a),(s.crypto||s.msCrypto).getRandomValues(k)),x(k)}catch(F){var C=s.navigator,N=C&&C.plugins;return[+new Date,s,N,s.screen,x(n)]}}function x(k){return String.fromCharCode.apply(0,k)}if(y(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=S0()}catch(k){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),C0=xt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=WA(),r=VA(),s=UA(),a=GA(),o=HA(),i=jA(),c=qA();c.alea=n,c.xor128=r,c.xorwow=s,c.xorshift7=a,c.xor4096=o,c.tychei=i,t.exports=c}}),KA=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,r,s){function a(u){var l=this,d=c();l.next=function(){var p=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=p-(l.c=p|0)},l.c=1,l.s0=d(" "),l.s1=d(" "),l.s2=d(" "),l.s0-=d(u),l.s0<0&&(l.s0+=1),l.s1-=d(u),l.s1<0&&(l.s1+=1),l.s2-=d(u),l.s2<0&&(l.s2+=1),d=null}function o(u,l){return l.c=u.c,l.s0=u.s0,l.s1=u.s1,l.s2=u.s2,l}function i(u,l){var d=new a(u),p=l&&l.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function c(){var u=4022871197,l=function(d){d=String(d);for(var p=0;p<d.length;p++){u+=d.charCodeAt(p);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return l}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),XA=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(c){var u=this,l="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},c===(c|0)?u.x=c:l+=c;for(var d=0;d<l.length+64;d++)u.x^=l.charCodeAt(d)|0,u.next()}function o(c,u){return u.x=c.x,u.y=c.y,u.z=c.z,u.w=c.w,u}function i(c,u){var l=new a(c),d=u&&u.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var h=l.next()>>>11,f=(l.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=l.next,p.quick=p,d&&(typeof d=="object"&&o(d,l),p.state=function(){return o(l,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),YA=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(c){var u=this,l="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,c===(c|0)?u.x=c:l+=c;for(var d=0;d<l.length+64;d++)u.x^=l.charCodeAt(d)|0,d==l.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(c,u){return u.x=c.x,u.y=c.y,u.z=c.z,u.w=c.w,u.v=c.v,u.d=c.d,u}function i(c,u){var l=new a(c),d=u&&u.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var h=l.next()>>>11,f=(l.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=l.next,p.quick=p,d&&(typeof d=="object"&&o(d,l),p.state=function(){return o(l,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),ZA=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(c){var u=this;u.next=function(){var d=u.x,p=u.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,u.i=p+1&7,f};function l(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}l(u,c)}function o(c,u){return u.x=c.x.slice(),u.i=c.i,u}function i(c,u){c==null&&(c=+new Date);var l=new a(c),d=u&&u.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var h=l.next()>>>11,f=(l.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=l.next,p.quick=p,d&&(d.x&&o(d,l),p.state=function(){return o(l,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),JA=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(c){var u=this;u.next=function(){var d=u.w,p=u.X,h=u.i,f,m;return u.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,u.i=h,m+(d^d>>>16)|0};function l(d,p){var h,f,m,g,b,y=[],v=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,v=Math.max(v,p.length)),m=0,g=-32;g<v;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(b=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=f+b,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=b,d.X=y,d.i=m}l(u,c)}function o(c,u){return u.i=c.i,u.w=c.w,u.X=c.X.slice(),u}function i(c,u){c==null&&(c=+new Date);var l=new a(c),d=u&&u.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var h=l.next()>>>11,f=(l.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=l.next,p.quick=p,d&&(d.X&&o(d,l),p.state=function(){return o(l,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),QA=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(c){var u=this,l="";u.next=function(){var p=u.b,h=u.c,f=u.d,m=u.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,u.b=p=p<<20^p>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-p|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,c===Math.floor(c)?(u.a=c/4294967296|0,u.b=c|0):l+=c;for(var d=0;d<l.length+20;d++)u.b^=l.charCodeAt(d)|0,u.next()}function o(c,u){return u.a=c.a,u.b=c.b,u.c=c.c,u.d=c.d,u}function i(c,u){var l=new a(c),d=u&&u.state,p=function(){return(l.next()>>>0)/4294967296};return p.double=function(){do var h=l.next()>>>11,f=(l.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=l.next,p.quick=p,d&&(typeof d=="object"&&o(d,l),p.state=function(){return o(l,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),e$=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r,s){var a=256,o=6,i=52,c="random",u=s.pow(a,o),l=s.pow(2,i),d=l*2,p=a-1,h;function f(k,C,N){var F=[];C=C==!0?{entropy:!0}:C||{};var R=y(b(C.entropy?[k,x(r)]:k==null?v():k,3),F),O=new m(F),$=function(){for(var P=O.g(o),T=u,L=0;P<l;)P=(P+L)*a,T*=a,L=O.g(1);for(;P>=d;)P/=2,T/=2,L>>>=1;return(P+L)/T};return $.int32=function(){return O.g(4)|0},$.quick=function(){return O.g(4)/4294967296},$.double=$,y(x(O.S),r),(C.pass||N||function(P,T,L,G){return G&&(G.S&&g(G,O),P.state=function(){return g(O,{})}),L?(s[c]=P,T):P})($,R,"global"in C?C.global:this==s,C.state)}function m(k){var C,N=k.length,F=this,R=0,O=F.i=F.j=0,$=F.S=[];for(N||(k=[N++]);R<a;)$[R]=R++;for(R=0;R<a;R++)$[R]=$[O=p&O+k[R%N]+(C=$[R])],$[O]=C;(F.g=function(P){for(var T,L=0,G=F.i,j=F.j,q=F.S;P--;)T=q[G=p&G+1],L=L*a+q[p&(q[G]=q[j=p&j+T])+(q[j]=T)];return F.i=G,F.j=j,L})(a)}function g(k,C){return C.i=k.i,C.j=k.j,C.S=k.S.slice(),C}function b(k,C){var N=[],F=typeof k,R;if(C&&F=="object")for(R in k)try{N.push(b(k[R],C-1))}catch(O){}return N.length?N:F=="string"?k:k+"\0"}function y(k,C){for(var N=k+"",F,R=0;R<N.length;)C[p&R]=p&(F^=C[p&R]*19)+N.charCodeAt(R++);return x(C)}function v(){try{var k;return h&&(k=h.randomBytes)?k=k(a):(k=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(k)),x(k)}catch(F){var C=n.navigator,N=C&&C.plugins;return[+new Date,n,N,n.screen,x(r)]}}function x(k){return String.fromCharCode.apply(0,k)}if(y(s.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{h=S0()}catch(k){}}else typeof define=="function"&&define.amd?define(function(){return f}):s["seed"+c]=f})(typeof self!="undefined"?self:e,[],Math)}}),T0=xt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=KA(),r=XA(),s=YA(),a=ZA(),o=JA(),i=QA(),c=e$();c.alea=n,c.xor128=r,c.xorwow=s,c.xorshift7=a,c.xor4096=o,c.tychei=i,t.exports=c}}),N0=xt({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),cl=xt({"(disabled):path"(){}}),t$=xt({"(disabled):worker_threads"(){}}),n$=xt({"(disabled):perf_hooks"(){}}),r$=xt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(s){s=s||{};function a(){return J.buffer!=ze&&tn(J.buffer),En}function o(){return J.buffer!=ze&&tn(J.buffer),St}function i(){return J.buffer!=ze&&tn(J.buffer),mr}function c(){return J.buffer!=ze&&tn(J.buffer),dn}function u(){return J.buffer!=ze&&tn(J.buffer),er}var l=typeof s!="undefined"?s:{},d,p;l.ready=new Promise(function(S,A){d=S,p=A});var h={},f;for(f in l)l.hasOwnProperty(f)&&(h[f]=l[f]);var m=[],g="./this.program",b=function(S,A){throw A},y=!1,v=!1,x=!1,k=!1;y=typeof window=="object",v=typeof importScripts=="function",x=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",k=!y&&!x&&!v;var C=l.ENVIRONMENT_IS_PTHREAD||!1;C&&(ze=l.buffer);var N="";function F(S){return l.locateFile?l.locateFile(S,N):N+S}var R,O,$,P,T,L;if(x){v?N=cl().dirname(N)+"/":N=__dirname+"/",R=function(A,z){return T||(T=Bi("fs")),L||(L=cl()),A=L.normalize(A),T.readFileSync(A,z?null:"utf8")},$=function(A){var z=R(A,!0);return z.buffer||(z=new Uint8Array(z)),fe(z.buffer),z},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof il))throw S}),process.on("unhandledRejection",ms),b=function(S){process.exit(S)},l.inspect=function(){return"[Emscripten Module object]"};var G;try{G=t$()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=G.Worker}else k?(typeof read!="undefined"&&(R=function(A){return read(A)}),$=function(A){var z;return typeof readbuffer=="function"?new Uint8Array(readbuffer(A)):(z=read(A,"binary"),fe(typeof z=="object"),z)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(b=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||v)&&(v?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",x?(R=function(A,z){return T||(T=Bi("fs")),L||(L=cl()),A=L.normalize(A),T.readFileSync(A,z?null:"utf8")},$=function(A){var z=R(A,!0);return z.buffer||(z=new Uint8Array(z)),fe(z.buffer),z}):(R=function(S){var A=new XMLHttpRequest;return A.open("GET",S,!1),A.send(null),A.responseText},v&&($=function(S){var A=new XMLHttpRequest;return A.open("GET",S,!1),A.responseType="arraybuffer",A.send(null),new Uint8Array(A.response)}),O=function(S,A,z){var X=new XMLHttpRequest;X.open("GET",S,!0),X.responseType="arraybuffer",X.onload=function(){if(X.status==200||X.status==0&&X.response){A(X.response);return}z()},X.onerror=z,X.send(null)}),P=function(S){document.title=S});x&&typeof performance=="undefined"&&(global.performance=n$().performance);var j=l.print||console.log.bind(console),q=l.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(l[f]=h[f]);h=null,l.arguments&&(m=l.arguments),l.thisProgram&&(g=l.thisProgram),l.quit&&(b=l.quit);var K=Atomics.load,ee=Atomics.store,te=Atomics.compareExchange,ne;l.wasmBinary&&(ne=l.wasmBinary);var re=l.noExitRuntime||!0;typeof WebAssembly!="object"&&ms("no native wasm support detected");var J,oe,ie=!1,ue;function fe(S,A){S||ms("Assertion failed: "+A)}function Se(S){var A=l["_"+S];return fe(A,"Cannot call unknown function "+S+", make sure it is exported"),A}function Ce(S,A,z,X,pe){var le={string:function(pn){var Mi=0;if(pn!=null&&pn!==0){var w0=(pn.length<<2)+1;Mi=Ri(w0),tt(pn,Mi,w0)}return Mi},array:function(pn){var Mi=Ri(pn.length);return Je(pn,Mi),Mi}};function de(pn){return A==="string"?_e(pn):A==="boolean"?Boolean(pn):pn}var xe=Se(S),rt=[],Ht=0;if(X)for(var Lt=0;Lt<X.length;Lt++){var Hs=le[z[Lt]];Hs?(Ht===0&&(Ht=ol()),rt[Lt]=Hs(X[Lt])):rt[Lt]=X[Lt]}var Oi=xe.apply(null,rt);return Oi=de(Oi),Ht!==0&&Di(Ht),Oi}function Ne(S,A,z,X){z=z||[];var pe=z.every(function(de){return de==="number"}),le=A!=="string";return le&&pe&&!X?Se(S):function(){return Ce(S,A,z,arguments,X)}}function Pe(S,A,z){for(var X=A+z,pe="";!(A>=X);){var le=S[A++];if(!le)return pe;if(!(le&128)){pe+=String.fromCharCode(le);continue}var de=S[A++]&63;if((le&224)==192){pe+=String.fromCharCode((le&31)<<6|de);continue}var xe=S[A++]&63;if((le&240)==224?le=(le&15)<<12|de<<6|xe:le=(le&7)<<18|de<<12|xe<<6|S[A++]&63,le<65536)pe+=String.fromCharCode(le);else{var rt=le-65536;pe+=String.fromCharCode(55296|rt>>10,56320|rt&1023)}}return pe}function _e(S,A){return S?Pe(o(),S,A):""}function ct(S,A,z,X){if(!(X>0))return 0;for(var pe=z,le=z+X-1,de=0;de<S.length;++de){var xe=S.charCodeAt(de);if(xe>=55296&&xe<=57343){var rt=S.charCodeAt(++de);xe=65536+((xe&1023)<<10)|rt&1023}if(xe<=127){if(z>=le)break;A[z++]=xe}else if(xe<=2047){if(z+1>=le)break;A[z++]=192|xe>>6,A[z++]=128|xe&63}else if(xe<=65535){if(z+2>=le)break;A[z++]=224|xe>>12,A[z++]=128|xe>>6&63,A[z++]=128|xe&63}else{if(z+3>=le)break;A[z++]=240|xe>>18,A[z++]=128|xe>>12&63,A[z++]=128|xe>>6&63,A[z++]=128|xe&63}}return A[z]=0,z-pe}function tt(S,A,z){return ct(S,o(),A,z)}function nt(S){for(var A=0,z=0;z<S.length;++z){var X=S.charCodeAt(z);X>=55296&&X<=57343&&(X=65536+((X&1023)<<10)|S.charCodeAt(++z)&1023),X<=127?++A:X<=2047?A+=2:X<=65535?A+=3:A+=4}return A}function Je(S,A){a().set(S,A)}function ot(S,A){return S%A>0&&(S+=A-S%A),S}var ze,En,St,Bn,en,mr,dn,Qn,er;function tn(S){ze=S,l.HEAP8=En=new Int8Array(S),l.HEAP16=Bn=new Int16Array(S),l.HEAP32=mr=new Int32Array(S),l.HEAPU8=St=new Uint8Array(S),l.HEAPU16=en=new Uint16Array(S),l.HEAPU32=dn=new Uint32Array(S),l.HEAPF32=Qn=new Float32Array(S),l.HEAPF64=er=new Float64Array(S)}var tr=l.INITIAL_MEMORY||16777216;if(C)J=l.wasmMemory,ze=l.buffer;else if(l.wasmMemory)J=l.wasmMemory;else if(J=new WebAssembly.Memory({initial:tr/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),x&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(ze=J.buffer),tr=ze.byteLength,tn(ze);var nr,zn=[],qr=[],hs=[],zs=[],Ni=[],Kr=!1,Xd=!1;C||qr.push({func:function(){lp()}});function Bm(){if(!C){if(l.preRun)for(typeof l.preRun=="function"&&(l.preRun=[l.preRun]);l.preRun.length;)Zd(l.preRun.shift());Ei(zn)}}function Zu(){Kr=!0,!C&&Ei(qr)}function zm(){C||Ei(hs)}function Yd(){C||(Xd=!0)}function An(){if(!C){if(l.postRun)for(typeof l.postRun=="function"&&(l.postRun=[l.postRun]);l.postRun.length;)Wm(l.postRun.shift());Ei(Ni)}}function Zd(S){zn.unshift(S)}function Wm(S){Ni.unshift(S)}var fs=0,Ws=null,Ta=null;function Vm(S){fe(!C,"addRunDependency cannot be used in a pthread worker"),fs++,l.monitorRunDependencies&&l.monitorRunDependencies(fs)}function Um(S){if(fs--,l.monitorRunDependencies&&l.monitorRunDependencies(fs),fs==0&&(Ws!==null&&(clearInterval(Ws),Ws=null),Ta)){var A=Ta;Ta=null,A()}}l.preloadedImages={},l.preloadedAudios={};function ms(S){l.onAbort&&l.onAbort(S),C&&console.error("Pthread aborting at "+new Error().stack),S+="",q(S),ie=!0,ue=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var A=new WebAssembly.RuntimeError(S);throw p(A),A}function Jd(S,A){return String.prototype.startsWith?S.startsWith(A):S.indexOf(A)===0}var _i="data:application/octet-stream;base64,";function Qd(S){return Jd(S,_i)}var Gm="file://";function ep(S){return Jd(S,Gm)}var $n="tfjs-backend-wasm-threaded-simd.wasm";Qd($n)||($n=F($n));function tp(S){try{if(S==$n&&ne)return new Uint8Array(ne);if($)return $(S);throw"both async and sync fetching of the wasm failed"}catch(A){ms(A)}}function Hm(){if(!ne&&(y||v)){if(typeof fetch=="function"&&!ep($n))return fetch($n,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+$n+"'";return S.arrayBuffer()}).catch(function(){return tp($n)});if(O)return new Promise(function(S,A){O($n,function(z){S(new Uint8Array(z))},A)})}return Promise.resolve().then(function(){return tp($n)})}function jm(){var S={a:Og};function A(de,xe){var rt=de.exports;if(l.asm=rt,nr=l.asm.F,oe=xe,!C){var Ht=Ie.unusedWorkers.length;Ie.unusedWorkers.forEach(function(Lt){Ie.loadWasmModuleToWorker(Lt,function(){--Ht||Um("wasm-instantiate")})})}}C||Vm("wasm-instantiate");function z(de){A(de.instance,de.module)}function X(de){return Hm().then(function(xe){return WebAssembly.instantiate(xe,S)}).then(de,function(xe){q("failed to asynchronously prepare wasm: "+xe),ms(xe)})}function pe(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!Qd($n)&&!ep($n)&&typeof fetch=="function"?fetch($n,{credentials:"same-origin"}).then(function(de){var xe=WebAssembly.instantiateStreaming(de,S);return xe.then(z,function(rt){return q("wasm streaming compile failed: "+rt),q("falling back to ArrayBuffer instantiation"),X(z)})}):X(z)}if(l.instantiateWasm)try{var le=l.instantiateWasm(S,A);return le}catch(de){return q("Module.instantiateWasm callback failed with error: "+de),!1}return pe().catch(p),{}}var qm={10024:function(){throw"Canceled!"},10042:function(S,A){setTimeout(function(){m0(S,A)},0)}};function np(){Ie.initRuntime()}function Ei(S){for(;S.length>0;){var A=S.shift();if(typeof A=="function"){A(l);continue}var z=A.func;typeof z=="number"?A.arg===void 0?nr.get(z)():nr.get(z)(A.arg):z(A.arg===void 0?null:A.arg)}}function Ju(S,A){if(S<=0||S>a().length||S&!0||A<0)return-28;if(A==0)return 0;A>=2147483647&&(A=1/0);var z=Atomics.load(i(),Pi>>2),X=0;if(z==S){var pe=Atomics.compareExchange(i(),Pi>>2,z,0);if(pe==z&&(--A,X=1,A<=0))return 1}var le=Atomics.notify(i(),S>>2,A);if(le>=0)return le+X;throw"Atomics.notify returned an unexpected value "+le}l._emscripten_futex_wake=Ju;function Km(S){if(C)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";i()[S+12>>2]=0;var A=Ie.pthreads[S];A.worker.terminate(),Ie.freeThreadData(A),Ie.runningWorkers.splice(Ie.runningWorkers.indexOf(A.worker),1),A.worker.pthread=void 0}function Xm(S){if(C)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var A=Ie.pthreads[S];A.worker.postMessage({cmd:"cancel"})}function Ym(S){if(C)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var A=Ie.pthreads[S];if(A){i()[S+12>>2]=0;var z=A.worker;Ie.returnWorkerToPool(z)}}var Ie={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),A=0;A<S;++A)Ie.allocateUnusedWorker()},initRuntime:function(){for(var S=_a(228),A=0;A<228/4;++A)c()[S/4+A]=0;i()[S+12>>2]=S;var z=S+152;i()[z>>2]=z;for(var X=_a(512),A=0;A<128;++A)c()[X/4+A]=0;Atomics.store(c(),S+100>>2,X),Atomics.store(c(),S+40>>2,S),ub(S,!v,1),f0(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ie.threadExitHandlers.length>0;)Ie.threadExitHandlers.pop()();C&&Fi()&&h0()},runExitHandlersAndDeinitThread:function(S,A){Atomics.store(c(),S+56>>2,1),Atomics.store(c(),S+60>>2,0),Ie.runExitHandlers(),Atomics.store(c(),S+4>>2,A),Atomics.store(c(),S+0>>2,1),Ju(S+0,2147483647),ub(0,0,0)},threadExit:function(S){var A=Fi();A&&(Ie.runExitHandlersAndDeinitThread(A,S),C&&postMessage({cmd:"exit"}))},threadCancel:function(){Ie.runExitHandlersAndDeinitThread(Fi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in Ie.pthreads){var A=Ie.pthreads[S];A&&A.worker&&Ie.returnWorkerToPool(A.worker)}Ie.pthreads={};for(var z=0;z<Ie.unusedWorkers.length;++z){var X=Ie.unusedWorkers[z];X.terminate()}Ie.unusedWorkers=[];for(var z=0;z<Ie.runningWorkers.length;++z){var X=Ie.runningWorkers[z],A=X.pthread;Ie.freeThreadData(A),X.terminate()}Ie.runningWorkers=[]},freeThreadData:function(S){if(!!S){if(S.threadInfoStruct){var A=i()[S.threadInfoStruct+100>>2];i()[S.threadInfoStruct+100>>2]=0,al(A),al(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&al(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){Ie.runWithoutMainThreadQueuedCalls(function(){delete Ie.pthreads[S.pthread.threadInfoStruct],Ie.unusedWorkers.push(S),Ie.runningWorkers.splice(Ie.runningWorkers.indexOf(S),1),Ie.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){i()[x0>>2]=0;try{S()}finally{i()[x0>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,A){S.onmessage=function(z){var X=z.data,pe=X.cmd;if(S.pthread&&(Ie.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),X.targetThread&&X.targetThread!=Fi()){var le=Ie.pthreads[X.targetThread];le?le.worker.postMessage(z.data,X.transferList):console.error('Internal error! Worker sent a message "'+pe+'" to target pthread '+X.targetThread+", but that thread no longer exists!"),Ie.currentProxiedOperationCallerThread=void 0;return}if(pe==="processQueuedMainThreadWork")ib();else if(pe==="spawnThread")cp(z.data);else if(pe==="cleanupThread")Ym(X.thread);else if(pe==="killThread")Km(X.thread);else if(pe==="cancelThread")Xm(X.thread);else if(pe==="loaded")S.loaded=!0,A&&A(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(pe==="print")j("Thread "+X.threadId+": "+X.text);else if(pe==="printErr")q("Thread "+X.threadId+": "+X.text);else if(pe==="alert")alert("Thread "+X.threadId+": "+X.text);else if(pe==="exit"){var de=S.pthread&&Atomics.load(c(),S.pthread.threadInfoStruct+64>>2);de&&Ie.returnWorkerToPool(S)}else if(pe==="exitProcess")try{$A(X.returnCode)}catch(xe){if(xe instanceof il)return;throw xe}else pe==="cancelDone"?Ie.returnWorkerToPool(S):pe==="objectTransfer"?Ie.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?S.postMessage(z.data):q("worker sent an unknown command "+pe);Ie.currentProxiedOperationCallerThread=void 0},S.onerror=function(z){q("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},x&&(S.on("message",function(z){S.onmessage({data:z})}),S.on("error",function(z){S.onerror(z)}),S.on("exit",function(z){})),S.postMessage({cmd:"load",urlOrBlob:l.mainScriptUrlOrBlob||r,wasmMemory:J,wasmModule:oe})},allocateUnusedWorker:function(){var S=F("tfjs-backend-wasm-threaded-simd.worker.js");Ie.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return Ie.unusedWorkers.length==0&&(Ie.allocateUnusedWorker(),Ie.loadWasmModuleToWorker(Ie.unusedWorkers[0])),Ie.unusedWorkers.length>0?Ie.unusedWorkers.pop():null},busySpinWait:function(S){for(var A=performance.now()+S;performance.now()<A;);}};function Zm(S,A){y0(S,A),Di(S)}l.establishStackSpace=Zm;function Jm(){return re}l.getNoExitRuntime=Jm;function Qm(S,A){return nr.get(S)(A)}l.invokeEntryPoint=Qm;function eg(S,A,z,X){ms("Assertion failed: "+_e(S)+", at: "+[A?_e(A):"unknown filename",z,X?_e(X):"unknown function"])}function tg(S,A){var z=_main(S,A)}var Na;x?Na=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:C?Na=function(){return performance.now()-l.__performance_now_clock_drift}:typeof dateNow!="undefined"?Na=dateNow:Na=function(){return performance.now()};function ng(S){return i()[d0()>>2]=S,S}function rg(S,A){if(C)return Vs(1,1,S,A)}function sg(S,A){if(S==A)postMessage({cmd:"processQueuedMainThreadWork"});else if(C)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var z=Ie.pthreads[S],X=z&&z.worker;if(!X)return;X.postMessage({cmd:"processThreadQueue"})}return 1}function ag(){ms()}function og(S,A,z){var X=dg(A,z);return qm[S].apply(null,X)}function ig(S,A){}function cg(S,A,z){if(S<=0||S>a().length||S&!0)return-28;if(y){if(Atomics.load(i(),S>>2)!=A)return-6;for(var pe=performance.now(),le=pe+z,de=Atomics.exchange(i(),Pi>>2,S);;){if(pe=performance.now(),pe>le)return de=Atomics.exchange(i(),Pi>>2,0),-73;if(de=Atomics.exchange(i(),Pi>>2,0),de==0)break;if(ib(),Atomics.load(i(),S>>2)!=A)return-6;de=Atomics.exchange(i(),Pi>>2,S)}return 0}else{var X=Atomics.wait(i(),S>>2,A,z);if(X==="timed-out")return-73;if(X==="not-equal")return-6;if(X==="ok")return 0;throw"Atomics.wait returned an unexpected value "+X}}function ug(S,A,z){o().copyWithin(S,A,A+z)}function lg(){return x?Bi("os").cpus().length:navigator.hardwareConcurrency}function Vs(S,A){for(var z=arguments.length-2,X=ol(),pe=z,le=Ri(pe*8),de=le>>3,xe=0;xe<z;xe++){var rt=arguments[2+xe];u()[de+xe]=rt}var Ht=b0(S,pe,le,A);return Di(X),Ht}var Qu=[],el=[];function dg(S,A){el.length=0;var z;for(A>>=2;z=o()[S++];){var X=z<105;X&&A&1&&A++,el.push(X?u()[A++>>1]:i()[A]),++A}return el}function pg(S,A,z){Qu.length=A;for(var X=z>>3,pe=0;pe<A;pe++)Qu[pe]=u()[X+pe];var le=S<0,de=le?qm[-S-1]:Pg[S];return de.apply(null,Qu)}function hg(){return o().length}function fg(S){try{return J.grow(S-ze.byteLength+65535>>>16),tn(J.buffer),1}catch(A){}}function mg(S){var A=hg();if(S<=A)return!1;var z=2147483648;if(S>z)return!1;for(var X=1;X<=4;X*=2){var pe=A*(1+.2/X);pe=Math.min(pe,S+100663296);var le=Math.min(z,ot(Math.max(S,pe),65536)),de=fg(le);if(de)return!0}return!1}var Le={inEventHandler:0,removeAllEventListeners:function(){for(var S=Le.eventHandlers.length-1;S>=0;--S)Le._removeHandler(S);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(zs.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,A,z){function X(de,xe){if(de.length!=xe.length)return!1;for(var rt in de)if(de[rt]!=xe[rt])return!1;return!0}for(var pe in Le.deferredCalls){var le=Le.deferredCalls[pe];if(le.targetFunction==S&&X(le.argsList,z))return}Le.deferredCalls.push({targetFunction:S,precedence:A,argsList:z}),Le.deferredCalls.sort(function(de,xe){return de.precedence<xe.precedence})},removeDeferredCalls:function(S){for(var A=0;A<Le.deferredCalls.length;++A)Le.deferredCalls[A].targetFunction==S&&(Le.deferredCalls.splice(A,1),--A)},canPerformEventHandlerRequests:function(){return Le.inEventHandler&&Le.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Le.canPerformEventHandlerRequests())for(var S=0;S<Le.deferredCalls.length;++S){var A=Le.deferredCalls[S];Le.deferredCalls.splice(S,1),--S,A.targetFunction.apply(null,A.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,A){for(var z=0;z<Le.eventHandlers.length;++z)Le.eventHandlers[z].target==S&&(!A||A==Le.eventHandlers[z].eventTypeString)&&Le._removeHandler(z--)},_removeHandler:function(S){var A=Le.eventHandlers[S];A.target.removeEventListener(A.eventTypeString,A.eventListenerFunc,A.useCapture),Le.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var A=function(pe){++Le.inEventHandler,Le.currentEventHandler=S,Le.runDeferredCalls(),S.handlerFunc(pe),Le.runDeferredCalls(),--Le.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=A,S.target.addEventListener(S.eventTypeString,A,S.useCapture),Le.eventHandlers.push(S),Le.registerRemoveEventListeners();else for(var z=0;z<Le.eventHandlers.length;++z)Le.eventHandlers[z].target==S.target&&Le.eventHandlers[z].eventTypeString==S.eventTypeString&&Le._removeHandler(z--)},queueEventHandlerOnThread_iiii:function(S,A,z,X,pe){var le=ol(),de=Ri(12);i()[de>>2]=z,i()[de+4>>2]=X,i()[de+8>>2]=pe,cb(0,S,637534208,A,X,de),Di(le)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return Ie.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function gg(S){var A=nt(S)+1,z=_a(A);return tt(S,z,A),z}function bg(S,A,z,X){var pe=ol(),le=Ri(12),de=0;A&&(de=gg(A)),i()[le>>2]=de,i()[le+4>>2]=z,i()[le+8>>2]=X,cb(0,S,657457152,0,de,le),Di(pe)}function yg(S,A,z,X){A=A?_e(A):"",bg(S,A,z,X)}function vg(S){return S>2?_e(S):S}var xg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function wg(S){S=vg(S);var A=xg[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return A}function tl(S){return wg(S)}function rp(S,A,z){var X=tl(S);if(!X)return-4;if(X.canvasSharedPtr&&(i()[X.canvasSharedPtr>>2]=A,i()[X.canvasSharedPtr+4>>2]=z),X.offscreenCanvas||!X.controlTransferredOffscreen){X.offscreenCanvas&&(X=X.offscreenCanvas);var pe=!1;if(X.GLctxObject&&X.GLctxObject.GLctx){var le=X.GLctxObject.GLctx.getParameter(2978);pe=le[0]===0&&le[1]===0&&le[2]===X.width&&le[3]===X.height}X.width=A,X.height=z,pe&&X.GLctxObject.GLctx.viewport(0,0,A,z)}else if(X.canvasSharedPtr){var de=i()[X.canvasSharedPtr+8>>2];return yg(de,S,A,z),1}else return-4;return 0}function sp(S,A,z){return C?Vs(2,1,S,A,z):rp(S,A,z)}function kg(S,A,z){var X=tl(S);return X?rp(S,A,z):sp(S,A,z)}function Ig(S){}function Sg(S,A){}function Cg(S){var A=S.getExtension("ANGLE_instanced_arrays");if(A)return S.vertexAttribDivisor=function(z,X){A.vertexAttribDivisorANGLE(z,X)},S.drawArraysInstanced=function(z,X,pe,le){A.drawArraysInstancedANGLE(z,X,pe,le)},S.drawElementsInstanced=function(z,X,pe,le,de){A.drawElementsInstancedANGLE(z,X,pe,le,de)},1}function Tg(S){var A=S.getExtension("OES_vertex_array_object");if(A)return S.createVertexArray=function(){return A.createVertexArrayOES()},S.deleteVertexArray=function(z){A.deleteVertexArrayOES(z)},S.bindVertexArray=function(z){A.bindVertexArrayOES(z)},S.isVertexArray=function(z){return A.isVertexArrayOES(z)},1}function Ng(S){var A=S.getExtension("WEBGL_draw_buffers");if(A)return S.drawBuffers=function(z,X){A.drawBuffersWEBGL(z,X)},1}function _g(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var Qe={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(A){Qe.lastError||(Qe.lastError=A)},getNewId:function(S){for(var A=Qe.counter++,z=S.length;z<A;z++)S[z]=null;return A},getSource:function(S,A,z,X){for(var pe="",le=0;le<A;++le){var de=X?i()[X+le*4>>2]:-1;pe+=_e(i()[z+le*4>>2],de<0?void 0:de)}return pe},createContext:function(S,A){var z=S.getContext("webgl",A);if(!z)return 0;var X=Qe.registerContext(z,A);return X},registerContext:function(S,A){var z=_a(8);i()[z+4>>2]=Fi();var X={handle:z,attributes:A,version:A.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=X),Qe.contexts[z]=X,(typeof A.enableExtensionsByDefault=="undefined"||A.enableExtensionsByDefault)&&Qe.initExtensions(X),z},makeContextCurrent:function(S){return Qe.currentContext=Qe.contexts[S],l.ctx=Us=Qe.currentContext&&Qe.currentContext.GLctx,!(S&&!Us)},getContext:function(S){return Qe.contexts[S]},deleteContext:function(S){Qe.currentContext===Qe.contexts[S]&&(Qe.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(Qe.contexts[S].GLctx.canvas),Qe.contexts[S]&&Qe.contexts[S].GLctx.canvas&&(Qe.contexts[S].GLctx.canvas.GLctxObject=void 0),al(Qe.contexts[S].handle),Qe.contexts[S]=null},initExtensions:function(S){if(S||(S=Qe.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var A=S.GLctx;Cg(A),Tg(A),Ng(A),A.disjointTimerQueryExt=A.getExtension("EXT_disjoint_timer_query"),_g(A);var z=A.getSupportedExtensions()||[];z.forEach(function(X){X.indexOf("lose_context")<0&&X.indexOf("debug")<0&&A.getExtension(X)})}},populateUniformTable:function(S){for(var A=Qe.programs[S],z=Qe.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},X=z.uniforms,pe=Us.getProgramParameter(A,35718),le=0;le<pe;++le){var de=Us.getActiveUniform(A,le),xe=de.name;z.maxUniformLength=Math.max(z.maxUniformLength,xe.length+1),xe.slice(-1)=="]"&&(xe=xe.slice(0,xe.lastIndexOf("[")));var rt=Us.getUniformLocation(A,xe);if(rt){var Ht=Qe.getNewId(Qe.uniforms);X[xe]=[de.size,Ht],Qe.uniforms[Ht]=rt;for(var Lt=1;Lt<de.size;++Lt){var Hs=xe+"["+Lt+"]";rt=Us.getUniformLocation(A,Hs),Ht=Qe.getNewId(Qe.uniforms),Qe.uniforms[Ht]=rt}}}}},Eg=["default","low-power","high-performance"];function Ag(S,A){var z=A>>2,X=i()[z+(24>>2)],pe={alpha:!!i()[z+(0>>2)],depth:!!i()[z+(4>>2)],stencil:!!i()[z+(8>>2)],antialias:!!i()[z+(12>>2)],premultipliedAlpha:!!i()[z+(16>>2)],preserveDrawingBuffer:!!i()[z+(20>>2)],powerPreference:Eg[X],failIfMajorPerformanceCaveat:!!i()[z+(28>>2)],majorVersion:i()[z+(32>>2)],minorVersion:i()[z+(36>>2)],enableExtensionsByDefault:i()[z+(40>>2)],explicitSwapControl:i()[z+(44>>2)],proxyContextToMainThread:i()[z+(48>>2)],renderViaOffscreenBackBuffer:i()[z+(52>>2)]},le=tl(S);if(!le||pe.explicitSwapControl)return 0;var de=Qe.createContext(le,pe);return de}function $g(S,A){return Ag(S,A)}var Ai={mappings:{},buffers:[null,[],[]],printChar:function(S,A){var z=Ai.buffers[S];A===0||A===10?((S===1?j:q)(Pe(z,0)),z.length=0):z.push(A)},varargs:void 0,get:function(){Ai.varargs+=4;var S=i()[Ai.varargs-4>>2];return S},getStr:function(S){var A=_e(S);return A},get64:function(S,A){return S}};function ap(S){return C?Vs(3,1,S):0}function op(S,A,z,X,pe){if(C)return Vs(4,1,S,A,z,X,pe)}function ip(S,A,z,X){if(C)return Vs(5,1,S,A,z,X);for(var pe=0,le=0;le<z;le++){for(var de=i()[A+le*8>>2],xe=i()[A+(le*8+4)>>2],rt=0;rt<xe;rt++)Ai.printChar(S,o()[de+rt]);pe+=xe}return i()[X>>2]=pe,0}function Fg(S){var A=Ie.threadExitHandlers.pop();S&&A()}function Dg(S,A){Ie.threadExitHandlers.push(function(){nr.get(S)(A)})}function cp(S){if(C)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var A=Ie.getNewWorker();if(A.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";Ie.runningWorkers.push(A);for(var z=_a(128*4),X=0;X<128;++X)i()[z+X*4>>2]=0;var pe=S.stackBase+S.stackSize,le=Ie.pthreads[S.pthread_ptr]={worker:A,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},de=le.threadInfoStruct>>2;Atomics.store(c(),de+(64>>2),S.detached),Atomics.store(c(),de+(100>>2),z),Atomics.store(c(),de+(40>>2),le.threadInfoStruct),Atomics.store(c(),de+(80>>2),S.stackSize),Atomics.store(c(),de+(76>>2),pe),Atomics.store(c(),de+(104>>2),S.stackSize),Atomics.store(c(),de+(104+8>>2),pe),Atomics.store(c(),de+(104+12>>2),S.detached);var xe=p0(),rt=xe+40;Atomics.store(c(),de+(172>>2),rt),A.pthread=le;var Ht={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};A.runPthread=function(){Ht.time=performance.now(),A.postMessage(Ht,S.transferList)},A.loaded&&(A.runPthread(),delete A.runPthread)}function Rg(S,A,z,X){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return q("pthread_create called with a null thread pointer!"),28;var pe=[],le=0;if(C&&(pe.length===0||le))return g0(687865856,S,A,z,X);if(le)return le;var de=0,xe=0,rt=0;A&&A!=-1?(de=i()[A>>2],de+=81920,xe=i()[A+8>>2],rt=i()[A+12>>2]!==0):de=2097152;var Ht=xe==0;Ht?xe=v0(16,de):(xe-=de,fe(xe>0));for(var Lt=_a(228),Hs=0;Hs<228>>2;++Hs)c()[(Lt>>2)+Hs]=0;i()[S>>2]=Lt,i()[Lt+12>>2]=Lt;var Oi=Lt+152;i()[Oi>>2]=Oi;var pn={stackBase:xe,stackSize:de,allocatedOwnStack:Ht,detached:rt,startRoutine:z,pthread_ptr:Lt,arg:X,transferList:pe};return C?(pn.cmd="spawnThread",postMessage(pn,pe)):cp(pn),0}function up(S){if(C)return Vs(6,1,S);switch(S){case 30:return 16384;case 85:var A=2147483648;return A/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return ng(28),-1}C||Ie.initMainThreadBlock();var Us,Pg=[null,rg,sp,ap,op,ip,up],Og={e:eg,r:tg,x:sg,b:ag,y:og,j:ig,c:cg,d:Ju,f:Na,p:ug,z:lg,u:pg,q:mg,v:kg,i:Ig,t:Sg,w:$g,m:ap,n:op,g:ip,o:np,a:J||l.wasmMemory,k:Fg,l:Dg,h:Rg,s:up},l0=jm(),lp=l.___wasm_call_ctors=function(){return(lp=l.___wasm_call_ctors=l.asm.A).apply(null,arguments)},Mg=l._init=function(){return(Mg=l._init=l.asm.B).apply(null,arguments)},Lg=l._register_tensor=function(){return(Lg=l._register_tensor=l.asm.C).apply(null,arguments)},Bg=l._dispose_data=function(){return(Bg=l._dispose_data=l.asm.D).apply(null,arguments)},zg=l._dispose=function(){return(zg=l._dispose=l.asm.E).apply(null,arguments)},Wg=l._Abs=function(){return(Wg=l._Abs=l.asm.G).apply(null,arguments)},Vg=l._Add=function(){return(Vg=l._Add=l.asm.H).apply(null,arguments)},Ug=l._AddN=function(){return(Ug=l._AddN=l.asm.I).apply(null,arguments)},Gg=l._All=function(){return(Gg=l._All=l.asm.J).apply(null,arguments)},Hg=l._Any=function(){return(Hg=l._Any=l.asm.K).apply(null,arguments)},jg=l._ArgMax=function(){return(jg=l._ArgMax=l.asm.L).apply(null,arguments)},qg=l._AvgPool=function(){return(qg=l._AvgPool=l.asm.M).apply(null,arguments)},Kg=l._BatchMatMul=function(){return(Kg=l._BatchMatMul=l.asm.N).apply(null,arguments)},Xg=l._Ceil=function(){return(Xg=l._Ceil=l.asm.O).apply(null,arguments)},Yg=l._ClipByValue=function(){return(Yg=l._ClipByValue=l.asm.P).apply(null,arguments)},Zg=l._Conv2D=function(){return(Zg=l._Conv2D=l.asm.Q).apply(null,arguments)},Jg=l._Conv2DBackpropInput=function(){return(Jg=l._Conv2DBackpropInput=l.asm.R).apply(null,arguments)},Qg=l._Cos=function(){return(Qg=l._Cos=l.asm.S).apply(null,arguments)},eb=l._Cosh=function(){return(eb=l._Cosh=l.asm.T).apply(null,arguments)},tb=l._CropAndResize=function(){return(tb=l._CropAndResize=l.asm.U).apply(null,arguments)},nb=l._Cumsum=function(){return(nb=l._Cumsum=l.asm.V).apply(null,arguments)},rb=l._DepthToSpace=function(){return(rb=l._DepthToSpace=l.asm.W).apply(null,arguments)},sb=l._DepthwiseConv2dNative=function(){return(sb=l._DepthwiseConv2dNative=l.asm.X).apply(null,arguments)},ab=l._Elu=function(){return(ab=l._Elu=l.asm.Y).apply(null,arguments)},dp=l._Equal=function(){return(dp=l._Equal=l.asm.Z).apply(null,arguments)},pp=l._Exp=function(){return(pp=l._Exp=l.asm._).apply(null,arguments)},hp=l._FlipLeftRight=function(){return(hp=l._FlipLeftRight=l.asm.$).apply(null,arguments)},nl=l._Floor=function(){return(nl=l._Floor=l.asm.aa).apply(null,arguments)},$i=l._FloorDiv=function(){return($i=l._FloorDiv=l.asm.ba).apply(null,arguments)},ob=l._FusedBatchNorm=function(){return(ob=l._FusedBatchNorm=l.asm.ca).apply(null,arguments)},rl=l._FusedConv2D=function(){return(rl=l._FusedConv2D=l.asm.da).apply(null,arguments)},Z=l._FusedDepthwiseConv2D=function(){return(Z=l._FusedDepthwiseConv2D=l.asm.ea).apply(null,arguments)},se=l._Gather=function(){return(se=l._Gather=l.asm.fa).apply(null,arguments)},be=l._GatherNd=function(){return(be=l._GatherNd=l.asm.ga).apply(null,arguments)},Xe=l._Greater=function(){return(Xe=l._Greater=l.asm.ha).apply(null,arguments)},_t=l._GreaterEqual=function(){return(_t=l._GreaterEqual=l.asm.ia).apply(null,arguments)},vt=l._LeakyRelu=function(){return(vt=l._LeakyRelu=l.asm.ja).apply(null,arguments)},Ve=l._Less=function(){return(Ve=l._Less=l.asm.ka).apply(null,arguments)},Ge=l._LessEqual=function(){return(Ge=l._LessEqual=l.asm.la).apply(null,arguments)},nn=l._Log=function(){return(nn=l._Log=l.asm.ma).apply(null,arguments)},gs=l._LogicalAnd=function(){return(gs=l._LogicalAnd=l.asm.na).apply(null,arguments)},bs=l._Max=function(){return(bs=l._Max=l.asm.oa).apply(null,arguments)},fp=l._MaxPool=function(){return(fp=l._MaxPool=l.asm.pa).apply(null,arguments)},sl=l._Maximum=function(){return(sl=l._Maximum=l.asm.qa).apply(null,arguments)},Wn=l._Mean=function(){return(Wn=l._Mean=l.asm.ra).apply(null,arguments)},Gs=l._Min=function(){return(Gs=l._Min=l.asm.sa).apply(null,arguments)},mp=l._Minimum=function(){return(mp=l._Minimum=l.asm.ta).apply(null,arguments)},GE=l._MirrorPad=function(){return(GE=l._MirrorPad=l.asm.ua).apply(null,arguments)},HE=l._Multiply=function(){return(HE=l._Multiply=l.asm.va).apply(null,arguments)},jE=l._Neg=function(){return(jE=l._Neg=l.asm.wa).apply(null,arguments)},qE=l._NonMaxSuppressionV3=function(){return(qE=l._NonMaxSuppressionV3=l.asm.xa).apply(null,arguments)},KE=l._NonMaxSuppressionV4=function(){return(KE=l._NonMaxSuppressionV4=l.asm.ya).apply(null,arguments)},XE=l._NonMaxSuppressionV5=function(){return(XE=l._NonMaxSuppressionV5=l.asm.za).apply(null,arguments)},YE=l._NotEqual=function(){return(YE=l._NotEqual=l.asm.Aa).apply(null,arguments)},ZE=l._OneHot=function(){return(ZE=l._OneHot=l.asm.Ba).apply(null,arguments)},JE=l._PadV2=function(){return(JE=l._PadV2=l.asm.Ca).apply(null,arguments)},QE=l._Pow=function(){return(QE=l._Pow=l.asm.Da).apply(null,arguments)},eA=l._Prelu=function(){return(eA=l._Prelu=l.asm.Ea).apply(null,arguments)},tA=l._Prod=function(){return(tA=l._Prod=l.asm.Fa).apply(null,arguments)},nA=l._RealDiv=function(){return(nA=l._RealDiv=l.asm.Ga).apply(null,arguments)},rA=l._Relu=function(){return(rA=l._Relu=l.asm.Ha).apply(null,arguments)},sA=l._Relu6=function(){return(sA=l._Relu6=l.asm.Ia).apply(null,arguments)},aA=l._ResizeBilinear=function(){return(aA=l._ResizeBilinear=l.asm.Ja).apply(null,arguments)},oA=l._Reverse=function(){return(oA=l._Reverse=l.asm.Ka).apply(null,arguments)},iA=l._RotateWithOffset=function(){return(iA=l._RotateWithOffset=l.asm.La).apply(null,arguments)},cA=l._Round=function(){return(cA=l._Round=l.asm.Ma).apply(null,arguments)},uA=l._Rsqrt=function(){return(uA=l._Rsqrt=l.asm.Na).apply(null,arguments)},lA=l._ScatterNd=function(){return(lA=l._ScatterNd=l.asm.Oa).apply(null,arguments)},dA=l._SelectV2=function(){return(dA=l._SelectV2=l.asm.Pa).apply(null,arguments)},pA=l._Sigmoid=function(){return(pA=l._Sigmoid=l.asm.Qa).apply(null,arguments)},hA=l._Sin=function(){return(hA=l._Sin=l.asm.Ra).apply(null,arguments)},fA=l._Softmax=function(){return(fA=l._Softmax=l.asm.Sa).apply(null,arguments)},mA=l._Sqrt=function(){return(mA=l._Sqrt=l.asm.Ta).apply(null,arguments)},gA=l._Square=function(){return(gA=l._Square=l.asm.Ua).apply(null,arguments)},bA=l._SquaredDifference=function(){return(bA=l._SquaredDifference=l.asm.Va).apply(null,arguments)},yA=l._Step=function(){return(yA=l._Step=l.asm.Wa).apply(null,arguments)},vA=l._StridedSlice=function(){return(vA=l._StridedSlice=l.asm.Xa).apply(null,arguments)},xA=l._Sub=function(){return(xA=l._Sub=l.asm.Ya).apply(null,arguments)},wA=l._Sum=function(){return(wA=l._Sum=l.asm.Za).apply(null,arguments)},kA=l._Tan=function(){return(kA=l._Tan=l.asm._a).apply(null,arguments)},IA=l._Tanh=function(){return(IA=l._Tanh=l.asm.$a).apply(null,arguments)},SA=l._Tile=function(){return(SA=l._Tile=l.asm.ab).apply(null,arguments)},CA=l._TopK=function(){return(CA=l._TopK=l.asm.bb).apply(null,arguments)},TA=l._Transform=function(){return(TA=l._Transform=l.asm.cb).apply(null,arguments)},NA=l._Transpose=function(){return(NA=l._Transpose=l.asm.db).apply(null,arguments)},_A=l.__FusedMatMul=function(){return(_A=l.__FusedMatMul=l.asm.eb).apply(null,arguments)},_a=l._malloc=function(){return(_a=l._malloc=l.asm.fb).apply(null,arguments)},al=l._free=function(){return(al=l._free=l.asm.gb).apply(null,arguments)},d0=l.___errno_location=function(){return(d0=l.___errno_location=l.asm.hb).apply(null,arguments)},p0=l._emscripten_get_global_libc=function(){return(p0=l._emscripten_get_global_libc=l.asm.ib).apply(null,arguments)},Fi=l._pthread_self=function(){return(Fi=l._pthread_self=l.asm.jb).apply(null,arguments)},h0=l.___pthread_tsd_run_dtors=function(){return(h0=l.___pthread_tsd_run_dtors=l.asm.kb).apply(null,arguments)},ib=l._emscripten_main_thread_process_queued_calls=function(){return(ib=l._emscripten_main_thread_process_queued_calls=l.asm.lb).apply(null,arguments)},EA=l._emscripten_current_thread_process_queued_calls=function(){return(EA=l._emscripten_current_thread_process_queued_calls=l.asm.mb).apply(null,arguments)},f0=l._emscripten_register_main_browser_thread_id=function(){return(f0=l._emscripten_register_main_browser_thread_id=l.asm.nb).apply(null,arguments)},m0=l.__emscripten_do_dispatch_to_thread=function(){return(m0=l.__emscripten_do_dispatch_to_thread=l.asm.ob).apply(null,arguments)},g0=l._emscripten_sync_run_in_main_thread_4=function(){return(g0=l._emscripten_sync_run_in_main_thread_4=l.asm.pb).apply(null,arguments)},b0=l._emscripten_run_in_main_runtime_thread_js=function(){return(b0=l._emscripten_run_in_main_runtime_thread_js=l.asm.qb).apply(null,arguments)},cb=l.__emscripten_call_on_thread=function(){return(cb=l.__emscripten_call_on_thread=l.asm.rb).apply(null,arguments)},AA=l._emscripten_tls_init=function(){return(AA=l._emscripten_tls_init=l.asm.sb).apply(null,arguments)},ub=l.__emscripten_thread_init=function(){return(ub=l.__emscripten_thread_init=l.asm.tb).apply(null,arguments)},ol=l.stackSave=function(){return(ol=l.stackSave=l.asm.ub).apply(null,arguments)},Di=l.stackRestore=function(){return(Di=l.stackRestore=l.asm.vb).apply(null,arguments)},Ri=l.stackAlloc=function(){return(Ri=l.stackAlloc=l.asm.wb).apply(null,arguments)},y0=l._emscripten_stack_set_limits=function(){return(y0=l._emscripten_stack_set_limits=l.asm.xb).apply(null,arguments)},v0=l._memalign=function(){return(v0=l._memalign=l.asm.yb).apply(null,arguments)},x0=l.__emscripten_allow_main_runtime_queued_calls=10016,Pi=l.__emscripten_main_thread_futex=11652;l.cwrap=Ne,l.PThread=Ie,l.PThread=Ie,l.wasmMemory=J,l.ExitStatus=il;var gp;function il(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}Ta=function S(){gp||lb(),gp||(Ta=S)};function lb(S){if(S=S||m,fs>0)return;if(C){d(l),Zu(),postMessage({cmd:"loaded"});return}if(Bm(),fs>0)return;function A(){gp||(gp=!0,l.calledRun=!0,!ie&&(Zu(),zm(),d(l),l.onRuntimeInitialized&&l.onRuntimeInitialized(),An()))}l.setStatus?(l.setStatus("Running..."),setTimeout(function(){setTimeout(function(){l.setStatus("")},1),A()},1)):A()}l.run=lb;function $A(S,A){if(!(A&&re&&S===0)){if(!A&&C)throw postMessage({cmd:"exitProcess",returnCode:S}),new il(S);re||(Ie.terminateAllThreads(),ue=S,Yd(),l.onExit&&l.onExit(S),ie=!0),b(S,new il(S))}}if(l.preInit)for(typeof l.preInit=="function"&&(l.preInit=[l.preInit]);l.preInit.length>0;)l.preInit.pop()();return C&&(re=!1,Ie.initWorker()),lb(),s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),s$=xt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(s){s=s||{};var a=typeof s!="undefined"?s:{},o,i;a.ready=new Promise(function(Z,se){o=Z,i=se});var c={},u;for(u in a)a.hasOwnProperty(u)&&(c[u]=a[u]);var l=[],d="./this.program",p=function(Z,se){throw se},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var b="";function y(Z){return a.locateFile?a.locateFile(Z,b):b+Z}var v,x,k,C,N,F;m?(f?b=cl().dirname(b)+"/":b=__dirname+"/",v=function(se,be){return N||(N=Bi("fs")),F||(F=cl()),se=F.normalize(se),N.readFileSync(se,be?null:"utf8")},k=function(se){var be=v(se,!0);return be.buffer||(be=new Uint8Array(be)),j(be.buffer),be},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),l=process.argv.slice(2),process.on("uncaughtException",function(Z){if(!(Z instanceof ob))throw Z}),process.on("unhandledRejection",Kr),p=function(Z){process.exit(Z)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(v=function(se){return read(se)}),k=function(se){var be;return typeof readbuffer=="function"?new Uint8Array(readbuffer(se)):(be=read(se,"binary"),j(typeof be=="object"),be)},typeof scriptArgs!="undefined"?l=scriptArgs:typeof arguments!="undefined"&&(l=arguments),typeof quit=="function"&&(p=function(Z){quit(Z)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?b=self.location.href:typeof document!="undefined"&&document.currentScript&&(b=document.currentScript.src),r&&(b=r),b.indexOf("blob:")!==0?b=b.substr(0,b.lastIndexOf("/")+1):b="",v=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.send(null),se.responseText},f&&(k=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),x=function(Z,se,be){var Xe=new XMLHttpRequest;Xe.open("GET",Z,!0),Xe.responseType="arraybuffer",Xe.onload=function(){if(Xe.status==200||Xe.status==0&&Xe.response){se(Xe.response);return}be()},Xe.onerror=be,Xe.send(null)},C=function(Z){document.title=Z});var R=a.print||console.log.bind(console),O=a.printErr||console.warn.bind(console);for(u in c)c.hasOwnProperty(u)&&(a[u]=c[u]);c=null,a.arguments&&(l=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var $;a.wasmBinary&&($=a.wasmBinary);var P=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Kr("no native wasm support detected");var T,L=!1,G;function j(Z,se){Z||Kr("Assertion failed: "+se)}function q(Z){var se=a["_"+Z];return j(se,"Cannot call unknown function "+Z+", make sure it is exported"),se}function K(Z,se,be,Xe,_t){var vt={string:function(Wn){var Gs=0;if(Wn!=null&&Wn!==0){var mp=(Wn.length<<2)+1;Gs=nl(mp),oe(Wn,Gs,mp)}return Gs},array:function(Wn){var Gs=nl(Wn.length);return ie(Wn,Gs),Gs}};function Ve(Wn){return se==="string"?re(Wn):se==="boolean"?Boolean(Wn):Wn}var Ge=q(Z),nn=[],gs=0;if(Xe)for(var bs=0;bs<Xe.length;bs++){var fp=vt[be[bs]];fp?(gs===0&&(gs=pp()),nn[bs]=fp(Xe[bs])):nn[bs]=Xe[bs]}var sl=Ge.apply(null,nn);return sl=Ve(sl),gs!==0&&hp(gs),sl}function ee(Z,se,be,Xe){be=be||[];var _t=be.every(function(Ve){return Ve==="number"}),vt=se!=="string";return vt&&_t&&!Xe?q(Z):function(){return K(Z,se,be,arguments,Xe)}}var te=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(Z,se,be){for(var Xe=se+be,_t=se;Z[_t]&&!(_t>=Xe);)++_t;if(_t-se>16&&Z.subarray&&te)return te.decode(Z.subarray(se,_t));for(var vt="";se<_t;){var Ve=Z[se++];if(!(Ve&128)){vt+=String.fromCharCode(Ve);continue}var Ge=Z[se++]&63;if((Ve&224)==192){vt+=String.fromCharCode((Ve&31)<<6|Ge);continue}var nn=Z[se++]&63;if((Ve&240)==224?Ve=(Ve&15)<<12|Ge<<6|nn:Ve=(Ve&7)<<18|Ge<<12|nn<<6|Z[se++]&63,Ve<65536)vt+=String.fromCharCode(Ve);else{var gs=Ve-65536;vt+=String.fromCharCode(55296|gs>>10,56320|gs&1023)}}return vt}function re(Z,se){return Z?ne(Ce,Z,se):""}function J(Z,se,be,Xe){if(!(Xe>0))return 0;for(var _t=be,vt=be+Xe-1,Ve=0;Ve<Z.length;++Ve){var Ge=Z.charCodeAt(Ve);if(Ge>=55296&&Ge<=57343){var nn=Z.charCodeAt(++Ve);Ge=65536+((Ge&1023)<<10)|nn&1023}if(Ge<=127){if(be>=vt)break;se[be++]=Ge}else if(Ge<=2047){if(be+1>=vt)break;se[be++]=192|Ge>>6,se[be++]=128|Ge&63}else if(Ge<=65535){if(be+2>=vt)break;se[be++]=224|Ge>>12,se[be++]=128|Ge>>6&63,se[be++]=128|Ge&63}else{if(be+3>=vt)break;se[be++]=240|Ge>>18,se[be++]=128|Ge>>12&63,se[be++]=128|Ge>>6&63,se[be++]=128|Ge&63}}return se[be]=0,be-_t}function oe(Z,se,be){return J(Z,Ce,se,be)}function ie(Z,se){Se.set(Z,se)}function ue(Z,se){return Z%se>0&&(Z+=se-Z%se),Z}var fe,Se,Ce,Ne,Pe,_e,ct,tt,nt;function Je(Z){fe=Z,a.HEAP8=Se=new Int8Array(Z),a.HEAP16=Ne=new Int16Array(Z),a.HEAP32=_e=new Int32Array(Z),a.HEAPU8=Ce=new Uint8Array(Z),a.HEAPU16=Pe=new Uint16Array(Z),a.HEAPU32=ct=new Uint32Array(Z),a.HEAPF32=tt=new Float32Array(Z),a.HEAPF64=nt=new Float64Array(Z)}var ot=a.INITIAL_MEMORY||16777216,ze,En=[],St=[],Bn=[],en=[],mr=!1;St.push({func:function(){np()}});function dn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)tr(a.preRun.shift());Ws(En)}function Qn(){mr=!0,Ws(St)}function er(){Ws(Bn)}function tn(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)nr(a.postRun.shift());Ws(en)}function tr(Z){En.unshift(Z)}function nr(Z){en.unshift(Z)}var zn=0,qr=null,hs=null;function zs(Z){zn++,a.monitorRunDependencies&&a.monitorRunDependencies(zn)}function Ni(Z){if(zn--,a.monitorRunDependencies&&a.monitorRunDependencies(zn),zn==0&&(qr!==null&&(clearInterval(qr),qr=null),hs)){var se=hs;hs=null,se()}}a.preloadedImages={},a.preloadedAudios={};function Kr(Z){a.onAbort&&a.onAbort(Z),Z+="",O(Z),L=!0,G=1,Z="abort("+Z+"). Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(Z);throw i(se),se}function Xd(Z,se){return String.prototype.startsWith?Z.startsWith(se):Z.indexOf(se)===0}var Bm="data:application/octet-stream;base64,";function Zu(Z){return Xd(Z,Bm)}var zm="file://";function Yd(Z){return Xd(Z,zm)}var An="tfjs-backend-wasm.wasm";Zu(An)||(An=y(An));function Zd(Z){try{if(Z==An&&$)return new Uint8Array($);if(k)return k(Z);throw"both async and sync fetching of the wasm failed"}catch(se){Kr(se)}}function Wm(){if(!$&&(h||f)){if(typeof fetch=="function"&&!Yd(An))return fetch(An,{credentials:"same-origin"}).then(function(Z){if(!Z.ok)throw"failed to load wasm binary file at '"+An+"'";return Z.arrayBuffer()}).catch(function(){return Zd(An)});if(x)return new Promise(function(Z,se){x(An,function(be){Z(new Uint8Array(be))},se)})}return Promise.resolve().then(function(){return Zd(An)})}function fs(){var Z={a:jm};function se(Ve,Ge){var nn=Ve.exports;a.asm=nn,T=a.asm.i,Je(T.buffer),ze=a.asm.o,Ni("wasm-instantiate")}zs("wasm-instantiate");function be(Ve){se(Ve.instance)}function Xe(Ve){return Wm().then(function(Ge){return WebAssembly.instantiate(Ge,Z)}).then(Ve,function(Ge){O("failed to asynchronously prepare wasm: "+Ge),Kr(Ge)})}function _t(){return!$&&typeof WebAssembly.instantiateStreaming=="function"&&!Zu(An)&&!Yd(An)&&typeof fetch=="function"?fetch(An,{credentials:"same-origin"}).then(function(Ve){var Ge=WebAssembly.instantiateStreaming(Ve,Z);return Ge.then(be,function(nn){return O("wasm streaming compile failed: "+nn),O("falling back to ArrayBuffer instantiation"),Xe(be)})}):Xe(be)}if(a.instantiateWasm)try{var vt=a.instantiateWasm(Z,se);return vt}catch(Ve){return O("Module.instantiateWasm callback failed with error: "+Ve),!1}return _t().catch(i),{}}function Ws(Z){for(;Z.length>0;){var se=Z.shift();if(typeof se=="function"){se(a);continue}var be=se.func;typeof be=="number"?se.arg===void 0?ze.get(be)():ze.get(be)(se.arg):be(se.arg===void 0?null:se.arg)}}function Ta(){Kr()}function Vm(Z,se,be){Ce.copyWithin(Z,se,se+be)}function Um(){return Ce.length}function ms(Z){try{return T.grow(Z-fe.byteLength+65535>>>16),Je(T.buffer),1}catch(se){}}function Jd(Z){var se=Um(),be=2147483648;if(Z>be)return!1;for(var Xe=1;Xe<=4;Xe*=2){var _t=se*(1+.2/Xe);_t=Math.min(_t,Z+100663296);var vt=Math.min(be,ue(Math.max(Z,_t),65536)),Ve=ms(vt);if(Ve)return!0}return!1}var _i={mappings:{},buffers:[null,[],[]],printChar:function(Z,se){var be=_i.buffers[Z];se===0||se===10?((Z===1?R:O)(ne(be,0)),be.length=0):be.push(se)},varargs:void 0,get:function(){_i.varargs+=4;var Z=_e[_i.varargs-4>>2];return Z},getStr:function(Z){var se=re(Z);return se},get64:function(Z,se){return Z}};function Qd(Z){return 0}function Gm(Z,se,be,Xe,_t){}function ep(Z,se,be,Xe){for(var _t=0,vt=0;vt<be;vt++){for(var Ve=_e[se+vt*8>>2],Ge=_e[se+(vt*8+4)>>2],nn=0;nn<Ge;nn++)_i.printChar(Z,Ce[Ve+nn]);_t+=Ge}return _e[Xe>>2]=_t,0}function $n(){return 6}function tp(Z){return _e[dp()>>2]=Z,Z}function Hm(Z){switch(Z){case 30:return 16384;case 85:var se=2147483648;return se/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return tp(28),-1}var jm={a:Ta,d:Vm,e:Jd,f:Qd,c:Gm,b:ep,g:$n,h:Hm},qm=fs(),np=a.___wasm_call_ctors=function(){return(np=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},Ei=a._init=function(){return(Ei=a._init=a.asm.k).apply(null,arguments)},Ju=a._register_tensor=function(){return(Ju=a._register_tensor=a.asm.l).apply(null,arguments)},Km=a._dispose_data=function(){return(Km=a._dispose_data=a.asm.m).apply(null,arguments)},Xm=a._dispose=function(){return(Xm=a._dispose=a.asm.n).apply(null,arguments)},Ym=a._Abs=function(){return(Ym=a._Abs=a.asm.p).apply(null,arguments)},Ie=a._Add=function(){return(Ie=a._Add=a.asm.q).apply(null,arguments)},Zm=a._AddN=function(){return(Zm=a._AddN=a.asm.r).apply(null,arguments)},Jm=a._All=function(){return(Jm=a._All=a.asm.s).apply(null,arguments)},Qm=a._Any=function(){return(Qm=a._Any=a.asm.t).apply(null,arguments)},eg=a._ArgMax=function(){return(eg=a._ArgMax=a.asm.u).apply(null,arguments)},tg=a._AvgPool=function(){return(tg=a._AvgPool=a.asm.v).apply(null,arguments)},Na=a._BatchMatMul=function(){return(Na=a._BatchMatMul=a.asm.w).apply(null,arguments)},ng=a._Ceil=function(){return(ng=a._Ceil=a.asm.x).apply(null,arguments)},rg=a._ClipByValue=function(){return(rg=a._ClipByValue=a.asm.y).apply(null,arguments)},sg=a._Conv2D=function(){return(sg=a._Conv2D=a.asm.z).apply(null,arguments)},ag=a._Conv2DBackpropInput=function(){return(ag=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},og=a._Cos=function(){return(og=a._Cos=a.asm.B).apply(null,arguments)},ig=a._Cosh=function(){return(ig=a._Cosh=a.asm.C).apply(null,arguments)},cg=a._CropAndResize=function(){return(cg=a._CropAndResize=a.asm.D).apply(null,arguments)},ug=a._Cumsum=function(){return(ug=a._Cumsum=a.asm.E).apply(null,arguments)},lg=a._DepthToSpace=function(){return(lg=a._DepthToSpace=a.asm.F).apply(null,arguments)},Vs=a._DepthwiseConv2dNative=function(){return(Vs=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},Qu=a._Elu=function(){return(Qu=a._Elu=a.asm.H).apply(null,arguments)},el=a._Equal=function(){return(el=a._Equal=a.asm.I).apply(null,arguments)},dg=a._Exp=function(){return(dg=a._Exp=a.asm.J).apply(null,arguments)},pg=a._FlipLeftRight=function(){return(pg=a._FlipLeftRight=a.asm.K).apply(null,arguments)},hg=a._Floor=function(){return(hg=a._Floor=a.asm.L).apply(null,arguments)},fg=a._FloorDiv=function(){return(fg=a._FloorDiv=a.asm.M).apply(null,arguments)},mg=a._FusedBatchNorm=function(){return(mg=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},Le=a._FusedConv2D=function(){return(Le=a._FusedConv2D=a.asm.O).apply(null,arguments)},gg=a._FusedDepthwiseConv2D=function(){return(gg=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},bg=a._Gather=function(){return(bg=a._Gather=a.asm.Q).apply(null,arguments)},yg=a._GatherNd=function(){return(yg=a._GatherNd=a.asm.R).apply(null,arguments)},vg=a._Greater=function(){return(vg=a._Greater=a.asm.S).apply(null,arguments)},xg=a._GreaterEqual=function(){return(xg=a._GreaterEqual=a.asm.T).apply(null,arguments)},wg=a._LeakyRelu=function(){return(wg=a._LeakyRelu=a.asm.U).apply(null,arguments)},tl=a._Less=function(){return(tl=a._Less=a.asm.V).apply(null,arguments)},rp=a._LessEqual=function(){return(rp=a._LessEqual=a.asm.W).apply(null,arguments)},sp=a._Log=function(){return(sp=a._Log=a.asm.X).apply(null,arguments)},kg=a._LogicalAnd=function(){return(kg=a._LogicalAnd=a.asm.Y).apply(null,arguments)},Ig=a._Max=function(){return(Ig=a._Max=a.asm.Z).apply(null,arguments)},Sg=a._MaxPool=function(){return(Sg=a._MaxPool=a.asm._).apply(null,arguments)},Cg=a._Maximum=function(){return(Cg=a._Maximum=a.asm.$).apply(null,arguments)},Tg=a._Mean=function(){return(Tg=a._Mean=a.asm.aa).apply(null,arguments)},Ng=a._Min=function(){return(Ng=a._Min=a.asm.ba).apply(null,arguments)},_g=a._Minimum=function(){return(_g=a._Minimum=a.asm.ca).apply(null,arguments)},Qe=a._MirrorPad=function(){return(Qe=a._MirrorPad=a.asm.da).apply(null,arguments)},Eg=a._Multiply=function(){return(Eg=a._Multiply=a.asm.ea).apply(null,arguments)},Ag=a._Neg=function(){return(Ag=a._Neg=a.asm.fa).apply(null,arguments)},$g=a._NonMaxSuppressionV3=function(){return($g=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},Ai=a._NonMaxSuppressionV4=function(){return(Ai=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},ap=a._NonMaxSuppressionV5=function(){return(ap=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},op=a._NotEqual=function(){return(op=a._NotEqual=a.asm.ja).apply(null,arguments)},ip=a._OneHot=function(){return(ip=a._OneHot=a.asm.ka).apply(null,arguments)},Fg=a._PadV2=function(){return(Fg=a._PadV2=a.asm.la).apply(null,arguments)},Dg=a._Pow=function(){return(Dg=a._Pow=a.asm.ma).apply(null,arguments)},cp=a._Prelu=function(){return(cp=a._Prelu=a.asm.na).apply(null,arguments)},Rg=a._Prod=function(){return(Rg=a._Prod=a.asm.oa).apply(null,arguments)},up=a._RealDiv=function(){return(up=a._RealDiv=a.asm.pa).apply(null,arguments)},Us=a._Relu=function(){return(Us=a._Relu=a.asm.qa).apply(null,arguments)},Pg=a._Relu6=function(){return(Pg=a._Relu6=a.asm.ra).apply(null,arguments)},Og=a._ResizeBilinear=function(){return(Og=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},l0=a._Reverse=function(){return(l0=a._Reverse=a.asm.ta).apply(null,arguments)},lp=a._RotateWithOffset=function(){return(lp=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},Mg=a._Round=function(){return(Mg=a._Round=a.asm.va).apply(null,arguments)},Lg=a._Rsqrt=function(){return(Lg=a._Rsqrt=a.asm.wa).apply(null,arguments)},Bg=a._ScatterNd=function(){return(Bg=a._ScatterNd=a.asm.xa).apply(null,arguments)},zg=a._SelectV2=function(){return(zg=a._SelectV2=a.asm.ya).apply(null,arguments)},Wg=a._Sigmoid=function(){return(Wg=a._Sigmoid=a.asm.za).apply(null,arguments)},Vg=a._Sin=function(){return(Vg=a._Sin=a.asm.Aa).apply(null,arguments)},Ug=a._Softmax=function(){return(Ug=a._Softmax=a.asm.Ba).apply(null,arguments)},Gg=a._Sqrt=function(){return(Gg=a._Sqrt=a.asm.Ca).apply(null,arguments)},Hg=a._Square=function(){return(Hg=a._Square=a.asm.Da).apply(null,arguments)},jg=a._SquaredDifference=function(){return(jg=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},qg=a._Step=function(){return(qg=a._Step=a.asm.Fa).apply(null,arguments)},Kg=a._StridedSlice=function(){return(Kg=a._StridedSlice=a.asm.Ga).apply(null,arguments)},Xg=a._Sub=function(){return(Xg=a._Sub=a.asm.Ha).apply(null,arguments)},Yg=a._Sum=function(){return(Yg=a._Sum=a.asm.Ia).apply(null,arguments)},Zg=a._Tan=function(){return(Zg=a._Tan=a.asm.Ja).apply(null,arguments)},Jg=a._Tanh=function(){return(Jg=a._Tanh=a.asm.Ka).apply(null,arguments)},Qg=a._Tile=function(){return(Qg=a._Tile=a.asm.La).apply(null,arguments)},eb=a._TopK=function(){return(eb=a._TopK=a.asm.Ma).apply(null,arguments)},tb=a._Transform=function(){return(tb=a._Transform=a.asm.Na).apply(null,arguments)},nb=a._Transpose=function(){return(nb=a._Transpose=a.asm.Oa).apply(null,arguments)},rb=a.__FusedMatMul=function(){return(rb=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},sb=a._malloc=function(){return(sb=a._malloc=a.asm.Qa).apply(null,arguments)},ab=a._free=function(){return(ab=a._free=a.asm.Ra).apply(null,arguments)},dp=a.___errno_location=function(){return(dp=a.___errno_location=a.asm.Sa).apply(null,arguments)},pp=a.stackSave=function(){return(pp=a.stackSave=a.asm.Ta).apply(null,arguments)},hp=a.stackRestore=function(){return(hp=a.stackRestore=a.asm.Ua).apply(null,arguments)},nl=a.stackAlloc=function(){return(nl=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=ee;var $i;function ob(Z){this.name="ExitStatus",this.message="Program terminated with exit("+Z+")",this.status=Z}hs=function Z(){$i||rl(),$i||(hs=Z)};function rl(Z){if(Z=Z||l,zn>0||(dn(),zn>0))return;function se(){$i||($i=!0,a.calledRun=!0,!L&&(Qn(),er(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),tn()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),se()},1)):se()}if(a.run=rl,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return rl(),s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),a$="3.9.0",o$="3.9.0",i$="3.9.0",c$="3.9.0",u$="3.9.0",l$="3.9.0",d$="3.9.0",p$="3.9.0",h$=1e-7,f$=1e-4,vp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ul=class{refCount(e){return gr("refCount")}incRef(e){return gr("incRef")}timerAvailable(){return!0}time(e){return gr("time")}read(e){return gr("read")}readSync(e){return gr("readSync")}numDataIds(){return gr("numDataIds")}disposeData(e,t){return gr("disposeData")}write(e,t,n){return gr("write")}move(e,t,n,r,s){return gr("move")}memory(){return gr("memory")}floatPrecision(){return gr("floatPrecision")}epsilon(){return this.floatPrecision()===32?h$:f$}dispose(){return gr("dispose")}};function gr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function _0(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,xp(e,t,n)}function m$(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r=0;for(;n>0;)r=Math.random()*n|0,n--,xp(e,n,r),xp(t,n,r)}function ll(e,t,n){return Math.max(e,Math.min(t,n))}function g$(e){return e%2==0?e:e+1}function xp(e,t,n){let r=e[t];e[t]=e[n],e[n]=r}function b$(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function y$(e,t){let n=Math.random();return t*n+(1-n)*e}function v$(e,t){let n=0;for(let r=0;r<e.length;r++){let s=Number(e[r])-Number(t[r]);n+=s*s}return n}function D(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function hn(e,t,n=""){D(ys(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Aa(e){D(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function $a(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||un(e)&&!n)for(let r=0;r<e.length;++r)$a(e[r],t,n);else t.push(e);return t}function $t(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function x$(e){return e.length===0}function ys(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function jt(e){return e%1==0}function w$(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function k$(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function I$(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return _0(t),t}function dl(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function S$(e,t=r=>0,n){return new Promise((r,s)=>{let a=0,o=()=>{if(e()){r();return}a++;let i=t(a);if(n!=null&&a>=n){s();return}setTimeout(o,i)};o()})}function C$(e,t){let n=1,r=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${a}`);r=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let s=e.slice();return s[r]=t/n,s}function br(e,t){let n=t.length;return e=e==null?t.map((r,s)=>s):[].concat(e),D(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),D(e.every(r=>jt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function E0(e,t){let n=[],r=[],s=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||s?null:br(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),r.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),r.push(i))}return{newShape:n,keptDims:r}}function A0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function $0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function F0(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function D0(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function T$(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function un(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function db(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function R0(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function js(e){return typeof e=="string"||e instanceof String}function P0(e){return typeof e=="boolean"}function O0(e){return typeof e=="number"}function wp(e){return Array.isArray(e)?wp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":O0(e)?"float32":js(e)?"string":P0(e)?"bool":"float32"}function qs(e){return!!(e&&e.constructor&&e.call&&e.apply)}function kp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function zi(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function M0(e,t,n,r=!1){let s=new Array;if(t.length===1){let a=t[0]*(r?2:1);for(let o=0;o<a;o++)s[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((c,u)=>c*u)*(r?2:1);for(let c=0;c<a;c++)s[c]=M0(e+c*i,o,n,r)}return s}function Wi(e,t,n=!1){if(e.length===0)return t[0];let r=e.reduce((s,a)=>s*a)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return M0(0,e,t,n)}function pb(e,t){let n=Ip(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function Ip(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function N$(e,t){let n=e.reduce((r,s)=>r*s,1);if(t==null||t==="float32")return Wi(e,new Float32Array(n));if(t==="int32")return Wi(e,new Int32Array(n));if(t==="bool")return Wi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function hb(e){e.forEach(t=>{D(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function _$(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let s=0;s<e.length-1;++s)r+=n[s]*e[s];return r}function E$(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let s=0;s<r.length-1;++s)r[s]=Math.floor(e/n[s]),e-=r[s]*n[s];return r[r.length-1]=e,r}function fb(e){return e&&e.then&&typeof e.then=="function"}function Xr(...e){Q().getBool("IS_TEST")||Q().getBool("PROD")||console.warn(...e)}function A$(...e){Q().getBool("IS_TEST")||Q().getBool("PROD")||console.log(...e)}var L0="tfjsflags",B0=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=$$,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&Xr(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];Xr(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(fb(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);L0 in e&&e[L0].split(",").forEach(n=>{let[r,s]=n.split(":");this.urlFlags[r]=D$(r,s)})}};function $$(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(F$(t,r[0],r[1]),r.join("="))),t}function F$(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function D$(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Q(){return Fa}var Fa=null;function R$(e){Fa=e}var mb;function z0(){if(mb==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");mb=e}return mb}function P$(){let e=z0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function gb(e,t){let n=P$();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Vi="Abs",Ui="Acos",Gi="Acosh",Ks="Add",Da="AddN",Hi="All",ji="Any",Ra="ArgMax",pl="ArgMin",qi="Asin",Ki="Asinh",Xi="Atan",Yi="Atanh",Zi="Atan2",Pa="AvgPool",Sp="AvgPoolGrad",hl="AvgPool3D",Cp="AvgPool3DGrad",Oa="BatchMatMul",Ji="BatchToSpaceND",Tp="Bincount",W0="BroadcastTo",bb="BroadcastArgs",Ma="Cast",La="Ceil",Xs="ClipByValue",Np="Complex",fl="ComplexAbs",Qi="Concat",Ba="Conv2D",_p="Conv2DBackpropFilter",za="Conv2DBackpropInput",ml="Conv3D",Ep="Conv3DBackpropFilterV2",Ap="Conv3DBackpropInputV2",Wa="Cos",Va="Cosh",Ua="Cumsum",ec="CropAndResize",$p="DenseBincount",tc="DepthToSpace",Ga="DepthwiseConv2dNative",Fp="DepthwiseConv2dNativeBackpropFilter",Dp="DepthwiseConv2dNativeBackpropInput",Rp="Diag",gl="Dilation2D",Pp="Dilation2DBackpropInput",Op="Dilation2DBackpropFilter",Ha="RealDiv",Mp="Einsum",ja="Elu",Lp="EluGrad",nc="Erf",rc="Equal",qa="Exp",sc="ExpandDims",ac="Expm1",Bp="FFT",bl="Fill",oc="FlipLeftRight",Ka="Floor",Xa="FloorDiv",Ya="FusedBatchNorm",ic="GatherV2",cc="GatherNd",uc="Greater",Za="GreaterEqual",Ja="Identity",zp="IFFT",Wp="Imag",lc="IsFinite",dc="IsInf",pc="IsNan",Qa="LeakyRelu",hc="Less",fc="LessEqual",Vp="LinSpace",eo="Log",mc="Log1p",gc="LogicalAnd",yl="LogicalNot",vl="LogicalOr",V0="LogSoftmax",xl="LRN",Up="LRNGrad",to="Max",no="Maximum",ro="MaxPool",Gp="MaxPoolGrad",wl="MaxPool3D",Hp="MaxPool3DGrad",jp="MaxPoolWithArgmax",so="Mean",ao="Min",oo="Minimum",io="MirrorPad",bc="Mod",qp="Multinomial",co="Multiply",yc="Neg",vc="NotEqual",xc="NonMaxSuppressionV3",wc="NonMaxSuppressionV4",kc="NonMaxSuppressionV5",Ic="OnesLike",uo="OneHot",Sc="Pack",lo="PadV2",O$="Pool",po="Pow",ho="Prelu",Cc="Prod",kl="Range",Kp="Real",Tc="Reciprocal",fo="Relu",Nc="Reshape",Il="ResizeNearestNeighbor",Xp="ResizeNearestNeighborGrad",mo="ResizeBilinear",Yp="ResizeBilinearGrad",go="Relu6",bo="Reverse",yo="Round",vo="Rsqrt",_c="ScatterNd",Ec="Select",Ac="Selu",$c="Slice",xo="Sin",Fc="Sinh",Dc="Sign",wo="Sigmoid",Rc="Softplus",ko="Sqrt",Io="Sum",Pc="SpaceToBatchND",Oc="SplitV",So="Softmax",Zp="SparseFillEmptyRows",Jp="SparseReshape",Qp="SparseSegmentMean",eh="SparseSegmentSum",th="SparseToDense",Co="SquaredDifference",Sl="Square",Mc="StridedSlice",nh="StringNGrams",rh="StringSplit",sh="StringToHashBucketFast",To="Sub",No="Tan",_o="Tanh",Ys="Tile",Lc="TopK",Bc="Transform",Eo="Transpose",ah="Unique",zc="Unpack",Cl="UnsortedSegmentSum",Wc="ZerosLike",Zs="Step",oh="FromPixels",Vc="RotateWithOffset",Ao="_FusedMatMul",$o="FusedConv2D",Fo="FusedDepthwiseConv2D",Uc=gb("kernelRegistry",()=>new Map),Tl=gb("gradRegistry",()=>new Map);function ih(e,t){let n=vb(e,t);return Uc.get(n)}function yb(e){return Tl.get(e)}function ch(e){let t=Uc.entries(),n=[];for(;;){let{done:r,value:s}=t.next();if(r)break;let[a,o]=s,[i]=a.split("_");i===e&&n.push(o)}return n}function Nl(e){let{kernelName:t,backendName:n}=e,r=vb(t,n);Uc.has(r)&&Xr(`The kernel '${t}' for backend '${n}' is already registered`),Uc.set(r,e)}function U0(e){let{kernelName:t}=e;Tl.has(t)&&Q().getBool("DEBUG")&&Xr(`Overriding the gradient for '${t}'`),Tl.set(t,e)}function M$(e,t){let n=vb(e,t);if(!Uc.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Uc.delete(n)}function L$(e){if(!Tl.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Tl.delete(e)}function B$(e,t){ch(e).forEach(r=>{let s=Object.assign({},r,{backendName:t});Nl(s)})}function vb(e,t){return`${t}_${e}`}var w={};Fe(w,{arraysEqual:()=>ys,assert:()=>D,assertNonNegativeIntegerDimensions:()=>hb,assertNonNull:()=>Aa,assertShapesMatch:()=>hn,bytesFromStringArray:()=>R0,bytesPerElement:()=>db,checkConversionForErrors:()=>F0,clamp:()=>ll,computeStrides:()=>zi,createScalarValue:()=>H$,createShuffledIndices:()=>I$,decodeString:()=>dh,distSquared:()=>v$,encodeString:()=>Al,fetch:()=>q$,fingerPrint64:()=>G$,flatten:()=>$a,getArrayFromDType:()=>$0,getTypedArrayFromDType:()=>A0,hasEncodingLoss:()=>T$,hexToLong:()=>_l,indexToLoc:()=>E$,inferDtype:()=>wp,inferFromImplicitShape:()=>C$,isBoolean:()=>P0,isFunction:()=>qs,isInt:()=>jt,isNumber:()=>O0,isPromise:()=>fb,isScalarShape:()=>x$,isString:()=>js,isTypedArray:()=>un,isValidDtype:()=>D0,locToIndex:()=>_$,makeOnesTypedArray:()=>pb,makeZerosNestedTypedArray:()=>N$,makeZerosTypedArray:()=>Ip,nearestDivisor:()=>kp,nearestLargerEven:()=>g$,now:()=>El,parseAxisParam:()=>br,randUniform:()=>y$,repeatedTry:()=>S$,rightPad:()=>dl,shuffle:()=>_0,shuffleCombo:()=>m$,sizeFromShape:()=>$t,sizeToSquarishShape:()=>k$,squeezeShape:()=>E0,sum:()=>b$,swap:()=>xp,tanh:()=>w$,toNestedArray:()=>Wi,toTypedArray:()=>lh});var G0=Ea(BA()),Do=G0.default||G0;function _l(e){return Do.fromString(e,!0,16)}var H0=_l("c3a5c85c97cb3127"),Ro=_l("b492b66fbe98f273"),fn=_l("9ae16a3b2f90404f");function xb(e){return e.xor(e.shru(47))}function j0(e,t,n){let r=e.slice(t,t+n);return Do.fromBytes(Array.from(r),!0,!0)}function pt(e,t){return j0(e,t,8)}function q0(e,t){return j0(e,t,4)}function qt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Js(e,t,n=_l("9ddfea08eb382d69")){let r=e.xor(t).mul(n);r=r.xor(r.shru(47));let s=t.xor(r).mul(n);return s=s.xor(s.shru(47)),s=s.mul(n),s}function z$(e,t,n,r,s,a){s=s.add(e),a=qt(a.add(s).add(r),21);let o=s;return s=s.add(t),s=s.add(n),a=a.add(qt(s,44)),[s.add(r),a.add(o)]}function uh(e,t,n,r){return z$(pt(e,t),pt(e,t+8),pt(e,t+16),pt(e,t+24),n,r)}function W$(e,t=e.length){if(t>=8){let n=fn.add(t*2),r=pt(e,0).add(fn),s=pt(e,t-8),a=qt(s,37).mul(n).add(r),o=qt(r,25).add(s).mul(n);return Js(a,o,n)}if(t>=4){let n=fn.add(t*2),r=q0(e,0);return Js(r.shl(3).add(t),q0(e,t-4),n)}if(t>0){let n=e[0],r=e[t>>1],s=e[t-1],a=n+(r<<8),o=t+(s<<2);return xb(fn.mul(a).xor(H0.mul(o))).mul(fn)}return fn}function V$(e,t=e.length){let n=fn.add(t*2),r=pt(e,0).mul(Ro),s=pt(e,8),a=pt(e,t-8).mul(n),o=pt(e,t-16).mul(fn);return Js(qt(r.add(s),43).add(qt(a,30)).add(o),r.add(qt(s.add(fn),18)).add(a),n)}function U$(e,t=e.length){let n=fn.add(t*2),r=pt(e,0).mul(fn),s=pt(e,8),a=pt(e,t-8).mul(n),o=pt(e,t-16).mul(fn),i=qt(r.add(s),43).add(qt(a,30)).add(o),c=Js(i,r.add(qt(s.add(fn),18)).add(a),n),u=pt(e,16).mul(n),l=pt(e,24),d=i.add(pt(e,t-32)).mul(n),p=c.add(pt(e,t-24)).mul(n);return Js(qt(u.add(l),43).add(qt(d,30)).add(p),u.add(qt(l.add(r),18)).add(d),n)}function G$(e,t=e.length){let n=Do.fromNumber(81,!0);if(t<=32)return t<=16?W$(e,t):V$(e,t);if(t<=64)return U$(e,t);let r=n,s=n.mul(Ro).add(113),a=xb(s.mul(fn).add(113)).mul(fn),o=[Do.UZERO,Do.UZERO],i=[Do.UZERO,Do.UZERO];r=r.mul(fn).add(pt(e,0));let c=0,u=(t-1>>6)*64,l=u+(t-1&63)-63;do r=qt(r.add(s).add(o[0]).add(pt(e,c+8)),37).mul(Ro),s=qt(s.add(o[1]).add(pt(e,c+48)),42).mul(Ro),r=r.xor(i[1]),s=s.add(o[0]).add(pt(e,c+40)),a=qt(a.add(i[0]),33).mul(Ro),o=uh(e,c,o[1].mul(Ro),r.add(i[0])),i=uh(e,c+32,a.add(i[1]),s.add(pt(e,c+16))),[a,r]=[r,a],c+=64;while(c!==u);let d=Ro.add(a.and(255).shl(1));return c=l,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),r=qt(r.add(s).add(o[0]).add(pt(e,c+8)),37).mul(d),s=qt(s.add(o[1]).add(pt(e,c+48)),42).mul(d),r=r.xor(i[1].mul(9)),s=s.add(o[0].mul(9).add(pt(e,c+40))),a=qt(a.add(i[0]),33).mul(d),o=uh(e,c,o[1].mul(d),r.add(i[0])),i=uh(e,c+32,a.add(i[1]),s.add(pt(e,c+16))),[a,r]=[r,a],Js(Js(o[0],i[0],d).add(xb(s).mul(H0)).add(a),Js(o[1],i[1],d).add(r),d)}function H$(e,t){return t==="string"?Al(e):lh([e],t)}function j$(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function lh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=$a(e)),Q().getBool("DEBUG")&&F0(e,t),j$(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function El(){return Q().platform.now()}function q$(e,t){return Q().platform.fetch(e,t)}function Al(e,t="utf-8"){return t=t||"utf-8",Q().platform.encode(e,t)}function dh(e,t="utf-8"){return t=t||"utf-8",Q().platform.decode(e,t)}var K$=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new Y$)}profileKernel(e,t,n){let r,s=()=>{r=n()},a,o=El();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let c of r)c.dataSync();a=Promise.resolve({kernelMs:El()-o})}if(Q().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let c=0;c<r.length;c++){let u=r[c];u.data().then(l=>{X$(l,u.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:a.then(c=>c.kernelMs),extraInfo:a.then(c=>c.getExtraProfileInfo!=null?c.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:s,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),r,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],s,i[2])})})}};function X$(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let s=e[r];if(isNaN(s)||!isFinite(s))return console.warn(`Found ${s} in the result of '${n}'`),!0}return!1}var Y$=class{logKernelProfile(e,t,n,r,s,a){let o=typeof r=="number"?dl(`${r}ms`,9):r.error,i=dl(e,25),c=t.rank,u=t.size,l=dl(t.shape.toString(),14),d="";for(let p in s){let h=s[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${c}D ${l} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function Z$(e,t,n){let r={},s={};for(let c=0;c<t.length;c++)r[t[c].id]=!0;for(let c=0;c<e.length;c++){let u=e[c],l=u.inputs;for(let d in l){let p=l[d],h=!1;for(let f=0;f<t.length;f++)if(r[p.id]){u.outputs.forEach(m=>r[m.id]=!0),h=!0,s[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let c=e.length-1;c>=0;c--){let u=e[c],l=u.inputs;for(let d=0;d<u.outputs.length;d++)if(a[u.outputs[d].id]){for(let p in l)a[l[p].id]=!0,o[u.id]=!0;break}}let i=[];for(let c=0;c<e.length;c++){let u=e[c];if(s[u.id]&&o[u.id]){let l={};for(let p in u.inputs){let h=u.inputs[p];r[h.id]&&(l[p]=h)}let d=Object.assign({},u);d.inputs=l,d.outputs=u.outputs,i.push(d)}}return i}function J$(e,t,n,r){for(let s=t.length-1;s>=0;s--){let a=t[s],o=[];if(a.outputs.forEach(c=>{let u=e[c.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let c in a.inputs){if(!(c in i))throw new Error(`Cannot backprop through input ${c}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[c]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${c} must have 'float32' dtype, but has '${u.dtype}'`);let l=a.inputs[c];if(!ys(u.shape,l.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${c}' has shape '${u.shape}', which does not match the shape of the input '${l.shape}'`);if(e[l.id]==null)e[l.id]=u;else{let d=e[l.id];e[l.id]=r(d,u),d.dispose()}}}}var K0=20,$l=3,wb=7;function Q$(e,t,n,r){let s=zi(t),a=eF(e,t,n,s),o=t.length,i=ph(e,t,n,s,a),c=["Tensor"];return r&&(c.push(` dtype: ${n}`),c.push(` rank: ${o}`),c.push(` shape: [${t}]`),c.push(" values:")),c.push(i.map(u=>" "+u).join(`
`)),c.join(`
`)}function eF(e,t,n,r){let s=$t(t),a=r[r.length-1],o=new Array(a).fill(0),i=t.length,c=n==="complex64"?Dl(e):e;if(i>1)for(let u=0;u<s/a;u++){let l=u*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],Fl(c[l+d],0,n).length)}return o}function Fl(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(wb))} + ${parseFloat(e[1].toFixed(wb))}j`:js(e)?r=`'${e}'`:n==="bool"?r=X0(e):r=parseFloat(e.toFixed(wb)).toString(),dl(r,t)}function X0(e){return e===0?"false":"true"}function ph(e,t,n,r,s,a=!0){let o=n==="complex64"?2:1,i=t[0],c=t.length;if(c===0){if(n==="complex64"){let m=Dl(e);return[Fl(m[0],0,n)]}return n==="bool"?[X0(e[0])]:[e[0].toString()]}if(c===1){if(i>K0){let g=$l*o,b=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-$l)*o,i*o));return n==="complex64"&&(b=Dl(b),y=Dl(y)),["["+b.map((v,x)=>Fl(v,s[x],n)).join(", ")+", ..., "+y.map((v,x)=>Fl(v,s[i-$l+x],n)).join(", ")+"]"]}let m=n==="complex64"?Dl(e):Array.from(e);return["["+m.map((g,b)=>Fl(g,s[b],n)).join(", ")+"]"]}let u=t.slice(1),l=r.slice(1),d=r[0]*o,p=[];if(i>K0){for(let m=0;m<$l;m++){let g=m*d,b=g+d;p.push(...ph(e.slice(g,b),u,n,l,s,!1))}p.push("...");for(let m=i-$l;m<i;m++){let g=m*d,b=g+d;p.push(...ph(e.slice(g,b),u,n,l,s,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,b=g+d;p.push(...ph(e.slice(g,b),u,n,l,s,m===i-1))}let h=c===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
`;for(let m=2;m<c;m++)f+=`
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function Dl(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Bt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=$t(e),n!=null){let r=n.length;D(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||$0(t,this.size),this.strides=zi(e)}set(e,...t){t.length===0&&(t=[0]),D(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Yr().makeTensor(this.values,this.shape,this.dtype)}},Yr=null,Gc=null,tF=null;function nF(e){Yr=e}function rF(e){Gc=e}function sF(e){tF=e}var Ee=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=$t(e),this.strides=zi(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Gc.buffer(this.shape,this.dtype,e)}bufferSync(){return Gc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Wi(this.shape,e,this.dtype==="complex64")}arraySync(){return Wi(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Yr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>dh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Yr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>dh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Yr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Yr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Gc.print(this,e)}clone(){return this.throwIfDisposed(),Gc.clone(this)}toString(e=!1){let t=this.dataSync();return Q$(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Gc.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Yr().makeVariable(this,e,t,n)}};Object.defineProperty(Ee,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function aF(){return gb("Tensor",()=>Ee)}aF();var Qs=class extends Ee{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ys(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Yr().disposeTensor(this),this.dataId=e.dataId,Yr().incRef(this,null)}dispose(){Yr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Qs,Symbol.hasInstance,{value:e=>e instanceof Ee&&e.assign!=null&&e.assign instanceof Function});var Er={};Fe(Er,{assertTypesMatch:()=>Y0,getTensorsInContainer:()=>Nb,isTensorInList:()=>iF,makeTypesMatch:()=>Ct});var kb;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(kb||(kb={}));var Ib;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Ib||(Ib={}));var Sb;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Sb||(Sb={}));var Cb;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Cb||(Cb={}));var Tb;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Tb||(Tb={}));var oF={float32:Cb,int32:Ib,bool:Sb,complex64:Tb};function yr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return oF[e][t]}function hh(e){return yr(e,"int32")}function Ct(e,t){if(e.dtype===t.dtype)return[e,t];let n=yr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Y0(e,t){D(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function iF(e,t){return t.some(n=>n.id===e.id)}function Nb(e){let t=[],n=new Set;return Z0(e,t,n),t}function Z0(e,t,n){if(e==null)return;if(e instanceof Ee){t.push(e);return}if(!cF(e))return;let r=e;for(let s in r){let a=r[s];n.has(a)||(n.add(a),Z0(a,t,n))}}function cF(e){return Array.isArray(e)||typeof e=="object"}function _b(e){return e.kernelName!=null}var J0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Rl=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new J0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Xr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new K$(this.backendInstance),!0}setupRegisteredKernels(){ch(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){ch(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ul)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,s=n.then(a=>r<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,Xr(`Initialization of backend ${e} failed`),Xr(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Xr(`Initialization of backend ${e} failed`),Xr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:s}=this.initializeBackend(n);if(s||r)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,s=this.readSync(t),a=r.refCount(t);r.disposeData(t,!0),n.backend=e,e.move(t,s,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Rl.nextTensorId++}nextVariableId(){return Rl.nextVariableId++}clone(e){let t=B.runKernel(Ja,{x:e}),n={x:e},r=a=>({x:()=>{let o="float32",i={x:a},c={dtype:o};return B.runKernel(Ma,i,c)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,s,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(ih(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),s=0;n.forEach(i=>{s+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=r-t-s-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,c=_b(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(_b(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=ih(h,this.backendName);D(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let b=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let v=y.map(x=>{if(x.rank!=null)return x;let{dataId:k,shape:C,dtype:N}=x;return this.makeTensorFromDataId(k,C,N)});if(r){let x=this.getTensorsForGradient(h,f,v);n=this.saveTensorsForBackwardMode(x)}return v}}else{let{forwardFunc:h}=e,f=m=>{!r||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(c,m,g),g}}let{inputs:u,attrs:l}=e,d=_b(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(c,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),r&&this.addTapeNode(c,u,t,d,n,l),this.state.profiling&&this.state.activeProfile.kernels.push({name:c,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let r=yb(e);if(r!=null){let s=r.inputsToSave||[],a=r.outputsToSave||[],o;r.saveAllInputs?(D(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(c=>t[c])):o=s.map(c=>t[c]);let i=n.filter((c,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let s=e;n==="string"&&js(e[0])&&(s=e.map(i=>Al(i)));let a=r.write(s,t,n),o=new Ee(t,n,a,this.nextTensorId());if(this.trackTensor(o,r),n==="string"){let i=this.state.tensorInfo.get(a),c=R0(s);this.state.numBytes+=c-i.bytes,i.bytes=c}return o}makeTensorFromDataId(e,t,n,r){n=n||"float32";let s=new Ee(t,n,e,this.nextTensorId());return this.trackTensor(s,r),s}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let s=new Qs(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*db(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Qs||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*db(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,s,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},i=yb(e);i!=null&&(r=i.gradFunc),r!=null&&(o.gradient=c=>(c=c.map((u,l)=>{if(u==null){let d=n[l],p=Ip(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return u}),r(c.length>1?c:c[0],s,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Nb(e),n=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!n.has(a.id)&&a.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===r.id&&this.track(s)})}gradients(e,t,n,r=!1){if(D(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));D(s instanceof Ee,()=>"The result y returned by f() must be a tensor.");let a=Z$(this.state.activeTape,t,s);if(!r&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[s.id]=n==null?uF(s.shape):n,J$(o,a,c=>this.tidy(c),lF);let i=t.map(c=>o[c.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(c=>{for(let u of c.saved)u.dispose()}),this.state.activeTape=null),{value:s,grads:i}})}customGrad(e){return D(qs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{D(t.every(o=>o instanceof Ee),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((o,i)=>{r[i]=o});let s=(o,i)=>(n=e(...t,i),D(n.value instanceof Ee,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),D(qs(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let c=n.gradFunc(o,i),u=Array.isArray(c)?c:[c];D(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),D(u.every(d=>d instanceof Ee),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let l={};return u.forEach((d,p)=>{l[p]=()=>d}),l};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=El(),n=await this.backend.time(e);return n.wallMs=El()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new J0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Rl.nextTensorId=0;Rl.nextVariableId=0;function uF(e){let t=pb($t(e),"float32");return B.makeTensor(t,e,"float32")}function Q0(){let e=z0();if(e._tfengine==null){let t=new B0(e);e._tfengine=new Rl(t)}return R$(e._tfengine.ENV),nF(()=>e._tfengine),e._tfengine}var B=Q0();function lF(e,t){let n={a:e,b:t};return B.runKernel(Ks,n)}var Pl={};Fe(Pl,{isBrowser:()=>e1,isMobile:()=>pF});function dF(){return typeof navigator!="undefined"&&navigator!=null}function pF(e){if(e||dF()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function e1(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ar=Q();Ar.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ar.registerFlag("IS_BROWSER",()=>e1());Ar.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ar.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ar.registerFlag("PROD",()=>!1);Ar.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ar.getBool("DEBUG"));Ar.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ar.registerFlag("IS_TEST",()=>!1);Ar.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ar.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Zr(e,t){let n=e;if(un(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||un(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&Q().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&t1(e,r,[]),r}function t1(e,t,n){if(n=n||[],!Array.isArray(e)&&!un(e)){D(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}D(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),D(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let s=0;s<e.length;++s)t1(e[s],r,n.concat(s))}function n1(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function E(e,t,n,r="numeric"){if(e instanceof Ee)return n1(r,e.dtype,t,n),e;let s=wp(e);if(s!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(s=r),n1(r,s,t,n),e==null||!un(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let c=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${c}'`)}let a=Zr(e,s);!un(e)&&!Array.isArray(e)&&(e=[e]);let i=s!=="string"?lh(e,s):$a(e,[],!0);return B.makeTensor(i,a,s)}function Ol(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>E(a,`${t}[${o}]`,n,r))}var r1="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+r1;let s=(...a)=>{B.startScope(n);try{let o=r(...a);return fb(o)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(o),o}catch(o){throw B.endScope(null),o}};return Object.defineProperty(s,"name",{value:n,configurable:!0}),s}function hF(e,t){let n=E(e,"real","complex"),r=E(t,"imag","complex");hn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let s={real:n,imag:r};return B.runKernel(Np,s)}var ea=W({complex_:hF});function ta(e,t,n,r){if(r==null&&(r=wp(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!un(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){hb(t);let s=$t(t),a=$t(n);D(s===a,()=>`Based on the provided shape, [${t}], the tensor should have ${s} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],c=o===n.length-1?i!==$t(t.slice(o)):!0;D(n[o]===t[o]||!c,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!un(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?lh(e,r):$a(e,[],!0),B.makeTensor(e,t,r)}function Vn(e,t,n){let r=Zr(e,n);return ta(e,t,r,n)}var Eb={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},fh=4;async function fF(e,t){let n=[],r=[],s=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<s.length;++o){let i=s[o],c=Array.isArray(e)?e[o].tensor:e[i];if(c.dtype!=="float32"&&c.dtype!=="int32"&&c.dtype!=="bool"&&c.dtype!=="string"&&c.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${c.dtype}`);let u={name:i,shape:c.shape,dtype:c.dtype};if(c.dtype==="string"){let l=new Promise(async d=>{let p=await c.bytes(),h=p.reduce((g,b)=>g+b.length,0)+fh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let b=p[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);f.set(y,m),m+=fh,f.set(b,m),m+=b.length}d(f)});r.push(l)}else r.push(c.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(r);return{data:mF(a),specs:n}}function s1(e,t){let n={},r,s=0;for(let a of t){let o=a.name,i=a.dtype,c=a.shape,u=$t(c),l;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=Eb[d.dtype],h=e.slice(s,s+u*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){l=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];l[m]=g*d.scale+d.min}}else if(d.dtype==="float16")r===void 0&&(r=wF()),l=r(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);l=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];l[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);s+=u*p}else if(i==="string"){let d=$t(a.shape);l=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(s,s+fh))[0];s+=fh;let f=new Uint8Array(e.slice(s,s+h));l.push(f),s+=h}}else{let d=Eb[i],p=e.slice(s,s+u*d);if(i==="float32")l=new Float32Array(p);else if(i==="int32")l=new Int32Array(p);else if(i==="bool")l=new Uint8Array(p);else if(i==="complex64"){l=new Float32Array(p);let h=new Float32Array(l.length/2),f=new Float32Array(l.length/2);for(let b=0;b<h.length;b++)h[b]=l[b*2],f[b]=l[b*2+1];let m=Vn(h,c,"float32"),g=Vn(f,c,"float32");n[o]=ea(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);s+=u*d}i!=="complex64"&&(n[o]=Vn(l,c,i))}return n}function mF(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let r=new Uint8Array(t),s=0;return n.forEach(a=>{r.set(new Uint8Array(a.buffer),s),s+=a.byteLength}),r.buffer}var Ab=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function a1(e){return Ab?Buffer.byteLength(e):new Blob([e]).size}function gF(e){if(Ab)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,s=t.length;r<s;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function bF(e){if(Ab){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function $b(e){if(e.length===1)return e[0];let t=0;e.forEach(s=>{t+=s.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(s=>{n.set(new Uint8Array(s),r),r+=s.byteLength}),n.buffer}function o1(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function i1(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Fb(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[r,s]=await t(e.weightsManifest);n.weightSpecs=r,n.weightData=s}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Ml(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:a1(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:a1(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function yF(){let e=n=>{let r=n<<13,s=0;for(;(r&8388608)==0;)s-=8388608,r<<=1;return r&=~8388608,s+=947912704,r|s},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function vF(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function xF(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function wF(){let e=yF(),t=vF(),n=xF();return r=>{let s=new ArrayBuffer(4*r.length),a=new Uint32Array(s);for(let o=0;o<r.length;o++){let i=r[o],c=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=c}return new Float32Array(s)}}var Et=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Et.instance==null&&(Et.instance=new Et),Et.instance}static registerSaveRouter(e){Et.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Et.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Et.getHandlers(e,"save")}static getLoadHandlers(e,t){return Et.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Et.getInstance().loadRouters:Et.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&r.push(o)}),r}},kF=e=>Et.registerSaveRouter(e),IF=e=>Et.registerLoadRouter(e),SF=e=>Et.getSaveHandlers(e),CF=(e,t)=>Et.getLoadHandlers(e,t),Db="tensorflowjs",Rb=1,Po="models_store",na="model_info_store";function c1(){if(!Q().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Pb(e){let t=e.result;t.createObjectStore(Po,{keyPath:"modelPath"}),t.createObjectStore(na,{keyPath:"modelPath"})}var Oo=class{constructor(e){if(this.indexedDB=c1(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let s=this.indexedDB.open(Db,Rb);s.onupgradeneeded=()=>Pb(s),s.onsuccess=()=>{let a=s.result;if(t==null){let o=a.transaction(Po,"readonly"),c=o.objectStore(Po).get(this.modelPath);c.onsuccess=()=>{if(c.result==null)return a.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(c.result.modelArtifacts)},c.onerror=u=>(a.close(),r(c.error)),o.oncomplete=()=>a.close()}else{let o=Ml(t),i=a.transaction(na,"readwrite"),c=i.objectStore(na),u=c.put({modelPath:this.modelPath,modelArtifactsInfo:o}),l;u.onsuccess=()=>{l=a.transaction(Po,"readwrite");let p=l.objectStore(Po).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{c=i.objectStore(na);let f=c.delete(this.modelPath);f.onsuccess=()=>(a.close(),r(p.error)),f.onerror=m=>(a.close(),r(p.error))}},u.onerror=d=>(a.close(),r(u.error)),i.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}}},s.onerror=a=>r(s.error)})}};Oo.URL_SCHEME="indexeddb://";var u1=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Oo.URL_SCHEME)?TF(e.slice(Oo.URL_SCHEME.length)):null;Et.registerSaveRouter(u1);Et.registerLoadRouter(u1);function TF(e){return new Oo(e)}function NF(e){return e.startsWith(Oo.URL_SCHEME)?e.slice(Oo.URL_SCHEME.length):e}var _F=class{constructor(){this.indexedDB=c1()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Db,Rb);n.onupgradeneeded=()=>Pb(n),n.onsuccess=()=>{let r=n.result,s=r.transaction(na,"readonly"),o=s.objectStore(na).getAll();o.onsuccess=()=>{let i={};for(let c of o.result)i[c.modelPath]=c.modelArtifactsInfo;e(i)},o.onerror=i=>(r.close(),t(o.error)),s.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=NF(e),new Promise((t,n)=>{let r=this.indexedDB.open(Db,Rb);r.onupgradeneeded=()=>Pb(r),r.onsuccess=()=>{let s=r.result,a=s.transaction(na,"readwrite"),o=a.objectStore(na),i=o.get(e),c;i.onsuccess=()=>{if(i.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),l=()=>{c=s.transaction(Po,"readwrite");let p=c.objectStore(Po).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};u.onsuccess=l,u.onerror=d=>(l(),s.close(),n(i.error))}},i.onerror=u=>(s.close(),n(i.error)),a.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}},r.onerror=s=>n(r.error)})}},vs="/",Hc="tensorflowjs_models",l1="info",EF="model_topology",AF="weight_specs",$F="weight_data",FF="model_metadata";function d1(e){return{info:[Hc,e,l1].join(vs),topology:[Hc,e,EF].join(vs),weightSpecs:[Hc,e,AF].join(vs),weightData:[Hc,e,$F].join(vs),modelMetadata:[Hc,e,FF].join(vs)}}function p1(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function DF(e){let t=e.split(vs);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(vs)}function RF(e){return e.startsWith(Mo.URL_SCHEME)?e.slice(Mo.URL_SCHEME.length):e}var Mo=class{constructor(e){if(!Q().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=d1(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Ml(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,gF(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:r}}catch(s){throw p1(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let o=JSON.parse(s);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=bF(a),t}};Mo.URL_SCHEME="localstorage://";var h1=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Mo.URL_SCHEME)?PF(e.slice(Mo.URL_SCHEME.length)):null;Et.registerSaveRouter(h1);Et.registerLoadRouter(h1);function PF(e){return new Mo(e)}var OF=class{constructor(){D(Q().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),D(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Hc+vs,n=vs+l1;for(let r=0;r<this.LS.length;++r){let s=this.LS.key(r);if(s.startsWith(t)&&s.endsWith(n)){let a=DF(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=RF(e);let t=d1(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return p1(t),n}},jc="://",rr=class{constructor(){this.managers={}}static getInstance(){return rr.instance==null&&(rr.instance=new rr),rr.instance}static registerManager(e,t){D(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(jc)&&(e=e.slice(0,e.indexOf(jc))),D(e.length>0,()=>"scheme must not be an empty string.");let n=rr.getInstance();D(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function mh(e){if(e.indexOf(jc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${rr.getSchemes().join(",")}`);return{scheme:e.split(jc)[0],path:e.split(jc)[1]}}async function f1(e,t,n=!1){D(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Et.getLoadHandlers(e);D(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),D(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let s=r[0],a=Et.getSaveHandlers(t);D(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),D(a.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let o=a[0],i=mh(e).scheme,c=mh(e).path,u=i===mh(e).scheme,l=await s.load();n&&u&&await rr.getManager(i).removeModel(c);let d=await o.save(l);return n&&!u&&await rr.getManager(i).removeModel(c),d.modelArtifactsInfo}async function MF(){let e=rr.getSchemes(),t={};for(let n of e){let r=await rr.getManager(n).listModels();for(let s in r){let a=n+jc+s;t[a]=r[s]}}return t}async function LF(e){let t=mh(e);return rr.getManager(t.scheme).removeModel(t.path)}async function BF(e,t){return f1(e,t,!1)}async function zF(e,t){return f1(e,t,!0)}var WF=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Q().get("IS_BROWSER")){Q().setPlatform("browser",new WF);try{rr.registerManager(Mo.URL_SCHEME,new OF)}catch(e){}try{rr.registerManager(Oo.URL_SCHEME,new _F)}catch(e){}}var VF={importFetch:()=>zA()},Ob,UF=class{constructor(){this.util=Bi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Q().global.fetch!=null?Q().global.fetch(e,t):(Ob==null&&(Ob=VF.importFetch()),Ob(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Q().get("IS_NODE")&&Q().setPlatform("node",new UF);function Be(e,t="float32",n){return t=t||"float32",hb(e),new Bt(e,t,n)}function GF(e,t){let n=E(e,"x","cast");if(!D0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},s={dtype:t};return B.runKernel(Ma,r,s)}var ce=W({cast_:GF});function HF(e){let n={x:E(e,"x","clone","string_or_numeric")};return B.runKernel(Ja,n)}var xs=W({clone_:HF});function m1(e,t=!1){console.log(e.toString(t))}Q0();var jF={buffer:Be,cast:ce,clone:xs,print:m1};rF(jF);var Kt={};Fe(Kt,{browserFiles:()=>QF,browserHTTPRequest:()=>sD,concatenateArrayBuffers:()=>$b,copyModel:()=>BF,decodeWeights:()=>s1,encodeWeights:()=>fF,fromMemory:()=>oD,getLoadHandlers:()=>CF,getModelArtifactsForJSON:()=>Fb,getModelArtifactsInfoForJSON:()=>Ml,getSaveHandlers:()=>SF,http:()=>Bb,isHTTPScheme:()=>Lb,listModels:()=>MF,loadWeights:()=>eD,moveModel:()=>zF,registerLoadRouter:()=>IF,registerSaveRouter:()=>kF,removeModel:()=>LF,weightsLoaderFactory:()=>v1,withSaveHandler:()=>iD});var qF="model",KF=".json",XF=".weights.bin";function g1(e){return new Promise(t=>setTimeout(t)).then(e)}var qc=class{constructor(e){if(!Q().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(qc.URL_SCHEME)&&(e=e.slice(qc.URL_SCHEME.length)),(e==null||e.length===0)&&(e=qF),this.modelJsonFileName=e+KF,this.weightDataFileName=e+XF}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r=i1(e,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=s,await g1(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await g1(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ml(e)}}}};qc.URL_SCHEME="downloads://";var YF=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=r=>{let s=JSON.parse(r.target.result),a=s.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Fb(s,c=>this.loadWeights(c));e(i)},n.onerror=r=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let r=this.checkManifestAndWeightFiles(e),s=n.map(a=>this.loadWeightsFile(a,r[a]));return Promise.all(s).then(a=>[t,$b(a)])}loadWeightsFile(e,t){return new Promise((n,r)=>{let s=new FileReader;s.onload=a=>{let o=a.target.result;n(o)},s.onerror=a=>r(`Failed to weights data from file of path '${e}'.`),s.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(s=>o1(s.name)),r={};for(let s of e)s.paths.forEach(a=>{let o=o1(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return r}},ZF=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(qc.URL_SCHEME)?JF(e.slice(qc.URL_SCHEME.length)):null;Et.registerSaveRouter(ZF);function JF(e="model"){return new qc(e)}function QF(e){return new YF(e)}function b1(e,t,n,r){o(e),n=n==null?0:n,r=r==null?1:r,i(n,r);let s=0,a=c=>(c.then(u=>{let l=n+ ++s/e.length*(r-n);return t(l),u}),c);function o(c){D(c!=null&&Array.isArray(c)&&c.length>0,()=>"promises must be a none empty array")}function i(c,u){D(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${c}`),D(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),D(u>=c,()=>`startFraction must be no more than endFraction, but got startFraction ${c} and endFraction ${u}`)}return Promise.all(e.map(a))}async function y1(e,t){t==null&&(t={});let n=t.fetchFunc==null?Q().platform.fetch:t.fetchFunc,r=e.map(d=>n(d,t.requestInit,{isBinary:!0})),s=0,a=.5,i=(t.onProgress==null?await Promise.all(r):await b1(r,t.onProgress,s,a)).map(d=>d.arrayBuffer()),c=.5,u=1;return t.onProgress==null?await Promise.all(i):await b1(i,t.onProgress,c,u)}async function eD(e,t="",n,r){return v1(o=>y1(o,{requestInit:r}))(e,t,n)}function v1(e){return async(t,n="",r)=>{let s=t.map(()=>!1),a={},o=r!=null?r.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=Eb[b]*$t(g.shape),v=()=>{s[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};r!=null?r.forEach((x,k)=>{x===g.name&&(v(),o[k]=!0)}):v(),i.push(g.name),m+=y})}),!o.every(h=>h)){let h=r.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let c=s.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];c.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let l=await e(u),d={},p=0;return c.forEach(h=>{let f=t[h].paths.length,m=0;for(let x=0;x<f;x++)m+=l[p+x].byteLength;let g=new ArrayBuffer(m),b=new Uint8Array(g),y=0;for(let x=0;x<f;x++){let k=new Uint8Array(l[p+x]);b.set(k,y),y+=k.byteLength}a[h].forEach(x=>{let k=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),C=s1(k,[x.manifestEntry]);for(let N in C)d[N]=C[N]}),p+=f}),d}}var tD="application/octet-stream",nD="application/json",Mb=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(D(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Q().platform.fetch,D(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&D(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r=i1(e,n);t.body.append("model.json",new Blob([JSON.stringify(r)],{type:nD}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:tD}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Ml(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(s){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,r=t.weightsManifest;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Fb(t,s=>this.loadWeights(s))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=rD(t),s=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let l of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(l)):o.push(s+l+r);this.weightUrlConverter&&o.push(...await Promise.all(i));let c=await y1(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,$b(c)]}};Mb.URL_SCHEME_REGEX=/^https?:\/\//;function rD(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),s=n>t?e.substring(n):"";return[r+"/",s]}function Lb(e){return e.match(Mb.URL_SCHEME_REGEX)!=null}var x1=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Lb(r)):n=Lb(e),n)return Bb(e,t)}return null};Et.registerSaveRouter(x1);Et.registerLoadRouter(x1);function Bb(e,t){return new Mb(e,t)}function sD(e,t){return Bb(e,t)}var zb=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},aD=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function oD(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new zb(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new zb({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new zb({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function iD(e){return new aD(e)}var w1={};Fe(w1,{confusionMatrix:()=>pD});function cD(e,t,n=!1,r=!1){let s=E(e,"a","matMul"),a=E(t,"b","matMul");[s,a]=Ct(s,a);let o={a:s,b:a},i={transposeA:n,transposeB:r};return B.runKernel(Oa,o,i)}var De=W({matMul_:cD});function uD(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:E(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:r};return B.runKernel(uo,a,o)}var Ll=W({oneHot_:uD});function lD(e,t){let n=E(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),D(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{D(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},s={perm:t};return B.runKernel(Eo,r,s)}var Oe=W({transpose_:lD});function dD(e,t,n){let r=E(e,"labels","confusionMatrix"),s=E(t,"predictions","confusionMatrix");D(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),D(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),D(s.rank===1,()=>`Expected the rank of predictions to be 1, but got ${s.rank}`),D(r.shape[0]===s.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${s.shape[0]}. Labels and predictions should have the same number of elements.`),D(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Ll(ce(r,"int32"),n),o=Ll(ce(s,"int32"),n),i=Oe(a),c=De(i,o);return ce(c,"int32")}var pD=W({confusionMatrix_:dD}),Lo={};Fe(Lo,{fromPixels:()=>vD,fromPixelsAsync:()=>bD,toPixels:()=>yD});function gh(e,t,n){if(Aa(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Zr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ta(e,t,r,n)}var Kc;function k1(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,s=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)s=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(s){let f=2;if(s&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(ih(oh,B.backendName)!=null){let f={pixels:e},m={numChannels:t};return B.runKernel(oh,f,m)}let[u,l]=s?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,l).data:r||n?d=e.data:(a||s||i)&&(Kc==null&&(Kc=document.createElement("canvas").getContext("2d")),Kc.canvas.width=u,Kc.canvas.height=l,Kc.drawImage(e,0,0,u,l),d=Kc.getImageData(0,0,u,l).data);let p;if(t===4)p=new Int32Array(d);else{let f=u*l;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return gh(p,[l,u,t],"int32")}function hD(e){return e!=null&&e.data instanceof Uint8Array}function fD(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function mD(e){return e!=null&&e.width!==0&&e.height!==0}function gD(e){return fD()&&!(e instanceof ImageBitmap)&&mD(e)&&!hD(e)}async function bD(e,t=3){let n=null;if(Q().getBool("WRAP_TO_IMAGEBITMAP")&&gD(e)){let r;try{r=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(s){r=null}r!=null&&r.width===e.width&&r.height===e.height?n=r:n=e}else n=e;return k1(n,t)}async function yD(e,t){let n=E(e,"img","toPixels");if(!(e instanceof Ee)){let u=n;n=ce(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,s]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,c=new Uint8ClampedArray(s*r*4);for(let u=0;u<r*s;++u){let l=[0,0,0,255];for(let p=0;p<a;p++){let h=o[u*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(l[0]=h*i,l[1]=h*i,l[2]=h*i):l[p]=h*i}let d=u*4;c[d+0]=Math.round(l[0]),c[d+1]=Math.round(l[1]),c[d+2]=Math.round(l[2]),c[d+3]=Math.round(l[3])}if(t!=null){t.width=s,t.height=r;let u=t.getContext("2d"),l=new ImageData(c,s,r);u.putImageData(l,0,0)}return n!==e&&n.dispose(),c}var vD=W({fromPixels_:k1}),Wb={};Fe(Wb,{prepareAndValidate:()=>I1});function I1(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if($t(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let s=t.shape,a=s[s.length-1],o=1;for(let d=0;d<s.length-1;++d)o*=s[d];let i=e.shape,c=s.slice();c.pop();let u=1;for(let d=a;d<n;++d)u*=i[d],c.push(i[d]);let l=[...zi(e.shape).map(d=>d/u),1].slice(0,a);return[c,o,u,l]}var Vb={};Fe(Vb,{calculateShapes:()=>S1,validateInput:()=>Gb,validateUpdateShape:()=>Ub});function Ub(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,s=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${s}.`;if(n.rank<s)throw new Error(a+` update.rank < ${s}. `);if(e.length<r+(n.rank-s))throw new Error(a+` Output shape length < ${r+(n.rank-s)}`);if(n.rank!==s+e.length-r)throw new Error(a+` update.rank != ${s+e.length-r}`);for(let o=0;o<s;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-s;++o)if(n.shape[o+s]!==e[o+r])throw new Error(a+` updates.shape[${o+s}] (${n.shape[o+s]}) != shape[${o+s}] (${e[o+s]})`)}function Gb(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Ub(n,t,e)}function S1(e,t,n){let r=t.shape.length,s=r>1?t.shape[r-1]:1,a=n.length,o=1;for(let d=s;d<a;++d)o*=n[d];let i=s<1?1:s,c=$t(t.shape)/i,u=[...zi(n.slice(0,s)),1],l=$t(n);return{sliceRank:s,numUpdates:c,sliceSize:o,strides:u,outputSize:l}}var mn={};Fe(mn,{assertParamsValid:()=>xD,computeFlatOffset:()=>kD,computeOutShape:()=>C1,getNormalizedAxes:()=>E1,isSliceContinous:()=>wD,maskToAxes:()=>bh,parseSliceParams:()=>P1,sliceInfo:()=>ID,startForAxis:()=>D1,startIndicesWithElidedDims:()=>A1,stopForAxis:()=>R1,stopIndicesWithElidedDims:()=>$1,stridesForAxis:()=>F1,stridesWithElidedDims:()=>T1});function xD(e,t,n){let r=e.shape.length;D(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),D(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let s=0;s<r;++s)D(t[s]+n[s]<=e.shape[s],()=>`Error in slice${r}D: begin[${s}] + size[${s}] (${t[s]+n[s]}) would overflow input.shape[${s}] (${e.shape[s]})`)}function bh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function C1(e,t,n){let r=[];for(let s=0;s<e.length;s++)r[s]=Math.ceil((t[s]-e[s])/n[s]);return r}function T1(e,t,n,r){let s=[...e];for(let a=s.length;a<r.length;a++)s.push(1);for(let a=0;a<n;a++)a===0?s[t]=1:(s.splice(t,0,1),s.pop());return s}function N1(e,t,n){return n<=e?n:n-(t-1)}function _1(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function E1(e,t,n,r,s,a,o,i,c){let u=e.length,l=new Array(u),d=new Array(u),p=new Array(u);if(t.length&&n>0){let h=t[0],f=n+1;l=A1(o,h,f,r,e),d=$1(i,h,f,s,e),p=T1(a,h,f,e)}else for(let h=0;h<u;h++)l[h]=D1(o,r,a,e,h,c),d[h]=R1(i,s,a,e,h,c),p[h]=F1(a,h,c);return{begin:l,end:d,strides:p}}function A1(e,t,n,r,s){let a=[...s],o=_1(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let c=N1(t,n,i),u=r[c];e&1<<c&&(u=0),a[i]=u}return a}function $1(e,t,n,r,s){let a=[...s],o=_1(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let c=N1(t,n,i),u=r[c];e&1<<c&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let c=s[i];a[i]<0&&(a[i]+=c),a[i]=ll(0,a[i],s[i])}return a}function F1(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function D1(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<<s||a&1<<s||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let c=r[s];return o<0&&(o+=c),o=ll(0,o,c-1),o}function R1(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<<s||a&1<<s||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let c=r[s];return o<0&&(o+=c),i>0?o=ll(0,o,c):o=ll(-1,o,c-1),o}function wD(e,t,n){let r=n.length;for(let s=0;s<n.length;s++)if(n[s]>1){r=s;break}for(let s=r+1;s<n.length;s++)if(t[s]>0||n[s]!==e[s])return!1;return!0}function kD(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function P1(e,t,n){let r,s=e.shape.length;typeof t=="number"?r=[t,...new Array(s-1).fill(0)]:t.length<s?r=t.concat(new Array(s-t.length).fill(0)):r=t.slice(),r.forEach(o=>{D(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(s).fill(-1):typeof n=="number"?a=[n,...new Array(s-1).fill(-1)]:n.length<s?a=n.concat(new Array(s-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(D(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-r[i])),[r,a]}function ID(e,t,n,r,s,a,o,i,c){let u=t.slice(),l=n.slice(),d=r;r==null&&(d=new Array(u.length));let p=bh(o);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&c!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-u.length,f=bh(i),m=e.slice();f.forEach(N=>{u[N]=0,l[N]=1,m.splice(N,0,1)});let{begin:g,end:b,strides:y}=E1(m,p,h,u,l,d,s,a,o);u=g,l=b,d=y;let v=bh(c);v.forEach(N=>{l[N]=u[N]+1,d[N]=1});let x=C1(u,l,d),k=x.filter((N,F)=>v.indexOf(F)===-1);return{nonStrided:d.every(N=>N===1),$begin:u,$end:l,$strides:d,size:x,newShape:m,outShape:k}}var ae={};Fe(ae,{Serializable:()=>O1,SerializationMap:()=>Bo,registerClass:()=>ra});var O1=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Bo=class{constructor(){this.classNameMap={}}static getMap(){return Bo.instance==null&&(Bo.instance=new Bo),Bo.instance}static register(e){Bo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ra(e){D(e.className!=null,()=>"Class being registered does not have the static className property defined."),D(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),D(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Bo.register(e)}var M1={};Fe(M1,{TEST_EPSILON_FLOAT16:()=>L1,encodeStrings:()=>B1,expectArrayBuffersEqual:()=>AD,expectArraysClose:()=>CD,expectArraysEqual:()=>ND,expectNumbersClose:()=>_D,expectPromiseToFail:()=>TD,expectValuesInRange:()=>ED,testEpsilon:()=>Hb});var SD=.001,L1=.1;function CD(e,t,n){return n==null&&(n=Hb()),jb(e,t,(r,s)=>qb(r,s,n))}function Hb(){return B.backend.floatPrecision()===32?SD:L1}function jb(e,t,n){let r=!0;if((un(e)||un(t))&&(r=!1),un(e)&&un(t)&&(r=!0),r){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Zr(e),i=Zr(t);if(!ys(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let s=un(e)?e:$a(e),a=un(t)?t:$a(t);if(s.length!==a.length)throw new Error(`Arrays have different lengths actual: ${s.length} vs expected: ${a.length}.
Actual: ${s}.
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=s[o],c=a[o];if(!n(i,c))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${c}.
Actual: ${s}.
Expected: ${a}.`)}}function TD(e,t){e().then(()=>t.fail(),()=>t())}function ND(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return js(e)||js(e[0])||js(t)||js(t[0])?jb(e,n,(r,s)=>r==s):jb(e,t,(r,s)=>qb(r,s,0))}function _D(e,t,n){if(n==null&&(n=Hb()),!qb(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function qb(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function ED(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function AD(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function B1(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?B1(n):e[t]=Al(n)}return e}var $D="3.9.0";function FD(){Q().set("PROD",!0)}function DD(){Q().set("DEBUG",!0)}function RD(){Q().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Kb(e){Q().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}sF(Kb);function PD(){B.disposeVariables()}function ws(){return B}function yh(){return B.memory()}function OD(e){return B.profile(e)}function M(e,t){return B.tidy(e,t)}function Ae(e){Nb(e).forEach(n=>n.dispose())}function Xt(e){return B.keep(e)}function MD(e){return B.time(e)}function LD(e){return B.setBackend(e)}function BD(){return B.ready()}function zD(){return B.backendName}function WD(e){B.removeBackend(e)}function VD(e){return B.findBackend(e)}function UD(e){return B.findBackendFactory(e)}function vh(e,t,n=1){return B.registerBackend(e,t,n)}function z1(){return B.backend}function GD(e,t){Q().setPlatform(e,t)}function HD(e,t){let n=E(e,"a","add"),r=E(t,"b","add");[n,r]=Ct(n,r);let s={a:n,b:r};return B.runKernel(Ks,s)}var Y=W({add_:HD});function jD(e,t){let n=E(e,"a","floorDiv"),r=E(t,"b","floorDiv");[n,r]=Ct(n,r);let s={a:n,b:r};return B.runKernel(Xa,s)}var Xb=W({floorDiv_:jD});function qD(e,t){let n=E(e,"a","div"),r=E(t,"b","div");if([n,r]=Ct(n,r),n.dtype==="int32"&&r.dtype==="int32")return Xb(n,r);let s={a:n,b:r},a={};return B.runKernel(Ha,s,a)}var ge=W({div_:qD});function KD(e,t){let n=E(e,"a","mul"),r=E(t,"b","mul");[n,r]=Ct(n,r);let s={a:n,b:r};return B.runKernel(co,s)}var V=W({mul_:KD});function XD(e){let t=E(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return B.runKernel(fl,n)}else{let n={x:t};return B.runKernel(Vi,n)}}var zt=W({abs_:XD});function YD(e){let n={x:E(e,"x","acos")};return B.runKernel(Ui,n)}var W1=W({acos_:YD});function ZD(e){let n={x:E(e,"x","acosh")};return B.runKernel(Gi,n)}var V1=W({acosh_:ZD});function JD(e){D(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),D(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((s,a)=>E(s,`tensors${a}`,"addN")),n=t[0];t.forEach(s=>{if(s.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(s=>{if(!ys(s.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return B.runKernel(Da,r)}var U1=W({addN_:JD});function QD(e,t=null,n=!1){let s={x:E(e,"x","all","bool")},a={axis:t,keepDims:n};return B.runKernel(Hi,s,a)}var Yb=W({all_:QD});function eR(e,t=null,n=!1){let s={x:E(e,"x","any","bool")},a={axis:t,keepDims:n};return B.runKernel(ji,s,a)}var xh=W({any_:eR});function tR(e,t=0){let r={x:E(e,"x","argMax")},s={axis:t};return B.runKernel(Ra,r,s)}var Xc=W({argMax_:tR});function nR(e,t=0){let r={x:E(e,"x","argMin")},s={axis:t};return B.runKernel(pl,r,s)}var G1=W({argMin_:nR});function rR(e){let n={x:E(e,"x","asin")};return B.runKernel(qi,n)}var H1=W({asin_:rR});function sR(e){let n={x:E(e,"x","asinh")};return B.runKernel(Ki,n)}var j1=W({asinh_:sR});function aR(e){let n={x:E(e,"x","atan")};return B.runKernel(Xi,n)}var q1=W({atan_:aR});function oR(e,t){let n=E(e,"a","atan2"),r=E(t,"b","atan2");[n,r]=Ct(n,r);let s={a:n,b:r};return B.runKernel(Zi,s)}var K1=W({atan2_:oR});function iR(e){let n={x:E(e,"x","atanh")};return B.runKernel(Yi,n)}var X1=W({atanh_:iR});function cR(e,t,n,r,s="NHWC",a){let o=e[3],i=[...t,o],c=J1(s);return Bl(e,i,n,a,r,null,null,c)}function Y1(e,t,n,r,s,a,o="channelsLast"){let[i,c]=wh(t),u;if(o==="channelsLast")u=[i,c,e[3],e[3]];else if(o==="channelsFirst")u=[i,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Bl(e,u,n,r,s,a,!1,o)}function uR(e,t,n,r,s,a,o="NDHWC"){let[i,c,u]=Jb(t),l,d;if(o==="NDHWC")d="channelsLast",l=[i,c,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",l=[i,c,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Z1(e,l,n,r,s,!1,d,a)}function Bl(e,t,n,r,s,a,o=!1,i="channelsLast"){let[c,u,l,d]=[-1,-1,-1,-1];if(i==="channelsLast")[c,u,l,d]=e;else if(i==="channelsFirst")[c,d,u,l]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=wh(n),[b,y]=wh(r),v=Yc(p,b),x=Yc(h,y),{padInfo:k,outHeight:C,outWidth:N}=pR(s,u,l,m,g,v,x,a,i),F=o?f*d:f,R;return i==="channelsFirst"?R=[c,F,C,N]:i==="channelsLast"&&(R=[c,C,N,F]),{batchSize:c,dataFormat:i,inHeight:u,inWidth:l,inChannels:d,outHeight:C,outWidth:N,outChannels:F,padInfo:k,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:v,effectiveFilterWidth:x,dilationHeight:b,dilationWidth:y,inShape:e,outShape:R,filterShape:t}}function Z1(e,t,n,r,s,a=!1,o="channelsLast",i){let[c,u,l,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[c,u,l,d,p]=e;else if(o==="channelsFirst")[c,p,u,l,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[b,y,v]=Jb(n),[x,k,C]=Jb(r),N=Yc(h,x),F=Yc(f,k),R=Yc(m,C),{padInfo:O,outDepth:$,outHeight:P,outWidth:T}=hR(s,u,l,d,b,y,v,N,F,R,i),L=a?g*p:g,G;return o==="channelsFirst"?G=[c,L,$,P,T]:o==="channelsLast"&&(G=[c,$,P,T,L]),{batchSize:c,dataFormat:o,inDepth:u,inHeight:l,inWidth:d,inChannels:p,outDepth:$,outHeight:P,outWidth:T,outChannels:L,padInfo:O,strideDepth:b,strideHeight:y,strideWidth:v,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:F,effectiveFilterWidth:R,dilationDepth:x,dilationHeight:k,dilationWidth:C,inShape:e,outShape:G,filterShape:t}}function lR(e,t,n,r,s){r==null&&(r=Zb(e,t,n));let a=e[0],o=e[1],i=zo((a-t+2*r)/n+1,s),c=zo((o-t+2*r)/n+1,s);return[i,c]}function dR(e,t,n,r,s,a){s==null&&(s=Zb(e,t,r));let o=e[0],i=e[1],c=e[2],u=zo((o-t+2*s)/r+1,a),l=zo((i-t+2*s)/r+1,a),d=zo((c-t+2*s)/r+1,a);return[u,l,d,n]}function Zb(e,t,n,r=1){let s=Yc(t,r);return Math.floor((e[0]*(n-1)-n+s)/2)}function wh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Jb(e){return typeof e=="number"?[e,e,e]:e}function Yc(e,t){return t<=1?e:e+(e-1)*(t-1)}function pR(e,t,n,r,s,a,o,i,c){let u,l,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=lR([t,n],a,r,e,i);l=h[0],d=h[1]}else if(e==="same"){l=Math.ceil(t/r),d=Math.ceil(n/s);let p=Math.max(0,(l-1)*r+a-t),h=Math.max(0,(d-1)*s+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),b=h-g;u={top:f,bottom:m,left:g,right:b,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},l=Math.ceil((t-a+1)/r),d=Math.ceil((n-o+1)/s);else if(typeof e=="object"){let p=c==="channelsLast"?e[1][0]:e[2][0],h=c==="channelsLast"?e[1][1]:e[2][1],f=c==="channelsLast"?e[2][0]:e[3][0],m=c==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},l=zo((t-a+p+h)/r+1,i),d=zo((n-o+f+m)/s+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:l,outWidth:d}}function hR(e,t,n,r,s,a,o,i,c,u,l){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=dR([t,n,r,1],i,1,s,e,l);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/s),h=Math.ceil(n/a),f=Math.ceil(r/o);let m=(p-1)*s+i-t,g=(h-1)*a+c-n,b=(f-1)*o+u-r,y=Math.floor(m/2),v=m-y,x=Math.floor(g/2),k=g-x,C=Math.floor(b/2),N=b-C;d={top:x,bottom:k,left:C,right:N,front:y,back:v,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/s),h=Math.ceil((n-c+1)/a),f=Math.ceil((r-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function zo(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function sa(e){let[t,n,r]=wh(e);return t===1&&n===1&&r===1}function Jr(e,t){return sa(e)||sa(t)}function J1(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function fR(e,t){let r={x:E(e,"x","reshape","string_or_numeric")},s={shape:t};return B.runKernel(Nc,r,s)}var U=W({reshape_:fR});function mR(e,t,n,r,s){let a=E(e,"x","avgPool","float32"),o=1;D(Jr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,c=!1;a.rank===3&&(c=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),D(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),s!=null&&D(jt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},l={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=B.runKernel(Pa,u,l);return d=ce(d,a.dtype),c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var vr=W({avgPool_:mR});function gR(e,t,n,r,s,a="NDHWC"){let o=E(e,"x","avgPool3d","float32"),i=o,c=!1;o.rank===4&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),D(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),D(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&D(jt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},l={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=B.runKernel(hl,u,l);return d=ce(d,i.dtype),c?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Qb=W({avgPool3d_:gR});function bR(e,t=0){D(e.length>=1,()=>"Pass at least one tensor to concat");let n=Ol(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${a.dtype}. `)}),n.length===1)return xs(n[0]);let r=n,s={axis:t};return B.runKernel(Qi,r,s)}var et=W({concat_:bR});function yR(e){let n={x:E(e,"x","sigmoid")};return B.runKernel(wo,n)}var xr=W({sigmoid_:yR});function vR(e,t,n){let r=E(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let s={x:r},a={begin:t,size:n};return B.runKernel($c,s,a)}var We=W({slice_:vR});function xR(e){let n={x:E(e,"x","tanh")};return B.runKernel(_o,n)}var Zc=W({tanh_:xR});function wR(e,t,n,r,s,a){let o=E(e,"forgetBias","basicLSTMCell"),i=E(t,"lstmKernel","basicLSTMCell"),c=E(n,"lstmBias","basicLSTMCell"),u=E(r,"data","basicLSTMCell"),l=E(s,"c","basicLSTMCell"),d=E(a,"h","basicLSTMCell"),p=et([u,d],1),h=De(p,i),f=Y(h,c),m=f.shape[0],g=f.shape[1]/4,b=[m,g],y=We(f,[0,0],b),v=We(f,[0,g],b),x=We(f,[0,g*2],b),k=We(f,[0,g*3],b),C=Y(V(xr(y),Zc(v)),V(l,xr(Y(o,x)))),N=V(Zc(C),xr(k));return[C,N]}var kR=W({basicLSTMCell_:wR});function IR(e,t,n){let r=E(e,"x","batchToSpaceND"),s=t.reduce((i,c)=>i*c);D(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),D(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),D(r.shape[0]%s==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${s}`);let a={x:r},o={blockShape:t,crops:n};return B.runKernel(Ji,a,o)}var kh=W({batchToSpaceND_:IR});function SR(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function CR(e,t,n,r,s,a){a==null&&(a=.001);let o=E(e,"x","batchNorm"),i=E(t,"mean","batchNorm"),c=E(n,"variance","batchNorm"),u;s!=null&&(u=E(s,"scale","batchNorm"));let l;r!=null&&(l=E(r,"offset","batchNorm")),D(i.rank===c.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),D(l==null||i.rank===l.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),D(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:SR(o),scale:u,offset:l,mean:i,variance:c},h={varianceEpsilon:a},f=B.runKernel(Ya,p,h);return U(f,o.shape)}var aa=W({batchNorm_:CR});function TR(e,t,n,r,s,a){let o=E(e,"x","batchNorm"),i=E(t,"mean","batchNorm"),c=E(n,"variance","batchNorm"),u;s!=null&&(u=E(s,"scale","batchNorm"));let l;return r!=null&&(l=E(r,"offset","batchNorm")),D(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),D(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),D(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&D(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&D(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${l.rank}.`),aa(o,i,c,l,u,a)}var Q1=W({batchNorm2d_:TR});function NR(e,t,n,r,s,a){let o=E(e,"x","batchNorm"),i=E(t,"mean","batchNorm"),c=E(n,"variance","batchNorm"),u;s!=null&&(u=E(s,"scale","batchNorm"));let l;return r!=null&&(l=E(r,"offset","batchNorm")),D(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),D(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),D(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&D(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&D(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${l.rank}.`),aa(o,i,c,l,u,a)}var ek=W({batchNorm3d_:NR});function _R(e,t,n,r,s,a){let o=E(e,"x","batchNorm"),i=E(t,"mean","batchNorm"),c=E(n,"variance","batchNorm"),u;s!=null&&(u=E(s,"scale","batchNorm"));let l;return r!=null&&(l=E(r,"offset","batchNorm")),D(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),D(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),D(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&D(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&D(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${l.rank}.`),aa(o,i,c,l,u,a)}var tk=W({batchNorm4d_:_R});function ER(e,t,n){let r=E(e,"x","bincount"),s=E(t,"weights","bincount");D(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),D(n>=0,()=>`size must be non-negative, but got ${n}.`),D(s.size===r.size||s.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${s.shape}.`);let a={x:r,weights:s},o={size:n};return B.runKernel(Tp,a,o)}var ey=W({bincount_:ER});function AR(e,t){let n=E(e,"s0","broadcastArgs","int32"),r=E(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(r.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${r.rank}`);let s={s0:n,s1:r};return B.runKernel(bb,s)}var nk=W({broadcastArgs_:AR});function $R(e,t){let n=E(e,"broadcastTo","x"),r=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=U(n,u)}let s=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(s[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(a.map((u,l)=>u>1?l:-1).filter(u=>u>=0).length===0)return xs(n);let i={x:n},c={reps:a};return B.runKernel(Ys,i,c)}var zl=W({broadcastTo_:$R});function FR(e){let n={x:E(e,"x","ceil")};return B.runKernel(La,n)}var rk=W({ceil_:FR});function DR(e,t,n){let r=E(e,"x","clipByValue");D(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let s={x:r},a={clipValueMin:t,clipValueMax:n};return B.runKernel(Xs,s,a)}var rn=W({clipByValue_:DR});function RR(e){return et(e,0)}var sk=W({concat1d_:RR});function PR(e,t){return et(e,t)}var ak=W({concat2d_:PR});function OR(e,t){return et(e,t)}var ok=W({concat3d_:OR});function MR(e,t){return et(e,t)}var ik=W({concat4d_:MR});function LR(e,t,n,r,s="NHWC",a=[1,1],o){let i=E(e,"x","conv2d"),c=E(t,"filter","conv2d"),u=i,l=!1;i.rank===3&&(l=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),D(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),D(c.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${c.rank}.`),o!=null&&D(jt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d=s==="NHWC"?u.shape[3]:u.shape[1];D(d===c.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${c.shape[2]}.`),D(Jr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:u,filter:c},h={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},f=B.runKernel(Ba,p,h);return l?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Dt=W({conv2d_:LR});function BR(e,t,n,r,s="NWC",a=1,o){let i=E(e,"x","conv1d"),c=E(t,"filter","conv1d"),u=i,l=!1;i.rank===2&&(l=!0,u=U(i,[1,i.shape[0],i.shape[1]])),D(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),D(c.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${c.rank}.`),o!=null&&D(jt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),D(u.shape[2]===c.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${c.shape[1]}.`),D(Jr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),D(s==="NWC",()=>`Error in conv1d: got dataFormat of ${s} but only NWC is currently supported.`);let d=U(c,[1,c.shape[0],c.shape[1],c.shape[2]]),p=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Dt(p,d,[1,n],r,"NHWC",[1,a],o);return l?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var ty=W({conv1d_:BR});function zR(e,t,n,r,s,a="NHWC",o){D(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,c=t,u=!1;t.rank===3&&(u=!0,c=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),D(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),D(c.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${c.rank}`),D(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let l=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?c.shape[3]:c.shape[1];D(l===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[2]}.`),D(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&D(jt(s),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let p={dy:c,filter:n},h={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,inputShape:i},f=B.runKernel(za,p,h);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ny=W({conv2DBackpropInput_:zR});function WR(e,t,n,r,s,a){let o=E(e,"x","conv2dTranspose"),i=E(t,"filter","conv2dTranspose");return ny(n,o,i,r,s,"NHWC",a)}var ry=W({conv2dTranspose_:WR});function VR(e,t,n,r,s="NDHWC",a=[1,1,1]){let o=E(e,"x","conv3d"),i=E(t,"filter","conv3d"),c=o,u=!1;o.rank===4&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),D(c.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${c.rank}.`),D(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),D(c.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${c.shape[4]}) must match input depth for filter ${i.shape[3]}.`),D(Jr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),D(s==="NDHWC",()=>`Error in conv3d: got dataFormat of ${s} but only NDHWC is currently supported.`);let l={x:c,filter:i},d={strides:n,pad:r,dataFormat:s,dilations:a},p=B.runKernel(ml,l,d);return u?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var sy=W({conv3d_:VR});function UR(e,t,n,r,s){D(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let c=a[4],u=o.shape[4];D(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),D(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),D(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),D(c===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[3]}.`),D(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let l={dy:o,filter:n},d={pad:s,strides:r,inputShape:a},p=B.runKernel(Ap,l,d);return i?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var ck=W({conv3DBackpropInput_:UR});function GR(e,t,n,r,s){let a=E(e,"x","conv3dTranspose"),o=E(t,"filter","conv3dTranspose");return ck(n,a,o,r,s)}var uk=W({conv3dTranspose_:GR});function HR(e){let n={x:E(e,"x","cos")};return B.runKernel(Wa,n)}var Ih=W({cos_:HR});function jR(e){let n={x:E(e,"x","cosh")};return B.runKernel(Va,n)}var ay=W({cosh_:jR});function qR(e,t=0,n=!1,r=!1){let a={x:E(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:r};return B.runKernel(Ua,a,o)}var oy=W({cumsum_:qR});function KR(e,t,n,r=!1){let s=E(e,"x","denseBincount"),a=E(t,"weights","denseBincount");D(s.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${s.dtype}`),D(s.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${s.rank}.`),D(n>=0,()=>`size must be non-negative, but got ${n}.`),D(a.size===s.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${s.shape}, weights shape: ${a.shape}.`);let o={x:s,weights:a},i={size:n,binaryOutput:r};return B.runKernel($p,o,i)}var lk=W({denseBincount_:KR});function XR(e,t,n="NHWC"){let r=E(e,"x","depthToSpace"),s=n==="NHWC"?r.shape[1]:r.shape[2],a=n==="NHWC"?r.shape[2]:r.shape[3],o=n==="NHWC"?r.shape[3]:r.shape[1];D(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${r.shape}`),D(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${r.shape}`),D(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${r.shape}`);let i={x:r},c={blockSize:t,dataFormat:n};return B.runKernel(tc,i,c)}var dk=W({depthToSpace_:XR});function YR(e,t,n,r,s="NHWC",a=[1,1],o){let i=E(e,"x","depthwiseConv2d"),c=E(t,"filter","depthwiseConv2d"),u=i,l=!1;i.rank===3&&(l=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),D(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),D(c.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),D(u.shape[3]===c.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),o!=null&&D(jt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:u,filter:c},p={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},h=B.runKernel(Ga,d,p);return l?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Wo=W({depthwiseConv2d_:YR});function ZR(e){let n={x:E(e,"x","diag")};return B.runKernel(Rp,n)}var JR=W({diag_:ZR});function QR(e,t,n,r,s=[1,1],a="NHWC"){let o=E(e,"x","dilation2d"),i=E(t,"filter","dilation2d");D(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),D(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),D(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let c=o,u=!1;o.rank===3&&(c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let l={x:c,filter:i},d={strides:n,pad:r,dilations:s},p=B.runKernel(gl,l,d);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var pk=W({dilation2d_:QR});function eP(e,t){let n=e.length,r=[];for(let s=0;s<n;s++){let a=n-1-s,o=e[a]||1;(t[t.length-1-s]||1)>1&&o===1&&r.unshift(a)}return r}function Wt(e,t){let n=[];for(let r=0;r<t.length;r++){let s=e[e.length-r-1],a=t.length-r-1,o=t[a];(s==null||s===1&&o>1)&&n.unshift(a)}return n}function mt(e,t){let n=[],r=Math.max(e.length,t.length);for(let s=0;s<r;s++){let a=e[e.length-s-1];a==null&&(a=1);let o=t[t.length-s-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function tP(e,t){let n=E(e,"a","equal","string_or_numeric"),r=E(t,"b","equal","string_or_numeric");[n,r]=Ct(n,r),mt(n.shape,r.shape);let s={a:n,b:r};return B.runKernel(rc,s)}var sr=W({equal_:tP});function nP(e,t,n){let r=E(t,"a","where"),s=E(n,"b","where"),a=E(e,"condition","where","bool"),o=mt(mt(a.shape,r.shape),s.shape),i=zl(a,o),c=zl(r,o),u=zl(s,o),l={condition:i,t:c,e:u};return B.runKernel(Ec,l)}var gn=W({where_:nP});function rP(e){let n={x:E(e,"x","zerosLike")};return B.runKernel(Wc,n)}var He=W({zerosLike_:rP});function sP(e,t){let n=E(e,"a","div"),r=E(t,"b","div");[n,r]=Ct(n,r);let s=ge(n,r),a=He(s),o=sr(r,a);return gn(o,a,s)}var hk=W({divNoNan_:sP});function aP(e,t){let n=E(e,"t1","dot"),r=E(t,"t2","dot");D((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let s=n.rank===1?n.size:n.shape[1],a=r.rank===1?r.size:r.shape[0];if(D(s===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${s} and ${a}.`),n.rank===1&&r.rank===1){let o=U(n,[1,-1]),i=U(r,[-1,1]),c=De(o,i);return U(c,[])}else if(n.rank===1&&r.rank===2){let o=U(n,[1,-1]),i=U(r,[r.shape[0],r.shape[1]]),c=De(o,i);return U(c,[c.size])}else if(n.rank===2&&r.rank===1){let o=U(r,[-1,1]),i=De(n,o);return U(i,[i.size])}else{let o=U(r,[r.shape[0],r.shape[1]]);return De(n,o)}}var oP=W({dot_:aP});function iP(e,...t){let n=t.map((s,a)=>E(s,`tensors${a}`,"einsum")),r={equation:e};return B.runKernel(Mp,n,r)}var fk=W({einsum_:iP});function cP(e){let n={x:E(e,"x","elu")};return B.runKernel(ja,n)}var Wl=W({elu_:cP});function uP(e){let t=E(e,"x","erf");D(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return B.runKernel(nc,n)}var mk=W({erf_:uP});function lP(e){let n={x:E(e,"x","exp")};return B.runKernel(qa,n)}var bn=W({exp_:lP});function dP(e,t=0){let n=E(e,"x","expandDims","string_or_numeric");D(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},s={dim:t};return B.runKernel(sc,r,s)}var yn=W({expandDims_:dP});function pP(e){let n={x:E(e,"x","expm1")};return B.runKernel(ac,n)}var gk=W({expm1_:pP});function hP(e,t){let n=E(e,"x","tile","string_or_numeric");D(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},s={reps:t};return B.runKernel(Ys,r,s)}var Un=W({tile_:hP});function fP(e,t,n,r="float32"){t==null&&(t=e);let s=Be([e,t],r),a=e<=t?e:t;for(let i=0;i<a;++i)s.set(1,i,i);let o=U(s.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Un(yn(o,0),[n[0],1,1]);if(n.length===2)return Un(yn(yn(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Un(yn(yn(yn(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var iy=W({eye_:fP});function vn(e,t,n){let r={shape:e,value:t,dtype:n};return B.runKernel(bl,{},r)}function mP(e){let n={x:E(e,"x","floor")};return B.runKernel(Ka,n)}var Vl=W({floor_:mP});function gP(e,t,n=0,r=0){let s=E(e,"x","gather"),a=E(t,"indices","gather","int32"),o={x:s,indices:a},i={axis:n,batchDims:r};return B.runKernel(ic,o,i)}var Jc=W({gather_:gP});function bP(e,t){let n=E(e,"a","greater","string_or_numeric"),r=E(t,"b","greater","string_or_numeric");[n,r]=Ct(n,r),mt(n.shape,r.shape);let s={a:n,b:r};return B.runKernel(uc,s)}var Gn=W({greater_:bP});function yP(e,t){let n=E(e,"a","greaterEqual","string_or_numeric"),r=E(t,"b","greaterEqual","string_or_numeric");[n,r]=Ct(n,r),mt(n.shape,r.shape);let s={a:n,b:r};return B.runKernel(Za,s)}var Vo=W({greaterEqual_:yP});function vP(e){let n={input:E(e,"input","imag")};return B.runKernel(Wp,n)}var Sh=W({imag_:vP});function xP(e){let n={x:E(e,"x","isFinite")};return B.runKernel(lc,n)}var wP=W({isFinite_:xP});function kP(e){let n={x:E(e,"x","isInf")};return B.runKernel(dc,n)}var IP=W({isInf_:kP});function SP(e){let n={x:E(e,"x","isNaN")};return B.runKernel(pc,n)}var bk=W({isNaN_:SP});function CP(e,t=.2){let r={x:E(e,"x","leakyRelu")},s={alpha:t};return B.runKernel(Qa,r,s)}var Ch=W({leakyRelu_:CP});function TP(e,t){let n=E(e,"a","less","string_or_numeric"),r=E(t,"b","less","string_or_numeric");[n,r]=Ct(n,r),mt(n.shape,r.shape);let s={a:n,b:r};return B.runKernel(hc,s)}var cy=W({less_:TP});function NP(e,t){let n=E(e,"a","lessEqual","string_or_numeric"),r=E(t,"b","lessEqual","string_or_numeric");[n,r]=Ct(n,r),mt(n.shape,r.shape);let s={a:n,b:r};return B.runKernel(fc,s)}var Uo=W({lessEqual_:NP});function yk(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return B.runKernel(Vp,{},r)}function _P(e,t=5,n=1,r=1,s=.5){let a=E(e,"x","localResponseNormalization");D(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${a.rank}.`),D(jt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let c={x:o},u={depthRadius:t,bias:n,alpha:r,beta:s},l=B.runKernel(xl,c,u);return i?U(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var vk=W({localResponseNormalization_:_P});function EP(e){let n={x:E(e,"x","log")};return B.runKernel(eo,n)}var ar=W({log_:EP});function AP(e){let n={x:E(e,"x","log1p")};return B.runKernel(mc,n)}var Th=W({log1p_:AP});function $P(e){return D(qs(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=E(t,"x","tf.grad","string_or_numeric"),s=n!=null?E(n,"dy","tf.grad"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(r),[r],s);return s!=null&&hn(a.shape,s.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Nh(o),o[0]})}}function FP(e){return D(qs(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{D(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Ol(t,"args","tf.grads","string_or_numeric"),s=n!=null?E(n,"dy","tf.grads"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(...r),r,s);return s!=null&&hn(a.shape,s.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Nh(o),o})}}function DP(e){return D(qs(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{D(t instanceof Ee,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),D(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:s}=B.gradients(()=>e(t),[t],n);return Nh(r),{grad:r[0],value:s}}}function RP(e){return D(qs(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{D(Array.isArray(t)&&t.every(s=>s instanceof Ee),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),D(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=B.gradients(()=>e(...t),t,n);return n!=null&&hn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Nh(r.grads),r}}function xk(e,t){D(qs(e),()=>"The f passed in variableGrads(f) must be a function"),D(t==null||Array.isArray(t)&&t.every(u=>u instanceof Qs),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,s=t.length;t=t.filter(u=>u.trainable),D(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${s} variables is trainable.`);let a=!0,{value:o,grads:i}=B.gradients(e,t,null,a);D(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),D(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let c={};return t.forEach((u,l)=>{i[l]!=null&&(c[u.name]=i[l])}),r!=null&&r.forEach(u=>c[u.name]=null),{value:o,grads:c}}function Qr(e){return B.customGrad(e)}function Nh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function PP(e){let n={x:E(e,"x","neg")};return B.runKernel(yc,n)}var Tt=W({neg_:PP});function OP(e){let n={x:E(e,"x","softplus")};return B.runKernel(Rc,n)}var Qc=W({softplus_:OP});function MP(e){let t=E(e,"x","logSigmoid");return Qr(r=>({value:Tt(Qc(Tt(r))),gradFunc:o=>V(o,xr(Tt(r)))}))(t)}var LP=W({logSigmoid_:MP});function BP(e,t=null,n=!1){let s={x:E(e,"x","max")},a={reductionIndices:t,keepDims:n};return B.runKernel(to,s,a)}var $r=W({max_:BP});function zP(e,t){let n=E(e,"a","sub"),r=E(t,"b","sub");[n,r]=Ct(n,r);let s={a:n,b:r};return B.runKernel(To,s)}var he=W({sub_:zP});function WP(e,t=null,n=!1){let r=E(e,"x","sum");r.dtype==="bool"&&(r=ce(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return B.runKernel(Io,s,a)}var ve=W({sum_:WP});function VP(e,t=-1){let n=E(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Qr((s,a)=>{let o=!0,i=$r(s,t,!0),c=he(s,i),u=he(ce(c,"float32"),ar(ve(bn(c),t,o)));return a([u]),{value:u,gradFunc:(d,p)=>{let[h]=p,f=!0,m=bn(h);return he(d,V(ve(d,t,f),m))}}})(n)}var uy=W({logSoftmax_:VP});function ly(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function wk(e,t,n){let r=e.length+t.length,s=[],a=0,o=0;for(let i=0;i<r;i++)n.indexOf(i)===-1?s.push(e[a++]):s.push(t[o++]);return s}function kk(e,t){let n=[],r=e.length;for(let a=0;a<r;a++)t.indexOf(a)===-1&&n.push(e[a]);let s=t.map(a=>e[a]);return[n,s]}function Go(e,t){let n=t.map(r=>1);return wk(e,n,t)}function UP(e,t,n){D(ly(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Ik(e,t){if(ly(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function dy(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function GP(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function HP(e,t=null,n=!1){let r=E(e,"x","logSumExp"),s=br(t,r.shape),a=$r(r,s,!0),o=he(r,a),i=bn(o),c=ve(i,s),u=ar(c),l=Y(U(a,u.shape),u);if(n){let d=Go(l.shape,s);return U(l,d)}return l}var Sk=W({logSumExp_:HP});function jP(e,t){let n=E(e,"a","logicalAnd","bool"),r=E(t,"b","logicalAnd","bool");mt(n.shape,r.shape);let s={a:n,b:r};return B.runKernel(gc,s)}var Fr=W({logicalAnd_:jP});function qP(e){let n={x:E(e,"x","logicalNot","bool")};return B.runKernel(yl,n)}var _h=W({logicalNot_:qP});function KP(e,t){let n=E(e,"a","logicalOr","bool"),r=E(t,"b","logicalOr","bool");mt(n.shape,r.shape);let s={a:n,b:r};return B.runKernel(vl,s)}var py=W({logicalOr_:KP});function XP(e,t){let n=E(e,"a","logicalXor","bool"),r=E(t,"b","logicalXor","bool");return mt(n.shape,r.shape),Fr(py(e,t),_h(Fr(e,t)))}var YP=W({logicalXor_:XP});function ZP(e,t,n,r,s){let a=E(e,"x","maxPool"),o=1,i=a,c=!1;a.rank===3&&(c=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),D(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),D(Jr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),s!=null&&D(jt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},l={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=B.runKernel(ro,u,l);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Rt=W({maxPool_:ZP});function JP(e,t=[1,1,1],n,r,s,a="NDHWC"){let o=E(e,"x","maxPool3d"),i=o,c=!1;o.rank===4&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),D(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),D(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&D(jt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},l={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=B.runKernel(wl,u,l);return c?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var hy=W({maxPool3d_:JP});function QP(e,t,n,r,s=!1){let o={x:E(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:s},c=B.runKernel(jp,o,i);return{result:c[0],indexes:c[1]}}var Ck=W({maxPoolWithArgmax_:QP});function e3(e,t){let n=E(e,"a","maximum"),r=E(t,"b","maximum");[n,r]=Ct(n,r),n.dtype==="bool"&&(n=ce(n,"int32"),r=ce(r,"int32")),mt(n.shape,r.shape);let s={a:n,b:r};return B.runKernel(no,s)}var ks=W({maximum_:e3});function t3(e,t=null,n=!1){let s={x:E(e,"x","mean")},a={axis:t,keepDims:n};return B.runKernel(so,s,a)}var At=W({mean_:t3});function wt(e,t="float32"){if(t==="complex64"){let r=wt(e,"float32"),s=wt(e,"float32");return ea(r,s)}let n=Ip($t(e),t);return B.makeTensor(n,e,t)}function Hn(e,t="float32"){if(t==="complex64"){let r=Hn(e,"float32"),s=wt(e,"float32");return ea(r,s)}let n=pb($t(e),t);return B.makeTensor(n,e,t)}function n3(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=E(e,"x","meshgrid",e instanceof Ee?e.dtype:"float32");if(t===void 0)return[r];let s=E(t,"y","meshgrid",t instanceof Ee?t.dtype:"float32"),a=$t(r.shape),o=$t(s.shape);return n==="xy"?(r=U(r,[1,-1]),s=U(s,[-1,1]),[De(Hn([o,1],r.dtype),r),De(s,Hn([1,a],s.dtype))]):(r=U(r,[-1,1]),s=U(s,[1,-1]),[De(r,Hn([1,o],r.dtype)),De(Hn([a,1],s.dtype),s)])}function r3(e,t=null,n=!1){let s={x:E(e,"x","min")},a={axis:t,keepDims:n};return B.runKernel(ao,s,a)}var Eh=W({min_:r3});function s3(e,t){let n=E(e,"a","minimum"),r=E(t,"b","minimum");[n,r]=Ct(n,r),n.dtype==="bool"&&(n=ce(n,"int32"),r=ce(r,"int32")),mt(n.shape,r.shape);let s={a:n,b:r};return B.runKernel(oo,s)}var Ul=W({minimum_:s3});function a3(e,t,n){D(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=E(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");D(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let s=n==="reflect"?1:0;for(let i=0;i<r.rank;i++)D(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),D(t[i][0]>=0&&t[i][0]<=r.shape[i]-s&&t[i][1]>=0&&t[i][1]<=r.shape[i]-s,()=>`Padding in dimension ${i} cannot be greater than or equal to ${r.shape[i]-s} or less than 0 for input of shape ${r.shape}`);let a={paddings:t,mode:n},o={x:r};return B.runKernel(io,o,a)}var Tk=W({mirrorPad_:a3});function o3(e,t){let n=E(e,"a","mod"),r=E(t,"b","mod");[n,r]=Ct(n,r);let s={a:n,b:r};return B.runKernel(bc,s)}var Nk=W({mod_:o3});function i3(e){let t=E(e,"x","square"),n={};return B.runKernel("Square",{x:t},n)}var ut=W({square_:i3});function c3(e,t=null,n=!1){e=E(e,"x","moments");let r=br(t,e.shape),s=At(e,r,n),a=s.shape;n||(a=Go(s.shape,r));let o=ut(he(ce(e,"float32"),U(s,a))),i=At(o,r,n);return{mean:s,variance:i}}var Ah=W({moments_:c3});function u3(e,t,n,r){let s=E(t,"data","multiRNNCell"),a=Ol(n,"c","multiRNNCell"),o=Ol(r,"h","multiRNNCell"),i=s,c=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);c.push(p[0]),c.push(p[1]),i=p[1]}let u=[],l=[];for(let d=0;d<c.length;d+=2)u.push(c[d]),l.push(c[d+1]);return[u,l]}var l3=W({multiRNNCell_:u3});function d3(e,t,n,r=!1){let s=E(e,"logits","multinomial"),a=s.size,o=s.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let c={logits:o===1?U(s,[1,-1]):s},u={numSamples:t,seed:n,normalized:r},l=B.runKernel(qp,c,u);return o===1?U(l,[l.size]):l}var _k=W({multinomial_:d3});function p3(e,t){let n=E(e,"a","notEqual","string_or_numeric"),r=E(t,"b","notEqual","string_or_numeric");[n,r]=Ct(n,r),mt(n.shape,r.shape);let s={a:n,b:r};return B.runKernel(vc,s)}var eu=W({notEqual_:p3});function h3(e){let n={x:E(e,"x","onesLike")};return B.runKernel(Ic,n)}var or=W({onesLike_:h3});function f3(e,t){let n=E(e,"v1","outerProduct"),r=E(t,"v2","outerProduct");D(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let s=U(n,[-1,1]),a=U(r,[1,-1]);return De(s,a)}var m3=W({outerProduct_:f3});function g3(e,t,n=0){let r=E(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let s={paddings:t,constantValue:n},a={x:r};return B.runKernel(lo,a,s)}var wr=W({pad_:g3});function b3(e,t,n=0){return D(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),wr(e,[t],n)}var y3=W({pad1d_:b3});function v3(e,t,n=0){return D(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),wr(e,t,n)}var x3=W({pad2d_:v3});function w3(e,t,n=0){return D(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),wr(e,t,n)}var k3=W({pad3d_:w3});function I3(e,t,n=0){return D(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),wr(e,t,n)}var S3=W({pad4d_:I3});function C3(e,t,n){let r=E(e,"x","spaceToBatchND");D(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),D(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),D(r.shape.reduce((o,i,c)=>c>0&&c<=t.length?o&&(i+n[c-1][0]+n[c-1][1])%t[c-1]==0:o,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let s={x:r},a={blockShape:t,paddings:n};return B.runKernel(Pc,s,a)}var $h=W({spaceToBatchND_:C3});function T3(e,t,n,r,s,a){s==null&&(s=[1,1]),a==null&&(a=1),r===0&&(r="valid");let o=E(e,"x","maxPool"),i=o,c=!1;o.rank===3&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),D(Jr(a,s),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let u=Y1(i.shape,t,a,s,r),l=[u.dilationHeight,u.dilationWidth],d;r==="same"?d=_3([u.filterHeight,u.filterWidth],l):d=[[0,0],[0,0]];let p=l[0]===1&&l[1]===1,[h,f]=N3([u.inHeight,u.inWidth],l,d),m=p?r:"valid",g=p?i:$h(i,l,h),y=(n==="avg"?()=>vr(g,t,a,m):()=>Rt(g,t,a,m))(),v=p?y:kh(y,l,f);return c?U(v,[v.shape[1],v.shape[2],v.shape[3]]):v}function N3(e,t,n){let r=n.map(l=>l[0]),s=n.map(l=>l[1]),a=e.concat(r,s),o=t.map((l,d)=>(l-a[d]%l)%l),i=s.map((l,d)=>l+o[d]),c=t.map((l,d)=>[r[d],i[d]]),u=t.map((l,d)=>[0,o[d]]);return[c,u]}function _3(e,t){let r=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),s=r.map(o=>Math.floor(o/2)),a=r.map((o,i)=>o-s[i]);return r.map((o,i)=>[s[i],a[i]])}var E3=W({pool_:T3});function A3(e,t){let n=E(e,"base","pow"),r=E(t,"exp","pow");[n,r]=Ct(n,r);let s={a:n,b:r};return B.runKernel(po,s)}var oa=W({pow_:A3});function $3(e,t){let n=E(e,"x","prelu"),r=E(t,"alpha","prelu"),s={x:n,alpha:r};return B.runKernel(ho,s)}var Fh=W({prelu_:$3});function F3(e,t=null,n=!1){let r=E(e,"x","prod");r.dtype==="bool"&&(r=ce(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return B.runKernel(Cc,s,a)}var fy=W({prod_:F3});function D3(e,t,n){let r=$t(e),s=null;if(n==null||n==="float32")s=new Float32Array(r);else if(n==="int32")s=new Int32Array(r);else if(n==="bool")s=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<r;a++)s[a]=t();return B.makeTensor(s,e,n)}var R3=W({rand_:D3}),my=Ea(C0()),gy=class{constructor(e,t,n,r,s){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=my.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,s,a;do r=2*this.random()-1,s=2*this.random()-1,a=r*r+s*s;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*r*o,t=this.mean+this.stdDev*s*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},P3=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let s=r||Math.random();this.randu=my.alea(s.toString()),this.randn=new gy(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,s,a;for(;;){do r=this.randn.nextValue(),a=1+this.c*r;while(a<=0);if(a*=a*a,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},O3=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=my.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function M3(e,t,n=1,r="float32",s){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let a=new P3(t,n,r,s),o=Be(e,r);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var L3=W({randomGamma_:M3});function B3(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let a=new gy(t,n,r,!1,s),o=Be(e,r);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Ek=W({randomNormal_:B3});function z3(e,t=0,n=1,r="float32",s){let a=Be(e,r),o=new O3(t,n,null,s);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var tu=W({randomUniform_:z3});function nu(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let s={start:e,stop:t,step:n,dtype:r};return B.runKernel(kl,{},s)}function W3(e){let n={input:E(e,"input","real")};return B.runKernel(Kp,n)}var Gl=W({real_:W3});function V3(e){let n={x:E(e,"x","reciprocal")};return B.runKernel(Tc,n)}var Ak=W({reciprocal_:V3});function U3(e){let n={x:E(e,"x","relu")};return B.runKernel(fo,n)}var qe=W({relu_:U3});function G3(e){let n={x:E(e,"x","relu6")};return B.runKernel(go,n)}var by=W({relu6_:G3});function H3(e,t){let r={x:E(e,"x","reverse")},s={dims:t};return B.runKernel(bo,r,s)}var ir=W({reverse_:H3});function j3(e){let t=E(e,"x","reverse");return D(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ir(t,0)}var q3=W({reverse1d_:j3});function K3(e,t){let n=E(e,"x","reverse");return D(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ir(n,t)}var X3=W({reverse2d_:K3});function Y3(e,t){let n=E(e,"x","reverse");return D(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ir(n,t)}var Z3=W({reverse3d_:Y3});function J3(e,t){let n=E(e,"x","reverse");return D(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ir(n,t)}var Q3=W({reverse4d_:J3});function eO(e){let n={x:E(e,"x","round")};return B.runKernel(yo,n)}var yy=W({round_:eO});function tO(e){let n={x:E(e,"x","rsqrt")};return B.runKernel(vo,n)}var vy=W({rsqrt_:tO});function ke(e,t){if((un(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&un(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ta(e,[],[],t)}function nO(e){let n={x:E(e,"x","selu")};return B.runKernel(Ac,n)}var xy=W({selu_:nO});function rO(e,t,n,r,s,a=[1,1],o="NHWC"){let i=E(e,"x","separableConv2d"),c=E(t,"depthwiseFilter","separableConv2d"),u=E(n,"pointwiseFilter","separableConv2d"),l=i,d=!1;if(i.rank===3&&(d=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");D(l.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${l.rank}.`),D(c.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${c.rank}.`),D(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${c.rank}.`),D(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),D(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=c.shape[2],h=c.shape[3];D(u.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${u.shape[2]}.`);let f=Wo(l,c,r,s,o,a),g=Dt(f,u,1,"valid",o);return d?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var ru=W({separableConv2d_:rO});async function sO(e,t){let n=E(e,"x","setdiff1d"),r=E(t,"y","setdiff1d");D(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),D(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),D(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let s=await n.data(),a=await r.data(),o=new Set(a),i=0;for(let l=0;l<s.length;l++)o.has(s[l])||i++;let c=new Bt([i],n.dtype),u=new Bt([i],"int32");for(let l=0,d=0;l<s.length;l++)o.has(s[l])||(c.values[d]=s[l],u.values[d]=l,d++);return[c.toTensor(),u.toTensor()]}var $k=sO;function aO(e){let n={x:E(e,"x","sign")};return B.runKernel(Dc,n)}var Fk=W({sign_:aO});function oO(e){let n={x:E(e,"x","sin")};return B.runKernel(xo,n)}var wy=W({sin_:oO});function iO(e){let n={x:E(e,"x","sinh")};return B.runKernel(Fc,n)}var ky=W({sinh_:iO});function cO(e,t,n){let r=E(e,"x","slice1d");return D(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),We(r,[t],[n])}var Dh=W({slice1d_:cO});function uO(e,t,n){let r=E(e,"x","slice2d");return D(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),We(r,t,n)}var Iy=W({slice2d_:uO});function lO(e,t,n){let r=E(e,"x","slice3d");return D(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),We(r,t,n)}var su=W({slice3d_:lO});function dO(e,t,n){let r=E(e,"x","slice4d");return D(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),We(r,t,n)}var Hl=W({slice4d_:dO});function pO(e,t=-1){let n=E(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},s={dim:t};return B.runKernel(So,r,s)}var es=W({softmax_:pO});function hO(e){D(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(Bp,t)}var Rh=W({fft_:hO});function fO(e){D(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(zp,t)}var jl=W({ifft_:fO});function mO(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let s=U(e,[n,t]);r=jl(s)}else{let s=[n,2*(t-1)],a=U(Gl(e),[n,t]),o=U(Sh(e),[n,t]),i=ir(We(a,[0,1],[n,t-2]),1),c=V(ir(We(o,[0,1],[n,t-2]),1),ke(-1)),u=et([a,i],1),l=et([o,c],1),d=U(ea(u,l),[s[0],s[1]]);r=jl(d)}if(r=Gl(r),e.rank===3&&e.shape[0]!==0){let s=r,a=e.shape[0];r=U(r,[a,r.shape[0]/a,r.shape[1]]),s.dispose()}return r}var Sy=W({irfft_:mO});function gO(e,t,n=0){let s={x:E(e,"x","split")},a={numOrSizeSplits:t,axis:n};return B.runKernel(Oc,s,a)}var jn=W({split_:gO});function bO(e,t){D(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,s;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,s=We(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,s=et([e,wt(f)],e.shape.length-1),n=t}else s=e;let a=He(s),o=U(ea(s,a),[r,n]),i=Rh(o),c=Math.floor(n/2)+1,u=Gl(i),l=Sh(i),d=jn(u,[c,n-c],u.shape.length-1),p=jn(l,[c,n-c],l.shape.length-1),h=s.shape.slice();return h[s.shape.length-1]=c,U(ea(d[0],p[0]),h)}var Ph=W({rfft_:bO});function yO(e){let n={x:E(e,"x","sqrt")};return B.runKernel(ko,n)}var ln=W({sqrt_:yO});function vO(e,t){let n=E(e,"a","squaredDifference"),r=E(t,"b","squaredDifference");[n,r]=Ct(n,r),mt(n.shape,r.shape);let s={a:n,b:r},a={};return B.runKernel(Co,s,a)}var Cy=W({squaredDifference_:vO});function xO(e,t){let n=E(e,"x","squeeze");return U(n,E0(n.shape,t).newShape)}var Is=W({squeeze_:xO});function wO(e,t=0){let n=Ol(e,"tensors","stack","string_or_numeric");D(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&D(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,s={axis:t};return B.runKernel(Sc,r,s)}var Pt=W({stack_:wO});function kO(e,t=0){let r={x:E(e,"x","step")},s={alpha:t};return B.runKernel(Zs,r,s)}var ql=W({step_:kO});function IO(e,t,n,r,s=0,a=0,o=0,i=0,c=0){let l={x:E(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:r,beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:c};return B.runKernel(Mc,l,d)}var Dk=W({stridedSlice_:IO});function SO(e){let n={x:E(e,"x","tan")};return B.runKernel(No,n)}var Rk=W({tan_:SO});function Ue(e,t){Aa(e);let n=Zr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ta(e,null,n,t)}function Dr(e,t,n){if(Aa(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Zr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ta(e,t,r,n)}function Rr(e,t,n){if(Aa(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Zr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ta(e,t,r,n)}function CO(e,t,n){if(Aa(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Zr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ta(e,t,r,n)}function TO(e,t,n){if(Aa(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Zr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,ta(e,t,r,n)}function NO(e,t=1,n=!0){let r=E(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let s=r.shape[r.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>s)throw new Error(`'k' passed to topk() must be <= the last dimension (${s}) but got ${t}`);let a={x:r},o={k:t,sorted:n},[i,c]=B.runKernel(Lc,a,o);return{values:i,indices:c}}var Pk=W({topk_:NO});function _O(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new gy(t,n,r,!0,s),o=Be(e,r);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Oh=W({truncatedNormal_:_O});function EO(e,t=0){let n=E(e,"x","unique","string_or_numeric");D(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},s={axis:t},[a,o]=B.runKernel(ah,r,s);return{values:a,indices:o}}var Ty=W({unique_:EO});function AO(e,t,n){let r=E(e,"x","unsortedSegmentSum"),s=E(t,"segmentIds","unsortedSegmentSum","int32");D(jt(n),()=>"numSegments must be of dtype int");let a={x:r,segmentIds:s},o={numSegments:n};return B.runKernel(Cl,a,o)}var Ok=W({unsortedSegmentSum_:AO});function $O(e,t=0){let n=E(e,"x","unstack","string_or_numeric");D(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},s={axis:t};return B.runKernel(zc,r,s)}var ht=W({unstack_:$O});function Mk(e,t=!0,n,r){return B.makeVariable(e,t,n,r)}function Lk(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let r=Be(e,"int32"),s=Be([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=r.indexToLoc(n[a]),i=a*e.length;s.values.set(o,i)}return s.toTensor()}async function FO(e){let t=E(e,"condition","whereAsync","bool"),n=await t.data(),r=Lk(t.shape,n);return e!==t&&t.dispose(),r}var Ny=FO;async function DO(e,t,n){let r=E(e,"tensor","boolMask"),s=E(t,"mask","boolMask","bool"),a=n==null?0:n,o=s.rank,i=r.shape;D(o>0,()=>"mask cannot be scalar"),hn(i.slice(a,a+o),s.shape,"mask's shape must match the first K dimensions of tensor's shape,");let c=1;for(let m=a;m<a+o;m++)c*=i[m];let u=i.slice(0,a).concat([c],i.slice(a+o)),l=U(r,u),d=U(s,[-1]),p=await Ny(d),h=Is(p,[1]),f=Jc(l,h,a);return e!==r&&r.dispose(),t!==s&&s.dispose(),h.dispose(),l.dispose(),d.dispose(),p.dispose(),f}var RO=DO;function PO(e,t="euclidean",n=null,r=!1){e=E(e,"x","norm");let s=Bk(e,t,n),a=s.shape;if(r){let o=br(n,e.shape);a=Go(s.shape,o)}return U(s,a)}function Bk(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return Bk(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ve(zt(e),n);if(t===1/0)return $r(zt(e),n);if(t===-1/0)return Eh(zt(e),n);if(t==="euclidean"||t===2)return ln(ve(oa(zt(e),ke(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return $r(ve(zt(e),n[0]),n[1]-1);if(t===1/0)return $r(ve(zt(e),n[1]),n[0]);if(t===-1/0)return Eh(ve(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return ln(ve(ut(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var _y=W({norm_:PO});function OO(e,t,n,r,s=!0){let a=E(e,"v","movingAverage"),o=E(t,"x","movingAverage"),i=E(n,"decay","movingAverage");Y0(a,o),D(ys(a.shape,o.shape),()=>"Shape mismatch in v and x");let c=ke(1),u=he(c,i),l=V(he(o,a),u);if(s){D(r!=null,()=>"When using zeroDebias: true, step is required.");let d=E(r,"step","movingAverage");l=ge(l,he(c,oa(i,d)))}return Y(a,l)}var MO=W({movingAverage_:OO});function LO(e,t,n){let r=E(e,"indices","scatterND","int32"),s=E(t,"updates","scatterND");Gb(s,r,n);let a={indices:r,updates:s},o={shape:n};return B.runKernel(_c,a,o)}var zk=W({scatterND_:LO});function BO(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let s=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===s))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${s}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function zO(e,t,n,r=0){let s=E(e,"sparseIndices","sparseToDense","int32"),a=E(t,"sparseValues","sparseToDense"),o=E(r,"defaultValue","sparseToDense",a.dtype);BO(s,a,n,o);let i={sparseIndices:s,sparseValues:a,defaultValue:o},c={outputShape:n};return B.runKernel(th,i,c)}var Ey=W({sparseToDense_:zO});function WO(e,t){let n=E(t,"indices","gatherND","int32"),s={params:E(e,"x","gatherND","string_or_numeric"),indices:n};return B.runKernel(cc,s)}var Wk=W({gatherND_:WO});function VO(e,t){if(t==null)return e.shape.slice();if(ys(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function UO(e,t,n,r){let s=E(e,"x","dropout");if(D(s.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${s.dtype} tensor instead.`),D(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ee?s.clone():s;let a=VO(s,n),o=1-t,i=ge(Vl(Y(tu(a,0,1,"float32",r),o)),o);return V(s,i)}var Vk=W({dropout_:UO});function Uk(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Ay(e,t,n){let r=1-e%2,s=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+r-1);s[a]=t-n*Math.cos(o)}return Ue(s,"float32")}async function GO(e,t,n=1){let r=E(e,"predictions","inTopK"),s=E(t,"targets","inTopK");D(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),D(r.rank-1===s.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${s.rank}`),hn(r.shape.slice(0,r.shape.length-1),s.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=r.shape[r.shape.length-1];D(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await r.data(),i=await s.data(),[c,u]=[o.length/a,a],l=A0("bool",c);for(let d=0;d<c;d++){let p=d*u,h=o.subarray(p,p+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),l[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){l[d]=1;break}}return e!==r&&r.dispose(),t!==s&&s.dispose(),Vn(l,s.shape,"bool")}var HO=GO,ia={};Fe(ia,{conv2d:()=>KO,depthwiseConv2d:()=>JO,matMul:()=>eM});function jO(e,t,n,r,s,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let c=t;c.rank===3&&(c=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),D(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),D(c.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${c.shape}.`),D(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],l=a==="NHWC"?c.shape[3]:c.shape[1];D(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),D(l===n[3],()=>`Error in conv2dDerFilter: depth of dy (${l}) must match output depth for filter (${n[3]}).`),o!=null&&D(jt(s),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:i,dy:c},p={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,filterShape:n};return B.runKernel(_p,d,p)}var $y=W({conv2DBackpropFilter_:jO});function Mh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return V(e,ql(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Lh(e,t){let n=t,r=Wt(e.shape,t.shape);return r.length>0&&(n=ve(n,r)),U(n,e.shape)}function Bh(e,t,n,r){if(t==="linear")return e;if(t==="relu")return qe(e);if(t==="elu")return Wl(e);if(t==="relu6")return by(e);if(t==="prelu")return Fh(e,n);if(t==="leakyrelu")return Ch(e,r);if(t==="sigmoid")return xr(e);throw new Error(`Unknown fused activation ${t}.`)}var zh=(e,t)=>!(e>0)||t==="linear";function qO({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:c="linear",preluActivationWeights:u,leakyreluAlpha:l}){if(c=c||"linear",zh(B.state.gradientDepth,c)===!1){let k=Dt(e,t,n,r,s,a,o);return i!=null&&(k=Y(k,i)),Bh(k,c,u,l)}let d=E(e,"x","conv2d"),p=E(t,"filter","conv2d"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),D(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),D(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&D(jt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),D(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),D(Jr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),D(s==="NHWC",()=>`Error in conv2d: got dataFormat of ${s} but only NHWC is currently supported.`);let m=Bl(h.shape,p.shape,n,a,r,o),g;i!=null&&(g=E(i,"bias","fused conv2d"),[g]=Ct(g,d),mt(m.outShape,g.shape));let b;u!=null&&(b=E(u,"prelu weights","fused conv2d"));let y=(k,C)=>{let[N,F,R,O]=C,$=Mh(k,R,c);D(sa(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let P=ny(F.shape,$,N,n,r),T=$y(F,$,N.shape,n,r),L=[P,T];if(O!=null){let G=Lh(O,$);L.push(G)}return L},v={x:h,filter:p,bias:g,preluActivationWeights:b},x={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:c,leakyreluAlpha:l};return i==null?Qr((C,N,F)=>{let R=B.runKernel($o,v,x);return F([N,C,R]),f&&(R=U(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:y}})(h,p):Qr((C,N,F,R)=>{let O=B.runKernel($o,v,x);return R([N,C,O,F]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var KO=W({fusedConv2d_:qO});function XO(e,t,n,r,s,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let c=t;c.rank===3&&(c=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:c},l={strides:r,pad:s,dimRoundingMode:o,dilations:a,filterShape:n};return B.runKernel(Fp,u,l)}var Gk=W({depthwiseConv2dNativeBackpropFilter_:XO});function YO(e,t,n,r,s,a=[1,1],o){let i=t,c=!1;t.rank===3&&(c=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},l={strides:r,pad:s,dimRoundingMode:o,dilations:a,inputShape:e},d=B.runKernel(Dp,u,l);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Hk=W({depthwiseConv2dNativeBackpropInput_:YO});function ZO({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:c="linear",preluActivationWeights:u,leakyreluAlpha:l}){if(zh(B.state.gradientDepth,c)===!1){let k=Wo(e,t,n,r,s,a,o);return i!=null&&(k=Y(k,i)),Bh(k,c,u,l)}let d=E(e,"x","depthwiseConv2d"),p=E(t,"filter","depthwiseConv2d"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),D(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),D(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),D(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),D(Jr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&D(jt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${r}.`);let m=Bl(h.shape,p.shape,n,a,r,o,!0),g;i!=null&&(g=E(i,"bias","fused conv2d"),[g]=Ct(g,d),mt(m.outShape,g.shape));let b;u!=null&&(b=E(u,"prelu weights","fused depthwiseConv2d"));let y=(k,C)=>{D(sa(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[N,F,R,O]=C,$=Mh(k,R,c),P=Hk(F.shape,$,N,n,r,a,o),T=Gk(F,$,N.shape,n,r,a,o);if(O!=null){let L=Lh(g,$);return[P,T,L]}return[P,T]},v={x:h,filter:p,bias:g,preluActivationWeights:b},x={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:c,leakyreluAlpha:l};return i==null?Qr((C,N,F)=>{let R=B.runKernel(Fo,v,x);return F([N,C,R]),f&&(R=U(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:y}})(h,p):Qr((C,N,F,R)=>{let O=B.runKernel(Fo,v,x);return R([N,C,O,F]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var JO=W({fusedDepthwiseConv2d_:ZO});function QO({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:s,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(zh(B.state.gradientDepth,a)===!1){let O=De(e,t,n,r);return s!=null&&(O=Y(O,s)),Bh(O,a,o,i)}let c=E(e,"a","fused matMul"),u=E(t,"b","fused matMul");[c,u]=Ct(c,u);let l=n?c.shape[c.rank-2]:c.shape[c.rank-1],d=r?u.shape[u.rank-1]:u.shape[u.rank-2],p=n?c.shape[c.rank-1]:c.shape[c.rank-2],h=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=c.shape.slice(0,-2),m=u.shape.slice(0,-2),g=$t(f),b=$t(m);D(c.rank>=2&&u.rank>=2&&c.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${c.rank} and ${u.rank}.`),D(ys(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${c.shape} and ${u.shape} must match.`),D(l===d,()=>`Error in fused matMul: inner shapes (${l}) and (${d}) of Tensors with shapes ${c.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let y=c.shape.slice(0,-2).concat([p,h]),v=n?U(c,[g,l,p]):U(c,[g,p,l]),x=r?U(u,[b,h,d]):U(u,[b,d,h]),k;s!=null&&(k=E(s,"bias","fused matMul"),[k]=Ct(k,c),mt(y,k.shape));let C;o!=null&&(C=E(o,"prelu weights","fused matMul"));let N=(O,$)=>{let[P,T,L,G]=$,j=Mh(U(O,L.shape),L,a),q,K;if(!n&&!r?(q=De(j,T,!1,!0),K=De(P,j,!0,!1)):!n&&r?(q=De(j,T,!1,!1),K=De(j,P,!0,!1)):n&&!r?(q=De(T,j,!1,!0),K=De(P,j,!1,!1)):(q=De(T,j,!0,!0),K=De(j,P,!0,!0)),s!=null){let ee=Lh(G,j);return[q,K,ee]}else return[q,K]},F={a:v,b:x,bias:k,preluActivationWeights:C},R={transposeA:n,transposeB:r,activation:a,leakyreluAlpha:i};return s==null?Qr(($,P,T)=>{let L=B.runKernel(Ao,F,R);return T([$,P,L]),{value:U(L,y),gradFunc:N}})(v,x):Qr(($,P,T,L)=>{let G=B.runKernel(Ao,F,R);return L([$,P,G,T]),{value:U(G,y),gradFunc:N}})(v,x,k)}var eM=W({fusedMatMul_:QO});function tM(e){return Ay(e,.54,.46)}var nM=W({hammingWindow_:tM});function rM(e){return Ay(e,.5,.5)}var jk=W({hannWindow_:rM});function sM(e,t,n,r=!1,s=0){let a=0,o=[];for(;a+t<=e.size;)o.push(We(e,a,t)),a+=n;if(r)for(;a<e.size;){let i=a+t-e.size,c=et([We(e,a,t-i),vn([i],s)]);o.push(c),a+=n}return o.length===0?Dr([],[0,t]):U(et(o),[o.length,t])}var qk=W({frame_:sM});function aM(e,t,n,r,s=jk){r==null&&(r=Uk(t));let a=qk(e,t,n),o=V(a,s(t));return Ph(o,r)}var oM=W({stft_:aM});function iM(e,t,n,r,s="bilinear",a=0){let o=E(e,"image","cropAndResize"),i=E(t,"boxes","cropAndResize","float32"),c=E(n,"boxInd","cropAndResize","int32"),u=i.shape[0];D(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),D(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),D(c.rank===1&&c.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),D(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),D(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),D(s==="bilinear"||s==="nearest",()=>`method must be bilinear or nearest, but was ${s}`);let l={image:o,boxes:i,boxInd:c},d={method:s,extrapolationValue:a,cropSize:r};return B.runKernel(ec,l,d)}var cM=W({cropAndResize_:iM});function uM(e){let t=E(e,"image","flipLeftRight","float32");D(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return B.runKernel(oc,n,{})}var lM=W({flipLeftRight_:uM});function dM(e){let t=E(e,"image","grayscaleToRGB"),n=t.rank-1,r=t.shape[n];D(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),D(r===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${r}.`);let s=new Array(t.rank);return s.fill(1,0,n),s[n]=3,Un(t,s)}var pM=W({grayscaleToRGB_:dM});function hM(e,t,n=0,r=.5){let s=E(e,"image","rotateWithOffset","float32");D(s.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${s.rank}.`);let a={image:s},o={radians:t,fillValue:n,center:r};return B.runKernel(Vc,a,o)}var fM=W({rotateWithOffset_:hM});function au(e,t,n,r,s,a){r==null&&(r=.5),s==null&&(s=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),D(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),D(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),D(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),D(t.rank===1,()=>"scores must be a 1D tensor"),D(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),D(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a}}function mM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),i=au(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let c={maxOutputSize:n,iouThreshold:r,scoreThreshold:s};return B.runKernel(xc,{boxes:a,scores:o},c)}var gM=W({nonMaxSuppression_:mM});function bM(e,t,n){let r=yM(e,t,n),s=r<0?-(r+1):r;e.splice(s,0,t)}function yM(e,t,n){return xM(e,t,n||vM)}function vM(e,t){return e>t?1:e<t?-1:0}function xM(e,t,n){let r=0,s=e.length,a=0,o=!1;for(;r<s;){a=r+(s-r>>>1);let i=n(t,e[a]);i>0?r=a+1:(s=a,o=!i)}return o?r:-r-1}function Kk(e,t,n,r,s){return Fy(e,t,n,r,s,0)}function Xk(e,t,n,r,s,a){return Fy(e,t,n,r,s,0,!1,a,!0)}function Yk(e,t,n,r,s,a){return Fy(e,t,n,r,s,a,!0)}function Fy(e,t,n,r,s,a,o=!1,i=!1,c=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>s&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Zk);let l=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:b,boxIndex:y,suppressBeginIndex:v}=g;if(b<s)break;let x=!1;for(let k=d.length-1;k>=v;--k){let C=wM(e,y,d[k]);if(C>=r){x=!0;break}if(g.score=g.score*kM(r,l,C),g.score<=s)break}g.suppressBeginIndex=d.length,x||(g.score===b?(d.push(y),p.push(g.score)):g.score>s&&bM(u,g,Zk))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),c&&(m.validOutputs=h),m}function wM(e,t,n){let r=e.subarray(t*4,t*4+4),s=e.subarray(n*4,n*4+4),a=Math.min(r[0],r[2]),o=Math.min(r[1],r[3]),i=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),u=Math.min(s[0],s[2]),l=Math.min(s[1],s[3]),d=Math.max(s[0],s[2]),p=Math.max(s[1],s[3]),h=(i-a)*(c-o),f=(d-u)*(p-l);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,l),b=Math.min(i,d),y=Math.min(c,p),v=Math.max(b-m,0)*Math.max(y-g,0);return v/(h+f-v)}function kM(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function Zk(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function IM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),i=au(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let c=await Promise.all([a.data(),o.data()]),u=c[0],l=c[1],{selectedIndices:d}=Kk(u,l,n,r,s);return a!==e&&a.dispose(),o!==t&&o.dispose(),Ue(d,"int32")}var SM=IM;function CM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=E(e,"boxes","nonMaxSuppression"),i=E(t,"scores","nonMaxSuppression"),c=au(o,i,n,r,s,a);n=c.maxOutputSize,r=c.iouThreshold,s=c.scoreThreshold,a=c.softNmsSigma;let u={boxes:o,scores:i},l={maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a},d=B.runKernel(kc,u,l);return{selectedIndices:d[0],selectedScores:d[1]}}var TM=W({nonMaxSuppressionWithScore_:CM});async function NM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),c=au(o,i,n,r,s,a);n=c.maxOutputSize,r=c.iouThreshold,s=c.scoreThreshold,a=c.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),l=u[0],d=u[1],{selectedIndices:p,selectedScores:h}=Yk(l,d,n,r,s,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ue(p,"int32"),selectedScores:Ue(h)}}var _M=NM;function EM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=E(e,"boxes","nonMaxSuppression"),i=E(t,"scores","nonMaxSuppression"),c=au(o,i,n,r,s,null),u=c.maxOutputSize,l=c.iouThreshold,d=c.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:l,scoreThreshold:d,padToMaxOutputSize:a},f=B.runKernel(wc,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var AM=W({nonMaxSuppressionPadded_:EM});async function $M(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),c=au(o,i,n,r,s,null),u=c.maxOutputSize,l=c.iouThreshold,d=c.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Xk(p,h,u,l,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ue(f,"int32"),validOutputs:ke(m,"int32")}}var FM=$M;function DM(e,t,n=!1,r=!1){let s=E(e,"images","resizeBilinear");D(s.rank===3||s.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${s.rank}.`),D(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),D(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},c={alignCorners:n,halfPixelCenters:r,size:t},u=B.runKernel(mo,i,c);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var RM=W({resizeBilinear_:DM});function PM(e,t,n=!1,r=!1){let s=E(e,"images","resizeNearestNeighbor");D(s.rank===3||s.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${s.rank}.`),D(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),D(s.dtype==="float32"||s.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),D(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},c={alignCorners:n,halfPixelCenters:r,size:t},u=B.runKernel(Il,i,c);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var OM=W({resizeNearestNeighbor_:PM});function MM(e,t="binary",n=!1,r=.5){let s=E(e,"image","threshold"),a=.2989,o=.587,i=.114,c=s.shape[0]*s.shape[1],u=V(Ue([r]),255),l,d,p,h;if(D(s.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${s.rank}.`),D(s.shape[2]===3||s.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${s.shape[2]}.`),D(s.dtype==="int32"||s.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${s.dtype}.`),D(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),s.shape[2]===3){[l,d,p]=jn(s,[1,1,1],-1);let g=V(l,a),b=V(d,o),y=V(p,i);h=Y(Y(g,b),y)}else h=e;if(t==="otsu"){let g=ey(ce(yy(h),"int32"),Vn([]),256);u=LM(g,c)}let f=n?Uo(h,u):Gn(h,u);return ce(V(f,255),"int32")}function LM(e,t){let n=Ue([-1]),r=Ue([0]),s=Ue([0]),a,o,i,c,u,l;for(let d=0;d<e.size-1;d++){a=We(e,0,d+1),o=We(e,d+1),u=ge(ve(a),t),l=ge(ve(o),t);let p=ve(V(a,nu(0,a.size)));i=ge(p,ve(a));let h=vn(o.shape,a.size),f=Y(nu(0,o.size),h),m=V(o,f);c=ge(ve(m),ve(o));let g=he(i,c),b=he(i,c),y=V(u,l);s=V(V(y,g),b);let v=Gn(s,r);r=gn(v,s,r),n=gn(v,Ue([d]),n)}return n}var BM=W({threshold_:MM});function zM(e,t,n="nearest",r="constant",s=0,a){let o=E(e,"image","transform","float32"),i=E(t,"transforms","transform","float32");D(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),D(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),D(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let c={image:o,transforms:i},u={interpolation:n,fillMode:r,fillValue:s,outputShape:a};return B.runKernel(Bc,c,u)}var WM=W({transform_:zM});function VM(e,t,n){D(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),D(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=E(e,"a","bandPart");D(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let s=r.shape,[a,o]=r.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(nu(0,a,1,"int32"),[-1,1]),c=nu(0,o,1,"int32"),u=he(i,c),l=Fr(Uo(u,ke(+t,"int32")),Vo(u,ke(-n,"int32"))),d=wt([a,o],r.dtype);return U(Pt(ht(U(r,[-1,a,o])).map(p=>gn(l,p,d))),s)}var UM=W({bandPart_:VM});function GM(e){let t;if(Array.isArray(e)){t=!1,D(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let s=e[0].shape[0];for(let a=1;a<e.length;++a)D(e[a].shape[0]===s,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${s})`)}else t=!0,e=jn(e,e.shape[0],0).map(s=>Is(s,[0]));D(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let s=0;s<e.length;++s)n.push(B.tidy(()=>{let a=r[s];if(s>0)for(let o=0;o<s;++o){let i=V(ve(V(n[o],a)),n[o]);a=he(a,i)}return ge(a,_y(a,"euclidean"))}));return t?Pt(n,0):n}var HM=W({gramSchmidt_:GM});function jM(e,t=!1){if(D(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Jk(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((c,u)=>c*u),r=ht(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),s=[],a=[];r.forEach(c=>{let[u,l]=Jk(c,t);s.push(u),a.push(l)});let o=U(Pt(s,0),e.shape),i=U(Pt(a,0),e.shape);return[o,i]}}function Jk(e,t=!1){return B.tidy(()=>{D(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],s=iy(n),a=xs(e),o=Dr([[1]],[1,1]),i=xs(o),c=n>=r?r:n;for(let u=0;u<c;++u){let l=a,d=i,p=s;[i,a,s]=B.tidy(()=>{let h=We(a,[u,u],[n-u,1]),f=_y(h),m=We(a,[u,u],[1,1]),g=gn(Gn(m,0),Dr([[-1]]),Dr([[1]])),b=he(m,V(g,f)),y=ge(h,b);y.shape[0]===1?i=xs(o):i=et([o,We(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let v=Tt(ge(De(g,b),f)),x=We(a,[u,0],[n-u,r]),k=V(v,i),C=Oe(i);if(u===0)a=he(x,De(k,De(C,x)));else{let R=he(x,De(k,De(C,x)));a=et([We(a,[0,0],[u,r]),R],0)}let N=Oe(k),F=We(s,[0,u],[n,s.shape[1]-u]);if(u===0)s=he(F,De(De(F,i),N));else{let R=he(F,De(De(F,i),N));s=et([We(s,[0,0],[n,u]),R],1)}return[i,a,s]}),Ae([l,d,p])}return!t&&n>r&&(s=We(s,[0,0],[n,r]),a=We(a,[0,0],[r,r])),[s,a]})}var qM=W({qr_:jM}),xn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(xn||(xn={}));function KM(e,t,n=xn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"losses","computeWeightedLoss"),s=null;t!=null&&(s=E(t,"weights","computeWeightedLoss"));let a=s==null?r:V(r,s);if(n===xn.NONE)return a;if(n===xn.SUM)return ve(a);if(n===xn.MEAN){if(s==null)return At(a);{let o=r.size/s.size,i=ge(ve(a),ve(s));return o>1?ge(i,ke(o)):i}}if(n===xn.SUM_BY_NONZERO_WEIGHTS){if(s==null)return ge(ve(a),ke(r.size));{let o=V(s,Hn(r.shape)),i=ce(ve(eu(o,ke(0))),"float32");return ge(ve(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Ss=W({computeWeightedLoss_:KM});function XM(e,t,n,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","absoluteDifference"),a=E(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=E(n,"weights","absoluteDifference")),hn(s.shape,a.shape,"Error in absoluteDifference: ");let i=zt(he(s,a));return Ss(i,o,r)}var YM=W({absoluteDifference_:XM});function ZM(e,t,n,r,s=xn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"labels","cosineDistance"),o=E(t,"predictions","cosineDistance"),i=null;r!=null&&(i=E(r,"weights","cosineDistance")),hn(a.shape,o.shape,"Error in cosineDistance: ");let c=ke(1),u=he(c,ve(V(a,o),n,!0));return Ss(u,i,s)}var JM=W({cosineDistance_:ZM});function QM(e,t,n,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","hingeLoss"),a=E(t,"predictions","hingeLoss"),o=null;n!=null&&(o=E(n,"weights","hingeLoss")),hn(s.shape,a.shape,"Error in hingeLoss: ");let i=ke(1);s=he(V(ke(2),s),i);let c=qe(he(i,V(s,a)));return Ss(c,o,r)}var eL=W({hingeLoss_:QM});function tL(e,t,n,r=1,s=xn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"labels","huberLoss"),o=E(t,"predictions","huberLoss"),i=null;n!=null&&(i=E(n,"weights","huberLoss")),hn(a.shape,o.shape,"Error in huberLoss: ");let c=ke(r),u=zt(he(o,a)),l=Ul(u,c),d=he(u,l),p=Y(V(ke(.5),ut(l)),V(c,d));return Ss(p,i,s)}var nL=W({huberLoss_:tL});function rL(e,t,n,r=1e-7,s=xn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"labels","logLoss"),o=E(t,"predictions","logLoss"),i=null;n!=null&&(i=E(n,"weights","logLoss")),hn(a.shape,o.shape,"Error in logLoss: ");let c=ke(1),u=ke(r),l=Tt(V(a,ar(Y(o,u)))),d=V(he(c,a),ar(Y(he(c,o),u))),p=he(l,d);return Ss(p,i,s)}var sL=W({logLoss_:rL});function aL(e,t,n,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","meanSquaredError"),a=E(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=E(n,"weights","meanSquaredError")),hn(s.shape,a.shape,"Error in meanSquaredError: ");let i=Cy(s,a);return Ss(i,o,r)}var oL=W({meanSquaredError_:aL});function iL(e,t){let n=E(e,"labels","sigmoidCrossEntropyWithLogits"),r=E(t,"logits","sigmoidCrossEntropyWithLogits");hn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let s=qe(r),a=V(r,n),o=Th(bn(Tt(zt(r))));return Y(he(s,a),o)}function cL(e,t,n,r=0,s=xn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"multiClassLabels","sigmoidCrossEntropy"),o=E(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=E(n,"weights","sigmoidCrossEntropy")),hn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=ke(r),l=ke(1),d=ke(.5);a=Y(V(a,he(l,u)),V(d,u))}let c=iL(a,o);return Ss(c,i,s)}var uL=W({sigmoidCrossEntropy_:cL});function lL(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Qr((s,a,o)=>{let c=Sk(a,[n],!0),u=he(ce(a,"float32"),c);o([s,u]);let l=Tt(V(u,s));return{value:ve(l,[n]),gradFunc:(h,f)=>{let[m,g]=f,b=Go(h.shape,[n]);return[V(U(h,b),he(ce(m,"float32"),bn(g))),V(U(h,b),he(bn(g),ce(m,"float32")))]}}})(e,t)}function dL(e,t,n,r=0,s=xn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"onehotLabels","softmaxCrossEntropy"),o=E(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=E(n,"weights","softmaxCrossEntropy")),hn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),r>0){let u=ke(r),l=ke(1),d=ke(a.shape[1]);a=Y(V(a,he(l,u)),ge(u,d))}let c=lL(a,o);return Ss(c,i,s)}var pL=W({softmaxCrossEntropy_:dL});function hL(e,t,n,r){let s=E(e,"indices","sparseFillEmptyRows"),a=E(t,"values","sparseFillEmptyRows"),o=E(n,"denseShape","sparseFillEmptyRows"),i=E(r,"defaultValue","sparseFillEmptyRows",a.dtype);if(s.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${s.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let c={indices:s,values:a,denseShape:o,defaultValue:i},u=B.runKernel(Zp,c);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var fL=W({sparseFillEmptyRows_:hL});function mL(e,t,n){let r=E(e,"inputIndices","sparseReshape"),s=E(t,"inputShape","sparseReshape"),a=E(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:r,inputShape:s,newShape:a},i=B.runKernel(Jp,o);return{outputIndices:i[0],outputShape:i[1]}}var gL=W({sparseReshape_:mL});function bL(e,t,n){let r=E(e,"data","sparseSegmentMean"),s=E(t,"indices","sparseSegmentMean"),a=E(n,"segmentIds","sparseSegmentMean");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:r,indices:s,segmentIds:a};return B.runKernel(Qp,o)}var yL=W({sparseSegmentMean_:bL});function vL(e,t,n){let r=E(e,"data","sparseSegmentSum"),s=E(t,"indices","sparseSegmentSum"),a=E(n,"segmentIds","sparseSegmentSum");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:r,indices:s,segmentIds:a};return B.runKernel(eh,o)}var xL=W({sparseSegmentSum_:vL});function wL(e,t,n,r,s,a,o,i){let c=E(e,"data","stringNGrams","string");if(c.dtype!=="string")throw new Error("Data must be of datatype string");if(c.shape.length!==1)throw new Error(`Data must be a vector, saw: ${c.shape}`);let u=E(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let l={separator:n,nGramWidths:r,leftPad:s,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:c,dataSplits:u},p=B.runKernel(nh,d,l);return{nGrams:p[0],nGramsSplits:p[1]}}var kL=W({stringNGrams_:wL});function IL(e,t,n=!0){let r=E(e,"input","stringSplit","string"),s=E(t,"delimiter","stringSplit","string");if(r.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${r.shape}`);if(s.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${s.shape}`);let a={skipEmpty:n},o={input:r,delimiter:s},i=B.runKernel(rh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var SL=W({stringSplit_:IL});function CL(e,t){let n=E(e,"input","stringToHashBucketFast","string"),r={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let s={input:n};return B.runKernel(sh,s,r)}var TL=W({stringToHashBucketFast_:CL}),NL={fft:Rh,ifft:jl,rfft:Ph,irfft:Sy},_L={hammingWindow:nM,hannWindow:jk,frame:qk,stft:oM},qn={flipLeftRight:lM,grayscaleToRGB:pM,resizeNearestNeighbor:OM,resizeBilinear:RM,rotateWithOffset:fM,cropAndResize:cM,nonMaxSuppression:gM,nonMaxSuppressionAsync:SM,nonMaxSuppressionWithScore:TM,nonMaxSuppressionWithScoreAsync:_M,nonMaxSuppressionPadded:AM,nonMaxSuppressionPaddedAsync:FM,threshold:BM,transform:WM},Qk={bandPart:UM,gramSchmidt:HM,qr:qM},EL={absoluteDifference:YM,computeWeightedLoss:Ss,cosineDistance:JM,hingeLoss:eL,huberLoss:nL,logLoss:sL,meanSquaredError:oL,sigmoidCrossEntropy:uL,softmaxCrossEntropy:pL},Kl={sparseFillEmptyRows:fL,sparseReshape:gL,sparseSegmentMean:yL,sparseSegmentSum:xL},Wh={stringNGrams:kL,stringSplit:SL,stringToHashBucketFast:TL},Cs=class extends O1{minimize(e,t=!1,n){let{value:r,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:s[o.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ae(s),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return xk(e,t)}dispose(){this.iterations_!=null&&Ae(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Cs,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Vh=class extends Cs{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=B.registeredVariables[n],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${n}/accum_grad`,variable:M(()=>He(s).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${n}/accum_var`,variable:M(()=>He(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[r].variable,c=this.accumulatedUpdates[r].variable;M(()=>{let u=Y(V(i,this.rho),V(ut(o),1-this.rho)),l=V(ge(ln(Y(c,this.epsilon)),ln(Y(i,this.epsilon))),o),d=Y(V(c,this.rho),V(ut(l),1-this.rho));i.assign(u),c.assign(d);let p=Y(V(l,-this.learningRate),s);s.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ae(this.accumulatedGrads.map(e=>e.variable)),Ae(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Vh.className="Adadelta";ra(Vh);var Uh=class extends Cs{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=B.registeredVariables[n];if(this.accumulatedGrads[r]==null){let i=!1;this.accumulatedGrads[r]={originalName:`${n}/accumulator`,variable:M(()=>vn(s.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[r].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[r].variable;M(()=>{let i=Y(o,ut(a));o.assign(i);let c=Y(V(ge(a,ln(Y(i,B.backend.epsilon()))),-this.learningRate),s);s.assign(c)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ae(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Uh.className="Adagrad";ra(Uh);var Gh=class extends Cs{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],M(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),r==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);M(()=>{let n=he(1,this.accBeta1),r=he(1,this.accBeta2);t.forEach((s,a)=>{let o=B.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:M(()=>He(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:M(()=>He(o).variable(i))});let c=Array.isArray(e)?e[a].tensor:e[s];if(c==null)return;let u=this.accumulatedFirstMoment[a].variable,l=this.accumulatedSecondMoment[a].variable,d=Y(V(u,this.beta1),V(c,1-this.beta1)),p=Y(V(l,this.beta2),V(ut(c),1-this.beta2)),h=ge(d,n),f=ge(p,r);u.assign(d),l.assign(p);let m=Y(V(ge(h,Y(ln(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(V(this.accBeta1,this.beta1)),this.accBeta2.assign(V(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ae(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),M(()=>{this.accBeta1.assign(oa(this.beta1,this.iterations_+1)),this.accBeta2.assign(oa(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Gh.className="Adam";ra(Gh);var Hh=class extends Cs{constructor(e,t,n,r=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],M(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),r==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);M(()=>{let n=he(1,this.accBeta1),r=ge(-this.learningRate,Y(V(this.iteration,this.decay),1));t.forEach((s,a)=>{let o=B.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:He(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:He(o).variable(i)});let c=Array.isArray(e)?e[a].tensor:e[s];if(c==null)return;let u=this.accumulatedFirstMoment[a].variable,l=this.accumulatedWeightedInfNorm[a].variable,d=Y(V(u,this.beta1),V(c,1-this.beta1)),p=V(l,this.beta2),h=zt(c),f=ks(p,h);u.assign(d),l.assign(f);let m=Y(V(ge(r,n),ge(d,Y(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(Y(this.iteration,1)),this.accBeta1.assign(V(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ae(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Hh.className="Adamax";ra(Hh);var Xl=class extends Cs{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=Array.isArray(e)?e[r].tensor:e[n];if(s==null)return;let a=B.registeredVariables[n];M(()=>{let o=Y(V(this.c,s),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Xt(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Xl.className="SGD";ra(Xl);var jh=class extends Xl{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=B.registeredVariables[n];if(this.accumulations[r]==null){let i=!1;this.accumulations[r]={originalName:`${n}/momentum`,variable:M(()=>He(s).variable(i))}}let a=this.accumulations[r].variable,o=Array.isArray(e)?e[r].tensor:e[n];o!=null&&M(()=>{let i,c=Y(V(this.m,a),o);this.useNesterov?i=Y(V(this.c,Y(o,V(c,this.m))),s):i=Y(V(this.c,c),s),a.assign(c),s.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ae(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};jh.className="Momentum";ra(jh);var qh=class extends Cs{constructor(e,t=.9,n=0,r=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,r==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=B.registeredVariables[n],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${n}/rms`,variable:M(()=>He(s).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${n}/momentum`,variable:M(()=>He(s).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${n}/mg`,variable:M(()=>He(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[r].variable,c=this.accumulatedMoments[r].variable;M(()=>{let u=Y(V(i,this.decay),V(ut(o),1-this.decay));if(this.centered){let l=this.accumulatedMeanGrads[r].variable,d=Y(V(l,this.decay),V(o,1-this.decay)),p=ge(V(o,this.learningRate),ln(he(u,Y(ut(d),this.epsilon)))),h=Y(V(c,this.momentum),p);i.assign(u),l.assign(d),c.assign(h);let f=he(s,h);s.assign(f)}else{let l=Y(V(i,this.decay),V(ut(o),1-this.decay)),d=Y(V(c,this.momentum),ge(V(o,this.learningRate),ln(Y(l,this.epsilon))));i.assign(l),c.assign(d);let p=he(s,d);s.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ae(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ae(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ae(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};qh.className="RMSProp";ra(qh);var Ho=class{static sgd(e){return new Xl(e)}static momentum(e,t,n=!1){return new jh(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,s=!1){return new qh(e,t,n,r,s)}static adam(e=.001,t=.9,n=.999,r=null){return new Gh(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Vh(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,s=0){return new Hh(e,t,n,r,s)}static adagrad(e,t=.1){return new Uh(e,t)}},jo={sgd:Ho.sgd,momentum:Ho.momentum,adadelta:Ho.adadelta,adagrad:Ho.adagrad,rmsprop:Ho.rmsprop,adamax:Ho.adamax,adam:Ho.adam},AL=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Kh(){return new Promise(e=>AL(()=>e()))}var _={};Fe(_,{ERF_A1:()=>WL,ERF_A2:()=>VL,ERF_A3:()=>UL,ERF_A4:()=>GL,ERF_A5:()=>HL,ERF_P:()=>zL,PARALLELIZE_THRESHOLD:()=>Dy,SELU_SCALE:()=>tI,SELU_SCALEALPHA:()=>eI,applyActivation:()=>Bh,assertAndGetBroadcastShape:()=>mt,assertAxesAreInnerMostDims:()=>UP,assertParamsConsistent:()=>$L,assignToTypedArray:()=>ZL,axesAreInnerMostDims:()=>ly,calculateShapes:()=>S1,checkEinsumDimSizes:()=>rB,combineLocations:()=>wk,complexWithEvenIndex:()=>KL,complexWithOddIndex:()=>XL,computeConv2DInfo:()=>Bl,computeConv3DInfo:()=>Z1,computeDefaultPad:()=>Zb,computeDilation2DInfo:()=>cR,computeOptimalWindowSize:()=>DL,computeOutAndReduceShapes:()=>kk,computeOutShape:()=>FL,computePool2DInfo:()=>Y1,computePool3DInfo:()=>uR,convertConv2DDataFormat:()=>J1,decodeEinsumEquation:()=>tB,eitherStridesOrDilationsAreOne:()=>Jr,expandShapeToKeepDim:()=>Go,exponent:()=>QL,exponents:()=>JL,fromStringArrayToUint8:()=>pB,fromUint8ToStringArray:()=>dB,getAxesPermutation:()=>Ik,getBroadcastDims:()=>eP,getComplexWithIndex:()=>YL,getEinsumComputePath:()=>sB,getEinsumPermutation:()=>nB,getFusedBiasGradient:()=>Lh,getFusedDyActivation:()=>Mh,getImageCenter:()=>RL,getInnerMostAxes:()=>GP,getPermuted:()=>OL,getReductionAxes:()=>Wt,getReshaped:()=>PL,getReshapedPermuted:()=>ML,getSliceBeginCoords:()=>LL,getSliceSize:()=>BL,getUndoAxesPermutation:()=>dy,isIdentityPermutation:()=>aB,log:()=>A$,mergeRealAndImagArrays:()=>jL,prepareAndValidate:()=>I1,prepareSplitSize:()=>iB,segment_util:()=>sI,shouldFuse:()=>zh,slice_util:()=>mn,splitRealAndImagArrays:()=>qL,tupleValuesAreOne:()=>sa,upcastType:()=>yr,validateInput:()=>Gb,validateUpdateShape:()=>Ub,warn:()=>Xr});function $L(e,t){let n=e[0].length;e.forEach((s,a)=>{D(s.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),D(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((s,a)=>{for(let o=0;o<n;o++)D(o===t||s[o]===r[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${s}) does not match the shape of the rest (${r}) along the non-concatenated axis ${a}.`)})}function FL(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var Dy=30;function DL(e){return e<=Dy?e:kp(e,Math.floor(Math.sqrt(e)))}function RL(e,t,n){let r=n*(typeof e=="number"?e:e[0]),s=t*(typeof e=="number"?e:e[1]);return[r,s]}function PL(e,t,n,r=!0){let s=[];if(r)s=s.concat(t.slice(0)),s.push(e[0]/n),s=s.concat(e.slice(1));else{s=s.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)s=s.concat([e[o+1]/t[o],t[o]]);s=s.concat(e.slice(a+1))}return s}function OL(e,t,n=!0){let r=[];if(n){r.push(t);for(let s=t+1;s<e;++s)s<=2*t?(r.push(s),r.push(s-(t+1))):r.push(s)}else{let s=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):s.push(o);r.push(...s),r.push(0),r.push(...a)}return r}function ML(e,t,n,r=!0){let s=[];r?s.push(e[0]/n):s.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?r?s.push(t[a-1]*e[a]):s.push(e[a]/t[a-1]):s.push(e[a]);return s}function LL(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function BL(e,t,n){let r=e.slice(0,1);for(let s=0;s<n;++s)r.push(e[s+1]-t[s][0]-t[s][1]);return r}var eI=1.7580993408473768,tI=1.0507009873554805,zL=.3275911,WL=.254829592,VL=-.284496736,UL=1.421413741,GL=-1.453152027,HL=1.061405429;function jL(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function qL(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function KL(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let s=0;s<e.length;s+=4)n[Math.floor(s/4)]=e[s],r[Math.floor(s/4)]=e[s+1];return{real:n,imag:r}}function XL(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let s=2;s<e.length;s+=4)n[Math.floor(s/4)]=e[s],r[Math.floor(s/4)]=e[s+1];return{real:n,imag:r}}function YL(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function ZL(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function JL(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let s=0;s<Math.ceil(e/2);s++){let a=(t?2:-2)*Math.PI*(s/e);n[s]=Math.cos(a),r[s]=Math.sin(a)}return{real:n,imag:r}}function QL(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),s=Math.cos(r),a=Math.sin(r);return{real:s,imag:a}}var Ry="->",eB=/->/g,nI=",",rI="...";function tB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(eB,"").length)/Ry.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Ry}").`);let[r,s]=e.split(Ry);D(r.indexOf(rI)===-1,()=>`The ellipsis notation ("${rI}") is not supported yet.`);let a=r.split(nI),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<s.length;++p){let h=s[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<r.length;++p){let h=r[p];i.indexOf(h)===-1&&h!==nI&&i.push(h)}let c=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);c[p]=[];for(let h=0;h<a[p].length;++h)c[p].push(i.indexOf(a[p][h]))}let u=i.length,l=s.length,d=[];for(let p=l;p<u;++p)d.push(p);return{allDims:i,summedDims:d,idDims:c}}function nB(e,t){let n=new Array(e);n.fill(-1);for(let s=0;s<t.length;++s)n[t[s]]=s;let r=[];for(let s=0;s<e;++s)n[s]===-1&&r.push(s);return n=n.filter(s=>s!==-1),{permutationIndices:n,expandDims:r}}function rB(e,t,n){let r=new Array(e);for(let s=0;s<n.length;++s){let a=n[s].shape;for(let o=0;o<t[s].length;++o)r[t[s][o]]===void 0?r[t[s][o]]=a[o]:D(r[t[s][o]]===a[o],()=>`Expected dimension ${r[t[s][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function sB(e,t){let n=e,r=[],s=0;e.length===0&&n.push(-1),s=e.length+1;for(let o=0;o<s;++o)r.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],c=oB(t,i);for(let u of c)a.indexOf(u)===-1&&(r[o].push(u),a.push(u))}return{path:n,steps:r}}function aB(e){return e.every((t,n)=>t===n)}function oB(e,t){let n=[];for(let r=0;r<e.length;++r)(e[r].length===0||e[r].indexOf(t)!==-1||t===-1)&&n.push(r);return n}function iB(e,t,n=0){let r=[];if(typeof t=="number")D(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let s=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);D(s<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,c)=>c>0?i+c:i);t[a]=e.shape[n]-o}D(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var sI={};Fe(sI,{collectGatherOpShapeInfo:()=>lB,computeOutShape:()=>uB,segOpComputeOptimalWindowSize:()=>cB});function cB(e,t){let n=!1,r;for(e<=Dy?(r=e,n=!0):r=kp(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=kp(e,r+1);return r}function uB(e,t,n){let r=[],s=e.length;for(let a=0;a<s;a++)a!==t?r.push(e[a]):r.push(n);return r}function lB(e,t,n,r){let s=t.shape.length,a=e.shape.length;if(r!==0&&(r<-s||r>s))throw new Error(`Expect batchDims in the range of [-${s}, ${s}], but got ${r}`);if(r<0&&(r+=s),r>a)throw new Error(`batchDims (${r}) must be less than rank(x) (
${a}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let d=0;d<r;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],c=1,u=1,l=1;for(let d=0;d<r;++d)i.push(e.shape[d]),c*=e.shape[d];for(let d=r;d<n;d++)i.push(e.shape[d]),u*=e.shape[d];for(let d=r;d<s;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),l*=e.shape[d];return{batchSize:c,sliceSize:l,outerSize:u,dimSize:o,outputShape:i}}function dB(e){try{return e.map(t=>dh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function pB(e){return e.map(t=>Al(t))}var ts={};Fe(ts,{nonMaxSuppressionV3Impl:()=>Kk,nonMaxSuppressionV4Impl:()=>Xk,nonMaxSuppressionV5Impl:()=>Yk,whereImpl:()=>Lk});var aI={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,ql(ce(n,"float32"),-1))}}},hB={kernelName:Ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ut(ce(n,"float32")),s=ln(he(ke(1),r));return Tt(ge(e,s))}}}},fB={kernelName:Gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ln(he(ut(ce(n,"float32")),1));return ge(e,r)}}}},mB={kernelName:Ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=mt(n.shape,r.shape);return{a:()=>{let i=e,c=Wt(n.shape,s);return c.length>0&&(i=ve(i,c)),U(i,n.shape)},b:()=>{let i=e,c=Wt(r.shape,s);return c.length>0&&(i=ve(i,c)),U(i,r.shape)}}}},gB={kernelName:Da,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,s)=>{n[s]=()=>e.clone()}),n}},bB={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},yB={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},vB={kernelName:qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,ln(he(ke(1),ut(ce(n,"float32")))))}}},xB={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ln(Y(ke(1),ut(ce(n,"float32"))));return ge(e,r)}}}},wB={kernelName:Zi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=mt(n.shape,r.shape);return{a:()=>{let i=Y(ut(n),ut(r)),c=V(e,ge(r,i)),u=Wt(n.shape,s);return u.length>0&&(c=ve(c,u)),U(c,n.shape)},b:()=>{let i=Y(ut(n),ut(r)),c=Tt(V(e,ge(n,i))),u=Wt(r.shape,s);return u.length>0&&(c=ve(c,u)),U(c,r.shape)}}}},kB={kernelName:Xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Y(ut(ce(n,"float32")),1))}}},IB={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,he(ke(1),ut(ce(n,"float32"))))}}};function SB(e,t,n,r,s,a){let o=E(e,"dy","avgPool3dGrad"),i=E(t,"input","avgPool3dGrad"),c=o,u=i,l=!1;i.rank===4&&(l=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),D(c.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),D(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&D(jt(s),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:u},p={filterSize:n,strides:r,pad:s,dimRoundingMode:a},h=B.runKernel(Cp,d,p);return l?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var CB=W({avgPool3dGrad_:SB}),TB={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>CB(e,r,s,a,o,i)}}};function NB(e,t,n,r,s){let a=E(e,"dy","avgPoolGrad"),o=E(t,"input","avgPoolGrad");D(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,c=a,u=!1;o.rank===3&&(u=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),D(c.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${c.rank}.`),D(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let l={dy:c,input:i},d={filterSize:n,strides:r,pad:s},p=B.runKernel(Sp,l,d);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var _B=W({avgPoolGrad_:NB}),EB={kernelName:Pa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o}=n;return{x:()=>_B(e,r,s,a,o)}}},AB={kernelName:Oa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,s]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>De(e,s,!1,!0),b:()=>De(r,e,!0,!1)}:!a&&o?{a:()=>De(e,s,!1,!1),b:()=>De(e,r,!0,!1)}:a&&!o?{a:()=>De(s,e,!1,!0),b:()=>De(r,e,!1,!1)}:{a:()=>De(s,e,!0,!0),b:()=>De(e,r,!0,!0)}}},$B={kernelName:Ji,gradFunc:(e,t,n)=>{let{blockShape:r,crops:s}=n;return{x:()=>$h(e,r,s)}}},FB={kernelName:W0,gradFunc:(e,t,n)=>{let r=n,s=r.inputShape,a=r.shape,o=Array.from(a);for(let c=s.length-1;c>=0;c--)if(s[c]===a[c])o[c]=1;else if(s[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${a}].`);let i=[];for(let c=0;c<o.length;c++)o[c]>1&&i.push(c);return{x:()=>ve(e,i,!0)}}},DB={kernelName:Ma,gradFunc:e=>({x:()=>e.clone()})},RB={kernelName:La,gradFunc:e=>({x:()=>He(e)})},PB={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:s,clipValueMax:a}=n;return{x:()=>gn(Fr(Vo(r,s),Uo(r,a)),e,He(e))}}},OB={kernelName:fl,inputsToSave:["x"],gradFunc:aI.gradFunc},MB={kernelName:Qi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(c=>c.shape),{axis:s}=n,a=br(s,t[0].shape)[0],o=r.map(c=>c[a]);return jn(e,o,a).map(c=>()=>c)}},LB={kernelName:Ba,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{dilations:a,strides:o,pad:i,dataFormat:c}=n;return D(sa(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>ny(r.shape,e,s,o,i,c),filter:()=>$y(r,e,s.shape,o,i,c)}}},BB={kernelName:za,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:c}=n;return{dy:()=>Dt(e,s,a,o,i,1,c),filter:()=>$y(e,r,s.shape,a,o,i,c)}}};function zB(e,t,n,r,s){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),D(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),D(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),D(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),D(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),D(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},c={strides:r,pad:s,filterShape:n};return B.runKernel(Ep,i,c)}var WB=W({conv3DBackpropFilter_:zB}),VB={kernelName:ml,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a}=n;D(sa(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[o,i]=t;return{x:()=>ck(o.shape,e,i,s,a),filter:()=>WB(o,e,i.shape,s,a)}}},UB={kernelName:Wa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(Tt(wy(ce(n,"float32"))),e)}}},GB={kernelName:Va,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(ky(ce(n,"float32")),e)}}},HB={kernelName:Ua,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s,exclusive:a,reverse:o}=n;return{x:()=>{let i=Ik([s],r.rank),c=oy(e,s,a,!o);return i!=null&&(c=Oe(c,i)),c}}}},jB={kernelName:Ga,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a,dimRoundingMode:o}=n,i=r==null?[1,1]:r;D(sa(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[c,u]=t;return D(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${c.rank}.`),D(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),D(c.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),D(Jr(s,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${s} and dilations '${i}'.`),o!=null&&D(jt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>Hk(c.shape,e,u,s,a,i,o),filter:()=>Gk(c,e,u.shape,s,a,i,o)}}},qB={kernelName:gl,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,a={x:r,filter:s,dy:e},o={x:r,filter:s,dy:e};return{x:()=>B.runKernel(Pp,a,n),filter:()=>B.runKernel(Op,o,n)}}},KB={kernelName:ja,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>B.runKernel(Lp,r)}}},XB={kernelName:nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=V(bn(Tt(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>V(e,r)}}},YB={kernelName:qa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n)}}},ZB={kernelName:sc,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},JB={kernelName:ac,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,bn(n))}}},QB={kernelName:Ka,gradFunc:e=>({x:()=>He(e)})},ez={kernelName:Xa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=mt(n.shape,r.shape);return{a:()=>{let i=ge(e,ce(r,"float32")),c=Wt(n.shape,s);return c.length>0?U(ve(i,c),n.shape):i},b:()=>{let i=V(e,ce(n,"float32")),c=Wt(r.shape,s);c.length>0&&(i=U(ve(i,c),r.shape));let u=ut(r);return Tt(ge(i,ce(u,"float32")))}}}},tz={kernelName:Ya,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[s,a,o,i]=t,c=i==null?ke(1):i,u=Wt(a.shape,s.shape),l=[];if(a.rank===1){for(let x=0;x<s.shape.length-1;++x)l.push(s.shape[x]);l.push(1)}let d=he(s,a),p=V(e,c),h=vy(Y(o,ke(r))),f=V(V(V(h,h),h),ke(-.5));return{x:()=>a.rank===1?U(V(V(e,Un(U(h,[1,1,1,a.shape[0]]),l)),c),s.shape):U(V(V(e,h),c),s.shape),mean:()=>{let x=V(V(h,ke(-1)),p);return a.rank===1&&(x=ve(x,u)),U(x,a.shape)},variance:()=>{let x=V(V(f,d),p);return a.rank===1&&(x=ve(x,u)),U(x,a.shape)},scale:()=>{let x=V(d,h),k=V(e,x);return a.rank===1&&(k=ve(k,u)),U(k,a.shape)},offset:()=>{let x=e;return a.rank===1&&(x=ve(x,u)),U(x,a.shape)}}}},nz={kernelName:ic,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,s]=t,{axis:a}=n,o=br(a,r.shape)[0];return{x:()=>{let c=r.shape,u=s.size,l=c.slice(0,o),d=l.length,p=c.slice(a,c.length).slice(1),h=p.length,f=oI(0,d),m=oI(d+1,d+1+h),g=iI([l,[u],p]),b=U(e,g),y=U(s,[u]),v=iI([[d],f,m]),x=Oe(b,v),k=Ok(x,y,r.shape[o]),C=dy(v);return k=Oe(k,C),k},indices:()=>s}}};function oI(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function iI(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var rz={kernelName:Za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>He(n),b:()=>He(r)}}},sz={kernelName:Ja,gradFunc:e=>({x:()=>ce(e,"float32")})},az={kernelName:lc,gradFunc:e=>({x:()=>He(e)})},oz={kernelName:dc,gradFunc:e=>({x:()=>He(e)})},iz={kernelName:pc,gradFunc:e=>({x:()=>He(e)})},cz={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:s}=n,a=Gn(r,0);return{x:()=>gn(a,e,V(e,s))}}},uz={kernelName:mc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Y(n,1))}}},lz={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,ce(n,"float32"))}}},dz={kernelName:V0,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n;return{logits:()=>{let a=!0,o=bn(r);return he(e,V(ve(e,s,a),o))}}}};function pz(e,t,n,r=5,s=1,a=1,o=.5){let i={x:e,y:t,dy:n},c={depthRadius:r,bias:s,alpha:a,beta:o};return B.runKernel(Up,i,c)}var hz=W({localResponseNormalizationBackprop_:pz}),fz={kernelName:xl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{depthRadius:a,bias:o,alpha:i,beta:c}=n;return{x:()=>hz(r,s,e,a,o,i,c)}}};function cI(e,t,n,r){return t.rank<n.rank&&(t=U(t,Go(t.shape,r))),e.rank<n.rank&&(e=U(e,Go(e.shape,r))),{x:()=>V(e,ce(sr(n,t),e.dtype))}}var uI={kernelName:to,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:s}=r,a=t[0],o=t[1],i=br(s,a.shape),c=cI(e,o,a,i);return{x:()=>c.x()}}},mz={kernelName:no,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>V(e,ce(Vo(n,r),"float32")),b:()=>V(e,ce(cy(n,r),"float32"))}}};function gz(e,t,n,r,s,a,o){let i=E(e,"dy","maxPool3dGrad"),c=E(t,"input","maxPool3dGrad"),u=E(n,"output","maxPool3dGrad"),l=i,d=c,p=u,h=!1;c.rank===4&&(h=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]]),p=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),D(l.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),D(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),D(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&D(jt(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:l,input:d,output:p},m={filterSize:r,strides:s,pad:a,dimRoundingMode:o},g=B.runKernel(Hp,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var bz=W({maxPool3dGrad_:gz}),yz={kernelName:wl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=n;return{x:()=>bz(e,r,s,a,o,i,c)}}};function vz(e,t,n,r,s,a,o){let i=E(e,"dy","maxPoolGrad"),c=E(t,"input","maxPoolGrad"),u=E(n,"output","maxPoolGrad");D(c.rank===i.rank,()=>`Rank of input (${c.rank}) does not match rank of dy (${i.rank})`),D(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),D(c.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${c.rank}.`),o!=null&&D(jt(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let l={dy:i,input:c,output:u},d={filterSize:r,strides:s,pad:a,dimRoundingMode:o};return B.runKernel(Gp,l,d)}var xz=W({maxPoolGrad_:vz}),wz={kernelName:ro,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>xz(e,r,s,a,o,i)}}},kz={kernelName:so,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n,a=br(s,r.shape),i=kk(r.shape,a)[1],c=$t(i);return{x:()=>{let l=r.shape.slice();a.forEach(h=>{l[h]=1});let d=U(e,l);return ge(V(d,Hn(r.shape,"float32")),c)}}}},Iz={kernelName:ao,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:s}=r,[a,o]=t,i=br(s,a.shape),c=cI(e,o,a,i);return{x:()=>c.x()}}},Sz={kernelName:oo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>V(e,ce(Uo(n,r),"float32")),b:()=>V(e,ce(Gn(n,r),"float32"))}}},Cz={kernelName:io,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>We(e,a,r.shape)}}},Tz={kernelName:bc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=mt(n.shape,r.shape);return{a:()=>{let i=Wt(n.shape,s);return i.length>0?U(ve(e,i),n.shape):e},b:()=>{let i=V(e,Tt(Vl(ge(n,r)))),c=Wt(r.shape,s);return c.length>0?U(ve(i,c),r.shape):i}}}},Nz={kernelName:co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=mt(n.shape,r.shape);return{a:()=>{let i=V(e,ce(r,"float32")),c=Wt(n.shape,s);return c.length>0?U(ve(i,c),n.shape):i},b:()=>{let i=V(e,ce(n,"float32")),c=Wt(r.shape,s);return c.length>0?U(ve(i,c),r.shape):i}}}},_z={kernelName:yc,gradFunc:e=>({x:()=>Tt(e)})},Ez={kernelName:uo,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>wt(n.shape,"float32")}}},Az={kernelName:Ic,gradFunc:e=>({x:()=>He(e)})},$z={kernelName:Sc,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return ht(e,r).map(a=>()=>a)}},lI={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>We(e,a,r.shape)}}},Fz={kernelName:po,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,s]=t,a=n,o=r,i=mt(a.shape,o.shape);return{a:()=>{let l=ce(o,"float32"),d=V(e,V(l,oa(a,he(l,ke(1))))),p=Wt(a.shape,i);return p.length>0&&(d=ve(d,p)),U(d,a.shape)},b:()=>{let l=Gn(a,0),d=gn(l,ar(a),He(a)),p=V(e,V(s,d)),h=Wt(o.shape,i);return h.length>0&&(p=ve(p,h)),U(p,o.shape)}}}},Dz={kernelName:ho,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,s=Gn(n,0);return{x:()=>gn(s,e,V(e,r)),alpha:()=>{let a=gn(s,He(e),V(e,n)),o=Wt(r.shape,e.shape);return o.length>0&&(a=ve(a,o)),U(a,r.shape)}}}},Rz={kernelName:Ha,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=mt(n.shape,r.shape);return{a:()=>{let i=ge(e,ce(r,"float32")),c=Wt(n.shape,s);return c.length>0?U(ve(i,c),n.shape):i},b:()=>{let i=V(e,ce(n,"float32")),c=Wt(r.shape,s);c.length>0&&(i=U(ve(i,c),r.shape));let u=ut(r);return Tt(ge(i,ce(u,"float32")))}}}},Pz={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Tt(ut(n)))}}},Oz={kernelName:go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=V(Uo(n,6),ql(n));return{x:()=>V(e,ce(r,"float32"))}}},Mz={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,ce(ql(n),"float32"))}}},Lz={kernelName:Nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},Bz={kernelName:mo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>B.runKernel(Yp,s,n)}}},zz={kernelName:Il,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>B.runKernel(Xp,s,n)}}},Wz={kernelName:bo,gradFunc:(e,t,n)=>{let{dims:r}=n,s=br(r,e.shape);return{x:()=>ir(e,s)}}},Vz={kernelName:yo,gradFunc:e=>({x:()=>He(e)})},Uz={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Tt(ge(e,V(oa(n,1.5),2)))}}},Gz={kernelName:Ec,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(He(n),"float32"),t:()=>V(e,ce(n,e.dtype)),e:()=>V(e,ce(_h(n),e.dtype))}}},Hz={kernelName:Ac,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Gn(n,ke(0)),s=ke(eI),a=ke(tI),o=V(e,a),i=V(V(e,s),bn(ce(n,"float32")));return gn(r,o,i)}}}},jz={kernelName:wo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(n,he(ke(1),n)))}}},qz={kernelName:Dc,gradFunc:e=>({x:()=>He(e)})},Kz={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(Ih(ce(n,"float32")),e)}}},Xz={kernelName:Fc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(ay(ce(n,"float32")),e)}}},Yz={kernelName:$c,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:s,size:a}=n,o=r.shape,[i,c]=P1(r,s,a),u=[];for(let l=0;l<e.rank;l++)u.push([i[l],o[l]-i[l]-c[l]]);return{x:()=>wr(e,u)}}},Zz={kernelName:So,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:s}=n,a=!0,o=V(e,r);return{logits:()=>he(o,V(ve(o,[s],a),r))}}},Jz={kernelName:Rc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,xr(n))}}},dI={kernelName:Pc,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:s}=n;return{x:()=>kh(e,r,s)}}},pI={kernelName:Oc,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>et(e,r)}}},Qz={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,V(ln(ce(n,"float32")),2))}}},e4={kernelName:Sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(ce(n,"float32"),2))}}},t4={kernelName:Co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ke(2);return{a:()=>V(e,V(s,he(n,r))),b:()=>V(e,V(s,he(r,n)))}}},n4={kernelName:Zs,gradFunc:e=>({x:()=>He(e)})},r4={kernelName:To,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=mt(n.shape,r.shape);return{a:()=>{let i=e,c=Wt(n.shape,s);return c.length>0&&(i=ve(i,c)),U(i,n.shape)},b:()=>{let i=e,c=Wt(r.shape,s);return c.length>0&&(i=ve(i,c)),U(Tt(i),r.shape)}}}},s4={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,s=r.shape.slice(),{axis:a}=n;br(a,r.shape).forEach(u=>{s[u]=1});let i=U(e,s),c=V(i,Hn(r.shape,"float32"));return{x:()=>c}}},a4={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,ut(Ih(n)))}}},o4={kernelName:_o,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(he(ke(1),ut(n)),e)}}},i4={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:s}=n;return{x:()=>{let o=He(r);if(r.rank===1)for(let i=0;i<s[0];++i)o=Y(o,We(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<s[0];++i)for(let c=0;c<s[1];++c)o=Y(o,We(e,[i*r.shape[0],c*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<s[0];++i)for(let c=0;c<s[1];++c)for(let u=0;u<s[2];++u)o=Y(o,We(e,[i*r.shape[0],c*r.shape[1],u*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<s[0];++i)for(let c=0;c<s[1];++c)for(let u=0;u<s[2];++u)for(let l=0;l<s[3];++l)o=Y(o,We(e,[i*r.shape[0],c*r.shape[1],u*r.shape[2],l*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return o}}}},c4={kernelName:Eo,gradFunc:(e,t,n)=>{let r=n,{perm:s}=r,a=dy(s);return{x:()=>Oe(e,a)}}},u4={kernelName:zc,gradFunc:(e,t,n)=>{let r=n,{axis:s}=r;return{value:()=>Pt(e,s)}}},l4={kernelName:Cl,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>d4(e,n)}}};function d4(e,t){let n=ks(t,He(t)),r=Jc(e,n),s=Vo(t,ke(0,"int32")),a=r.rank-s.rank;for(let i=0;i<a;++i)s=yn(s,i+1);s=Fr(s,Hn(r.shape,"bool"));let o=He(r);return gn(s,r,o)}var p4={kernelName:Wc,gradFunc:e=>({x:()=>He(e)})},h4=[aI,hB,fB,mB,gB,bB,yB,vB,xB,wB,kB,IB,TB,EB,AB,$B,FB,DB,RB,PB,OB,MB,BB,LB,VB,UB,GB,HB,jB,qB,Rz,KB,XB,YB,ZB,JB,ez,QB,tz,nz,rz,sz,az,oz,iz,cz,uz,lz,dz,fz,uI,uI,mz,yz,wz,kz,Iz,Sz,Cz,Tz,Nz,_z,Ez,Az,$z,lI,lI,Fz,Dz,Pz,Oz,Mz,Lz,Bz,zz,Wz,Vz,Uz,Gz,Hz,jz,qz,Kz,Xz,Yz,Zz,Jz,dI,dI,pI,pI,Qz,t4,e4,n4,r4,s4,a4,o4,i4,c4,u4,l4,p4];for(let e of h4)U0(e);var hI={};Fe(hI,{maxNorm:()=>b4,minMaxNorm:()=>x4,nonNeg:()=>v4,unitNorm:()=>y4});var Py;function Vt(){return Py==null&&(Py=z1().epsilon()),Py}function Pr(){return"channelsLast"}var Ts=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ts.prototype)}},Or=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Or.prototype)}},H=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,H.prototype)}},$e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$e.prototype)}},fI=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,fI.prototype)}};function qo(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ns(e,t){if(!e)throw new fI(t)}function mI(e,t){let n=0;for(let r of e)r===t&&n++;return n}function Fn(e){return e.length===1?e[0]:e}function gt(e){return Array.isArray(e)?e:[e]}function Ns(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Ko(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var kr={};function Oy(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function My(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>My(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:My(r))}}}function Yl(e,t={},n={},r="object",s=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in kr)o=kr[a];else if(o=t[a],o==null)throw new H(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new H(`${r}: Improper config format: ${JSON.stringify(a)}.
'className' and 'config' must set.`);let o=a.className,i,c;if(o in n?[i,c]=n[o]:o in kr?[i,c]=kr.className:o in t&&([i,c]=t[o]),i==null)throw new H(`Unknown ${r}: ${o}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(c!=null){let u={};for(let h of Object.keys(kr))u[h]=kr[h];for(let h of Object.keys(n))u[h]=n[h];let l=a.config;l.customObjects=u;let d=Object.assign({},kr);for(let h of Object.keys(n))kr[h]=n[h];My(a.config);let p=c(i,a.config,n,s);return kr=Object.assign({},d),p}else{let u=Object.assign({},kr);for(let d of Object.keys(n))kr[d]=n[d];let l=new i(a.config);return kr=Object.assign({},u),l}}}function f4(e,t){return e<t?-1:e>t?1:0}function Xh(e,t){return-1*f4(e,t)}function ca(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function m4(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Xo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Ly(e,t,n=0,r=1/0){return ns(n>=0),ns(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(s=>typeof s===t)}function Yt(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Yt(n,`element ${r+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${gI(e)}.`)}function gI(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>gI(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function g4(e,t){let n=w.now(),r;return(...a)=>{let o=w.now();return o-n<t||(n=o,r=e(...a)),r}}function bI(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function By(e,t){return M(()=>ln(ve(V(e,e),t,!0)))}var Zl=class extends ae.Serializable{getConfig(){return{}}},zy=class extends Zl{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>{let t=By(e,this.axis),n=rn(t,0,this.maxValue);return V(e,ge(n,Y(Vt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};zy.className="MaxNorm";ae.registerClass(zy);var Wy=class extends Zl{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>ge(e,Y(Vt(),By(e,this.axis))))}getConfig(){return{axis:this.axis}}};Wy.className="UnitNorm";ae.registerClass(Wy);var Vy=class extends Zl{apply(e){return qe(e)}};Vy.className="NonNeg";ae.registerClass(Vy);var Uy=class extends Zl{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>{let t=By(e,this.axis),n=Y(V(this.rate,rn(t,this.minValue,this.maxValue)),V(1-this.rate,t));return V(e,ge(n,Y(Vt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Uy.className="MinMaxNorm";ae.registerClass(Uy);var yI={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ut(e){return Oy(e)}function vI(e,t={}){return Yl(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function Gt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in yI?yI[e]:e,config:{}};return vI(n)}else return e instanceof Zl?e:vI(e)}function b4(e){return new zy(e)}function y4(e){return new Wy(e)}function v4(){return new Vy}function x4(e){return new Uy(e)}var xI={};Fe(xI,{constant:()=>U4,glorotNormal:()=>Y4,glorotUniform:()=>X4,heNormal:()=>Z4,heUniform:()=>J4,identity:()=>q4,leCunNormal:()=>Q4,leCunUniform:()=>eW,ones:()=>V4,orthogonal:()=>tW,randomNormal:()=>H4,randomUniform:()=>G4,truncatedNormal:()=>j4,varianceScaling:()=>K4,zeros:()=>W4});var w4=["channelsFirst","channelsLast"],k4=["nearest","bilinear"],I4=["valid","same","causal"],S4=["max","avg"],C4=["sum","mul","concat","ave"],ou=new Map;function Ft(e){Xo(w4,"DataFormat",e)}function T4(e){Xo(k4,"InterpolationFormat",e)}function cr(e){Xo(I4,"PaddingMode",e)}function wI(e){Xo(S4,"PoolMode",e)}var Jl=[],kI="/";function Yo(e,t){Jl.push(e);try{let n=t();return Jl.pop(),n}catch(n){throw Jl.pop(),n}}function N4(){return Jl.length===0?"":Jl.join(kI)+kI}function II(e){if(!CI(e))throw new Error("Not a valid tensor name: '"+e+"'");return N4()+e}function SI(e){if(!CI(e))throw new Error("Not a valid tensor name: '"+e+"'");ou.has(e)||ou.set(e,0);let t=ou.get(e);if(ou.set(e,ou.get(e)+1),t>0){let n=`${e}_${t}`;return ou.set(n,1),n}else return e}var _4=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function CI(e){return!!e.match(_4)}function E4(e){return e===parseInt(e.toString(),10)}function ua(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let s=t;s<n;++s)r*=e[s];return r}function iu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let r=e[n];r<t&&(t=r)}return t}function la(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let r=e[n];r>t&&(t=r)}return t}function Mr(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Yh(e,t){return ce(e,t)}function Ql(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function A4(e,t){return M(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Ql(e,1);return jy(n,[1,t,1])})}function $4(e){let t=[ua(e.shape)];return U(e,t)}function F4(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ua(e.shape,1)];return U(e,t)}function Zo(e,t,n){return M(()=>{switch(e.rank){case 1:return Dh(e,t,n);case 2:return Iy(e,[t,0],[n,e.shape[1]]);case 3:return su(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Hl(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return We(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return We(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Gy(e,t,n){return M(()=>{switch(e.rank){case 1:return Dh(e,t,n);case 2:return Iy(e,[0,t],[e.shape[0],n]);case 3:return su(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Hl(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Zh(e,t,n,r){return M(()=>{switch(e.rank){case 1:return Dh(e,t,n);case 2:switch(r){case 1:return Zo(e,t,n);case 2:return Gy(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Zo(e,t,n);case 2:return su(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Gy(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Zo(e,t,n);case 2:return Hl(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Hl(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Gy(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Hy(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),et(e,t)}function TI(e,t){switch(e.rank){case 1:return sk([e,t]);case 2:return ak([e,t],0);case 3:return ok([e,t],0);case 4:return ik([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function jy(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Un(e,t)}function Jh(e,t=0,n=1,r,s){return Ek(e,t,n,r,s)}function rs(e,t,n,r){if(e.rank<2||t.rank<2)throw new $e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let s=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(s!==a)throw new $e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let s=!1,a=!1;return ia.matMul({a:e,b:t,transposeA:s,transposeB:a,bias:r?qy(e.rank,r,Pr()):null,activation:n})}else{let s=e.shape.slice(),a=s.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),c=o.pop(),u=[...o,i],l=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Oe(t,l),[c,-1]);let d=[...s,...u],p=!1,h=!1;return U(ia.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:r?qy(e.rank,r,Pr()):null,activation:n}),d)}}function NI(e,t,n){return M(()=>(Array.isArray(t)?t=Ue(t,"int32"):t=ce(t,"int32"),Jc(e,t,n)))}function ed(e){return V(e,e)}function qy(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?U(t,[1,r[0],1,1,1]):U(t,[1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?U(t,[1,1,1,1,r[0]]):U(t,[1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?U(t,[1,r[0],1,1]):U(t,[1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?U(t,[1,1,1,r[0]]):U(t,[1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?U(t,[1,r[0],1]):U(t,[1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?U(t,[1,1,r[0]]):U(t,[1].concat(r))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function Lr(e,t,n){return M(()=>(n==null&&(n=Pr()),Ft(n),Y(e,qy(e.rank,t,n))))}function D4(e,t=1){if(t!==1)throw new $e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Wl(e)}function R4(e){return M(()=>ge(e,Y(zt(e),1)))}function _I(e,t,n,r){return M(()=>Vk(e,t,n,r))}function P4(e){return M(()=>{let t=Y(.5,V(.2,e));return rn(t,0,1)})}function td(e,t,n=!1){return n?e():t()}var O4=["fanIn","fanOut","fanAvg"],M4=["normal","uniform","truncatedNormal"];function L4(e){Xo(O4,"FanMode",e)}function B4(e){Xo(M4,"Distribution",e)}var Ir=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Ky=class extends Ir{apply(e,t){return wt(e,t)}};Ky.className="Zeros";ae.registerClass(Ky);var Qh=class extends Ir{apply(e,t){return Hn(e,t)}};Qh.className="Ones";ae.registerClass(Qh);var Xy=class extends Ir{constructor(e){super();if(typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return M(()=>V(ke(this.value),Hn(e,t)))}getConfig(){return{value:this.value}}};Xy.className="Constant";ae.registerClass(Xy);var Yy=class extends Ir{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return tu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Yy.className="RandomUniform";ae.registerClass(Yy);var Zy=class extends Ir{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`randomNormal does not support dType ${t}.`);return Jh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Zy.className="RandomNormal";ae.registerClass(Zy);var Jy=class extends Ir{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`truncatedNormal does not support dType ${t}.`);return Oh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Jy.className="TruncatedNormal";ae.registerClass(Jy);var Qy=class extends Ir{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return M(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return V(this.gain,iy(e[0]))})}getConfig(){return{gain:this.gain}}};Qy.className="Identity";ae.registerClass(Qy);function z4(e,t="channelsLast"){let n,r;if(Ft(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let s=ua(e,2);n=e[1]*s,r=e[0]*s}else if(t==="channelsLast"){let s=ua(e,0,e.length-2);n=e[e.length-2]*s,r=e[e.length-1]*s}}else{let s=ua(e);n=Math.sqrt(s),r=Math.sqrt(s)}return[n,r]}var Dn=class extends Ir{constructor(e){super();if(e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,L4(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,B4(this.distribution),this.seed=e.seed}apply(e,t){let n=z4(e),r=n[0],s=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,r):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(r+s)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`${this.getClassName()} does not support dType ${t}.`);return Oh(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return tu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Dn.className="VarianceScaling";ae.registerClass(Dn);var ef=class extends Dn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};ef.className="GlorotUniform";ae.registerClass(ef);var tf=class extends Dn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};tf.className="GlorotNormal";ae.registerClass(tf);var nf=class extends Dn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};nf.className="HeNormal";ae.registerClass(nf);var rf=class extends Dn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};rf.className="HeUniform";ae.registerClass(rf);var sf=class extends Dn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};sf.className="LeCunNormal";ae.registerClass(sf);var af=class extends Dn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};af.className="LeCunNormal";ae.registerClass(af);var ev=class extends Ir{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new $e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return M(()=>{if(e.length<2)throw new $e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Jh(n,0,1,"float32"),s=Qk.gramSchmidt(r);return e[0]>e[1]&&(s=Oe(s)),V(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};ev.className="Orthogonal";ae.registerClass(ev);var EI={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function AI(e,t={}){return Yl(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function Nt(e){return Oy(e)}function kt(e){if(typeof e=="string"){let t=e in EI?EI[e]:e;if(t==="GlorotNormal")return new tf;if(t==="GlorotUniform")return new ef;if(t==="HeNormal")return new nf;if(t==="HeUniform")return new rf;if(t==="LeCunNormal")return new sf;if(t==="LeCunUniform")return new af;{let n={};return n.className=t,n.config={},AI(n)}}else return e instanceof Ir?e:AI(e)}function W4(){return new Ky}function V4(){return new Qh}function U4(e){return new Xy(e)}function G4(e){return new Yy(e)}function H4(e){return new Zy(e)}function j4(e){return new Jy(e)}function q4(e){return new Qy(e)}function K4(e){return new Dn(e)}function X4(e){return new ef(e)}function Y4(e){return new tf(e)}function Z4(e){return new nf(e)}function J4(e){return new rf(e)}function Q4(e){return new sf(e)}function eW(e){return new af(e)}function tW(e){return new ev(e)}var $I={};Fe($I,{Layer:()=>je,RNN:()=>os,RNNCell:()=>ld,activation:()=>MV,add:()=>jV,alphaDropout:()=>EU,average:()=>qV,averagePooling1d:()=>yx,averagePooling2d:()=>vx,averagePooling3d:()=>xx,avgPool1d:()=>nU,avgPool2d:()=>sU,avgPool3d:()=>oU,avgPooling1d:()=>rU,avgPooling2d:()=>aU,avgPooling3d:()=>iU,batchNormalization:()=>QV,bidirectional:()=>wU,concatenate:()=>KV,conv1d:()=>_V,conv2d:()=>EV,conv2dTranspose:()=>AV,conv3d:()=>$V,conv3dTranspose:()=>FV,convLstm2d:()=>bU,convLstm2dCell:()=>yU,cropping2D:()=>RV,dense:()=>LV,depthwiseConv2d:()=>OV,dot:()=>JV,dropout:()=>BV,elu:()=>kV,embedding:()=>HV,flatten:()=>WV,gaussianDropout:()=>_U,gaussianNoise:()=>NU,globalAveragePooling1d:()=>cU,globalAveragePooling2d:()=>uU,globalMaxPool1d:()=>IU,globalMaxPool2d:()=>SU,globalMaxPooling1d:()=>zS,globalMaxPooling2d:()=>WS,gru:()=>dU,gruCell:()=>pU,input:()=>lS,inputLayer:()=>wV,layerNormalization:()=>eU,leakyReLU:()=>SV,lstm:()=>hU,lstmCell:()=>fU,masking:()=>AU,maxPool1d:()=>CU,maxPool2d:()=>TU,maxPooling1d:()=>VS,maxPooling2d:()=>US,maxPooling3d:()=>lU,maximum:()=>XV,minimum:()=>YV,multiply:()=>ZV,permute:()=>GV,prelu:()=>CV,reLU:()=>IV,repeatVector:()=>VV,reshape:()=>UV,rnn:()=>vU,separableConv2d:()=>DV,simpleRNN:()=>mU,simpleRNNCell:()=>gU,softmax:()=>TV,spatialDropout1d:()=>zV,stackedRNNCells:()=>xU,thresholdedReLU:()=>NV,timeDistributed:()=>kU,upSampling2d:()=>PV,zeroPadding2d:()=>tU});var nW=0;function FI(){return nW++}var of={};function cf(e=""){return e in of||(of[e]=0),of[e]+=1,e+of[e].toString()}function tv(e){return Array.isArray(e)&&Array.isArray(e[0])}function uf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Me(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function lf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,s)=>r*s);return t}var DI="Variable",RI=class{constructor(e,t="float32",n=DI,r=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=FI(),n=n==null?DI:n,this.originalName=II(n),this.name=SI(this.originalName),this.trainable_=r,this.constraint=s,this.val=Mk(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),rW(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function rW(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function nv(e){return e.map(t=>t.read())}function rv(e){e.forEach(t=>{t[0].write(t[1])})}var Ot=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Br=class{constructor(e,t,n,r,s,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=s,this.outputTensorIndex=o,this.id=FI(),a!=null&&(this.originalName=II(a),this.name=SI(this.originalName)),this.rank=t.length}},sW=0,df=class{constructor(e,t){this.callArgs=t,this.id=sW++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},aW=0,je=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=aW++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Ns(n)+"_"+cf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),n=[s].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Or(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Fn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Fn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ts(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ts(`Layer ${this.name} is not connected, no input to return.`);return Fn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ts(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ts(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Fn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=gt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=gt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],s=t[n];if(s==null)continue;let a=r.rank;if(s.ndim!=null&&a!==s.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&r.dtype!==s.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${r.dtype}.`);if(s.axes){let o=r.shape;for(let i in s.axes){let c=Number(i),u=s.axes[i],l=c>=0?o[c]:o[o.length+c];if(u!=null&&[u,null].indexOf(l)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${c} of input shape to have value ${u} but got shape ${o}.`)}}if(s.shape!=null)for(let o=0;o<s.shape.length;++o){let i=s.shape[o],c=r.shape[o];if(i!=null&&c!=null&&i!==c)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=gt(e),r=!0;for(let a of n)if(!(a instanceof Br)){r=!1;break}let s=!0;for(let a of n)if(a instanceof Br){s=!1;break}if(r===s)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return Yo(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of gt(e))a.push(o.shape);this.build(Fn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),o=gt(a),i=[];for(let c of o)n.indexOf(c)!==-1&&(c=c.clone()),i.push(c);if(a=Fn(i),this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=oW(e),o=this.computeOutputShape(a),i,c=iW(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,l)=>new Br(c,u,this,gt(e),t,this.name,l)):i=new Br(c,o,this,gt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ts(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ts(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Or(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return lf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return nv(e?this.trainableWeights:this.weights)}setWeights(e){M(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=nv(t);for(let s=0;s<r.length;++s){let a=r[s],o=t[s],i=e[s];if(!w.arraysEqual(a.shape,i.shape))throw new H(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}rv(n)})}addWeight(e,t,n,r,s,a,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=kt("zeros"));let i=r.apply(t,n),c=new RI(i,n,e,a,o);return i.dispose(),s!=null&&this.addLoss(()=>s.apply(c.read())),a==null&&(a=!0),a?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=gt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,s,a,o=null){let i=gt(e);t=gt(t),n=gt(n),r=gt(r),s=uf(s),a=uf(a);let c=[],u=[],l=[];for(let d of i)c.push(d.sourceLayer),u.push(d.nodeIndex),l.push(d.tensorIndex);new df({outboundLayer:this,inboundLayers:c,nodeIndices:u,tensorIndices:l,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:s,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function oW(e){e=gt(e);let t=[];for(let n of e)t.push(n.shape);return Fn(t)}function iW(e){return"float32"}function PI(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let s=[];for(let a=0;a<r.inboundLayers.length;a++){let o=r.inputTensors[a],i=r.inboundLayers[a],c=r.nodeIndices[a],u=PI(o,i,c);for(let l of u)s.indexOf(l)===-1&&s.push(l)}return s}}}var cu=class extends je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:cf("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new Br(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new df({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};cu.className="InputLayer";ae.registerClass(cu);function OI(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new cu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function da(e){if(e==null)return;let t=[],n=[],r=[];for(let s in e){let a=e[s];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(s),r.push(o)}}if(t.length>0){let s=await Promise.all(t);for(let a=0;a<s.length;++a)e[n[a]]=s[a][0];Ae(r)}}function MI(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var LI;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(LI||(LI={}));var cW=125,uu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},BI=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},uW=class extends uu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let s=t[r];if(typeof s=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+s*n;else{let a;r in this.totals?a=this.totals[r]:this.totals[r]=0;let o=M(()=>Y(this.totals[r],V(s,n)));this.totals[r]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:M(()=>{let r=V(ge(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Xt(t[n])}))}},zI=class extends uu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let s in this.history){let a=this.history[s];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(s),n.push(o)}}let r=await Promise.all(e);for(let s=0;s<r.length;++s)this.history[t[s]][n[s]].dispose(),this.history[t[s]][n[s]]=r[s][0]}},WI=class extends uu{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=cW),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=g4(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await da(n),r.push(this.yield(e,t,n))),r.push(Kh()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await da(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await da(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Kh()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await da(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await da(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Kh()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await da(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await da(e),await this.trainEnd(e))}};function VI(e,t){return e==null&&(e={}),e instanceof uu?[e]:Array.isArray(e)&&e[0]instanceof uu?e:gt(e).map(r=>new WI(r,t))}var Sr=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Sr.checkForDuplicate(t),Sr.constructors[e]==null&&(Sr.constructors[e]=[]),Sr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Sr.constructors)Sr.constructors[+t].forEach(r=>{if(r===e)throw new H("Duplicate callback constructor.")})}static clear(){Sr.constructors={}}static createCallbacks(e){let t=[];for(let n in Sr.constructors){let r=+n;e>=r&&t.push(...Sr.constructors[r])}return t.map(n=>new n)}};Sr.constructors={};function UI(e,t,n,r,s,a,o,i,c){let u=new zI,l=[new uW,...Sr.createCallbacks(t)];e!=null&&l.push(...e),l.push(u);let d=new BI(l);return d.setParams({epochs:n,initialEpoch:r,samples:s,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:c}),{callbackList:d,history:u}}function zr(e,t={},n=!1){return Yl(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function pf(e,t){return M(()=>{e.dtype!=="float32"&&(e=ce(e,"float32"));let n=ve(ed(e),t,!0),r=vn(n.shape,Vt()),s=ln(ks(n,r));return ge(e,s)})}function Jo(e,t){return M(()=>At(ed(he(t,e)),-1))}function hf(e,t){return M(()=>At(zt(he(t,e)),-1))}function lu(e,t){return M(()=>{let n=he(e,t),r=rn(zt(e),Vt(),Number.MAX_VALUE),s=zt(ge(n,r));return V(100,At(s,-1))})}function lW(e,t){return M(()=>{let n=rn(t,Vt(),Number.MAX_VALUE),r=ar(Y(1,n)),s=rn(e,Vt(),Number.MAX_VALUE),a=ar(Y(1,s));return At(ed(he(r,a)),-1)})}function dW(e,t){return M(()=>{let n=ks(0,he(1,V(e,t)));return At(ed(n),-1)})}function pW(e,t){return M(()=>{let n=ks(0,he(1,V(e,t)));return At(n,-1)})}function hW(e,t){return M(()=>{let n=ve(V(e,t),-1),r=$r(V(he(1,e),t),-1);return ks(0,Y(1,he(r,n)))})}function fW(e,t){return M(()=>{let n=Math.log(2),r=he(t,e),s=he(Y(r,Qc(V(-2,r))),n);return At(s,-1)})}function nd(e,t,n=!1){return M(()=>{if(n)t=es(t);else{let r=ve(t,t.shape.length-1,!0);t=ge(t,r)}return t=rn(t,Vt(),1-Vt()),Tt(ve(V(ce(e,"float32"),ar(t)),t.shape.length-1))})}function ff(e,t,n=!1){return M(()=>{let r=ce(Vl($4(e)),"int32");t=rn(t,Vt(),1-Vt());let s=t.shape,a=U(Ll(r,s[s.length-1]),s);return nd(a,t,n)})}function mW(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return M(()=>{let n=qe(t),r=Tt(zt(t));return Y(he(n,V(t,e)),Th(bn(r)))})}function mf(e,t){return M(()=>{let n;return n=rn(t,Vt(),1-Vt()),n=ar(ge(n,he(1,n))),At(mW(e,n),-1)})}function gW(e,t){return M(()=>{let n=rn(e,Vt(),1),r=rn(t,Vt(),1);return ve(V(e,ar(ge(n,r))),-1)})}function bW(e,t){return M(()=>{let n=ar(Y(Vt(),t));return At(he(t,V(e,n)),-1)})}function sv(e,t){return M(()=>{let n=pf(e,-1),r=pf(t,-1),s=V(n,r);return Tt(ve(s,-1))})}var gf={meanSquaredError:Jo,meanAbsoluteError:hf,meanAbsolutePercentageError:lu,meanSquaredLogarithmicError:lW,squaredHinge:dW,hinge:pW,categoricalHinge:hW,logcosh:fW,categoricalCrossentropy:nd,sparseCategoricalCrossentropy:ff,binaryCrossentropy:mf,kullbackLeiblerDivergence:gW,poisson:bW,cosineProximity:sv};function av(e){if(typeof e=="string"){if(e in gf)return gf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function ov(e,t){return M(()=>{let n=V(.5,or(t)),r=Yh(Gn(t,n),e.dtype);return At(sr(e,r),-1)})}function iv(e,t){return M(()=>Yh(sr(Xc(e,-1),Xc(t,-1)),"float32"))}function GI(e,t){return M(()=>ce(ve(Fr(sr(e,1),sr(t,1))),"float32"))}function yW(e,t){return M(()=>ce(ve(Fr(sr(e,1),sr(t,0))),"float32"))}function vW(e,t){return M(()=>ce(ve(Fr(sr(e,0),sr(t,1))),"float32"))}function HI(e,t){return M(()=>{let n=GI(e,t),r=vW(e,t),s=Y(n,r);return ce(gn(Gn(s,0),ge(n,s),0),"float32")})}function xW(e,t){return M(()=>{let n=GI(e,t),r=yW(e,t),s=Y(n,r);return ce(gn(Gn(s,0),ge(n,s),0),"float32")})}function jI(e,t){return mf(e,t)}function qI(e,t){return e.rank===t.rank&&(e=Is(e,[e.rank-1])),t=Xc(t,-1),t.dtype!==e.dtype&&(t=ce(t,e.dtype)),ce(sr(e,t),"float32")}var wW=Jo,kW=Jo,IW=hf,SW=hf,CW=lu,TW=lu,cv=nd,NW=sv,KI=ff,bf={binaryAccuracy:ov,categoricalAccuracy:iv,precision:HI,categoricalCrossentropy:cv,sparseCategoricalCrossentropy:KI,mse:wW,MSE:kW,mae:IW,MAE:SW,mape:CW,MAPE:TW,cosine:NW};function _W(e){if(typeof e=="string"&&e in bf)return bf[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function yf(e){if(ns(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(gf))if(gf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(bf))if(bf[n]===e){t=n;break}return t!==void 0?t:e.name}}function EW(e){let t={Adagrad:()=>jo.adagrad(.01),Adadelta:()=>jo.adadelta(1,.95,Vt()),Adam:()=>jo.adam(.001,.9,.999,Vt()),Adamax:()=>jo.adamax(.002,.9,.999,Vt(),0),RMSProp:()=>jo.rmsprop(.001,.9,0,Vt()),SGD:()=>jo.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}var XI=1*1024*1024;function YI(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!uv(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>XI&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${XI}.`)}}function uv(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!uv(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!uv(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function AW(e,t,n,r=console.log){let s=FW(e),a=["Layer (type)","Output shape","Param #"];s?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(l=>Math.floor(t*l)));let o;if(!s){a.push("Receives inputs"),o=[];for(let l in e.nodesByDepth)o.push(...e.nodesByDepth[l])}r("_".repeat(t)),vf(a,n,r),r("=".repeat(t));let i=e.layers;for(let l=0;l<i.length;++l)s?DW(i[l],n,r):RW(i[l],n,o,r),r((l===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let c=$W(e),u=lf(e.nonTrainableWeights);r(`Total params: ${c+u}`),r(`Trainable params: ${c}`),r(`Non-trainable params: ${u}`),r("_".repeat(t))}function $W(e){let t;return e.collectedTrainableWeights!=null?t=lf(e.collectedTrainableWeights):t=lf(e.trainableWeights),t}function FW(e){let t=!0,n=[],r=[];for(let s in e.nodesByDepth)n.push(e.nodesByDepth[s]);for(let s of n){if(s.length>1||s.length===1&&s[0].inboundLayers.length>1){t=!1;break}r.push(...s)}if(t)for(let s of e.layers){let a=!1;for(let o of s.inboundNodes)if(r.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function vf(e,t,n=console.log){let r="";for(let s=0;s<e.length;++s)s>0&&(r=r.slice(0,r.length-1)+" "),r+=e[s],r=r.slice(0,t[s]),r+=" ".repeat(t[s]-r.length);n(r)}function DW(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(i){r="multiple"}let s=e.name,a=e.getClassName(),o=[`${s} (${a})`,r,e.countParams().toString()];vf(o,t,n)}function RW(e,t,n,r){let s;try{s=JSON.stringify(e.outputShape)}catch(l){s="multiple"}let a=[];for(let l of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(l)===-1))for(let d=0;d<l.inboundLayers.length;++d){let p=l.inboundLayers[d].name,h=l.nodeIndices[d],f=l.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),c=a.length===0?"":a[0],u=[`${o} (${i})`,s,e.countParams().toString(),c];vf(u,t,r);for(let l=1;l<a.length;++l)vf(["","","",a[l]],t,r)}function ZI(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function rd(e,t){if(e===null)return null;if(typeof e=="string")return Ko(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let s=0;s<r;++s){let a=e[s];ZI(t,s,a)?n.push(a):n.push(rd(a,t))}return n}else{let n={};for(let r of Object.keys(e)){let s=e[r];if(r==="name"&&typeof s=="string")n[r]=s;else{let a=Ko(r);n[a]=rd(s,a)}}return n}}function lv(e,t){if(e==null)return null;if(typeof e=="string")return Ns(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let s=0;s<r;++s){let a=e[s];ZI(t,s,a)?n.push(a):n.push(lv(a,t))}return n}else{let n={};for(let r of Object.keys(e)){let s=e[r],a=Ns(r);(r==="name"||r==="className")&&typeof s=="string"?n[a]=s:n[a]=lv(s,r)}return n}}var dv="3.9.0";function PW(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ce(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Qo=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Qo)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=PW(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Br){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Br){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ae(this.id2Mask)}},pv={},JI={};function sd(e,t,n,r){let s=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),c=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?c.push(t.getValue(f)):c.push(null);r!=null&&(r.maxNumTensors=-1/0,r.minNumTensors=1/0);let l=i.join(",")+"|"+t.names().join(","),d,p;if(pv[l]==null){let f=OW(o,t);d=f.sorted,p=f.recipientCounts,pv[l]=d,JI[l]=p}d=pv[l],p={},s||Object.assign(p,JI[l]);let h=new Qo(t);for(let f=0;f<d.length;++f){if(r!=null){let R=yh().numTensors;R>r.maxNumTensors&&(r.maxNumTensors=R),R<r.minNumTensors&&(r.minNumTensors=R)}let m=d[f],g=m.sourceLayer;if(g instanceof cu)continue;let b=[],y=[],v=[],x=!1;for(let R of m.inputs){let O=h.getValue(R),$=h.getMask(R);b.push(O),y.push($),$!=null&&(x=!0),s||(p[R.name]--,p[R.name]===0&&!t.hasKey(R)&&i.indexOf(R.name)===-1&&!O.isDisposed&&R.sourceLayer.stateful!==!0&&v.push(O))}x&&(n=n||{},n.mask=y[0]);let k=gt(g.apply(b,n)),C=null;g.supportsMasking&&(C=g.computeMask(b,y));let N=LW(m),F=Array.isArray(N)?N:[N];for(let R=0;R<F.length;++R){h.hasKey(F[R])||h.add(F[R],k[R],Array.isArray(C)?C[0]:C);let O=i.indexOf(F[R].name);O!==-1&&(c[O]=k[R])}s||Ae(v)}return h.disposeMasks(),a?c:c[0]}function OW(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let s=QI(e[0],t);n=s.sorted,r=s.recipientMap}else{let s=new Set;for(let a of e){let{sorted:o,recipientMap:i}=QI(a,t);for(let c of o)s.has(c.name)||(n.push(c),s.add(c.name));for(let c in i)r[c]==null&&(r[c]=new Set),i[c].forEach(u=>r[c].add(u))}}return{sorted:n,recipientCounts:MW(r)}}function MW(e){let t={};for(let n in e)t[n]=e[n].size;return t}function QI(e,t){let n=new Set,r=[],s={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let c=o[o.length-1]===a.length-1;if(i.inputs.length===0||c)a.pop(),r.push(i),n.add(i.name),c&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)s[u.name]==null&&(s[u.name]=new Set),s[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:r,recipientMap:s}}function LW(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let s of e.sourceLayer.inboundNodes[r].outputTensors)if(s.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var ss=class extends je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=cf(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],ca(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);ca(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(v),this.outputLayersTensorIndices.push(x)}for(let b of this.inputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;ns(v===0,"input layer has >1 nodes"),ns(x===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(v),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof cu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},r={},s={},a={},o=[],i=(b,y,v,x,k,C)=>{(x==null||k==null||C==null)&&(x=b.sourceLayer,k=b.nodeIndex,C=b.tensorIndex);let N=x.inboundNodes[k];if(v.indexOf(N)!==-1)throw new Or(`The tensor ${b.name} at layer "${x.name}" is part of a cycle.`);if(y.indexOf(N)!==-1)return;this.containerNodes.add(ss.nodeKey(x,k)),x.id in a||(a[x.id]=Object.keys(a).length),v.indexOf(N)===-1&&v.push(N);let F=N.inboundLayers.length;for(let R=0;R<F;R++){let O=N.inputTensors[R],$=N.inboundLayers[R],P=N.nodeIndices[R],T=N.tensorIndices[R];i(O,y,v,$,P,T)}for(y.push(N);v.indexOf(N)>=0;)v.splice(v.indexOf(N),1);o.push(N)},c=[],u=[];for(let b of this.outputs)i(b,c,u);let l=o.slice().reverse();for(let b of l){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],v=r[b.outboundLayer.id]==null?0:r[b.outboundLayer.id];y=Math.max(y,v),r[b.outboundLayer.id]=y,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let x=0;x<b.inboundLayers.length;x++){let k=b.inboundLayers[x],C=b.nodeIndices[x],N=k.inboundNodes[C],F=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(y+1,F),n[N.id]=N}}let d={};for(let b in t){let y=t[b];y in d||(d[y]=[]),d[y].push(n[b])}let p={};for(let b in r){let y=r[b];y in p||(p[y]=[]),p[y].push(s[b])}let h=Object.keys(p).map(b=>parseInt(b,10)).sort(Xh);this.layers=[];for(let b of h){let y=p[b];y.sort((v,x)=>{let k=a[v.id],C=a[x.id];return k<C?-1:k>C?1:0});for(let v of y)v instanceof ss&&this.internalContainerRefs.push(v),this.layers.push(v)}this.layersByDepth=p,h=Object.keys(d).map(b=>parseInt(b,10)).sort(Xh);let f=this.inputs.slice(),m=[];for(let b of h)for(let y of d[b]){let v=y.outboundLayer;if(v!=null){for(let x of y.inputTensors)if(f.indexOf(x)===-1)throw new Or(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${v.name}". The following previous layers were accessed without issue: ${m}`);for(let x of y.outputTensors)f.push(x);m.push(v.name)}}this.nodesByDepth=d;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(v=>v===b).length;if(y!==1)throw new Or(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new df({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new H(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,r++}let s=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)s.push([n[o],e[a]]);else if(t)throw new H(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new H(`${a.length} of ${r} weights are not set: ${a}`)}rv(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${dv}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=lv(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return M(()=>{e=gt(e);let n=new Qo;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return sd(this.outputs,n,t)})}computeMask(e,t){return M(()=>{e=gt(e);let n;return t==null?n=qo(null,e.length):n=gt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=uf(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],c=t[o],u=i.name+"_0_0";n[u]=c}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Xh);if(r.length>1)for(let o of r){let i=this.nodesByDepth[o];for(let c of i){let u=c.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let l=[];for(let f=0;f<c.inboundLayers.length;f++){let m=c.inboundLayers[f],g=c.nodeIndices[f],b=c.tensorIndices[f],y=`${m.name}_${g}_${b}`,v=n[y];l.push(v)}let d=u.computeOutputShape(Fn(l)),p=uf(d),h=u.inboundNodes.indexOf(c);for(let f=0;f<p.length;f++){let m=`${u.name}_${h}_${f}`;n[m]=p[f]}}}let s=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],c=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],l=`${i.name}_${c}_${u}`;a.push(l)}for(let o=0;o<a.length;o++){let i=a[o];ns(i in n),s.push(n[i])}return Fn(s)}runInternalGraph(e,t){t==null&&(t=qo(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let c=this.inputs[i],u=e[i],l=t[i];n[c.id]=[u,l]}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Xh);for(let i of r){let c=this.nodesByDepth[i];for(let u of c){let l=u.outboundLayer,d=u.inputTensors,p=u.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,b,y;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[v,x]=h[0];f.mask==null&&(f.mask=x),b=gt(l.call(v,f)),y=gt(l.computeMask(v,x)),m=[v],g=[x]}else m=h.map(v=>v[0]),g=h.map(v=>v[1]),f.mask==null&&(f.mask=g),b=gt(l.call(m,f)),y=gt(l.computeMask(m,g));if(l.activityRegularizer)throw new $e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let v=0;v<p.length;++v){let x=p[v],k=b[v],C=y[v];n[x.id]=[k,C]}}}}let s=[],a=[],o=[];for(let i of this.outputs){ns(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[c,u]=n[i.id];o.push(c.shape),s.push(c),a.push(u)}return[s,a,o]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof ss?1:0;for(let s=0;s<r.inboundNodes.length;s++){let a=ss.nodeKey(r,s);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return M(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=ss.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),c=[];for(let l=0;l<a.inboundNodes.length;l++){let d=a.inboundNodes[l],p=ss.nodeKey(a,l),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],b=d.nodeIndices[m],y=d.tensorIndices[m],v=ss.nodeKey(g,b),x=t[v];x==null&&(x=0),f.push([g.name,x,y,h])}c.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=c,n.push(u)}e.layers=n;let r=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],c=ss.nodeKey(o,i);if(!this.containerNodes.has(c))continue;let u=t[c];u==null&&(u=0);let l=this.inputLayersTensorIndices[a];r.push([o.name,u,l])}e.inputLayers=r;let s=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],c=ss.nodeKey(o,i);if(!this.containerNodes.has(c))continue;let u=t[c];u==null&&(u=0);let l=this.outputLayersTensorIndices[a];s.push([o.name,u,l])}return e.outputLayers=s,e}static fromConfig(e,t,n={},r=!1){let s={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let b=[],y;for(let v of g){let x=v[0],k=v[1],C=v[2];if(y=v[3]==null?{}:v[3],!(x in s)){o(m,g);return}let N=s[x];if(N.inboundNodes.length<=k){o(m,g);return}let F=N.inboundNodes[k];b.push(F.outputTensors[C])}b.length>0&&m.apply(Fn(b),y)}function c(m){let g=m.name,b=zr(m,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(r),s[g]=b,m.inboundNodes.forEach(v=>{if(!(v instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${v}`);o(b,v)})}let u=t.name,l=t.layers;for(let m of l)c(m);for(;!m4(a);)for(let m of l){let g=s[m.name];if(g.name in a){let b=a[g.name];delete a[g.name];for(let y of b)i(g,y)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],b=m[1],y=m[2];ns(g in s);let x=s[g].inboundNodes[b].outputTensors;d.push(x[y])}let f=t.outputLayers;for(let m of f){let g=m[0],b=m[1],y=m[2];ns(g in s);let x=s[g].inboundNodes[b].outputTensors;p.push(x[y])}return new e({inputs:d,outputs:p,name:u})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){M(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function BW(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let s=[];return t.forEach(a=>{a in e?s.push(e[a]):s.push(null)}),s}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function eS(e,t){return BW(e,t,"classWeight")}async function tS(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let s=M(()=>{if(e.shape.length===1)return xs(e);if(e.shape.length===2){if(e.shape[1]>1)return Xc(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await s.data());Ae(s);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Ue(o,"float32")}else return null}function zW(e,t){return V(e,t)}var WW=32;function nS(e,t){let n,r,s=t;n=s.xs,r=s.ys,w.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=rS("input",e.inputNames,n),o=rS("output",e.outputNames,r),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let c=0;c<a.length;c++)w.assert(a[c].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[c]} has ${a[c].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let c=0;c<o.length;c++)w.assert(o[c].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[c]} has ${o[c].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function rS(e,t,n){if(n instanceof Ee)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let s of t){if(n[s]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${s}'.`);r.push(n[s])}return r}}function VW(e){if(e.length===3)throw new $e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function UW(e,t,n){let r=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let s=n.validationData!=null,a,o;if(s)if(sS(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=VW(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),c=e.getDedupedMetricsNames(),u;s?u=c.slice().concat(c.map(g=>"val_"+g)):u=c.slice();let l=VI(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=UI(l,d,n.epochs,null,null,GW(t,n),null,s,u);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let b=0,y=0;for(r||(m=await t.iterator());r?b<n.batchesPerEpoch:!0;){let v=await m.next();if(r&&v.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(v.value!=null){let{xs:x,ys:k}=nS(e,v.value),C={};C.batch=y,C.size=x[0].shape[0],await p.onBatchBegin(y,C);let N=[];if(n.classWeight!=null){let O=eS(n.classWeight,e.outputNames);for(let $=0;$<O.length;++$)N.push(await tS(k[$],null,O[$]))}let F=x.concat(k).concat(N),R=i(F);Ae(F);for(let O=0;O<c.length;++O){let $=c[O],P=R[O];C[$]=P,Xt(P)}await p.onBatchEnd(y,C),MI(C),y++,b++}if(r?b>=n.batchesPerEpoch:v.done){if(s){let x;sS(n.validationData)?x=gt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=gt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?WW:n.validationBatchSize,verbose:0}));for(let k=0;k<e.metricsNames.length;++k)g[`val_${e.metricsNames[k]}`]=x[k]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function GW(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function sS(e){return typeof e.iterator=="function"}function HW(e){return typeof e.next=="function"}async function jW(e,t,n){n=n||{};let r=n.batches!=null,s=e.testFunction,a=[];if(n.verbose>0)throw new $e("Verbose mode is not implemented yet.");w.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=HW(t)?t:await t.iterator(),i=0,c=0;for(;r?c<n.batches:!0;){let u=await o.next();if(a=M(()=>{if(u.value){let{xs:l,ys:d}=nS(e,u.value),p=l.concat(d),h=M(()=>s(p));if(Ae(p),c===0)for(let m=0;m<h.length;++m)a.push(ke(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],b=a[m];a[m]=M(()=>Y(a[m],V(f,g))),c>0&&Ae(b)}Ae(h),i+=f,++c}return a}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let l=a[u];a[u]=ge(a[u],i),Ae(l)}return Fn(a)}function hv(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function ad(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Zo(r,t,n-t)):Zo(e,t,n-t)}function fv(e,t){return M(()=>e==null?null:Array.isArray(e)?e.map(n=>fv(n,t)):NI(e,t.dtype==="int32"?t:ce(t,"int32")))}function mv(e,t){let n=[],r=0,s=null;for(;r<e;)s=r+t,s>=e&&(s=e),n.push([r,s]),r=s;return n}async function qW(e,t,n,r,s,a,o,i,c,u,l,d,p,h,f){s==null&&(s=32),a==null&&(a=1),l==null&&(l=!0),p==null&&(p=0);let m=!1;if(c!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,s,h,"steps_per_epoch"),b;g!=null&&(b=Mr(0,g)),o==null&&(o=1);let{callbackList:y,history:v}=UI(i,o,a,p,g,h,s,m,d);y.setModel(e),e.history=v,await y.onTrainBegin(),e.stopTraining_=!1;for(let x=p;x<a;++x){await y.onEpochBegin(x);let k={};if(h!=null)throw new $e("stepsPerEpoch mode is not implemented yet.");{if(l==="batch")throw new $e("batch shuffling is not implemneted yet");l&&w.shuffle(b);let C=Ue(b),N=mv(g,s);for(let F=0;F<N.length;++F){let R={};if(await y.onBatchBegin(F,R),M(()=>{let O=N[F][0],$=N[F][1],P=Zo(C,O,$-O);R.batch=F,R.size=$-O;let T=fv(n,P),L=t(T);for(let G=0;G<r.length;++G){let j=r[G],q=L[G];R[j]=q,Xt(q)}if(F===N.length-1&&m){let G=e.testLoop(c,u,s);for(let j=0;j<r.length;++j){let q=r[j],K=G[j];Xt(K),k["val_"+q]=K}}}),await y.onBatchEnd(F,R),MI(R),e.stopTraining_)break}C.dispose()}if(await y.onEpochEnd(x,k),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function KW(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let s,a,o,i,c,u,l;try{let d=r.batchSize==null?32:r.batchSize;hv(d);let p=!1,h=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,p,d);s=h[0],a=h[1],l=h[2];let f=!1,m;if(r.validationData!=null&&r.validationData.length>0){if(f=!0,r.validationData.length===2)o=r.validationData[0],i=r.validationData[1];else throw r.validationData.length===3?new $e("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let N=!0,F=await e.standardizeUserData(o,i,null,null,N,d);c=F[0],u=F[1],m=c.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let N=Math.floor(s[0].shape[0]*(1-r.validationSplit)),F=s[0].shape[0];c=ad(s,N,F),s=ad(s,0,N),u=ad(a,N,F),a=ad(a,0,N),m=c.concat(u)}else r.validationSteps!=null&&(f=!0);let g=s.concat(a).concat(l);e.checkTrainableWeightsConsistency();let b=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),v,x;f?(e.makeTestFunction(),v=e.testFunction,x=y.slice().concat(y.map(N=>"val_"+N))):(v=null,m=[],x=y.slice());let k=VI(r.callbacks,r.yieldEvery);return await qW(e,b,g,y,d,r.epochs,r.verbose,k,v,m,r.shuffle,x,r.initialEpoch,null,null)}finally{e.isTraining=!1,ei(s,t),ei(a,n),ei(c,o),ei(u,i),l!=null&&Ae(l)}}function aS(e){let t=[];e instanceof Ee&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(Ql(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function ei(e,t){if(e==null)return;let n=[];if(t instanceof Ee)n.push(t.id);else if(Array.isArray(t))t.forEach(s=>n.push(s.id));else if(t!=null)for(let s in t){let a=t[s];n.push(a.id)}let r=[];if(e instanceof Ee)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(s=>{n.indexOf(s.id)===-1&&r.push(s)});else if(e!=null)for(let s in e){let a=e[s];n.indexOf(a.id)===-1&&r.push(a)}r.forEach(s=>{s.isDisposed||s.dispose()})}function XW(e){return e instanceof Ee}function gv(e){return Array.isArray(e)}function oS(e){return!XW(e)&&!gv(e)}function iS(e,t,n,r=!0,s=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(gv(e)&&e.length>0)o=!0;else if(oS(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new H(`Error when checking model ${s} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(oS(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new H(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(gv(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${s}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new H(`The model ${s} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=aS(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${s}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let c=0;c<n[o].length;++c){if(c===0&&!r)continue;let u=i.shape[c],l=n[o][c];if(l!=null&&l>=0&&u!==l)throw new H(`${s} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${s} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function YW(e,t,n){let r=ca(e.map(a=>a.shape[0]));r.sort();let s=ca(t.map(a=>a.shape[0]));if(s.sort(),r.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(s.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(r.length>0&&s.length>0&&!w.arraysEqual(r,s))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${s[0]} target sample(s).`)}function ZW(e,t,n){let r=[Jo,mf,nd];for(let s=0;s<e.length;++s){let a=e[s],o=t[s],i=n[s];if(o!=null){if(o===nd&&a.shape[a.shape.length-1]===1)throw new H(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(o)!==-1){let c=a.shape.slice(1),u=i.slice(1);for(let l=0;l<c.length;++l){let d=c[l],p=u[l];if(p!=null&&d!==p)throw new H(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function cS(e,t,n,r=!0,s=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${s}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${s} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${s}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let c=0;c<n[o].length;++c){if(c===0&&!r)continue;let u=i.shape[c],l=n[o][c];if(l!=null&&l!==u)throw new H(`Error when checking ${s}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function JW(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let s of t){let a=n.hasOwnProperty(s)?n[s]:[];Array.isArray(a)||(a=[a]),r.push(a)}return r}}var QW="layers-model",_s=class extends ss{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");AW(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=EW(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Cs))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new H(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(av(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>av(o))}else{let a=av(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Yo("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let r=JW(e.metrics,this.outputNames),s=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Yo("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=r[a];(c=>{let u="",l,d,p;for(let h of c){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===mf?["accuracy","acc"].indexOf(h)!==-1?d=ov:["crossentropy","ce"].indexOf(h)!==-1&&(d=jI):this.lossFunctions[a]===ff?["accuracy","acc"].indexOf(h)!==-1?d=qI:["crossentropy","ce"].indexOf(h)!==-1&&(d=KI):["accuracy","acc"].indexOf(h)!==-1?d=iv:["crossentropy","ce"].indexOf(h)!==-1&&(d=cv);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,l=u+g}else p=_W(h),l=u+yf(h);let f;Yo(l,()=>{f=p}),s(a,l,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;hv(r);let s=!0,a=this.standardizeUserDataXY(e,t,s,r);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,c=this.testLoop(i,o,r,n.verbose,n.steps);return Fn(c)}finally{ei(a[0],e),ei(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),jW(this,e,t)}checkNumSamples(e,t,n,r="steps"){let s;if(n!=null){if(s=null,t!=null)throw new H(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],s=this.retrieveSymbolicTensors(r),a=new Qo;if(e instanceof Ee&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let c=e[i.name];if(c==null)throw new H(`No value is provided for the model's input ${i.name}`);a.add(i,c)}let o=sd(s,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=qo(null,e.length),n=e.length;for(let r of this.layers){let s=Array.isArray(r.output)?r.output:[r.output],a=s.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=s[i],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((s,a)=>{s==null&&r.push(e[a])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return M(()=>{let r=this.checkNumSamples(e);if(n)throw new $e("Verbose predictLoop() is not implemented yet.");let s=mv(r,t),a=this.outputs.map(o=>[]);for(let o=0;o<s.length;++o)M(()=>{let c=s[o][0],u=s[o][1],l=ad(e,c,u),d=[];if(Array.isArray(l))for(let h=0;h<l.length;++h)d.push({key:this.inputs[h],value:l[h]});else d.push({key:this.inputs[0],value:l});let p=new Qo(d);return sd(this.outputs,p)}).forEach((c,u)=>a[u].push(c));return Fn(a.map(o=>et(o,0)))})}predict(e,t={}){let n=aS(e);cS(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return hv(r),this.predictLoop(n,r)}finally{ei(n,e)}}predictOnBatch(e){cS(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Or("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===ff?s.push(o.slice(0,o.length-1).concat([1])):s.push(o)}if(e=iS(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=iS(t,this.feedOutputNames,s,!1,"target"),YW(e,t,null),ZW(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,s=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,s,a);if(n!=null)throw new Error("sample weight is not supported yet.");let c=null;if(r!=null){let u=eS(r,this.outputNames);c=[];for(let l=0;l<u.length;++l)c.push(await tS(i[l],null,u[l]))}return[o,i,c]}testLoop(e,t,n,r=0,s){return M(()=>{let a=this.checkNumSamples(t,n,s,"steps"),o=[];if(r>0)throw new $e("Verbose mode is not implemented yet.");if(s!=null)throw new $e("steps mode in testLoop() is not implemented yet");{let i=mv(a,n),c=Ue(Mr(0,a));for(let u=0;u<i.length;++u){let l=i[u][0],d=i[u][1],p=Zo(c,l,d-l),h=fv(t,p),f=e(h);if(u===0)for(let m=0;m<f.length;++m)o.push(ke(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=Y(o[m],V(d-l,g))}}for(let u=0;u<o.length;++u)o[u]=ge(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],s=r;mI(e,r)>1&&(s+=`_${mI(e.slice(0,n),r)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let l=[];for(let f=0;f<this.inputs.length;++f)l.push({key:this.inputs[f],value:n[f]});let d=new Qo(l),p=sd(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](r[f],p[f]);s[f]!=null&&(g=zW(g,s[f]));let b=At(g);t.push(b),f===0?h=g:h=Y(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],b=this.metricsTensors[f][1];m=At(g(r[b],p[b]))}Xt(m),a.push(m)}return h=At(h),this.calculateLosses().forEach(f=>{h=Y(h,f)}),h},i=this.collectedTrainableWeights.map(l=>l.read()),c=!0;return[this.optimizer_.minimize(o,c,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>M(()=>{let t=[],n,r=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let c=0;c<this.inputs.length;++c)a.push({key:this.inputs[c],value:r[c]});let o=new Qo(a),i=sd(this.outputs,o);for(let c=0;c<this.lossFunctions.length;++c){let u=this.lossFunctions[c],l=At(u(s[c],i[c]));c===0?n=l:n=Y(n,l),t.push(n)}for(let c=0;c<this.metricsTensors.length;++c){let u=this.metricsTensors[c][0],l=this.metricsTensors[c][1],d=At(u(s[l],i[l]));t.push(d)}return t})}async fit(e,t,n={}){return KW(this,e,t,n)}async fitDataset(e,t){return UW(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],s=n[1],o=this.makeTrainFunction()(r.concat(s)),i=[];for(let c of o){let u=await c.data();i.push(u[0])}return Ae(o),Fn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let a=0;a<r.length;++a)n&&!r[a].trainable||t.push({name:r[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=yh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-yh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Ns(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Ns(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=Ns(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Ns(yf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Ns(yf(e)));{let e={};for(let t in this.metrics)e[t]=Ns(yf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=rd(e.optimizer_config),n=zr(t),r;if(typeof e.loss=="string")r=Ko(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(a=>Ko(a));else if(e.loss!=null){r={};for(let a in e.loss)r[a]=Ko(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>Ko(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=Ko(e.metrics[a])}this.compile({loss:r,metrics:s,optimizer:n})}async save(e,t){if(typeof e=="string"){let c=Kt.getSaveHandlers(e);if(c.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(c.length>1)throw new H(`Found more than one (${c.length}) save handlers for URL '${e}'`);e=c[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Kt.encodeWeights(this.getNamedWeights(t)),r=!1,s=null,o={modelTopology:this.toJSON(s,r),format:QW,generatedBy:`TensorFlow.js tfjs-layers v${dv}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let c="optimizer",{data:u,specs:l}=await Kt.encodeWeights(await this.optimizer.getWeights(),c);n.specs.push(...l),n.data=Kt.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let c=!0;YI(this.userDefinedMetadata,this.name,c),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){YI(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};_s.className="Model";ae.registerClass(_s);var uS=class extends _s{};uS.className="Functional";ae.registerClass(uS);async function eV(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=rd(n),s=zr(r,t);if(e.weightsManifest!=null){let a=await Kt.loadWeights(e.weightsManifest,e.pathPrefix,s.weights.map(i=>i.originalName)),o={};for(let i of s.weights)o[i.originalName]=a[i.originalName];s.loadWeights(o),Ae(a)}return s}async function tV(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Kt.getLoadHandlers(e,t);if(n.length===0)n.push(Kt.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return nV(e,void 0,t)}async function nV(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),s=r.modelTopology;s.model_config!=null&&(s=s.model_config);let a=n.strict==null?!0:n.strict,o=r.weightData!=null&&r.weightSpecs!=null&&a,i=zr(rd(s),t,o),c=r.trainingConfig;if(c!=null&&i.loadTrainingConfig(c),r.userDefinedMetadata!=null&&i.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:l}=rV(r.weightData,r.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&l.length>0&&await i.optimizer.setWeights(l),Ae(u),Ae(l.map(d=>d.tensor))}return i}function rV(e,t){let n=Kt.decodeWeights(e,t),r={},s=[];return t.forEach(a=>{a.group==="optimizer"?s.push({name:a.name,tensor:n[a.name]}):r[a.name]=n[a.name]}),{modelWeights:r,optimizerWeights:s}}var du=class extends _s{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:cf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof du||e instanceof _s,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=OI({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=PI(this.outputs[0])}this.inboundNodes=[],new df({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:qo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new _s({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Or("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Or("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Or("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Or("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");s=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof du))throw new $e(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of s){let u=zr(i,void 0,r);r&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};du.className="Sequential";ae.registerClass(du);function sV(e){return new _s(e)}function aV(e){return new du(e)}function oV(e,t){return t==null&&(t={}),tV(e,t)}function lS(e){return OI(e)}function iV(e,t){Sr.registerCallbackConstructor(e,t)}var Rn=class extends ae.Serializable{getConfig(){return{}}},dS=class extends Rn{apply(e,t=1){return D4(e,t)}};dS.className="elu";ae.registerClass(dS);var pS=class extends Rn{apply(e){return xy(e)}};pS.className="selu";ae.registerClass(pS);var hS=class extends Rn{apply(e){return qe(e)}};hS.className="relu";ae.registerClass(hS);var fS=class extends Rn{apply(e){return M(()=>Ul(6,qe(e)))}};fS.className="relu6";ae.registerClass(fS);var mS=class extends Rn{apply(e){return e}};mS.className="linear";ae.registerClass(mS);var gS=class extends Rn{apply(e){return xr(e)}};gS.className="sigmoid";ae.registerClass(gS);var bS=class extends Rn{apply(e){return P4(e)}};bS.className="hardSigmoid";ae.registerClass(bS);var yS=class extends Rn{apply(e){return Qc(e)}};yS.className="softplus";ae.registerClass(yS);var vS=class extends Rn{apply(e){return R4(e)}};vS.className="softsign";ae.registerClass(vS);var xS=class extends Rn{apply(e){return Zc(e)}};xS.className="tanh";ae.registerClass(xS);var bv=class extends Rn{apply(e,t=-1){return es(e,t)}};bv.className="softmax";ae.registerClass(bv);var wS=class extends Rn{apply(e,t=-1){return uy(e,t)}};wS.className="logSoftmax";ae.registerClass(wS);var kS=class extends Rn{apply(e,t=1){return M(()=>V(xr(V(e,t)),e))}};kS.className="swish";ae.registerClass(kS);var IS=class extends Rn{apply(e){return M(()=>V(e,Zc(Qc(e))))}};IS.className="mish";ae.registerClass(IS);function pa(e){return e.getClassName()}function yv(e,t={}){return Yl(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function ha(e){if(e==null){let t={};return t.className="linear",t.config={},yv(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},yv(t)}else return e instanceof Rn?e:yv(e)}function vv(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var SS=class extends ae.Serializable{},od=class extends SS{constructor(e){super();vv(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return M(()=>{let t=wt([1]);return this.hasL1&&(t=Y(t,ve(V(this.l1,zt(e))))),this.hasL2&&(t=Y(t,ve(V(this.l2,ed(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};od.className="L1L2";ae.registerClass(od);function cV(e){return vv(e),new od({l1:e!=null?e.l1:null,l2:0})}function uV(e){return vv(e),new od({l2:e!=null?e.l2:null,l1:0})}var CS={l1l2:"L1L2"};function lt(e){return Oy(e)}function TS(e,t={}){return Yl(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function It(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in CS?CS[e]:e,config:{}};return TS(n)}else return e instanceof SS?e:TS(e)}var xv=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Me(e);let n=qe(e);return this.maxValue!=null&&(n=rn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};xv.className="ReLU";ae.registerClass(xv);var wv=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return Ch(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};wv.className="LeakyReLU";ae.registerClass(wv);var kv=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=kt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=It(e.alphaRegularizer),this.alphaConstraint=Gt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Ot({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Me(e),Fh(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Nt(this.alphaInitializer),alphaRegularizer:lt(this.alphaRegularizer),alphaConstraint:Ut(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};kv.className="PReLU";ae.registerClass(kv);var Iv=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new $e(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return Wl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Iv.className="ELU";ae.registerClass(Iv);var Sv=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Me(e);return V(n,ce(Gn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Sv.className="ThresholdedReLU";ae.registerClass(Sv);var Cv=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new bv().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Me(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Cv.className="Softmax";ae.registerClass(Cv);function pu(e,t,n){if(typeof e=="number")return qo(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let s=e[r];if(!E4(s))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${s}`)}return e}function Wr(e,t,n,r,s=1){if(e==null)return e;let a=t+(t-1)*(s-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+r-1)/r)}function as(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+la([n-t,0]);else if(r==="same")e=e*t;else throw new H(`Unsupport padding mode: ${r}.`);return e}function Tv(e,t){return M(()=>(Ft(t),t==="channelsFirst"?Oe(e,[0,2,3,1]):e))}function NS(e,t){return M(()=>(Ft(t),t==="channelsFirst"?Oe(e,[0,2,3,4,1]):e))}function lV(e,t,n,r=1,s="valid",a,o=1){return M(()=>{if(a==null&&(a=Pr()),Ft(a),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Oe(e,[0,2,1])),s==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=ty(e,t,r,s==="same"?"same":"valid","NWC",o);return n!=null&&(i=Lr(i,n)),i})}function _S(e,t,n,r=[1,1],s="valid",a,o,i=null){return M(()=>{if(a==null&&(a=Pr()),Ft(a),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let c=Tv(e,a);if(s==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return c=ia.conv2d({x:c,filter:t,strides:r,pad:s==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(c=Oe(c,[0,3,1,2])),c})}function dV(e,t,n,r=[1,1,1],s="valid",a,o){return M(()=>{if(a==null&&(a=Pr()),Ft(a),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=NS(e,a);if(s==="causal")throw new $e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=sy(i,t,r,s==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Lr(i,n)),a==="channelsFirst"&&(i=Oe(i,[0,4,1,2,3])),i})}var Nv=class extends je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Nv.verifyArgs(t),this.rank=e,Yt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new $e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=pu(t.kernelSize,e,"kernelSize"),this.strides=pu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,cr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ft(this.dataFormat),this.activation=ha(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=kt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Gt(t.biasConstraint),this.biasRegularizer=It(t.biasRegularizer),this.activityRegularizer=It(t.activityRegularizer),this.dilationRate=pu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ns("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Ly(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:pa(this.activation),useBias:this.useBias,biasInitializer:Nt(this.biasInitializer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),biasConstraint:Ut(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},id=class extends Nv{constructor(e,t){super(e,t);this.kernel=null,id.verifyArgs(t),this.filters=t.filters,Yt(this.filters,"filters"),this.kernelInitializer=kt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Gt(t.kernelConstraint),this.kernelRegularizer=It(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return M(()=>{e=Me(e);let n,r=this.bias==null?null:this.bias.read(),s=bI(this.activation.getClassName());if(s!=null&&this.rank===2)n=_S(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=lV(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=_S(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=dV(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new $e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<n.length;++s){let a=Wr(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:Nt(this.kernelInitializer),kernelRegularizer:lt(this.kernelRegularizer),kernelConstraint:Ut(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},cd=class extends id{constructor(e){super(2,e);cd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ly(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};cd.className="Conv2D";ae.registerClass(cd);var ud=class extends id{constructor(e){super(3,e);ud.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};ud.className="Conv3D";ae.registerClass(ud);var _v=class extends cd{constructor(e){super(e);if(this.inputSpec=[new Ot({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ot({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{let n=Me(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=r[a],c=r[o],u=this.kernelSize[0],l=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=as(i,d,u,this.padding),f=as(c,p,l,this.padding),m=[s,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Oe(n,[0,2,3,1]));let g=ry(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Oe(g,[0,3,1,2])),this.bias!=null&&(g=Lr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=st(e);let t=e.slice(),n,r,s;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3):(n=3,r=1,s=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],c=this.strides[1];return t[n]=this.filters,t[r]=as(t[r],i,a,this.padding),t[s]=as(t[s],c,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};_v.className="Conv2DTranspose";ae.registerClass(_v);var Ev=class extends ud{constructor(e){super(e);if(this.inputSpec=[new Ot({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ot({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{let n=Me(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let c=r[i],u=r[a],l=r[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],b=as(c,f,d,this.padding),y=as(u,m,p,this.padding),v=as(l,g,h,this.padding),x=[s,b,y,v,this.filters];this.dataFormat!=="channelsLast"&&(n=Oe(n,[0,2,3,4,1]));let k=uk(n,this.kernel.read(),x,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(k=Oe(k,[0,4,1,2,3])),this.bias!==null&&(k=Lr(k,this.bias.read(),this.dataFormat)),this.activation!==null&&(k=this.activation.apply(k)),k})}computeOutputShape(e){e=st(e);let t=e.slice(),n,r,s,a;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3,a=4):(n=4,r=1,s=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],c=this.kernelSize[2],u=this.strides[0],l=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[r]=as(t[r],u,o,this.padding),t[s]=as(t[s],l,i,this.padding),t[a]=as(t[a],d,c,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ev.className="Conv3DTranspose";ae.registerClass(Ev);var ES=class extends id{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=kt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=It(t.depthwiseRegularizer),this.depthwiseConstraint=Gt(t.depthwiseConstraint),this.pointwiseInitializer=kt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=It(t.pointwiseRegularizer),this.pointwiseConstraint=Gt(t.pointwiseConstraint)}build(e){if(e=st(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let o=0;o<this.rank;++o)s.push(1);s.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Ot({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{e=Me(e);let n;if(this.rank===1)throw new $e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Oe(e,[0,2,3,1])),n=ru(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Lr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Oe(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.pointwiseInitializer=Nt(this.pointwiseInitializer),e.depthwiseRegularizer=lt(this.depthwiseRegularizer),e.pointwiseRegularizer=lt(this.pointwiseRegularizer),e.depthwiseConstraint=Ut(this.depthwiseConstraint),e.pointwiseConstraint=Ut(this.pointwiseConstraint),e}};ES.className="SeparableConv";var Av=class extends ES{constructor(e){super(2,e)}};Av.className="SeparableConv2D";ae.registerClass(Av);var xf=class extends id{constructor(e){super(1,e);xf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ly(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};xf.className="Conv1D";ae.registerClass(xf);var $v=class extends je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return M(()=>{if(e=Me(e),this.dataFormat==="channelsLast"){let n=Zh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Zh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Zh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Zh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};$v.className="Cropping2D";ae.registerClass($v);var Fv=class extends je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,T4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return M(()=>{let n=Me(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Oe(n,[0,2,3,1]);let s=this.size[0]*r[2],a=this.size[1]*r[3],o=this.interpolation==="nearest"?qn.resizeNearestNeighbor(n,[s,a]):qn.resizeBilinear(n,[s,a]);return Oe(o,[0,3,1,2])}else{let s=this.size[0]*r[1],a=this.size[1]*r[2];return this.interpolation==="nearest"?qn.resizeNearestNeighbor(n,[s,a]):qn.resizeBilinear(n,[s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Fv.className="UpSampling2D";ae.registerClass(Fv);function pV(e,t,n=[1,1],r="valid",s,a){return M(()=>{s==null&&(s=Pr()),Ft(s);let o=Tv(e,s);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Wo(o,t,n,r==="same"?"same":"valid","NHWC",a),s==="channelsFirst"&&(o=Oe(o,[0,3,1,2])),o})}var Dv=class extends Nv{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=kt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Gt(e.depthwiseConstraint),this.depthwiseRegularizer=It(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{e=Me(e);let n=pV(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Lr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=Wr(t,this.kernelSize[0],this.padding,this.strides[0]),a=Wr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,s,a]:[e[0],s,a,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.depthwiseRegularizer=lt(this.depthwiseRegularizer),e.depthwiseConstraint=Ut(this.depthwiseRegularizer),e}};Dv.className="DepthwiseConv2D";ae.registerClass(Dv);function AS(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function s(a){return a==null||Array.isArray(a)?a:[a]}return t=s(t),n=s(n),{inputs:e,initialState:t,constants:n}}function $S(e,t,n,r=!1,s,a,o=!1,i=!1){return M(()=>{let c=t.shape.length;if(c<3)throw new H(`Input should be at least 3D, but is ${c}D.`);let u=[1,0].concat(Mr(2,c));if(t=Oe(t,u),a!=null)throw new $e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),s!=null&&(s=ce(ce(s,"bool"),"float32"),s.rank===c-1&&(s=yn(s,-1)),s=Oe(s,u)),r&&(t=ir(t,0),s!=null&&(s=ir(s,0)));let l=[],d,p=n,h=t.shape[0],f=ht(t),m;s!=null&&(m=ht(s));for(let b=0;b<h;++b){let y=f[b],v=M(()=>e(y,p));if(s==null)d=v[0],p=v[1];else{let x=M(()=>{let k=m[b],C=he(or(k),k),N=Y(V(v[0],k),V(p[0],C)),F=p.map((R,O)=>Y(V(v[1][O],k),V(R,C)));return{output:N,newStates:F}});d=x.output,p=x.newStates}i&&l.push(d)}let g;return i&&(g=Pt(l,1)),[d,g,p]})}var os=class extends je{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new If({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ot({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Mr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){tv(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[r].concat(s)}else return r}computeMask(e,t){return M(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(s=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new $e("Constants support is not implemented in RNN yet.");tv(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Ot({shape:[n,null,...r]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new $e("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Ot({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){M(()=>{if(!this.stateful)throw new Ts("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>wt([n,r])):this.states_=[wt([n,this.cell.stateSize])];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>wt([n,r])):this.states_[0]=wt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let r=0;r<this.states_.length;++r){let s=e[r],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,o=[n,a];if(!w.arraysEqual(s.shape,o))throw new H(`State ${r} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${s.shape}`);this.states_[r]=s}}this.states_=this.states_.map(r=>Xt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=AS(e,n,r,this.numConstants);e=s.inputs,n=s.initialState,r=s.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let c of n)this.stateSpec.push(new Ot({shape:c.shape}));o=o.concat(this.stateSpec)}if(r!=null&&(t.constants=r,a=a.concat(r),this.numConstants=r.length),a[0]instanceof Br){let c=[e].concat(a),u=this.inputSpec.concat(o),l=this.inputSpec;this.inputSpec=u;let d=super.apply(c,t);return this.inputSpec=l,d}else return super.apply(e,t)}call(e,t){return M(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;e=Me(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new H(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:r},c=$S((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,s,this.goBackwards,n,null,this.unroll,this.returnSequences),u=c[0],l=c[1],d=c[2];this.stateful&&this.resetStates(d,r);let p=this.returnSequences?l:u;return this.returnState?[p].concat(d):p})}getInitialState(e){return M(()=>{let t=wt(e.shape);return t=ve(t,[1,2]),t=Ql(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?jy(t,[1,n]):t):this.cell.stateSize>1?[jy(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===os.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,s=zr(r,n);return new e(Object.assign(t,{cell:s}))}};os.className="RNN";ae.registerClass(os);var ld=class extends je{},wf=class extends ld{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Yt(this.units,"units"),this.activation=ha(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=kt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=It(e.kernelRegularizer),this.recurrentRegularizer=It(e.recurrentRegularizer),this.biasRegularizer=It(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=iu([1,la([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=iu([1,la([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=fa({ones:()=>or(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=fa({ones:()=>or(n),rate:this.recurrentDropout,training:r}));let s,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?s=rs(V(e,a),this.kernel.read()):s=rs(e,this.kernel.read()),this.bias!=null&&(s=Lr(s,this.bias.read())),o!=null&&(n=V(n,o));let i=Y(s,rs(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:pa(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Ut(this.kernelConstraint),recurrentConstraint:Ut(this.recurrentConstraint),biasConstraint:Ut(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};wf.className="SimpleRNNCell";ae.registerClass(wf);var Rv=class extends os{constructor(e){e.cell=new wf(e);super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return new e(t)}};Rv.className="SimpleRNN";ae.registerClass(Rv);var kf=class extends ld{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Yt(this.units,"units"),this.activation=ha(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ha(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=kt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=It(e.kernelRegularizer),this.recurrentRegularizer=It(e.recurrentRegularizer),this.biasRegularizer=It(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=iu([1,la([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=iu([1,la([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=fa({ones:()=>or(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=fa({ones:()=>or(r),rate:this.recurrentDropout,training:n,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,o,i,c;0<this.dropout&&this.dropout<1&&(e=V(e,s[0]));let u=rs(e,this.kernel.read());this.useBias&&(u=Lr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=V(r,a[0]));let l=this.recurrentKernel.read(),[d,p]=jn(l,[2*this.units,this.units],l.rank-1),h=rs(r,d),[f,m,g]=jn(u,3,u.rank-1),[b,y]=jn(h,2,h.rank-1);o=this.recurrentActivation.apply(Y(f,b)),i=this.recurrentActivation.apply(Y(m,y));let v=rs(V(i,r),p);c=this.activation.apply(Y(g,v));let x=Y(V(o,r),V(Y(1,Tt(o)),c));return[x,x]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:pa(this.activation),recurrentActivation:pa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Ut(this.kernelConstraint),recurrentConstraint:Ut(this.recurrentConstraint),biasConstraint:Ut(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};kf.className="GRUCell";ae.registerClass(kf);var Pv=class extends os{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new kf(e);super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Pv.className="GRU";ae.registerClass(Pv);var dd=class extends ld{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Yt(this.units,"units"),this.activation=ha(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ha(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=kt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=It(e.kernelRegularizer),this.recurrentRegularizer=It(e.recurrentRegularizer),this.biasRegularizer=It(e.biasRegularizer),this.kernelConstraint=Gt(e.kernelConstraint),this.recurrentConstraint=Gt(e.recurrentConstraint),this.biasConstraint=Gt(e.biasConstraint),this.dropout=iu([1,la([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=iu([1,la([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;r=new(t=class extends Ir{apply(i,c){let u=s.apply([a]),l=new Qh().apply([a]),d=s.apply([a*2]);return TI(TI(u,l),d)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return M(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=fa({ones:()=>or(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=fa({ones:()=>or(r),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,c,u,l;0<this.dropout&&this.dropout<1&&(e=V(e,a[0]));let d=rs(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=V(r,o[0])),d=Y(d,rs(r,this.recurrentKernel.read())),this.useBias&&(d=Lr(d,this.bias.read()));let[p,h,f,m]=jn(d,4,d.rank-1);i=this.recurrentActivation.apply(p),c=this.recurrentActivation.apply(h),u=Y(V(c,s),V(i,this.activation.apply(f))),l=this.recurrentActivation.apply(m);let g=V(l,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:pa(this.activation),recurrentActivation:pa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Ut(this.kernelConstraint),recurrentConstraint:Ut(this.recurrentConstraint),biasConstraint:Ut(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};dd.className="LSTMCell";ae.registerClass(dd);var Ov=class extends os{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new dd(e);super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Ov.className="LSTM";ae.registerClass(Ov);var If=class extends ld{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return M(()=>{e=e;let n=e.slice(1),r=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?r.push(n.splice(0,o.stateSize.length)):r.push(n.splice(0,1));r.reverse();let s=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=r[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),s.push(a.slice(1))}n=[];for(let o of s.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){tv(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{Yo(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),r={cells:this.cells.map(t)};return Object.assign({},e,r)}static fromConfig(e,t,n={}){let r=[];for(let s of t.cells)r.push(zr(s,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return nv(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,s=e.splice(r);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],s[a]])}rv(t)}};If.className="StackedRNNCells";ae.registerClass(If);function fa(e){let{ones:t,rate:n,training:r=!1,count:s=1}=e,a=()=>_I(t(),n),o=()=>td(a,t,r);return!s||s<=1?Xt(o().clone()):Array(s).fill(void 0).map(o).map(c=>Xt(c.clone()))}var hV=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var s=0,r=Object.getOwnPropertySymbols(e);s<r.length;s++)t.indexOf(r[s])<0&&Object.prototype.propertyIsEnumerable.call(e,r[s])&&(n[r[s]]=e[r[s]]);return n},FS=class extends os{constructor(e){if(e.unroll)throw new $e("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new $e("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ot({ndim:5})]}call(e,t){return M(()=>{if(this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return M(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)],a=wt(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){M(()=>{if(!this.stateful)throw new Ts("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>wt(s)):this.states_=[wt(s)];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>wt(s)):this.states_[0]=wt(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],c=s;if(!w.arraysEqual(i.shape,c))throw new H(`State ${o} is incompatible with layer ${this.name}: expected shape=${c}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>Xt(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:s,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",c=e[i?3:2],u=e[i?4:3],l=Wr(c,r[0],s,a[0],o[0]),d=Wr(u,r[1],s,a[1],o[1]);return[...e.slice(0,2),...i?[n,l,d]:[l,d,n]]}};FS.className="ConvRNN2D";var Sf=class extends dd{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:s,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,Yt(this.filters,"filters"),this.kernelSize=pu(n,2,"kernelSize"),this.kernelSize.forEach(i=>Yt(i,"kernelSize")),this.strides=pu(r||1,2,"strides"),this.strides.forEach(i=>Yt(i,"strides")),this.padding=s||"valid",cr(this.padding),this.dataFormat=a||"channelsLast",Ft(this.dataFormat),this.dilationRate=pu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>Yt(i,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],s=4,a=this.kernelSize.concat([r,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let c=this.biasInitializer,u=this.filters;i=new(t=class extends Ir{apply(d,p){let h=c.apply([u]),f=Hn([u]),m=c.apply([u*2]);return Hy([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return M(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],s=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=fa({ones:()=>or(r),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,c=(ee,te,ne)=>!te||!te[ne]?ee:V(te[ne],ee),u=c(r,i,0),l=c(r,i,1),d=c(r,i,2),p=c(r,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=fa({ones:()=>or(s),rate:this.recurrentDropout,training:n,count:o}));let h=this.recurrentDropoutMask,f=c(s,h,0),m=c(s,h,1),g=c(s,h,2),b=c(s,h,3),y=3,[v,x,k,C]=jn(this.kernel.read(),o,y),[N,F,R,O]=this.useBias?jn(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,v,N,this.padding),l=this.inputConv(l,x,F,this.padding),d=this.inputConv(d,k,R,this.padding),p=this.inputConv(p,C,O,this.padding);let[$,P,T,L]=jn(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,$),m=this.recurrentConv(m,P),g=this.recurrentConv(g,T),b=this.recurrentConv(b,L);let G=this.recurrentActivation.apply(Y(u,f)),j=this.recurrentActivation.apply(Y(l,m)),q=Y(V(j,a),V(G,this.activation.apply(Y(d,g)))),K=V(this.recurrentActivation.apply(Y(p,b)),this.activation.apply(q));return[K,K,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=hV(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let s=Dt(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Lr(s,n,this.dataFormat):s}recurrentConv(e,t){return Dt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Sf.className="ConvLSTM2DCell";ae.registerClass(Sf);var Mv=class extends FS{constructor(e){let t=new Sf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Mv.className="ConvLSTM2D";ae.registerClass(Mv);var Cf=class extends je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,s=this.getNoiseShape(n);return td(()=>_I(n,this.rate,s,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Cf.className="Dropout";ae.registerClass(Cf);var Lv=class extends Cf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Lv.className="SpatialDropout1D";ae.registerClass(Lv);var Bv=class extends je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Yt(this.units,"units"),this.activation=ha(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Gt(e.kernelConstraint),this.biasConstraint=Gt(e.biasConstraint),this.kernelRegularizer=It(e.kernelRegularizer),this.biasRegularizer=It(e.biasRegularizer),this.activityRegularizer=It(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e),r=bI(this.activation.getClassName()),s;return r!=null?s=rs(n,this.kernel.read(),r,this.bias?this.bias.read():null):(s=rs(n,this.kernel.read()),this.bias!=null&&(s=Lr(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:pa(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Ut(this.kernelConstraint),biasConstraint:Ut(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Bv.className="Dense";ae.registerClass(Bv);var zv=class extends je{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ua(e,1)]}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let s=2;s<n.rank;++s)r.push(s);r.push(1),n=Oe(n,r)}return F4(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};zv.className="Flatten";ae.registerClass(zv);var Wv=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.activation=ha(e.activation)}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.activation.apply(n)})}getConfig(){let e={activation:pa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Wv.className="Activation";ae.registerClass(Wv);var Vv=class extends je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return M(()=>(e=Me(e),A4(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Vv.className="RepeatVector";ae.registerClass(Vv);var Uv=class extends je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),s=1,a=null;for(let i=0;i<r.length;++i){let c=r[i];if(this.isUnknown(c))if(a===null)a=i;else throw new H("Can only specifiy one unknown dimension.");else s*=c}let o=ua(e);if(a!==null){if(s===0||o%s!=0)throw new H(n);r[a]=o/s}else if(o!==s)throw new H(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e),r=n.shape,s=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return U(n,s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Uv.className="Reshape";ae.registerClass(Uv);var Gv=class extends je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Mr(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ot({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Oe(Me(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Gv.className="Permute";ae.registerClass(Gv);var Hv=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Me(e),r=-1;return xh(eu(n,this.maskValue),r)}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e),r=-1,s=!0,a=xh(eu(n,this.maskValue),r,s);return V(n,ce(a,n.dtype))})}};Hv.className="Masking";ae.registerClass(Hv);var jv=class extends je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(gt(e.inputLength))}this.inputDim=e.inputDim,Yt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Yt(this.outputDim,"outputDim"),this.embeddingsInitializer=kt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=It(e.embeddingsRegularizer),this.activityRegularizer=It(e.activityRegularizer),this.embeddingsConstraint=Gt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return M(()=>this.maskZero?(e=Me(e),eu(e,He(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=gt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let s=t[r],a=e[r+1];if(s!=null&&a!=null&&s!==a)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);n.dtype!=="int32"&&(n=Yh(n,"int32"));let r=NI(this.embeddings.read(),U(n,[n.size]));return U(r,st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Nt(this.embeddingsInitializer),embeddingsRegularizer:lt(this.embeddingsRegularizer),activityRegularizer:lt(this.activityRegularizer),embeddingsConstraint:Ut(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};jv.className="Embedding";ae.registerClass(jv);var ti=class extends je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new $e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let s=e[e.length-t.length+r],a=t[r];if(s==null||a==null||s<0||a<0)n.push(null);else if(s===1)n.push(a);else if(a===1)n.push(s);else{if(s!==a)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(s)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[st(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=ca(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let r=e.map(s=>s.length);e.indexOf(null)===-1&&ca(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return M(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(s=>s.rank);if(r.indexOf(null)===-1){let s=la(r);for(let a of e){let o=a.rank;for(let i=0;i<s-o;++i)a=Ql(a,1);n.push(a)}return this.mergeFunction(n)}else{let s=!1;for(let i of e){let c=i.rank;if(c==null){let u=i.shape,l=u[0],d=u.slice(1).concat([l]),p=U(i,[l].concat(ua(u.slice(1))));p=Oe(p,[1,0]),p=U(p,d),n.push(p),s=!0}else if(c>1){let u=Mr(1,c).concat([0]);n.push(Oe(i,u)),s=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(s){if(o==null){let i=a.shape,c=i.length,u=i[c-1],l=[u].concat(i.slice(0,i.length-1));a=U(Oe(U(a,[-1,u]),[1,0]),l)}else if(o>1){let i=[o-1].concat(Mr(0,o-1));a=Oe(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=ca(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return M(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:yn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=Fr(n,t[r]);return n})}},qv=class extends ti{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Y(t,e[n]);return t})}};qv.className="Add";ae.registerClass(qv);var Kv=class extends ti{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=V(t,e[n]);return t})}};Kv.className="Multiply";ae.registerClass(Kv);var Xv=class extends ti{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Y(t,e[n]);return V(1/e.length,t)})}};Xv.className="Average";ae.registerClass(Xv);var Yv=class extends ti{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=ks(t,e[n]);return t})}};Yv.className="Maximum";ae.registerClass(Yv);var Zv=class extends ti{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ul(t,e[n]);return t})}};Zv.className="Minimum";ae.registerClass(Zv);var Jv=class extends ti{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let s=e[r].slice();s.splice(this.axis,1);let a=!1;for(let o of n)if(w.arraysEqual(o,s)){a=!0;break}a||n.push(s)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return M(()=>Hy(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let s of t.slice(1)){if(n[r]==null||s[r]==null){n[r]=null;break}n[r]+=s[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return M(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let r=[];for(let a=0;a<e.length;++a)t[a]==null?r.push(ce(or(e[a]),"bool")):t[a].rank<e[a].rank?r.push(yn(t[a],-1)):r.push(t[a]);let s=et(r,this.axis);return Yb(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Jv.className="Concatenate";ae.registerClass(Jv);function pd(e,t){for(;e<0;)e+=t;return e}function fV(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new $e("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new $e("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,s=t.shape.length;n==null&&(n=[r-1,s-2]);let a=n;return M(()=>{let o;if(r>s){o=r-s;let c=[];for(let u=0;u<o;++u)c.push(1);t=U(t,t.shape.concat(c))}else if(s>r){o=s-r;let c=[];for(let u=0;u<o;++u)c.push(1);e=U(e,e.shape.concat(c))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ve(V(e,t),a[0]):i=ve(V(Oe(e,[1,0]),t),a[1]);else{let c=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=De(e,t,c,u)}if(o>0){let c;r>s?c=r+s-3:c=r-1;let u=[];for(let l=c;l<c+o;++l)u.push(l);i=Is(i,u)}return i.shape.length===1&&(i=yn(i,1)),i})}var Qv=class extends ti{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new H(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((s,a)=>pd(s,e[a].shape.length)):r=[pd(this.axes,t.shape.length),pd(this.axes,n.shape.length)],this.normalize&&(t=pf(t,r[0]),n=pf(n,r[1])),fV(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[pd(this.axes,e.length),pd(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let s=t.concat(n);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Qv.className="Dot";ae.registerClass(Qv);var ex=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);return td(()=>Y(Jh(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};ex.className="GaussianNoise";ae.registerClass(ex);var tx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.rate>0&&this.rate<1?td(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return V(n,Jh(n.shape,1,s))},()=>n,t.training||!1):n})}};tx.className="GaussianDropout";ae.registerClass(tx);var nx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Me(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return M(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return td(()=>{let s=Me(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,c=Vo(tu(n),this.rate);c=Yh(c,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,l=-u*i*this.rate,d=Y(V(s,c),V(Y(c,-1),i));return Y(V(d,u),l)},()=>Me(e),t.training||!1)}return e})}};nx.className="AlphaDropout";ae.registerClass(nx);function hd(e,t,n,r,s,a=.001){let o;if(e.rank===2)o=Q1(e,t,n,r,s,a);else if(e.rank===3)o=ek(e,t,n,r,s,a);else if(e.rank===4)o=tk(e,t,n,r,s,a);else throw new $e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function mV(e,t,n,r,s=.001){return M(()=>{let a=Ah(e,r),o=a.mean,i=a.variance;return[hd(e,o,i,n,t,s),o,i]})}function gV(e,t,n,r,s=.001){return M(()=>{let a=Ah(e,r),o=a.mean,i=a.variance,c=[];for(let f of Mr(0,e.rank))r.indexOf(f)!==-1?c.push(1):c.push(e.shape[f]);let u=U(o,c),l=U(i,c),d=t==null?null:U(t,c),p=n==null?null:U(n,c);return[hd(e,u,l,p,d,s),o,i]})}function bV(e,t,n,r,s=.001){return w.arraysEqual(r.slice().sort(),Mr(0,e.rank-1))?mV(e,t,n,r,s):gV(e,t,n,r,s)}var rx=class extends je{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=kt(e.betaInitializer||"zeros"),this.gammaInitializer=kt(e.gammaInitializer||"ones"),this.movingMeanInitializer=kt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=kt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Gt(e.betaConstraint),this.gammaConstraint=Gt(e.gammaConstraint),this.betaRegularizer=It(e.betaRegularizer),this.gammaRegularizer=It(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ot({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return M(()=>{let n=t.training==null?!1:t.training,r=Me(e),s=r.shape,a=s.length,o=Mr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let c=qo(1,a);c[i]=s[i];let u=o.slice();u.sort();let l=!w.arraysEqual(u,Mr(0,a).slice(0,a-1)),d=()=>{if(l){let b=U(this.movingMean.read(),c),y=U(this.movingVariance.read(),c),v=this.center?U(this.beta.read(),c):null,x=this.scale?U(this.gamma.read(),c):null;return hd(r,b,y,v,x,this.epsilon)}else return hd(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=bV(r,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(b,y,v)=>{M(()=>{let x=1-v,k=b.read(),C=V(he(k,y),x);b.write(he(k,C))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),movingMeanInitializer:Nt(this.movingMeanInitializer),movingVarianceInitializer:Nt(this.movingVarianceInitializer),betaRegularizer:lt(this.betaRegularizer),gammaRegularizer:lt(this.gammaRegularizer),betaConstraint:Ut(this.betaConstraint),gammaConstraint:Ut(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};rx.className="BatchNormalization";ae.registerClass(rx);var sx=class extends je{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=kt(e.betaInitializer||"zeros"),this.gammaInitializer=kt(e.gammaInitializer||"ones"),this.betaRegularizer=It(e.betaRegularizer),this.gammaRegularizer=It(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==ca(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>e[s]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Me(e),r=n.shape,s=r.length;return M(()=>{let a=!0,{mean:o,variance:i}=Ah(n,this.axis,a),c=qo(1,s);for(let f of this.axis)c[f]=r[f];let u=f=>f!=null&&f.shape.length!==s&&this.axis!==[s-1]?U(f,c):f,l=u(this.gamma.read()),d=u(this.beta.read()),p=[],h=[];for(let f=0;f<s;++f)this.axis.indexOf(f)!==-1?(p.push(r[f]),h.push(1)):(p.push(1),h.push(r[f]));return o=Un(o,p),i=Un(i,p),l=Un(l,h),d=Un(d,h),hd(n,o,i,d,l,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),betaRegularizer:lt(this.betaRegularizer),gammaRegularizer:lt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};sx.className="LayerNormalization";ae.registerClass(sx);function yV(e,t,n){return M(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Pr()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],wr(e,r)})}var ax=class extends je{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Pr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ot({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return M(()=>yV(Me(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ax.className="ZeroPadding2D";ae.registerClass(ax);function Tf(e,t,n,r,s,a){return M(()=>{Ft(s),wI(a),cr(r),n==null&&(n=[1,1]),r==null&&(r="valid"),s==null&&(s=Pr()),a==null&&(a="max"),e=Tv(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=Rt(e,t,n,i):o=vr(e,t,n,i),s==="channelsFirst"&&(o=Oe(o,[0,3,1,2])),o})}function DS(e,t,n,r,s,a){return M(()=>{Ft(s),wI(a),cr(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),s==null&&(s=Pr()),a==null&&(a="max"),e=NS(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=hy(e,t,n,i):o=Qb(e,t,n,i),s==="channelsFirst"&&(o=Oe(o,[0,4,1,2,3])),o})}var RS=class extends je{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Yt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Yt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,cr(this.padding),this.inputSpec=[new Ot({ndim:3})]}computeOutputShape(e){e=st(e);let t=Wr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return M(()=>{this.invokeCallHook(e,t),e=Ql(Me(e),2);let n=this.poolingFunction(Me(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Is(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},ox=class extends RS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Ft(s),cr(r),Tf(e,t,n,r,s,"max")}};ox.className="MaxPooling1D";ae.registerClass(ox);var ix=class extends RS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Ft(s),cr(r),Tf(e,t,n,r,s,"avg")}};ix.className="AveragePooling1D";ae.registerClass(ix);var PS=class extends je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Yt(this.poolSize,"poolSize"),Yt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),cr(this.padding),this.inputSpec=[new Ot({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Wr(t,this.poolSize[0],this.padding,this.strides[0]),n=Wr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return M(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},cx=class extends PS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Ft(s),cr(r),Tf(e,t,n,r,s,"max")}};cx.className="MaxPooling2D";ae.registerClass(cx);var ux=class extends PS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Ft(s),cr(r),Tf(e,t,n,r,s,"avg")}};ux.className="AveragePooling2D";ae.registerClass(ux);var OS=class extends je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Yt(this.poolSize,"poolSize"),Yt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),cr(this.padding),this.inputSpec=[new Ot({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Wr(t,this.poolSize[0],this.padding,this.strides[0]),n=Wr(n,this.poolSize[1],this.padding,this.strides[1]),r=Wr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return M(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},lx=class extends OS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Ft(s),cr(r),DS(e,t,n,r,s,"max")}};lx.className="MaxPooling3D";ae.registerClass(lx);var dx=class extends OS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Ft(s),cr(r),DS(e,t,n,r,s,"avg")}};dx.className="AveragePooling3D";ae.registerClass(dx);var MS=class extends je{constructor(e){super(e);this.inputSpec=[new Ot({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new $e}},px=class extends MS{constructor(e){super(e||{})}call(e,t){return M(()=>{let n=Me(e);return At(n,1)})}};px.className="GlobalAveragePooling1D";ae.registerClass(px);var hx=class extends MS{constructor(e){super(e||{})}call(e,t){return M(()=>{let n=Me(e);return $r(n,1)})}};hx.className="GlobalMaxPooling1D";ae.registerClass(hx);var LS=class extends je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.inputSpec=[new Ot({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new $e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},fx=class extends LS{call(e,t){return M(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?At(n,[1,2]):At(n,[2,3])})}};fx.className="GlobalAveragePooling2D";ae.registerClass(fx);var mx=class extends LS{call(e,t){return M(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?$r(n,[1,2]):$r(n,[2,3])})}};mx.className="GlobalMaxPooling2D";ae.registerClass(mx);var BS=class extends je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,s=zr(r,n);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},gx=class extends BS{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return M(()=>(e=Me(e),$S((a,o)=>[Me(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};gx.className="TimeDistributed";ae.registerClass(gx);function vV(e){Xo(C4,"BidirectionalMergeMode",e)}var xV="concat",bx=class extends BS{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=zr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=zr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?xV:e.mergeMode,vV(this.mergeMode),e.weights)throw new $e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,s;return this.returnState&&(s=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):Fn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=AS(e,n,r,this.numConstants);if(e=s.inputs,n=s.initialState,r=s.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let c=n.length;if(c%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(l=>new Ot({shape:l.shape}));this.forwardLayer.stateSpec=u.slice(0,c/2),this.backwardLayer.stateSpec=u.slice(c/2),o.push(...u)}if(r!=null)throw new $e("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Br;for(let c of a)if(c instanceof Br!==i)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let c=[e].concat(a),u=this.inputSpec.concat(o),l=this.inputSpec;this.inputSpec=u;let d=super.apply(c,t);return this.inputSpec=l,d}else return super.apply(e,t)}call(e,t){return M(()=>{let n=t.initialState,r,s;if(n==null)r=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),c=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:c}))}let a;this.returnState&&(Array.isArray(r)&&(a=r.slice(1).concat(s.slice(1))),r=r[0],s=s[0]),this.returnSequences&&(s=ir(s,1));let o;return this.mergeMode==="concat"?o=Hy([r,s]):this.mergeMode==="sum"?o=Y(r,s):this.mergeMode==="ave"?o=V(.5,Y(r,s)):this.mergeMode==="mul"?o=V(r,s):this.mergeMode==null&&(o=[r,s]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Yo(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Yo(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=zr(t.layer);if(delete t.layer,t.numConstants!=null)throw new $e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};bx.className="Bidirectional";ae.registerClass(bx);function wV(e){return new cu(e)}function kV(e){return new Iv(e)}function IV(e){return new xv(e)}function SV(e){return new wv(e)}function CV(e){return new kv(e)}function TV(e){return new Cv(e)}function NV(e){return new Sv(e)}function _V(e){return new xf(e)}function EV(e){return new cd(e)}function AV(e){return new _v(e)}function $V(e){return new ud(e)}function FV(e){return new Ev(e)}function DV(e){return new Av(e)}function RV(e){return new $v(e)}function PV(e){return new Fv(e)}function OV(e){return new Dv(e)}function MV(e){return new Wv(e)}function LV(e){return new Bv(e)}function BV(e){return new Cf(e)}function zV(e){return new Lv(e)}function WV(e){return new zv(e)}function VV(e){return new Vv(e)}function UV(e){return new Uv(e)}function GV(e){return new Gv(e)}function HV(e){return new jv(e)}function jV(e){return new qv(e)}function qV(e){return new Xv(e)}function KV(e){return new Jv(e)}function XV(e){return new Yv(e)}function YV(e){return new Zv(e)}function ZV(e){return new Kv(e)}function JV(e){return new Qv(e)}function QV(e){return new rx(e)}function eU(e){return new sx(e)}function tU(e){return new ax(e)}function yx(e){return new ix(e)}function nU(e){return yx(e)}function rU(e){return yx(e)}function vx(e){return new ux(e)}function sU(e){return vx(e)}function aU(e){return vx(e)}function xx(e){return new dx(e)}function oU(e){return xx(e)}function iU(e){return xx(e)}function cU(e){return new px(e)}function uU(e){return new fx(e)}function zS(e){return new hx(e)}function WS(e){return new mx(e)}function VS(e){return new ox(e)}function US(e){return new cx(e)}function lU(e){return new lx(e)}function dU(e){return new Pv(e)}function pU(e){return new kf(e)}function hU(e){return new Ov(e)}function fU(e){return new dd(e)}function mU(e){return new Rv(e)}function gU(e){return new wf(e)}function bU(e){return new Mv(e)}function yU(e){return new Sf(e)}function vU(e){return new os(e)}function xU(e){return new If(e)}function wU(e){return new bx(e)}function kU(e){return new gx(e)}var IU=zS,SU=WS,CU=VS,TU=US;function NU(e){return new ex(e)}function _U(e){return new tx(e)}function EU(e){return new nx(e)}function AU(e){return new Hv(e)}var GS={};Fe(GS,{MAPE:()=>WU,MSE:()=>GU,binaryAccuracy:()=>$U,binaryCrossentropy:()=>FU,categoricalAccuracy:()=>RU,categoricalCrossentropy:()=>PU,cosineProximity:()=>LU,mape:()=>VU,meanAbsoluteError:()=>BU,meanAbsolutePercentageError:()=>zU,meanSquaredError:()=>UU,mse:()=>HU,precision:()=>OU,recall:()=>MU,sparseCategoricalAccuracy:()=>DU});function $U(e,t){return ov(e,t)}function FU(e,t){return jI(e,t)}function DU(e,t){return qI(e,t)}function RU(e,t){return iv(e,t)}function PU(e,t){return cv(e,t)}function OU(e,t){return HI(e,t)}function MU(e,t){return xW(e,t)}function LU(e,t){return sv(e,t)}function BU(e,t){return hf(e,t)}function zU(e,t){return lu(e,t)}function WU(e,t){return lu(e,t)}function VU(e,t){return lu(e,t)}function UU(e,t){return Jo(e,t)}function GU(e,t){return Jo(e,t)}function HU(e,t){return Jo(e,t)}var HS={};Fe(HS,{modelFromJSON:()=>eV});var jS={};Fe(jS,{l1:()=>qU,l1l2:()=>jU,l2:()=>KU});function jU(e){return new od(e)}function qU(e){return cV(e)}function KU(e){return uV(e)}var qS=class extends uu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof _s))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Nf(e,t){return e<t}function KS(e,t){return e>t}var XS=class extends qS{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new $e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Nf:this.mode==="max"?this.monitorFunc=KS:this.monitor.indexOf("acc")!==-1?this.monitorFunc=KS:this.monitorFunc=Nf,this.monitorFunc===Nf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Nf?1/0:-1/0}async onEpochEnd(e,t){await da(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function XU(e){return new XS(e)}var YU={earlyStopping:XU},Vr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Vr||(Vr={}));var YS;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(YS||(YS={}));var wx={};function ZU(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};wx[e]=n}function ZS(e){return wx[e]}function JU(e){delete wx[e]}function I(e,t,n,r,s){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,c=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return wn(t.inputNames[a.inputIndexStart],n,r,s);if(a.type==="tensors")return t.inputNames.slice(i,c).map(p=>wn(p,n,r,s));let u=wn(t.inputNames.slice(i)[0],n,r,s),l=u.dataSync();return a.type==="number"?l[0]:w.toNestedArray(u.shape,l)}let o=t.attrParams[e];return o&&o.value}function wn(e,t,n,r){let[s,a]=Kn(e);if(r!=null){let i=r.getHashTableHandleByName(s);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[_f(s,i)]);return o!==void 0?t[_f(s,o)][a]:void 0}function QU(e,t,n){return t[_f(e,n.currentContextId)]}function Es(e,t){let[n,r,s]=Kn(e);return[_f(n,t&&t.currentContextId),r,s]}function _f(e,t){return t?`${e}-${t}`:e}function Kn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],r=t.length===3?t[1]:void 0,s=Number(t[t.length-1]);return[n,s,r]}function Ef(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let s=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)s[a][0]=r[a*2],s[a][1]=r[a*2+1];return s}return r}function As(e){return e.kept?e:xs(e)}var JS={};Fe(JS,{json:()=>eG});var eG=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],QS={};Fe(QS,{json:()=>tG});var tG=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],eC={};Fe(eC,{json:()=>nG});var nG=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],tC={};Fe(tC,{json:()=>rG});var rG=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],nC={};Fe(nC,{json:()=>sG});var sG=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],rC={};Fe(rC,{json:()=>aG});var aG=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],sC={};Fe(sC,{json:()=>oG});var oG=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],aC={};Fe(aC,{json:()=>iG});var iG=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],oC={};Fe(oC,{json:()=>cG});var cG=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],iC={};Fe(iC,{json:()=>uG});var uG=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],cC={};Fe(cC,{json:()=>lG});var lG=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],uC={};Fe(uC,{json:()=>dG});var dG=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],lC={};Fe(lC,{json:()=>pG});var pG=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],dC={};Fe(dC,{json:()=>hG});var hG=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],pC={};Fe(pC,{json:()=>fG});var fG=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],hC={};Fe(hC,{json:()=>mG});var mG=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],fC={};Fe(fC,{json:()=>gG});var gG=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],mC={};Fe(mC,{json:()=>bG});var bG=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],gC={};Fe(gC,{json:()=>yG});var yG=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],bC=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[JS,QS,eC,tC,nC,rC,sC,aC,oC,iC,cC,uC,lC,dC,pC,hC,fC,mC,gC],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],s=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?s.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],c=[],u={},l={};t!=null&&(u=this.mapSignatureEntries(t.inputs),l=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,b)=>{let[y,,v]=Es(g),x=o[y];if(x.outputs!=null){let k=x.outputs.indexOf(v);if(k!==-1){let C=`${y}:${k}`;m.inputNames[b]=C}}m.inputs.push(x),x.children.push(m)})}),Object.keys(l).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&c.push(m)}):Object.keys(l).forEach(f=>{let[m]=Es(f),g=o[m];g!=null&&(g.signatureKey=l[f],c.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Es(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=r;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:c,weights:s,placeholders:r,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=ZS(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,s)=>(r[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,s)=>{let a=s.type,o;switch(s.type){case"string":o=kx(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=kx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":o=Ax(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Ax(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":o=Sx(e.attr,s.tfName,s.defaultValue||0),o===void 0&&!!s.tfDeprecatedName&&(o=Sx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":o=Ex(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Ex(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":o=Ix(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Ix(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":o=Fx(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Fx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":o=_x(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=_x(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":o=$x(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=$x(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":o=Tx(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Tx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":o=Nx(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Nx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":o=vC(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=vC(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return r[s.name]={value:o,type:a},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],s={};t!=null&&(s=t.reduce((l,d)=>(l[d.name]=this.mapNode(d),d.op==="Const"&&r.push(l[d.name]),l),{}));let a=[],o=[];e.signature.inputArg.forEach(l=>{let[d]=Es(l.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Cx(l.type),type:"dtype"}},children:[]};p.signatureKey=l.name,a.push(p),s[d]=p}),Object.keys(s).forEach(l=>{let d=s[l];d.inputNames.forEach((p,h)=>{let[f,,m]=Es(p),g=s[f];if(g.outputs!=null){let b=g.outputs.indexOf(m);if(b!==-1){let y=`${f}:${b}`;d.inputNames[h]=y}}d.inputs.push(g),g.children.push(d)})});let c=e.ret;e.signature.outputArg.forEach(l=>{let[d,p]=Es(c[l.name]),h=s[d];h!=null&&(h.defaultOutput=p,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:o,weights:r,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function vG(e){let t=Q().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function yC(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):vG(e);return t?n:n.toLowerCase()}function kx(e,t,n,r=!1){let s=e[t];return s!=null?yC(s.s,r):n}function Ix(e,t,n){let r=e[t];return r?r.b:n}function Sx(e,t,n){let r=e[t]||{},s=r.i!=null?r.i:r.f!=null?r.f:n;return typeof s=="number"?s:parseInt(s,10)}function Cx(e){switch(typeof e=="string"&&(e=Vr[e]),e){case Vr.DT_FLOAT:return"float32";case Vr.DT_INT32:case Vr.DT_INT64:case Vr.DT_INT8:case Vr.DT_UINT8:return"int32";case Vr.DT_BOOL:return"bool";case Vr.DT_DOUBLE:return"float32";case Vr.DT_STRING:return"string";default:return null}}function vC(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function Tx(e,t,n){let r=e[t];return r&&r.type?Cx(r.type):n}function Nx(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(s=>Cx(s)):n}function xC(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function _x(e,t,n){let r=e[t];return r&&r.shape?xC(r.shape):n}function Ex(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(s=>typeof s=="number"?s:parseInt(s,10)):n}function Ax(e,t,n,r=!1){let s=e[t];return s&&s.list&&s.list.s?s.list.s.map(a=>yC(a,r)):n}function $x(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(s=>xC(s)):n}function Fx(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var xG=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,s)=>(r[s]=this.getAttr(s),r),{}))}getInput(e){return wn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return wn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Sx(this.node.rawAttrs,e,t);if(n.s!=null)return kx(this.node.rawAttrs,e,t);if(n.b!=null)return Ix(this.node.rawAttrs,e,t);if(n.shape!=null)return _x(this.node.rawAttrs,e,t);if(n.type!=null)return Tx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Ex(this.node.rawAttrs,e,t);if(n.list.s!=null)return Ax(this.node.rawAttrs,e,t);if(n.list.shape!=null)return $x(this.node.rawAttrs,e,t);if(n.list.b!=null)return Fx(this.node.rawAttrs,e,t);if(n.list.type!=null)return Nx(this.node.rawAttrs,e,t)}return t}},wG=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[Y(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[U1(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Nk(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[V(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[ge(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[hk(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Xb(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[he(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Ul(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[ks(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[oa(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Cy(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kG=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[W1(I("x",e,t,n))];case"Acosh":return[V1(I("x",e,t,n))];case"Asin":return[H1(I("x",e,t,n))];case"Asinh":return[j1(I("x",e,t,n))];case"Atan":return[q1(I("x",e,t,n))];case"Atan2":return[K1(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[X1(I("x",e,t,n))];case"Ceil":return[rk(I("x",e,t,n))];case"Complex":return[ea(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Ih(I("x",e,t,n))];case"Cosh":return[ay(I("x",e,t,n))];case"Elu":return[Wl(I("x",e,t,n))];case"Erf":return[mk(I("x",e,t,n))];case"Exp":return[bn(I("x",e,t,n))];case"Expm1":return[gk(I("x",e,t,n))];case"Floor":return[Vl(I("x",e,t,n))];case"Log":return[ar(I("x",e,t,n))];case"Log1p":return[Th(I("x",e,t,n))];case"Imag":return[Sh(I("x",e,t,n))];case"Neg":return[Tt(I("x",e,t,n))];case"Reciprocal":return[Ak(I("x",e,t,n))];case"Real":return[Gl(I("x",e,t,n))];case"Relu":return[qe(I("x",e,t,n))];case"Round":return[yy(I("x",e,t,n))];case"Selu":return[xy(I("x",e,t,n))];case"Sigmoid":return[xr(I("x",e,t,n))];case"Sin":return[wy(I("x",e,t,n))];case"Sign":return[Fk(I("x",e,t,n))];case"Sinh":return[ky(I("x",e,t,n))];case"Softplus":return[Qc(I("x",e,t,n))];case"Sqrt":return[ln(I("x",e,t,n))];case"Square":return[ut(I("x",e,t,n))];case"Tanh":return[Zc(I("x",e,t,n))];case"Tan":return[Rk(I("x",e,t,n))];case"ClipByValue":return[rn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[by(I("x",e,t,n))];case"Rsqrt":return[vy(wn(e.inputNames[0],t,n))];case"Prod":return[fy(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Ch(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Fh(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[bk(wn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Cr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;r<e.length;r++){let s=e[r],a=t[r];w.assert(s<0||a<0||s===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function wC(e){return!(typeof e=="number"||e.some(t=>t<0))}function fd(e,t,n){let r=Dx(e,n),s=!wC(r);if(s&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(s&&t.forEach(a=>{r=Dx(a.shape,r)}),!wC(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Dx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r<e.length;++r){let s=e[r],a=t[r];if(s>=0&&a>=0&&s!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=s>=0?s:a}return n}var IG=class{constructor(e,t,n,r,s,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),Xt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Cr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Xt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return Vn([],[0].concat(this.elementShape));let n=this.readMany(e);return Cr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Pt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Vn([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return Cr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),et(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ht(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:t.size/n,a=[];M(()=>{t=U(t,[1,n,s]);for(let i=0;i<e.length;++i){let c=i===0?0:r[i-1],u=[0,c,0],l=[1,e[i],s];a[i]=U(We(t,u,l),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},md=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Cr(t,s.shape,"TensorList shape mismatch: "),Xt(s)}),this.idTensor=ke(0),this.maxNumElements=r,Xt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new md([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Cr(e,this.elementShape,"TensorList shape mismatch: ");let r=fd(this.elementShape,this.tensors,e);return M(()=>{let s=this.tensors.map(a=>U(a,r));return Pt(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=fd(this.elementShape,this.tensors,e),r=this.tensors.pop();return Cr(r.shape,e,"TensorList shape mismatch: "),U(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Cr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Xt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Cr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=fd(this.elementShape,this.tensors,t);return U(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Cr(this.elementShape,t.shape,"TensorList shape mismatch: "),Xt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Cr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=fd(this.elementShape,this.tensors,n);return e.length===0?Vn([],[0].concat(r)):M(()=>{let s=e.map(a=>U(this.tensors[a],r));return Pt(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Cr(this.elementShape,t,"TensorList shape mismatch: ");let n=fd(this.elementShape,this.tensors,t);return this.size()===0?Vn([],[0].concat(n)):M(()=>{let r=this.tensors.map(s=>U(s,n));return et(r,0)})}};function SG(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let s=e.shape.slice(1);Cr(s,t,"TensorList shape mismatch: ");let a=ht(e);return new md(a,t,r)}function CG(e,t,n){return new md([],e,t,n)}function TG(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let s=Math.max(...t);if(r!=null&&r!==-1&&s>=r)throw new Error(`Max index must be < array size (${s} vs. ${r})`);let a=new md([],n,e.dtype,r),o=ht(e,0);return t.forEach((i,c)=>{a.setItem(i,o[c])}),a}function NG(e,t,n){let r=0,s=t.map(l=>(r+=l,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${r}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=Dx(a,n),i=r===0?0:e.size/r,c=M(()=>{let l=[];e=U(e,[1,r,i]);for(let d=0;d<t.length;++d){let p=d===0?0:s[d-1],h=[0,p,0],f=[1,t[d],i];l[d]=U(We(e,h,f),o)}return e.dispose(),l}),u=new md([],n,e.dtype,t.length);for(let l=0;l<c.length;l++)u.setItem(l,c[l]);return u}var _G=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),s=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),s=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[s].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(l=>l.id),c=await o[0].data();o.forEach(l=>{!l.kept&&i.indexOf(l.id)===-1&&l.dispose()});let u=a;for(;c[0];){let l=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);l.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);c=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let r=I("pred",e,t,n);return[As(r)]}case"Switch":{let r=I("pred",e,t,n),s=I("data",e,t,n);return s.kept||(s=As(s)),(await r.data())[0]?[void 0,s]:[s,void 0]}case"Merge":{let r=e.inputNames.find(s=>wn(s,t,n)!==void 0);if(r){let s=wn(r,t,n);return[As(s)]}return}case"Enter":{let r=I("frameName",e,t,n),s=I("tensor",e,t,n);return n.enterFrame(r),[As(s)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[As(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[As(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),s=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),c=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),l=new IG(u,s,r,a,c,o,i);return n.addTensorArray(l),[l.idTensor,ke(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),s=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(r.id);return o.write(s,a),[o.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),s=I("index",e,t,n);return[n.getTensorArray(r.id).read(s)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),s=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(s,a)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),s=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(r.id);return o.scatter(s,a),[o.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id),a=I("dtype",e,t,n);return[s.concat(a)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),s=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(r.id);return o.split(a,s),[o.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return[ke(s.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return s.clearAndClose(),[s.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),s=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(r.id);return o.setItem(s,a),[o.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),s=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(s,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),s=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=TG(s,r,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=CG(r,s,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),s=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(s,o,a)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(s,a,o)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=SG(r,s,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),s=n.getTensorList(r.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[s.concat(a,o)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),s=I("tensor",e,t,n),a=n.getTensorList(r.id);return a.pushBack(s),[a.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(s,a)]}case"TensorListSplit":{let r=I("tensor",e,t,n),s=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=NG(r,a,s);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function kC(e,t,n){let[r,s]=I("fusedOps",e,t,n),a=r==="biasadd",o=!a,i=s==="prelu",c=r==="fusedbatchnorm",u=I("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(c)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let l=I("strides",e,t,n),d=Ef(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:l,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:s,leakyreluAlpha:g}}var EG=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),s=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[ty(I("x",e,t,n),I("filter",e,t,n),r,s,a,o)]}case"Conv2D":{let r=I("strides",e,t,n),s=Ef(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Dt(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],s,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:c,activationFunc:u,leakyreluAlpha:l}=kC(e,t,n);return[ia.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:c,leakyreluAlpha:l})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:c,activationFunc:u,leakyreluAlpha:l}=kC(e,t,n);return[ia.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:c,leakyreluAlpha:l})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),s=I("strides",e,t,n),a=Ef(e,t,n);return[ry(I("x",e,t,n),I("filter",e,t,n),r,[s[1],s[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),s=Ef(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[Wo(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],s,o,[a[1],a[2]])]}case"Conv3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[sy(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],s,a,[o[1],o[2],o[3]])]}case"AvgPool":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[vr(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Rt(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:c}=Ck(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s,o);return[i,c]}case"AvgPool3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Qb(I("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[hy(I("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("dilations",e,t,n),o=r[1],i=r[2],c=a[1],u=a[2];return[pk(I("x",e,t,n),I("filter",e,t,n),[o,i],s,[c,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},AG=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),s=I("dtype",e,t,n),a=I("value",e,t,n);return[vn(r,a,s)]}case"LinSpace":{let r=I("start",e,t,n),s=I("stop",e,t,n),a=I("num",e,t,n);return[yk(r,s,a)]}case"Multinomial":{let r=I("logits",e,t,n),s=I("numSamples",e,t,n),a=I("seed",e,t,n);return[_k(r,s,a)]}case"OneHot":{let r=I("indices",e,t,n),s=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[Ll(r,s,a,o)]}case"Ones":return[Hn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[or(I("x",e,t,n))];case"RandomUniform":return[tu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),s=I("stop",e,t,n),a=I("step",e,t,n);return[nu(r,s,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),s=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[Oh(r,s,a,I("dtype",e,t,n),o)]}case"Zeros":return[wt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Rx(e,t,n){let r=I("boxes",e,t,n),s=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),c=I("softNmsSigma",e,t,n);return{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:c}}var $G=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:c}=Rx(e,t,n),u=await qn.nonMaxSuppressionWithScoreAsync(r,s,a,o,i,c);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Rx(e,t,n),c=I("padToMaxOutputSize",e,t,n),u=await qn.nonMaxSuppressionPaddedAsync(r,s,a,o,i,c);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Rx(e,t,n);return[await qn.nonMaxSuppressionAsync(r,s,a,o,i)]}case"Where":{let r=ce(I("condition",e,t,n),"bool"),s=[await Ny(r)];return r.dispose(),s}case"ListDiff":return $k(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},FG=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),s=I("k",e,t,n),a=I("sorted",e,t,n),o=Pk(r,s,a);return[o.values,o.indices]}case"Unique":{let r=I("x",e,t,n),s=Ty(r);return[s.values,s.indices]}case"UniqueV2":{let r=I("x",e,t,n),s=I("axis",e,t,n),a=Ty(r,s);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},DG=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[wn(e.name,t,n)||r];case"Placeholder":return[wn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[As(u)]}case"IdentityN":return I("x",e,t,n).map(u=>As(u));case"Snapshot":let s=I("x",e,t,n);return[As(s)];case"Shape":return[Ue(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>Ue(u.shape));case"Size":return[ke(I("x",e,t,n).size,"int32")];case"Rank":return[ke(I("x",e,t,n).rank,"int32")];case"NoOp":return[ke(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),c=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<o.length;u++)console.log(Array.prototype.slice.call(o[u].dataSync()).slice(0,c));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},RG=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,Xt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ke(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),M(()=>{let r=ht(t),s=n.length,a=r.length;w.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let o=0;o<s;o++){let i=n[o],c=r[o];Xt(c),this.tensorMap.set(i,c)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return M(()=>{let r=[];for(let s=0;s<n.length;s++){let a=n[s],o=this.findWithDefault(a,t);r.push(o)}return Pt(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},PG=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let s=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new RG(s,a);return r.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let s=I("tableHandle",e,t,n,r),a=I("keys",e,t,n),o=I("values",e,t,n);return[await r.getHashTableById(s.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let s=I("tableHandle",e,t,n,r),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await r.getHashTableById(s.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let s=I("tableHandle",e,t,n,r);return[r.getHashTableById(s.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},OG=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),s=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[qn.resizeBilinear(r,[s[0],s[1]],a,o)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),s=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[qn.resizeNearestNeighbor(r,[s[0],s[1]],a,o)]}case"CropAndResize":{let r=I("image",e,t,n),s=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),c=I("extrapolationValue",e,t,n);return[qn.cropAndResize(r,s,a,o,i,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},MG=(e,t,n)=>{switch(e.op){case"Equal":return[sr(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[eu(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Gn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Vo(I("a",e,t,n),I("b",e,t,n))];case"Less":return[cy(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Uo(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Fr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[_h(I("a",e,t,n))];case"LogicalOr":return[py(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[gn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},LG=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[De(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[fk(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Oe(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,s]=I("fusedOps",e,t,n),a=r==="biasadd",o=s==="prelu",i=I("numArgs",e,t,n),c=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,l]=I("args",e,t,n);return[ia.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:s,preluActivationWeights:l,leakyreluAlpha:c})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},BG=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[aa(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[aa(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[vk(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[es(I("x",e,t,n))];case"LogSoftmax":return[uy(I("x",e,t,n))];case"SparseToDense":return[Ey(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},zG=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[$r(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[At(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Eh(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ve(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Yb(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[xh(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[Xc(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[G1(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[fy(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),c=I("reverse",e,t,n);return[oy(I("x",e,t,n),o,i,c)]}case"Bincount":let r=I("x",e,t,n),s=I("weights",e,t,n),a=I("size",e,t,n);return[ey(r,s,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),c=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[lk(o,i,c,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},WG=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),s=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,r),[et(a,s)]}case"Gather":{let r=I("x",e,t,n),s=I("indices",e,t,n);return[Jc(r,ce(s,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),s=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Jc(a,ce(o,"int32"),r,s)]}case"Reverse":{let r=I("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let a=I("x",e,t,n);return[ir(a,s)]}case"ReverseV2":{let r=I("axis",e,t,n),s=I("x",e,t,n);return[ir(s,r)]}case"Slice":{let r=I("begin",e,t,n),s=I("size",e,t,n);return[We(I("x",e,t,n),r,s)]}case"StridedSlice":{let r=I("begin",e,t,n),s=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),c=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),l=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[Dk(d,r,s,a,o,i,c,u,l)]}case"Pack":return M(()=>{let r=I("axis",e,t,n),s=I("tensors",e,t,n),a=s[0].shape,o=Is(s[0]).shape,i=s.map(c=>{let u=w.arraysEqual(c.shape,a);if(!u&&!w.arraysEqual(Is(c).shape,o))throw new Error("the input tensors shape does not match");return u?c:U(c,a)});return[Pt(i,r)]});case"Unpack":{let r=I("axis",e,t,n),s=I("tensor",e,t,n);return ht(s,r)}case"Tile":{let r=I("reps",e,t,n);return[Un(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),s=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return jn(a,s,r)}case"ScatterNd":{let r=I("indices",e,t,n),s=I("values",e,t,n),a=I("shape",e,t,n);return[zk(r,s,a)]}case"GatherNd":{let r=I("x",e,t,n),s=I("indices",e,t,n);return[Wk(r,s)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),s=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[Ey(r,a,s,a.dtype===o.dtype?o:ce(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},VG=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:a,reverseIndexMap:o}=Kl.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[r,s,a,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=Kl.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[Kl.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Kl.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},UG=(e,t,n)=>{switch(e.op){case"FFT":return[Rh(I("x",e,t,n))];case"IFFT":return[jl(I("x",e,t,n))];case"RFFT":return[Ph(I("x",e,t,n))];case"IRFFT":return[Sy(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},GG=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=Wh.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:a}=Wh.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[r,s,a]}case"StringToHashBucketFast":return[Wh.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},HG=(e,t,n)=>{switch(e.op){case"Cast":return[ce(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[yn(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[Is(I("x",e,t,n),r)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Tk(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[wr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),s=I("paddings",e,t,n);return[$h(I("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),s=I("crops",e,t,n);return[kh(I("x",e,t,n),r,s)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),s=I("dataFormat",e,t,n).toUpperCase();return[dk(I("x",e,t,n),r,s)]}case"BroadcastTo":return[zl(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[nk(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function IC(e,t,n,r){let s=((a,o,i)=>{switch(a.category){case"arithmetic":return M(()=>wG(a,o,i));case"basic_math":return M(()=>kG(a,o,i));case"control":return _G(a,o,i);case"convolution":return M(()=>EG(a,o,i));case"creation":return M(()=>AG(a,o,i));case"dynamic":return $G(a,o,i);case"evaluation":return M(()=>FG(a,o,i));case"image":return M(()=>OG(a,o,i));case"graph":return M(()=>DG(a,o,i));case"logical":return M(()=>MG(a,o,i));case"matrices":return M(()=>LG(a,o,i));case"normalization":return M(()=>BG(a,o,i));case"reduction":return M(()=>zG(a,o,i));case"slice_join":return M(()=>WG(a,o,i));case"sparse":return M(()=>VG(a,o,i));case"spectral":return M(()=>UG(a,o,i));case"string":return M(()=>GG(a,o,i));case"transformation":return M(()=>HG(a,o,i));case"hash_table":return PG(a,o,i,r);case"custom":let c=ZS(a.op);if(c&&c.customExecutor)return c.customExecutor(new xG(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(s)?s.then(a=>[].concat(a)):[].concat(s)}var SC=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function CC(e,t,n,r){let s=new Set,a=[],o=null,i=null,c=new Set,u=Object.keys(e).map(p=>Kn(p)[0]),l=[];r!=null&&(l=r.map(p=>Kn(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((TC(p)||YG(p)||ZG(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>s.has(h))),s.add(p.name),n[p.name]==null&&u.indexOf(p.name)===-1&&l.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{c.has(h.name)||(c.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:s,missingInputs:a,dynamicNode:o,syncInputs:i}}function jG(e,t,n){let{usedNodes:r,inputs:s}=n,a=[],o=Object.keys(s).map(l=>Kn(l)[0]).map(l=>e.nodes[l]),i=e.initNodes;o.forEach(l=>{r.has(l.name)&&a.push(l)}),e.weights.forEach(l=>{r.has(l.name)&&a.push(l)}),i!=null&&i.forEach(l=>{r.has(l.name)&&a.push(l)});let c=new Set,u=[];for(;a.length>0;){let l=a.pop();c.add(l.name),t[l.name]||u.push(l),l.children.forEach(d=>{!c.has(d.name)&&r.has(d.name)&&d.inputs.every(p=>c.has(p.name))&&a.push(d)})}return u}var qG=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],KG=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],XG=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function TC(e){return qG.indexOf(e.op)>=0}function YG(e){return KG.indexOf(e.op)>=0}function ZG(e){return XG.indexOf(e.op)>=0}var Px=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Px(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(s=>s.name).sort(),r=t.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=CC(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:s,syncInputs:a}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(r.length>0){let o=t.map(c=>c.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${r}]`)}return jG(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(l=>this.graph.nodes[Kn(l)[0]]),s=t.map(l=>Kn(l)[0]),a=s.map(l=>this.graph.nodes[l]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(r,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let c={},u={};return M(()=>{let l=new SC(this.weightMap,c,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=Kn(f),b=[];b[g]=e[f],d[m]=b});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=IC(m,d,l,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,l,p,s,h)}}return this.parent==null&&l.dispose(p),t.map(f=>wn(f,d,l))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,s,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let c=QU(i.name,n,r);c!=null&&c.forEach(u=>{if(u&&!u.kept&&!s.has(u.id)){let l=o[u.id];l===1?(u.dispose(),delete o[u.id]):l!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},s={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new SC(this.weightMap,r,s,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>wn(d,o,a)),c=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),l=new Set([...c,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!l.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(l),i}async executeFunctionAsync(e,t,n){let r=e.reduce((s,a,o)=>(s[this.inputs[o].name]=a,s),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let s=Object.keys(e),a=s.map(y=>this.graph.nodes[Kn(y)[0]]),o=n.map(y=>Kn(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:c,missingInputs:u,dynamicNode:l,syncInputs:d}=CC(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[v,x]=Kn(y),k=[];k[x]=e[y],h[v]=k});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let y=this.processStack(a,p,t,h,g,m,o,f,c);await Promise.all(y)}l==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=i.filter(y=>!TC(y)&&!wn(y.name,h,t)).map(y=>y.name);if(b.length>0){let y="";throw l!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${u}]. ${y}`)}return h}processStack(e,t,n,r,s,a,o,i,c){let u=[];for(;t.length>0;){let l=t.pop();n.currentContext=l.contexts;let d="";if(l.node.op==="Enter"&&I("isConstant",l.node,r,n)&&([d]=Es(l.node.name,n)),r[l.node.name]==null){let p=IC(l.node,r,n,this._resourceManager);d||([d]=Es(l.node.name,n));let h=n.currentContext;w.isPromise(p)?u.push(p.then(f=>(r[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,l.node,r,n,a,o,i),this.processChildNodes(l.node,t,n,r,s,c),f))):(r[d]=p,this.checkTensorForDisposal(d,l.node,r,n,a,o,i),this.processChildNodes(l.node,t,n,r,s,c))}else this.processChildNodes(l.node,t,n,r,s,c)}return u}processChildNodes(e,t,n,r,s,a){e.children.forEach(o=>{let[i]=Es(o.name,n);s[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(c=>!!wn(c,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(c=>!!wn(c,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=Kn(t),s=this.graph.nodes[r];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,c)=>a[c]===-1||a[c]===i);w.assert(o,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&w.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=Kn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Kn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},JG=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},QG="?tfjs-format=file",eH="model.json",NC=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new JG}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Kt.browserHTTPRequest(e,this.loadOptions);else{let t=Kt.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Kt.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Kt.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Px(bC.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=bC.Instance.transformGraph(e.modelInitializer);this.initializer=new Px(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Kt.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ee)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function tH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${eH}${QG}`);let n=new NC(e,t);return await n.load(),n}var nH="3.9.0",_C={};Fe(_C,{CSVDataset:()=>zC,Dataset:()=>fu,FileDataSource:()=>qC,TextLineDataset:()=>MC,URLDataSource:()=>KC,array:()=>CH,csv:()=>OH,func:()=>MH,generator:()=>LH,microphone:()=>zH,version_data:()=>WH,webcam:()=>BH,zip:()=>TH});var rH=Ea(T0()),sH=Ea(T0());function aH(e,t){return Af(e,t)}function Af(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(s.recurse)if(hu(e)){let a=Array.isArray(e)?[]:{};r.add(e);for(let o in e){let i=e[o],c=Af(i,t,n,r);a[o]=c}return r.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,s.value),s.value}function oH(e,t=AC){return EC(e,t)}function EC(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(s.recurse)if(hu(r)){let a=Array.isArray(r)?[]:{};n.add(r);for(let o in r){let i=e.map(u=>u[o]),c=EC(i,t,n);a[o]=c}return n.delete(r),a}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return s.value}function AC(e){return e===null?null:hu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function $C(e,t){let n=new Map;Af(e,t,n);for(let s of Array.from(n.keys())){let a=n.get(s);if(w.isPromise(a)){let o=await a;n.set(s,o)}}return Af(e,t,n)}function hu(e){let t=!1;if(Q().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=N0();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ee)&&!(e instanceof Promise)&&!t)}function iH(e){return e==null||cH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ee||w.isTypedArray(e)}function cH(e){return e===null||typeof e!="object"&&typeof e!="function"}function uH(e){return aH(e,lH)}function lH(e){return e instanceof Ee?{value:e.clone(),recurse:!1}:hu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var FC=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Ox=class extends FC{constructor(){super(Ox.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Ox.INITIAL_CAPACITY=32;function DC(e){return new hH(e)}function Mx(e){return new fH(e)}function dH(e,t){return new PC(e,t)}function pH(e,t=ma.FAIL){return new IH(e,t)}var Zt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new wH(this,e)}filter(e){return new vH(this,e)}map(e){return new xH(this,e)}mapAsync(e){return new RC(this,e)}serialMapAsync(e){return new RC(this,e).serial()}flatmap(e){return new kH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new yH(this,e,t)}columnMajorBatch(e,t=!0,n=AC){return this.rowMajorBatch(e,t).map(s=>oH(s,n))}concatenate(e,t){return new PC(DC([this,e]),t)}take(e){return e<0||e==null?this:new bH(this,e)}skip(e){return e<0||e==null?this:new gH(this,e)}prefetch(e){return new OC(this,e)}shuffle(e,t){return new SH(this,e,t)}serial(){return new mH(this)}},hH=class extends Zt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:uH(e),done:!1}}},fH=class extends Zt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},mH=class extends Zt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},gH=class extends Zt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ae(e.value)}return this.upstream.next()}},bH=class extends Zt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},yH=class extends Zt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},vH=class extends Zt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ae(e.value)}}},xH=class extends Zt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Er.getTensorsInContainer(e.value),n=this.transform(e.value),r=Er.getTensorsInContainer(n);for(let s of t)Er.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},wH=class extends Zt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},RC=class extends Zt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Er.getTensorsInContainer(e.value),n=await this.transform(e.value),r=Er.getTensorsInContainer(n);for(let s of t)Er.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},Lx=class extends Zt{constructor(){super();this.outputQueue=new Ox,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},kH=class extends Lx{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Er.getTensorsInContainer(e.value),n=this.transform(e.value),r=Er.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of t)Er.isTensorInList(s,r)||s.dispose();return!0}},PC=class extends Zt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ma;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ma||(ma={}));var IH=class extends Zt{constructor(e,t=ma.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(a){return a instanceof Zt?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let s=await $C(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ma.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ma.SHORTEST:return{value:null,done:!0};case ma.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},OC=class extends Zt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new FC(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},SH=class extends OC{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=sH.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},fu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let r;return this.size===1/0||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Xn(async()=>(await n.iterator()).columnMajorBatch(e,t,NH),r)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Xn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Xn(async()=>(await t.iterator()).filter(r=>M(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Xn(async()=>(await t.iterator()).map(n=>M(()=>e(n))),this.size)}mapAsync(e){let t=this;return Xn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Xn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Xn(async()=>{let r=Mx(async()=>({value:await t.iterator(),done:!1}));return dH(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Xn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,s=rH.alea(t||w.now().toString());return Xn(async()=>{let a=s.int32();return n&&(a+=s.int32()),(await r.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Xn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};fu.MAX_BUFFER_SIZE=1e4;function Xn(e,t=null){return new class extends fu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function CH(e){return Xn(async()=>DC(e),e.length)}function TH(e){if(!hu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Xn(async()=>{let n=await $C(e,r=>{if(r instanceof fu)return{value:r.iterator(),recurse:!1};if(hu(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return pH(n,ma.SHORTEST)},t)}function NH(e){if(e===null)return null;let t=e[0];return iH(t)?{value:_H(e),recurse:!1}:{value:null,recurse:!0}}function _H(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ee?Pt(e):Vn(e)}var MC=class extends fu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(r=>(r.endsWith("\r")&&(r=r.slice(0,-1)),r))}},$f='"',gd=Symbol("out"),LC=Symbol("field"),Ff=Symbol("quote"),Bx=Symbol("quoteafterquote"),BC=Symbol("quoteinquote"),zC=class extends fu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new MC(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,s)=>(r[s]=r[s]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[s],c=null;if(i==="")if(o&&o.default!==void 0)c=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);c=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?c=this.getBoolean(i):c=i;else if(!o||!o.dtype)c=u;else switch(o.dtype){case"float32":c=u;break;case"int32":c=Math.floor(u);break;case"bool":c=this.getBoolean(i);break;default:c=u}}o&&o.isLabel?r[a]=c:n[a]=c}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,s=e.length,a=gd;for(let o=0;o<s;o++)switch(a){case gd:switch(e.charAt(o)){case $f:r=o+1,a=Ff;break;case this.delimiter:if(r=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=gd;break;default:a=LC,r=o;break}break;case LC:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(r,o)),a=gd,r=o+1;break;default:}break;case Ff:switch(e.charAt(o)){case $f:a=Bx;break;default:}break;case Bx:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(r,o-1)),a=gd,r=o+1;break;case $f:a=Ff;break;default:a=BC;break}break;case BC:switch(e.charAt(o)){case $f:a=Ff;break;default:}break;default:}if(a===Bx?n.push(e.substring(r,s-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},WC=class extends Zt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Q().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new WC(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,s)=>n.set(r,s*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Vn(n,t)}},VC=class extends Zt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ue([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,a=(1-r)/2,o=s+n,i=r+a;this.cropBox=Dr([a,s,i,o],[1,4])}else this.cropBox=Dr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Q().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new VC(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Lo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return M(()=>{let t=yn(ce(e,"float32"),0),n;n=qn.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return U(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},UC=class{},GC=class extends Zt{split(e){return new EH(this,e)}},EH=class extends GC{constructor(e,t){super();this.upstream=e,this.impl=new AH(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},AH=class extends Lx{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},$H=class extends Zt{decodeUTF8(){return new FH(this)}},FH=class extends GC{constructor(e){super();this.upstream=e,this.impl=new DH(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},DH=class extends Lx{constructor(e){super();if(this.upstream=e,Q().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=N0();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Q().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},HC=class extends $H{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(Q().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,r)));else{let s=new FileReader;s.onload=o=>{let i=s.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},s.onabort=o=>n(new Error("Aborted")),s.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,r);s.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function RH(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=PH(e));let s=await w.fetch(n,r);if(s.ok){let a=new Uint8Array(await s.arrayBuffer());return new HC(a,t)}else throw new Error(s.statusText)}var PH=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function jC(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var qC=class extends UC{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(jC(this.input)&&Q().get("IS_NODE")){let e=Bi("fs");this.input=e.readFileSync(this.input.substr(7))}return new HC(this.input,this.options)}},KC=class extends UC{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return jC(this.url)?new qC(this.url,this.fileOptions).iterator():RH(this.url,this.fileOptions)}};function OH(e,t={}){return new zC(new KC(e),t)}function MH(e){let t=Mx(e);return Xn(async()=>t)}function LH(e){return Xn(async()=>{let t=await e();return Mx(()=>t.next())})}async function BH(e,t){return VC.create(e,t)}async function zH(e){return WC.create(e)}var WH="3.9.0";function we(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var VH=ts.whereImpl,Df=class extends ul{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new vp(this,ws())}nextDataId(){return Df.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Q().get("IS_NODE")&&_.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let s=n.map(a=>w.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,s){this.data.set(e,{values:t,dtype:r,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(r,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>w.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return ws().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){we([e],"where");let t=this.readSync(e.dataId);return VH(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Df.nextDataId=0;var zx={};Fe(zx,{addImpl:()=>YC,bincountImpl:()=>Vx,bincountReduceImpl:()=>ZC,ceilImpl:()=>JC,concatImpl:()=>Ux,equalImpl:()=>QC,expImpl:()=>tT,expm1Impl:()=>rT,floorImpl:()=>sT,gatherNdImpl:()=>aT,gatherV2Impl:()=>oT,greaterEqualImpl:()=>cT,greaterImpl:()=>iT,lessEqualImpl:()=>lT,lessImpl:()=>uT,linSpaceImpl:()=>dT,logImpl:()=>pT,maxImpl:()=>hT,maximumImpl:()=>fT,minimumImpl:()=>mT,multiplyImpl:()=>Gx,negImpl:()=>gT,notEqualImpl:()=>bT,prodImpl:()=>yT,rangeImpl:()=>jx,rsqrtImpl:()=>vT,sigmoidImpl:()=>A6,simpleAbsImpl:()=>XC,sliceImpl:()=>Of,sparseFillEmptyRowsImpl:()=>wT,sparseReshapeImpl:()=>kT,sparseSegmentReductionImpl:()=>qx,sqrtImpl:()=>D6,squaredDifferenceImpl:()=>IT,stridedSliceImpl:()=>ST,stringNGramsImpl:()=>CT,stringSplitImpl:()=>TT,stringToHashBucketFastImpl:()=>NT,subImpl:()=>_T,tileImpl:()=>ET,topKImpl:()=>$T,transposeImpl:()=>Hx,uniqueImpl:()=>FT});function XC(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var UH=e=>{let{x:t}=e.inputs,n=e.backend;we(t,"abs");let r=new Float32Array(w.sizeFromShape(t.shape)),s=n.data.get(t.dataId).values;return r=XC(s),n.makeOutput(r,t.shape,"float32")},GH={kernelName:Vi,backendName:"cpu",kernelFunc:UH};function Mt(e){return(t,n,r,s,a)=>{let o=_.assertAndGetBroadcastShape(t,n),i=o.length,c=w.computeStrides(o),u=w.sizeFromShape(o),l=w.getTypedArrayFromDType(a,u),d=t.length,p=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=_.getBroadcastDims(t,o),g=_.getBroadcastDims(n,o);if(m.length+g.length===0)for(let b=0;b<l.length;++b)l[b]=e(r[b%r.length],s[b%s.length]);else for(let b=0;b<l.length;++b){let y=w.indexToLoc(b,i,c),v=y.slice(-d);m.forEach(N=>v[N]=0);let x=w.locToIndex(v,d,h),k=y.slice(-p);g.forEach(N=>k[N]=0);let C=w.locToIndex(k,p,f);l[b]=e(r[x],s[C])}return[l,o]}}function Yn(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=n.makeTensorInfo(r.shape,"complex64"),c=n.data.get(i.dataId);return c.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",a),imag:n.makeTensorInfo(s.shape,"float32",o)},i}var HH={kernelName:Np,backendName:"cpu",kernelFunc:Yn};function Rf(e,t,n="float32"){if(n==="complex64"){let s=Rf(e,t,"float32"),a=Rf(e,t,"float32");return Yn({inputs:{real:s,imag:a},backend:e})}let r=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function is(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var jH={kernelName:Ja,backendName:"cpu",kernelFunc:is};function ni(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.real,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}var qH={kernelName:Kp,backendName:"cpu",kernelFunc:ni};function ga(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return is({inputs:{x:s},backend:n});let o=Rf(n,s.shape,s.dtype),i=ga({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),c=Yn({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}if(s.dtype==="complex64"){let o=ni({inputs:{input:s},backend:n}),i=ga({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(s.dtype,a)){let o=is({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(s.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(s.shape,"int32",i)}if(a==="bool"){let o=n.data.get(s.dataId).values,i=w.toTypedArray([0],s.dtype),[c,u]=Mt((l,d)=>l!==d?1:0)(s.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",c)}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var KH={kernelName:Ma,backendName:"cpu",kernelFunc:ga};function Jt(e,t,n,r){return n==null?({inputs:s,backend:a})=>{let{a:o,b:i}=s,c=a;we([o,i],e);let u=c.data.get(o.dataId).values,l=c.data.get(i.dataId).values,d=o.dtype==="string"?_.fromUint8ToStringArray(u):u,p=o.dtype==="string"?_.fromUint8ToStringArray(l):l,h=r||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return c.makeTensorInfo(m,h,f)}:({inputs:s,backend:a})=>{let{a:o,b:i}=s,c=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=ga({inputs:{x:o},backend:c,attrs:{dtype:"complex64"}}),l=c.data.get(u.dataId),d=l.complexTensorInfos.real,p=l.complexTensorInfos.imag,h=c.data.get(d.dataId).values,f=c.data.get(p.dataId).values,m=ga({inputs:{x:i},backend:c,attrs:{dtype:"complex64"}}),g=c.data.get(m.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,v=c.data.get(b.dataId).values,x=c.data.get(y.dataId).values,[k,C,N]=n(o.shape,i.shape,h,f,v,x),F=c.makeTensorInfo(N,"float32",k),R=c.makeTensorInfo(N,"float32",C),O=Yn({inputs:{real:F,imag:R},backend:c});return c.disposeIntermediateTensorInfo(u),c.disposeIntermediateTensorInfo(m),c.disposeIntermediateTensorInfo(F),c.disposeIntermediateTensorInfo(R),O}else{let u=c.data.get(o.dataId).values,l=c.data.get(i.dataId).values,d=r||o.dtype,[p,h]=t(o.shape,i.shape,u,l,d);return c.makeTensorInfo(h,d,p)}}}function Wx(e){return(t,n,r,s,a,o)=>{let i=_.assertAndGetBroadcastShape(t,n),c=w.sizeFromShape(i),u=i.length,l=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",c),p=w.getTypedArrayFromDType("float32",c),h=_.getBroadcastDims(t,i),f=_.getBroadcastDims(n,i),m=_.mergeRealAndImagArrays(r,s),g=_.mergeRealAndImagArrays(a,o),b=t.length,y=w.computeStrides(t),v=n.length,x=w.computeStrides(n);if(h.length+f.length===0)for(let k=0;k<d.length;k++){let C=k%m.length,N=k%g.length,F=e(m[C*2],m[C*2+1],g[N*2],g[N*2+1]);d[k]=F.real,p[k]=F.imag}else for(let k=0;k<d.length;k++){let C=w.indexToLoc(k,u,l),N=C.slice(-b);h.forEach(P=>N[P]=0);let F=w.locToIndex(N,b,y),R=C.slice(-v);f.forEach(P=>R[P]=0);let O=w.locToIndex(R,v,x),$=e(m[F*2],m[F*2+1],g[O*2],g[O*2+1]);d[k]=$.real,p[k]=$.imag}return[d,p,i]}}var YC=Mt((e,t)=>e+t),XH=Wx((e,t,n,r)=>({real:e+n,imag:t+r})),bd=Jt(Ks,YC,XH),YH={kernelName:Ks,backendName:"cpu",kernelFunc:bd};function Vx(e,t,n,r,s){let a=w.sizeFromShape(r),o=w.makeZerosTypedArray(s,n);for(let i=0;i<e.length;i++){let c=e[i];if(c<0)throw new Error("Input x must be non-negative!");c>=s||(a>0?o[c]+=t[i]:o[c]+=1)}return o}function ZC(e,t,n,r=!1){let s=e.shape[0],a=e.shape[1],o=Be([s,n],t.dtype);for(let i=0;i<s;i++)for(let c=0;c<a;c++){let u=e.get(i,c);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(r?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,c),i,u):o.set(o.get(i,u)+1,i,u))}return o}function ba(e){return(t,n,r)=>{let s=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)s[a]=e(t[a],r);return s}}function at(e,t,n){return({inputs:r,attrs:s,backend:a})=>{let{x:o}=r;if(we(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,c=i.data.get(o.dataId).values,u=w.sizeFromShape(o.shape),l=n||o.dtype,d=w.getArrayFromDType(l,u);for(let p=0;p<u;++p)d[p]=t(c[p],s);return i.makeTensorInfo(o.shape,l,d)}}function mu(e,t,n){return({inputs:r,attrs:s,backend:a})=>{let{x:o}=r;if(we(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,c=i.data.get(o.dataId).values,u=n||o.dtype,l=t(c,u,s);return i.makeTensorInfo(o.shape,u,l)}}var JC=ba(e=>Math.ceil(e)),ZH=mu(La,JC),JH={kernelName:La,backendName:"cpu",kernelFunc:ZH};function Ux(e,t,n,r){let s=w.getArrayFromDType(n,w.sizeFromShape(t));if(r&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);s.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?_.fromUint8ToStringArray(o.vals):o.vals,c=0;for(let u=0;u<o.shape[0];++u){let l=u*t[1]+a;for(let d=0;d<o.shape[1];++d)s[l+d]=i[c++]}a+=o.shape[1]})}return s}var QC=Mt((e,t)=>e===t?1:0),eT=Jt(rc,QC,null,"bool"),QH={kernelName:rc,backendName:"cpu",kernelFunc:eT},tT=ba(e=>Math.exp(e)),nT=mu(qa,tT),e6={kernelName:qa,backendName:"cpu",kernelFunc:nT},rT=ba(e=>Math.expm1(e)),t6=mu(ac,rT),n6={kernelName:ac,backendName:"cpu",kernelFunc:t6},sT=ba(e=>Math.floor(e)),r6=mu(Ka,sT),s6={kernelName:Ka,backendName:"cpu",kernelFunc:r6};function aT(e,t,n,r,s,a,o,i,c){let u=Be([r,a],n);for(let l=0;l<r;l++){let d=[],p=0;for(let h=0;h<s;h++){let f=e[l*s+h];p+=f*o[h],d.push(f)}if(p<0||p>=c/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)u.values[l*a+h]=t.get(...t.indexToLoc(p*a+h))}return u}function oT(e,t,n){let r=Be(n,e.dtype);for(let s=0;s<r.size;++s){let o=r.indexToLoc(s).slice(),i=o[0],c=o[2],u=t.locToIndex([i,c]);o[2]=t.values[u];let l=e.locToIndex(o);r.values[s]=e.values[l]}return r}var iT=Mt((e,t)=>e>t?1:0),a6=Jt(uc,iT,null,"bool"),o6={kernelName:uc,backendName:"cpu",kernelFunc:a6},cT=Mt((e,t)=>e>=t?1:0),i6=Jt(Za,cT,null,"bool"),c6={kernelName:Za,backendName:"cpu",kernelFunc:i6},uT=Mt((e,t)=>e<t?1:0),u6=Jt(hc,uT,null,"bool"),l6={kernelName:hc,backendName:"cpu",kernelFunc:u6},lT=Mt((e,t)=>e<=t?1:0),d6=Jt(fc,lT,null,"bool"),p6={kernelName:fc,backendName:"cpu",kernelFunc:d6};function dT(e,t,n){let r=(t-e)/(n-1),s=w.makeZerosTypedArray(n,"float32");s[0]=e;for(let a=1;a<s.length;a++)s[a]=s[a-1]+r;return s}var pT=ba(e=>Math.log(e)),h6=mu(eo,pT),f6={kernelName:eo,backendName:"cpu",kernelFunc:h6};function hT(e,t,n,r){let s=w.getTypedArrayFromDType(r,w.sizeFromShape(n));for(let a=0;a<s.length;++a){let o=a*t,i=e[o];for(let c=0;c<t;++c){let u=e[o+c];(Number.isNaN(u)||u>i)&&(i=u)}s[a]=i}return s}var fT=Mt((e,t)=>Math.max(e,t)),m6=Jt(no,fT),g6={kernelName:no,backendName:"cpu",kernelFunc:m6},mT=Mt((e,t)=>Math.min(e,t)),b6=Jt(oo,mT),y6={kernelName:oo,backendName:"cpu",kernelFunc:b6},Gx=Mt((e,t)=>e*t),v6=Wx((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),Pf=Jt(co,Gx,v6),x6={kernelName:co,backendName:"cpu",kernelFunc:Pf};function gT(e,t,n){let r=w.createScalarValue(-1,n);return Gx([],t,r,e,n)}function w6(e){let{inputs:t,backend:n}=e,{x:r}=t;we(r,"neg");let s=n.data.get(r.dataId).values,[a,o]=gT(s,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,a)}var k6={kernelName:yc,backendName:"cpu",kernelFunc:w6},bT=Mt((e,t)=>e!==t?1:0),I6=Jt(vc,bT,null,"bool"),S6={kernelName:vc,backendName:"cpu",kernelFunc:I6};function Hx(e,t,n,r,s){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),c=w.computeStrides(s),u=w.getTypedArrayFromDType(n,w.sizeFromShape(s));for(let l=0;l<o;++l){let d=w.indexToLoc(l,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[r[f]];let h=w.locToIndex(p,a,c);u[h]=e[l]}return u}function ur(e){let{inputs:t,attrs:n,backend:r}=e,{x:s}=t,{perm:a}=n;we(s,"transpose");let o=s.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=s.shape[a[d]];let c=r.data.get(s.dataId).values,u=Hx(c,s.shape,s.dtype,a,i);return{dataId:r.write(u,i,s.dtype),shape:i,dtype:s.dtype}}var C6={kernelName:Eo,backendName:"cpu",kernelFunc:ur};function yT(e,t,n,r){let[s,a]=_.computeOutAndReduceShapes(e,r),o=yr(t,"int32"),i=w.makeZerosTypedArray(w.sizeFromShape(s),o),c=w.sizeFromShape(a);for(let u=0;u<i.length;++u){let l=u*c,d=1;for(let p=0;p<c;++p)d*=n[l+p];i[u]=d}return{outVals:i,outShape:s,outDtype:o}}function T6(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;we(s,"prod");let i=s.shape.length,c=w.parseAxisParam(a,s.shape),u=_.getAxesPermutation(c,i),l=c,d=s,p=[];u!=null&&(d=ur({inputs:{x:s},backend:n,attrs:{perm:u}}),p.push(d),l=_.getInnerMostAxes(l.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=yT(d.shape,d.dtype,h,l),b=m;return o&&(b=_.expandShapeToKeepDim(m,c)),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,f)}var N6={kernelName:Cc,backendName:"cpu",kernelFunc:T6};function jx(e,t,n,r){let s=e===t,a=e<t&&n<0,o=t<e&&n>1;if(s||a||o)return w.makeZerosTypedArray(0,r);let i=Math.abs(Math.ceil((t-e)/n)),c=w.makeZerosTypedArray(i,r);t<e&&n===1&&(n=-1),c[0]=e;for(let u=1;u<c.length;u++)c[u]=c[u-1]+n;return c}var vT=ba(e=>1/Math.sqrt(e)),_6=mu(vo,vT),E6={kernelName:vo,backendName:"cpu",kernelFunc:_6},A6=ba(e=>1/(1+Math.exp(-e))),xT=at(wo,e=>1/(1+Math.exp(-e))),$6={kernelName:wo,backendName:"cpu",kernelFunc:xT};function Of(e,t,n,r,s){let a=mn.isSliceContinous(r,t,n),o=w.sizeFromShape(n),i=w.computeStrides(r);if(a){let d=mn.computeFlatOffset(t,i);return s==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let c=s==="string"?_.fromUint8ToStringArray(e):e,u=Be(r,s,c),l=Be(n,s);for(let d=0;d<l.size;++d){let p=l.indexToLoc(d),h=p.map((f,m)=>f+t[m]);l.set(u.get(...h),...p)}return s==="string"?_.fromStringArrayToUint8(l.values):l.values}function ri(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r;we(s,"slice");let[i,c]=mn.parseSliceParams(s,a,o);mn.assertParamsValid(s,i,c);let u=n.data.get(s.dataId).values,l=Of(u,i,c,s.shape,s.dtype);return n.makeTensorInfo(c,s.dtype,l)}var F6={kernelName:$c,backendName:"cpu",kernelFunc:ri};function wT(e,t,n,r,s,a,o){let i=t[0],c=a[0],u=new Array(c),l=new Array(i),d=t[1];if(c===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${i}`);let g=w.getArrayFromDType(n,0),b=w.getArrayFromDType(s,0);return[g,[0,d],b,u,l]}let p=!0,h=0,f=new Array(c).fill(0);for(let g=0;g<i;++g){let b=e[g*d];if(b<0)throw new Error(`indices(${g}, 0) is invalid: ${b} < 0`);if(b>=c)throw new Error(`indices(${g}, 0) is invalid: ${b} >= ${c}`);++f[b],p=p&&b>=h,h=b}let m=!0;for(let g=0;g<c;++g){let b=f[g]===0;u[g]=b,m=m&&!b,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,b=r;for(let y=0;y<i;++y)l[y]=y;return[g,[i,d],b,u,l]}else{let g=f[c-1],b=w.getArrayFromDType(n,g*d),y=w.getArrayFromDType(s,g),v=new Array(c).fill(0);for(let x=0;x<i;++x){let k=e[x*d],C=v[k],N=(k===0?0:f[k-1])+C;v[k]++;for(let F=0;F<d;++F)b[N*d+F]=e[x*d+F];y[N]=r[x],l[x]=N}for(let x=0;x<c;++x)if(v[x]===0){let C=x===0?0:f[x-1];b[C*d+0]=x;for(let N=1;N<d;++N)b[C*d+N]=0;y[C]=o}return[b,[g,d],y,u,l]}}function kT(e,t,n,r,s){let a=w.sizeFromShape(r),o=t[0],i=s.length,c=[],u=1,l=-1;for(let g=0;g<i;++g){let b=s[g];if(b===-1){if(l!==-1)throw new Error(`only one output dimension may be -1, not both ${l} and ${g}`);l=g,c.push(1)}else{if(b<0)throw new Error(`size ${g} must be non-negative, not ${b}`);u*=b,c.push(b)}}if(l!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/u);if(u*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
dense values, but the requested shape requires a multiple of ${u}. inputShape=${r} outputShape= ${c}`);c[l]=g}let d=w.sizeFromShape(c);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${r} outputShape=${c}`);let p=r.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*r[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*c[g+1]}let m=w.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let b=0;for(let y=0;y<p;++y)b+=e[g*p+y]*h[y];for(let y=0;y<i;++y)m[g*i+y]=Math.trunc(b/f[y]),b%=f[y]}return[m,[o,i],c]}function qx(e,t,n,r,s,a=!1,o=0){let i=r.length;if(i!==s.length)throw new Error("segmentIds and indices should have same size.");let c=[t[0],e.length/t[0]],u=c[1],d=i>0?s[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((v,x)=>v*x,1),f=w.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,b=0,y=s[m];for(;;){let v=0;if(g<i){if(v=s[g],y===v){++g;continue}if(y>=v)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>b&&f.fill(o,b*u,y*u);for(let x=m;x<g;++x){let k=r[x];if(k<0||k>=c[0])throw new Error(`Bad: indices[${x}] == ${r[x]} out of range [0, ${c[0]})`);for(let C=0;C<u;C++)f[y*u+C]+=e[k*u+C]}if(a)for(let x=0;x<u;x++)f[y*u+x]/=g-m;if(m=g,++g,b=y+1,y=v,g>i)break}return b<d&&f.fill(o,b*u,d*u),[f,p]}var D6=ba(e=>Math.sqrt(e)),R6=at(ko,e=>Math.sqrt(e)),P6={kernelName:ko,backendName:"cpu",kernelFunc:R6},IT=Mt((e,t)=>{let n=e-t;return n*n}),O6=Jt(Co,IT),M6={kernelName:Co,backendName:"cpu",kernelFunc:O6};function ST(e,t,n,r){let s=Be(e,t.dtype);for(let a=0;a<s.size;a++){let o=s.indexToLoc(a),i=new Array(o.length);for(let c=0;c<i.length;c++)i[c]=o[c]*n[c]+r[c];s.set(t.get(...i),...o)}return s}var L6=class{constructor(e,t,n,r,s,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(r),this.padWidth=s,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,r,s,a){for(let o=0;o<s;++o){let i=this.getPadWidth(a),c=Math.max(0,i-o),u=Math.max(0,i-(s-(o+1))),l=a-(c+u),d=t+(c>0?0:o-i),p=0;p+=c*this.leftPad.length;for(let b=0;b<l;++b)p+=e[d+b].length;p+=u*this.rightPad.length,p+=(c+u+l-1)*this.separator.length,n[r+o]=new Uint8Array(p);let f=n[r+o],m=0,g=b=>b.forEach(y=>f[m++]=y);for(let b=0;b<c;++b)g(this.leftPad),g(this.separator);for(let b=0;b<l-1;++b)g(e[d+b]),g(this.separator);if(l>0){g(e[d+l-1]);for(let b=0;b<u;++b)g(this.separator),g(this.rightPad)}else{for(let b=0;b<u-1;++b)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,r=t.length;if(r>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let c=1;c<r;++c){let u=t[c]>=i;if(u=u&&t[c]<=n,!u)throw new Error(`Invalid split value ${t[c]}, must be in [${i}, ${n}]`);i=t[c]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let s=r-1,a=w.getArrayFromDType("int32",r);if(n===0||r===0){let i=new Array(n);for(let c=0;c<=s;++c)a[c]=0;return[i,a]}a[0]=0;for(let i=1;i<=s;++i){let c=t[i]-t[i-1],u=0;this.nGramWidths.forEach(l=>{u+=this.getNumNGrams(c,l)}),this.preserveShort&&c>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[s]);for(let i=0;i<s;++i){let c=t[i],u=a[i];if(this.nGramWidths.forEach(l=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,l);this.createNGrams(e,c,o,u,p,l),u+=p}),this.preserveShort&&u===a[i]){let l=t[i+1]-t[i];if(l===0)continue;let d=l+2*this.padWidth,p=1;this.createNGrams(e,c,o,u,p,d)}}return[o,a]}};function CT(e,t,n,r,s,a,o,i){return new L6(n,r,s,a,o,i).compute(e,t)}function B6(e,t,n,r){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)r.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&r.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&r.push(e);return}let s=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(s,a);(!n||o.length!==0)&&r.push(o),s=a+1}}function TT(e,t,n){let r=e.length,s=[],a=0,o=0,i=new Array(r);for(let p=0;p<r;++p){let h=s.length;B6(e[p],t,n,s);let f=s.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let c=w.getArrayFromDType("int32",a*2),u=new Array(a),l=[r,o],d=0;for(let p=0;p<r;++p)for(let h=0;h<i[p];++h)c[d*2]=p,c[d*2+1]=h,u[d]=s[d],++d;return[c,u,l]}function NT(e,t){let n=w.getArrayFromDType("int32",e.length);for(let r=0;r<e.length;++r)n[r]=w.fingerPrint64(e[r]).modulo(t).getLowBitsUnsigned();return n}var _T=Mt((e,t)=>e-t),z6=Wx((e,t,n,r)=>({real:e-n,imag:t-r})),Kx=Jt(To,_T,z6),W6={kernelName:To,backendName:"cpu",kernelFunc:Kx};function ET(e,t){let n=new Array(e.rank);for(let s=0;s<n.length;s++)n[s]=e.shape[s]*t[s];let r=Be(n,e.dtype);for(let s=0;s<r.values.length;++s){let a=r.indexToLoc(s),o=new Array(e.rank);for(let c=0;c<o.length;c++)o[c]=a[c]%e.shape[c];let i=e.locToIndex(o);r.values[s]=e.values[i]}return r}var yd=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function AT(e,t,n=0,r=e.length-1){for(;r>n;){if(r-n>600){let i=r-n+1,c=t-n+1,u=Math.log(i),l=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*l*(i-l)/i)*Math.sign(c-i/2),p=Math.max(n,Math.floor(t-c*l/i+d)),h=Math.min(r,Math.floor(t+(i-c)*l/i+d));AT(e,t,p,h)}let s=e[t],a=n,o=r;for(w.swap(e,n,t),yd(e[r],s)>0&&w.swap(e,n,r);a<o;){for(w.swap(e,a,o),a++,o--;yd(e[a],s)<0;)a=a+1;for(;yd(e[o],s)>0;)o=o-1}yd(e[n],s)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,r)),o<=t&&(n=o+1),t<=o&&(r=o-1)}}function $T(e,t,n,r,s){let a=t[t.length-1],[o,i]=[e.length/a,a],c=w.getTypedArrayFromDType(n,o*r),u=w.getTypedArrayFromDType("int32",o*r);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((y,v)=>f[v]={value:y,index:v}),r<f.length&&(AT(f,r),f=f.slice(0,r)),s&&f.sort(yd);let m=d*r,g=c.subarray(m,m+r),b=u.subarray(m,m+r);for(let y=0;y<r;y++)g[y]=f[y].value,b[y]=f[y].index}let l=t.slice();return l[l.length-1]=r,[Be(l,n,c),Be(l,"int32",u)]}function FT(e,t,n,r){let s=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<s;f++)a[0]*=n[f];a[1]=n[s];for(let f=s+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[s]),c=new Bt(a,r,e),u=[],l=a[0]===1&&a[2]===1;for(let f=0;f<n[s];f++){let m;if(l)m=e[f].toString();else{let g=[];for(let b=0;b<a[0];b++)for(let y=0;y<a[2];y++)g.push(c.get(b,f,y));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new Bt(d,r);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let b=0;b<a[2];b++)p.set(c.get(g,f,b),g,m,b)});let h=n.slice();return h[s]=d[1],{outputValues:p.values,outputShape:h,indices:i}}var V6="3.9.0";vh("cpu",()=>new Df,1);var DT=at(ja,e=>e>=0?e:Math.exp(e)-1),U6={kernelName:ja,backendName:"cpu",kernelFunc:DT};function RT(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r;we([s],"leakyRelu");let o=w.sizeFromShape(s.shape),i=n.data.get(s.dataId).values,c=w.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)c[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(s.shape,"float32",c)}var G6={kernelName:Qa,backendName:"cpu",kernelFunc:RT},H6=Mt((e,t)=>e<0?t*e:e);function PT(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t;we([r,s],"prelu");let a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,[i,c]=H6(r.shape,s.shape,a,o,r.dtype);return n.makeTensorInfo(c,r.dtype,i)}var j6={kernelName:ho,backendName:"cpu",kernelFunc:PT},OT=at(fo,e=>Math.max(0,e)),q6={kernelName:fo,backendName:"cpu",kernelFunc:OT},MT=at(go,e=>Math.min(Math.max(0,e),6)),K6={kernelName:go,backendName:"cpu",kernelFunc:MT};function Xx(e,t,n,r,s){if(n==="linear")return is({inputs:{x:t},backend:e});if(n==="relu")return OT({inputs:{x:t},backend:e});if(n==="elu")return DT({inputs:{x:t},backend:e});if(n==="relu6")return MT({inputs:{x:t},backend:e});if(n==="prelu")return PT({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return RT({inputs:{x:t},backend:e,attrs:{alpha:s}});if(n==="sigmoid")return xT({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function bt(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=w.sizeFromShape(s.shape),i=w.inferFromImplicitShape(a,o),c=w.sizeFromShape(i);w.assert(o===c,()=>`The new shape (${i}) has ${c} elements and the old shape (${s.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(s.dataId);let u=n.data.get(s.dataId);if(u.complexTensorInfos!=null){let l=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;l.shape=i,d.shape=i}return{dataId:s.dataId,shape:i,dtype:s.dtype}}var X6={kernelName:Nc,backendName:"cpu",kernelFunc:bt};function LT(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;we([s,a],"matMul");let c=s.shape.length,u=a.shape.length,l=o?s.shape[c-2]:s.shape[c-1],d=i?a.shape[u-1]:a.shape[u-2],p=o?s.shape[c-1]:s.shape[c-2],h=i?a.shape[u-2]:a.shape[u-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),y=g===b||g===1||b===1;w.assert(c>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let x=(g>b?s.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(l===d,()=>`Error in matMul: inner shapes (${l}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let k=o?[g,l,p]:[g,p,l],C=i?[b,h,d]:[b,d,h],N=bt({inputs:{x:s},backend:n,attrs:{shape:k}}),F=bt({inputs:{x:a},backend:n,attrs:{shape:C}}),R=o?N.shape[1]:N.shape[2],O=o?N.shape[2]:N.shape[1],$=i?F.shape[1]:F.shape[2],P=Math.max(g,b),T=n.data.get(N.dataId).values,L=n.data.get(F.dataId).values,G=w.computeStrides(N.shape),j=w.computeStrides(F.shape),[q,K,ee]=o?[G[0],1,G[1]]:[G[0],G[1],1],[te,ne,re]=i?[1,j[1],j[0]]:[j[1],1,j[0]],J=O*$,oe=Be([P,O,$],N.dtype),ie=oe.values,ue=n.blockSize;for(let fe=0;fe<P;fe++)for(let Se=0;Se<O;Se+=ue)for(let Ce=0;Ce<$;Ce+=ue)for(let Ne=0;Ne<R;Ne+=ue){let Pe=Math.min(Se+ue,O),_e=Math.min(Ce+ue,$),ct=Math.min(Ne+ue,R);for(let tt=Se;tt<Pe;tt++)for(let nt=Ce;nt<_e;nt++){let Je=0;for(let ot=Ne;ot<ct;ot++){let ze=Math.min(fe,g-1)*q,En=Math.min(fe,b-1)*re,St=T[ze+tt*K+ot*ee],Bn=L[ot*te+nt*ne+En];Je+=St*Bn}ie[fe*J+(tt*$+nt)]+=Je}}return n.disposeIntermediateTensorInfo(N),n.disposeIntermediateTensorInfo(F),n.makeTensorInfo(x,oe.dtype,oe.values)}var Y6={kernelName:Oa,backendName:"cpu",kernelFunc:LT};function Z6(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:c,transposeB:u,activation:l,leakyreluAlpha:d}=r,p,h,f,m=[];p=LT({inputs:{a:s,b:a},attrs:{transposeA:c,transposeB:u},backend:n}),o&&(h=bd({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),l&&(f=Xx(n,p,l,i,d),m.push(p),p=f);for(let b of m)n.disposeIntermediateTensorInfo(b);return p}var J6={kernelName:Ao,backendName:"cpu",kernelFunc:Z6},Q6=at(Ui,e=>Math.acos(e)),e5={kernelName:Ui,backendName:"cpu",kernelFunc:Q6},t5=at(Gi,e=>Math.acosh(e)),n5={kernelName:Gi,backendName:"cpu",kernelFunc:t5};function r5(e){let{inputs:t,backend:n}=e,r=t;we(t,"addN");let s=r.map(i=>n.data.get(i.dataId).values),a=Be(r[0].shape,r[0].dtype),o=a.values;for(let i=0;i<r.length;i++){let c=s[i];for(let u=0;u<o.length;u++)o[u]+=c[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var s5={kernelName:Da,backendName:"cpu",kernelFunc:r5};function a5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;we(s,"all");let i=w.parseAxisParam(a,s.shape),c=i,u=_.getAxesPermutation(c,s.shape.length),l=s;u!=null&&(l=ur({inputs:{x:s},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,s.shape.length)),_.assertAxesAreInnerMostDims("all",c,l.shape.length);let[d,p]=_.computeOutAndReduceShapes(l.shape,c),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),l.dtype),m=n.data.get(l.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];v=v&&k}f[b]=v}u!=null&&n.disposeIntermediateTensorInfo(l);let g=n.makeTensorInfo(d,l.dtype,f);if(o){let b=_.expandShapeToKeepDim(d,i),y=bt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var o5={kernelName:Hi,backendName:"cpu",kernelFunc:a5};function i5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;we(s,"any");let i=w.parseAxisParam(a,s.shape),c=i,u=_.getAxesPermutation(c,s.shape.length),l=s;u!=null&&(l=ur({inputs:{x:s},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,s.shape.length)),_.assertAxesAreInnerMostDims("any",c,l.shape.length);let[d,p]=_.computeOutAndReduceShapes(l.shape,c),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),l.dtype),m=n.data.get(l.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];v=v||k}f[b]=v}u!=null&&n.disposeIntermediateTensorInfo(l);let g=n.makeTensorInfo(d,l.dtype,f);if(o){let b=_.expandShapeToKeepDim(d,i),y=bt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var c5={kernelName:ji,backendName:"cpu",kernelFunc:i5};function u5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r;we(s,"argMax");let o=w.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),c=s,u=[];i!=null&&(c=ur({inputs:{x:s},backend:n,attrs:{perm:i}}),u.push(c),o=_.getInnerMostAxes(o.length,c.shape.length)),o=[o[0]],_.assertAxesAreInnerMostDims("argMax",o,c.shape.length);let[l,d]=_.computeOutAndReduceShapes(c.shape,o),p=w.sizeFromShape(l),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(c.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let k=m[b+x];k>y&&(y=k,v=x)}h[g]=v}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(l,"int32",h)}var l5={kernelName:Ra,backendName:"cpu",kernelFunc:u5};function d5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r;we(s,"argMin");let o=w.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),c=s,u=[];i!=null&&(c=ur({inputs:{x:s},backend:n,attrs:{perm:i}}),u.push(c),o=_.getInnerMostAxes(o.length,c.shape.length)),o=[o[0]],_.assertAxesAreInnerMostDims("argMin",o,c.shape.length);let[l,d]=_.computeOutAndReduceShapes(c.shape,o),p=w.sizeFromShape(l),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(c.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let k=m[b+x];k<y&&(y=k,v=x)}h[g]=v}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(l,"int32",h)}var p5={kernelName:pl,backendName:"cpu",kernelFunc:d5},h5=at(qi,e=>Math.asin(e)),f5={kernelName:qi,backendName:"cpu",kernelFunc:h5},m5=at(Ki,e=>Math.asinh(e)),g5={kernelName:Ki,backendName:"cpu",kernelFunc:m5},b5=at(Xi,e=>Math.atan(e)),y5={kernelName:Xi,backendName:"cpu",kernelFunc:b5},v5=Mt((e,t)=>Math.atan2(e,t)),x5=Jt(Zi,v5),w5={kernelName:Zi,backendName:"cpu",kernelFunc:x5},k5=at(Yi,e=>Math.atanh(e)),I5={kernelName:Yi,backendName:"cpu",kernelFunc:k5};function Yx(e,t,n,r,s,a){let o=s.strideHeight,i=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,l=s.effectiveFilterHeight,d=s.effectiveFilterWidth,p=s.padInfo.top,h=s.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Be(s.outShape,n),g=m.values,b=s.outShape[1]*s.outShape[2]*s.outShape[3],y=s.outShape[2]*s.outShape[3],v=s.outShape[3];for(let x=0;x<s.batchSize;++x){let k=x*b,C=x*r[0];for(let N=0;N<s.inChannels;++N)for(let F=0;F<s.outHeight;++F){let R=F*o-p,O=Math.max(0,R),$=Math.min(s.inHeight,l+R),P=k+F*y;for(let T=0;T<s.outWidth;++T){let L=T*i-h,G=Math.max(0,L),j=Math.min(s.inWidth,d+L),q=f,K=0,ee=0;for(let ne=O;ne<$;ne+=c){let re=C+ne*r[1];for(let J=G;J<j;J+=u){let oe=re+J*r[2],ie=e[oe+N];a==="max"&&ie>q?q=ie:a==="avg"&&(K+=ie,ee++)}if(isNaN(q))break}let te=P+T*v+N;g[te]=a==="avg"?K/ee:q}}}return m}function BT(e,t,n,r,s=!1,a=!1){let o=Be(r.outShape,"int32"),i=r.strideHeight,c=r.strideWidth,u=r.dilationHeight,l=r.dilationWidth,d=r.effectiveFilterHeight,p=r.effectiveFilterWidth,h=r.padInfo.top,f=r.padInfo.left,m=Be(t,n,e);for(let g=0;g<r.batchSize;++g)for(let b=0;b<r.inChannels;++b)for(let y=0;y<r.outHeight;++y){let v=y*i-h,x=v;for(;x<0;)x+=u;let k=Math.min(r.inHeight,d+v);for(let C=0;C<r.outWidth;++C){let N=C*c-f,F=N;for(;F<0;)F+=l;let R=Math.min(r.inWidth,p+N),O=Number.NEGATIVE_INFINITY,$=-1;for(let P=x;P<k;P+=u){let T=P-v;for(let L=F;L<R;L+=l){let G=L-N,j=m.get(g,P,L,b);j>O&&(O=j,s?$=a?((g*r.inHeight+P)*r.inWidth+L)*r.inChannels+b:(P*r.inWidth+L)*r.inChannels+b:$=T*p+G)}}o.set($,g,y,C,b)}}return o}function zT(e,t,n,r,s,a){let o=s.strideDepth,i=s.strideHeight,c=s.strideWidth,u=s.dilationDepth,l=s.dilationHeight,d=s.dilationWidth,p=s.effectiveFilterDepth,h=s.effectiveFilterHeight,f=s.effectiveFilterWidth,m=s.padInfo.front,g=s.padInfo.top,b=s.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,v=Be(s.outShape,n),x=v.values,k=s.outShape[1]*s.outShape[2]*s.outShape[3]*s.outShape[4],C=s.outShape[2]*s.outShape[3]*s.outShape[4],N=s.outShape[3]*s.outShape[4],F=s.outShape[4];for(let R=0;R<s.batchSize;++R){let O=R*k,$=R*r[0];for(let P=0;P<s.inChannels;++P)for(let T=0;T<s.outDepth;++T){let L=T*o-m,G=L;for(;G<0;)G+=u;let j=Math.min(s.inDepth,p+L),q=O+T*C;for(let K=0;K<s.outHeight;++K){let ee=K*i-g,te=ee;for(;te<0;)te+=l;let ne=Math.min(s.inHeight,h+ee),re=q+K*N;for(let J=0;J<s.outWidth;++J){let oe=J*c-b,ie=oe;for(;ie<0;)ie+=d;let ue=Math.min(s.inWidth,f+oe),fe=re+J*F,Se=y,Ce=0,Ne=0;for(let _e=G;_e<j;_e+=u){let ct=$+_e*r[1];for(let tt=te;tt<ne;tt+=l){let nt=ct+tt*r[2];for(let Je=ie;Je<ue;Je+=d){let ot=nt+Je*r[3],ze=e[ot+P];if(a==="max"&&ze>Se?Se=ze:a==="avg"&&(Ce+=ze,Ne++),isNaN(Se))break}if(isNaN(Se))break}if(isNaN(Se))break}let Pe=fe+P;x[Pe]=a==="avg"?Ce/Ne:Se}}}}return v}function S5(e,t){let n=Be(t.outShape,"int32"),r=t.strideDepth,s=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,c=t.dilationWidth,u=t.effectiveFilterDepth,l=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*r-p,v=y;for(;v<0;)v+=o;let x=Math.min(t.inDepth,u+y);for(let k=0;k<t.outHeight;++k){let C=k*s-h,N=C;for(;N<0;)N+=i;let F=Math.min(t.inHeight,l+C);for(let R=0;R<t.outWidth;++R){let O=R*a-f,$=O;for(;$<0;)$+=c;let P=Math.min(t.inWidth,d+O),T=Number.NEGATIVE_INFINITY,L=-1;for(let G=v;G<x;G+=o){let j=G-y;for(let q=N;q<F;q+=i){let K=q-C;for(let ee=$;ee<P;ee+=c){let te=ee-O,ne=e.get(m,G,q,ee,g);ne>=T&&(T=ne,L=j*l*d+K*l+te)}}}n.set(L,m,b,k,R,g)}}}return n}function C5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;we(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=r,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let l=_.computePool2DInfo(s.shape,a,o,u,i,c),d;if(l.filterWidth===1&&l.filterHeight===1&&w.arraysEqual(l.inShape,l.outShape))d=is({inputs:{x:s},backend:n});else{let p=n.data.get(s.dataId).values,h=w.computeStrides(s.shape),f=Yx(p,s.shape,s.dtype,h,l,"avg");d=n.makeTensorInfo(l.outShape,s.dtype,f.values)}return d}var T5={kernelName:Pa,backendName:"cpu",kernelFunc:C5};function N5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c,dataFormat:u}=r;we(s,"avgPool3d");let l=_.computePool3DInfo(s.shape,a,o,1,i,c,u),d=n.data.get(s.dataId).values,p=zT(d,s.shape,s.dtype,w.computeStrides(s.shape),l,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var _5={kernelName:hl,backendName:"cpu",kernelFunc:N5};function E5(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:c,dimRoundingMode:u}=r;we([s,a],"avgPool3DGrad");let l=_.computePool3DInfo(a.shape,o,i,1,c,u),d=l.strideDepth,p=l.strideHeight,h=l.strideWidth,f=l.filterDepth,m=l.filterHeight,g=l.filterWidth,b=l.dilationDepth,y=l.dilationHeight,v=l.dilationWidth,x=l.effectiveFilterDepth,k=l.effectiveFilterHeight,C=l.effectiveFilterWidth,N=x-1-l.padInfo.front,F=C-1-l.padInfo.left,R=k-1-l.padInfo.top,O=Be(a.shape,"float32"),$=1/(f*m*g),P=n.bufferSync(s);for(let T=0;T<l.batchSize;++T)for(let L=0;L<l.inChannels;++L)for(let G=0;G<l.inDepth;++G)for(let j=0;j<l.inHeight;++j)for(let q=0;q<l.inWidth;++q){let K=G-N,ee=j-R,te=q-F,ne=0;for(let re=0;re<x;re+=b){let J=(K+re)/d;if(!(J<0||J>=l.outDepth||Math.floor(J)!==J))for(let oe=0;oe<k;oe+=y){let ie=(ee+oe)/p;if(!(ie<0||ie>=l.outHeight||Math.floor(ie)!==ie))for(let ue=0;ue<C;ue+=v){let fe=(te+ue)/h;if(fe<0||fe>=l.outWidth||Math.floor(fe)!==fe)continue;ne+=P.get(T,J,ie,fe,L)}}}O.set(ne*$,T,G,j,q,L)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var A5={kernelName:Cp,backendName:"cpu",kernelFunc:E5};function $5(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;we([s,a],"avgPoolGrad");let{filterSize:i,strides:c,pad:u}=r,l=_.computePool2DInfo(o.shape,i,c,1,u),d=l.strideHeight,p=l.strideWidth,h=l.filterHeight,f=l.filterWidth,m=l.dilationHeight,g=l.dilationWidth,b=l.effectiveFilterHeight,y=l.effectiveFilterWidth,v=y-1-l.padInfo.left,x=b-1-l.padInfo.top,k=Be(o.shape,"float32"),C=1/(h*f),N=n.data.get(s.dataId).values,F=Be(s.shape,"float32",N);for(let R=0;R<l.batchSize;++R)for(let O=0;O<l.inChannels;++O)for(let $=0;$<l.inHeight;++$)for(let P=0;P<l.inWidth;++P){let T=$-x,L=P-v,G=0;for(let j=0;j<b;j+=m){let q=(T+j)/d;if(!(q<0||q>=l.outHeight||Math.floor(q)!==q))for(let K=0;K<y;K+=g){let ee=(L+K)/p;if(ee<0||ee>=l.outWidth||Math.floor(ee)!==ee)continue;G+=F.get(R,q,ee,O)}}k.set(G*C,R,$,P,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var F5={kernelName:Sp,backendName:"cpu",kernelFunc:$5};function D5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,scale:a,offset:o,mean:i,variance:c}=t;w.assert(i.shape.length===c.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),we([s,i,c,a,o],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let l=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(c.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(l.length),g=f.length,b=h.length,y=p.length,v=d.length,x=0,k=0,C=0,N=0;for(let F=0;F<l.length;++F)m[F]=f[x++]+(l[F]-d[k++])*h[C++]/Math.sqrt(p[N++]+u),x>=g&&(x=0),k>=v&&(k=0),C>=b&&(C=0),N>=y&&(N=0);return n.makeTensorInfo(s.shape,s.dtype,m)}var R5={kernelName:Ya,backendName:"cpu",kernelFunc:D5};function P5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;we([s],"batchToSpaceND");let i=a.reduce((b,y)=>b*y),c=_.getReshaped(s.shape,a,i),u=_.getPermuted(c.length,a.length),l=_.getReshapedPermuted(s.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(l,o,a.length),h=bt({inputs:{x:s},backend:n,attrs:{shape:c}}),f=ur({inputs:{x:h},backend:n,attrs:{perm:u}}),m=bt({inputs:{x:f},backend:n,attrs:{shape:l}}),g=ri({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var O5={kernelName:Ji,backendName:"cpu",kernelFunc:P5};function M5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.data.get(s.dataId).values,c=n.data.get(a.dataId).values,u=Vx(i,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var L5={kernelName:Tp,backendName:"cpu",kernelFunc:M5};function B5(e){let{inputs:t,backend:n}=e,{s0:r,s1:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=_.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var z5={kernelName:bb,backendName:"cpu",kernelFunc:B5},W5=at(Xs,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),V5={kernelName:Xs,backendName:"cpu",kernelFunc:W5},U5=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(w.sizeFromShape(t.shape)),s=n.data.get(t.dataId),a=s.complexTensorInfos.real,o=s.complexTensorInfos.imag,i=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let l=i[u],d=c[u];r[u]=Math.hypot(l,d)}return n.makeOutput(r,t.shape,"float32")},G5={kernelName:fl,backendName:"cpu",kernelFunc:U5};function gu(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.imag,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}var H5={kernelName:Wp,backendName:"cpu",kernelFunc:gu};function bu(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r,a=w.parseAxisParam(s,t[0].shape)[0],o=_.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>w.sizeFromShape(m.shape)>0);if(i.length===1)return is({inputs:{x:i[0]},backend:n});let c=i.map(m=>m.shape);if(_.assertParamsConsistent(c,a),i[0].dtype==="complex64"){let m=i.map(x=>ni({inputs:{input:x},backend:n})),g=i.map(x=>gu({inputs:{input:x},backend:n})),b=bu({inputs:m,backend:n,attrs:{axis:a}}),y=bu({inputs:g,backend:n,attrs:{axis:a}}),v=Yn({inputs:{real:b,imag:y},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),v}let u=i.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return bt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),l=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=_.computeOutShape(u.map(m=>m.shape),1);let d=u[0].shape[0]===1,p=Ux(l,o,t[0].dtype,d),h=_.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var j5={kernelName:Qi,backendName:"cpu",kernelFunc:bu};function WT(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:c,dilations:u,dimRoundingMode:l}=r;we([s,a],"conv2d");let d=_.convertConv2DDataFormat(c),p=_.computeConv2DInfo(s.shape,a.shape,o,u,i,l,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,b=p.padInfo.left,y=p.padInfo.top,v=p.dataFormat==="channelsLast",x=new Bt(p.outShape,s.dtype),k=w.computeStrides(s.shape),C=w.computeStrides(a.shape),N=k[0],F=v?k[1]:k[2],R=v?k[2]:1,O=v?1:k[1],$=x.strides[0],P=v?x.strides[1]:x.strides[2],T=v?x.strides[2]:1,L=v?1:x.strides[1],G=n.data.get(s.dataId).values,j=n.data.get(a.dataId).values,q=x.values;for(let K=0;K<p.batchSize;++K){let ee=K*N,te=K*$;for(let ne=0;ne<p.outHeight;++ne){let re=te+ne*P,J=ne*p.strideHeight-y;for(let oe=0;oe<h;++oe){let ie=J+oe*m;if(ie<0||ie>=p.inHeight)continue;let ue=oe*C[0],fe=ee+ie*F;for(let Se=0;Se<p.outWidth;++Se){let Ce=re+Se*T,Ne=Se*p.strideWidth-b;for(let Pe=0;Pe<f;++Pe){let _e=Ne+Pe*g;if(_e<0||_e>=p.inWidth)continue;let ct=ue+Pe*C[1],tt=fe+_e*R,nt=ct;for(let Je=0;Je<p.inChannels;++Je){let ot=G[tt+Je*O];for(let ze=0;ze<p.outChannels;++ze)q[Ce+ze*L]+=ot*j[nt+ze];nt+=p.outChannels}}}}}}return n.makeTensorInfo(x.shape,x.dtype,q)}var q5={kernelName:Ba,backendName:"cpu",kernelFunc:WT};function K5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,dataFormat:c,dimRoundingMode:u,filterShape:l}=r;we([s,a],"conv2dBackpropFilter");let d=_.convertConv2DDataFormat(c),p=_.computeConv2DInfo(s.shape,l,o,1,i,u,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,b=p.dataFormat==="channelsLast",y=new Bt(p.filterShape,"float32"),v=p.padInfo.left,x=p.padInfo.top,k=n.data.get(s.dataId).values,C=n.data.get(a.dataId).values,N=new Bt(s.shape,s.dtype,k),F=new Bt(a.shape,a.dtype,C);for(let R=0;R<m;++R){let O=Math.max(0,Math.ceil((x-R)/h)),$=Math.min(p.outHeight,(p.inHeight+x-R)/h);for(let P=0;P<g;++P){let T=Math.max(0,Math.ceil((v-P)/f)),L=Math.min(p.outWidth,(p.inWidth+v-P)/f);for(let G=0;G<p.inChannels;++G)for(let j=0;j<p.outChannels;++j){let q=0;for(let K=0;K<p.batchSize;++K)for(let ee=O;ee<$;++ee){let te=R+ee*h-x;for(let ne=T;ne<L;++ne){let re=P+ne*f-v;b?q+=N.get(K,te,re,G)*F.get(K,ee,ne,j):q+=N.get(K,G,te,re)*F.get(K,j,ee,ne)}}y.set(q,R,P,G,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var X5={kernelName:_p,backendName:"cpu",kernelFunc:K5};function Y5(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{inputShape:o,strides:i,pad:c,dataFormat:u,dimRoundingMode:l}=r;we([s,a],"conv2dBackpropInput");let d=w.computeStrides(a.shape),p=w.computeStrides(s.shape),h=_.convertConv2DDataFormat(u),f=_.computeConv2DInfo(o,a.shape,i,1,c,l,!1,h),m=new Bt(f.inShape,"float32"),g=m.values,b=n.data.get(s.dataId).values,y=n.data.get(a.dataId).values,[v,x,k]=d,{batchSize:C,filterHeight:N,filterWidth:F,inChannels:R,inHeight:O,inWidth:$,outChannels:P,outHeight:T,outWidth:L,strideHeight:G,strideWidth:j}=f;h=f.dataFormat;let q=N-1-f.padInfo.top,K=F-1-f.padInfo.left,ee=h==="channelsLast",te=m.strides[0],ne=ee?m.strides[1]:m.strides[2],re=ee?m.strides[2]:1,J=ee?1:m.strides[1],oe=p[0],ie=ee?p[1]:p[2],ue=ee?p[2]:1,fe=ee?1:p[1];for(let Se=0;Se<C;++Se)for(let Ce=0;Ce<R;++Ce)for(let Ne=0;Ne<O;++Ne){let Pe=Ne-q,_e=Math.max(0,Math.ceil(Pe/G)),ct=Math.min(T,(N+Pe)/G);for(let tt=0;tt<$;++tt){let nt=tt-K,Je=Math.max(0,Math.ceil(nt/j)),ot=Math.min(L,(F+nt)/j),ze=0;for(let St=_e;St<ct;++St){let Bn=St*G-Pe;for(let en=Je;en<ot;++en){let mr=en*j-nt,dn=oe*Se+ie*St+ue*en,Qn=v*(N-1-Bn)+x*(F-1-mr)+k*Ce;for(let er=0;er<P;++er){let tn=b[dn+fe*er],tr=y[Qn+er];ze+=tn*tr}}}let En=te*Se+ne*Ne+re*tt+J*Ce;g[En]=ze}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Z5={kernelName:za,backendName:"cpu",kernelFunc:Y5};function J5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c}=r;we([s,a],"conv3d");let u=_.computeConv3DInfo(s.shape,a.shape,o,c,i),{filterDepth:l,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,b=g.front,y=g.left,v=g.top,x=new Bt(u.outShape,s.dtype),k=n.data.get(s.dataId).values,C=n.data.get(a.dataId).values,N=x.values,F=w.computeStrides(s.shape),R=w.computeStrides(a.shape);for(let O=0;O<u.batchSize;++O){let $=O*F[0],P=O*x.strides[0];for(let T=0;T<u.outDepth;++T){let L=P+T*x.strides[1],G=T*u.strideDepth-b;for(let j=0;j<l;++j){let q=G+j*h;if(q<0||q>=u.inDepth)continue;let K=j*R[0],ee=$+q*F[1];for(let te=0;te<u.outHeight;++te){let ne=L+te*x.strides[2],re=te*u.strideHeight-v;for(let J=0;J<d;++J){let oe=re+J*f;if(oe<0||oe>=u.inHeight)continue;let ie=K+J*R[1],ue=ee+oe*F[2];for(let fe=0;fe<u.outWidth;++fe){let Se=ne+fe*u.outChannels,Ce=fe*u.strideWidth-y;for(let Ne=0;Ne<p;++Ne){let Pe=Ce+Ne*m;if(Pe<0||Pe>=u.inWidth)continue;let _e=ie+Ne*R[2],ct=ue+Pe*u.inChannels,tt=_e;for(let nt=0;nt<u.inChannels;++nt){let Je=k[ct+nt];for(let ot=0;ot<u.outChannels;++ot)N[Se+ot]+=Je*C[tt+ot];tt+=u.outChannels}}}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var Q5={kernelName:ml,backendName:"cpu",kernelFunc:J5};function ej(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,filterShape:c}=r;we([s,a],"conv3dBackpropFilterV2");let u=w.computeStrides(s.shape),l=w.computeStrides(a.shape),d=_.computeConv3DInfo(s.shape,c,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,b=d.filterWidth,y=new Bt(d.filterShape,"float32"),v=y.values,[x,k,C,N]=y.strides,F=n.data.get(a.dataId).values,[R,O,$,P]=l,T=n.data.get(s.dataId).values,[L,G,j,q]=u,K=d.padInfo.front,ee=d.padInfo.left,te=d.padInfo.top;for(let ne=0;ne<m;++ne){let re=Math.max(0,Math.ceil((K-ne)/p)),J=Math.min(d.outDepth,(d.inDepth+K-ne)/p),oe=ne*x;for(let ie=0;ie<g;++ie){let ue=Math.max(0,Math.ceil((te-ie)/h)),fe=Math.min(d.outHeight,(d.inHeight+te-ie)/h),Se=ie*k+oe;for(let Ce=0;Ce<b;++Ce){let Ne=Math.max(0,Math.ceil((ee-Ce)/f)),Pe=Math.min(d.outWidth,(d.inWidth+ee-Ce)/f),_e=Ce*C+Se;for(let ct=0;ct<d.inChannels;++ct){let tt=ct*N+_e;for(let nt=0;nt<d.outChannels;++nt){let Je=0;for(let ot=0;ot<d.batchSize;++ot){let ze=ot*L,En=ot*R;for(let St=re;St<J;++St){let en=(ne+St*p-K)*G+ze,mr=St*O+En;for(let dn=ue;dn<fe;++dn){let er=(ie+dn*h-te)*j+en,tn=dn*$+mr;for(let tr=Ne;tr<Pe;++tr){let zn=(Ce+tr*f-ee)*q+er,qr=tr*P+tn;Je+=T[zn+ct]*F[qr+nt]}}}}v[tt+nt]=Je}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var tj={kernelName:Ep,backendName:"cpu",kernelFunc:ej};function nj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{pad:o,strides:i,inputShape:c}=r;we([s],"conv3dBackpropInputV2");let u=w.computeStrides(s.shape),l=w.computeStrides(a.shape),d=_.computeConv3DInfo(c,a.shape,i,1,o),p=new Bt(d.inShape,"float32"),h=p.values,[f,m,g,b]=p.strides,y=n.data.get(s.dataId).values,[v,x,k,C]=u,N=n.data.get(a.dataId).values,[F,R,O,$]=l,{batchSize:P,filterDepth:T,filterHeight:L,filterWidth:G,inChannels:j,inDepth:q,inHeight:K,inWidth:ee,outChannels:te,outDepth:ne,outHeight:re,outWidth:J,strideDepth:oe,strideHeight:ie,strideWidth:ue}=d,fe=T-1-d.padInfo.front,Se=L-1-d.padInfo.top,Ce=G-1-d.padInfo.left;for(let Ne=0;Ne<P;++Ne)for(let Pe=0;Pe<j;++Pe)for(let _e=0;_e<q;++_e){let ct=_e-fe,tt=Math.max(0,Math.ceil(ct/oe)),nt=Math.min(ne,(T+ct)/oe);for(let Je=0;Je<K;++Je){let ot=Je-Se,ze=Math.max(0,Math.ceil(ot/ie)),En=Math.min(re,(L+ot)/ie);for(let St=0;St<ee;++St){let Bn=St-Ce,en=Math.max(0,Math.ceil(Bn/ue)),mr=Math.min(J,(G+Bn)/ue),dn=0;for(let Qn=tt;Qn<nt;++Qn){let er=Qn*oe-ct;for(let tn=ze;tn<En;++tn){let tr=tn*ie-ot;for(let nr=en;nr<mr;++nr){let zn=nr*ue-Bn,qr=v*Ne+x*Qn+k*tn+C*nr,hs=F*(T-1-er)+R*(L-1-tr)+O*(G-1-zn)+$*Pe;for(let zs=0;zs<te;++zs){let Ni=y[qr+zs],Kr=N[hs+zs];dn+=Ni*Kr}}}}h[f*Ne+m*_e+g*Je+b*St+Pe]=dn}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var rj={kernelName:Ap,backendName:"cpu",kernelFunc:nj},sj=at(Wa,e=>Math.cos(e)),aj={kernelName:Wa,backendName:"cpu",kernelFunc:sj},oj=at(Va,e=>Math.cosh(e)),ij={kernelName:Va,backendName:"cpu",kernelFunc:oj};function cj(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:c,extrapolationValue:u}=r,[l,d,p,h]=s.shape,f=a.shape[0],[m,g]=i,b=Be([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,v=n.data.get(o.dataId).values,x=n.data.get(s.dataId).values,k=w.computeStrides(s.shape),C=w.computeStrides(b.shape);for(let N=0;N<f;N++){let F=N*4,R=y[F],O=y[F+1],$=y[F+2],P=y[F+3],T=v[N];if(T>=l)continue;let L=m>1?($-R)*(d-1)/(m-1):0,G=g>1?(P-O)*(p-1)/(g-1):0;for(let j=0;j<m;j++){let q=m>1?R*(d-1)+j*L:.5*(R+$)*(d-1);if(q<0||q>d-1){for(let K=0;K<g;K++)for(let ee=0;ee<h;ee++){let te=ee+K*C[2]+j*C[1]+N*C[0];b.values[te]=u}continue}if(c==="bilinear"){let K=Math.floor(q),ee=Math.ceil(q),te=q-K;for(let ne=0;ne<g;ne++){let re=g>1?O*(p-1)+ne*G:.5*(O+P)*(p-1);if(re<0||re>p-1){for(let ue=0;ue<h;ue++){let fe=ue+ne*C[2]+j*C[1]+N*C[0];b.values[fe]=u}continue}let J=Math.floor(re),oe=Math.ceil(re),ie=re-J;for(let ue=0;ue<h;ue++){let fe=ue+J*k[2]+K*k[1]+T*k[0],Se=x[fe];fe=ue+oe*k[2]+K*k[1]+T*k[0];let Ce=x[fe];fe=ue+J*k[2]+ee*k[1]+T*k[0];let Ne=x[fe];fe=ue+oe*k[2]+ee*k[1]+T*k[0];let Pe=x[fe],_e=Se+(Ce-Se)*ie,ct=Ne+(Pe-Ne)*ie;fe=ue+ne*C[2]+j*C[1]+N*C[0],b.values[fe]=_e+(ct-_e)*te}}}else for(let K=0;K<g;++K){let ee=g>1?O*(p-1)+K*G:.5*(O+P)*(p-1);if(ee<0||ee>p-1){for(let re=0;re<h;re++){let J=re+K*C[2]+j*C[1]+N*C[0];b.values[J]=u}continue}let te=Math.round(ee),ne=Math.round(q);for(let re=0;re<h;re++){let J=re+te*k[2]+ne*k[1]+T*k[0],oe=re+K*C[2]+j*C[1]+N*C[0];b.values[oe]=x[J]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var uj={kernelName:ec,backendName:"cpu",kernelFunc:cj};function lj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r;we(s,"cumsum");let c=_.getAxesPermutation([a],s.shape.length),u=s;c!=null&&(u=ur({inputs:{x:s},backend:n,attrs:{perm:c}}));let l=_.getInnerMostAxes(1,s.shape.length)[0];if(l!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${l}`);let d=yr(u.dtype,"int32"),p=w.makeZerosTypedArray(w.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(b,y)=>b+f-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=f)for(let y=0;y<f;y++){let v=m(b,y);if(y===0)p[v]=o?0:h[v];else{let x=m(b,y-1);p[v]=o?h[x]+p[x]:h[v]+p[x]}}let g=n.makeTensorInfo(u.shape,d,p);if(c!=null){let b=_.getUndoAxesPermutation(c),y=ur({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var dj={kernelName:Ua,backendName:"cpu",kernelFunc:lj};function pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o,binaryOutput:i}=r;if(s.shape.length===1){let c=n.data.get(s.dataId).values,u=n.data.get(a.dataId).values,l=Vx(c,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,l)}else if(s.shape.length===2){let c=n.bufferSync(s),u=n.bufferSync(a),l=ZC(c,u,o,i);return n.makeTensorInfo(l.shape,a.dtype,l.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`)}var hj={kernelName:$p,backendName:"cpu",kernelFunc:pj};function fj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockSize:a,dataFormat:o}=r;w.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=s.shape[0],c=s.shape[1],u=s.shape[2],l=s.shape[3],d=c*a,p=u*a,h=l/(a*a),f=n.data.get(s.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let b=0;b<i;++b)for(let y=0;y<d;++y){let v=Math.floor(y/a),x=y%a;for(let k=0;k<p;++k){let C=Math.floor(k/a),N=k%a,F=(x*a+N)*h;for(let R=0;R<h;++R){let $=R+F+l*(C+u*(v+c*b));m[g++]=f[$]}}}return n.makeTensorInfo([i,d,p,h],s.dtype,m)}var mj={kernelName:tc,backendName:"cpu",kernelFunc:fj};function VT(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c,dimRoundingMode:u}=r;we([s,a],"depthwiseConv2DNative");let l=w.computeStrides(s.shape),d=w.computeStrides(a.shape),p=c;p==null&&(p=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=_.computeConv2DInfo(s.shape,a.shape,o,p,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:b,padInfo:y}=h,v=y.left,x=y.top,k=h.outChannels/h.inChannels,C=new Bt(h.outShape,s.dtype),N=n.data.get(s.dataId).values,F=n.data.get(a.dataId).values,R=C.values;for(let O=0;O<h.batchSize;++O){let $=O*l[0],P=O*C.strides[0];for(let T=0;T<h.outHeight;++T){let L=P+T*C.strides[1],G=T*h.strideHeight-x;for(let j=0;j<f;++j){let q=G+j*g;if(q<0||q>=h.inHeight)continue;let K=j*d[0],ee=$+q*l[1];for(let te=0;te<h.outWidth;++te){let ne=L+te*C.strides[2],re=te*h.strideWidth-v;for(let J=0;J<m;++J){let oe=re+J*b;if(oe<0||oe>=h.inWidth)continue;let ie=K+J*d[1],ue=ee+oe*h.inChannels,fe=ne,Se=ie;for(let Ce=0;Ce<h.inChannels;++Ce){let Ne=N[ue+Ce];for(let Pe=0;Pe<k;++Pe)R[fe+Pe]+=Ne*F[Se+Pe];fe+=k,Se+=k}}}}}}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var gj={kernelName:Ga,backendName:"cpu",kernelFunc:VT};function bj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,dilations:i,pad:c,dimRoundingMode:u,filterShape:l}=r;we([s,a],"depthwiseConv2dNativeBackpropFilter");let d=_.computeConv2DInfo(s.shape,l,o,i,c,u,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new Bt(d.filterShape,"float32"),b=d.padInfo.left,y=d.padInfo.top,v=d.outChannels/d.inChannels,x=n.data.get(s.dataId).values,k=new Bt(s.shape,s.dtype,x),C=n.data.get(a.dataId).values,N=new Bt(a.shape,a.dtype,C);for(let F=0;F<f;++F){let R=Math.max(0,Math.ceil((y-F)/p)),O=Math.min(d.outHeight,(d.inHeight+y-F)/p);for(let $=0;$<m;++$){let P=Math.max(0,Math.ceil((b-$)/h)),T=Math.min(d.outWidth,(d.inWidth+b-$)/h);for(let L=0;L<d.outChannels;++L){let G=Math.trunc(L/v),j=L%v,q=0;for(let K=0;K<d.batchSize;++K)for(let ee=R;ee<O;++ee){let te=F+ee*p-y;for(let ne=P;ne<T;++ne){let re=$+ne*h-b;q+=k.get(K,te,re,G)*N.get(K,ee,ne,L)}}g.set(q,F,$,G,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var yj={kernelName:Fp,backendName:"cpu",kernelFunc:bj};function vj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{strides:o,dilations:i,pad:c,dimRoundingMode:u,inputShape:l}=r;we([s,a],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(s.shape),p=w.computeStrides(a.shape),h=_.computeConv2DInfo(l,a.shape,o,i,c,u,!0),f=new Bt(h.inShape,"float32"),m=f.values,[g,b,y]=f.strides,v=n.data.get(s.dataId).values,[x,k,C]=d,N=n.data.get(a.dataId).values,[F,R,O]=p,{batchSize:$,filterHeight:P,filterWidth:T,inChannels:L,inHeight:G,inWidth:j,outChannels:q,outHeight:K,outWidth:ee,strideHeight:te,strideWidth:ne}=h,re=P-1-h.padInfo.top,J=T-1-h.padInfo.left,oe=q/L;for(let ie=0;ie<$;++ie)for(let ue=0;ue<L;++ue)for(let fe=0;fe<G;++fe){let Se=fe-re,Ce=Math.max(0,Math.ceil(Se/te)),Ne=Math.min(K,(P+Se)/te);for(let Pe=0;Pe<j;++Pe){let _e=Pe-J,ct=Math.max(0,Math.ceil(_e/ne)),tt=Math.min(ee,(T+_e)/ne),nt=0;for(let Je=Ce;Je<Ne;++Je){let ot=Je*te-Se;for(let ze=ct;ze<tt;++ze){let En=ze*ne-_e,St=x*ie+k*Je+C*ze,Bn=F*(P-1-ot)+R*(T-1-En)+O*ue;for(let en=0;en<oe;++en){let mr=ue*oe+en,dn=v[St+mr],Qn=N[Bn+en];nt+=dn*Qn}}}m[g*ie+b*fe+y*Pe+ue]=nt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var xj={kernelName:Dp,backendName:"cpu",kernelFunc:vj};function wj(e){let{inputs:t,backend:n}=e,{x:r}=t,s=w.sizeFromShape(r.shape),a=n.data.get(r.dataId).values,o=Be([s,s],r.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*s+u]=a[u];let c=[...r.shape,...r.shape];return n.makeTensorInfo(c,o.dtype,o.values)}var kj={kernelName:Rp,backendName:"cpu",kernelFunc:wj},Ij={kernelName:gl,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s}=e,{strides:a,pad:o,dilations:i}=n,c=t,u=c.data.get(r.dataId).values,l=r.shape.length,d=c.data.get(s.dataId).values,p=s.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:b,outWidth:y,padInfo:v,strideHeight:x,strideWidth:k,filterHeight:C,filterWidth:N,dilationHeight:F,dilationWidth:R,outShape:O}=_.computeDilation2DInfo(r.shape,s.shape,a,o,"NHWC",i),$=w.sizeFromShape(O),P=O.length,T=w.getArrayFromDType(r.dtype,$);for(let G=0;G<h;++G)for(let j=0;j<b;++j){let q=j*x-v.top;for(let K=0;K<y;++K){let ee=K*k-v.left;for(let te=0;te<g;++te){let ne=Number.MIN_SAFE_INTEGER;for(let J=0;J<C;++J){let oe=q+J*F;if(oe>=0&&oe<f)for(let ie=0;ie<N;++ie){let ue=ee+ie*R;if(ue>=0&&ue<m){let fe=w.locToIndex([G,oe,ue,te],l,w.computeStrides(r.shape)),Se=w.locToIndex([J,ie,te],p,w.computeStrides(s.shape)),Ce=u[fe]+d[Se];Ce>ne&&(ne=Ce)}}}let re=w.locToIndex([G,j,K,te],P,w.computeStrides(O));T[re]=ne}}}return{dataId:c.write(w.toTypedArray(T,r.dtype),O,r.dtype),shape:O,dtype:r.dtype}}},Sj={kernelName:Op,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:c}=n,u=t,l=w.toNestedArray(r.shape,u.data.get(r.dataId).values),d=w.toNestedArray(s.shape,u.data.get(s.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:k,filterWidth:C,dilationHeight:N,dilationWidth:F,outShape:R}=_.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",c);w.assert(a.rank===R.length,()=>`Error in ${Op}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let O=w.toNestedArray(R,u.data.get(a.dataId).values),$=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let L=0;L<g;++L){let G=L*v-y.top;for(let j=0;j<b;++j){let q=j*x-y.left;for(let K=0;K<m;++K){let ee=Number.MIN_SAFE_INTEGER,te=0,ne=0;for(let re=0;re<k;++re){let J=G+re*N;if(J>=0&&J<h)for(let oe=0;oe<C;++oe){let ie=q+oe*F;if(ie>=0&&ie<f){let ue=l[T][J][ie][K]+d[re][oe][K];ue>ee&&(ee=ue,te=re,ne=oe)}}}$[te][ne][K]+=O[T][L][j][K]}}}return{dataId:u.write(w.toTypedArray($,r.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Cj={kernelName:Pp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:c}=n,u=t,l=w.toNestedArray(r.shape,u.data.get(r.dataId).values),d=w.toNestedArray(s.shape,u.data.get(s.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:k,filterWidth:C,dilationHeight:N,dilationWidth:F,outShape:R}=_.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",c);w.assert(a.rank===R.length,()=>`Error in ${Pp}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let O=w.toNestedArray(R,u.data.get(a.dataId).values),$=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let L=0;L<g;++L){let G=L*v-y.top;for(let j=0;j<b;++j){let q=j*x-y.left;for(let K=0;K<m;++K){let ee=Number.MIN_SAFE_INTEGER,te=G<0?0:G,ne=q<0?0:q;for(let re=0;re<k;++re){let J=G+re*N;if(J>=0&&J<h)for(let oe=0;oe<C;++oe){let ie=q+oe*F;if(ie>=0&&ie<f){let ue=l[T][J][ie][K]+d[re][oe][K];ue>ee&&(ee=ue,te=J,ne=ie)}}}$[T][te][ne][K]+=O[T][L][j][K]}}}return{dataId:u.write(w.toTypedArray($,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function vd(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;we(s,"sum");let i;s.dtype==="bool"?i=ga({inputs:{x:s},backend:n,attrs:{dtype:"int32"}}):i=is({inputs:{x:s},backend:n});let c=i.shape.length,u=w.parseAxisParam(a,i.shape),l=_.getAxesPermutation(u,c),d=u,p=i;l!=null&&(p=ur({inputs:{x:i},backend:n,attrs:{perm:l}}),d=_.getInnerMostAxes(d.length,c)),_.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=_.computeOutAndReduceShapes(p.shape,d),m=_.upcastType(p.dtype,"int32"),g=Rf(n,h,m),b=w.sizeFromShape(f),y=n.data.get(g.dataId).values,v=n.data.get(p.dataId).values;for(let x=0;x<y.length;++x){let k=x*b,C=0;for(let N=0;N<b;++N)C+=v[k+N];y[x]=C}if(o){let x=_.expandShapeToKeepDim(g.shape,u),k=g;g=bt({inputs:{x:g},backend:n,attrs:{shape:x}}),n.disposeIntermediateTensorInfo(k)}return n.disposeIntermediateTensorInfo(i),l!=null&&n.disposeIntermediateTensorInfo(p),g}var Tj={kernelName:Io,backendName:"cpu",kernelFunc:vd};function Nj(e){let{inputs:t,backend:n,attrs:r}=e,{equation:s}=r,a=t,{allDims:o,summedDims:i,idDims:c}=_.decodeEinsumEquation(s,a.length);_.checkEinsumDimSizes(o.length,c,a);let{path:u,steps:l}=_.getEinsumComputePath(i,c),d=l.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of l[m]){let{permutationIndices:b,expandDims:y}=_.getEinsumPermutation(h,c[g]),v;_.isIdentityPermutation(b)?v=a[g]:(v=ur({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=bt({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),p===null?p=v:(p=Pf({inputs:{a:v,b:p},backend:n}),f.push(p))}m<d-1&&(u[m]>=0&&(p=vd({inputs:{x:p},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var _j={kernelName:Mp,backendName:"cpu",kernelFunc:Nj};function Ej(e){let{inputs:t,backend:n}=e,{dy:r,y:s}=t;we([r,s],"eluGrad");let a=new Float32Array(w.sizeFromShape(s.shape)),o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values;for(let c=0;c<o.length;++c){let u=o[c];u>=1?a[c]=i[c]:a[c]=i[c]*(u+1)}return n.makeTensorInfo(s.shape,"float32",a)}var Aj={kernelName:Lp,backendName:"cpu",kernelFunc:Ej},$j=_.ERF_P,Fj=_.ERF_A1,Dj=_.ERF_A2,Rj=_.ERF_A3,Pj=_.ERF_A4,Oj=_.ERF_A5,Mj=at(nc,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+$j*n);return t*(1-((((Oj*r+Pj)*r+Rj)*r+Dj)*r+Fj)*r*Math.exp(-n*n))}),Lj={kernelName:nc,backendName:"cpu",kernelFunc:Mj};function Mf(e){let{inputs:t,backend:n,attrs:r}=e,{input:s}=t,{dim:a}=r,o=s.shape.length,i=s.shape.slice(),c=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),c=o+a+1),i.splice(c,0,1),bt({inputs:{x:s},backend:n,attrs:{shape:i}})}var Bj={kernelName:sc,backendName:"cpu",kernelFunc:Mf},zj=Mt((e,t)=>e/t),Zx=Jt(Ha,zj),Jx={kernelName:Ha,backendName:"cpu",kernelFunc:Zx};function UT(e,t,n){let r=e.shape,s=r[0],a=r[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,c=o.complexTensorInfos.imag,u=[s,a],l=w.sizeFromShape(u),d=w.getTypedArrayFromDType("float32",l),p=w.getTypedArrayFromDType("float32",l);for(let g=0;g<s;g++){let b=ri({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=ri({inputs:{x:c},backend:n,attrs:{begin:[g,0],size:[1,a]}}),v=Yn({inputs:{real:b,imag:y},backend:n}),{real:x,imag:k}=Wj(v,t,n),C=_.mergeRealAndImagArrays(x,k);for(let N=0;N<a;N++){let F=_.getComplexWithIndex(C,N);d[g*a+N]=F.real,p[g*a+N]=F.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(v)}let h=n.makeTensorInfo(u,"float32",d),f=n.makeTensorInfo(u,"float32",p),m=Yn({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function Wj(e,t,n){let r=w.sizeFromShape(e.shape),s=n.data.get(e.dataId),a=n.data.get(s.complexTensorInfos.real.dataId).values,o=n.data.get(s.complexTensorInfos.imag.dataId).values;if(Vj(r)){let i=Qx(a,o,r,t,n),c=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(c,"float32",i.real),l=n.makeTensorInfo(c,"float32",i.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(r,"float32")),p=is({inputs:{x:d},backend:n}),h=Jx.kernelFunc({inputs:{a:u,b:d},backend:n}),f=Jx.kernelFunc({inputs:{a:l,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=_.mergeRealAndImagArrays(a,o),c=Uj(i,r,t);return _.splitRealAndImagArrays(c)}}function Vj(e){return(e&e-1)==0}function Qx(e,t,n,r,s){if(n===1)return{real:e,imag:t};let a=_.mergeRealAndImagArrays(e,t),o=n/2,i=_.complexWithEvenIndex(a),c=i.real,u=i.imag,l=[c.length],d=s.makeTensorInfo(l,"float32",c),p=s.makeTensorInfo(l,"float32",u),h=Yn({inputs:{real:d,imag:p},backend:s}),f=_.complexWithOddIndex(a),m=f.real,g=f.imag,b=[m.length],y=s.makeTensorInfo(b,"float32",m),v=s.makeTensorInfo(b,"float32",g),x=Yn({inputs:{real:y,imag:v},backend:s}),k=Qx(c,u,o,r,s),C=k.real,N=k.imag,F=[C.length],R=s.makeTensorInfo(F,"float32",C),O=s.makeTensorInfo(F,"float32",N),$=Yn({inputs:{real:R,imag:O},backend:s}),P=Qx(m,g,o,r,s),T=P.real,L=P.imag,G=[T.length],j=s.makeTensorInfo(G,"float32",T),q=s.makeTensorInfo(G,"float32",L),K=Yn({inputs:{real:j,imag:q},backend:s}),ee=_.exponents(n,r),te=[ee.real.length],ne=s.makeTensorInfo(te,"float32",ee.real),re=s.makeTensorInfo(te,"float32",ee.imag),J=Yn({inputs:{real:ne,imag:re},backend:s}),oe=Pf({inputs:{a:J,b:K},backend:s}),ie=bd({inputs:{a:$,b:oe},backend:s}),ue=Kx({inputs:{a:$,b:oe},backend:s}),fe=ni({inputs:{input:ie},backend:s}),Se=ni({inputs:{input:ue},backend:s}),Ce=gu({inputs:{input:ie},backend:s}),Ne=gu({inputs:{input:ue},backend:s}),Pe=bu({inputs:[fe,Se],backend:s,attrs:{axis:0}}),_e=bu({inputs:[Ce,Ne],backend:s,attrs:{axis:0}}),ct=s.data.get(Pe.dataId).values,tt=s.data.get(_e.dataId).values;return s.disposeIntermediateTensorInfo(d),s.disposeIntermediateTensorInfo(p),s.disposeIntermediateTensorInfo(h),s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(v),s.disposeIntermediateTensorInfo(x),s.disposeIntermediateTensorInfo(R),s.disposeIntermediateTensorInfo(O),s.disposeIntermediateTensorInfo($),s.disposeIntermediateTensorInfo(j),s.disposeIntermediateTensorInfo(q),s.disposeIntermediateTensorInfo(K),s.disposeIntermediateTensorInfo(ne),s.disposeIntermediateTensorInfo(re),s.disposeIntermediateTensorInfo(J),s.disposeIntermediateTensorInfo(oe),s.disposeIntermediateTensorInfo(ie),s.disposeIntermediateTensorInfo(ue),s.disposeIntermediateTensorInfo(fe),s.disposeIntermediateTensorInfo(Ce),s.disposeIntermediateTensorInfo(Se),s.disposeIntermediateTensorInfo(Ne),s.disposeIntermediateTensorInfo(Pe),s.disposeIntermediateTensorInfo(_e),{real:ct,imag:tt}}function Uj(e,t,n){let r=new Float32Array(t*2);for(let s=0;s<t;s++){let a=0,o=0;for(let i=0;i<t;i++){let c=_.exponent(s*i,t,n),u=_.getComplexWithIndex(e,i);a+=u.real*c.real-u.imag*c.imag,o+=u.real*c.imag+u.imag*c.real}n&&(a/=t,o/=t),_.assignToTypedArray(r,a,o,s)}return r}function Gj(e){let{inputs:t,backend:n}=e,{input:r}=t,s=w.sizeFromShape(r.shape),a=r.shape[r.shape.length-1],o=s/a,i=bt({inputs:{x:r},backend:n,attrs:{shape:[o,a]}}),c=UT(i,!1,n),u=bt({inputs:{x:c},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),u}var Hj={kernelName:Bp,backendName:"cpu",kernelFunc:Gj};function ew(e){let{backend:t,attrs:n}=e,{shape:r,value:s,dtype:a}=n,o=a||w.inferDtype(s),i=w.getArrayFromDType(o,w.sizeFromShape(r));return qj(i,s,o),t.makeTensorInfo(r,o,i)}var jj={kernelName:bl,backendName:"cpu",kernelFunc:ew};function qj(e,t,n){e.fill(t)}var Kj={kernelName:oc,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,s=n,a=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(r.shape)),[o,i,c,u]=r.shape,l=s.data.get(r.dataId).values;for(let p=0;p<o;p++){let h=p*c*i*u;for(let f=0;f<i;f++){let m=f*(c*u);for(let g=0;g<c;g++){let b=g*u;for(let y=0;y<u;y++){let v=Math.round(c-g-1),x=h+m+b+y,k=l[x];if(v>=0&&v<c){let C=v*u,N=h+m+C+y;k=l[N]}a[x]=k}}}}return{dataId:s.write(a,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Xj=Mt((e,t)=>Math.floor(e/t)),Yj=Jt(Xa,Xj,null,"int32"),Zj={kernelName:Xa,backendName:"cpu",kernelFunc:Yj};function Jj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:u,dataFormat:l,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=WT({inputs:{x:s,filter:a},backend:n,attrs:{strides:c,pad:u,dataFormat:l,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=bd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Xx(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Qj={kernelName:$o,backendName:"cpu",kernelFunc:Jj};function eq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:u,dataFormat:l,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=VT({inputs:{x:s,filter:a},backend:n,attrs:{strides:c,pad:u,dataFormat:l,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=bd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Xx(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var tq={kernelName:Fo,backendName:"cpu",kernelFunc:eq};function nq(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=w.sizeFromShape(r.shape),o=s.shape,i=o[o.length-1],[c,u,l,d]=_.prepareAndValidate(r,s);if(u===0)return n.makeTensorInfo(c,r.dtype,[]);let p=n.data.get(s.dataId).values,h=n.bufferSync(r),f=aT(p,h,r.dtype,u,i,l,d,r.shape,a);return n.makeTensorInfo(c,r.dtype,f.values)}var rq={kernelName:cc,backendName:"cpu",kernelFunc:nq};function sq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,indices:a}=t,{axis:o,batchDims:i}=r;we([s,a],"gatherV2");let c=i;i==null&&(c=0);let u=w.sizeFromShape(a.shape),l=w.parseAxisParam(o,s.shape)[0],d=_.segment_util.collectGatherOpShapeInfo(s,a,l,c),p=bt({inputs:{x:s},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),h=bt({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),f=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],m=n.bufferSync(h),g=n.bufferSync(p),b=oT(g,m,f);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(d.outputShape,b.dtype,b.values)}var aq={kernelName:ic,backendName:"cpu",kernelFunc:sq};function oq(e){let{inputs:t,backend:n}=e,{input:r}=t,s=w.sizeFromShape(r.shape),a=r.shape[r.shape.length-1],o=s/a,i=bt({inputs:{x:r},backend:n,attrs:{shape:[o,a]}}),c=UT(i,!0,n),u=bt({inputs:{x:c},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),u}var iq={kernelName:zp,backendName:"cpu",kernelFunc:oq},cq=at(lc,e=>Number.isFinite(e)?1:0,"bool"),uq={kernelName:lc,backendName:"cpu",kernelFunc:cq},lq=at(dc,e=>Math.abs(e)===1/0?1:0,"bool"),dq={kernelName:dc,backendName:"cpu",kernelFunc:lq},pq=at(pc,e=>Number.isNaN(e)?1:0,"bool"),hq={kernelName:pc,backendName:"cpu",kernelFunc:pq};function fq(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=dT(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var mq={kernelName:Vp,backendName:"cpu",kernelFunc:fq},gq=at(mc,e=>Math.log1p(e)),bq={kernelName:mc,backendName:"cpu",kernelFunc:gq},yq=Mt((e,t)=>e&&t),vq=Jt(gc,yq,null,"bool"),xq={kernelName:gc,backendName:"cpu",kernelFunc:vq},wq=at(yl,e=>e?0:1,"bool"),kq={kernelName:yl,backendName:"cpu",kernelFunc:wq},Iq=Mt((e,t)=>e||t),Sq=Jt(vl,Iq,null,"bool"),Cq={kernelName:vl,backendName:"cpu",kernelFunc:Sq};function Tq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:c}=r;we(s,"LRN");let u=s.shape[3],l=u-1,d=n.data.get(s.dataId).values,p=w.sizeFromShape(s.shape),h=new Float32Array(p);function f(m){let g=m%u,b=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,l),v=0;for(;b<=y;b++){let x=d[b];v+=x*x}return v}for(let m=0;m<p;m++){let g=f(m),b=d[m]*Math.pow(o+i*g,-c);h[m]=b}return n.makeTensorInfo(s.shape,s.dtype,h)}var Nq={kernelName:xl,backendName:"cpu",kernelFunc:Tq};function _q(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,y:a,dy:o}=t,{depthRadius:i,bias:c,alpha:u,beta:l}=r;we(o,"LRNGrad");let d=w.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(s.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),b=d;for(let y=0;y<b;y++){let v=y%p,x=y-v+Math.max(0,v-i),k=y-v+Math.min(p,v+i+1),C=0;for(let N=x;N<k;N++)C+=Math.pow(f[N],2);C=u*C+c;for(let N=x;N<k;N++){let F=-2*u*l*f[N]*m[y]/C;y===N&&(F+=Math.pow(C,-l)),F*=h[y],g[N]+=F}}return n.makeTensorInfo(o.shape,s.dtype,g)}var Eq={kernelName:Up,backendName:"cpu",kernelFunc:_q};function GT(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reductionIndices:a,keepDims:o}=r,i=n,c=s.shape,u=c.length,l=w.parseAxisParam(a,c),d=l,p=_.getAxesPermutation(d,u),h=i.data.get(s.dataId).values;if(p!=null){let x=new Array(u);for(let k=0;k<x.length;k++)x[k]=c[p[k]];h=Hx(h,c,s.dtype,p,x),d=_.getInnerMostAxes(d.length,u),c=x}we(s,"max"),_.assertAxesAreInnerMostDims("max",d,u);let[f,m]=_.computeOutAndReduceShapes(c,d),g=w.sizeFromShape(m),b=hT(h,g,f,s.dtype),y=i.write(b,f,s.dtype),v=f;return o&&(v=_.expandShapeToKeepDim(f,l)),{dataId:y,shape:v,dtype:s.dtype}}var Aq={kernelName:to,backendName:"cpu",kernelFunc:GT};function $q(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;we(s,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=r,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let l=_.computePool2DInfo(s.shape,a,o,u,i,c),d;if(l.filterWidth===1&&l.filterHeight===1&&w.arraysEqual(l.inShape,l.outShape))d=is({inputs:{x:s},backend:n});else{let p=n.data.get(s.dataId).values,h=w.computeStrides(s.shape),f=Yx(p,s.shape,s.dtype,h,l,"max");d=n.makeTensorInfo(l.outShape,s.dtype,f.values)}return d}var Fq={kernelName:ro,backendName:"cpu",kernelFunc:$q};function Dq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c,dataFormat:u}=r;we(s,"maxPool3d");let l=_.computePool3DInfo(s.shape,a,o,1,i,c,u),d=n.data.get(s.dataId).values,p=zT(d,s.shape,s.dtype,w.computeStrides(s.shape),l,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var Rq={kernelName:wl,backendName:"cpu",kernelFunc:Dq};function Pq(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:c,dimRoundingMode:u}=r;we([s,a],"maxPool3DGrad");let l=_.computePool3DInfo(a.shape,o,i,1,c,u),d=n.bufferSync(a),p=S5(d,l),h=l.strideDepth,f=l.strideHeight,m=l.strideWidth,g=l.dilationDepth,b=l.dilationHeight,y=l.dilationWidth,v=l.effectiveFilterDepth,x=l.effectiveFilterHeight,k=l.effectiveFilterWidth,C=v-1-l.padInfo.front,N=k-1-l.padInfo.left,F=x-1-l.padInfo.top,R=Be(a.shape,"float32"),O=n.bufferSync(s);for(let $=0;$<l.batchSize;++$)for(let P=0;P<l.inChannels;++P)for(let T=0;T<l.inDepth;++T)for(let L=0;L<l.inHeight;++L)for(let G=0;G<l.inWidth;++G){let j=T-C,q=L-F,K=G-N,ee=0;for(let te=0;te<v;te+=g){let ne=(j+te)/h;if(!(ne<0||ne>=l.outDepth||Math.floor(ne)!==ne))for(let re=0;re<x;re+=b){let J=(q+re)/f;if(!(J<0||J>=l.outHeight||Math.floor(J)!==J))for(let oe=0;oe<k;oe+=y){let ie=(K+oe)/m;if(ie<0||ie>=l.outWidth||Math.floor(ie)!==ie)continue;let ue=v*x*k-1-p.get($,ne,J,ie,P),fe=te*x*k+re*k+oe,Se=ue===fe?1:0;if(Se===0)continue;ee+=O.get($,ne,J,ie,P)*Se}}}R.set(ee,$,T,L,G,P)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var Oq={kernelName:Hp,backendName:"cpu",kernelFunc:Pq};function Mq(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;we([a,o],"maxPoolGrad");let{filterSize:c,strides:u,pad:l,dimRoundingMode:d}=r,p=_.computePool2DInfo(i.shape,c,u,1,l,d),h=n.data.get(i.dataId).values,f=Be(p.outShape,i.dtype,BT(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,b=p.dilationHeight,y=p.dilationWidth,v=p.effectiveFilterHeight,x=p.effectiveFilterWidth,k=x-1-p.padInfo.left,C=v-1-p.padInfo.top,N=Be(i.shape,"float32"),F=n.data.get(s.dataId).values,R=Be(s.shape,"float32",F);for(let O=0;O<p.batchSize;++O)for(let $=0;$<p.inChannels;++$)for(let P=0;P<p.inHeight;++P)for(let T=0;T<p.inWidth;++T){let L=P-C,G=T-k,j=0;for(let q=0;q<v;q+=b){let K=(L+q)/m;if(!(K<0||K>=p.outHeight||Math.floor(K)!==K))for(let ee=0;ee<x;ee+=y){let te=(G+ee)/g;if(te<0||te>=p.outWidth||Math.floor(te)!==te)continue;let ne=v*x-1-f.get(O,K,te,$),re=q*x+ee,J=ne===re?1:0;if(J===0)continue;j+=R.get(O,K,te,$)*J}}N.set(j,O,P,T,$)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var Lq={kernelName:Gp,backendName:"cpu",kernelFunc:Mq};function Bq(e,t,n,r,s){let a=w.computeStrides(t),o=Yx(e,t,n,a,s,"max"),i=BT(e,t,n,s,!0,r);return[o.values,i.values]}var zq={kernelName:jp,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,c=n;we(r,"MaxPoolWithArgmax");let u=c.data.get(r.dataId).values,l=_.computePool2DInfo(r.shape,s,a,[1,1],o),[d,p]=Bq(u,r.shape,r.dtype,i,l),h=c.write(d,l.outShape,r.dtype),f=c.write(p,l.outShape,r.dtype);return[{dataId:h,shape:l.outShape,dtype:r.dtype},{dataId:f,shape:l.outShape,dtype:"int32"}]}};function Wq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=w.parseAxisParam(a,s.shape),u=_.computeOutAndReduceShapes(s.shape,i)[1],l=w.sizeFromShape(u),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([l]));d.push(p);let h=ga({inputs:{x:s},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=Zx({inputs:{a:h,b:p},backend:n});d.push(f);let m=vd({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var Vq={kernelName:so,backendName:"cpu",kernelFunc:Wq};function Uq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;we(s,"min");let i=w.parseAxisParam(a,s.shape),c=i,u=_.getAxesPermutation(c,s.shape.length),l=s;u!=null&&(l=ur({inputs:{x:s},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,s.shape.length)),_.assertAxesAreInnerMostDims("min",c,l.shape.length);let[d,p]=_.computeOutAndReduceShapes(l.shape,c),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),l.dtype),m=n.data.get(l.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];(Number.isNaN(k)||k<v)&&(v=k)}f[b]=v}u!=null&&n.disposeIntermediateTensorInfo(l);let g=n.makeTensorInfo(d,l.dtype,f);if(o){let b=_.expandShapeToKeepDim(d,i),y=bt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var Gq={kernelName:ao,backendName:"cpu",kernelFunc:Uq};function Hq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,mode:o}=r;we(s,"mirrorPad");let i=a.map((v,x)=>v[0]+s.shape[x]+v[1]),c=a.map(v=>v[0]),u=a.map((v,x)=>v[0]+s.shape[x]),l=o==="reflect"?0:1,d=n.data.get(s.dataId).values,p=s.shape.length,h=w.computeStrides(s.shape),f=w.sizeFromShape(i),m=i.length,g=w.computeStrides(i),b=w.getTypedArrayFromDType(s.dtype,f);for(let v=0;v<f;v++){let x=w.indexToLoc(v,m,g);for(let C=0;C<m;C++)x[C]<c[C]?x[C]=c[C]*2-x[C]-l:x[C]>=u[C]&&(x[C]=(u[C]-1)*2-x[C]+l);x=x.map((C,N)=>C-c[N]);let k=w.locToIndex(x,p,h);b[v]=d[k]}return{dataId:n.write(b,i,s.dtype),shape:i,dtype:s.dtype}}var jq={kernelName:io,backendName:"cpu",kernelFunc:Hq},qq=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Kq=Jt(bc,qq),Xq={kernelName:bc,backendName:"cpu",kernelFunc:Kq},Yq=Ea(C0());function HT(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=s.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let c=w.parseAxisParam([i],s.shape),u=GT({inputs:{x:s},backend:n,attrs:{reductionIndices:c,keepDims:!1}}),l=_.expandShapeToKeepDim(u.shape,c),d=bt({inputs:{x:u},backend:n,attrs:{shape:l}}),p=Kx({inputs:{a:s,b:d},backend:n}),h=nT({inputs:{x:p},backend:n}),f=vd({inputs:{x:h},backend:n,attrs:{axis:c,keepDims:!1}}),m=bt({inputs:{x:f},backend:n,attrs:{shape:l}}),g=Zx({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Zq={kernelName:So,backendName:"cpu",kernelFunc:HT};function Jq(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r;we(s,"multinomial");let c=i?s:HT({inputs:{logits:s},backend:n,attrs:{dim:-1}}),u=c.shape[0],l=c.shape[1],d=n.data.get(c.dataId).values,p=[u,a],h=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let f=0;f<u;++f){let m=f*l,g=new Float32Array(l-1);g[0]=d[m];for(let v=1;v<g.length;++v)g[v]=g[v-1]+d[m+v];let b=Yq.alea(o.toString()),y=f*a;for(let v=0;v<a;++v){let x=b();h[y+v]=g.length;for(let k=0;k<g.length;k++)if(x<g[k]){h[y+v]=k;break}}}return i||n.disposeIntermediateTensorInfo(c),n.makeTensorInfo(p,"int32",h)}var Qq={kernelName:qp,backendName:"cpu",kernelFunc:Jq},e8=ts.nonMaxSuppressionV3Impl;function t8(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c}=r;we(s,"NonMaxSuppression");let u=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,{selectedIndices:d}=e8(u,l,o,i,c);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var n8={kernelName:xc,backendName:"cpu",kernelFunc:t8},r8=ts.nonMaxSuppressionV4Impl;function s8(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c,padToMaxOutputSize:u}=r;we(s,"NonMaxSuppressionPadded");let l=n.data.get(s.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=r8(l,d,o,i,c,u);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var a8={kernelName:wc,backendName:"cpu",kernelFunc:s8},o8=ts.nonMaxSuppressionV5Impl;function i8(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c,softNmsSigma:u}=r;we(s,"NonMaxSuppressionWithScore");let l=n.data.get(s.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=c,m=u,{selectedIndices:g,selectedScores:b}=o8(l,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var c8={kernelName:kc,backendName:"cpu",kernelFunc:i8};function u8(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r;we(s,"oneHot");let c=w.sizeFromShape(s.shape),u=new Float32Array(c*a);u.fill(i);let l=n.data.get(s.dataId).values;for(let d=0;d<c;++d)l[d]>=0&&l[d]<a&&(u[d*a+l[d]]=o);return n.makeTensorInfo([...s.shape,a],"int32",u)}var l8={kernelName:uo,backendName:"cpu",kernelFunc:u8};function Lf(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let s=ni({inputs:{input:r},backend:n}),a=Lf({inputs:{x:s},backend:n}),o=gu({inputs:{input:r},backend:n}),i=Lf({inputs:{x:o},backend:n}),c=Yn({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}else return ew({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var d8={kernelName:Wc,backendName:"cpu",kernelFunc:Lf};function jT(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let s=ni({inputs:{input:r},backend:n}),a=jT({inputs:{x:s},backend:n}),o=gu({inputs:{input:r},backend:n}),i=Lf({inputs:{x:o},backend:n}),c=Yn({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}else return ew({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var p8={kernelName:Ic,backendName:"cpu",kernelFunc:jT};function qT(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return Mf({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(l=>{w.assertShapesMatch(a,l.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],c=t.map(l=>{let d=Mf({inputs:{input:l},backend:n,attrs:{dim:s}});return i.push(d),d}),u=bu({inputs:c,backend:n,attrs:{axis:s}});return i.forEach(l=>n.disposeIntermediateTensorInfo(l)),u}var h8={kernelName:Sc,backendName:"cpu",kernelFunc:qT};function f8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;we(s,"pad");let i=a.map((y,v)=>y[0]+s.shape[v]+y[1]),c=a.map(y=>y[0]),u=n.data.get(s.dataId).values,l=w.sizeFromShape(s.shape),d=s.shape.length,p=w.computeStrides(s.shape),h=w.sizeFromShape(i),f=i.length,m=w.computeStrides(i),g=w.getTypedArrayFromDType(s.dtype,h);o!==0&&g.fill(o);for(let y=0;y<l;y++){let x=w.indexToLoc(y,d,p).map((C,N)=>C+c[N]),k=w.locToIndex(x,f,m);g[k]=u[y]}return{dataId:n.write(g,i,s.dtype),shape:i,dtype:s.dtype}}var KT={kernelName:lo,backendName:"cpu",kernelFunc:f8},m8=Mt((e,t)=>Math.pow(e,t)),g8=Jt(po,m8),b8={kernelName:po,backendName:"cpu",kernelFunc:g8};function y8(e){let{backend:t,attrs:n}=e,{start:r,stop:s,dtype:a,step:o}=n,i=jx(r,s,o,a);return t.makeTensorInfo([i.length],a,i)}var v8={kernelName:kl,backendName:"cpu",kernelFunc:y8},x8=at(Tc,e=>1/e),w8={kernelName:Tc,backendName:"cpu",kernelFunc:x8};function k8(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r;we(s,"resizeBilinear");let c=w.computeStrides(s.shape),[u,l]=i,[d,p,h,f]=s.shape,m=n.data.get(s.dataId).values,g=new Float32Array(w.sizeFromShape([d,u,l,f])),b=[a&&u>1?p-1:p,a&&l>1?h-1:h],y=[a&&u>1?u-1:u,a&&l>1?l-1:l],v=0,x=b[0]/y[0],k=b[1]/y[1];for(let C=0;C<d;C++)for(let N=0;N<u;N++){let F;o?F=x*(N+.5)-.5:F=x*N;let R=Math.max(0,Math.floor(F)),O=F-R,$=Math.min(p-1,Math.ceil(F)),P=C*c[0]+R*c[1],T=C*c[0]+$*c[1];for(let L=0;L<l;L++){let G;o?G=k*(L+.5)-.5:G=k*L;let j=Math.max(0,Math.floor(G)),q=G-j,K=Math.min(h-1,Math.ceil(G)),ee=P+j*c[2],te=T+j*c[2],ne=P+K*c[2],re=T+K*c[2];for(let J=0;J<f;J++){let oe=m[ee+J],ie=m[te+J],ue=m[ne+J],fe=m[re+J],Se=oe+(ue-oe)*q,Ce=ie+(fe-ie)*q,Ne=Se+(Ce-Se)*O;g[v++]=Ne}}}return n.makeTensorInfo([d,u,l,f],"float32",g)}var I8={kernelName:mo,backendName:"cpu",kernelFunc:k8};function S8(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r;we([a,s],"resizeBilinearGrad");let i=w.computeStrides(s.shape),[c,u,l,d]=s.shape,[,p,h]=a.shape,f=new Float32Array(c*u*l*d),m=[o&&p>1?u-1:u,o&&h>1?l-1:l],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],b=m[0]/g[0],y=m[1]/g[1],v=n.data.get(a.dataId).values,x=0;for(let k=0;k<c;k++){let C=k*i[0];for(let N=0;N<p;N++){let F=N*b,R=Math.floor(F),O=Math.min(Math.ceil(F),u-1),$=C+R*i[1],P=C+O*i[1],T=F-R,L=1-T;for(let G=0;G<h;G++){let j=G*y,q=Math.floor(j),K=Math.min(Math.ceil(j),l-1),ee=j-q,te=1-ee,ne=$+q*i[2],re=$+K*i[2],J=P+q*i[2],oe=P+K*i[2],ie=L*te,ue=L*ee,fe=T*te,Se=T*ee;for(let Ce=0;Ce<d;Ce++){let Ne=v[x++];f[ne+Ce]+=Ne*ie,f[re+Ce]+=Ne*ue,f[J+Ce]+=Ne*fe,f[oe+Ce]+=Ne*Se}}}}return n.makeTensorInfo([c,l,u,d],"float32",f)}var C8={kernelName:Yp,backendName:"cpu",kernelFunc:S8};function T8(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r;we(s,"resizeNearestNeighbor");let c=w.computeStrides(s.shape),[u,l]=i,[d,p,h,f]=s.shape,m=n.data.get(s.dataId).values,g=new Float32Array(d*u*l*f),b=[a&&u>1?p-1:p,a&&l>1?h-1:h],y=[a&&u>1?u-1:u,a&&l>1?l-1:l],v=b[0]/y[0],x=b[1]/y[1],k=0;for(let C=0;C<d;C++){let N=C*c[0];for(let F=0;F<u;F++){let R=o?v*(F+.5):v*F,O=Math.min(p-1,a?Math.round(R):Math.floor(R));o&&(O=Math.max(0,O));let $=N+O*c[1];for(let P=0;P<l;P++){let T=o?x*(P+.5):x*P,L=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(L=Math.max(0,L));let G=$+L*c[2];for(let j=0;j<f;j++){let q=m[G+j];g[k++]=q}}}}return n.makeTensorInfo([d,u,l,f],s.dtype,g)}var N8={kernelName:Il,backendName:"cpu",kernelFunc:T8};function _8(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r;we([a,s],"resizeNearestNeighborGrad");let i=w.computeStrides(s.shape),c=w.computeStrides(a.shape),[u,l,d,p]=s.shape,[,h,f]=a.shape,m=new Float32Array(u*l*d*p),g=n.data.get(a.dataId).values,b=[o&&h>1?l-1:l,o&&f>1?d-1:d],y=[o&&h>1?h-1:h,o&&f>1?f-1:f],v=b[0]/y[0],x=b[1]/y[1],k=1/v,C=1/x,N=Math.ceil(k)*2+2,F=Math.ceil(C)*2+2;for(let R=0;R<u;R++){let O=R*i[0];for(let $=0;$<l;$++){let P=O+$*i[1],T=Math.floor($*k),L=Math.floor(T-N/2);for(let G=0;G<d;G++){let j=P+G*i[2],q=Math.floor(G*C),K=Math.floor(q-F/2);for(let ee=0;ee<p;ee++){let te=0;for(let ne=0;ne<N;ne++){let re=ne+L;if(re<0||re>=h)continue;let J=O+re*c[1],oe=re*v,ie=Math.min(l-1,o?Math.round(oe):Math.floor(oe));if($===ie)for(let ue=0;ue<F;ue++){let fe=ue+K;if(fe<0||fe>=f)continue;let Se=J+fe*c[2],Ce=fe*x,Ne=Math.min(d-1,o?Math.round(Ce):Math.floor(Ce));G===Ne&&(te+=g[Se+ee])}}m[j+ee]=te}}}}return n.makeTensorInfo(s.shape,s.dtype,m)}var E8={kernelName:Xp,backendName:"cpu",kernelFunc:_8};function A8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r;we(s,"reverse");let o=s.shape.length,i=w.parseAxisParam(a,s.shape);if(o===0)return is({inputs:{x:s},backend:n});let c=new Bt(s.shape,s.dtype),u=n.bufferSync(s);for(let l=0;l<c.size;l++){let d=c.indexToLoc(l),p=d.slice();i.forEach(h=>p[h]=s.shape[h]-1-p[h]),c.set(u.get(...p),...d)}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var $8={kernelName:bo,backendName:"cpu",kernelFunc:A8},F8={kernelName:Vc,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,c=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(r.shape)),[u,l,d,p]=r.shape,[h,f]=_.getImageCenter(o,l,d),m=255,g=Math.sin(s),b=Math.cos(s),y=i.data.get(r.dataId).values;for(let x=0;x<u;x++){let k=x*d*l*p;for(let C=0;C<l;C++){let N=C*(d*p);for(let F=0;F<d;F++){let R=F*p;for(let O=0;O<p;O++){let $=[u,C,F,O],P=$[2],T=$[1],L=(P-h)*b-(T-f)*g,G=(P-h)*g+(T-f)*b;L=Math.round(L+h),G=Math.round(G+f);let j=a;if(typeof a!="number"&&(O===3?j=m:j=a[O]),L>=0&&L<d&&G>=0&&G<l){let K=G*(d*p),ee=L*p,te=k+K+ee+O;j=y[te]}let q=k+N+R+O;c[q]=j}}}}return{dataId:i.write(c,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},D8=at(yo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),R8={kernelName:yo,backendName:"cpu",kernelFunc:D8};function XT(e,t,n,r,s,a,o,i,c,u){let l=[r/s,s],d=e.values,p=t.values;if(r===0)return Be(n,t.dtype);let h=Be(l,t.dtype);h.values.fill(c);for(let f=0;f<a;f++){let m=[],g=0;for(let b=0;b<o;b++){let y=d[f*o+b];m.push(y),g+=y*i[b]}if(g<0||g>=r/s)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let b=0;b<s;b++)u?h.values[g*s+b]+=p[f*s+b]:h.values[g*s+b]=t.rank===0?p[0]:p[f*s+b]}return h}function P8(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s,updates:a}=t,{shape:o}=r,{sliceRank:i,numUpdates:c,sliceSize:u,strides:l,outputSize:d}=_.calculateShapes(a,s,o),p=!0,h=n.bufferSync(s),f=n.bufferSync(a),m=XT(h,f,o,d,u,c,i,l,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var O8={kernelName:_c,backendName:"cpu",kernelFunc:P8};function M8(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t;we([r,s,a],"select");let o=r.shape.length,i=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=n.data.get(a.dataId).values,l=yr(s.dtype,a.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(s.shape),l),p=0,h=o===0||o>1||s.shape.length===1?1:w.sizeFromShape(s.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=c[f]:d[p++]=u[f];return n.makeTensorInfo(s.shape,l,d)}var L8={kernelName:Ec,backendName:"cpu",kernelFunc:M8},B8=_.SELU_SCALEALPHA,z8=_.SELU_SCALE,W8=at(Ac,e=>e>=0?z8*e:B8*(Math.exp(e)-1)),V8={kernelName:Ac,backendName:"cpu",kernelFunc:W8},U8=at(Dc,e=>e<0?-1:e>0?1:0),G8={kernelName:Dc,backendName:"cpu",kernelFunc:U8},H8=at(xo,e=>Math.sin(e)),j8={kernelName:xo,backendName:"cpu",kernelFunc:H8},q8=at(Fc,e=>Math.sinh(e)),K8={kernelName:Fc,backendName:"cpu",kernelFunc:q8},X8=11920928955078125e-23,YT=Math.log(X8)+2,Y8=at(Rc,e=>{let t=e>-YT,n=e<YT,r=Math.exp(e),s;return n?s=r:t?s=e:s=Math.log(1+r),s}),Z8={kernelName:Rc,backendName:"cpu",kernelFunc:Y8};function J8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r;we([s],"spaceToBatchND");let i=w.sizeFromShape(a),c=[[0,0]];c.push(...o);for(let C=1+a.length;C<s.shape.length;++C)c.push([0,0]);let u=KT.kernelFunc({inputs:{x:s},backend:n,attrs:{paddings:c,constantValue:0}}),l=_.getReshaped(u.shape,a,i,!1),d=_.getPermuted(l.length,a.length,!1),p=_.getReshapedPermuted(u.shape,a,i,!1),m=bt({inputs:{x:u},backend:n,attrs:{shape:l}}),y=ur({inputs:{x:m},backend:n,attrs:{perm:d}}),k=bt({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),k}var Q8={kernelName:Pc,backendName:"cpu",kernelFunc:J8};function eK(e){let{inputs:t,backend:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(r.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${r.shape}`);if(s.shape.length!==1)throw new Error(`Values must be a vector, saw:
${s.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[d,p,h,f,m]=wT(i,r.shape,r.dtype,c,s.dtype,u,l);return[n.makeTensorInfo(p,r.dtype,d),n.makeTensorInfo([p[0]],s.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var tK={kernelName:Zp,backendName:"cpu",kernelFunc:eK};function nK(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(s.dataId).values),i=n.data.get(r.dataId).values,c=Array.from(n.data.get(a.dataId).values),[u,l,d]=kT(i,r.shape,r.dtype,o,c);return[n.makeTensorInfo(l,r.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var rK={kernelName:Jp,backendName:"cpu",kernelFunc:nK};function sK(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,c=n.data.get(a.dataId).values,[u,l]=qx(o,r.shape,r.dtype,i,c,!0);return n.makeTensorInfo(l,r.dtype,u)}var aK={kernelName:Qp,backendName:"cpu",kernelFunc:sK};function oK(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,c=n.data.get(a.dataId).values,[u,l]=qx(o,r.shape,r.dtype,i,c);return n.makeTensorInfo(l,r.dtype,u)}var iK={kernelName:eh,backendName:"cpu",kernelFunc:oK};function cK(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:c,numUpdates:u,sliceSize:l,strides:d,outputSize:p}=_.calculateShapes(a,s,i),h=!1,f=n.bufferSync(s),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],b=XT(f,m,i,p,l,u,c,d,g,h);return n.makeTensorInfo(i,b.dtype,b.values)}var uK={kernelName:th,backendName:"cpu",kernelFunc:cK};function lK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=w.parseAxisParam(o,s.shape)[0],c=_.prepareSplitSize(s,a,i),u=new Array(s.shape.length).fill(0),l=s.shape.slice();return c.map(d=>{let p=[...l];p[i]=d;let h=ri({inputs:{x:s},backend:n,attrs:{begin:u,size:p}});return u[i]+=d,h})}var dK={kernelName:Oc,backendName:"cpu",kernelFunc:lK},pK={kernelName:Sl,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;we(n,"square");let s=r.data.get(n.dataId).values,a=new Float32Array(s.length);for(let i=0;i<s.length;++i){let c=s[i];a[i]=c*c}return{dataId:r.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},hK=at(Zs,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),fK={kernelName:Zs,backendName:"cpu",kernelFunc:hK};function mK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:c,endMask:u,ellipsisMask:l,newAxisMask:d,shrinkAxisMask:p}=r;we(s,"stridedSlice");let{nonStrided:h,$begin:f,$strides:m,size:g,newShape:b,outShape:y}=mn.sliceInfo(s.shape,a,o,i,c,u,l,d,p),v=bt({inputs:{x:s},backend:n,attrs:{shape:b}}),x;if(h){let C=ri({inputs:{x:v},backend:n,attrs:{begin:f,size:g}});x=bt({inputs:{x:C},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(C)}else if(y.some(C=>C===0))x=n.makeTensorInfo(y,s.dtype,[]);else{let C=n.bufferSync(v),N=ST(y,C,m,f);x=n.makeTensorInfo(N.shape,N.dtype,N.values)}let k=bt({inputs:{x},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(x),k}var gK={kernelName:Mc,backendName:"cpu",kernelFunc:mK};function bK(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:c,preserveShortSequences:u}=r,{data:l,dataSplits:d}=t,p=n.data.get(l.dataId).values,h=n.data.get(d.dataId).values,[f,m]=CT(p,h,s,a,o,i,c,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var yK={kernelName:nh,backendName:"cpu",kernelFunc:bK};function vK(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[u,l,d]=TT(i,c,s),p=l.length;return[n.makeTensorInfo([p,2],"int32",u),n.makeTensorInfo([p],"string",l),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var xK={kernelName:rh,backendName:"cpu",kernelFunc:vK};function wK(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=NT(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var kK={kernelName:sh,backendName:"cpu",kernelFunc:wK},IK=at(No,e=>Math.tan(e)),SK={kernelName:No,backendName:"cpu",kernelFunc:IK},CK=at(_o,e=>Math.tanh(e)),TK={kernelName:_o,backendName:"cpu",kernelFunc:CK};function NK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reps:a}=r;we(s,"tile");let o=ET(n.bufferSync(s),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var _K={kernelName:Ys,backendName:"cpu",kernelFunc:NK};function EK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r;we(s,"topk");let i=n.data.get(s.dataId).values,[c,u]=$T(i,s.shape,s.dtype,a,o);return[n.makeTensorInfo(c.shape,c.dtype,c.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var AK={kernelName:Lc,backendName:"cpu",kernelFunc:EK};function $K(e){let{inputs:t,attrs:n,backend:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:c,outputShape:u}=n,[l,d,p,h]=s.shape,[f,m]=u!=null?u:[d,p],g=[l,f,m,h],b=w.computeStrides(s.shape),y=b[0],v=b[1],x=b[2],k=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(g));k.fill(c);let C=r.data.get(s.dataId).values,N=r.data.get(a.dataId).values;for(let R=0;R<l;++R){let O=a.shape[0]===1?N:N.subarray(R*8,R*8+8);for(let $=0;$<f;++$)for(let P=0;P<m;++P)for(let T=0;T<h;++T){let L,G=O[6]*P+O[7]*$+1;if(G===0)continue;let j=(O[0]*P+O[1]*$+O[2])/G,q=(O[3]*P+O[4]*$+O[5])/G,K=ZT(j,p,i),ee=ZT(q,d,i);switch(o){case"nearest":L=MK(C,d,p,y,v,x,R,ee,K,T,c);break;case"bilinear":L=LK(C,d,p,y,v,x,R,ee,K,T,c);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let te=R*y+$*v+P*x+T;k[te]=L}return r.makeTensorInfo(g,s.dtype,k)}return{dataId:r.write(k,g,s.dtype),shape:s.shape,dtype:s.dtype}}var FK={kernelName:Bc,backendName:"cpu",kernelFunc:$K};function ZT(e,t,n){switch(n){case"reflect":return DK(e,t);case"wrap":return RK(e,t);case"nearest":return OK(e,t);case"constant":default:return PK(e,t)}}function DK(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=2*t;n<r&&(n=r*Math.trunc(-n/r)+n),n=n<-t?n+r:-n-1}else if(n>t-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return w.clamp(0,n,t-1)}function RK(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return w.clamp(0,n,t-1)}function PK(e,t){return e}function OK(e,t){return w.clamp(0,e,t-1)}function xd(e,t,n,r,s,a,o,i,c,u,l){let d=o*r+i*s+c*a+u;return 0<=i&&i<t&&0<=c&&c<n?e[d]:l}function MK(e,t,n,r,s,a,o,i,c,u,l){let d=Math.round(i),p=Math.round(c);return xd(e,t,n,r,s,a,o,d,p,u,l)}function LK(e,t,n,r,s,a,o,i,c,u,l){let d=Math.floor(i),p=Math.floor(c),h=d+1,f=p+1,m=(f-c)*xd(e,t,n,r,s,a,o,d,p,u,l)+(c-p)*xd(e,t,n,r,s,a,o,d,f,u,l),g=(f-c)*xd(e,t,n,r,s,a,o,h,p,u,l)+(c-p)*xd(e,t,n,r,s,a,o,h,f,u,l);return(h-i)*m+(i-d)*g}function BK(e){let{inputs:t,attrs:n,backend:r}=e,{axis:s}=n,{x:a}=t;we(a,"unique");let o=r.data.get(a.dataId).values,{outputValues:i,outputShape:c,indices:u}=FT(o,s,a.shape,a.dtype);return[r.makeTensorInfo(c,a.dtype,i),r.makeTensorInfo([u.length],"int32",u)]}var zK={kernelName:ah,backendName:"cpu",kernelFunc:BK};function WK(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s.shape.length,i=s.shape[a],c=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==a&&(c[u++]=s.shape[h]);let l=new Array(o).fill(0),d=s.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){l[a]=h;let f=ri({inputs:{x:s},backend:n,attrs:{begin:l,size:d}});p[h]=bt({inputs:{x:f},backend:n,attrs:{shape:c}}),n.disposeIntermediateTensorInfo(f)}return p}var VK={kernelName:zc,backendName:"cpu",kernelFunc:WK};function UK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,segmentIds:a}=t,{numSegments:o}=r;we(s,"unsortedSegmentSum");let i=s.shape.length,c=a.shape.length,u=[],l=[],d=i-c,p=a;for(let f=0;f<d;++f){let m=Mf({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,l.push(m)}for(let f=0;f<o;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),b=eT({inputs:{a:g,b:p},backend:n}),y=ga({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),v=Pf({inputs:{a:y,b:s},backend:n}),x=vd({inputs:{x:v},backend:n,attrs:{axis:0,keepDims:!1}});u.push(x),l.push(g),l.push(b),l.push(y),l.push(v),l.push(x)}let h=qT({inputs:u,backend:n,attrs:{axis:0}});return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var GK={kernelName:Cl,backendName:"cpu",kernelFunc:UK},HK=[J6,GH,e5,n5,YH,s5,o5,c5,l5,p5,f5,g5,y5,w5,I5,T5,_5,A5,F5,Y6,R5,O5,L5,z5,KH,JH,V5,HH,G5,j5,X5,Z5,q5,tj,rj,Q5,aj,ij,uj,dj,hj,mj,gj,yj,xj,kj,Ij,Cj,Sj,Jx,_j,U6,Aj,QH,Lj,e6,Bj,n6,Hj,jj,Kj,s6,Zj,Qj,tq,rq,aq,o6,c6,jH,iq,H5,uq,dq,hq,G6,l6,p6,mq,f6,bq,xq,kq,Cq,Nq,Eq,g6,Fq,Rq,Oq,Lq,zq,Aq,Vq,Gq,y6,jq,Xq,Qq,x6,k6,n8,a8,c8,S6,l8,p8,h8,KT,b8,j6,N6,v8,qH,w8,q6,K6,X6,I8,C8,N8,E8,$8,F8,R8,E6,O8,L8,V8,$6,G8,j8,K8,F6,Zq,Z8,Q8,tK,rK,aK,iK,uK,dK,P6,pK,M6,fK,gK,yK,xK,kK,W6,Tj,SK,TK,_K,AK,C6,FK,zK,VK,GK,d8];for(let e of HK)Nl(e);var JT={};Fe(JT,{assertNotComplex:()=>vu,bindCanvasToFramebuffer:()=>rX,bindColorTextureToFramebuffer:()=>Wf,bindTextureToProgramUniformSampler:()=>f2,bindTextureUnit:()=>d2,bindVertexBufferToProgramAttribute:()=>rw,callAndCheck:()=>ye,canBeRepresented:()=>e2,createFragmentShader:()=>r2,createFramebuffer:()=>l2,createProgram:()=>s2,createStaticIndexBuffer:()=>i2,createStaticVertexBuffer:()=>o2,createTexture:()=>c2,createVertexShader:()=>n2,getBatchDim:()=>ai,getExtensionOrThrow:()=>Id,getFramebufferErrorMessage:()=>m2,getMaxTexturesInShader:()=>v2,getNumChannels:()=>tX,getProgramUniformLocation:()=>h2,getProgramUniformLocationOrThrow:()=>p2,getRowsCols:()=>oi,getShapeAs3D:()=>Vf,getTextureShapeFromLogicalShape:()=>b2,getWebGLDisjointQueryTimerVersion:()=>x2,getWebGLErrorMessage:()=>t2,getWebGLMaxTextureSize:()=>y2,hasExtension:()=>dr,isCapableOfRenderingToFloatTexture:()=>w2,isDownloadFloatTextureEnabled:()=>k2,isReshapeFree:()=>Cd,isWebGLFenceEnabled:()=>I2,isWebGLVersionEnabled:()=>aw,linkProgram:()=>a2,resetMaxTextureSize:()=>sX,resetMaxTexturesInShader:()=>aX,unbindColorTextureFromFramebuffer:()=>sw,unbindTextureUnit:()=>nX,validateFramebuffer:()=>Sd,validateProgram:()=>zf,validateTextureSize:()=>u2});var si={},tw={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function QT(e,t){si[e]=t}function cs(e){if(!(e in si)){let n=qK(e);if(n!==null)si[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=si[e];return t.isContextLost()?(delete si[e],cs(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),si[e])}function jK(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function qK(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=jK(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete si[e]},!1),e===1?t.getContext("webgl",tw)||t.getContext("experimental-webgl",tw):t.getContext("webgl2",tw)}var wd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(wd||(wd={}));var lr;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(lr||(lr={}));var sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(sn||(sn={}));function kd(e,t){return[t,e]}function KK(e,t){return e*t}function Bf(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function yu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function XK(e,t){let[n,r]=yu(e,t);return n*r*4}function nw(e,t){let n=e,r,s,a,o,i,c,u,l,d,p;return Q().getNumber("WEBGL_VERSION")===2?(r=n.R32F,s=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,l=1,d=n.HALF_FLOAT,p=n.FLOAT):(r=e.RGBA,s=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,l=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),c=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:s,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:c,downloadUnpackNumChannels:u,defaultNumChannels:l,textureTypeHalfFloat:d,textureTypeFloat:p}}function ye(e,t){let n=t();return Q().getBool("DEBUG")&&YK(e),n}function YK(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+t2(e,t))}var ZK=596e-10,JK=65504;function e2(e){return!!(Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||ZK<Math.abs(e)&&Math.abs(e)<JK)}function t2(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Id(e,t){return $s(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function n2(e,t){let n=$s(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ye(e,()=>e.shaderSource(n,t)),ye(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function r2(e,t){let n=$s(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ye(e,()=>e.shaderSource(n,t)),ye(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw eX(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var QK=/ERROR: [0-9]+:([0-9]+):/g;function eX(e,t){let n=QK.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],s=e.split(`
`),a=s.length.toString().length+2,o=s.map((d,p)=>w.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let c=o.slice(0,r-1),u=o.slice(r-1,r),l=o.slice(r);console.log(c.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${w.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(l.join(`
`))}function s2(e){return $s(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function a2(e,t){if(ye(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function zf(e,t){if(ye(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function o2(e,t){let n=$s(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ye(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function i2(e,t){let n=$s(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ye(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ye(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function tX(){return Q().getNumber("WEBGL_VERSION")===2?1:4}function c2(e){return $s(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function u2(e,t){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,s=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+s+".")}}function l2(e){return $s(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function rw(e,t,n,r,s,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),ye(e,()=>e.vertexAttribPointer(i,s,e.FLOAT,!1,a,o)),ye(e,()=>e.enableVertexAttribArray(i)),!0)}function d2(e,t,n){g2(e,n),ye(e,()=>e.activeTexture(e.TEXTURE0+n)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function nX(e,t){g2(e,t),ye(e,()=>e.activeTexture(e.TEXTURE0+t)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function p2(e,t,n){return $s(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function h2(e,t,n){return e.getUniformLocation(t,n)}function f2(e,t,n,r){ye(e,()=>d2(e,t,r)),ye(e,()=>e.uniform1i(n,r))}function rX(e){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ye(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ye(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Wf(e,t,n){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ye(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function sw(e,t){ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ye(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Sd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+m2(e,t))}function m2(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function $s(e,t,n){let r=ye(e,()=>t());if(r==null)throw new Error(n);return r}function g2(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let s=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${s}.`)}}function ai(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function oi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Vf(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ai(e),...oi(e)]),t}function b2(e,t=!1){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((s,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let r=w.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let s=ai(e),a=2,o=2;return e.length&&([a,o]=oi(e)),r=s*(a/2)*(o/2),w.sizeToSquarishShape(r).map(i=>i*2)}return w.sizeToSquarishShape(r)}function Uf(e){return e%2==0}function Cd(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Uf(n)&&Uf(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Uf(e[0])&&Uf(t[0])}var Gf,Hf;function y2(e){if(Gf==null){let t=cs(e);Gf=t.getParameter(t.MAX_TEXTURE_SIZE)}return Gf}function sX(){Gf=null}function aX(){Hf=null}function v2(e){if(Hf==null){let t=cs(e);Hf=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Hf)}function x2(e){if(e===0)return 0;let t,n=cs(e);return dr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:dr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function dr(e,t){return e.getExtension(t)!=null}function aw(e){try{if(cs(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function w2(e){if(e===0)return!1;let t=cs(e);if(e===1){if(!dr(t,"OES_texture_float"))return!1}else if(!dr(t,"EXT_color_buffer_float"))return!1;return ow(t)}function k2(e){if(e===0)return!1;let t=cs(e);if(e===1){if(!dr(t,"OES_texture_float")||!dr(t,"WEBGL_color_buffer_float"))return!1}else{if(dr(t,"EXT_color_buffer_float"))return ow(t);let r="EXT_color_buffer_half_float";if(dr(t,r)){let s=t.getExtension(r);return oX(t,s)}return!1}return ow(t)}function ow(e){let t=nw(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,s,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function oX(e,t){let n=nw(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let s=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,s,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(o),i}function I2(e){return e!==2?!1:cs(e).fenceSync!=null}function vu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Te=Q();Te.registerFlag("HAS_WEBGL",()=>Te.getNumber("WEBGL_VERSION")>0);Te.registerFlag("WEBGL_VERSION",()=>aw(2)?2:aw(1)?1:0);Te.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Te.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Te.get("WEBGL_VERSION")===2);Te.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Te.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Te.registerFlag("WEBGL_PACK",()=>Te.getBool("HAS_WEBGL"));Te.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_CLIP",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_REDUCE",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_LAZILY_UNPACK",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_CONV_IM2COL",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>y2(Te.getNumber("WEBGL_VERSION")));Te.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>v2(Te.getNumber("WEBGL_VERSION")));Te.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Te.getNumber("WEBGL_VERSION");return e===0?0:x2(e)});Te.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Te.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Pl.isMobile());Te.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>w2(Te.getNumber("WEBGL_VERSION")));Te.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Te.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Te.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Te.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>k2(Te.getNumber("WEBGL_VERSION")));Te.registerFlag("WEBGL_FENCE_API_ENABLED",()=>I2(Te.getNumber("WEBGL_VERSION")));Te.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Te.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Te.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Te.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Pl.isMobile()&&Te.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Te.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Te.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Te.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Te.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function kn(){let e,t,n,r,s,a,o,i,c,u;return Q().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",s="texture",a="outputColor",o="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,c="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",r="varying",s="texture2D",a="gl_FragColor",o="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,c=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:s,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:c,defineRound:u}}function ii(e,t,n="index"){let r=w.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / ${s}`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${s}`:`index -= ${e[a]} * ${s}`;return`${o}; ${i};`}).join("")}function jf(e,t,n="index"){let r=w.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function iX(e,t){let n=e.length,r=e.map(a=>`${t}[${a}]`),s=new Array(n-1);s[n-2]=r[n-1];for(let a=n-3;a>=0;--a)s[a]=`(${s[a+1]} * ${r[a+1]})`;return s}function cX(e,t,n="index"){let r=e.map((a,o)=>o),s=iX(r,t);return s.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${s[o]}`,c=o===s.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${s[o]}`:`index -= ${e[o]} * ${s[o]}`;return`${i}; ${c};`}).join("")}function iw(e){let t=w.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function cw(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var S2=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:C2}=_;function uX(e,t,n){let r=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=uw(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:r.push(`uniform int ${h.name}Shape;`);break;case 2:r.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:r.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:r.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}r.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:r.push("uniform int outShape;");break;case 2:r.push("uniform ivec2 outShape;"),r.push("uniform int outShapeStrides;");break;case 3:r.push("uniform ivec3 outShape;"),r.push("uniform ivec2 outShapeStrides;");break;case 4:r.push("uniform ivec4 outShape;"),r.push("uniform ivec3 outShapeStrides;");break;default:break}r.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{r.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let s=r.join(`
`),a=e.map(h=>lX(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),o=t.texShape,i=kn(),c=hX(i),u,l,d=gX(i);return t.isPacked?(u=dX(t.logicalShape,o,n.enableShapeUniforms),l=mX(i)):(u=pX(t.logicalShape,o,n.enableShapeUniforms),l=fX(i)),n.packedInputs&&(d+=xX),[d,c,l,s,u,a,n.userCode].join(`
`)}function xu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return FX(e,t);case 1:return RX(e,t);case 2:return OX(e,t);case 3:return LX(e,t);case 4:return zX(e,t);case 5:return WX(e);case 6:return VX(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function T2(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return $X(e);case 1:return DX(e,t);case 2:return PX(e,t);case 3:return MX(e,t);default:return BX(e,t)}}function lX(e,t,n=!1,r){let s="";n?s+=T2(e,r):s+=xu(e,r);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?s+=UX(e,t):s+=GX(e,t)),s}function dX(e,t,n){switch(e.length){case 0:return N2();case 1:return wX(e,t,n);case 2:return EX(e,t,n);case 3:return IX(e,t,n);default:return CX(e,t,n)}}function pX(e,t,n){switch(e.length){case 0:return N2();case 1:return kX(e,t,n);case 2:return AX(e,t,n);case 3:return SX(e,t,n);case 4:return TX(e,t,n);case 5:return NX(e,t);case 6:return _X(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function hX(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function fX(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function mX(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function gX(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${bX}
${yX}
${vX}
`}var bX=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,yX=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,vX=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,xX=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function N2(){return`
int getOutputCoords() {
return 0;
}
`}function wX(e,t,n){let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return r[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${r[1]}.0);
}
`:r[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${r[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${r[0]}, ${r[1]}));
return 2 * (resTexRC.x * ${r[1]} + resTexRC.y);
}
`}function kX(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function IX(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[2]/2),a=s*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${r[0]}, ${r[1]}));
int index = resTexRC.x * ${r[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${s});
int c = imod(index, ${s}) * 2;
return ivec3(b, r, c);
}
`}function SX(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${jf(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let r=ii(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${r}
return ivec3(r, c, d);
}
`}function CX(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[e.length-1]/2),a=s*Math.ceil(e[e.length-2]/2),o=a,i="",c="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
int b${u} = index / ${o};
index -= b${u} * ${o};
`+i,c=`b${u}, `+c;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${r[0]}, ${r[1]}));
int index = resTexRC.x * ${r[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${s});
int c = imod(index, ${s}) * 2;
return ivec${e.length}(${c});
}
`}function TX(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${jf(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let r=ii(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${r}
return ivec4(r, c, d, d2);
}
`}function NX(e,t){let n=ii(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function _X(e,t){let n=ii(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function EX(e,t,n){let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${r[0]}, ${r[1]}));
}
`;let s=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${r[0]}, ${r[1]}));
int index = resTexRC.x * ${r[1]} + resTexRC.y;
int r = 2 * (index / ${s});
int c = imod(index, ${s}) * 2;
return ivec2(r, c);
}
`}function AX(e,t,n){return w.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function ci(e){return`offset${e}`}function $X(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=kn();return`
vec4 ${n}() {
return ${r.texture2D}(${t}, halfCR);
}
`}function FX(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${r}() {return ${n};}`;let[s,a]=e.shapeInfo.texShape;if(s===1&&a===1)return`
float ${r}() {
return sampleTexture(${n}, halfCR);
}
`;let o=ci(n);if(t)return`
float ${r}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
return sampleTexture(${n}, uv);
}
`;let[i,c]=e.shapeInfo.texShape;return`
float ${r}() {
vec2 uv = uvFromFlat(${i}, ${c}, ${o});
return sampleTexture(${n}, uv);
}
`}function DX(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,a=kn();if(t)return`
vec4 ${r}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${a.texture2D}(${n}, uv);
}
`;let o=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];return`
vec4 ${r}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${a.texture2D}(${n}, uv);
}
`}function RX(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${r}(int index) {
${wu(e)}
}
`;let s=e.shapeInfo.texShape,a=s[0],o=s[1];if(o===1&&a===1)return`
float ${r}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let i=ci(n);return o===1?t?`
float ${r}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${n}, uv);
}
`:a===1?t?`
float ${r}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${r}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int index) {
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
return sampleTexture(${n}, uv);
}
`}function PX(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],c=kn();if(a!=null&&w.arraysEqual(n,a))return t?`
vec4 ${s}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${r}TexShape[1], ${r}TexShape[0]);
return ${c.texture2D}(${r}, uv);
}
`:`
vec4 ${s}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
return ${c.texture2D}(${r}, uv);
}
`;if(t)return`
vec4 ${s}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${r}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${c.texture2D}(${r}, uv);
}
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],l=Math.ceil(n[1]/2);return`
vec4 ${s}(int row, int col) {
vec2 uv = packedUVfrom2D(${l}, ${u[0]}, ${u[1]}, row, col);
return ${c.texture2D}(${r}, uv);
}
`}function OX(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
float ${s}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${r}TexShape[1], ${r}TexShape[0]);
return sampleTexture(${r}, uv);
}
`;let p=a[0],h=a[1];return`
float ${s}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
return sampleTexture(${r}, uv);
}
`}let{newShape:o,keptDims:i}=w.squeezeShape(n),c=o;if(c.length<n.length){let p=ku(e,c),h=["row","col"];return`
${xu(p,t)}
float ${s}(int row, int col) {
return ${s}(${Iu(h,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${wu(e)}
}
`;let u=a[0],l=a[1],d=ci(r);return l===1?t?`
float ${s}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${r}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${r}TexShape[0]));
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${r}, uv);
}
`:u===1?t?`
float ${s}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${r}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${r}TexShape[1]), 0.5);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${l}.0, 0.5);
return sampleTexture(${r}, uv);
}
`:t?`
float ${s}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${r}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${u}, ${l}, index);
return sampleTexture(${r}, uv);
}
`}function MX(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=ku(e,p),m=["b","row","col"];return`
${T2(f,t)}
vec4 ${s}(int b, int row, int col) {
return ${s}(${Iu(m,h)});
}
`}let i=kn();if(t)return`
vec4 ${s}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${r}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${r}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${i.texture2D}(${r}, uv);
}
`;let c=o[0],u=o[1],l=Math.ceil(n[2]/2),d=l*Math.ceil(n[1]/2);return`
vec4 ${s}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${c}, ${u}, ${d}, ${l}, b, row, col);
return ${i.texture2D}(${r}, uv);
}
`}function LX(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:c}=w.squeezeShape(n),u=i;if(u.length<n.length){let m=ku(e,u),g=["row","col","depth"];return`
${xu(m,t)}
float ${s}(int row, int col, int depth) {
return ${s}(${Iu(g,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${o}, 1)));
${wu(e)}
}
`;let l=e.shapeInfo.texShape,d=l[0],p=l[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
float ${s}(int row, int col, int depth) {
int stride1 = ${r}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}TexShape[1], ${r}TexShape[0]);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${r}, uv);
}
`;if(p===o&&h==null)return t?`
float ${s}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${r}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}TexShape[1], ${r}TexShape[0]);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
return sampleTexture(${r}, uv);
}
`;let f=ci(r);return t?`
float ${s}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${r}Shape[1] * ${r}Shape[2];
int stride1 = ${r}Shape[2];
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${r}, uv);
}
`}function BX(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=kn();if(t)return`
vec4 ${r}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${s.texture2D}(${n}, uv);
}
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,c=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=c[0],l=c[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
vec4 ${r}(${h}) {
int index = ${f};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${u});
return ${s.texture2D}(${n}, uv);
}
`}function zX(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:c,keptDims:u}=w.squeezeShape(n);if(c.length<n.length){let y=ku(e,c),v=["row","col","depth","depth2"];return`
${xu(y,t)}
float ${s}(int row, int col, int depth, int depth2) {
return ${s}(${Iu(v,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, 1)));
${wu(e)}
}
`;let l=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${r}Shape[3];`,m=`int stride1 = ${r}Shape[2] * stride2;`,g=`int stride0 = ${r}Shape[1] * stride1;`;if(h===i&&l==null)return t?`
float ${s}(int row, int col, int depth, int depth2) {
${f}
${m}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}TexShape[1], ${r}TexShape[0]);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${o}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${r}, uv);
}
`;if(h===a&&l==null)return t?`
float ${s}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${r}Shape[1] * ${r}Shape[2], ${r}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}TexShape[1], ${r}TexShape[0]);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${r}, uv);
}
`;let b=ci(r);return t?`
float ${s}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${f}
${m}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index + ${b});
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${p}, ${h}, index + ${b});
return sampleTexture(${r}, uv);
}
`}function WX(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=t[4],a=t[3]*s,o=t[2]*a,i=t[1]*o,{newShape:c,keptDims:u}=w.squeezeShape(t);if(c.length<t.length){let m=ku(e,c),g=["row","col","depth","depth2","depth3"];return`
${xu(m)}
float ${r}(int row, int col, int depth, int depth2, int depth3) {
return ${r}(${Iu(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, ${s})) +
depth3;
${wu(e)}
}
`;let l=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&l==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${o}, ${a}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(h===s&&l==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let f=ci(n);return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} + depth * ${a} +
depth2 * ${s} + depth3 + ${f};
vec2 uv = uvFromFlat(${p}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function VX(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:s,keptDims:a}=w.squeezeShape(t);if(s.length<t.length){let g=ku(e,s),b=["row","col","depth","depth2","depth3","depth4"];return`
${xu(g)}
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${r}(${Iu(b,a)});
}
`}let o=t[5],i=t[4]*o,c=t[3]*i,u=t[2]*c,l=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${l}, ${u}, ${c}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${o}, 1)));
${wu(e)}
}
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===l&&d==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${c}, ${i}, ${o})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(f===o&&d==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let m=ci(n);return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${l} + col * ${u} + depth * ${c} +
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
vec2 uv = uvFromFlat(${h}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function wu(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function UX(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),s="get"+r+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=C2(e.shapeInfo.logicalShape,t.logicalShape),c=dt(o),u=o-a,l,d=["x","y","z","w","u","v"];a===0?l="":o<2&&i.length>=1?l="coords = 0;":l=i.map(y=>`coords.${d[y+u]} = 0;`).join(`
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((y,v)=>`coords.${d[v+u]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,b=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!b)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!b)o===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(i.length){let y=a-2,v=a-1;i.indexOf(y)>-1&&i.indexOf(v)>-1?h="return vec4(outputValue.x);":i.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(v)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${s}() {
${c} coords = getOutputCoords();
${l}
vec4 outputValue = get${r}(${p});
${h}
}
`}function GX(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),s="get"+r+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,c=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===c&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return`
float ${s}() {
return sampleTexture(${n}, resultUV);
}
`;let u=dt(c),l=C2(e.shapeInfo.logicalShape,t.logicalShape),d=c-i,p,h=["x","y","z","w","u","v"];i===0?p="":c<2&&l.length>=1?p="coords = 0;":p=l.map(m=>`coords.${h[m+d]} = 0;`).join(`
`);let f="";return c<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
float ${s}() {
${u} coords = getOutputCoords();
${p}
return get${r}(${f});
}
`}function dt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function uw(e,t,n){let{newShape:r,keptDims:s}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):r,c=!e&&a>1&&!w.arraysEqual(t,n)&&r.length<a||o;return{useSqueezeShape:c,uniformShape:c?i:t,keptDims:s}}function ku(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Iu(e,t){return t.map(n=>e[n]).join(", ")}function HX(e,t,n,r){let s=n.map((v,x)=>{let k={logicalShape:v.shape,texShape:v.isUniform?null:v.texData.texShape,isUniform:v.isUniform,isPacked:v.isUniform?!1:v.texData.isPacked,flatOffset:null};return v.texData!=null&&v.texData.slice!=null&&v.texData.slice.flatOffset>0&&(k.flatOffset=v.texData.slice.flatOffset),{name:t.variableNames[x],shapeInfo:k}}),a=s.map(v=>v.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},i=uX(s,o,t),c=e.createProgram(i),u=null,l=e.getUniformLocation(c,"NAN",!1);Q().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d=!1,p={},h={},f={};for(let v=0;v<t.variableNames.length;v++){let x=t.variableNames[v];p[x]=e.getUniformLocation(c,x,d),p[`offset${x}`]=e.getUniformLocation(c,`offset${x}`,d),t.enableShapeUniforms&&(h[`${x}Shape`]=e.getUniformLocation(c,`${x}Shape`,d),f[`${x}TexShape`]=e.getUniformLocation(c,`${x}TexShape`,d))}let m,g,b;t.enableShapeUniforms&&(m=e.getUniformLocation(c,"outShape",d),b=e.getUniformLocation(c,"outShapeStrides",d),g=e.getUniformLocation(c,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((v,x)=>{y[x]=e.getUniformLocation(c,v.name,d)}),{program:t,source:i,webGLProgram:c,uniformLocations:p,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:l,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:b,outTexShapeLocation:g}}function _2(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let s=n.logicalShape,a=t[r],o=a.shape;if(!w.arraysEqual(s,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${s} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,c=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,c))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${c} must match`)})}function jX(e,t,n,r,s){t.program.enableShapeUniforms||(_2(t.inShapeInfos,n),_2([t.outShapeInfo],[r]));let a=r.texData.texture,o=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),Q().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((c,u)=>{let l=t.program.variableNames[u],d=t.uniformLocations[l],p=t.uniformLocations[`offset${l}`],h=t.inShapesLocations[`${l}Shape`],f=t.inTexShapesLocations[`${l}TexShape`];if(h){let{uniformShape:m}=uw(t.program.packedInputs,c.shape,c.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,c.texData.texShape[0],c.texData.texShape[1]),d!=null){if(c.isUniform){if(w.sizeFromShape(c.shape)<2)e.gl.uniform1f(d,c.uniformValues[0]);else{let m=c.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}c.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,c.texData.slice.flatOffset),e.setInputMatrixTexture(c.texData.texture,d,u)}});let i=t.outShapeLocation;if(i)switch(r.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(r.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(r.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(r.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(r.shape));break;default:break}if(t.outShapeStridesLocation){let c=w.computeStrides(r.shape);switch(r.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(c));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(c));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(c));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,r.texData.texShape[0],r.texData.texShape[1]),t.program.customUniforms&&s&&t.program.customUniforms.forEach((c,u)=>{let l=t.customUniformLocations[u],d=s[u];if(c.type==="float")e.gl.uniform1fv(l,d);else if(c.type==="vec2")e.gl.uniform2fv(l,d);else if(c.type==="vec3")e.gl.uniform3fv(l,d);else if(c.type==="vec4")e.gl.uniform4fv(l,d);else if(c.type==="int")e.gl.uniform1iv(l,d);else if(c.type==="ivec2")e.gl.uniform2iv(l,d);else if(c.type==="ivec3")e.gl.uniform3iv(l,d);else if(c.type==="ivec4")e.gl.uniform4iv(l,d);else throw Error(`uniform type ${c.type} is not supported yet.`)}),e.executeProgram()}function qX(e,t,n){let r="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let c=o.texData.texShape,{useSqueezeShape:u,uniformShape:l,keptDims:d}=uw(e.packedInputs,o.shape,c),p="",h="",f="";if(l.length===1&&e.packedInputs){let k=[Math.ceil(c[0]/2),Math.ceil(c[1]/2)];p=`${k[0]>1}_${k[1]>1}`}else if(l.length===2&&!e.packedInputs)h=`${l[0]>1}_${l[1]>1}`;else if(l.length>2&&!e.packedInputs){let k=w.computeStrides(l);f=`${k[0]===c[1]}_${k[k.length-1]===c[1]}`}let m=o.shape.length,g=l.length===2&&w.arraysEqual(o.shape,c),b=w.sizeFromShape(o.shape)===1,y=_.getBroadcastDims(o.shape,n.shape),v=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(c,n.texData.texShape),x=e.packedInputs||l.length>2?"":`${c[0]>1}_${c[1]>1}`;r+=`${m}_${v}_${u?d:""}_${l.length}_${b}_${y}_${g}_${p}_${h}_${f}_${x}_${i}`}else{let c=o.isUniform?"uniform":o.texData.texShape;r+=`${o.shape}_${c}_${i}`}});let s=e.userCode,a=e.constructor.name;return a+="_"+r+"_"+s+`${Q().getNumber("WEBGL_VERSION")}`,a}function pr(e){return Q().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var KX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=wd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=kn();this.outputShape=e,this.enableShapeUniforms=pr(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?jf(["r","c","d"],e):ii(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},XX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=wd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=kn();this.outputShape=e,this.enableShapeUniforms=pr(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?jf(["r","c","d"],e):ii(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},YX=class{constructor(e){this.variableNames=["A"],this.outTexUsage=lr.DOWNLOAD;let t=kn();this.outputShape=e,this.userCode=`
${S2}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},ZX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=lr.DOWNLOAD;let t=kn();this.outputShape=e,this.userCode=`
${S2}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},JX=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=kn();this.outputShape=e,this.enableShapeUniforms=pr(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?cw():iw(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${r}, 0., 0., 0.);
}
`}},QX=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=kn();this.outputShape=e,this.enableShapeUniforms=pr(this.outputShape.length);let r="",s="result";t&&(s="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;r+=`
localCoords = coords;
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${o};
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${a};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${i}] = values[0];
} else if (offset == 1) {
result[${i}] = values[1];
} else if (offset == 2) {
result[${i}] = values[2];
} else {
result[${i}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?cw():iw(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${r}
${n.output} = ${s};
}
`}},E2={};Fe(E2,{bindVertexProgramAttributeStreams:()=>L2,createBufferFromOutputTexture:()=>W2,createFloat16MatrixTexture:()=>R2,createFloat16PackedMatrixTexture:()=>M2,createFloat32MatrixTexture:()=>D2,createIndexBuffer:()=>F2,createPackedMatrixTexture:()=>O2,createUnsignedBytesMatrixTexture:()=>P2,createVertexBuffer:()=>$2,createVertexShader:()=>A2,downloadByteEncodedFloatMatrixFromOutputTexture:()=>U2,downloadFloat32MatrixFromBuffer:()=>V2,downloadMatrixFromPackedOutputTexture:()=>H2,downloadPackedMatrixFromBuffer:()=>G2,getInternalFormatForFloat16MatrixTexture:()=>dw,getInternalFormatForFloat16PackedMatrixTexture:()=>fw,getInternalFormatForFloat32MatrixTexture:()=>lw,getInternalFormatForPackedMatrixTexture:()=>hw,getInternalFormatForUnsignedBytesMatrixTexture:()=>pw,uploadDenseMatrixToTexture:()=>B2,uploadPixelDataToTexture:()=>z2});function A2(e){let t=kn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return n2(e,n)}function $2(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return o2(e,t)}function F2(e){let t=new Uint16Array([0,1,2,2,1,3]);return i2(e,t)}function Td(e,t,n,r,s,a){u2(t,n);let o=c2(e),i=e.TEXTURE_2D;return ye(e,()=>e.bindTexture(i,o)),ye(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ye(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ye(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),ye(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),ye(e,()=>e.texImage2D(i,0,r,t,n,0,s,a,null)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function lw(e){return e.internalFormatFloat}function D2(e,t,n,r){let[s,a]=kd(t,n);return Td(e,s,a,lw(r),r.textureFormatFloat,e.FLOAT)}function dw(e){return e.internalFormatHalfFloat}function R2(e,t,n,r){let[s,a]=kd(t,n);return Td(e,s,a,dw(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function pw(e){return e.downloadTextureFormat}function P2(e,t,n,r){let[s,a]=kd(t,n);return Td(e,s,a,pw(r),e.RGBA,e.UNSIGNED_BYTE)}function hw(e){return e.internalFormatPackedFloat}function O2(e,t,n,r){let[s,a]=yu(t,n);return Td(e,s,a,hw(r),e.RGBA,e.FLOAT)}function fw(e){return e.internalFormatPackedHalfFloat}function M2(e,t,n,r){let[s,a]=yu(t,n);return Td(e,s,a,fw(r),e.RGBA,r.textureTypeHalfFloat)}function L2(e,t,n){let r=0,s=3*4,a=3*4+2*4;return ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),rw(e,t,"clipSpacePos",n,3,a,r)&&rw(e,t,"uv",n,2,a,s)}function B2(e,t,n,r,s,a){ye(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,c;s instanceof Uint8Array?(o=new Uint8Array(n*r*4),i=e.UNSIGNED_BYTE,c=e.RGBA):(o=new Float32Array(n*r*4),i=e.FLOAT,c=a.internalFormatPackedFloat),o.set(s),ye(e,()=>e.texImage2D(e.TEXTURE_2D,0,c,n,r,0,e.RGBA,i,o)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function z2(e,t,n){ye(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?ye(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):ye(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ye(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function W2(e,t,n,r){let s=e.createBuffer();ye(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,s));let i=4*4*t*n;return ye(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),ye(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ye(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),s}function V2(e,t,n){let r=e,s=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,s),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),s}function U2(e,t,n,r){let[s,a]=kd(t,n),o=4,i=new Uint8Array(KK(t*n,o));return ye(e,()=>e.readPixels(0,0,s,a,r.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function G2(e,t,n,r,s,a,o,i){let c=e,u=new Float32Array(XK(a,o));return c.bindBuffer(c.PIXEL_PACK_BUFFER,t),c.getBufferSubData(c.PIXEL_PACK_BUFFER,0,u),c.bindBuffer(c.PIXEL_PACK_BUFFER,null),u}function H2(e,t,n){let r=new Float32Array(t*n*4);return ye(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var j2=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Q().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,QT(t,e)):this.gl=cs(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(Q().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Id(this.gl,s),dr(this.gl,a))this.textureHalfFloatExtension=Id(this.gl,a);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),dr(this.gl,r))this.colorBufferHalfFloatExtension=Id(this.gl,r);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",dr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(dr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=$2(this.gl),this.indexBuffer=F2(this.gl),this.framebuffer=l2(this.gl),this.textureConfig=nw(this.gl,this.textureHalfFloatExtension)}get debug(){return Q().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ye(e,()=>e.finish()),ye(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ye(e,()=>e.deleteFramebuffer(this.framebuffer)),ye(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ye(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ye(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),D2(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),R2(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),P2(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),z2(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),B2(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),M2(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),O2(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(sw(this.gl,this.framebuffer),this.outputTexture=null),ye(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>U2(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,s,a){return G2(this.gl,e,t,n,r,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return V2(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=W2(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Q().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,s=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=r.clientWaitSync(s,0,0);return a===r.ALREADY_SIGNALED||a===r.CONDITION_SATISFIED},t=s}else Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>H2(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=r2(t,e);this.vertexShader==null&&(this.vertexShader=A2(t));let r=s2(t);return ye(t,()=>t.attachShader(r,this.vertexShader)),ye(t,()=>t.attachShader(r,n)),a2(t,r),this.debug&&zf(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=L2(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ye(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&zf(this.gl,this.program),ye(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?p2(this.gl,e,t):h2(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ye(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),f2(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,s]=yu(t,n);this.setOutputMatrixTextureDriver(e,r,s)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&zf(this.gl,this.program),Sd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ye(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ye(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Id(this.gl,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=e7(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Wf(this.gl,e,this.framebuffer),this.debug&&Sd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Wf(this.gl,this.outputTexture,this.framebuffer),this.debug&&Sd(this.gl)):sw(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;Wf(r,e,this.framebuffer),this.debug&&Sd(r),this.outputTexture=e,ye(r,()=>r.viewport(0,0,t,n)),ye(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),ye(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function e7(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:t7,bincountImpl:q2,bincountReduceImpl:n7,ceilImpl:r7,concatImpl:s7,equalImpl:a7,expImpl:o7,expm1Impl:i7,floorImpl:c7,gatherNdImpl:u7,gatherV2Impl:l7,greaterImpl:d7,greaterEqualImpl:p7,lessImpl:h7,lessEqualImpl:f7,linSpaceImpl:m7,logImpl:g7,maxImpl:b7,maximumImpl:y7,minimumImpl:v7,multiplyImpl:x7,negImpl:w7,notEqualImpl:k7,prodImpl:I7,rangeImpl:S7,rsqrtImpl:C7,sigmoidImpl:T7,simpleAbsImpl:K2,sliceImpl:N7,sparseFillEmptyRowsImpl:_7,sparseReshapeImpl:E7,sparseSegmentReductionImpl:X2,sqrtImpl:A7,stridedSliceImpl:$7,stringNGramsImpl:F7,stringSplitImpl:D7,stringToHashBucketFastImpl:R7,subImpl:P7,tileImpl:O7,topKImpl:M7,transposeImpl:mw,uniqueImpl:L7}=zx;function Y2(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function In(e,t){return t===1?[e]:Y2(e,t)}function B7(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var z7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=In("rc",t),r=dt(t),s=V7(t,e,n),a=U7(t,e[e.length-1],e[e.length-2],n),o=G7(e,n);this.userCode=`
void main() {
${r} rc = getOutputCoords();
if(${s}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${o}));
}
}
`}}};function W7(e,t){let n=[];for(let r=0;r<=1;r++)for(let s=0;s<=1;s++){let a=`${r===0?"r":"rp1"}, ${s===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function V7(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let s=e-2;s<e;s++)r+=`${n[s]} >= ${t[s]}`,s<e-1&&(r+="||");return r}function U7(e,t,n,r){if(e===1)return"";let s=r.slice(-2);return`
int r = ${s[0]};
int c = ${s[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function G7(e,t){let n=e.length,r=W7(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${r[0]}),
cEdge ? 0. : getA(${r[1]}),
rEdge ? 0. : getA(${r[2]}),
rEdge || cEdge ? 0. : getA(${r[3]})`}var Z2=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=pr(this.outputShape.length);let n="";for(let r=0;r<4;r++){let s="thisRC = rc;";r%2==1&&(s+="thisRC.z += 1;"),r>1&&(s+="thisRC.y += 1;"),n+=`
${s}
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${r}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${r>0?"}":""}
`}this.userCode=`
${H7(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?cw():iw(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function H7(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?cX(["r","c","d"],"inputShape"):ii(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var j7=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=Q2(t,n),s=eN(e,r,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=J2(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[s].shift();return this.usedTextures[s].push(i),i}let o;return r===sn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===sn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===sn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===sn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===sn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let s=Q2(n,r),a=eN(t,s,r);a in this.freeTextures||(this.freeTextures[a]=[]);let o=J2(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,r),i=Q().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let c=this.usedTextures[a],u=c.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");c.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function q7(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function J2(e,t,n,r,s){let a=K7(t,r),o;if(s){let[c,u]=yu(e[0],e[1]);o=c*u}else{let[c,u]=kd(e[0],e[1]);o=c*u}let i=q7(n,a);return o*i}function K7(e,t){switch(e){case sn.PACKED_2X2_FLOAT32:return hw(t);case sn.PACKED_2X2_FLOAT16:return fw(t);case sn.UNPACKED_FLOAT32:return lw(t);case sn.UNPACKED_FLOAT16:return dw(t);case sn.PACKED_4X1_UNSIGNED_BYTE:return pw(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function X7(e){return Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?sn.PACKED_2X2_FLOAT32:sn.UNPACKED_FLOAT32:e?sn.PACKED_2X2_FLOAT16:sn.UNPACKED_FLOAT16}function Q2(e,t){if(e===lr.UPLOAD)return sn.PACKED_2X2_FLOAT32;if(e===lr.RENDER||e==null)return X7(t);if(e===lr.DOWNLOAD||e===lr.PIXELS)return sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function eN(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ya=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=pr(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Ur="if (isnan(x)) return x;",Y7="return x;",tN="return abs(x);",Z7="return (x >= 0.0) ? x : (exp(x) - 1.0);",J7=Ur+`
return (x < 0.0) ? 0.0 : x;
`,Q7=Ur+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,qf="return x;",e9="return 1.0 / (1.0 + exp(-1.0 * x));",t9="return x;",n9=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,r9=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,s9=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,a9="return 1.0 / (1.0 + exp(-1.0 * x));",Su=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=pr(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},o9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=In("rc",t),r=dt(t),s=B7(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${o}));
}
`}},i9=ts.whereImpl,c9=1e-7,u9=1e-4,Kf={};function l9(e){return e in Kf||(Kf[e]={}),Kf[e]}var d9=Q().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),p9=600;function h9(){return Q().global.screen==null?1024:Q().global.screen.height*Q().global.screen.width*window.devicePixelRatio*p9/1024/1024}var Xf=class extends ul{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Q().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=cs(Q().getNumber("WEBGL_VERSION"));this.binaryCache=l9(Q().getNumber("WEBGL_VERSION")),this.gpgpu=new j2(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new j7(this.gpgpu),this.numMBBeforeWarning=h9(),this.texData=new vp(this,ws())}nextDataId(){return Xf.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Q().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Q().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:lr.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,s){if(Q().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:lr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:s,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Su(o,qf):d=new ya(o,qf);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:r}],r),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let c=this.activeTimers!=null,u;c&&(u=w.now());let l;if(r==="complex64"){let d=this.readSync(s.real.dataId),p=this.readSync(s.imag.dataId);l=_.mergeRealAndImagArrays(d,p)}else l=this.getValuesFromTexture(e);return c&&(this.downloadWaitMs+=w.now()-u),this.convertAndCacheOnCPU(e,l)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:s,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(s!=null){let h;i?h=new Su(r,qf):h=new ya(r,qf);let f=this.runWebGLProgram(h,[{dataId:e,shape:r,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Q().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let c=null,u;if(a!=="complex64"&&Q().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);c=this.gpgpu.createBufferFromTexture(h.texture,...Bf(r))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let l;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];l=_.mergeRealAndImagArrays(f,m)}else if(c==null)l=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(r);l=this.gpgpu.downloadFloat32MatrixFromBuffer(c,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),c!=null){let h=this.gpgpu.gl;ye(h,()=>h.deleteBuffer(c))}let d=this.convertAndCacheOnCPU(e,l),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ws().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>w.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!e2(n))throw Q().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),s=w.sizeFromShape(t);if(Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...Bf(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(d),h}let a=Q().getBool("WEBGL_PACK")&&r===!0,o=a?Vf(t):t,i=a?new ZX(o):new YX(o),c=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(c.dataId),l=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(c),l}timerAvailable(){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(s);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((c,u)=>({name:a[u],ms:c})).map(c=>`${c.name}: ${c.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:s,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,c=this.dataRefCount.get(i);c>1?this.dataRefCount.set(i,c-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,s,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=d9){return Q().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return i9(e.shape,t)}packedUnaryOp(e,t,n){let r=new Su(e.shape,t),s=this.compileAndRun(r,[e],n);return ws().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let r=K2(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,r)}if(Q().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,tN,e.dtype);let t=new ya(e.shape,tN),n=this.compileAndRun(t,[e]);return ws().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let s=n.map(a=>w.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return ws().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new o9(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new z7(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ai(e.shape),...oi(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},s=[ai(t),...oi(t)],a=new Z2(s,n),o=!0,i=[n],c=this.runWebGLProgram(a,[r],e.dtype,i,o);return{dataId:c.dataId,shape:t,dtype:c.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:s}=t,a=Vf(r),o,i=Bf(a);n?o=new XX(a):o=new KX(a);let c=!0,u=[i],l=this.runWebGLProgram(o,[{shape:a,dtype:s,dataId:e}],s,u,c);return{dtype:s,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,s=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===wd.DENSE){let m=Bf(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],c=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(m.shape)<=Q().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!Cd(g.shape,m.shape)){let b=m,y=m.shape;m.shape=g.shape,m=this.packedReshape(m,y),i.push(m),g=this.texData.get(m.dataId),b.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},l=qX(e,c,u),d=this.getAndSaveBinary(l,()=>HX(this.gpgpu,e,c,u)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),jX(this.gpgpu,d,c,u,r),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=Q().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=w.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!Q().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&s===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,r,s=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Q().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=M(()=>{if(!Q().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Q().getBool("DEBUG");Q().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(Q().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?c9:u9}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:s,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let c=this.activeTimers!=null,u;c&&(u=w.now());let l=t.texShape;if(l==null&&(l=b2(n,i),t.texShape=l),s!=null){let d=Vf(n),p,h=l[1],f=l[0],m=s instanceof Uint8Array;i?([h,f]=yu(l[0],l[1]),p=new QX(d,m)):p=new JX(d,m);let g=this.makeTensorInfo([f,h],r);m?this.texData.get(g.dataId).usage=lr.PIXELS:this.texData.get(g.dataId).usage=lr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,s);let b=[[f,h]],y=!0,v=this.runWebGLProgram(p,[g],r,b,y),x=this.texData.get(v.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(v.dataId),t.values=null,c&&(this.uploadWaitMs+=w.now()-u)}else{let d=this.acquireTexture(l,o,r,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=f9(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};Xf.nextDataId=0;function f9(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var m9="3.9.0";function nN(){Q().set("WEBGL_FORCE_F16_TEXTURES",!0)}Pl.isBrowser()&&vh("webgl",()=>new Xf,2);var g9={forceHalfFloat:nN},rN=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Cu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=pr(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Yf=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,Nd=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let s=this.outputShape.length;this.enableShapeUniforms=pr(s);let a="";if(r)if(s===0||w.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${dt(s)} coords = getOutputCoords();
`,s===1)this.enableShapeUniforms?a+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=In("coords",s);this.enableShapeUniforms?a+=`
bool nextRowOutOfBounds =
(${i[s-2]} + 1) >= outShape[${s} - 2];
bool nextColOutOfBounds =
(${i[s-1]} + 1) >= outShape[${s} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:a+=`
bool nextRowOutOfBounds =
(${i[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${i[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function Zn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var b9={kernelName:Ja,backendName:"webgl",kernelFunc:Zn};function va(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.makeTensorInfo(r.shape,"complex64"),o=n.texData.get(a.dataId),i=Zn({inputs:{x:r},backend:n}),c=Zn({inputs:{x:s},backend:n});return o.complexTensorInfos={real:i,imag:c},a}var y9={kernelName:Np,backendName:"webgl",kernelFunc:va},sN="return (a < 0.) ? b * a : a;",aN=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function v9(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Nd(aN,s.shape,o.shape):new Cu(sN,s.shape,o.shape),c=n.runWebGLProgram(i,[s,o],s.dtype);return n.disposeIntermediateTensorInfo(o),c}var x9={kernelName:Qa,backendName:"webgl",kernelFunc:v9},oN="return (a < 0.) ? b * a : a;",iN=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function w9(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Nd(iN,r.shape,s.shape):new Cu(oN,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],r.dtype)}var k9={kernelName:ho,backendName:"webgl",kernelFunc:w9},cN="if (isnan(x)) return x;",I9=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,S9=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Ke({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:s,backend:a})=>{let{x:o}=s,i=a,c=r||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,c);return i.makeTensorInfo(o.shape,c,p)}let u=Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,l;return u?l=new Su(o.shape,t):l=new ya(o.shape,e),i.runWebGLProgram(l,[o],c)}}function an({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:s,dtype:a}){return({inputs:o,backend:i})=>{let{a:c,b:u}=o,l=i;if(r&&c.dtype==="complex64"){let f=l.texData.get(c.dataId),m=l.texData.get(u.dataId),[g,b]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(v=>{let[x,k]=v,C={dataId:x.dataId,dtype:x.dtype,shape:c.shape},N={dataId:k.dataId,dtype:k.dtype,shape:u.shape},F=new Cu(e,c.shape,u.shape);return l.runWebGLProgram(F,[C,N],yr(x.dtype,k.dtype))}),y=va({inputs:{real:g,imag:b},backend:l});return l.disposeIntermediateTensorInfo(g),l.disposeIntermediateTensorInfo(b),y}let d=a||yr(c.dtype,u.dtype);if((c.dtype==="string"||u.dtype==="string"||l.shouldExecuteOnCPU([c,u]))&&s!=null){let f=l.texData.get(c.dataId).values,m=l.texData.get(u.dataId).values,g=c.dtype==="string"?_.fromUint8ToStringArray(f):f,b=c.dtype==="string"?_.fromUint8ToStringArray(m):m,[y,v]=s(c.shape,u.shape,g,b,d),x=l.makeTensorInfo(v,d),k=l.texData.get(x.dataId);return k.values=y,x}let p=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new Nd(t,c.shape,u.shape,n):h=new Cu(e,c.shape,u.shape),l.runWebGLProgram(h,[c,u],d)}}function Zf(e,t=!1){if(e==="linear")return t?t9:Y7;if(e==="relu")return t?r9:J7;if(e==="elu")return t?n9:Z7;if(e==="relu6")return t?s9:Q7;if(e==="prelu")return t?iN:oN;if(e==="leakyrelu")return t?aN:sN;if(e==="sigmoid")return t?a9:e9;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var uN=class{constructor(e,t,n,r=!1,s=!1,a=!1,o=null,i=!1,c=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=pr(this.outputShape.length);let u=r?e[1]:e[2],l=Math.ceil(u/2),d=r?"i * 2, rc.y":"rc.y, i * 2",p=s?"rc.z, i * 2":"i * 2, rc.z",h=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:c?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:m=`vec4 activation(vec4 x) {
${o}
}`,g="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),c&&this.variableNames.push("leakyreluAlpha");let y="rc.x",v="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(v=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${l}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${l}; i++) {
int batchA = ${y};
int batchB = ${v};
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${p});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${f[0]});
result += (${h[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${g}
setOutput(result);
}
`}},lN={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},dN=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},pN="return a * b;";function gw(e){let{inputs:t,backend:n}=e,{a:r,b:s}=t,a=_.upcastType(r.dtype,s.dtype);if(r.dtype==="complex64"){let i=n.texData.get(r.dataId),c=n.texData.get(s.dataId),u=new dN(lN.REAL,r.shape,s.shape),l=new dN(lN.IMAG,r.shape,s.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:r.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:c.complexTensorInfos.real.dataId,dtype:c.complexTensorInfos.real.dtype,shape:s.shape},{dataId:c.complexTensorInfos.imag.dataId,dtype:c.complexTensorInfos.imag.dtype,shape:s.shape}],p=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(l,d,"float32"),f=va({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([r,s])){let i=n.texData.get(r.dataId),c=n.texData.get(s.dataId),[u,l]=x7(r.shape,s.shape,i.values,c.values,a),d=n.makeTensorInfo(l,a),p=n.texData.get(d.dataId);return p.values=u,d}let o;return Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Nd(pN,r.shape,s.shape):o=new Cu(pN,r.shape,s.shape),n.runWebGLProgram(o,[r,s],a)}var C9={kernelName:co,backendName:"webgl",kernelFunc:gw};function T9(e,t,n){let r=[ai(e.shape),...oi(e.shape)],s={dtype:e.dtype,shape:r,dataId:e.dataId},a=[ai(t),...oi(t)],o=new Z2(a,r),i=!0,c=[r],u=n.runWebGLProgram(o,[s],e.dtype,c,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function me(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=n,i=w.sizeFromShape(s.shape),c=w.inferFromImplicitShape(a,i),u=w.sizeFromShape(c);w.assert(i===u,()=>`The new shape (${c}) has ${u} elements and the old shape (${s.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let l=o.texData.get(s.dataId);return l.isPacked&&!Cd(s.shape,c)&&!(l.texture!==null&&Cd(l.shape,c))?T9(s,c,o):(o.incRef(s.dataId),{dataId:s.dataId,shape:c,dtype:s.dtype})}var N9={kernelName:Nc,backendName:"webgl",kernelFunc:me},hN=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o=Math.floor(n/4)*4,i=n%4,c="sumValue += dot(values, ones);";if(t!=null){let l=1/t;c=`sumValue += dot(values * ${w.isInt(l)?l.toPrecision(2):l}, ones);`}let u="";s%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${o}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${c}
}
int inIdx = inOffset + ${o};
if (${i===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${c}
} else if (${i===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${c}
} else if (${i===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${c}
}
setOutput(sumValue);
}
`}},_9=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let c=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?c="sumValue":t==="prod"?c="prodValue":t==="all"?c="allValue":t==="any"&&(c="anyValue");let u=Math.floor(n/4)*4,l=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${i}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${i}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,p="vec4";t==="all"?(o="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,p="bvec4"):t==="any"&&(o="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,p="bvec4");let h="";s%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${o};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${o});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${u};
if (${l===1}) {
${p} values = ${p}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${l===2}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${l===3}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${c});
}
`}};function E9(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function ui(e,t,n,r){let s=E9(e.shape),a=e;for(let o=0;o<s.length;o++){let{inSize:i,windowSize:c,outSize:u}=s[o],l,d;n==="mean"?l=o===0?new hN({windowSize:c,inSize:i,batchSize:e.shape[0],outSize:u},i):new hN({windowSize:c,inSize:i,batchSize:e.shape[0],outSize:u}):l=new _9({windowSize:c,inSize:i,batchSize:e.shape[0],outSize:u},n),d=a,a=r.runWebGLProgram(l,[a],t),d.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(d)}return a}var A9=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let r=dt(this.rank),s=$9(t);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function $9(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let s=0;s<e.length;s++)r[e[s]]=n[s];return r.join()}var F9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=dt(this.rank),s=Y2("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=s[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${s[this.rank-1]} < ${n[this.rank-1]}`,c=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${c};
if(${i}) {
result[1] = ${c};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${c};
if(${i}) {
result[3] = ${c};
}
}
setOutput(result);
}
`}};function Jf(e,t,n){let r=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new F9(e.shape,t):new A9(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function D9(e,t,n,r){let s=t,a=e.shape.length,o=w.parseAxisParam(s,e.shape),i=o,c=_.getAxesPermutation(i,a),u=c!=null,l=e;u&&(l=Jf(e,c,r),i=_.getInnerMostAxes(i.length,a)),_.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=_.computeOutAndReduceShapes(l.shape,i),h=d;n&&(h=_.expandShapeToKeepDim(d,o));let f=w.sizeFromShape(p),g=w.sizeFromShape(e.shape)/f,b=me({inputs:{x:l},attrs:{shape:[g,f]},backend:r}),y=hh(e.dtype),v=ui(b,y,"sum",r),x=me({inputs:{x:v},attrs:{shape:h},backend:r});return r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(v),u&&r.disposeIntermediateTensorInfo(l),x}function Qf(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;return D9(s,a,o,n)}var R9={kernelName:Io,backendName:"webgl",kernelFunc:Qf};function Sn(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{perm:a}=r,o=n,i=s.shape.length,c=new Array(i);for(let l=0;l<c.length;l++)c[l]=s.shape[a[l]];let u;if(o.shouldExecuteOnCPU([s])){let d=o.texData.get(s.dataId).values,p=mw(d,s.shape,s.dtype,a,c);u=o.makeTensorInfo(c,s.dtype);let h=o.texData.get(u.dataId);h.values=p}else u=Jf(s,a,o);return u}var P9={kernelName:Eo,backendName:"webgl",kernelFunc:Sn},fN=1e3;function em({a:e,b:t,transposeA:n,transposeB:r,backend:s,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:c=null}){let u=e.shape.length,l=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],p=r?t.shape[l-1]:t.shape[l-2],h=n?e.shape[u-1]:e.shape[u-2],f=r?t.shape[l-2]:t.shape[l-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=w.sizeFromShape(m),y=w.sizeFromShape(g),v=b===y||b===1||y===1;w.assert(u>=2&&l>=2&&v,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let k=(b>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let C=n?[b,d,h]:[b,h,d],N=r?[y,f,p]:[y,p,f],F=me({inputs:{x:e},backend:s,attrs:{shape:C}}),R=me({inputs:{x:t},backend:s,attrs:{shape:N}}),O=[F,R],$=Math.max(b,y),P=n?F.shape[1]:F.shape[2],T=a!=null,L=o!=null,G=c==="leakyrelu",j=c!=null?Zf(c,!0):null,q=T||L||G||j!=null,K;if((h===1||f===1)&&P>fN&&q===!1){let te=F,ne=R;n&&(te=Sn({inputs:{x:F},backend:s,attrs:{perm:[0,2,1]}}),O.push(te)),r&&(ne=Sn({inputs:{x:R},backend:s,attrs:{perm:[0,2,1]}}),O.push(ne));let re=f!==1,J=f===1,oe=te;re&&(oe=me({inputs:{x:te},backend:s,attrs:{shape:[$,P,1]}}),O.push(oe));let ie=f===1?2:1,ue=ne;J&&(ue=me({inputs:{x:ne},backend:s,attrs:{shape:[$,1,P]}}),O.push(ue));let fe=gw({inputs:{a:oe,b:ue},backend:s});K=Qf({inputs:{x:fe},backend:s,attrs:{axis:ie,keepDims:!0}}),O.push(fe)}else{let te=yr(e.dtype,t.dtype),ne=new uN(C,N,[$,h,f],n,r,T,j,L,G),re=[F,R];if(a!=null&&re.push(a),L&&re.push(o),G){let J=s.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));re.push(J),O.push(J)}K=s.runWebGLProgram(ne,re,te)}let ee=me({inputs:{x:K},backend:s,attrs:{shape:k}});O.push(K);for(let te of O)s.disposeIntermediateTensorInfo(te);return ee}function O9(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:c,transposeB:u,activation:l,leakyreluAlpha:d}=r;return em({a:s,b:a,transposeA:c,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:l})}var M9={kernelName:Ao,backendName:"webgl",kernelFunc:O9},mN="return abs(x);";function L9(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let a=n.texData.get(r.dataId),o=K2(a.values);return n.makeTensorInfo(r.shape,r.dtype,o)}let s;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new Su(r.shape,mN):s=new ya(r.shape,mN),n.runWebGLProgram(s,[r],r.dtype)}var B9={kernelName:Vi,backendName:"webgl",kernelFunc:L9},z9=Ur+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,W9=Ke({opSnippet:z9}),V9={kernelName:Ui,backendName:"webgl",kernelFunc:W9},U9=Ur+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,G9=Ke({opSnippet:U9}),H9={kernelName:Gi,backendName:"webgl",kernelFunc:G9},gN="return a + b;",j9=an({opSnippet:gN,packedOpSnippet:gN,supportsComplex:!0,cpuKernelImpl:t7}),q9={kernelName:Ks,backendName:"webgl",kernelFunc:j9},K9=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${r};
setOutput(result);
}
`}},X9=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${r};
setOutput(result);
}
`}};function tm(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Zn({inputs:{x:r[0]},backend:n});if(r.length>Q().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(r.length/2),u=tm({inputs:r.slice(0,c),backend:n}),l=tm({inputs:r.slice(c),backend:n});return tm({inputs:[u,l],backend:n})}let s=r.map(c=>c.dtype).reduce((c,u)=>yr(c,u)),a=r.map(c=>c.shape),i=Q().getBool("WEBGL_PACK")?new X9(r[0].shape,a):new K9(r[0].shape,a);return n.runWebGLProgram(i,r,s)}var Y9={kernelName:Da,backendName:"webgl",kernelFunc:tm};function Z9(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=w.parseAxisParam(a,s.shape),u=c,l=_.getAxesPermutation(u,i),d=s;l!=null&&(d=Sn({inputs:{x:s},backend:n,attrs:{perm:l}}),u=_.getInnerMostAxes(u.length,i)),_.assertAxesAreInnerMostDims("all",u,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(h),m=me({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ui(m,m.dtype,"all",n),b;if(o){let y=_.expandShapeToKeepDim(p,c);b=me({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=me({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),l!=null&&n.disposeIntermediateTensorInfo(d),b}var J9={kernelName:Hi,backendName:"webgl",kernelFunc:Z9};function Q9(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=w.parseAxisParam(a,s.shape),u=c,l=_.getAxesPermutation(u,i),d=s;l!=null&&(d=Sn({inputs:{x:s},backend:n,attrs:{perm:l}}),u=_.getInnerMostAxes(u.length,i)),_.assertAxesAreInnerMostDims("any",u,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(h),m=me({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ui(m,m.dtype,"any",n),b;if(o){let y=_.expandShapeToKeepDim(p,c);b=me({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=me({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),l!=null&&n.disposeIntermediateTensorInfo(d),b}var eY={kernelName:ji,backendName:"webgl",kernelFunc:Q9},tY=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:s,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${r}; i++) {
int inIdx = ${i};
float candidate = getA(batch, inIdx);
if (candidate ${o} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},nY=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),r||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,c=dt(i),u=In("coords",i),l,d;if(a===1){d=i+1;let N=dt(d);l=`
${N} sourceLocR = ${N}(${u.join()}, 0);
++${u[i-1]};
${N} sourceLocG = ${N}(${u.join()}, 0);
++${u[i-2]};
${N} sourceLocA = ${N}(${u.join()}, 0);
--${u[i-1]};
${N} sourceLocB = ${N}(${u.join()}, 0);
--${u[i-2]};`}else d=i,l=`
${c} sourceLocR = coords;
++${u[i-1]};
${c} sourceLocG = coords;
++${u[i-2]};
${c} sourceLocA = coords;
--${u[i-1]};
${c} sourceLocB = coords;
--${u[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(N=>"int "+N),m=In("sourceLocR",d-1).concat("inIdx.r"),g=In("sourceLocG",d-1).concat("inIdx.g"),b=In("sourceLocB",d-1).concat("inIdx.b"),y=In("sourceLocA",d-1).concat("inIdx.a"),v=n==="max"?"greaterThan":"lessThan",x=r?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${y.join()})));`,k=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,C=r?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${p.join()}),
vec2(${p.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${p.join()}),
vec2(${p.slice(-2).join()}));
}
${C}
void main() {
${c} coords = getOutputCoords();
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
${l}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${k};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${x}
vec4 candidate = ${k};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${v}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function bN(e,t,n,r=null){let s=t.shape[0],a=t.shape[1];r!=null&&(s=r.shape[0],a=r.shape[1]);let o=_.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:s,outSize:Math.ceil(a/o)},c=new tY(i,n,r==null),u=[t];r!=null&&u.push(r);let l=e.runWebGLProgram(c,u,"int32");if(l.shape[1]===1)return l;let d=bN(e,t,n,l);return e.disposeIntermediateTensorInfo(l),d}function yN(e,t,n,r=null){let s=r!=null?r.shape:t.shape,a=s[s.length-1],o=_.computeOptimalWindowSize(a),i=new nY(s,o,n,r==null),c=r==null?[t]:[t,r],u=e.runWebGLProgram(i,c,"int32");if(u.shape.length===t.shape.length){let l=yN(e,t,n,u);return e.disposeIntermediateTensorInfo(u),l}return u}function vN(e,t,n,r){let s=[n];if(_.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),s,t.shape.length),!Q().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,c=t;i&&(c=e.unpackTensor(t),a.push(c));let[u,l]=_.computeOutAndReduceShapes(c.shape,s),d=w.sizeFromShape(l),p=me({inputs:{x:c},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=bN(e,p,r);a.push(h);let f=me({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return yN(e,t,r)}function rY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=w.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),c=s,u=[];i!=null&&(c=Sn({inputs:{x:s},backend:n,attrs:{perm:i}}),u.push(c),o=_.getInnerMostAxes(o.length,c.shape.length)),_.assertAxesAreInnerMostDims("argMax",[o[0]],c.shape.length);let l=vN(n,c,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),l}var sY={kernelName:Ra,backendName:"webgl",kernelFunc:rY};function aY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=w.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),c=s,u=[];i!=null&&(c=Sn({inputs:{x:s},backend:n,attrs:{perm:i}}),u.push(c),o=_.getInnerMostAxes(o.length,c.shape.length)),_.assertAxesAreInnerMostDims("argMin",[o[0]],c.shape.length);let l=vN(n,c,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),l}var oY={kernelName:pl,backendName:"webgl",kernelFunc:aY},iY=Ur+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,cY=Ke({opSnippet:iY}),uY={kernelName:qi,backendName:"webgl",kernelFunc:cY},lY=Ur+"return log(x + sqrt(x * x + 1.0));",dY=Ke({opSnippet:lY}),pY={kernelName:Ki,backendName:"webgl",kernelFunc:dY},hY=Ur+`
return atan(x);
`,fY=Ke({opSnippet:hY}),mY={kernelName:Xi,backendName:"webgl",kernelFunc:fY},gY=I9+`
return atan(a, b);
`,bY=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+S9+`
return result;
`,yY=an({opSnippet:gY,packedOpSnippet:bY}),vY={kernelName:Zi,backendName:"webgl",kernelFunc:yY},xY=Ur+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,wY=Ke({opSnippet:xY}),kY={kernelName:Yi,backendName:"webgl",kernelFunc:wY},_d=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,l=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(f||(b="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${l};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${N} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?s?m:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let y="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let x=Math.floor(a/4)*4,k=a%4,C=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${y}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${l};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${x}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${C}
}
int xC = xCCorner + ${x};
if (${k===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${C}
} else if (${k===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${C}
} else if (${k===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${C}
}
}
setOutput(${v});
}
`}},bw=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,c=e.strideWidth,u=e.dilationDepth,l=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",v="0.0";if(y||(v="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${c});
const ivec3 pads = ivec3(${m}, ${g}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / count");let C=Math.floor(a/4)*4,N=a%4,F=`
if (${y}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${c});
const ivec3 pads = ivec3(${m}, ${g}, ${b});
const float initializationValue = ${v};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${v});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${C}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${F}
}
int xC = xCCorner + ${C};
if (${N===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${F}
} else if (${N===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${F}
} else if (${N===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${F}
}
}
setOutput(${k});
}
}
`}};function IY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;vu(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=r,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let l=_.computePool2DInfo(s.shape,a,o,u,i,c);if(l.filterWidth===1&&l.filterHeight===1&&w.arraysEqual(l.inShape,l.outShape))return Zn({inputs:{x:s},backend:n});let d=new _d(l,"avg",!1);return n.runWebGLProgram(d,[s],"float32")}var SY={kernelName:Pa,backendName:"webgl",kernelFunc:IY};function CY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c,dataFormat:u}=r,l=[1,1,1],d=_.computePool3DInfo(s.shape,a,o,l,i,c,u),p=new bw(d,"avg",!1);return n.runWebGLProgram(p,[s],"float32")}var TY={kernelName:hl,backendName:"webgl",kernelFunc:CY},NY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.top,l=c-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${l});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC+= ${o}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},_Y=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,c=e.dilationHeight,u=e.dilationWidth,l=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=l-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*r);this.userCode=`
const ivec3 pads = ivec3(${h}, ${f}, ${m});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${l};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${c}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${p};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function EY(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:c,pad:u,dimRoundingMode:l}=r,d=[1,1,1],p=_.computePool3DInfo(o.shape,i,c,d,u,l),h=new _Y(p);return n.runWebGLProgram(h,[s],o.dtype)}var AY={kernelName:Cp,backendName:"webgl",kernelFunc:EY};function $Y(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;vu([s,a],"avgPoolGrad");let{filterSize:i,strides:c,pad:u}=r,l=_.computePool2DInfo(o.shape,i,c,1,u),d=new NY(l);return n.runWebGLProgram(d,[s],o.dtype)}var FY={kernelName:Sp,backendName:"webgl",kernelFunc:$Y};function DY(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;return em({a:s,b:a,transposeA:o,transposeB:i,backend:n})}var RY={kernelName:Oa,backendName:"webgl",kernelFunc:DY},PY=class{constructor(e,t,n,r,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let o="0.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";s!=null&&(_.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${o};
float scale = ${i};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},OY=class{constructor(e,t,n,r,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";s!=null&&(_.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${o};
vec4 scale = ${i};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}},MY=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:s,variance:a,offset:o,scale:i}=e;w.assert(s.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||s.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||s.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:c}=n;c==null&&(c=.001);let u=[r,s,a],l=null;o!=null&&(l=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let p=Q().getBool("WEBGL_PACK_NORMALIZATION")?new OY(r.shape,s.shape,a.shape,l,d,c):new PY(r.shape,s.shape,a.shape,l,d,c);return t.runWebGLProgram(p,u,u[0].dtype)},LY={kernelName:Ya,backendName:"webgl",kernelFunc:MY},BY=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=dt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=zY(this.rank),r,s=e.map((a,o)=>`sourceLoc.${yw[o]} = start[${o}] + coords.${yw[o]};`);r=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
void main() {
${r}
setOutput(getSource(${n}));
}
`}},yw=["x","y","z","w","u","v"];function zY(e){if(e===1)return"sourceLoc";if(e<=6)return yw.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var WY=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=dt(this.rank),n=In("coords",this.rank),r=In("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,a=`getChannel(getSource(${r.join()}), ${s})`,o=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.y = ${a};
--${r[this.rank-1]};
}
`,i=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${r[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.w = ${a};
}
}
`,c=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,l)=>`start[${l}]`).join()});`:e.map((u,l)=>`${r[l]} = ${n[l]} + start[${l}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${c}
vec4 result = vec4(0.);
${o}
${i}
setOutput(result);
}
`}};function VY(e,t,n,r){let s=r.texData.get(e.dataId),a=r.makeTensorInfo(n,e.dtype),o=r.texData.get(a.dataId);Object.assign(o,s),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=mn.computeFlatOffset(t,w.computeStrides(e.shape));s.slice&&(i+=s.slice.flatOffset),o.slice={flatOffset:i,origDataId:s.slice&&s.slice.origDataId||e.dataId};let c=r.dataRefCount.get(o.slice.origDataId)||1;return r.dataRefCount.set(o.slice.origDataId,c+1),a}function Tu(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r,[i,c]=mn.parseSliceParams(s,a,o);if(mn.assertParamsValid(s,i,c),w.sizeFromShape(c)===0)return n.makeTensorInfo(c,s.dtype,[]);if(n.shouldExecuteOnCPU([s])||s.dtype==="string"){let d=n.texData.get(s.dataId),p=N7(d.values,i,c,s.shape,s.dtype);return n.makeTensorInfo(c,s.dtype,p)}let{isPacked:u}=n.texData.get(s.dataId),l=mn.isSliceContinous(s.shape,i,c);if(u||!l){let d=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new WY(c):new BY(c),p=[i];return n.runWebGLProgram(d,[s],s.dtype,p)}return n.uploadToGPU(s.dataId),VY(s,i,c,n)}var UY={kernelName:$c,backendName:"webgl",kernelFunc:Tu},GY=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;w.assert(s.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,v)=>y*v),c=_.getReshaped(s.shape,a,i),u=_.getPermuted(c.length,a.length),l=_.getReshapedPermuted(s.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(l,o,a.length),h=[],f=me({inputs:{x:s},backend:n,attrs:{shape:c}}),m=Sn({inputs:{x:f},backend:n,attrs:{perm:u}}),g=me({inputs:{x:m},backend:n,attrs:{shape:l}}),b=Tu({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},HY={kernelName:Ji,backendName:"webgl",kernelFunc:GY};function jY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.readSync(s.dataId),c=n.readSync(a.dataId),u=q2(i,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var qY={kernelName:Tp,backendName:"webgl",kernelFunc:jY},KY="return float(a != b);",xN=an({opSnippet:KY,cpuKernelImpl:k7,dtype:"bool"}),XY={kernelName:vc,backendName:"webgl",kernelFunc:xN};function Ed(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return Zn({inputs:{x:s.complexTensorInfos.real},backend:n})}var YY={kernelName:Kp,backendName:"webgl",kernelFunc:Ed},ZY="return float(int(x));";function JY(e,t){let n=new ya(e.shape,ZY),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function vw(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return Zn({inputs:{x:s},backend:n});let o=wt(s.shape),i=vw({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),c=va({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),c}if(s.dtype==="complex64"){let o=Ed({inputs:{input:s},backend:n}),i=vw({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(s.dtype,a)){let o=Zn({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return JY(s,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),c=xN({inputs:{a:s,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),c}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var QY={kernelName:Ma,backendName:"webgl",kernelFunc:vw},wN="return ceil(x);",eZ=Ke({opSnippet:wN,packedOpSnippet:wN,cpuKernelImpl:r7}),tZ={kernelName:La,backendName:"webgl",kernelFunc:eZ},nZ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},rZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function sZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i;Q().getBool("WEBGL_PACK_CLIP")?i=new rZ(s.shape):i=new nZ(s.shape);let c=[[a],[o]];return n.runWebGLProgram(i,[s],s.dtype,c)}var aZ={kernelName:Xs,backendName:"webgl",kernelFunc:sZ},oZ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function kN(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function iZ(e){let{inputs:t,backend:n}=e,{x:r}=t,s=n.texData.get(r.dataId),a=new oZ(r.shape),o=[kN(r,s.complexTensorInfos.real),kN(r,s.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var cZ={kernelName:fl,backendName:"webgl",kernelFunc:iZ},uZ=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let r=t.length,s=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},lZ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,r=n.length,s=dt(r),a=In("coords",r),o=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let c=o[t],u=o.slice(-2),l=o.join(),d=`if (${c} < ${i[0]}) {
return getChannel(
getT0(${l}), vec2(${u.join()}));
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
if (${c} < ${i[f]} && ${c} >= ${i[f-1]}) {
return getChannel(
getT${f}(${nm(o,c,m)}),
vec2(${nm(u,c,m)}));
}`}let p=i.length,h=i[i.length-1];d+=`
return getChannel(
getT${p}(${nm(o,c,h)}),
vec2(${nm(u,c,h)}));`,this.userCode=`
float getValue(${o.map(f=>"int "+f)}) {
${d}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[r-1]} = ${a[r-1]} + 1;
if (${a[r-1]} < ${n[r-1]}) {
result.g = getValue(${a});
}
${a[r-2]} = ${a[r-2]} + 1;
if (${a[r-2]} < ${n[r-2]}) {
result.a = getValue(${a});
}
${a[r-1]} = ${a[r-1]} - 1;
if (${a[r-2]} < ${n[r-2]} &&
${a[r-1]} < ${n[r-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function nm(e,t,n){let r=e.indexOf(t);return e.map((a,o)=>o===r?`${a} - ${n}`:a).join()}function rm(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return Zn({inputs:{x:s.complexTensorInfos.imag},backend:n})}var dZ={kernelName:Wp,backendName:"webgl",kernelFunc:rm};function Nu(e,t,n){let r=e[0].dtype;if(r==="complex64"){let l=e.map(m=>Ed({inputs:{input:m},backend:n})),d=e.map(m=>rm({inputs:{input:m},backend:n})),p=Nu(l,t,n),h=Nu(d,t,n),f=va({inputs:{real:p,imag:h},backend:n});return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let s=n.shouldExecuteOnCPU(e);if(r==="string"&&(s=!0),s){let l=e.map(b=>{let y=w.sizeFromShape(b.shape.slice(t));return me({inputs:{x:b},backend:n,attrs:{shape:[-1,y]}})}),d=l.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),p=_.computeOutShape(l.map(b=>b.shape),1),h=l[0].shape[0]===1,f=s7(d,p,r,h),m=_.computeOutShape(e.map(b=>b.shape),t),g=n.makeTensorInfo(m,r,f);return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),g}if(e.length>Q().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(e.length/2),d=Nu(e.slice(0,l),t,n),p=Nu(e.slice(l),t,n),h=Nu([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let l=new lZ(e.map(d=>d.shape),t);return n.runWebGLProgram(l,e,r)}let{tensors2D:a,outShape:o}=pZ(e,t,n),i=new uZ(a.map(l=>l.shape)),c=n.runWebGLProgram(i,a,r);a.forEach(l=>n.disposeIntermediateTensorInfo(l));let u=me({inputs:{x:c},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(c),u}function pZ(e,t,n){let r=_.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>me({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function IN(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r,a=w.parseAxisParam(s,t[0].shape)[0],o=_.computeOutShape(t.map(u=>u.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>w.sizeFromShape(u.shape)>0);if(i.length===1)return Zn({inputs:{x:i[0]},backend:n});let c=i.map(u=>u.shape);return _.assertParamsConsistent(c,a),Nu(i,a,n)}var hZ={kernelName:Qi,backendName:"webgl",kernelFunc:IN},SN=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,c=e.strideWidth,u=e.dilationHeight,l=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,b=m?2:3,y=m?3:1,v="",x="";n&&(r?v=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?v=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:v=`
float activation(float x) {
${n}
}
`,x="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${v}
const ivec2 strides = ivec2(${i}, ${c});
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${y}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${l};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${k}
${x}
setOutput(result);
}
`}},fZ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,c=e.dilationHeight,u=e.dilationWidth,l=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${a}, ${o});
const ivec3 pads = ivec3(${t}, ${n}, ${r});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${l}; wF++) {
int xF = xFCorner + wF * ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},mZ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=pr(this.outputShape.length);let{dataFormat:n}=t,r=kn(),s=n==="channelsLast",a=s?0:1,o=s?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,c="";for(let u=0;u<=1;u++)for(let l=0;l<=1;l++)c+=`
blockIndex = rc.y + ${l};
pos = rc.x + ${u};
${i}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${a}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${o}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${s}) {
innerDims = vec2(d1, ch);
result[${u*2+l}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+l}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${c}
${r.output} = result;
}
`}};function CN({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let c=e.shape,u=r.texData.get(e.dataId),l=n.inChannels,d=c[0]*c[1]*c[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,b=[];if(!((d===1||p===1)&&l>fN)&&u.isPacked&&h&&u.texture!=null&&c[2]%2!=0&&w.arraysEqual(u.shape.slice(-3),c.slice(-3))){let x=c[0]*c[1]*(c[2]+1),k={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},C=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,w.assert(Cd(u.shape,k.shape),()=>`packed reshape ${u.shape} to ${k.shape} isn't free`);let N=me({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(N);let F=em({a:k,b:N,backend:r,transposeA:f,transposeB:m,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),R=r.texData.get(F.dataId);w.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=C,R.shape=n.outShape,g=Zn({inputs:{x:F},backend:r}),g.shape=n.outShape,b.push(F)}else{let x=h?c[0]*c[1]*c[2]:c[0]*c[2]*c[3],k=me({inputs:{x:e},backend:r,attrs:{shape:[1,x,n.inChannels]}}),C=me({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=em({a:k,b:C,transposeA:f,transposeB:m,backend:r,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=me({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),b.push(k),b.push(C),b.push(N)}for(let x of b)r.disposeIntermediateTensorInfo(x);return g}function TN({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:c,filterHeight:u,inChannels:l,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=c*u*l,g=p*d,b=[m,g],y=!0,v=!1,x=[],k=me({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),C=me({inputs:{x:t},backend:r,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});x.push(k),x.push(C);let N=new mZ(b,n),F=[k.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],R=r.runWebGLProgram(N,[k],"float32",F),O=me({inputs:{x:R},backend:r,attrs:{shape:[1,b[0],b[1]]}});x.push(R),x.push(O);let $=s!=null,P=a!=null,T=i==="leakyrelu",L=i?Zf(i,!0):null,G=new uN(O.shape,C.shape,[1,g,n.outChannels],y,v,$,L,P,T),j=[O,C];if(s&&j.push(s),P&&j.push(a),T){let te=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));j.push(te),x.push(te)}let q=r.runWebGLProgram(G,j,"float32"),K=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],ee=me({inputs:{x:q},backend:r,attrs:{shape:K}});x.push(q);for(let te of x)r.disposeIntermediateTensorInfo(te);return ee}function gZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:c,dilations:u,dimRoundingMode:l}=r,d=_.convertConv2DDataFormat(c),p=_.computeConv2DInfo(s.shape,a.shape,o,u,i,l,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=CN({x:s,filter:a,convInfo:p,backend:n});else if(Q().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)h=TN({x:s,filter:a,convInfo:p,backend:n});else{let m=new SN(p);h=n.runWebGLProgram(m,[s,a],"float32")}let f=me({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var bZ={kernelName:Ba,backendName:"webgl",kernelFunc:gZ},yZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},vZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,c=a?1:2,u=a?2:3,l=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${l}];
ivec2 dyCorner = ivec2(coords[${c}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},xZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${s};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${o};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},wZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,c=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${i}, ${c}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function kZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,dataFormat:c,dimRoundingMode:u,filterShape:l}=r,d=_.convertConv2DDataFormat(c),p=_.computeConv2DInfo(s.shape,l,o,1,i,u,!1,d),h=new yZ(p);return n.runWebGLProgram(h,[s,a],"float32")}var IZ={kernelName:_p,backendName:"webgl",kernelFunc:kZ};function SZ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{inputShape:o,strides:i,pad:c,dataFormat:u,dimRoundingMode:l}=r,d=_.convertConv2DDataFormat(u),p=_.computeConv2DInfo(o,a.shape,i,1,c,l,!1,d),h=new vZ(p);return n.runWebGLProgram(h,[s,a],"float32")}var CZ={kernelName:za,backendName:"webgl",kernelFunc:SZ};function TZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c}=r,u=_.computeConv3DInfo(s.shape,a.shape,o,c,i),l=new fZ(u);return n.runWebGLProgram(l,[s,a],"float32")}var NZ={kernelName:ml,backendName:"webgl",kernelFunc:TZ};function _Z(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,filterShape:c}=r,u=_.computeConv3DInfo(s.shape,c,o,1,i),l=new xZ(u);return n.runWebGLProgram(l,[s,a],"float32")}var EZ={kernelName:Ep,backendName:"webgl",kernelFunc:_Z};function AZ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{pad:o,strides:i,inputShape:c}=r,u=_.computeConv3DInfo(c,a.shape,i,1,o),l=new wZ(u);return n.runWebGLProgram(l,[s,a],"float32")}var $Z={kernelName:Ap,backendName:"webgl",kernelFunc:AZ},FZ=cN+`
return cos(x);
`,DZ=Ke({opSnippet:FZ}),RZ={kernelName:Wa,backendName:"webgl",kernelFunc:DZ},PZ=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,OZ=Ke({opSnippet:PZ}),MZ={kernelName:Va,backendName:"webgl",kernelFunc:OZ},LZ=class{constructor(e,t,n,r,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,c]=e,[u]=t,[l,d]=n;this.outputShape=[u,l,d,c];let p=r==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,b]=l>1?[`${(o-1)/(l-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,v,x]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${y});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${g};
float width_scale = ${v};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${s}));
return;
}
float in_x = ${x};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${p} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},BZ=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:c,extrapolationValue:u}=r,l=new LZ(s.shape,a.shape,i,c,u);return n.runWebGLProgram(l,[s,a,o],"float32")},zZ={kernelName:ec,backendName:"webgl",kernelFunc:BZ},NN=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let r=e.length,s=t?"0.0":`getX(${_N(r,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${dt(r)} coords = getOutputCoords();
int end = ${EN(r,"coords")};
float val = ${s};
int pow2 = int(pow(2.0, index));
if (${o}) {
int idx = ${i};
${EN(r,"coords")} = idx;
val += getX(${_N(r,"coords")});
}
setOutput(val);
}
`}};function _N(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function EN(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function WZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r,c=s.shape.length,u=_.getAxesPermutation([a],c),l=s;u!=null&&(l=Sn({inputs:{x:s},backend:n,attrs:{perm:u}}));let d=_.getInnerMostAxes(1,c)[0];if(d!==c-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${s.shape.length-1} but got axis=${a}`);let p=l.shape[d],h=Zn({inputs:{x:l},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new NN(l.shape,!1,i),g=[[f]],b=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(b)}if(o){let f=new NN(l.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=_.getUndoAxesPermutation(u),m=Sn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(l),m}return h}var VZ={kernelName:Ua,backendName:"webgl",kernelFunc:WZ};function UZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o,binaryOutput:i}=r;if(s.shape.length===1){let c=n.readSync(s.dataId),u=n.readSync(a.dataId),l=q2(c,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,l)}else if(s.shape.length===2){let c=n.bufferSync(s),u=n.bufferSync(a),l=n7(c,u,o,i);return n.makeTensorInfo(l.shape,a.dtype,l.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`)}var GZ={kernelName:$p,backendName:"webgl",kernelFunc:UZ},HZ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function jZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockSize:a,dataFormat:o}=r;w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=s.shape[0],c=o==="NHWC"?s.shape[1]:s.shape[2],u=o==="NHWC"?s.shape[2]:s.shape[3],l=o==="NHWC"?s.shape[3]:s.shape[1],d=c*a,p=u*a,h=l/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new HZ(f,a,o);return n.runWebGLProgram(m,[s],s.dtype)}var qZ={kernelName:tc,backendName:"webgl",kernelFunc:jZ},AN=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=pr(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,c="",u="";n&&(r?c=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?c=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:c=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let l=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${c}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${a}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${o}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${l}
${u}
setOutput(result);
}
`}},$N=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=pr(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,c=e.dilationWidth,u=e.filterHeight,l=e.filterWidth,d=l,p=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<l;g++)p+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;for(let g=0;g<u;g++){for(let b=0;b<l;b++)p+=`
xTexelC${b*2} = vec4(0.0);
xTexelC${b*2}Ready = 0;
xTexelC${b*2+1} = vec4(0.0);
xTexelC${b*2+1}Ready = 0;
xC${b} = vec4(0.0);`;p+=`
xR = xRCorner + ${g} * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let b=0;b<(d+1)/2;b++){let y=b*2;if(p+=`
xC = xCCorner + ${y*c};
`,i===1){if(y<l&&(o%2==1?(p+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
`,c===1&&y>0?p+=`
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
`:p+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
} else {
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
}
`):p+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xC${y} = xTexelC${y};
`,y+1<l)){let v=o%2==0?w.nearestLargerEven(c):c;c%2==0&&o%2==1||c%2!=0&&o%2!=1?(p+=`
xCOffset = xC + imod(pads[1], 2) + ${v};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
`,c>1&&(p+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
xTexelC${y}Ready = 1;
}
`),p+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
`):v===1?p+=`
xC${y+1} = xTexelC${y};
`:p+=`
xCOffset = xC + ${v};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y+1} = xTexelC${y+1};
`}}else y<l&&(o%2==1?(p+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`,y+1<l&&(p+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
`)):(p+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(
xTexelC${y}.xy, xTexelC${y+1}.xy);
`,y+1<l&&(p+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`)));y<l&&(p+=`
wTexel = getW(${g}, ${y}, d1, q);
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
`,y+1<l&&(p+=`
wTexel = getW(${g}, ${y+1}, d1, q);
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
`))}p+=`
}
`}let h="",f="";n&&(r?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${a};
int q = d2 - d1 * ${a};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${p}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${f}
setOutput(result);
}
`}};function KZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c,dimRoundingMode:u}=r,l=c;l==null&&(l=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(o,l),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let d=_.computeConv2DInfo(s.shape,a.shape,o,l,i,u,!0),p;Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new $N(d):p=new AN(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[s,a],"float32",h)}var XZ={kernelName:Ga,backendName:"webgl",kernelFunc:KZ},YZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},ZZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${i}; dm++) {
int d2 = d1 * ${i} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function JZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,dilations:i,pad:c,dimRoundingMode:u,filterShape:l}=r,d=_.computeConv2DInfo(s.shape,l,o,i,c,u,!0),p=new YZ(d);return n.runWebGLProgram(p,[s,a],"float32")}var QZ={kernelName:Fp,backendName:"webgl",kernelFunc:JZ};function eJ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{strides:o,dilations:i,pad:c,dimRoundingMode:u,inputShape:l}=r,d=_.computeConv2DInfo(l,a.shape,o,i,c,u,!0),p=new ZZ(d);return n.runWebGLProgram(p,[s,a],"float32")}var tJ={kernelName:Dp,backendName:"webgl",kernelFunc:eJ},nJ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function rJ(e){let{inputs:t,backend:n}=e,{x:r}=t,s=[...r.shape,...r.shape],a=w.sizeFromShape(r.shape),o=me({inputs:{x:r},backend:n,attrs:{shape:[a]}}),i=new nJ(a),c=n.runWebGLProgram(i,[o],o.dtype),u=me({inputs:{x:c},backend:n,attrs:{shape:s}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),u}var sJ={kernelName:Rp,backendName:"webgl",kernelFunc:rJ},aJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:s,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:c,dilationWidth:u}=e,{top:l,left:d}=r;this.userCode=`
const ivec2 strides = ivec2(${s}, ${a});
const ivec2 pads = ivec2(${l}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${o}; h++) {
int hIn = hBeg + h * ${c};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${i}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function oJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c}=r,u=_.computeDilation2DInfo(s.shape,a.shape,o,i,"NHWC",c),l,d=new aJ(u);l=n.runWebGLProgram(d,[s,a],"float32");let p=me({inputs:{x:l},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(l),p}var iJ={kernelName:gl,backendName:"webgl",kernelFunc:oJ};function cJ(e){let{inputs:t,backend:n,attrs:r}=e,{equation:s}=r,a=t,{allDims:o,summedDims:i,idDims:c}=_.decodeEinsumEquation(s,a.length);_.checkEinsumDimSizes(o.length,c,a);let{path:u,steps:l}=_.getEinsumComputePath(i,c),d=l.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of l[m]){let{permutationIndices:b,expandDims:y}=_.getEinsumPermutation(h,c[g]),v;_.isIdentityPermutation(b)?v=a[g]:(v=Sn({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=me({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),p===null?p=v:(p=gw({inputs:{a:v,b:p},backend:n}),f.push(p))}m<d-1&&(u[m]>=0&&(p=Qf({inputs:{x:p},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var uJ={kernelName:Mp,backendName:"webgl",kernelFunc:cJ},lJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",dJ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,pJ=Ke({opSnippet:lJ,packedOpSnippet:dJ}),hJ={kernelName:ja,backendName:"webgl",kernelFunc:pJ},fJ="return (b >= 1.0) ? a : a * (b + 1.0);",mJ=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,gJ=e=>{let{inputs:t,backend:n}=e,{dy:r,y:s}=t,a=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Nd(mJ,r.shape,s.shape):new Cu(fJ,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],r.dtype)},bJ={kernelName:Lp,backendName:"webgl",kernelFunc:gJ},yJ=`
return vec4(equal(a, b));
`,vJ="return float(a == b);",xJ=an({opSnippet:vJ,packedOpSnippet:yJ,dtype:"bool",cpuKernelImpl:a7}),wJ={kernelName:rc,backendName:"webgl",kernelFunc:xJ},kJ=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${_.ERF_P};
float a1 = ${_.ERF_A1};
float a2 = ${_.ERF_A2};
float a3 = ${_.ERF_A3};
float a4 = ${_.ERF_A4};
float a5 = ${_.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,IJ=Ke({opSnippet:kJ}),SJ={kernelName:nc,backendName:"webgl",kernelFunc:IJ},FN="return exp(x);",DN=Ke({opSnippet:FN,packedOpSnippet:FN,cpuKernelImpl:o7}),CJ={kernelName:qa,backendName:"webgl",kernelFunc:DN};function xw(e){let{inputs:t,attrs:n,backend:r}=e,{dim:s}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),c=s;return s<0&&(w.assert(-(o+1)<=s,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),c=o+s+1),i.splice(c,0,1),me({inputs:{x:a},backend:r,attrs:{shape:i}})}var TJ={kernelName:sc,backendName:"webgl",kernelFunc:xw},RN="return exp(x) - 1.0;",NJ=Ke({opSnippet:RN,packedOpSnippet:RN,cpuKernelImpl:i7}),_J={kernelName:ac,backendName:"webgl",kernelFunc:NJ},PN=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${r}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${o}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${r});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${r}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function ON(e,t,n){let r=n.texData.get(e.dataId),s=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=s/a,i=me({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),c=i.shape,u=new PN("real",c,t),l=new PN("imag",c,t),d=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:c},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:c}],p=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(l,d,"float32"),f=va({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=me({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function EJ(e){let{inputs:t,backend:n}=e,{input:r}=t;return ON(r,!1,n)}var AJ={kernelName:Bp,backendName:"webgl",kernelFunc:EJ},$J=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Ad(e){let{backend:t,attrs:n}=e,{shape:r,value:s}=n,{dtype:a}=n;if(a=a||w.inferDtype(s),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(r));return o.fill(s),t.makeTensorInfo(r,a,o)}else{let o=new $J(r,s),i=[[s]];return t.runWebGLProgram(o,[],a,i)}}var FJ={kernelName:bl,backendName:"webgl",kernelFunc:Ad},DJ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},RJ={kernelName:oc,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,s=new DJ(n.shape);return r.runWebGLProgram(s,[n],n.dtype)}},MN="return floor(x);",PJ=Ke({opSnippet:MN,packedOpSnippet:MN,cpuKernelImpl:c7}),OJ={kernelName:Ka,backendName:"webgl",kernelFunc:PJ},MJ=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,LJ=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,BJ=an({opSnippet:MJ,packedOpSnippet:LJ,dtype:"int32"}),zJ={kernelName:Xa,backendName:"webgl",kernelFunc:BJ},WJ=class{constructor(e){this.variableNames=["A"];let t=kn(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},VJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=kn(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},UJ={kernelName:oh,backendName:"webgl",kernelFunc:GJ},_u;function GJ(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:s}=t,{numChannels:a}=r,o=typeof HTMLVideoElement!="undefined"&&s instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&s instanceof HTMLImageElement,[c,u]=o?[s.videoWidth,s.videoHeight]:[s.width,s.height],l=[u,c],d=[u,c,a];(i||o)&&(_u==null&&(_u=document.createElement("canvas").getContext("2d")),_u.canvas.width=c,_u.canvas.height=u,_u.drawImage(s,0,0,c,u),s=_u.canvas);let p=n.makeTensorInfo(l,"int32");n.texData.get(p.dataId).usage=lr.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),s);let h=Q().getBool("WEBGL_PACK")?new VJ(d):new WJ(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function HJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:u,dataFormat:l,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=_.convertConv2DDataFormat(l),g=_.computeConv2DInfo(s.shape,a.shape,c,d,u,p,!1,m),b,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=CN({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(Q().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)b=TN({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let x=o!=null,k=i!=null,C=h==="leakyrelu",N=h?Zf(h,!1):null,F=new SN(g,x,N,k,C),R=[s,a];if(o&&R.push(o),i&&R.push(i),C){let O=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));R.push(O),y.push(O)}b=n.runWebGLProgram(F,R,"float32")}let v=me({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var jJ={kernelName:$o,backendName:"webgl",kernelFunc:HJ};function qJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:u,dilations:l,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=r,f=[],m=l;m==null&&(m=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(c,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${c} and dilations '${m}'`);let g=_.computeConv2DInfo(s.shape,a.shape,c,m,u,d,!0),b=Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=p?Zf(p,b):null,v=[s,a],x=o!=null,k=i!=null,C=p==="leakyrelu";if(x&&v.push(o),k&&v.push(i),C){let O=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));v.push(O),f.push(O)}let N;b?N=new $N(g,x,y,k,C):N=new AN(g,x,y,k,C);let F=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=n.runWebGLProgram(N,v,"float32",F);return f.forEach(O=>n.disposeIntermediateTensorInfo(O)),R}var KJ={kernelName:Fo,backendName:"webgl",kernelFunc:qJ},XJ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=dt(t.length),s=dt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${r} strides = ${r}(${this.strides});
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function YJ(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=s.shape,o=a[a.length-1],i=w.sizeFromShape(r.shape),[c,u,l,d]=_.prepareAndValidate(r,s),p=me({inputs:{x:s},backend:n,attrs:{shape:[u,o]}}),h=me({inputs:{x:r},backend:n,attrs:{shape:[w.sizeFromShape(r.shape)/l,l]}});if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.readSync(s.dataId),y=n.bufferSync(r),v=u7(b,y,r.dtype,u,o,l,d,r.shape,i);return n.makeTensorInfo(c,r.dtype,v.values)}let f=new XJ(o,d,[u,l]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=me({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var ZJ={kernelName:cc,backendName:"webgl",kernelFunc:YJ},JJ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=dt(this.rank),r=QJ(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function QJ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let s=0;s<e.length;s++)s===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[s]}`);return r.join()}function LN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,indices:a}=t,{axis:o,batchDims:i}=r,c=w.parseAxisParam(o,s.shape)[0],u=_.segment_util.collectGatherOpShapeInfo(s,a,c,i),l=w.sizeFromShape(a.shape),d=[],p=me({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=me({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,l/u.batchSize]}});d.push(p),d.push(h);let f=[u.batchSize,u.outerSize,l/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([s,a])||s.dtype==="string"){let y=n.bufferSync(h),v=n.bufferSync(p),x=l7(v,y,f);return d.forEach(k=>n.disposeIntermediateTensorInfo(k)),n.makeTensorInfo(u.outputShape,x.dtype,x.values)}let m=new JJ(p.shape,f),g=n.runWebGLProgram(m,[p,h],p.dtype);d.push(g);let b=me({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var eQ={kernelName:ic,backendName:"webgl",kernelFunc:LN},tQ="return float(a > b);",nQ=`
return vec4(greaterThan(a, b));
`,rQ=an({opSnippet:tQ,packedOpSnippet:nQ,cpuKernelImpl:d7,dtype:"bool"}),sQ={kernelName:uc,backendName:"webgl",kernelFunc:rQ},aQ="return float(a >= b);",oQ=`
return vec4(greaterThanEqual(a, b));
`,iQ=an({opSnippet:aQ,packedOpSnippet:oQ,dtype:"bool",cpuKernelImpl:p7}),cQ={kernelName:Za,backendName:"webgl",kernelFunc:iQ};function uQ(e){let{inputs:t,backend:n}=e,{input:r}=t;return ON(r,!0,n)}var lQ={kernelName:zp,backendName:"webgl",kernelFunc:uQ},dQ="return float(!isnan(x) && !isinf(x));",pQ=Ke({opSnippet:dQ,dtype:"bool"}),hQ={kernelName:lc,backendName:"webgl",kernelFunc:pQ},fQ="return float(isinf(x));",mQ=Ke({opSnippet:fQ,dtype:"bool"}),gQ={kernelName:dc,backendName:"webgl",kernelFunc:mQ},bQ="return float(isnan(x));",yQ=Ke({opSnippet:bQ,dtype:"bool"}),vQ={kernelName:pc,backendName:"webgl",kernelFunc:yQ},xQ="return float(a < b);",wQ=`
return vec4(lessThan(a, b));
`,kQ=an({opSnippet:xQ,packedOpSnippet:wQ,cpuKernelImpl:h7,dtype:"bool"}),IQ={kernelName:hc,backendName:"webgl",kernelFunc:kQ},SQ="return float(a <= b);",CQ=`
return vec4(lessThanEqual(a, b));
`,TQ=an({opSnippet:SQ,packedOpSnippet:CQ,cpuKernelImpl:f7,dtype:"bool"}),NQ={kernelName:fc,backendName:"webgl",kernelFunc:TQ};function _Q(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=m7(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var EQ={kernelName:Vp,backendName:"webgl",kernelFunc:_Q},AQ=`if (x < 0.0) return NAN;
return log(x);`,$Q=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,FQ=Ke({opSnippet:AQ,packedOpSnippet:$Q,cpuKernelImpl:g7}),DQ={kernelName:eo,backendName:"webgl",kernelFunc:FQ},RQ="return log(1.0 + x);",PQ=Ke({opSnippet:RQ}),OQ={kernelName:mc,backendName:"webgl",kernelFunc:PQ},MQ="return float(a >= 1.0 && b >= 1.0);",LQ=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,BQ=an({opSnippet:MQ,packedOpSnippet:LQ,dtype:"bool"}),zQ={kernelName:gc,backendName:"webgl",kernelFunc:BQ},WQ="return float(!(x >= 1.0));",VQ=Ke({opSnippet:WQ}),UQ={kernelName:yl,backendName:"webgl",kernelFunc:VQ},GQ="return float(a >= 1.0 || b >= 1.0);",HQ=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,jQ=an({opSnippet:GQ,packedOpSnippet:HQ,dtype:"bool"}),qQ={kernelName:vl,backendName:"webgl",kernelFunc:jQ},KQ=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,c=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${c})`:s===1?i=`1.0/(${c})`:i=`exp(log(${c}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${o}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${i};
setOutput(val);
}
`}},XQ=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,c=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${c})`:s===1?i=`1.0/(${c})`:i=`exp(log(${c}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${i};
setOutput(result);
}
`}},YQ=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:c}=r,u=Q().getBool("WEBGL_PACK_NORMALIZATION")?new XQ(s.shape,a,o,i,c):new KQ(s.shape,a,o,i,c);return n.runWebGLProgram(u,[s],s.dtype)},ZQ={kernelName:xl,backendName:"webgl",kernelFunc:YQ},JQ=class{constructor(e,t,n,r,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${r}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${r})
* float(${s})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},QQ=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s,y:a,dy:o}=t,{depthRadius:i,bias:c,alpha:u,beta:l}=r,d=new JQ(s.shape,i,c,u,l);return n.runWebGLProgram(d,[s,a,o],s.dtype)},eee={kernelName:Up,backendName:"webgl",kernelFunc:QQ};function tee(e,t,n,r){let s=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/s,i=me({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),c=ui(i,e.dtype,"max",r),u=me({inputs:{x:c},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(c),u}function BN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reductionIndices:a,keepDims:o}=r,i=s.shape.length,c=w.parseAxisParam(a,s.shape),u=c,l=_.getAxesPermutation(u,i),d=l!=null,p=n.shouldExecuteOnCPU([s]),h=s;if(d){if(p){let v=n.texData.get(h.dataId).values,x=new Array(i);for(let N=0;N<x.length;N++)x[N]=s.shape[l[N]];let k=mw(v,s.shape,s.dtype,l,x);h=n.makeTensorInfo(x,s.dtype);let C=n.texData.get(h.dataId);C.values=k}else h=Jf(s,l,n);u=_.getInnerMostAxes(u.length,i)}_.assertAxesAreInnerMostDims("max",u,i);let[f,m]=_.computeOutAndReduceShapes(h.shape,u),g=f;o&&(g=_.expandShapeToKeepDim(f,c));let b;if(p){let v=n.texData.get(h.dataId).values,x=b7(v,w.sizeFromShape(m),g,s.dtype);b=n.makeTensorInfo(g,s.dtype);let k=n.texData.get(b.dataId);k.values=x}else b=tee(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),b}var nee={kernelName:to,backendName:"webgl",kernelFunc:BN},ree=rN+`
return max(a, b);
`,see=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Yf+`
return result;
`,aee=an({opSnippet:ree,packedOpSnippet:see,cpuKernelImpl:y7}),oee={kernelName:no,backendName:"webgl",kernelFunc:aee};function iee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;vu(s,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=r,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let l=_.computePool2DInfo(s.shape,a,o,u,i,c);if(l.filterWidth===1&&l.filterHeight===1&&w.arraysEqual(l.inShape,l.outShape))return Zn({inputs:{x:s},backend:n});let d=new _d(l,"max",!1);return n.runWebGLProgram(d,[s],s.dtype)}var cee={kernelName:ro,backendName:"webgl",kernelFunc:iee};function uee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dataFormat:c,dimRoundingMode:u}=r,l=[1,1,1],d=_.computePool3DInfo(s.shape,a,o,l,i,u,c),p=new bw(d,"max",!1);return n.runWebGLProgram(p,[s],s.dtype)}var lee={kernelName:wl,backendName:"webgl",kernelFunc:uee},dee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=s-1-e.padInfo.top,i=a-1-e.padInfo.left,c=s*a-1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${r}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${c} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},pee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,c=e.effectiveFilterHeight,u=e.effectiveFilterWidth,l=i-1-e.padInfo.front,d=c-1-e.padInfo.top,p=u-1-e.padInfo.left,h=i*c*u-1;this.userCode=`
const ivec3 pads = ivec3(${l}, ${d}, ${p});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${i};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${c};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${o}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${c} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function hee(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:c,pad:u,dimRoundingMode:l}=r,d=[1,1,1],p=_.computePool3DInfo(o.shape,i,c,d,u,l),h=new bw(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new pee(p),g=n.runWebGLProgram(m,[s,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var fee={kernelName:Hp,backendName:"webgl",kernelFunc:hee};function mee(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;vu([a,o],"maxPoolGrad");let{filterSize:c,strides:u,pad:l,dimRoundingMode:d}=r,p=_.computePool2DInfo(i.shape,c,u,1,l,d),h=!0,f=new _d(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new dee(p),b=n.runWebGLProgram(g,[s,m],i.dtype);return n.disposeIntermediateTensorInfo(m),b}var gee={kernelName:Gp,backendName:"webgl",kernelFunc:mee};function bee(e,t,n,r){let s=new _d(n,"max",!1),a=r.runWebGLProgram(s,[e],"float32");s=new _d(n,"max",!0,!0,t);let o=r.runWebGLProgram(s,[e],"float32");return[a,o]}var yee={kernelName:jp,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,c=n;w.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];w.assert(_.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let l=_.computePool2DInfo(r.shape,s,a,u,o),[d,p]=bee(r,i,l,c);return[d,p]}};function vee(e,t,n,r){let s=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/s,i=me({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),c=ui(i,"float32","mean",r),u=me({inputs:{x:c},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(c),u}var xee={kernelName:so,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:s,axis:a}=t,o=n,i=r.shape.length,c=w.parseAxisParam(a,r.shape),u=c,l=_.getAxesPermutation(u,i),d=l!=null,p=o.shouldExecuteOnCPU([r]),h=[],f=r;if(d){if(p){let x=o.texData.get(f.dataId).values,k=new Array(i);for(let F=0;F<k.length;F++)k[F]=r.shape[l[F]];let C=mw(x,r.shape,r.dtype,l,k);f=o.makeTensorInfo(k,r.dtype);let N=o.texData.get(f.dataId);N.values=C}else f=Jf(r,l,o);h.push(f),u=_.getInnerMostAxes(u.length,i)}_.assertAxesAreInnerMostDims("sum",u,i);let[m,g]=_.computeOutAndReduceShapes(f.shape,u),b=m;s&&(b=_.expandShapeToKeepDim(m,c));let y=vee(f,g,b,o);for(let v of h)o.disposeIntermediateTensorInfo(v);return y}};function wee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=w.parseAxisParam(a,s.shape),u=c,l=_.getAxesPermutation(u,i),d=s;l!=null&&(d=Sn({inputs:{x:s},backend:n,attrs:{perm:l}}),u=_.getInnerMostAxes(u.length,s.shape.length)),_.assertAxesAreInnerMostDims("min",u,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(h),m=me({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ui(m,m.dtype,"min",n),b;if(o){let y=_.expandShapeToKeepDim(p,c);b=me({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=me({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),l!=null&&n.disposeIntermediateTensorInfo(d),b}var kee={kernelName:ao,backendName:"webgl",kernelFunc:wee},Iee=rN+`
return min(a, b);
`,See=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Yf+`
return result;
`,Cee=an({opSnippet:Iee,packedOpSnippet:See,cpuKernelImpl:v7}),Tee={kernelName:oo,backendName:"webgl",kernelFunc:Cee},Nee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,l)=>u[0]+e[l]+u[1]);let r=e.length,s=dt(r),a=t.map(u=>u[0]).join(","),o=t.map((u,l)=>u[0]+e[l]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),c=n==="reflect"?0:1;if(r===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${c};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${c};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${o});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${r}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${c};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${c};
}
}
${s} coords = outC - start;
setOutput(getX(${i}));
}
`}},_ee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let r=e.length,s=dt(r),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=In("rc",r),c=In("source",r),u=`${i[r-1]} < ${this.outputShape[r-1]}`,l=r===1?"source":`vec2(${c.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(r===1){let h=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;p=`
${s} rc = outputLoc;
${h}
result[0] = getChannel(getX(${c.join()}), ${l});
${i[r-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${c.join()}), ${l});
}
`}else{let h=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;p=`
${s} rc = outputLoc;
${h}
result[0] = getChannel(getX(${c.join()}), ${l});
${i[r-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${c.join()}), ${l});
}
rc = outputLoc;
${i[r-2]} += 1;
if(${i[r-2]} < ${this.outputShape[r-2]}) {
${h}
result[2] = getChannel(getX(${c.join()}), ${l});
${i[r-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${c.join()}), ${l});
}
}
`}this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${o});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},Eee=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:s,mode:a}=n,o=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new _ee(r.shape,s,a):new Nee(r.shape,s,a);return t.runWebGLProgram(o,[r],r.dtype)},Aee={kernelName:io,backendName:"webgl",kernelFunc:Eee},$ee=`if (b == 0.0) return NAN;
return mod(a, b);`,Fee=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Yf+`
return result;
`,Dee=an({opSnippet:$ee,packedOpSnippet:Fee}),Ree={kernelName:bc,backendName:"webgl",kernelFunc:Dee},Pee=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Oee=`
if (a == b) {
return 1.0;
};
return a / b;`,Mee=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,zN=an({opSnippet:Oee,packedOpSnippet:Mee,checkOutOfBounds:!0}),Lee={kernelName:Ha,backendName:"webgl",kernelFunc:zN},WN="return a - b;",VN=an({opSnippet:WN,packedOpSnippet:WN,supportsComplex:!0,cpuKernelImpl:P7}),Bee={kernelName:To,backendName:"webgl",kernelFunc:VN};function UN(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=w.parseAxisParam([a],s.shape),i=BN({inputs:{x:s},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),c=_.expandShapeToKeepDim(i.shape,o),u=me({inputs:{x:i},backend:n,attrs:{shape:c}}),l=VN({inputs:{a:s,b:u},backend:n}),d=DN({inputs:{x:l},backend:n}),p=Qf({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=me({inputs:{x:p},backend:n,attrs:{shape:c}}),f=zN({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var zee={kernelName:So,backendName:"webgl",kernelFunc:UN};function Wee(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r,c=i?s:UN({inputs:{logits:s},backend:n,attrs:{dim:s.shape.length-1}}),u=c.shape[0],l=c.shape[1],d=new Pee(u,l,a),p=[[o]],h=n.runWebGLProgram(d,[c],"int32",p);return i||n.disposeIntermediateTensorInfo(c),h}var Vee={kernelName:qp,backendName:"webgl",kernelFunc:Wee},GN="return -x;";function Uee(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let a=n.texData.get(r.dataId),[o,i]=w7(a.values,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,o)}let s;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new Su(r.shape,GN):s=new ya(r.shape,GN),n.runWebGLProgram(s,[r],r.dtype)}var Gee={kernelName:yc,backendName:"webgl",kernelFunc:Uee},Hee=ts.nonMaxSuppressionV3Impl;function jee(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c}=r,u=n.readSync(s.dataId),l=n.readSync(a.dataId),{selectedIndices:d}=Hee(u,l,o,i,c);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var qee={kernelName:xc,backendName:"webgl",kernelFunc:jee},Kee=ts.nonMaxSuppressionV4Impl;function Xee(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c,padToMaxOutputSize:u}=r,l=n.readSync(s.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Kee(l,d,o,i,c,u);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Yee={kernelName:wc,backendName:"webgl",kernelFunc:Xee},Zee=ts.nonMaxSuppressionV5Impl;function Jee(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c,softNmsSigma:u}=r,l=n.readSync(s.dataId),d=n.readSync(a.dataId),p=o,h=i,f=c,m=u,{selectedIndices:g,selectedScores:b}=Zee(l,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var Qee={kernelName:kc,backendName:"webgl",kernelFunc:Jee},ete=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${r}), float(${n}),
float(index == coords.y)));
}
`}},tte=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,c=w.sizeFromShape(s.shape),u=new ete(c,a,o,i),l=me({inputs:{x:s},backend:n,attrs:{shape:[c]}}),d=n.runWebGLProgram(u,[l],s.dtype);n.disposeIntermediateTensorInfo(l);let p=[...s.shape,a],h=me({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},nte={kernelName:uo,backendName:"webgl",kernelFunc:tte};function sm(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let s=Ed({inputs:{input:r},backend:n}),a=sm({inputs:{x:s},backend:n}),o=rm({inputs:{input:r},backend:n}),i=sm({inputs:{x:o},backend:n}),c=va({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}else return Ad({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var rte={kernelName:Wc,backendName:"webgl",kernelFunc:sm};function HN(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let s=Ed({inputs:{input:r},backend:n}),a=HN({inputs:{x:s},backend:n}),o=rm({inputs:{input:r},backend:n}),i=sm({inputs:{x:o},backend:n}),c=va({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}else return Ad({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var ste={kernelName:Ic,backendName:"webgl",kernelFunc:HN};function ate(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return xw({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(l=>{w.assertShapesMatch(a,l.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],c=t.map(l=>{let d=xw({inputs:{input:l},backend:n,attrs:{dim:s}});return i.push(d),d}),u=IN({inputs:c,backend:n,attrs:{axis:s}});return i.forEach(l=>n.disposeIntermediateTensorInfo(l)),u}var ote={kernelName:Sc,backendName:"webgl",kernelFunc:ate},ite=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let r=e.length,s=dt(r),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${o});
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${s} coords = outC - start;
setOutput(getX(${i}));
}
}
`}},cte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,s=dt(r),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=In("rc",r),c=In("source",r),u=`${i[r-1]} < ${this.outputShape[r-1]}`,l=r===1?"source":`vec2(${c.slice(-2).join()})`,d=[`${s} rc = outputLoc;`,`${i[r-1]} += 1;
if(${u}) {
`,r===1?"":`}
rc = outputLoc;
${i[r-2]} += 1;
if(${i[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${i[r-1]} += 1;
if(${u}) {`],p=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=r===1?2:4;f<m;f++)h+=`
${d[f]}
if (${p}) {
result[${f}] = float(value);
} else {
${s} source = rc - start;
result[${f}] = getChannel(getX(${c.join()}), ${l});
}
`;h+=r===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${o});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},jN=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;if(w.sizeFromShape(s.shape)===0){let u=a.map((l,d)=>l[0]+s.shape[d]+l[1]);return Ad({backend:n,attrs:{shape:u,value:o,dtype:s.dtype}})}let i=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new cte(s.shape,a,o):new ite(s.shape,a,o),c=[[o]];return n.runWebGLProgram(i,[s],s.dtype,c)},ute={kernelName:lo,backendName:"webgl",kernelFunc:jN},lte=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,dte=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Yf+`
return result;
`,pte=an({opSnippet:lte,packedOpSnippet:dte}),hte={kernelName:po,backendName:"webgl",kernelFunc:pte};function fte(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=[],u=w.parseAxisParam(a,s.shape),l=u,d=_.getAxesPermutation(l,i),p=s;d!=null&&(p=Sn({inputs:{x:s},backend:n,attrs:{perm:d}}),l=_.getInnerMostAxes(l.length,i),c.push(p)),_.assertAxesAreInnerMostDims("prod",l,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:b}=I7(p.shape,p.dtype,f,l);h=n.makeTensorInfo(g,b,m)}else{let[f,m]=_.computeOutAndReduceShapes(p.shape,l),g=w.sizeFromShape(m),b=me({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),y=hh(s.dtype),v=ui(b,y,"prod",n);h=me({inputs:{x:v},backend:n,attrs:{shape:f}}),c.push(b),c.push(v)}if(o){c.push(h);let f=_.expandShapeToKeepDim(h.shape,u);h=me({inputs:{x:h},backend:n,attrs:{shape:f}})}return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var mte={kernelName:Cc,backendName:"webgl",kernelFunc:fte},qN=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=S7(r,s,a,o);return t.makeTensorInfo([i.length],o,i)},gte={kernelName:kl,backendName:"webgl",kernelFunc:qN},bte="return 1.0 / x;",yte=Ke({opSnippet:bte}),vte={kernelName:Tc,backendName:"webgl",kernelFunc:yte},xte=Ur+`
return (x < 0.0) ? 0.0 : x;
`,wte=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,kte=Ke({opSnippet:xte,packedOpSnippet:wte}),Ite={kernelName:fo,backendName:"webgl",kernelFunc:kte},Ste=Ur+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Cte=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Tte=Ke({opSnippet:Ste,packedOpSnippet:Cte}),Nte={kernelName:go,backendName:"webgl",kernelFunc:Tte},_te=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],l=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/l[0]},
${u[1]/l[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Ete=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],l=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/l[0]},
${u[1]/l[1]},
${u[1]/l[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${c-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Ate(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[c,u]=i,l=Q().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ete(s.shape,c,u,a,o):new _te(s.shape,c,u,a,o);return n.runWebGLProgram(l,[s],"float32")}var $te={kernelName:mo,backendName:"webgl",kernelFunc:Ate},Fte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],c=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/c[0],l=i[1]/c[1],d=1/u,p=1/l,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${l});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Dte(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new Fte(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Rte={kernelName:Yp,backendName:"webgl",kernelFunc:Dte},Pte=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],l=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",p;s?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/l[0]},
${u[1]/l[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Ote=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],l=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",p;s?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/l[0]},
${u[1]/l[1]},
${u[1]/l[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${c-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Mte(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[c,u]=i,l=Q().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ote(s.shape,c,u,a,o):new Pte(s.shape,c,u,a,o);return n.runWebGLProgram(l,[s],s.dtype)}var Lte={kernelName:Il,backendName:"webgl",kernelFunc:Mte},Bte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],c=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/c[0],l=i[1]/c[1],d=1/u,p=1/l,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${l});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float sourceFracRow =
float(${i[0]}) *
(float(dyR) / float(${c[0]}));
float sourceFracCol =
float(${i[1]}) *
(float(dyC) / float(${c[1]}));
int sourceNearestRow = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function zte(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new Bte(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Wte={kernelName:Xp,backendName:"webgl",kernelFunc:zte},Vte=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let r=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,s=e.map((o,i)=>r(i)).join(","),a=dt(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}},Ute=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=In("rc",n),s=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,o=dt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${i(r.slice())};
if(${s}){
result.g = ${c(r.slice())};
}
if(${a}) {
result.b = ${u(r.slice())};
if(${s}) {
result.a = ${l(r.slice())};
}
}
setOutput(result);
}
`;function i(h){return d(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((b,y)=>p(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Gte(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=s.shape.length,i=w.parseAxisParam(a,s.shape);if(o===0)return Zn({inputs:{x:s},backend:n});let c=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ute(s.shape,i):new Vte(s.shape,i);return n.runWebGLProgram(c,[s],s.dtype)}var Hte={kernelName:bo,backendName:"webgl",kernelFunc:Gte},jte=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],r=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${s}
if(coordX >= 0 && coordX < ${r} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},qte={kernelName:Vc,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,c=new jte(r.shape,a),[u,l]=_.getImageCenter(o,r.shape[1],r.shape[2]),d=[[u,l,Math.sin(s),Math.cos(s)]];return i.runWebGLProgram(c,[r],r.dtype,d)}},Kte=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Xte=Ke({opSnippet:Kte}),Yte={kernelName:yo,backendName:"webgl",kernelFunc:Xte},Zte="return inversesqrt(x);",Jte=Ke({opSnippet:Zte,cpuKernelImpl:C7}),Qte={kernelName:vo,backendName:"webgl",kernelFunc:Jte},KN=class{constructor(e,t,n,r,s,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=dt(s.length),c=dt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let l=`getIndices(${u})`,d="";r===1?d="i":r===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
${i} strides = ${i}(${s});
void main() {
${c} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${l});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${p};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function ene(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s,updates:a}=t,{shape:o}=r,{sliceRank:i,numUpdates:c,sliceSize:u,strides:l,outputSize:d}=_.calculateShapes(a,s,o),p=[d/u,u];if(d===0)return n.makeTensorInfo(o,s.dtype);let h=me({inputs:{x:s},backend:n,attrs:{shape:[c,i]}}),f=me({inputs:{x:a},backend:n,attrs:{shape:[c,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new KN(c,i,h.shape.length,f.shape.length,l,p),b=n.runWebGLProgram(g,[f,h,m],f.dtype),y=me({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(m),y}var tne={kernelName:_c,backendName:"webgl",kernelFunc:ene},nne=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",r="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],c=[];for(let u=0;u<t.length;u++)c.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);r=i.join(),s=c.join()}let a=dt(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${r});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function rne(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=new nne(r.shape.length,s.shape,s.shape.length);return n.runWebGLProgram(o,[r,s,a],yr(s.dtype,a.dtype))}var sne={kernelName:Ec,backendName:"webgl",kernelFunc:rne},ane=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${_.SELU_SCALEALPHA};
float scale = ${_.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,one=Ke({opSnippet:ane}),ine={kernelName:Ac,backendName:"webgl",kernelFunc:one},XN="return 1.0 / (1.0 + exp(-1.0 * x));",cne=Ke({opSnippet:XN,packedOpSnippet:XN,cpuKernelImpl:T7}),une={kernelName:wo,backendName:"webgl",kernelFunc:cne},lne=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,dne=Ke({opSnippet:lne}),pne={kernelName:Dc,backendName:"webgl",kernelFunc:dne},hne=cN+`
return sin(x);
`,fne=Ke({opSnippet:hne}),mne={kernelName:xo,backendName:"webgl",kernelFunc:fne},gne=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,bne=Ke({opSnippet:gne}),yne={kernelName:Fc,backendName:"webgl",kernelFunc:bne},vne=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,xne=Ke({opSnippet:vne}),wne={kernelName:Rc,backendName:"webgl",kernelFunc:xne},kne=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r;w.assert(s.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((b,y)=>b*y),c=[[0,0]];c.push(...o);for(let b=1+a.length;b<s.shape.length;++b)c.push([0,0]);let u=[],l=jN({inputs:{x:s},backend:n,attrs:{paddings:c,constantValue:0}}),d=_.getReshaped(l.shape,a,i,!1),p=_.getPermuted(d.length,a.length,!1),h=_.getReshapedPermuted(l.shape,a,i,!1),f=me({inputs:{x:l},backend:n,attrs:{shape:d}}),m=Sn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=me({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(l),u.push(f),u.push(m),u.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},Ine={kernelName:Pc,backendName:"webgl",kernelFunc:kne};function Sne(e){let{inputs:t,backend:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(r.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${r.shape}`);if(s.shape.length!==1)throw new Error(`Values must be a vector, saw:
${s.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.readSync(r.dataId),c=n.readSync(s.dataId),u=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[d,p,h,f,m]=_7(i,r.shape,r.dtype,c,s.dtype,u,l);return[n.makeTensorInfo(p,r.dtype,d),n.makeTensorInfo([p[0]],s.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var Cne={kernelName:Zp,backendName:"webgl",kernelFunc:Sne};function Tne(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(s.dataId)),i=n.readSync(r.dataId),c=Array.from(n.readSync(a.dataId)),[u,l,d]=E7(i,r.shape,r.dtype,o,c);return[n.makeTensorInfo(l,r.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Nne={kernelName:Jp,backendName:"webgl",kernelFunc:Tne};function _ne(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),c=n.readSync(a.dataId),[u,l]=X2(o,r.shape,r.dtype,i,c,!0);return n.makeTensorInfo(l,r.dtype,u)}var Ene={kernelName:Qp,backendName:"webgl",kernelFunc:_ne};function Ane(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),c=n.readSync(a.dataId),[u,l]=X2(o,r.shape,r.dtype,i,c);return n.makeTensorInfo(l,r.dtype,u)}var $ne={kernelName:eh,backendName:"webgl",kernelFunc:Ane};function Fne(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:c,numUpdates:u,strides:l,outputSize:d}=_.calculateShapes(a,s,i),p=!1,h=new KN(u,c,s.shape.length,a.shape.length,l,[d,1],p),f=n.runWebGLProgram(h,[a,s,o],a.dtype),m=me({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Dne={kernelName:th,backendName:"webgl",kernelFunc:Fne};function Rne(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=w.parseAxisParam(o,s.shape)[0],c=_.prepareSplitSize(s,a,i),u=s.shape.length,l=new Array(u).fill(0),d=s.shape.slice();return c.map(p=>{let h=[...d];h[i]=p;let f=Tu({inputs:{x:s},backend:n,attrs:{begin:l,size:h}});return l[i]+=p,f})}var Pne={kernelName:Oc,backendName:"webgl",kernelFunc:Rne},YN="return sqrt(x);",One=Ke({opSnippet:YN,packedOpSnippet:YN,cpuKernelImpl:A7}),Mne={kernelName:ko,backendName:"webgl",kernelFunc:One},Lne="return x * x;",Bne=Ke({opSnippet:Lne}),zne={kernelName:Sl,backendName:"webgl",kernelFunc:Bne},ZN="return (a - b) * (a - b);",Wne=an({opSnippet:ZN,packedOpSnippet:ZN}),Vne={kernelName:Co,backendName:"webgl",kernelFunc:Wne};function Une({inputs:e,attrs:t,backend:n}){let{x:r}=e,s=Ur+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,a=new ya(r.shape,s);return n.runWebGLProgram(a,[r],r.dtype)}var Gne={kernelName:Zs,backendName:"webgl",kernelFunc:Une},Hne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,s=dt(n.length),a=dt(n.length),o="";if(r===1)o="coords * strides + begin";else{let i=0;o=n.map((c,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${e});
${s} strides = ${s}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${o}));
}
`}};function jne(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:c,endMask:u,ellipsisMask:l,newAxisMask:d,shrinkAxisMask:p}=r,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:b,outShape:y}=mn.sliceInfo(s.shape,a,o,i,c,u,l,d,p),v=me({inputs:{x:s},backend:n,attrs:{shape:b}}),x;if(h){let C=Tu({inputs:{x:v},backend:n,attrs:{begin:f,size:g}});x=me({inputs:{x:C},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(C)}else if(y.some(C=>C===0))x=n.makeTensorInfo(y,s.dtype,[]);else if(n.shouldExecuteOnCPU([v])){let F=n.texData.get(v.dataId).values,R=Be(v.shape,v.dtype,F),O=$7(y,R,m,f);x=n.makeTensorInfo(y,v.dtype,O.values)}else{let N=new Hne(f,m,y);x=n.runWebGLProgram(N,[v],v.dtype)}let k=me({inputs:{x},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(x),k}var qne={kernelName:Mc,backendName:"webgl",kernelFunc:jne};function Kne(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:c,preserveShortSequences:u}=r,{data:l,dataSplits:d}=t,p=n.readSync(l.dataId),h=n.readSync(d.dataId),[f,m]=F7(p,h,s,a,o,i,c,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Xne={kernelName:nh,backendName:"webgl",kernelFunc:Kne};function Yne(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[u,l,d]=D7(i,c,s),p=l.length;return[n.makeTensorInfo([p,2],"int32",u),n.makeTensorInfo([p],"string",l),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Zne={kernelName:rh,backendName:"webgl",kernelFunc:Yne};function Jne(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=R7(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var Qne={kernelName:sh,backendName:"webgl",kernelFunc:Jne},ere="return tan(x);",tre=Ke({opSnippet:ere}),nre={kernelName:No,backendName:"webgl",kernelFunc:tre},rre=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,sre=Ke({opSnippet:rre}),are={kernelName:_o,backendName:"webgl",kernelFunc:sre},ore=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let r=dt(this.rank),s=ire(e);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function ire(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let s=0;s<e.length;s++)r.push(`imod(${n[s]}, ${e[s]})`);return r.join()}function JN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reps:a}=r;if(s.dtype==="string"||s.shape.length>5){let c=n.readSync(s.dataId),u=s.dtype==="string"?c.map(p=>w.decodeString(p)):c,l=Be(s.shape,s.dtype,u),d=O7(l,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new ore(s.shape,a);return n.runWebGLProgram(o,[s],s.dtype)}var cre={kernelName:Ys,backendName:"webgl",kernelFunc:JN},ure=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},lre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function li(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function QN(e){let t=1;for(;t<e;)t*=2;return t}function dre(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r,i=Q().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),c=Q().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=s.shape,l=u[u.length-1];if(n.shouldExecuteOnCPU([s])||l<i||a>c){let O=n.readSync(s.dataId),[$,P]=M7(O,u,s.dtype,a,o);return[n.makeTensorInfo($.shape,$.dtype,$.values),n.makeTensorInfo(P.shape,P.dtype,P.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,s.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(l===1)return[s,Ad({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(s.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(s):s,m=w.sizeFromShape(u)/l,g=me({inputs:{x:h},attrs:{shape:[m,l]},backend:n});p&&li(n,h);let b=QN(a),y=QN(l),v=null,x=()=>v===null?[g,g]:[g,v],k=(O,$,P)=>{let T=x(),L=new ure(P),j=[[l],[v===null?1:0],[Number.NEGATIVE_INFINITY],[O],[$]],q=v;v=n.runWebGLProgram(L,T,"int32",j),li(n,q)};for(let O=1;O<b;O*=2){let $=O*2;for(let P=O;P>=1;P/=2)k($,P,[m,y])}for(let O=y;O>b;O/=2){let $=x(),P=new lre([m,O/2]),L=[[l],[v===null?1:0],[b]],G=v;v=n.runWebGLProgram(P,$,"int32",L),li(n,G);let j=b/2,q=j*2;for(let K=j;K>=1;K/=2)k(q,K,v.shape)}let C=v;v=Tu({inputs:{x:v},backend:n,attrs:{begin:0,size:[m,a]}}),li(n,C);let N=LN({inputs:{x:g,indices:v},backend:n,attrs:{axis:1,batchDims:1}});li(n,g);let F=u.slice(0,-1);F.push(a),C=v,v=me({inputs:{x:v},attrs:{shape:F},backend:n}),li(n,C);let R=N;return N=me({inputs:{x:N},attrs:{shape:F},backend:n}),li(n,R),[N,v]}var pre={kernelName:Lc,backendName:"webgl",kernelFunc:dre},hre=class{constructor(e,t,n,r,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(r){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${i} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${s});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${s});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${o} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function fre(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:c,outputShape:u}=r,[l,d,p,h]=s.shape,[f,m]=u!=null?u:[d,p],g=[l,f,m,h],b=new hre(d,p,o,i,c,g);return n.runWebGLProgram(b,[s,a],"float32")}var mre={kernelName:Bc,backendName:"webgl",kernelFunc:fre};function gre(e){let{inputs:t,attrs:n,backend:r}=e,{axis:s}=n,{x:a}=t;vu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=r.readSync(a.dataId),{outputValues:i,outputShape:c,indices:u}=L7(o,s,a.shape,a.dtype);return[r.makeTensorInfo(c,a.dtype,i),r.makeTensorInfo([u.length],"int32",u)]}var bre={kernelName:ah,backendName:"webgl",kernelFunc:gre};function yre(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s,i=o.shape.length,c=s.shape[a],u=new Array(i-1),l=0;for(let m=0;m<i;m++)m!==a&&(u[l++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(c);for(let m=0;m<f.length;m++){p[a]=m;let g=Tu({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),b=me({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=b,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var vre={kernelName:zc,backendName:"webgl",kernelFunc:yre},xre=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,s=e.inSize,a=e.numSegments,o=a*Math.ceil(s/n);this.outputShape=[r,o];let i="0.0",c="sumValue",u=Math.floor(n/4)*4,l=n%4,d=`
sumValue += dot(values, segFilter);
`,p="";s%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let h="";s%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${i};
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${u};
if (${l===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${l===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${l===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${c});
}
`}};function wre(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,segmentIds:a}=t,{numSegments:o}=r,i=s.shape.length,c=[],u=0,l=_.getAxesPermutation([u],i),d=s;l!=null&&(d=Sn({inputs:{x:s},backend:n,attrs:{perm:l}}),c.push(d),u=_.getInnerMostAxes(1,i)[0]);let p=_.segment_util.computeOutShape(d.shape,u,o),h=w.sizeFromShape([d.shape[u]]),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});c.push(f);let m=hh(s.dtype),g=(x,k,C,N,F)=>{let R=x.shape[0],O=x.shape[1],$=_.segment_util.segOpComputeOptimalWindowSize(O,F),P={windowSize:$,inSize:O,batchSize:R,numSegments:F},T=new xre(P,k),L=n.compileAndRun(T,[x,C],N);if(c.push(L),L.shape[1]===F)return L;let G=qN({backend:n,attrs:{start:0,stop:F,step:1,dtype:"float32"}}),j=JN({inputs:{x:G},backend:n,attrs:{reps:[O/$]}});return c.push(G),c.push(j),g(L,k,j,N,F)},b=g(f,"unsortedSegmentSum",a,m,o),y=me({inputs:{x:b},backend:n,attrs:{shape:p}}),v=y;if(l!=null){c.push(y);let x=_.getUndoAxesPermutation(l);v=Sn({inputs:{x:v},backend:n,attrs:{perm:x}})}return c.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var kre={kernelName:Cl,backendName:"webgl",kernelFunc:wre},Ire=[ZQ,eee,M9,B9,V9,H9,q9,Y9,J9,eY,sY,oY,uY,pY,vY,mY,kY,TY,SY,AY,FY,RY,LY,HY,qY,QY,tZ,aZ,cZ,y9,hZ,IZ,CZ,bZ,EZ,$Z,NZ,RZ,MZ,zZ,VZ,GZ,qZ,QZ,tJ,XZ,sJ,iJ,uJ,hJ,bJ,wJ,SJ,CJ,TJ,_J,AJ,FJ,RJ,OJ,zJ,UJ,jJ,KJ,ZJ,eQ,sQ,cQ,b9,lQ,dZ,hQ,gQ,vQ,x9,IQ,NQ,EQ,OQ,DQ,zQ,UQ,qQ,nee,lee,cee,fee,gee,yee,oee,xee,kee,Tee,Aee,Ree,Vee,C9,Gee,qee,Yee,Qee,XY,nte,ste,ote,ute,hte,k9,mte,gte,YY,Lee,vte,Nte,Ite,N9,$te,Rte,Lte,Wte,Hte,qte,Yte,Qte,tne,sne,ine,une,pne,mne,yne,UY,zee,wne,Ine,Cne,Nne,Ene,$ne,Dne,Pne,Mne,zne,Vne,Gne,qne,Xne,Zne,Qne,Bee,R9,nre,are,cre,pre,mre,P9,bre,vre,kre,rte];for(let e of Ire)Nl(e);var Pn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Pn||(Pn={}));var $d;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})($d||($d={}));var e_;function Sre(e){e_=e.wasm.cwrap(Ao,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Cre(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:c,transposeB:u,activation:l,leakyreluAlpha:d}=r,p=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let F=n.dataIdMap.get(o.dataId);if(F.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${F.shape.length}.`);f=F.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=$d[l];if(g==null)throw new Error(`${l} activation not yet supported for FusedConv2D in the wasm backend.`);let b=c?s.shape[2]:s.shape[1],y=u?a.shape[1]:a.shape[2],v=s.shape[0],x=n.makeOutput([v,b,y],s.dtype),k=n.dataIdMap.get(x.dataId).id,C=new Uint8Array(new Int32Array(s.shape).buffer),N=new Uint8Array(new Int32Array(a.shape).buffer);return e_(p,C,s.shape.length,h,N,a.shape.length,c,u,g,f,m,d||0,k),x}var Tre={kernelName:Ao,backendName:"wasm",setupFunc:Sre,kernelFunc:Cre};function on(e){let t;function n(s){t=s.wasm.cwrap(e,null,["number","number"])}function r(s){let{backend:a,inputs:{x:o}}=s,i=a.dataIdMap.get(o.dataId).id,c=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(c.dataId).id;return w.sizeFromShape(c.shape)===0||t(i,u),c}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var Nre=on(Vi);function Cn(e,t,n){let r;function s(o){r=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:c}=o,{a:u,b:l}=c,d=i.dataIdMap.get(u.dataId).id,p=i.dataIdMap.get(l.dataId).id,h=n!=null?n:u.dtype,f=_.assertAndGetBroadcastShape(u.shape,l.shape),m=i.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),b=new Uint8Array(new Int32Array(l.shape).buffer),y=i.dataIdMap.get(m.dataId).id,v=()=>r(d,g,u.shape.length,p,b,l.shape.length,Pn[u.dtype],y);if(t&&u.dtype==="float32")return v(),m;let x=_.getBroadcastDims(u.shape,f),k=_.getBroadcastDims(l.shape,f),C=x.every((F,R)=>F===R),N=k.every((F,R)=>F===R);if(C&&N)return v(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:a}}var _re=!0,Ere=Cn(Ks,_re),t_;function Are(e){t_=e.wasm.cwrap(Da,null,["array","number","number","number"])}function $re(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(r.shape)===0)return r;let s=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(s).buffer),o=n.dataIdMap.get(r.dataId).id;return t_(a,s.length,Pn[r.dtype],o),r}var Fre={kernelName:Da,backendName:"wasm",setupFunc:Are,kernelFunc:$re};function am(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(s),r}var Dre={kernelName:Ja,backendName:"wasm",kernelFunc:am},n_;function Rre(e){n_=e.wasm.cwrap(Eo,null,["number","array","number","number","number","array","number"])}function Eu(e){let{inputs:t,backend:n,attrs:r}=e,[s,a]=Ore(t.x.shape,r.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Pre(t.x.shape,r.perm),c={dataId:t.x.dataId,shape:s,dtype:t.x.dtype};if(o){let f=am({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,c.dtype),l=n.dataIdMap.get(c.dataId).id,d=n.dataIdMap.get(u.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(c.shape).buffer);return n_(l,h,c.shape.length,Pn[c.dtype],d,p,a.length),u}function Pre(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function Ore(e,t){let n=[],r=[];for(let s=0;s<e.length;++s)e[s]!==1&&n.push(e[s]),e[t[s]]!==1&&r.push(t[s]);for(let s=0;s<r.length;++s){let a=-1;for(let o=0;o<r.length;++o)r[o]>=s&&(a===-1||r[a]>r[o])&&(a=o);r[a]=s}return[n,r]}var Mre={kernelName:Eo,backendName:"wasm",kernelFunc:Eu,setupFunc:Rre};function xa(e,t,n){let r=e.shape,s=e.shape.length,a=w.parseAxisParam(t,r),o=a,i=_.getAxesPermutation(o,s),c=null,u=!1;if(i!=null){let l=new Array(s);for(let h=0;h<l.length;h++)l[h]=r[i[h]];o=_.getInnerMostAxes(o.length,s),c=Eu({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(c.dataId).id!==d&&(u=!0)}return{transposed:c,originalAxes:a,axes:o,inputWasTransposed:u}}var r_;function Lre(e){r_=e.wasm.cwrap(Hi,null,["number, number, number"])}function Bre(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,c=t.dataIdMap.get(o.dataId).id,u=o,{transposed:l,axes:d,originalAxes:p,inputWasTransposed:h}=xa(o,s,t);if(h){let v=t.dataIdMap.get(l.dataId).id;u=l,c=v}let f=u.shape.length;_.assertAxesAreInnerMostDims("all",d,f);let[m,g]=_.computeOutAndReduceShapes(u.shape,d),b=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;r_(c,b,v)}if(h&&t.disposeData(l.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var zre={kernelName:Hi,backendName:"wasm",setupFunc:Lre,kernelFunc:Bre},s_;function Wre(e){s_=e.wasm.cwrap(ji,null,["number, number, number"])}function Vre(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,c=t.dataIdMap.get(o.dataId).id,u=o,{transposed:l,axes:d,originalAxes:p,inputWasTransposed:h}=xa(o,s,t);if(h){let v=t.dataIdMap.get(l.dataId).id;u=l,c=v}let f=u.shape.length;_.assertAxesAreInnerMostDims("any",d,f);let[m,g]=_.computeOutAndReduceShapes(u.shape,d),b=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;s_(c,b,v)}if(h&&t.disposeData(l.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var Ure={kernelName:ji,backendName:"wasm",setupFunc:Wre,kernelFunc:Vre},a_;function Gre(e){a_=e.wasm.cwrap(Ra,null,["number","number","number","number","number"])}function Hre(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s}=r,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,c=a,{transposed:u,axes:l,inputWasTransposed:d}=xa(a,s,t);if(d){let b=t.dataIdMap.get(u.dataId).id;b!==o&&(c=u,i=b)}let p=c.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=c.shape[l[0]];return a_(i,Pn[c.dtype],m,g,f),d&&t.disposeData(u.dataId),h}var jre={kernelName:Ra,backendName:"wasm",kernelFunc:Hre,setupFunc:Gre},o_;function qre(e){o_=e.wasm.cwrap(Pa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Kre(e){let{inputs:t,attrs:n,backend:r}=e,s=t.x,a=r.dataIdMap.get(s.dataId).id,{filterSize:o,strides:i,pad:c,dimRoundingMode:u}=n,l=_.computePool2DInfo(s.shape,o,i,1,c,u),d=l.filterHeight,p=l.filterWidth,h=l.padInfo.top,f=l.padInfo.right,m=l.padInfo.bottom,g=l.padInfo.left,b=l.strideHeight,y=l.strideWidth,v=l.inChannels;if(l.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${l.dataFormat}'. Please use 'channelsLast'.`);if(l.dilationWidth!==1||l.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${l.dilationHeight}, ${l.dilationWidth}].`);let x=r.makeOutput(l.outShape,"float32"),k=r.dataIdMap.get(x.dataId).id;return o_(a,s.shape[0],s.shape[1],s.shape[2],d,p,h,f,m,g,b,y,v,k),x}var Xre={kernelName:Pa,backendName:"wasm",setupFunc:qre,kernelFunc:Kre};function On(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:s}=n,a=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,a);return w.assert(a===w.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:o,dtype:r.dtype}}var Yre={kernelName:Nc,backendName:"wasm",kernelFunc:On},i_;function Zre(e){i_=e.wasm.cwrap(Oa,null,["number","array","number","number","array","number","number","number","number"])}function Jre(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let c=s.shape.length,u=a.shape.length,l=o?s.shape[c-2]:s.shape[c-1],d=i?a.shape[u-1]:a.shape[u-2],p=o?s.shape[c-1]:s.shape[c-2],h=i?a.shape[u-2]:a.shape[u-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),y=g===b||g===1||b===1;w.assert(c>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let x=(g>b?s.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(l===d,()=>`Error in matMul: inner shapes (${l}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let k=o?[g,l,p]:[g,p,l],C=i?[b,h,d]:[b,d,h],N=On({inputs:{x:s},backend:n,attrs:{shape:k}}),F=On({inputs:{x:a},backend:n,attrs:{shape:C}}),R=n.dataIdMap.get(N.dataId).id,O=n.dataIdMap.get(F.dataId).id,$=o?N.shape[2]:N.shape[1],P=i?F.shape[1]:F.shape[2],T=Math.max(g,b),L=n.makeOutput([T,$,P],N.dtype),G=n.dataIdMap.get(L.dataId).id,j=new Uint8Array(new Int32Array(N.shape).buffer),q=new Uint8Array(new Int32Array(F.shape).buffer);return i_(R,j,N.shape.length,O,q,F.shape.length,o,i,G),n.disposeData(N.dataId),n.disposeData(F.dataId),L.shape=x,L}var Qre={kernelName:Oa,backendName:"wasm",setupFunc:Zre,kernelFunc:Jre};function Fd(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:s}=e,[a,o]=mn.parseSliceParams(t,n,r),i=mn.isSliceContinous(t.shape,a,o),c=s.readSync(t.dataId),u=s.makeOutput(o,t.dtype),l=w.computeStrides(t.shape),d=s.dataIdMap.get(u.dataId);if(i){let f=mn.computeFlatOffset(a,l);return t.dtype==="string"?d.stringBytes=c.slice(f,f+w.sizeFromShape(o)):s.typedArrayFromHeap(u).set(c.subarray(f,f+w.sizeFromShape(o))),u}if(t.dtype==="string"){let f=Of(c,a,o,t.shape,t.dtype);return d.stringBytes=f,u}let p=s.typedArrayFromHeap(u),h=t.shape.length;if(h===2)ese(c,l[0],p,a,o);else if(h===3)tse(c,l[0],l[1],p,a,o);else if(h===4)nse(c,l[0],l[1],l[2],p,a,o);else{let f=Of(c,a,o,t.shape,t.dtype);p.set(f)}return u}function ese(e,t,n,r,s){let a=0,o=r[0],i=r[1],c=o+s[0];for(let u=o;u<c;u++){let l=u*t+i;n.set(e.subarray(l,l+s[1]),a),a+=s[1]}}function tse(e,t,n,r,s,a){let o=0,i=s[0],c=s[1],u=s[2],l=i+a[0],d=c+a[1];for(let p=i;p<l;p++)for(let h=c;h<d;h++){let f=p*t+h*n+u;r.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function nse(e,t,n,r,s,a,o){let i=0,c=a[0],u=a[1],l=a[2],d=c+o[0],p=u+o[1],h=l+o[2],f=a[3];for(let m=c;m<d;m++)for(let g=u;g<p;g++)for(let b=l;b<h;b++){let y=m*t+g*n+b*r+f;s.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var rse={kernelName:$c,backendName:"wasm",kernelFunc:Fd};function sse(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r,i=a.reduce((b,y)=>b*y),c=_.getReshaped(s.shape,a,i),u=_.getPermuted(c.length,a.length),l=_.getReshapedPermuted(s.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(l,o,a.length),h=On({inputs:{x:s},backend:n,attrs:{shape:c}}),f=Eu({inputs:{x:h},backend:n,attrs:{perm:u}}),m=On({inputs:{x:f},backend:n,attrs:{shape:l}}),g=Fd({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var ase={kernelName:Ji,backendName:"wasm",kernelFunc:sse};function om(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,s=r.makeOutput(t.shape,n),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(s).set(a),s}var ose={kernelName:Ma,backendName:"wasm",kernelFunc:om},ise=on(La),c_;function cse(e){c_=e.wasm.cwrap(Xs,null,["number","number","number","number"])}function use(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(s.shape,s.dtype),u=n.dataIdMap.get(c.dataId).id;return c_(i,a,o,u),c}var lse={kernelName:Xs,backendName:"wasm",setupFunc:cse,kernelFunc:use};function u_(e){let{inputs:t,backend:n}=e,r=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],s=_.computeOutShape(t.map(h=>h.shape),r),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return am({inputs:{x:a[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(w.sizeFromShape(s)===0)return o;let i=a.map(h=>h.shape);if(_.assertParamsConsistent(i,r),a[0].dtype==="string"){let h=a.map(v=>{let x=w.sizeFromShape(v.shape.slice(r));return On({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),f=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));s=_.computeOutShape(h.map(v=>v.shape),1);let m=h[0].shape[0]===1,g=Ux(f,s,t[0].dtype,m),b=_.computeOutShape(a.map(v=>v.shape),r);o.shape=b;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=_.fromStringArrayToUint8(g),h.forEach(v=>n.disposeData(v.dataId)),o}let c=w.sizeFromShape(a[0].shape.slice(0,r)),u=0,l=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(r));return u+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<c;h++){let f=h*u;for(let m=0;m<d.length;m++){let g=l[m],b=h*g,y=d[m].subarray(b,b+g);p.set(y,f),f+=g}}return o}var dse={kernelName:Qi,backendName:"wasm",kernelFunc:u_},l_;function pse(e){l_=e.wasm.cwrap(Ba,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hse(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a}=t,o=r.dataIdMap.get(s.dataId).id,i=r.dataIdMap.get(a.dataId).id,{strides:c,dilations:u,pad:l,dimRoundingMode:d,dataFormat:p}=n,h=_.convertConv2DDataFormat(p),f=_.computeConv2DInfo(s.shape,a.shape,c,u,l,d,!1,h),m=f.filterHeight,g=f.filterWidth,b=f.padInfo.top,y=f.padInfo.right,v=f.padInfo.bottom,x=f.padInfo.left,k=f.dilationHeight,C=f.dilationWidth,N=f.strideHeight,F=f.strideWidth,R=f.inChannels,O=f.outChannels,$=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let P=r.makeOutput(f.outShape,"float32"),T=r.dataIdMap.get(P.dataId).id;return l_(o,s.shape[0],s.shape[1],s.shape[2],i,m,g,b,y,v,x,$,k,C,N,F,R,O,T),P}var fse={kernelName:Ba,backendName:"wasm",setupFunc:pse,kernelFunc:hse},d_;function mse(e){d_=e.wasm.cwrap(za,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gse(e){let{backend:t,inputs:n,attrs:r}=e,{dy:s,filter:a}=n,{strides:o,pad:i,dataFormat:c,dimRoundingMode:u,inputShape:l}=r,d=1,p=_.convertConv2DDataFormat(c),h=_.computeConv2DInfo(l,a.shape,o,d,i,u,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:b,inHeight:y,inWidth:v,outChannels:x,outHeight:k,outWidth:C,strideHeight:N,strideWidth:F}=h,R=m-1-h.padInfo.top,O=g-1-h.padInfo.left,$=h.dataFormat==="channelsLast",P=w.computeStrides(h.inShape),T=w.computeStrides(s.shape),[L,G,j]=w.computeStrides(a.shape),q=P[0],K=$?P[1]:P[2],ee=$?P[2]:1,te=$?1:P[1],ne=T[0],re=$?T[1]:T[2],J=$?T[2]:1,oe=$?1:T[1],ie=t.makeOutput(h.inShape,"float32"),ue=t.dataIdMap.get(ie.dataId).id,fe=t.dataIdMap.get(s.dataId).id,Se=t.dataIdMap.get(a.dataId).id;return d_(fe,Se,f,m,g,y,v,b,k,C,x,N,F,R,O,L,G,j,q,K,ee,te,ne,re,J,oe,ue),ie}var bse={kernelName:za,backendName:"wasm",setupFunc:mse,kernelFunc:gse},yse=on(Wa),vse=on(Va),ww;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(ww||(ww={}));var p_;function xse(e){p_=e.wasm.cwrap(ec,null,["number","number","number","number","array","number","number","number","number","number"])}function wse(e){let{backend:t,inputs:n,attrs:r}=e,{method:s,extrapolationValue:a,cropSize:o}=r,{image:i,boxes:c,boxInd:u}=n,l=c.shape[0],[d,p]=o,h=[l,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=om({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,b=t.dataIdMap.get(c.dataId).id,y=t.dataIdMap.get(u.dataId).id,v=t.makeOutput(h,"float32"),x=t.dataIdMap.get(v.dataId).id,k=new Uint8Array(new Int32Array(i.shape).buffer);return p_(g,b,y,l,k,d,p,ww[s],a,x),m!=null&&t.disposeData(m.dataId),v}var kse={kernelName:ec,backendName:"wasm",setupFunc:xse,kernelFunc:wse},h_;function Ise(e){h_=e.wasm.cwrap(Ua,null,["number","number","number","number","number","number"])}function Sse(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r,c=s.shape.length;w.assert(s.dtype==="float32"||s.dtype==="int32",()=>`cumsum does not support ${s.dtype} tensors in the WASM backend`);let u=_.getAxesPermutation([a],c),l=s;u!==null&&(l=Eu({inputs:{x:s},attrs:{perm:u},backend:n}));let d=_.getInnerMostAxes(1,c)[0];_.assertAxesAreInnerMostDims("cumsum",[d],c);let p=n.makeOutput(l.shape,l.dtype),h=l.shape[d],f=n.dataIdMap.get(l.dataId).id,m=n.dataIdMap.get(p.dataId).id;h_(f,o?1:0,i?1:0,h,m,Pn[s.dtype]);let g=p;if(u!==null){let b=_.getUndoAxesPermutation(u);g=Eu({inputs:{x:p},attrs:{perm:b},backend:n}),n.disposeData(l.dataId),n.disposeData(p.dataId)}return g}var Cse={kernelName:Ua,backendName:"wasm",setupFunc:Ise,kernelFunc:Sse},f_;function Tse(e){f_=e.wasm.cwrap(tc,null,["number","number","number","array","number","array","array","number","number"])}function Nse(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{blockSize:a,dataFormat:o}=r;w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=s.shape[0],c=o==="NHWC"?s.shape[1]:s.shape[2],u=o==="NHWC"?s.shape[2]:s.shape[3],l=o==="NHWC"?s.shape[3]:s.shape[1],d=c*a,p=u*a,h=l/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),b=t.dataIdMap.get(s.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(s.shape)).buffer),v=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),k=t.dataIdMap.get(m.dataId).id;return f_(b,a,o==="NHWC"?1:0,y,s.shape.length-1,v,x,f.length,k),m}var _se={kernelName:tc,backendName:"wasm",setupFunc:Tse,kernelFunc:Nse},m_;function Ese(e){m_=e.wasm.cwrap(Ga,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ase(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a}=t,o=r.dataIdMap.get(s.dataId).id,i=r.dataIdMap.get(a.dataId).id,{strides:c,dilations:u,pad:l,dimRoundingMode:d}=n,p=u==null?[1,1]:u,h=_.computeConv2DInfo(s.shape,a.shape,c,p,l,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,k=h.dilationWidth,C=h.strideHeight,N=h.strideWidth,F=h.inChannels,R=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=r.makeOutput(h.outShape,"float32"),P=r.dataIdMap.get($.dataId).id;return m_(o,s.shape[0],s.shape[1],s.shape[2],i,f,m,g,b,y,v,O,x,k,C,N,F,R,P),$}var $se={kernelName:Ga,backendName:"wasm",setupFunc:Ese,kernelFunc:Ase},Fse=on(ja),Dse=!1,Rse=Cn(rc,Dse,"bool"),Pse=on(qa);function kw(e){let{inputs:t,attrs:n,backend:r}=e,{input:s}=t,{dim:a}=n,o=s.shape.length,i=s.shape.slice(),c=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),c=o+a+1),i.splice(c,0,1),On({inputs:{x:s},backend:r,attrs:{shape:i}})}var Ose={kernelName:sc,backendName:"wasm",kernelFunc:kw};function g_(e){let{attrs:{shape:t,value:n,dtype:r},backend:s}=e,a=s.makeOutput(t,r);return s.typedArrayFromHeap(a).fill(n),a}var Mse={kernelName:bl,backendName:"wasm",kernelFunc:g_},b_;function Lse(e){b_=e.wasm.cwrap(oc,null,["number","number","number","number","number","number"])}function Bse(e){let{inputs:t,backend:n}=e,{image:r}=t,s=n.makeOutput(r.shape,r.dtype),a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,[i,c,u,l]=r.shape;return b_(a,i,c,u,l,o),s}var zse={kernelName:oc,backendName:"wasm",kernelFunc:Bse,setupFunc:Lse},Wse=on(Ka),Vse=!1,Use=Cn(Xa,Vse),y_;function Gse(e){y_=e.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number"])}function Hse(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:s}=r,{x:a,mean:o,variance:i,offset:c,scale:u}=n,l=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=c!=null?t.dataIdMap.get(c.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return y_(l,d,p,h,f,s,g),m}var jse={kernelName:Ya,backendName:"wasm",setupFunc:Gse,kernelFunc:Hse},v_;function qse(e){v_=e.wasm.cwrap($o,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Kse(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:u,dilations:l,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=_.computeConv2DInfo(s.shape,a.shape,c,l,u,p),g=$d[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=r.dataIdMap.get(s.dataId).id,y=r.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(o!=null){let J=r.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${v})`);x=J.id}let k=m.filterHeight,C=m.filterWidth,N=m.padInfo.top,F=m.padInfo.right,R=m.padInfo.bottom,O=m.padInfo.left,$=m.dilationHeight,P=m.dilationWidth,T=m.strideHeight,L=m.strideWidth,G=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,K=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=r.makeOutput(m.outShape,"float32"),ne=r.dataIdMap.get(te.dataId).id,re=i==null?0:r.dataIdMap.get(i.dataId).id;return v_(b,q,K,ee,y,k,C,x,N,F,R,O,j,$,P,T,L,G,v,g,re,f||0,ne),te}var Xse={kernelName:$o,backendName:"wasm",setupFunc:qse,kernelFunc:Kse},x_;function Yse(e){x_=e.wasm.cwrap(Fo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Zse(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:u,dilations:l,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=_.computeConv2DInfo(s.shape,a.shape,c,l,u,p,!0),g=$d[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=r.dataIdMap.get(s.dataId).id,y=r.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(o!=null){let J=r.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${v})`);x=J.id}let k=m.filterHeight,C=m.filterWidth,N=m.padInfo.top,F=m.padInfo.right,R=m.padInfo.bottom,O=m.padInfo.left,$=m.dilationHeight,P=m.dilationWidth,T=m.strideHeight,L=m.strideWidth,G=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,K=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=r.makeOutput(m.outShape,"float32"),ne=r.dataIdMap.get(te.dataId).id,re=i==null?0:r.dataIdMap.get(i.dataId).id;return x_(b,q,K,ee,y,k,C,x,N,F,R,O,j,$,P,T,L,G,v,g,re,f||0,ne),te}var Jse={kernelName:Fo,backendName:"wasm",setupFunc:Yse,kernelFunc:Zse},w_;function Qse(e){w_=e.wasm.cwrap(cc,null,["number","number","number","number","number","number","array","number"])}function eae(e){let{backend:t,inputs:n}=e,{params:r,indices:s}=n,[a,o,i,c]=Wb.prepareAndValidate(r,s),u=t.makeOutput(a,r.dtype);if(o===0)return u;let l=s.shape,d=l[l.length-1],h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,g=new Uint8Array(new Int32Array(c).buffer),b=t.dataIdMap.get(u.dataId).id;return w_(h,Pn[r.dtype],m,o,d,i,g,b),u}var tae={kernelName:cc,backendName:"wasm",setupFunc:Qse,kernelFunc:eae},k_;function nae(e){k_=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function rae(e){let{backend:t,inputs:n,attrs:r}=e,{x:s,indices:a}=n,{axis:o,batchDims:i}=r,c=w.parseAxisParam(o,s.shape)[0],u=_.segment_util.collectGatherOpShapeInfo(s,a,c,i),l=On({inputs:{x:s},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=w.sizeFromShape(a.shape),p=On({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),h=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],f=t.makeOutput(h,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let m=l.shape.length-1,b=t.dataIdMap.get(l.dataId).id,v=t.dataIdMap.get(p.dataId).id,x=t.dataIdMap.get(f.dataId).id,k=new Uint8Array(new Int32Array(w.computeStrides(l.shape)).buffer),C=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer);return k_(b,Pn[s.dtype],k,m,v,u.batchSize,C,x),t.disposeData(l.dataId),t.disposeData(p.dataId),f.shape=u.outputShape,f}var sae={kernelName:ic,backendName:"wasm",setupFunc:nae,kernelFunc:rae},aae=!1,oae=Cn(uc,aae,"bool"),iae=!1,cae=Cn(Za,iae,"bool"),I_;function uae(e){I_=e.wasm.cwrap(Qa,null,["number","number","number"])}function lae(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,s=r.dataIdMap.get(t.dataId).id,a=r.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let o=r.dataIdMap.get(a.dataId).id;I_(s,n,o)}return a}var dae={kernelName:Qa,backendName:"wasm",setupFunc:uae,kernelFunc:lae},pae=!1,hae=Cn(hc,pae,"bool"),fae=!1,mae=Cn(fc,fae,"bool"),gae=on(eo),bae=!1,yae=Cn(gc,bae,"bool"),S_;function vae(e){S_=e.wasm.cwrap(to,null,["number, number, number"])}function xae(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:s,keepDims:a}=r,{x:o}=n,c=t.dataIdMap.get(o.dataId).id,u=o,{transposed:l,axes:d,originalAxes:p,inputWasTransposed:h}=xa(o,s,t);if(h){let v=t.dataIdMap.get(l.dataId).id;u=l,c=v}let f=u.shape.length;_.assertAxesAreInnerMostDims("max",d,f);let[m,g]=_.computeOutAndReduceShapes(u.shape,d),b=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;S_(c,b,v)}if(h&&t.disposeData(l.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var wae={kernelName:to,backendName:"wasm",setupFunc:vae,kernelFunc:xae},kae=!1,Iae=Cn(no,kae),C_;function Sae(e){C_=e.wasm.cwrap(ro,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Cae(e){let{inputs:t,attrs:n,backend:r}=e,s=t.x,a=r.dataIdMap.get(s.dataId).id,{filterSize:o,strides:i,pad:c,dimRoundingMode:u}=n,l=_.computePool2DInfo(s.shape,o,i,1,c,u),d=l.filterHeight,p=l.filterWidth,h=l.padInfo.top,f=l.padInfo.right,m=l.padInfo.bottom,g=l.padInfo.left,b=l.dilationHeight,y=l.dilationWidth,v=l.strideHeight,x=l.strideWidth,k=l.inChannels,C=l.outChannels;if(l.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${l.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(l.outShape,"float32"),F=r.dataIdMap.get(N.dataId).id;return C_(a,s.shape[0],s.shape[1],s.shape[2],d,p,h,f,m,g,b,y,v,x,k,C,F),N}var Tae={kernelName:ro,backendName:"wasm",setupFunc:Sae,kernelFunc:Cae},T_;function Nae(e){T_=e.wasm.cwrap(so,null,["number, number, number"])}function _ae(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,u=o,{transposed:l,axes:d,originalAxes:p,inputWasTransposed:h}=xa(o,s,t),f=d;if(h){let x=t.dataIdMap.get(l.dataId).id;x!==i&&(u=l,c=x,f=_.getInnerMostAxes(f.length,u.shape.length))}_.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=_.computeOutAndReduceShapes(u.shape,f),b=w.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=om({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),c=t.dataIdMap.get(y.dataId).id);let v=t.makeOutput(m,"float32");if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;T_(c,b,x)}if(h&&t.disposeData(l.dataId),a){let x=_.expandShapeToKeepDim(v.shape,p);v.shape=x}return u.dtype!=="float32"&&t.disposeData(y.dataId),v}var Eae={kernelName:so,backendName:"wasm",setupFunc:Nae,kernelFunc:_ae},N_;function Aae(e){N_=e.wasm.cwrap(ao,null,["number, number, number"])}function $ae(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,u=o,{transposed:l,axes:d,originalAxes:p,inputWasTransposed:h}=xa(o,s,t);if(h){let v=t.dataIdMap.get(l.dataId).id;v!==i&&(u=l,c=v)}let f=u.shape.length;_.assertAxesAreInnerMostDims("min",d,f);let[m,g]=_.computeOutAndReduceShapes(u.shape,d),b=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;N_(c,b,v)}if(h&&t.disposeData(l.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var Fae={kernelName:ao,backendName:"wasm",setupFunc:Aae,kernelFunc:$ae},Dae=!1,Rae=Cn(oo,Dae),Iw;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Iw||(Iw={}));var __;function Pae(e){__=e.wasm.cwrap(io,null,["number","array","number","number","array","array","number","number"])}function Oae(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:s}}=e,a=r.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),l=r.map(f=>f[0]),d=r.map(f=>f[1]),p=new Uint8Array(new Int32Array(l).buffer),h=new Uint8Array(new Int32Array(d).buffer);return __(o,u,t.shape.length,Pn[t.dtype],p,h,Iw[s],c),i}var Mae={kernelName:io,backendName:"wasm",kernelFunc:Oae,setupFunc:Pae},Lae=!0,Bae=Cn(co,Lae),zae=on(yc);function Sw(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],s=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:s,pSelectedScores:a,pValidOutputs:o}}var E_;function Wae(e){E_=e.wasm.cwrap(xc,"number",["number","number","number","number","number"])}function Vae(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o}=r,{boxes:i,scores:c}=n,u=t.dataIdMap.get(i.dataId).id,l=t.dataIdMap.get(c.dataId).id,d=E_(u,l,a,s,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Sw(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Uae={kernelName:xc,backendName:"wasm",setupFunc:Wae,kernelFunc:Vae},A_;function Gae(e){A_=e.wasm.cwrap(wc,"number",["number","number","number","number","number","bool"])}function Hae(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=r,{boxes:c,scores:u}=n,l=t.dataIdMap.get(c.dataId).id,d=t.dataIdMap.get(u.dataId).id,p=A_(l,d,a,s,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Sw(t,p);t.wasm._free(m);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var jae={kernelName:wc,backendName:"wasm",setupFunc:Gae,kernelFunc:Hae},$_;function qae(e){$_=e.wasm.cwrap(kc,"number",["number","number","number","number","number","number"])}function Kae(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=r,{boxes:c,scores:u}=n,l=t.dataIdMap.get(c.dataId).id,d=t.dataIdMap.get(u.dataId).id,p=$_(l,d,a,s,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Sw(t,p);t.wasm._free(g);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[b,y]}var Xae={kernelName:kc,backendName:"wasm",setupFunc:qae,kernelFunc:Kae},Yae=!1,Zae=Cn(vc,Yae,"bool"),F_;function Jae(e){F_=e.wasm.cwrap(uo,null,["number","number","number","number","number"])}function Qae(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,c=n.makeOutput([...s.shape,a],"int32"),u=n.dataIdMap.get(c.dataId).id,d=n.dataIdMap.get(s.dataId).id;return F_(d,a,o,i,u),c}var eoe={kernelName:uo,backendName:"wasm",setupFunc:Jae,kernelFunc:Qae};function toe(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var noe={kernelName:Ic,backendName:"wasm",kernelFunc:toe};function roe(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return kw({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(l=>{w.assertShapesMatch(a,l.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],c=t.map(l=>{let d=kw({inputs:{input:l},backend:n,attrs:{dim:s}});return i.push(d),d}),u=u_({inputs:c,backend:n,attrs:{axis:s}});return i.forEach(l=>n.disposeData(l.dataId)),u}var soe={kernelName:Sc,backendName:"wasm",kernelFunc:roe},D_;function aoe(e){D_=e.wasm.cwrap(lo,null,["number","array","number","number","array","array","number","number"])}function ooe(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:s}}=e,a=r.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return g_({backend:n,attrs:{shape:a,value:s,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),d=r.map(m=>m[0]),p=r.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return D_(o,l,t.shape.length,Pn[t.dtype],h,f,s,u),i}var R_={kernelName:lo,backendName:"wasm",kernelFunc:ooe,setupFunc:aoe},ioe=!1,coe=Cn(po,ioe),P_;function uoe(e){P_=e.wasm.cwrap(ho,null,["number","number","number"])}function loe(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,i=n.makeOutput(r.shape,"float32"),c=n.dataIdMap.get(i.dataId).id;return P_(a,o,c),i}var doe={kernelName:ho,backendName:"wasm",setupFunc:uoe,kernelFunc:loe},O_;function poe(e){O_=e.wasm.cwrap(Cc,null,["number","number","number","number"])}function hoe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,u=o,{transposed:l,axes:d,originalAxes:p,inputWasTransposed:h}=xa(o,s,t),f=d;if(h){let v=t.dataIdMap.get(l.dataId).id;v!==i&&(u=l,c=v,f=_.getInnerMostAxes(f.length,u.shape.length))}_.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=_.computeOutAndReduceShapes(u.shape,f),b=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;O_(c,b,Pn[y.dtype],v)}if(h&&t.disposeData(l.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var foe={kernelName:Cc,backendName:"wasm",setupFunc:poe,kernelFunc:hoe},moe=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=jx(r,s,a,o),c=t.makeOutput([i.length],o);return t.typedArrayFromHeap(c).set(i),c},goe={kernelName:kl,backendName:"wasm",kernelFunc:moe},boe=!0,yoe=Cn(Ha,boe),voe=on(fo),xoe=on(go),M_;function woe(e){M_=e.wasm.cwrap(mo,null,["number","number","number","number","number","number","number","number","number","number"])}function koe(e){let{backend:t,inputs:n,attrs:r}=e,{images:s}=n,{alignCorners:a,halfPixelCenters:o,size:i}=r,[c,u]=i,[l,d,p,h]=s.shape,f=[l,c,u,h],m=t.dataIdMap.get(s.dataId),g;m.dtype!=="float32"&&(g=om({backend:t,inputs:{x:s},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let b=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(s.shape)===0)return y;let v=t.dataIdMap.get(y.dataId).id;return M_(b,l,d,p,h,c,u,a?1:0,o?1:0,v),g!=null&&t.disposeData(g.dataId),y}var Ioe={kernelName:mo,backendName:"wasm",setupFunc:woe,kernelFunc:koe},L_;function Soe(e){L_=e.wasm.cwrap(bo,null,["number","array","number","array","number","number"])}function Coe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=w.parseAxisParam(a,s.shape);if(s.shape.length===0)return am({inputs:{x:s},backend:n});let i=n.makeOutput(s.shape,s.dtype),c=n.dataIdMap.get(s.dataId).id,u=n.dataIdMap.get(i.dataId).id,l=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(s.shape).buffer);L_(c,l,o.length,d,s.shape.length,u);let p=On({inputs:{x:i},attrs:{shape:s.shape},backend:n});return n.disposeData(i.dataId),p}var Toe={kernelName:bo,backendName:"wasm",kernelFunc:Coe,setupFunc:Soe},B_;function Noe(e){B_=e.wasm.cwrap(Vc,null,["number","number","number","number","number","number","number","number","array","number","number"])}function _oe(e){let{inputs:t,backend:n,attrs:r}=e,{image:s}=t,{radians:a,fillValue:o,center:i}=r,c=n.makeOutput(s.shape,s.dtype),u=n.dataIdMap.get(s.dataId).id,l=n.dataIdMap.get(c.dataId).id,[d,p,h,f]=s.shape,[m,g]=_.getImageCenter(i,p,h),b=o===0,y=255,v=typeof o=="number"?[o,o,o,b?0:y]:[...o,y],x=new Uint8Array(new Int32Array(v).buffer);return B_(u,d,p,h,f,a,m,g,x,v.length,l),c}var Eoe={kernelName:Vc,backendName:"wasm",kernelFunc:_oe,setupFunc:Noe},Aoe=on(yo),$oe=on(vo),z_;function Foe(e){z_=e.wasm.cwrap(_c,null,["number","number","number","number","number","number","array","number","number"])}function Doe(e){let{backend:t,inputs:n,attrs:r}=e,{indices:s,updates:a}=n,{shape:o}=r,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:c,numUpdates:u,sliceSize:l,strides:d,outputSize:p}=Vb.calculateShapes(a,s,o),f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(a.dataId).id,b=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return z_(f,g,Pn[a.dtype],c,u,l,b,p,y),i}var Roe={kernelName:_c,backendName:"wasm",setupFunc:Foe,kernelFunc:Doe},W_;function Poe(e){W_=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Ooe(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(s.dataId).id,c=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(s.shape,s.dtype),l=n.dataIdMap.get(u.dataId).id,d=r.shape.length,p=s.shape.length,h=d===0||d>1||p===1?1:w.sizeFromShape(s.shape.slice(1));return W_(o,i,c,h,l),u}var Moe={kernelName:Ec,backendName:"wasm",kernelFunc:Ooe,setupFunc:Poe},V_;function Loe(e){V_=e.wasm.cwrap(wo,null,["number","number"])}function Boe(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(s.dataId).id;return w.sizeFromShape(s.shape)===0||V_(r,a),s}var zoe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Loe,kernelFunc:Boe},Woe=on(xo),U_;function Voe(e){U_=e.wasm.cwrap(So,null,["number","number","number","number"])}function Uoe(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,s=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[r],c=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||U_(s,o,i,c),a}var Goe={kernelName:So,backendName:"wasm",setupFunc:Voe,kernelFunc:Uoe};function Hoe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r,i=w.sizeFromShape(a),c=[[0,0]];c.push(...o);for(let C=1+a.length;C<s.shape.length;++C)c.push([0,0]);let u=R_.kernelFunc({inputs:{x:s},backend:n,attrs:{paddings:c,constantValue:0}}),l=_.getReshaped(u.shape,a,i,!1),d=_.getPermuted(l.length,a.length,!1),p=_.getReshapedPermuted(u.shape,a,i,!1),m=On({inputs:{x:u},backend:n,attrs:{shape:l}}),y=Eu({inputs:{x:m},backend:n,attrs:{perm:d}}),k=On({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),k}var joe={kernelName:Pc,backendName:"wasm",kernelFunc:Hoe};function qoe(e){let{inputs:t,attrs:n,backend:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=n,i=w.parseAxisParam(o,s.shape)[0],c=_.prepareSplitSize(s,a,i),u=new Array(s.shape.length).fill(0),l=s.shape.slice();return c.map(d=>{let p=[...l];p[i]=d;let h=Fd({inputs:{x:s},attrs:{begin:u,size:p},backend:r});return u[i]+=d,h})}var Koe={kernelName:Oc,backendName:"wasm",kernelFunc:qoe},Xoe=on(ko),Yoe=on(Sl),Zoe=!0,Joe=Cn(Co,Zoe),G_;function Qoe(e){G_=e.wasm.cwrap(Zs,null,["number","number","number"])}function eie(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:s}=r,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),c=t.dataIdMap.get(i.dataId).id;return G_(o,s,c),i}var tie={kernelName:Zs,backendName:"wasm",setupFunc:Qoe,kernelFunc:eie},H_;function nie(e){H_=e.wasm.cwrap(Mc,null,["number","array","number","array","array","array","array","array","number","number"])}function rie(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{begin:a,end:o,strides:i}=r;i==null&&(i=new Array(a.length));let{beginMask:c,endMask:u,ellipsisMask:l,newAxisMask:d,shrinkAxisMask:p}=r,h=_.slice_util.maskToAxes(l);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(l!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(l!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=s.shape.length-a.length,m=_.slice_util.maskToAxes(d),g=s.shape.slice();m.forEach($=>{a[$]=0,o[$]=1,g.splice($,0,1)});let b=On({inputs:{x:s},attrs:{shape:g},backend:t}),{begin:y,end:v,strides:x}=_.slice_util.getNormalizedAxes(b.shape,h,f,a,o,i,c,u,l);a=y,o=v,i=x;let k=_.slice_util.maskToAxes(p);k.forEach($=>{o[$]=a[$]+1,i[$]=1});let C=_.slice_util.computeOutShape(a,o,i),N=C.filter(($,P)=>k.indexOf(P)===-1);if(i.every($=>$===1)){let $=Fd({inputs:{x:b},attrs:{begin:a,size:C},backend:t});t.disposeData(b.dataId);let P=On({inputs:{x:$},attrs:{shape:N},backend:t});return t.disposeData($.dataId),P}let R=t.makeOutput(N,"float32");if(!N.some($=>$===0)){let $=t.dataIdMap.get(b.dataId).id,P=new Uint8Array(new Int32Array(w.computeStrides(b.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),L=new Uint8Array(new Int32Array(o).buffer),G=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(N).buffer),q=new Uint8Array(new Int32Array(w.computeStrides(N)).buffer),K=t.dataIdMap.get(R.dataId).id;H_($,P,b.shape.length,T,L,G,j,q,N.length,K)}t.disposeData(b.dataId);let O=On({inputs:{x:R},attrs:{shape:N},backend:t});return t.disposeData(R.dataId),O}var sie={kernelName:Mc,backendName:"wasm",setupFunc:nie,kernelFunc:rie},aie=!0,oie=Cn(To,aie),j_;function iie(e){j_=e.wasm.cwrap(Io,null,["number, number, number"])}function cie(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,u=o,{transposed:l,axes:d,originalAxes:p,inputWasTransposed:h}=xa(o,s,t),f=d;if(h){let v=t.dataIdMap.get(l.dataId).id;v!==i&&(u=l,c=v,f=_.getInnerMostAxes(f.length,u.shape.length))}_.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=_.computeOutAndReduceShapes(u.shape,f),b=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;j_(c,b,v)}if(h&&t.disposeData(l.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var uie={kernelName:Io,backendName:"wasm",setupFunc:iie,kernelFunc:cie},lie=on(No),die=on(_o),q_;function pie(e){q_=e.wasm.cwrap(Ys,null,["number","array","number","array","number","number"])}function hie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,a=n.dataIdMap.get(s.dataId).id,{reps:o}=r,i=new Array(s.shape.length);for(let p=0;p<i.length;p++)i[p]=s.shape[p]*o[p];let c=new Uint8Array(new Int32Array(s.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),l=n.makeOutput(i,s.dtype),d=n.dataIdMap.get(l.dataId).id;return q_(a,c,s.shape.length,u,i.length,Pn[l.dtype],d),l}var fie={kernelName:Ys,backendName:"wasm",setupFunc:pie,kernelFunc:hie},K_;function mie(e){K_=e.wasm.cwrap(Lc,null,["number","array","number","number","number","bool","number","number"])}var gie=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:s,sorted:a}=n,o=t.dataIdMap.get(r.dataId).id,i=new Uint8Array(new Int32Array(r.shape).buffer),c=r.shape.slice();c[c.length-1]=s;let u=t.makeOutput(c,r.dtype),l=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(c,"int32"),p=t.dataIdMap.get(d.dataId).id;return K_(o,i,r.shape.length,Pn[r.dtype],s,a,l,p),[u,d]},bie={kernelName:Lc,backendName:"wasm",setupFunc:mie,kernelFunc:gie},X_;function yie(e){X_=e.wasm.cwrap(Bc,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function vie(e){let{backend:t,inputs:n,attrs:r}=e,{image:s,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:c,outputShape:u}=r,[l,d,p,h]=s.shape,[f,m]=u!=null?u:[d,p],g=[l,f,m,h],b=new Uint8Array(new Int32Array(w.computeStrides(s.shape)).buffer),y=t.makeOutput(g,s.dtype),v=t.dataIdMap.get(y.dataId).id,k=t.dataIdMap.get(s.dataId).id,N=t.dataIdMap.get(a.dataId).id,F=o==="nearest"?1:2,R;switch(i){case"constant":R=1;break;case"reflect":R=2;break;case"wrap":R=3;break;case"nearest":R=4;break;default:R=1;break}return X_(k,N,a.shape[0]>1,l,f,m,h,p,d,b,s.shape.length-1,F,R,c,v),y}var xie={kernelName:Bc,backendName:"wasm",setupFunc:yie,kernelFunc:vie};function wie(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s.shape[a],i=s.shape.length,c=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==a&&(c[u++]=s.shape[h]);let l=new Array(o),d=new Array(i).fill(0),p=s.shape.slice();p[a]=1;for(let h=0;h<l.length;h++)d[a]=h,l[h]=Fd({inputs:{x:s},attrs:{begin:d,size:p},backend:n});return l.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:c}))}var kie={kernelName:zc,backendName:"wasm",kernelFunc:wie};function Iie(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var Sie={kernelName:Wc,backendName:"wasm",kernelFunc:Iie},Cie=[Nre,Ere,Fre,zre,Ure,jre,Xre,Qre,ase,ose,ise,lse,dse,fse,bse,yse,vse,kse,Cse,_se,$se,Fse,Rse,Pse,Ose,Mse,zse,Wse,Use,Tre,jse,Xse,Jse,tae,sae,oae,cae,Dre,dae,hae,mae,gae,yae,wae,Iae,Tae,Eae,Fae,Rae,Mae,Bae,zae,Uae,jae,Xae,Zae,eoe,noe,soe,R_,coe,doe,foe,goe,yoe,voe,xoe,Yre,Ioe,Toe,Eoe,$oe,Aoe,Roe,Moe,zoe,Woe,rse,Goe,joe,Koe,Xoe,Yoe,Joe,tie,sie,oie,uie,lie,die,fie,bie,xie,Mre,kie,Sie];for(let e of Cie)Nl(e);var Cw=Q();Cw.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Cw.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Cw.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Y_=Ea(r$()),Tie='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Nie=Ea(s$()),Z_=class extends ul{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new vp(this,ws())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,r,s){let a=this.dataIdNextNumber++;if(r==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:r,memoryOffset:null,refCount:s});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(r),c=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:c,shape:n,dtype:r,refCount:s}),this.wasm.tfjs.registerTensor(a,o,c),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),c)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:s}=this.dataIdMap.get(e);if(n==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(r)*w.bytesPerElement(n));return Aie(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,s,a);case"int32":return new Int32Array(r,s,a);case"bool":return new Uint8Array(r,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function _ie(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(s=>{WebAssembly.instantiate(s,t).then(a=>{n(a.instance,a.module)})})}),{})}function J_(e,t,n){if(im!=null)return im;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Rd!=null&&Rd[r]!=null?Rd[r]:n+r}async function Eie(){let[e,t]=await Promise.all([Q().getAsync("WASM_HAS_SIMD_SUPPORT"),Q().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let s={};s.locateFile=(i,c)=>{if(i.endsWith(".worker.js")){let u=Tie,l=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(l)}return i.endsWith(".wasm")?J_(e,t,Dd!=null?Dd:c):c+i},Tw&&(s.instantiateWasm=_ie(J_(e,t,Dd!=null?Dd:"")));let a=!1;s.onAbort=()=>{if(a||Pd)return;Pd=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&im==null?(s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Y_.default.toString()],{type:"text/javascript"}),o=(0,Y_.default)(s)):o=(0,Nie.default)(s),o.then(i=>{a=!0,Pd=!1;let c=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",c,["number"]),dispose:i.cwrap("dispose",c,[])},n({wasm:i})})})}function Aie(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var $ie=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],im=null,Dd=null,Rd={},Pd=!1,Tw=!1;function Fie(e,t=!1){if(Kb("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Pd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");im=e,Tw=t}function Die(e,t=!1){if(Pd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Dd=e;else{Rd=e;let n=$ie.filter(r=>Rd[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Tw=t}var Rie="3.9.0",Pie=2;vh("wasm",async()=>{let{wasm:e}=await Eie();return new Z_(e)},Pie);var Oie={tfjs:a$,"tfjs-core":o$,"tfjs-data":i$,"tfjs-layers":c$,"tfjs-converter":u$,"tfjs-backend-cpu":l$,"tfjs-backend-webgl":d$,"tfjs-backend-wasm":p$};var Qw={};bp(Qw,{AnchorPosition:()=>ds,DrawBox:()=>dm,DrawBoxOptions:()=>Vw,DrawFaceLandmarks:()=>Jw,DrawFaceLandmarksOptions:()=>Zw,DrawTextField:()=>ka,DrawTextFieldOptions:()=>Bd,drawContour:()=>Fs,drawDetections:()=>Hie,drawFaceExpressions:()=>Yie,drawFaceLandmarks:()=>Jie});function Fs(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:r,y:s},a)=>{let o=t[a];e.moveTo(o.x,o.y),e.lineTo(r,s)}),n){let r=t[t.length-1],s=t[0];if(!r||!s)return;e.moveTo(r.x,r.y),e.lineTo(s.x,s.y)}e.stroke()}var $w={};bp($w,{computeReshapedDimensions:()=>Aw,getCenterPoint:()=>hi,isDimensions:()=>um,isEven:()=>cm,isFloat:()=>Ew,isTensor:()=>di,isTensor1D:()=>Mie,isTensor2D:()=>_w,isTensor3D:()=>Ds,isTensor4D:()=>hr,isValidNumber:()=>Gr,isValidProbablitiy:()=>Au,range:()=>us,round:()=>pi});var Tn=class{constructor(t,n){if(!Gr(t)||!Gr(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new Tn(1/this.width,1/this.height)}};function di(e,t){return e instanceof Ee&&e.shape.length===t}function Mie(e){return di(e,1)}function _w(e){return di(e,2)}function Ds(e){return di(e,3)}function hr(e){return di(e,4)}function Ew(e){return e%1!=0}function cm(e){return e%2==0}function pi(e,t=2){let n=10**t;return Math.floor(e*n)/n}function um(e){return e&&e.width&&e.height}function Aw({width:e,height:t},n){let r=n/Math.max(t,e);return new Tn(Math.round(e*r),Math.round(t*r))}function hi(e){return e.reduce((t,n)=>t.add(n),new Re(0,0)).div(new Re(e.length,e.length))}function us(e,t,n){return Array(e).fill(0).map((r,s)=>t+s*n)}function Gr(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function Au(e){return Gr(e)&&e>=0&&e<=1}var Re=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Re(this.x+t.x,this.y+t.y)}sub(t){return new Re(this.x-t.x,this.y-t.y)}mul(t){return new Re(this.x*t.x,this.y*t.y)}div(t){return new Re(this.x/t.x,this.y/t.y)}abs(){return new Re(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Re(Math.floor(this.x),Math.floor(this.y))}};var it=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Gr)}static assertIsValidBox(t,n,r=!1){if(!it.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let r=t||{},s=[r.left,r.top,r.right,r.bottom].every(Gr),a=[r.x,r.y,r.width,r.height].every(Gr);if(!a&&!s)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[o,i,c,u]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];it.assertIsValidBox({x:o,y:i,width:c,height:u},"Box.constructor",n),this._x=o,this._y=i,this._width=c,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Re(this.left,this.top)}get topRight(){return new Re(this.right,this.top)}get bottomLeft(){return new Re(this.left,this.bottom)}get bottomRight(){return new Re(this.right,this.bottom)}round(){let[t,n,r,s]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new it({x:t,y:n,width:r,height:s})}floor(){let[t,n,r,s]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new it({x:t,y:n,width:r,height:s})}toSquare(){let{x:t,y:n,width:r,height:s}=this,a=Math.abs(r-s);return r<s&&(t-=a/2,r+=a),s<r&&(n-=a/2,s+=a),new it({x:t,y:n,width:r,height:s})}rescale(t){let n=um(t)?t.width:t,r=um(t)?t.height:t;return new it({x:this.x*n,y:this.y*r,width:this.width*n,height:this.height*r})}pad(t,n){let[r,s,a,o]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new it({x:r,y:s,width:a,height:o})}clipAtImageBorders(t,n){let{x:r,y:s,right:a,bottom:o}=this,i=Math.max(r,0),c=Math.max(s,0),u=a-i,l=o-c,d=Math.min(u,t-i),p=Math.min(l,n-c);return new it({x:i,y:c,width:d,height:p}).floor()}shift(t,n){let{width:r,height:s}=this,a=this.x+t,o=this.y+n;return new it({x:a,y:o,width:r,height:s})}padAtBorders(t,n){let r=this.width+1,s=this.height+1,a=1,o=1,i=r,c=s,u=this.left,l=this.top,d=this.right,p=this.bottom;return d>n&&(i=-d+n+r,d=n),p>t&&(c=-p+t+s,p=t),u<1&&(c=2-u,u=1),l<1&&(c=2-l,l=1),{dy:o,edy:c,dx:a,edx:i,y:l,ey:p,x:u,ex:d,w:r,h:s}}calibrate(t){return new it({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var $u=class extends it{constructor(t,n,r,s,a=!1){super({left:t,top:n,right:r,bottom:s},a)}};var wa=class{constructor(t,n,r,s,a){this._imageDims=new Tn(a.width,a.height),this._score=t,this._classScore=n,this._className=r,this._box=new it(s).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new it(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new wa(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var yt=class extends wa{constructor(t,n,r){super(t,t,"",n,r)}forSize(t,n){let{score:r,relativeBox:s,imageDims:a}=super.forSize(t,n);return new yt(r,s,a)}};function Fw(e,t,n=!0){let r=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),s=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),a=r*s;return n?a/(e.area+t.area-a):a/Math.min(e.area,t.area)}function Dw(e){let t=e.map(i=>i.x),n=e.map(i=>i.y),r=t.reduce((i,c)=>c<i?c:i,1/0),s=n.reduce((i,c)=>c<i?c:i,1/0),a=t.reduce((i,c)=>i<c?c:i,0),o=n.reduce((i,c)=>i<c?c:i,0);return new $u(r,s,a,o)}function Rw(e,t,n,r=!0){let s=t.map((o,i)=>({score:o,boxIndex:i})).sort((o,i)=>o.score-i.score).map(o=>o.boxIndex),a=[];for(;s.length>0;){let o=s.pop();a.push(o);let i=s,c=[];for(let u=0;u<i.length;u++){let l=i[u],d=e[o],p=e[l];c.push(Fw(d,p,r))}s=s.filter((u,l)=>c[l]<=n)}return a}function Hr(e,t){return M(()=>{let[n,r,s]=t,a=vn([...e.shape.slice(0,3),1],n,"float32"),o=vn([...e.shape.slice(0,3),1],r,"float32"),i=vn([...e.shape.slice(0,3),1],s,"float32"),c=et([a,o,i],3);return he(e,c)})}function Pw(e,t=!1){return M(()=>{let[n,r]=e.shape.slice(1);if(n===r)return e;let s=Math.abs(n-r),a=Math.round(s*(t?.5:1)),o=n>r?2:1,i=p=>{let h=e.shape.slice();return h[o]=p,vn(h,0,"float32")},c=i(a),u=s-c.shape[o],d=[t&&u?i(u):null,e,c].filter(p=>!!p).map(p=>ce(p,"float32"));return et(d,o)})}function Lie(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let r=Math.floor(Math.random()*(n+1)),s=t[n];t[n]=t[r],t[r]=s}return t}function Od(e){return 1/(1+Math.exp(-e))}function Bie(e){return Math.log(e/(1-e))}var Fu=class extends it{constructor(t,n,r,s,a=!1){super({x:t,y:n,width:r,height:s},a)}};var zie=.5,Wie=.43,Vie=.45,fr=class{constructor(t,n,r=new Re(0,0)){let{width:s,height:a}=n;this._imgDims=new Tn(s,a),this._shift=r,this._positions=t.map(o=>o.mul(new Re(s,a)).add(r))}get shift(){return new Re(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Re(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Re(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let a=t instanceof yt?t.box.floor():new it(t);return this.shiftBy(a.x,a.y).align(null,n)}let{useDlibAlignment:r,minBoxPadding:s}={useDlibAlignment:!1,minBoxPadding:.2,...n};return r?this.alignDlib():this.alignMinBbox(s)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,r,s]=t,a=d=>s.sub(d).magnitude(),o=(a(n)+a(r))/2,i=Math.floor(o/Vie),c=hi(t),u=Math.floor(Math.max(0,c.x-zie*i)),l=Math.floor(Math.max(0,c.y-Wie*i));return new Fu(u,l,Math.min(i,this.imageWidth+u),Math.min(i,this.imageHeight+l))}alignMinBbox(t){let n=Dw(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Q_=class extends fr{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],hi([t[3],t[4]])]}};var Du=class extends fr{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(hi)}};var Md=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${pi(this.distance)})`:""}`}};var Ld=class extends it{static assertIsValidLabeledBox(t,n){if(it.assertIsValidBox(t,n),!Gr(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var Rs=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(r=>new Float32Array(r));return new Rs(t.label,n)}};var eE=class extends Ld{static assertIsValidPredictedBox(t,n){if(Ld.assertIsValidLabeledBox(t,n),!Au(t.score)||!Au(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,r,s){super(t,n);this._score=r,this._classScore=s}get score(){return this._score}get classScore(){return this._classScore}};function ls(e){return e.detection instanceof yt}function fi(e,t){return{...e,...{detection:t}}}function Ow(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function lm(e){let t="";if(!e)try{e=Li("fs")}catch(r){t=r.toString()}return{readFile:e?r=>new Promise((s,a)=>{e.readFile(r,(o,i)=>o?a(o):s(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Mw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,r=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},s=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},a=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},o=global.fetch,i=lm();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:s,createVideoElement:a,fetch:o,...i}}function Lw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}function Bw(){return typeof global=="object"&&typeof Li=="function"&&typeof module!="undefined"&&typeof process!="undefined"&&!!process.version}var Qt;function Uie(){if(!Qt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Qt}function zw(e){Qt=e}function Ww(){return Lw()?zw(Ow()):Bw()?zw(Mw()):null}function Gie(e){if(Qt||Ww(),!Qt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Qt.Canvas,Image:n=Qt.Image}=e;Qt.Canvas=t,Qt.Image=n,Qt.createCanvasElement=e.createCanvasElement||(()=>new t),Qt.createImageElement=e.createImageElement||(()=>new n),Qt.ImageData=e.ImageData||Qt.ImageData,Qt.Video=e.Video||Qt.Video,Qt.fetch=e.fetch||Qt.fetch,Qt.readFile=e.readFile||Qt.readFile}var Ye={getEnv:Uie,setEnv:zw,initialize:Ww,createBrowserEnv:Ow,createFileSystem:lm,createNodejsEnv:Mw,monkeyPatch:Gie,isBrowser:Lw,isNodejs:Bw};Ww();function mi(e){return!Ye.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Mn(e){let{Canvas:t,CanvasRenderingContext2D:n}=Ye.getEnv();if(e instanceof n)return e;let r=mi(e);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let s=r.getContext("2d");if(!s)throw new Error("resolveContext2d - canvas 2d context is null");return s}var ds;(function(s){s.TOP_LEFT="TOP_LEFT",s.TOP_RIGHT="TOP_RIGHT",s.BOTTOM_LEFT="BOTTOM_LEFT",s.BOTTOM_RIGHT="BOTTOM_RIGHT"})(ds||(ds={}));var Bd=class{constructor(t={}){let{anchorPosition:n,backgroundColor:r,fontColor:s,fontSize:a,fontStyle:o,padding:i}=t;this.anchorPosition=n||ds.TOP_LEFT,this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=s||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=o||"Georgia",this.padding=i||4}},ka=class{constructor(t,n,r={}){this.text=typeof t=="string"?[t]:t instanceof ka?t.text:t,this.anchor=n,this.options=new Bd(r)}measureWidth(t){let{padding:n}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,s)=>r<s?s:r,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:r}=this.options,s=r===ds.BOTTOM_RIGHT||r===ds.TOP_RIGHT,a=r===ds.BOTTOM_LEFT||r===ds.BOTTOM_RIGHT,o=this.measureWidth(t),i=this.measureHeight(),c=s?this.anchor.x-o:this.anchor.x,u=a?this.anchor.y-i:this.anchor.y;if(n){let{width:l,height:d}=n,p=Math.max(Math.min(c,l-o),0),h=Math.max(Math.min(u,d-i),0);return{x:p,y:h}}return{x:c,y:u}}draw(t){let n=mi(t),r=Mn(n),{backgroundColor:s,fontColor:a,fontSize:o,fontStyle:i,padding:c}=this.options;r.font=`${o}px ${i}`;let u=this.measureWidth(r),l=this.measureHeight();r.fillStyle=s;let d=this.getUpperLeft(r,n);r.fillRect(d.x,d.y,u,l),r.fillStyle=a,this.text.forEach((p,h)=>{let f=c+d.x,m=c+d.y+(h+1)*o;r.fillText(p,f,m)})}};var Vw=class{constructor(t={}){let{boxColor:n,lineWidth:r,label:s,drawLabelOptions:a}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=s;let o={anchorPosition:ds.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Bd({...o,...a})}},dm=class{constructor(t,n={}){this.box=new it(t),this.options=new Vw(n)}draw(t){let n=Mn(t),{boxColor:r,lineWidth:s}=this.options,{x:a,y:o,width:i,height:c}=this.box;n.strokeStyle=r,n.lineWidth=s,n.strokeRect(a,o,i,c);let{label:u}=this.options;u&&new ka([u],{x:a-s/2,y:o},this.options.drawLabelOptions).draw(t)}};function Hie(e,t){(Array.isArray(t)?t:[t]).forEach(r=>{let s=r instanceof yt?r.score:ls(r)?r.detection.score:void 0,a=r instanceof yt?r.box:ls(r)?r.detection.box:new it(r),o=s?`${pi(s)}`:void 0;new dm(a,{label:o}).draw(e)})}function zd(e){let{Image:t,Video:n}=Ye.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function Uw(e){return new Promise((t,n)=>{if(e instanceof Ye.getEnv().Canvas||zd(e))return t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",s),a.currentTarget.removeEventListener("error",r),n(a))}function s(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",s),a.currentTarget.removeEventListener("error",r),t(a))}e.addEventListener("load",s),e.addEventListener("error",r)})}function Gw(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let s=Ye.getEnv().createImageElement();s.onload=()=>t(s),s.onerror=n,s.src=r.result},r.onerror=n,r.readAsDataURL(e)})}function gi(e){let{Image:t,Video:n}=Ye.getEnv();return e instanceof t?new Tn(e.naturalWidth,e.naturalHeight):e instanceof n?new Tn(e.videoWidth,e.videoHeight):new Tn(e.width,e.height)}function bi({width:e,height:t}){let{createCanvasElement:n}=Ye.getEnv(),r=n();return r.width=e,r.height=t,r}function Wd(e,t){let{ImageData:n}=Ye.getEnv();if(!(e instanceof n)&&!zd(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:s}=t||gi(e),a=bi({width:r,height:s});return e instanceof n?Mn(a).putImageData(e,0,0):Mn(a).drawImage(e,0,0,r,s),a}async function Hw(e,t){let n=t||Ye.getEnv().createCanvasElement(),[r,s,a]=e.shape.slice(hr(e)?1:0),o=M(()=>e.as3D(r,s,a).toInt());return await Lo.toPixels(o,n),o.dispose(),n}function pm(e){let{Image:t,Canvas:n,Video:r}=Ye.getEnv();return e instanceof t||e instanceof n||e instanceof r}function jw(e,t,n=!1){let{Image:r,Canvas:s}=Ye.getEnv();if(!(e instanceof r||e instanceof s))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return bi({width:1,height:1});let a=gi(e),o=t/Math.max(a.height,a.width),i=o*a.width,c=o*a.height,u=bi({width:t,height:t}),l=e instanceof s?e:Wd(e),d=Math.abs(i-c)/2,p=n&&i<c?d:0,h=n&&c<i?d:0;return l.width>0&&l.height>0&&Mn(u).drawImage(l,p,h,i,c),u}var Ps=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((r,s)=>{if(Ds(r)){this._imageTensors[s]=r,this._inputDimensions[s]=r.shape;return}if(hr(r)){let o=r.shape[0];if(o!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${o} passed, but not supported in input array`);this._imageTensors[s]=r,this._inputDimensions[s]=r.shape.slice(1);return}let a=r instanceof Ye.getEnv().Canvas?r:Wd(r);this._canvases[s]=a,this._inputDimensions[s]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return us(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),r=this.getInputHeight(t);return Aw({width:n,height:r},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,M(()=>{let r=us(this.batchSize,0,1).map(a=>{let o=this.getInput(a);if(o instanceof Ee){let i=hr(o)?o:yn(o);return i=Pw(i,n),(i.shape[1]!==t||i.shape[2]!==t)&&(i=qn.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(o instanceof Ye.getEnv().Canvas)return Lo.fromPixels(jw(o,t,n));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${o}`)});return Pt(r.map(a=>ce(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function ft(e){if(e instanceof Ps)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=s=>Array.isArray(e)?` at input index ${s}:`:"",r=t.map(mi);return r.forEach((s,a)=>{if(!pm(s)&&!Ds(s)&&!hr(s))throw typeof t[a]=="string"?new Error(`toNetInput -${n(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${n(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(hr(s)){let o=s.shape[0];if(o!==1)throw new Error(`toNetInput -${n(a)} tf.Tensor4D with batchSize ${o} passed, but not supported in input array`)}}),await Promise.all(r.map(s=>pm(s)&&Uw(s))),new Ps(r,Array.isArray(e))}async function Ru(e,t){let{Canvas:n}=Ye.getEnv(),r=e;if(!(e instanceof n)){let o=await ft(e);if(o.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=o.getInput(0);r=i instanceof n?i:await Hw(i)}let s=Mn(r);return t.map(o=>o instanceof yt?o.forSize(r.width,r.height).box.floor():o).map(o=>o.clipAtImageBorders(r.width,r.height)).map(({x:o,y:i,width:c,height:u})=>{let l=bi({width:c,height:u});return c>0&&u>0&&Mn(l).putImageData(s.getImageData(o,i,c,u),0,0),l})}async function Pu(e,t){if(!Ds(e)&&!hr(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(hr(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return M(()=>{let[n,r,s]=e.shape.slice(hr(e)?1:0);return t.map(i=>i instanceof yt?i.forSize(r,n).box:i).map(i=>i.clipAtImageBorders(r,n)).map(({x:i,y:c,width:u,height:l})=>su(e.as3D(n,r,s),[c,i,0],[l,u,s]))})}async function Os(e,t){let{fetch:n}=Ye.getEnv(),r=await n(e,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function jie(e){let t=await Os(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return Gw(n)}async function qw(e){return(await Os(e)).json()}async function qie(e){return new Float32Array(await(await Os(e)).arrayBuffer())}function tE(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=Ye.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=n,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(e),r.play()})}async function Kie(e){let t=await Os(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return tE(n)}function hm(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let r=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(r,"");let s=e.split("/").filter(i=>i),a=e.endsWith(".json")?s[s.length-1]:n,o=r+(e.endsWith(".json")?s.slice(0,s.length-1):s).join("/");return o=e.startsWith("/")?`/${o}`:o,{modelBaseUri:o,manifestUri:o==="/"?`/${a}`:`${o}/${a}`}}async function Kw(e,t){let{manifestUri:n,modelBaseUri:r}=hm(e,t),s=await qw(n);return Kt.loadWeights(s,r)}function Xie(e,t,n=!1){let{width:r,height:s}=n?gi(t):t;return e.width=r,e.height=s,{width:r,height:s}}var cn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:r}=this.traversePropertyPath(t);return n[r]}reassignParamFromPath(t,n){let{obj:r,objProp:s}=this.traversePropertyPath(t);r[s].dispose(),r[s]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof Qs)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof Qs))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let r=Vn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await Kw(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=Ye.getEnv(),{manifestUri:r,modelBaseUri:s}=hm(t,this.getDefaultModelName()),a=u=>Promise.all(u.map(l=>n(l).then(d=>d.buffer))),o=Kt.weightsLoaderFactory(a),i=JSON.parse((await n(r)).toString()),c=await o(i,s);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:n,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=r}extractWeights(t){let{paramMappings:n,params:r}=this.extractParams(t);this._paramMappings=n,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((a,o)=>{if(!a.nextObj.hasOwnProperty(o))throw new Error(`traversePropertyPath - object does not have property ${o}, for path ${t}`);return{obj:a.nextObj,objProp:o,nextObj:a.nextObj[o]}},{nextObj:this.params}),{obj:r,objProp:s}=n;if(!r||!s||!(r[s]instanceof Ee))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:s}}};function Ln(e,t,n){return M(()=>{let r=ru(e,t.depthwise_filter,t.pointwise_filter,n,"same");return r=Y(r,t.bias),r})}function fm(e,t,n=!1){return M(()=>{let r=qe(n?Y(Dt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Ln(e,t.conv0,[2,2])),s=Ln(r,t.conv1,[1,1]),a=qe(Y(r,s)),o=Ln(a,t.conv2,[1,1]);return qe(Y(r,Y(s,o)))})}function Vd(e,t,n=!1,r=!0){return M(()=>{let s=qe(n?Y(Dt(e,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):Ln(e,t.conv0,r?[2,2]:[1,1])),a=Ln(s,t.conv1,[1,1]),o=qe(Y(s,a)),i=Ln(o,t.conv2,[1,1]),c=qe(Y(s,Y(a,i))),u=Ln(c,t.conv3,[1,1]);return qe(Y(s,Y(a,Y(i,u))))})}function yi(e,t,n="same",r=!1){return M(()=>{let s=Y(Dt(e,t.filters,[1,1],n),t.bias);return r?qe(s):s})}function Nn(e,t){Object.keys(e).forEach(n=>{t.some(r=>r.originalPath===n)||e[n].dispose()})}function Ou(e,t){return(n,r,s,a)=>{let o=Rr(e(n*r*s*s),[s,s,n,r]),i=Ue(e(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:o,bias:i}}}function mm(e,t){return(n,r,s)=>{let a=Dr(e(n*r),[n,r]),o=Ue(e(r));return t.push({paramPath:`${s}/weights`},{paramPath:`${s}/bias`}),{weights:a,bias:o}}}var gm=class{constructor(t,n,r){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=r}};function Mu(e,t){return(n,r,s)=>{let a=Rr(e(3*3*n),[3,3,n,1]),o=Rr(e(n*r),[1,1,n,r]),i=Ue(e(r));return t.push({paramPath:`${s}/depthwise_filter`},{paramPath:`${s}/pointwise_filter`},{paramPath:`${s}/bias`}),new gm(a,o,i)}}function Lu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),r=e(`${t}/pointwise_filter`,4),s=e(`${t}/bias`,1);return new gm(n,r,s)}}function Jn(e,t){return(n,r,s)=>{let a=e[n];if(!di(a,r))throw new Error(`expected weightMap[${n}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:n,paramPath:s||n}),a}}function _n(e){let t=e;function n(s){let a=t.slice(0,s);return t=t.slice(s),a}function r(){return t}return{extractWeights:n,getRemainingWeights:r}}function bm(e,t){let n=Ou(e,t),r=Mu(e,t);function s(o,i,c,u=!1){let l=u?n(o,i,3,`${c}/conv0`):r(o,i,`${c}/conv0`),d=r(i,i,`${c}/conv1`),p=r(i,i,`${c}/conv2`);return{conv0:l,conv1:d,conv2:p}}function a(o,i,c,u=!1){let{conv0:l,conv1:d,conv2:p}=s(o,i,c,u),h=r(i,i,`${c}/conv3`);return{conv0:l,conv1:d,conv2:p,conv3:h}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:a}}function nE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=_n(e),{extractDenseBlock4Params:s}=bm(n,t),a=s(3,32,"dense0",!0),o=s(32,64,"dense1"),i=s(64,128,"dense2"),c=s(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:o,dense2:i,dense3:c}}}function ym(e){return t=>{let n=e(`${t}/filters`,4),r=e(`${t}/bias`,1);return{filters:n,bias:r}}}function vm(e,t){let n=Jn(e,t),r=ym(n),s=Lu(n);function a(i,c=!1){let u=c?r(`${i}/conv0`):s(`${i}/conv0`),l=s(`${i}/conv1`),d=s(`${i}/conv2`);return{conv0:u,conv1:l,conv2:d}}function o(i,c=!1){let u=c?r(`${i}/conv0`):s(`${i}/conv0`),l=s(`${i}/conv1`),d=s(`${i}/conv2`),p=s(`${i}/conv3`);return{conv0:u,conv1:l,conv2:d,conv3:p}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:o}}function rE(e){let t=[],{extractDenseBlock4Params:n}=vm(e,t),r={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return Nn(e,t),{params:r,paramMappings:t}}var Ud=class extends cn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(112,!0),"float32"),a=Hr(r,[122.782,117.001,104.298]).div(255),o=Vd(a,n.dense0,!0);return o=Vd(o,n.dense1),o=Vd(o,n.dense2),o=Vd(o,n.dense3),o=vr(o,[7,7],[2,2],"valid"),o})}async forward(t){return this.forwardInput(await ft(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return rE(t)}extractParams(t){return nE(t)}};function Gd(e,t){return M(()=>Y(De(e,t.weights),t.bias))}function sE(e,t,n){let r=[],{extractWeights:s,getRemainingWeights:a}=_n(e),i=mm(s,r)(t,n,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function aE(e){let t=[],n=Jn(e,t);function r(a){let o=n(`${a}/weights`,2),i=n(`${a}/bias`,1);return{weights:o,bias:i}}let s={fc:r("fc")};return Nn(e,t),{params:s,paramMappings:t}}function xm(e){let t={},n={};return Object.keys(e).forEach(r=>{let s=r.startsWith("fc")?n:t;s[r]=e[r]}),{featureExtractorMap:t,classifierMap:n}}var Hd=class extends cn{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return M(()=>{let r=t instanceof Ps?this.faceFeatureExtractor.forwardInput(t):t;return Gd(r.as2D(r.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:r}=this.extractClassifierParams(t);this._params=n,this._paramMappings=r}extractClassifierParams(t){return sE(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:r}=xm(t);return this.faceFeatureExtractor.loadFromWeightMap(n),aE(r)}extractParams(t){let n=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*n+r,a=t.slice(0,t.length-s),o=t.slice(t.length-s);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(o)}};var Xw=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Ia=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Xw.forEach((n,r)=>{this[n]=t[r]})}asSortedArray(){return Xw.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var wm=class extends Hd{constructor(t=new Ud){super("FaceExpressionNet",t)}forwardInput(t){return M(()=>es(this.runNet(t)))}async forward(t){return this.forwardInput(await ft(t))}async predictExpressions(t){let n=await ft(t),r=await this.forwardInput(n),s=await Promise.all(ht(r).map(async o=>{let i=o.dataSync();return o.dispose(),i}));r.dispose();let a=s.map(o=>new Ia(o));return n.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Yw(e){return e.expressions instanceof Ia}function km(e,t){return{...e,...{expressions:t}}}function Yie(e,t,n=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let o=a instanceof Ia?a:Yw(a)?a.expressions:void 0;if(!o)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=o.asSortedArray().filter(d=>d.probability>n),u=ls(a)?a.detection.box.bottomLeft:r||new Re(0,0);new ka(c.map(d=>`${d.expression} (${pi(d.probability)})`),u).draw(e)})}function vi(e){return ls(e)&&e.landmarks instanceof fr&&e.unshiftedLandmarks instanceof fr&&e.alignedRect instanceof yt}function Zie(e){let t=(i,c,u,l)=>Math.atan2(l-c,u-i)%Math.PI,n=i=>i*180/Math.PI,r={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return r;let s=e._positions;r.roll=-t(s[36]._x,s[36]._y,s[45]._x,s[45]._y),r.pitch=t(0,Math.abs(s[0]._x-s[30]._x)/s[30]._x,Math.PI,Math.abs(s[16]._x-s[30]._x)/s[30]._x);let a=s.reduce((i,c)=>i<c._y?i:c._y,1/0),o=s.reduce((i,c)=>i>c._y?i:c._y,-1/0);return r.yaw=Math.PI*(e._imgDims._height/(o-a)/1.4-1),r}function Bu(e,t){let{box:n}=e.detection,r=t.shiftBy(n.x,n.y),s=r.align(),{imageDims:a}=e.detection,o=new yt(e.detection.score,s.rescale(a.reverse()),a),i=Zie(t);return{...e,...{landmarks:r,unshiftedLandmarks:t,alignedRect:o,angle:i}}}var Zw=class{constructor(t={}){let{drawLines:n=!0,drawPoints:r=!0,lineWidth:s,lineColor:a,pointSize:o,pointColor:i}=t;this.drawLines=n,this.drawPoints=r,this.lineWidth=s||1,this.pointSize=o||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},Jw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new Zw(n)}draw(t){let n=Mn(t),{drawLines:r,drawPoints:s,lineWidth:a,lineColor:o,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Du&&(n.strokeStyle=o,n.lineWidth=a,Fs(n,this.faceLandmarks.getJawOutline()),Fs(n,this.faceLandmarks.getLeftEyeBrow()),Fs(n,this.faceLandmarks.getRightEyeBrow()),Fs(n,this.faceLandmarks.getNose()),Fs(n,this.faceLandmarks.getLeftEye(),!0),Fs(n,this.faceLandmarks.getRightEye(),!0),Fs(n,this.faceLandmarks.getMouth(),!0)),s){n.strokeStyle=c,n.fillStyle=c;let u=l=>{n.beginPath(),n.arc(l.x,l.y,i,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function Jie(e,t){(Array.isArray(t)?t:[t]).forEach(r=>{let s=r instanceof fr?r:vi(r)?r.landmarks:void 0;if(!s)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new Jw(s).draw(e)})}var oE="1.5.2";function ece(e,t){let n=Ou(e,t),r=Mu(e,t);function s(o,i,c){let u=r(o,i,`${c}/separable_conv0`),l=r(i,i,`${c}/separable_conv1`),d=n(o,i,1,`${c}/expansion_conv`);return{separable_conv0:u,separable_conv1:l,expansion_conv:d}}function a(o,i){let c=r(o,o,`${i}/separable_conv0`),u=r(o,o,`${i}/separable_conv1`),l=r(o,o,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:u,separable_conv2:l}}return{extractConvParams:n,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:a}}function iE(e,t){let n=[],{extractWeights:r,getRemainingWeights:s}=_n(e),{extractConvParams:a,extractSeparableConvParams:o,extractReductionBlockParams:i,extractMainBlockParams:c}=ece(r,n),u=a(3,32,3,"entry_flow/conv_in"),l=i(32,64,"entry_flow/reduction_block_0"),d=i(64,128,"entry_flow/reduction_block_1"),p={conv_in:u,reduction_block_0:l,reduction_block_1:d},h={};us(t,0,1).forEach(b=>{h[`main_block_${b}`]=c(128,`middle_flow/main_block_${b}`)});let f=i(128,256,"exit_flow/reduction_block"),m=o(256,512,"exit_flow/separable_conv"),g={reduction_block:f,separable_conv:m};if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:n,params:{entry_flow:p,middle_flow:h,exit_flow:g}}}function tce(e,t){let n=Jn(e,t),r=ym(n),s=Lu(n);function a(i){let c=s(`${i}/separable_conv0`),u=s(`${i}/separable_conv1`),l=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:l}}function o(i){let c=s(`${i}/separable_conv0`),u=s(`${i}/separable_conv1`),l=s(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:u,separable_conv2:l}}return{extractConvParams:r,extractSeparableConvParams:s,extractReductionBlockParams:a,extractMainBlockParams:o}}function cE(e,t){let n=[],{extractConvParams:r,extractSeparableConvParams:s,extractReductionBlockParams:a,extractMainBlockParams:o}=tce(e,n),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),u=a("entry_flow/reduction_block_1"),l={conv_in:i,reduction_block_0:c,reduction_block_1:u},d={};us(t,0,1).forEach(m=>{d[`main_block_${m}`]=o(`middle_flow/main_block_${m}`)});let p=a("exit_flow/reduction_block"),h=s("exit_flow/separable_conv"),f={reduction_block:p,separable_conv:h};return Nn(e,n),{params:{entry_flow:l,middle_flow:d,exit_flow:f},paramMappings:n}}function uE(e,t,n){return Y(Dt(e,t.filters,n,"same"),t.bias)}function e0(e,t,n=!0){let r=n?qe(e):e;return r=Ln(r,t.separable_conv0,[1,1]),r=Ln(qe(r),t.separable_conv1,[1,1]),r=Rt(r,[3,3],[2,2],"same"),r=Y(r,uE(e,t.expansion_conv,[2,2])),r}function nce(e,t){let n=Ln(qe(e),t.separable_conv0,[1,1]);return n=Ln(qe(n),t.separable_conv1,[1,1]),n=Ln(qe(n),t.separable_conv2,[1,1]),n=Y(n,e),n}var t0=class extends cn{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(112,!0),"float32"),a=Hr(r,[122.782,117.001,104.298]).div(255),o=qe(uE(a,n.entry_flow.conv_in,[2,2]));return o=e0(o,n.entry_flow.reduction_block_0,!1),o=e0(o,n.entry_flow.reduction_block_1),us(this._numMainBlocks,0,1).forEach(i=>{o=nce(o,n.middle_flow[`main_block_${i}`])}),o=e0(o,n.exit_flow.reduction_block),o=qe(Ln(o,n.exit_flow.separable_conv,[1,1])),o})}async forward(t){return this.forwardInput(await ft(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return cE(t,this._numMainBlocks)}extractParams(t){return iE(t,this._numMainBlocks)}};function lE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=_n(e),s=mm(n,t),a=s(512,1,"fc/age"),o=s(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:o}}}}function dE(e){let t=[],n=Jn(e,t);function r(a){let o=n(`${a}/weights`,2),i=n(`${a}/bias`,1);return{weights:o,bias:i}}let s={fc:{age:r("fc/age"),gender:r("fc/gender")}};return Nn(e,t),{params:s,paramMappings:t}}var Ms;(function(n){n.FEMALE="female",n.MALE="male"})(Ms||(Ms={}));var Im=class extends cn{constructor(t=new t0(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return M(()=>{let r=t instanceof Ps?this.faceFeatureExtractor.forwardInput(t):t,s=vr(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),a=Gd(s,n.fc.age).as1D(),o=Gd(s,n.fc.gender);return{age:a,gender:o}})}forwardInput(t){return M(()=>{let{age:n,gender:r}=this.runNet(t);return{age:n,gender:es(r)}})}async forward(t){return this.forwardInput(await ft(t))}async predictAgeAndGender(t){let n=await ft(t),r=await this.forwardInput(n),s=ht(r.age),a=ht(r.gender),o=s.map((c,u)=>({ageTensor:c,genderTensor:a[u]})),i=await Promise.all(o.map(async({ageTensor:c,genderTensor:u})=>{let l=c.dataSync()[0],d=u.dataSync()[0],p=d>.5,h=p?Ms.MALE:Ms.FEMALE,f=p?d:1-d;return c.dispose(),u.dispose(),{age:l,gender:h,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),n.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:r}=this.extractClassifierParams(t);this._params=n,this._paramMappings=r}extractClassifierParams(t){return lE(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:r}=xm(t);return this.faceFeatureExtractor.loadFromWeightMap(n),dE(r)}extractParams(t){let n=512*1+1+(512*2+2),r=t.slice(0,t.length-n),s=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var jd=class extends Hd{postProcess(t,n,r){let s=r.map(({width:o,height:i})=>{let c=n/Math.max(i,o);return{width:o*c,height:i*c}}),a=s.length;return M(()=>{let o=(d,p)=>Pt([vn([68],d,"float32"),vn([68],p,"float32")],1).as2D(1,136).as1D(),i=(d,p)=>{let{width:h,height:f}=s[d];return p(h,f)?Math.abs(h-f)/2:0},c=d=>i(d,(p,h)=>p<h),u=d=>i(d,(p,h)=>h<p);return t.mul(vn([a,136],n,"float32")).sub(Pt(Array.from(Array(a),(d,p)=>o(c(p),u(p))))).div(Pt(Array.from(Array(a),(d,p)=>o(s[p].width,s[p].height))))})}forwardInput(t){return M(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([r,s])=>({height:r,width:s})))})}async forward(t){return this.forwardInput(await ft(t))}async detectLandmarks(t){let n=await ft(t),r=M(()=>ht(this.forwardInput(n))),s=await Promise.all(r.map(async(a,o)=>{let i=Array.from(a.dataSync()),c=i.filter((l,d)=>cm(d)),u=i.filter((l,d)=>!cm(d));return new Du(Array(68).fill(0).map((l,d)=>new Re(c[d],u[d])),{height:n.getInputHeight(o),width:n.getInputWidth(o)})}));return r.forEach(a=>a.dispose()),n.isBatchInput?s:s[0]}getClassifierChannelsOut(){return 136}};var zu=class extends jd{constructor(t=new Ud){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function pE(e){let t=[],{extractDenseBlock3Params:n}=vm(e,t),r={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return Nn(e,t),{params:r,paramMappings:t}}function hE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=_n(e),{extractDenseBlock3Params:s}=bm(n,t),a=s(3,32,"dense0",!0),o=s(32,64,"dense1"),i=s(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:o,dense2:i}}}var n0=class extends cn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(112,!0),"float32"),a=Hr(r,[122.782,117.001,104.298]).div(255),o=fm(a,n.dense0,!0);return o=fm(o,n.dense1),o=fm(o,n.dense2),o=vr(o,[14,14],[2,2],"valid"),o})}async forward(t){return this.forwardInput(await ft(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return pE(t)}extractParams(t){return hE(t)}};var Sm=class extends jd{constructor(t=new n0){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var fE=class extends zu{};function mE(e,t){return Y(V(e,t.weights),t.biases)}function r0(e,t,n,r,s="same"){let{filters:a,bias:o}=t.conv,i=Dt(e,a,n,s);return i=Y(i,o),i=mE(i,t.scale),r?qe(i):i}function gE(e,t){return r0(e,t,[1,1],!0)}function s0(e,t){return r0(e,t,[1,1],!1)}function Cm(e,t){return r0(e,t,[2,2],!0,"valid")}function rce(e,t){function n(i,c,u){let l=e(i),d=l.length/(c*u*u);if(Ew(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${l.length}, numFilters: ${c}, filterSize: ${u}`);return M(()=>Oe(Rr(l,[c,d,u,u]),[2,3,1,0]))}function r(i,c,u,l){let d=n(i,c,u),p=Ue(e(c));return t.push({paramPath:`${l}/filters`},{paramPath:`${l}/bias`}),{filters:d,bias:p}}function s(i,c){let u=Ue(e(i)),l=Ue(e(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:u,biases:l}}function a(i,c,u,l){let d=r(i,c,u,`${l}/conv`),p=s(c,`${l}/scale`);return{conv:d,scale:p}}function o(i,c,u,l,d=!1){let p=a((d?.5:1)*i,c,u,`${l}/conv1`),h=a(i,c,u,`${l}/conv2`);return{conv1:p,conv2:h}}return{extractConvLayerParams:a,extractResidualLayerParams:o}}function bE(e){let{extractWeights:t,getRemainingWeights:n}=_n(e),r=[],{extractConvLayerParams:s,extractResidualLayerParams:a}=rce(t,r),o=s(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),u=a(9216,32,3,"conv32_3"),l=a(36864,64,3,"conv64_down",!0),d=a(36864,64,3,"conv64_1"),p=a(36864,64,3,"conv64_2"),h=a(36864,64,3,"conv64_3"),f=a(147456,128,3,"conv128_down",!0),m=a(147456,128,3,"conv128_1"),g=a(147456,128,3,"conv128_2"),b=a(589824,256,3,"conv256_down",!0),y=a(589824,256,3,"conv256_1"),v=a(589824,256,3,"conv256_2"),x=a(589824,256,3,"conv256_down_out"),k=M(()=>Oe(Dr(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:o,conv32_1:i,conv32_2:c,conv32_3:u,conv64_down:l,conv64_1:d,conv64_2:p,conv64_3:h,conv128_down:f,conv128_1:m,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:v,conv256_down_out:x,fc:k},paramMappings:r}}function sce(e,t){let n=Jn(e,t);function r(o){let i=n(`${o}/scale/weights`,1),c=n(`${o}/scale/biases`,1);return{weights:i,biases:c}}function s(o){let i=n(`${o}/conv/filters`,4),c=n(`${o}/conv/bias`,1),u=r(o);return{conv:{filters:i,bias:c},scale:u}}function a(o){return{conv1:s(`${o}/conv1`),conv2:s(`${o}/conv2`)}}return{extractConvLayerParams:s,extractResidualLayerParams:a}}function yE(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:r}=sce(e,t),s=n("conv32_down"),a=r("conv32_1"),o=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),u=r("conv64_1"),l=r("conv64_2"),d=r("conv64_3"),p=r("conv128_down"),h=r("conv128_1"),f=r("conv128_2"),m=r("conv256_down"),g=r("conv256_1"),b=r("conv256_2"),y=r("conv256_down_out"),{fc:v}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!_w(v))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${v}`);let x={conv32_down:s,conv32_1:a,conv32_2:o,conv32_3:i,conv64_down:c,conv64_1:u,conv64_2:l,conv64_3:d,conv128_down:p,conv128_1:h,conv128_2:f,conv256_down:m,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:v};return Nn(e,t),{params:x,paramMappings:t}}function jr(e,t){let n=gE(e,t.conv1);return n=s0(n,t.conv2),n=Y(n,e),n=qe(n),n}function qd(e,t){let n=Cm(e,t.conv1);n=s0(n,t.conv2);let r=vr(e,2,2,"valid"),s=wt(r.shape),a=r.shape[3]!==n.shape[3];if(r.shape[1]!==n.shape[1]||r.shape[2]!==n.shape[2]){let i=[...n.shape];i[1]=1;let c=wt(i);n=et([n,c],1);let u=[...n.shape];u[2]=1;let l=wt(u);n=et([n,l],2)}return r=a?et([r,s],3):r,n=Y(r,n),n=qe(n),n}var Wu=class extends cn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(150,!0),"float32"),a=Hr(r,[122.782,117.001,104.298]).div(255),o=Cm(a,n.conv32_down);o=Rt(o,3,2,"valid"),o=jr(o,n.conv32_1),o=jr(o,n.conv32_2),o=jr(o,n.conv32_3),o=qd(o,n.conv64_down),o=jr(o,n.conv64_1),o=jr(o,n.conv64_2),o=jr(o,n.conv64_3),o=qd(o,n.conv128_down),o=jr(o,n.conv128_1),o=jr(o,n.conv128_2),o=qd(o,n.conv256_down),o=jr(o,n.conv256_1),o=jr(o,n.conv256_2),o=qd(o,n.conv256_down_out);let i=o.mean([1,2]);return De(i,n.fc)})}async forward(t){return this.forwardInput(await ft(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)==null?void 0:a.some(o=>o<=0))return new Float32Array(128);let n=await ft(t),r=M(()=>ht(this.forwardInput(n))),s=await Promise.all(r.map(o=>o.data()));return r.forEach(o=>o.dispose()),n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return yE(t)}extractParams(t){return bE(t)}};function ace(e){let t=new Wu;return t.extractWeights(e),t}function Tm(e,t){return{...e,...{descriptor:t}}}function oce(e){return typeof e.age=="number"}function Nm(e,t){return{...e,...{age:t}}}function ice(e){return(e.gender===Ms.MALE||e.gender===Ms.FEMALE)&&Au(e.genderProbability)}function _m(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function cce(e,t){function n(c,u){let l=Rr(e(3*3*c),[3,3,c,1]),d=Ue(e(c)),p=Ue(e(c)),h=Ue(e(c)),f=Ue(e(c));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:l,batch_norm_scale:d,batch_norm_offset:p,batch_norm_mean:h,batch_norm_variance:f}}function r(c,u,l,d,p){let h=Rr(e(c*u*l*l),[l,l,c,u]),f=Ue(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${p?"batch_norm_offset":"bias"}`}),{filters:h,bias:f}}function s(c,u,l,d){let{filters:p,bias:h}=r(c,u,l,d,!0);return{filters:p,batch_norm_offset:h}}function a(c,u,l){let d=n(c,`${l}/depthwise_conv`),p=s(c,u,1,`${l}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:p}}function o(){let c=s(3,32,3,"mobilenetv1/conv_0"),u=a(32,64,"mobilenetv1/conv_1"),l=a(64,128,"mobilenetv1/conv_2"),d=a(128,128,"mobilenetv1/conv_3"),p=a(128,256,"mobilenetv1/conv_4"),h=a(256,256,"mobilenetv1/conv_5"),f=a(256,512,"mobilenetv1/conv_6"),m=a(512,512,"mobilenetv1/conv_7"),g=a(512,512,"mobilenetv1/conv_8"),b=a(512,512,"mobilenetv1/conv_9"),y=a(512,512,"mobilenetv1/conv_10"),v=a(512,512,"mobilenetv1/conv_11"),x=a(512,1024,"mobilenetv1/conv_12"),k=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:u,conv_2:l,conv_3:d,conv_4:p,conv_5:h,conv_6:f,conv_7:m,conv_8:g,conv_9:b,conv_10:y,conv_11:v,conv_12:x,conv_13:k}}function i(){let c=s(1024,256,1,"prediction_layer/conv_0"),u=s(256,512,3,"prediction_layer/conv_1"),l=s(512,128,1,"prediction_layer/conv_2"),d=s(128,256,3,"prediction_layer/conv_3"),p=s(256,128,1,"prediction_layer/conv_4"),h=s(128,256,3,"prediction_layer/conv_5"),f=s(256,64,1,"prediction_layer/conv_6"),m=s(64,128,3,"prediction_layer/conv_7"),g=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),v=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),x=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),k=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),C=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),N=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),F=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),R=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),O=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:u,conv_2:l,conv_3:d,conv_4:p,conv_5:h,conv_6:f,conv_7:m,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:v},box_predictor_2:{box_encoding_predictor:x,class_predictor:k},box_predictor_3:{box_encoding_predictor:C,class_predictor:N},box_predictor_4:{box_encoding_predictor:F,class_predictor:R},box_predictor_5:{box_encoding_predictor:O,class_predictor:$}}}return{extractMobilenetV1Params:o,extractPredictionLayerParams:i}}function vE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=_n(e),{extractMobilenetV1Params:s,extractPredictionLayerParams:a}=cce(n,t),o=s(),i=a(),u={extra_dim:gh(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:o,prediction_layer:i,output_layer:u},paramMappings:t}}function uce(e,t){let n=Jn(e,t);function r(u,l,d){let p=n(`${u}/Conv2d_${l}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${l}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:p,batch_norm_offset:h}}function s(u){let l=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,p=`${l}/depthwise_conv`,h=`${l}/pointwise_conv`,f=n(`${d}/depthwise_weights`,4,`${p}/filters`),m=n(`${d}/BatchNorm/gamma`,1,`${p}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${p}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${p}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${p}/batch_norm_variance`);return{depthwise_conv:{filters:f,batch_norm_scale:m,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:r("MobilenetV1",u,h)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:s(1),conv_2:s(2),conv_3:s(3),conv_4:s(4),conv_5:s(5),conv_6:s(6),conv_7:s(7),conv_8:s(8),conv_9:s(9),conv_10:s(10),conv_11:s(11),conv_12:s(12),conv_13:s(13)}}function o(u,l){let d=n(`${u}/weights`,4,`${l}/filters`),p=n(`${u}/biases`,1,`${l}/bias`);return{filters:d,bias:p}}function i(u){let l=o(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=o(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:l,class_predictor:d}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function xE(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:r}=uce(e,t),s=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Ds(s))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${s}`);let a={mobilenetv1:n(),prediction_layer:r(),output_layer:{extra_dim:s}};return Nn(e,t),{params:a,paramMappings:t}}function Tr(e,t,n){return M(()=>{let r=Dt(e,t.filters,n,"same");return r=Y(r,t.batch_norm_offset),rn(r,0,6)})}var lce=.0010000000474974513;function dce(e,t,n){return M(()=>{let r=Wo(e,t.filters,n,"same");return r=aa(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,lce),rn(r,0,6)})}function pce(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function wE(e,t){return M(()=>{let n,r=Tr(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,o)=>{let i=o+1,c=pce(i);r=dce(r,a.depthwise_conv,c),r=Tr(r,a.pointwise_conv,[1,1]),i===11&&(n=r)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:n}})}function hce(e,t,n){let r=e.arraySync(),s=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),o=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[n][0],r[n][2]),u=Math.min(r[n][1],r[n][3]),l=Math.max(r[n][0],r[n][2]),d=Math.max(r[n][1],r[n][3]),p=(o-s)*(i-a),h=(l-c)*(d-u);if(p<=0||h<=0)return 0;let f=Math.max(s,c),m=Math.max(a,u),g=Math.min(o,l),b=Math.min(i,d),y=Math.max(g-f,0)*Math.max(b-m,0);return y/(p+h-y)}function kE(e,t,n,r,s){let a=e.shape[0],o=Math.min(n,a),i=t.map((l,d)=>({score:l,boxIndex:d})).filter(l=>l.score>s).sort((l,d)=>d.score-l.score),c=l=>l<=r?1:0,u=[];return i.forEach(l=>{if(u.length>=o)return;let d=l.score;for(let p=u.length-1;p>=0;--p){let h=hce(e,l.boxIndex,u[p]);if(h!==0&&(l.score*=c(h),l.score<=s))break}d===l.score&&u.push(l.boxIndex)}),u}function fce(e){let t=ht(Oe(e,[1,0])),n=[he(t[2],t[0]),he(t[3],t[1])],r=[Y(t[0],ge(n[0],2)),Y(t[1],ge(n[1],2))];return{sizes:n,centers:r}}function mce(e,t){let{sizes:n,centers:r}=fce(e),s=ht(Oe(t,[1,0])),a=ge(V(bn(ge(s[2],5)),n[0]),2),o=Y(V(ge(s[0],10),n[0]),r[0]),i=ge(V(bn(ge(s[3],5)),n[1]),2),c=Y(V(ge(s[1],10),n[1]),r[1]);return Oe(Pt([he(o,a),he(c,i),Y(o,a),Y(c,i)]),[1,0])}function IE(e,t,n){return M(()=>{let r=e.shape[0],s=mce(U(Un(n.extra_dim,[r,1,1]),[-1,4]),U(e,[-1,4]));s=U(s,[r,s.shape[0]/r,4]);let a=xr(We(t,[0,0,1],[-1,-1,-1])),o=We(a,[0,0,0],[-1,-1,1]);o=U(o,[r,o.shape[1]]);let i=ht(s),c=ht(o);return{boxes:i,scores:c}})}function xi(e,t){return M(()=>{let n=e.shape[0],r=U(yi(e,t.box_encoding_predictor),[n,-1,1,4]),s=U(yi(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:r,classPrediction:s}})}function SE(e,t,n){return M(()=>{let r=Tr(e,n.conv_0,[1,1]),s=Tr(r,n.conv_1,[2,2]),a=Tr(s,n.conv_2,[1,1]),o=Tr(a,n.conv_3,[2,2]),i=Tr(o,n.conv_4,[1,1]),c=Tr(i,n.conv_5,[2,2]),u=Tr(c,n.conv_6,[1,1]),l=Tr(u,n.conv_7,[2,2]),d=xi(t,n.box_predictor_0),p=xi(e,n.box_predictor_1),h=xi(s,n.box_predictor_2),f=xi(o,n.box_predictor_3),m=xi(c,n.box_predictor_4),g=xi(l,n.box_predictor_5),b=et([d.boxPredictionEncoding,p.boxPredictionEncoding,h.boxPredictionEncoding,f.boxPredictionEncoding,m.boxPredictionEncoding,g.boxPredictionEncoding],1),y=et([d.classPrediction,p.classPrediction,h.classPrediction,f.classPrediction,m.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var Nr=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var wi=class extends cn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(512,!1),"float32"),s=he(ge(r,127.5),1),a=wE(s,n.mobilenetv1),{boxPredictions:o,classPredictions:i}=SE(a.out,a.conv11,n.prediction_layer);return IE(o,i,n.output_layer)})}async forward(t){return this.forwardInput(await ft(t))}async locateFaces(t,n={}){let{maxResults:r,minConfidence:s}=new Nr(n),a=await ft(t),{boxes:o,scores:i}=this.forwardInput(a),c=o[0],u=i[0];for(let v=1;v<o.length;v++)o[v].dispose(),i[v].dispose();let l=Array.from(u.dataSync()),p=kE(c,l,r,.5,s),h=a.getReshapedInputDimensions(0),f=a.inputSize,m=f/h.width,g=f/h.height,b=c.arraySync(),y=p.map(v=>{let[x,k]=[Math.max(0,b[v][0]),Math.min(1,b[v][2])].map(F=>F*g),[C,N]=[Math.max(0,b[v][1]),Math.min(1,b[v][3])].map(F=>F*m);return new yt(l[v],new Fu(C,x,N-C,k-x),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return xE(t)}extractParams(t){return vE(t)}};function CE(e){let t=new wi;return t.extractWeights(e),t}function gce(e){return CE(e)}var TE=class extends wi{};var NE=.4,_E=[new Re(.738768,.874946),new Re(2.42204,2.65704),new Re(4.30971,7.04493),new Re(10.246,4.59428),new Re(12.6868,11.8741)],EE=[new Re(1.603231,2.094468),new Re(6.041143,7.080126),new Re(2.882459,3.518061),new Re(4.266906,5.178857),new Re(9.041765,10.66308)],AE=[117.001,114.697,97.404],$E="tiny_yolov2_model",FE="tiny_yolov2_separable_conv_model";var Em=e=>typeof e=="number";function a0(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Em(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Em(t.x)&&Em(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Em)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Vu(e){return M(()=>{let t=V(e,ke(.10000000149011612));return Y(qe(he(e,t)),t)})}function Ls(e,t){return M(()=>{let n=wr(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Dt(n,t.conv.filters,[1,1],"valid"),n=he(n,t.bn.sub),n=V(n,t.bn.truediv),n=Y(n,t.conv.bias),Vu(n)})}function Bs(e,t){return M(()=>{let n=wr(e,[[0,0],[1,1],[1,1],[0,0]]);return n=ru(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Y(n,t.bias),Vu(n)})}function bce(e,t){let n=Ou(e,t);function r(o,i){let c=Ue(e(o)),u=Ue(e(o));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:u}}function s(o,i,c){let u=n(o,i,3,`${c}/conv`),l=r(i,`${c}/bn`);return{conv:u,bn:l}}let a=Mu(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}}function DE(e,t,n,r){let{extractWeights:s,getRemainingWeights:a}=_n(e),o=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:u}=bce(s,o),l;if(t.withSeparableConvs){let[d,p,h,f,m,g,b,y,v]=r,x=t.isFirstLayerConv2d?i(d,p,3,"conv0"):u(d,p,"conv0"),k=u(p,h,"conv1"),C=u(h,f,"conv2"),N=u(f,m,"conv3"),F=u(m,g,"conv4"),R=u(g,b,"conv5"),O=y?u(b,y,"conv6"):void 0,$=v?u(y,v,"conv7"):void 0,P=i(v||y||b,5*n,1,"conv8");l={conv0:x,conv1:k,conv2:C,conv3:N,conv4:F,conv5:R,conv6:O,conv7:$,conv8:P}}else{let[d,p,h,f,m,g,b,y,v]=r,x=c(d,p,"conv0"),k=c(p,h,"conv1"),C=c(h,f,"conv2"),N=c(f,m,"conv3"),F=c(m,g,"conv4"),R=c(g,b,"conv5"),O=c(b,y,"conv6"),$=c(y,v,"conv7"),P=i(v,5*n,1,"conv8");l={conv0:x,conv1:k,conv2:C,conv3:N,conv4:F,conv5:R,conv6:O,conv7:$,conv8:P}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:l,paramMappings:o}}function yce(e,t){let n=Jn(e,t);function r(i){let c=n(`${i}/sub`,1),u=n(`${i}/truediv`,1);return{sub:c,truediv:u}}function s(i){let c=n(`${i}/filters`,4),u=n(`${i}/bias`,1);return{filters:c,bias:u}}function a(i){let c=s(`${i}/conv`),u=r(`${i}/bn`);return{conv:c,bn:u}}let o=Lu(n);return{extractConvParams:s,extractConvWithBatchNormParams:a,extractSeparableConvParams:o}}function RE(e,t){let n=[],{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}=yce(e,n),o;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;o={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else o={conv0:s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:s("conv6"),conv7:s("conv7"),conv8:r("conv8")};return Nn(e,n),{params:o,paramMappings:n}}var ps=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var o0=class extends cn{constructor(t){super("TinyYolov2");a0(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let r=Ls(t,n.conv0);return r=Rt(r,[2,2],[2,2],"same"),r=Ls(r,n.conv1),r=Rt(r,[2,2],[2,2],"same"),r=Ls(r,n.conv2),r=Rt(r,[2,2],[2,2],"same"),r=Ls(r,n.conv3),r=Rt(r,[2,2],[2,2],"same"),r=Ls(r,n.conv4),r=Rt(r,[2,2],[2,2],"same"),r=Ls(r,n.conv5),r=Rt(r,[2,2],[1,1],"same"),r=Ls(r,n.conv6),r=Ls(r,n.conv7),yi(r,n.conv8,"valid",!1)}runMobilenet(t,n){let r=this.config.isFirstLayerConv2d?Vu(yi(t,n.conv0,"valid",!1)):Bs(t,n.conv0);return r=Rt(r,[2,2],[2,2],"same"),r=Bs(r,n.conv1),r=Rt(r,[2,2],[2,2],"same"),r=Bs(r,n.conv2),r=Rt(r,[2,2],[2,2],"same"),r=Bs(r,n.conv3),r=Rt(r,[2,2],[2,2],"same"),r=Bs(r,n.conv4),r=Rt(r,[2,2],[2,2],"same"),r=Bs(r,n.conv5),r=Rt(r,[2,2],[1,1],"same"),r=n.conv6?Bs(r,n.conv6):r,r=n.conv7?Bs(r,n.conv7):r,yi(r,n.conv8,"valid",!1)}forwardInput(t,n){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return M(()=>{let s=ce(t.toBatchTensor(n,!1),"float32");return s=this.config.meanRgb?Hr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(t,n){return this.forwardInput(await ft(t),n)}async detect(t,n={}){let{inputSize:r,scoreThreshold:s}=new ps(n),a=await ft(t),o=await this.forwardInput(a,r),i=M(()=>ht(o)[0].expandDims()),c={width:a.getInputWidth(0),height:a.getInputHeight(0)},u=await this.extractBoxes(i,a.getReshapedInputDimensions(0),s);o.dispose(),i.dispose();let l=u.map(g=>g.box),d=u.map(g=>g.score),p=u.map(g=>g.classScore),h=u.map(g=>this.config.classes[g.label]);return Rw(l.map(g=>g.rescale(r)),d,this.config.iouThreshold,!0).map(g=>new wa(d[g],p[g],h[g],l[g],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return RE(t,this.config)}extractParams(t){let n=this.config.filterSizes||o0.DEFAULT_FILTER_SIZES,r=n?n.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return DE(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,r){let{width:s,height:a}=n,o=Math.max(s,a),i=o/s,c=o/a,u=t.shape[1],l=this.config.anchors.length,[d,p,h]=M(()=>{let b=t.reshape([u,u,l,this.boxEncodingSize]),y=b.slice([0,0,0,0],[u,u,l,4]),v=b.slice([0,0,0,4],[u,u,l,1]),x=this.withClassScores?es(b.slice([0,0,0,5],[u,u,l,this.config.classes.length]),3):ke(0);return[y,v,x]}),f=[],m=await p.array(),g=await d.array();for(let b=0;b<u;b++)for(let y=0;y<u;y++)for(let v=0;v<l;v++){let x=Od(m[b][y][v][0]);if(!r||x>r){let k=(y+Od(g[b][y][v][0]))/u*i,C=(b+Od(g[b][y][v][1]))/u*c,N=Math.exp(g[b][y][v][2])*this.config.anchors[v].x/u*i,F=Math.exp(g[b][y][v][3])*this.config.anchors[v].y/u*c,R=k-N/2,O=C-F/2,$={row:b,col:y,anchor:v},{classScore:P,label:T}=this.withClassScores?await this.extractPredictedClass(h,$):{classScore:1,label:0};f.push({box:new $u(R,O,R+N,O+F),score:x,classScore:x*P,label:T,...$})}}return d.dispose(),p.dispose(),h.dispose(),f}async extractPredictedClass(t,n){let{row:r,col:s,anchor:a}=n,o=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>o[r][s][a][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}},Uu=o0;Uu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Gu=class extends Uu{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:NE,classes:["face"],...t?{anchors:EE,meanRgb:AE}:{anchors:_E,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(s=>new yt(s.score,s.relativeBox,{width:s.imageWidth,height:s.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?FE:$E}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function vce(e,t=!0){let n=new Gu(t);return n.extractWeights(e),n}var Am=class extends ps{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var _r=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function ki(e,t,n,r,s=({alignedRect:a})=>a){let a=e.map(c=>vi(c)?s(c):c.detection),o=r||(t instanceof Ee?await Pu(t,a):await Ru(t,a)),i=await n(o);return o.forEach(c=>c instanceof Ee&&c.dispose()),i}async function Hu(e,t,n,r,s){return ki([e],t,async a=>n(a[0]),r,s)}var PE=.4,OE=[new Re(1.603231,2.094468),new Re(6.041143,7.080126),new Re(2.882459,3.518061),new Re(4.266906,5.178857),new Re(9.041765,10.66308)],ME=[117.001,114.697,97.404];var ju=class extends Uu{constructor(){let t={withSeparableConvs:!0,iouThreshold:PE,classes:["face"],anchors:OE,meanRgb:ME,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(s=>new yt(s.score,s.relativeBox,{width:s.imageWidth,height:s.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var Ze={ssdMobilenetv1:new wi,tinyFaceDetector:new ju,tinyYolov2:new Gu,faceLandmark68Net:new zu,faceLandmark68TinyNet:new Sm,faceRecognitionNet:new Wu,faceExpressionNet:new wm,ageGenderNet:new Im},LE=(e,t)=>Ze.ssdMobilenetv1.locateFaces(e,t),xce=(e,t)=>Ze.tinyFaceDetector.locateFaces(e,t),wce=(e,t)=>Ze.tinyYolov2.locateFaces(e,t),BE=e=>Ze.faceLandmark68Net.detectLandmarks(e),kce=e=>Ze.faceLandmark68TinyNet.detectLandmarks(e),Ice=e=>Ze.faceRecognitionNet.computeFaceDescriptor(e),Sce=e=>Ze.faceExpressionNet.predictExpressions(e),Cce=e=>Ze.ageGenderNet.predictAgeAndGender(e),zE=e=>Ze.ssdMobilenetv1.load(e),Tce=e=>Ze.tinyFaceDetector.load(e),Nce=e=>Ze.tinyYolov2.load(e),_ce=e=>Ze.faceLandmark68Net.load(e),Ece=e=>Ze.faceLandmark68TinyNet.load(e),Ace=e=>Ze.faceRecognitionNet.load(e),$ce=e=>Ze.faceExpressionNet.load(e),Fce=e=>Ze.ageGenderNet.load(e),Dce=zE,Rce=LE,Pce=BE;var i0=class extends _r{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.extractedFaces=r}},qu=class extends i0{async run(){let t=await this.parentTask,n=await ki(t,this.input,async r=>Promise.all(r.map(s=>Ze.faceExpressionNet.predictExpressions(s))),this.extractedFaces);return t.map((r,s)=>km(r,n[s]))}withAgeAndGender(){return new Xu(this,this.input)}},Ku=class extends i0{async run(){let t=await this.parentTask;if(!t)return;let n=await Hu(t,this.input,r=>Ze.faceExpressionNet.predictExpressions(r),this.extractedFaces);return km(t,n)}withAgeAndGender(){return new Yu(this,this.input)}},Ii=class extends qu{withAgeAndGender(){return new Ci(this,this.input)}withFaceDescriptors(){return new Sa(this,this.input)}},Si=class extends Ku{withAgeAndGender(){return new Ti(this,this.input)}withFaceDescriptor(){return new Ca(this,this.input)}};var c0=class extends _r{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.extractedFaces=r}},Xu=class extends c0{async run(){let t=await this.parentTask,n=await ki(t,this.input,async r=>Promise.all(r.map(s=>Ze.ageGenderNet.predictAgeAndGender(s))),this.extractedFaces);return t.map((r,s)=>{let{age:a,gender:o,genderProbability:i}=n[s];return Nm(_m(r,o,i),a)})}withFaceExpressions(){return new qu(this,this.input)}},Yu=class extends c0{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:r,genderProbability:s}=await Hu(t,this.input,a=>Ze.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return Nm(_m(t,r,s),n)}withFaceExpressions(){return new Ku(this,this.input)}},Ci=class extends Xu{withFaceExpressions(){return new Ii(this,this.input)}withFaceDescriptors(){return new Sa(this,this.input)}},Ti=class extends Yu{withFaceExpressions(){return new Si(this,this.input)}withFaceDescriptor(){return new Ca(this,this.input)}};var $m=class extends _r{constructor(t,n){super();this.parentTask=t;this.input=n}},Sa=class extends $m{async run(){let t=await this.parentTask;return(await ki(t,this.input,r=>Promise.all(r.map(s=>Ze.faceRecognitionNet.computeFaceDescriptor(s))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,s)=>Tm(t[s],r))}withFaceExpressions(){return new Ii(this,this.input)}withAgeAndGender(){return new Ci(this,this.input)}},Ca=class extends $m{async run(){let t=await this.parentTask;if(!t)return;let n=await Hu(t,this.input,r=>Ze.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Tm(t,n)}withFaceExpressions(){return new Si(this,this.input)}withAgeAndGender(){return new Ti(this,this.input)}};var Fm=class extends _r{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?Ze.faceLandmark68TinyNet:Ze.faceLandmark68Net}},Dm=class extends Fm{async run(){let t=await this.parentTask,n=t.map(a=>a.detection),r=this.input instanceof Ee?await Pu(this.input,n):await Ru(this.input,n),s=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof Ee&&a.dispose()),t.map((a,o)=>Bu(a,s[o]))}withFaceExpressions(){return new Ii(this,this.input)}withAgeAndGender(){return new Ci(this,this.input)}withFaceDescriptors(){return new Sa(this,this.input)}},Rm=class extends Fm{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,r=this.input instanceof Ee?await Pu(this.input,[n]):await Ru(this.input,[n]),s=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof Ee&&a.dispose()),Bu(t,s)}withFaceExpressions(){return new Si(this,this.input)}withAgeAndGender(){return new Ti(this,this.input)}withFaceDescriptor(){return new Ca(this,this.input)}};var Pm=class extends _r{constructor(t,n=new Nr){super();this.input=t;this.options=n}},Kd=class extends Pm{async run(){let{input:t,options:n}=this,r;if(n instanceof Am)r=Ze.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Nr)r=Ze.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof ps)r=Ze.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(r=>t(r.map(s=>fi({},s)))).catch(r=>n(r))})}withFaceLandmarks(t=!1){return new Dm(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new qu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Xu(this.runAndExtendWithFaceDetections(),this.input)}},Om=class extends Pm{async run(){let t=await new Kd(this.input,this.options),n=t[0];return t.forEach(r=>{r.score>n.score&&(n=r)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?fi({},n):void 0)})}withFaceLandmarks(t=!1){return new Rm(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Ku(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Yu(this.runAndExtendWithFaceDetection(),this.input)}};function Oce(e,t=new Nr){return new Om(e,t)}function Mm(e,t=new Nr){return new Kd(e,t)}async function WE(e,t){return Mm(e,new Nr(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Mce(e,t={}){return Mm(e,new ps(t)).withFaceLandmarks().withFaceDescriptors()}var Lce=WE;function u0(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),r=Array.from(t);return Math.sqrt(n.map((s,a)=>s-r[a]).reduce((s,a)=>s+a**2,0))}var Lm=class{constructor(t,n=.6){this._distanceThreshold=n;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let s=1,a=()=>`person ${s++}`;this._labeledDescriptors=r.map(o=>{if(o instanceof Rs)return o;if(o instanceof Float32Array)return new Rs(a(),[o]);if(o.descriptor&&o.descriptor instanceof Float32Array)return new Rs(a(),[o.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(r=>u0(r,t)).reduce((r,s)=>r+s,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:r})=>new Md(r,this.computeMeanDistance(t,n))).reduce((n,r)=>n.distance<r.distance?n:r)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this.distanceThreshold?n:new Md("unknown",n.distance)}toJSON(){return{distanceThreshold:this.distanceThreshold,labeledDescriptors:this.labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(r=>Rs.fromJSON(r));return new Lm(n,t.distanceThreshold)}};function Bce(e){let t=new ju;return t.extractWeights(e),t}function VE(e,t){let{width:n,height:r}=new Tn(t.width,t.height);if(n<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:r})}`);if(Array.isArray(e))return e.map(s=>VE(s,{width:n,height:r}));if(vi(e)){let s=e.detection.forSize(n,r),a=e.unshiftedLandmarks.forSize(s.box.width,s.box.height);return Bu(fi(e,s),a)}return ls(e)?fi(e,e.detection.forSize(n,r)):e instanceof fr||e instanceof yt?e.forSize(n,r):e}var zce=typeof process!="undefined",UE=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",Wce={faceapi:oE,node:zce,browser:UE};UE&&(Fa.set("CHECK_COMPUTATION_FOR_ERRORS",!1),Fa.set("WEBGL_CPU_FORWARD",!0),Fa.set("WEBGL_PACK_DEPTHWISECONV",!1),Fa.set("WEBGL_USE_SHAPES_UNIFORMS",!0));return Vce;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */