face-api/dist/face-api.js

4882 lines
1.2 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
"use strict";var faceapi=(()=>{var cy=Object.defineProperty;var uF=Object.getOwnPropertyDescriptor;var pF=Object.getOwnPropertyNames;var cF=Object.prototype.hasOwnProperty;var Xr=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var rh=(e,t)=>{for(var n in t)cy(e,n,{get:t[n],enumerable:!0})},dF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of pF(t))!cF.call(e,r)&&r!==n&&cy(e,r,{get:()=>t[r],enumerable:!(a=uF(t,r))||a.enumerable});return e};var hF=e=>dF(cy({},"__esModule",{value:!0}),e);var Bce={};rh(Bce,{AgeGenderNet:()=>wd,BoundingBox:()=>Co,Box:()=>st,ComposableTask:()=>ka,ComputeAllFaceDescriptorsTask:()=>Gr,ComputeFaceDescriptorsTaskBase:()=>Td,ComputeSingleFaceDescriptorTask:()=>Hr,DetectAllFaceLandmarksTask:()=>Cd,DetectAllFacesTask:()=>xp,DetectFaceLandmarksTaskBase:()=>Nd,DetectFacesTaskBase:()=>Ed,DetectSingleFaceLandmarksTask:()=>_d,DetectSingleFaceTask:()=>Ad,Dimensions:()=>bn,FACE_EXPRESSION_LABELS:()=>D1,FaceDetection:()=>bt,FaceDetectionNet:()=>W1,FaceExpressionNet:()=>vd,FaceExpressions:()=>Br,FaceLandmark68Net:()=>Po,FaceLandmark68TinyNet:()=>kd,FaceLandmarkNet:()=>O1,FaceLandmarks:()=>ra,FaceLandmarks5:()=>x1,FaceLandmarks68:()=>Eo,FaceMatch:()=>sp,FaceMatcher:()=>$d,FaceRecognitionNet:()=>Oo,Gender:()=>gg,LabeledBox:()=>ip,LabeledFaceDescriptors:()=>gr,NetInput:()=>yr,NeuralNetwork:()=>sn,ObjectDetection:()=>Lr,Point:()=>De,PredictedBox:()=>v1,Rect:()=>_o,SsdMobilenetv1:()=>As,SsdMobilenetv1Options:()=>wa,TinyFaceDetector:()=>Vo,TinyFaceDetectorOptions:()=>Sd,TinyYolov2:()=>Wo,TinyYolov2Options:()=>Qa,allFaces:()=>Lce,allFacesSsdMobilenetv1:()=>_$,allFacesTinyYolov2:()=>Oce,awaitMediaLoaded:()=>C1,bufferToImage:()=>_1,computeFaceDescriptor:()=>Ice,createCanvas:()=>Do,createCanvasFromMedia:()=>gd,createFaceDetectionNet:()=>gce,createFaceRecognitionNet:()=>sce,createSsdMobilenetv1:()=>h$,createTinyFaceDetector:()=>zce,createTinyYolov2:()=>xce,detectAllFaces:()=>Tg,detectFaceLandmarks:()=>N$,detectFaceLandmarksTiny:()=>kce,detectLandmarks:()=>Mce,detectSingleFace:()=>Pce,draw:()=>M1,env:()=>Je,euclideanDistance:()=>U1,extendWithAge:()=>vg,extendWithFaceDescriptor:()=>xg,extendWithFaceDetection:()=>Ao,extendWithFaceExpressions:()=>dg,extendWithFaceLandmarks:()=>fp,extendWithGender:()=>wg,extractFaceTensors:()=>up,extractFaces:()=>lp,fetchImage:()=>Hpe,fetchJson:()=>$1,fetchNetWeights:()=>jpe,fetchOrThrow:()=>Wr,fetchVideo:()=>qpe,getContext2dOrThrow:()=>Gn,getMediaDimensions:()=>Fo,imageTensorToCanvas:()=>E1,imageToSquare:()=>A1,inverseSigmoid:()=>Lpe,iou:()=>f1,isMediaElement:()=>rg,isMediaLoaded:()=>fd,isWithAge:()=>ice,isWithFaceDetection:()=>br,isWithFaceExpressions:()=>R1,isWithFaceLandmarks:()=>Mo,isWithGender:()=>oce,loadAgeGenderModel:()=>Fce,loadFaceDetectionModel:()=>Dce,loadFaceExpressionModel:()=>$ce,loadFaceLandmarkModel:()=>_ce,loadFaceLandmarkTinyModel:()=>Ece,loadFaceRecognitionModel:()=>Ace,loadSsdMobilenetv1Model:()=>C$,loadTinyFaceDetectorModel:()=>Nce,loadTinyYolov2Model:()=>Cce,loadWeightMap:()=>F1,locateFaces:()=>Rce,matchDimensions:()=>Kpe,minBbox:()=>g1,nets:()=>Qe,nonMaxSuppression:()=>b1,normalize:()=>Za,padToSquare:()=>y1,predictAgeAndGender:()=>Tce,recognizeFaceExpressions:()=>Sce,resizeResults:()=>E$,resolveInput:()=>$o,shuffleArray:()=>Ope,sigmoid:()=>dd,ssdMobilenetv1:()=>T$,tf:()=>Pe,tinyFaceDetector:()=>vce,tinyYolov2:()=>wce,toNetInput:()=>yt,utils:()=>m1,validateConfig:()=>B1,version:()=>Wce});var Pe={};rh(Pe,{Abs:()=>Dl,Acos:()=>Rl,Acosh:()=>Ml,AdadeltaOptimizer:()=>kf,AdagradOptimizer:()=>If,AdamOptimizer:()=>Sf,AdamaxOptimizer:()=>Tf,Add:()=>gs,AddN:()=>fi,All:()=>Pl,Any:()=>Ol,ArgMax:()=>gi,ArgMin:()=>cc,Asin:()=>Ll,Asinh:()=>zl,Atan:()=>Wl,Atan2:()=>Vl,Atanh:()=>Bl,AvgPool:()=>bi,AvgPool3D:()=>dc,AvgPool3DGrad:()=>cm,AvgPoolGrad:()=>pm,BackendWasm:()=>VA,BatchMatMul:()=>yi,BatchToSpaceND:()=>Ul,Bincount:()=>dm,BroadcastArgs:()=>hm,BroadcastTo:()=>eS,Callback:()=>y2,CallbackList:()=>kN,Cast:()=>xi,Ceil:()=>vi,ClipByValue:()=>bs,Complex:()=>mm,ComplexAbs:()=>hc,Concat:()=>Gl,Conv2D:()=>wi,Conv2DBackpropFilter:()=>fm,Conv2DBackpropInput:()=>ki,Conv3D:()=>mc,Conv3DBackpropFilterV2:()=>gm,Conv3DBackpropInputV2:()=>bm,Cos:()=>Ii,Cosh:()=>Si,CropAndResize:()=>jl,Cumprod:()=>Hl,Cumsum:()=>Ti,CustomCallback:()=>SN,DataStorage:()=>om,DenseBincount:()=>ym,DepthToSpace:()=>ql,DepthwiseConv2dNative:()=>Ni,DepthwiseConv2dNativeBackpropFilter:()=>xm,DepthwiseConv2dNativeBackpropInput:()=>vm,Diag:()=>wm,Dilation2D:()=>fc,Dilation2DBackpropFilter:()=>$h,Dilation2DBackpropInput:()=>Ah,ENV:()=>$x,EarlyStopping:()=>x2,Einsum:()=>km,Elu:()=>_i,EluGrad:()=>Im,Environment:()=>JI,Equal:()=>Xl,Erf:()=>Kl,Exp:()=>Ei,ExpandDims:()=>Yl,Expm1:()=>Zl,FFT:()=>Sm,Fill:()=>gc,FlipLeftRight:()=>Jl,Floor:()=>Ai,FloorDiv:()=>$i,FromPixels:()=>Fh,FusedBatchNorm:()=>Fi,FusedConv2D:()=>ei,FusedDepthwiseConv2D:()=>ti,GPGPUContext:()=>Th,GatherNd:()=>eu,GatherV2:()=>Ql,GraphModel:()=>A0,Greater:()=>tu,GreaterEqual:()=>Di,History:()=>IN,IFFT:()=>Tm,Identity:()=>Ri,Imag:()=>Nm,InputSpec:()=>zt,IsFinite:()=>nu,IsInf:()=>au,IsNan:()=>ru,KernelBackend:()=>pc,LRN:()=>bc,LRNGrad:()=>_m,LayerVariable:()=>fN,LayersModel:()=>Er,LeakyRelu:()=>Mi,Less:()=>su,LessEqual:()=>iu,LinSpace:()=>Cm,Log:()=>Pi,Log1p:()=>ou,LogSoftmax:()=>nS,LogicalAnd:()=>lu,LogicalNot:()=>uu,LogicalOr:()=>pu,LogicalXor:()=>tS,LowerBound:()=>aD,MathBackendWebGL:()=>Xf,Max:()=>Oi,MaxPool:()=>zi,MaxPool3D:()=>yc,MaxPool3DGrad:()=>Am,MaxPoolGrad:()=>Em,MaxPoolWithArgmax:()=>$m,Maximum:()=>Li,Mean:()=>Wi,Min:()=>Bi,Minimum:()=>Vi,MirrorPad:()=>Ui,Mod:()=>cu,MomentumOptimizer:()=>Nf,Multinomial:()=>Fm,Multiply:()=>Gi,Neg:()=>du,NonMaxSuppressionV3:()=>mu,NonMaxSuppressionV4:()=>fu,NonMaxSuppressionV5:()=>gu,NotEqual:()=>hu,OP_SCOPE_SUFFIX:()=>Mx,OneHot:()=>Hi,OnesLike:()=>bu,Optimizer:()=>Rr,OptimizerConstructors:()=>Yr,Pack:()=>yu,PadV2:()=>ji,Pool:()=>rD,Pow:()=>qi,Prelu:()=>Ki,Prod:()=>Xi,RMSPropOptimizer:()=>Cf,RNN:()=>mr,RaggedGather:()=>Dm,RaggedRange:()=>Rm,RaggedTensorToTensor:()=>Mm,Range:()=>xc,Rank:()=>Ey,Real:()=>Pm,RealDiv:()=>Ci,Reciprocal:()=>xu,Reduction:()=>vn,Relu:()=>Yi,Relu6:()=>Qi,Reshape:()=>vu,ResizeBilinear:()=>Ji,ResizeBilinearGrad:()=>Lm,ResizeNearestNeighbor:()=>Zi,ResizeNearestNeighborGrad:()=>Om,Reverse:()=>eo,RotateWithOffset:()=>Pu,Round:()=>to,Rsqrt:()=>no,SGDOptimizer:()=>qc,ScatterNd:()=>wu,SearchSorted:()=>zm,Select:()=>ku,Selu:()=>Iu,Sequential:()=>Tl,Sigmoid:()=>ro,Sign:()=>Nu,Sin:()=>ao,Sinh:()=>Tu,Slice:()=>Su,Softmax:()=>oo,Softplus:()=>Cu,SpaceToBatchND:()=>_u,SparseFillEmptyRows:()=>vc,SparseReshape:()=>Au,SparseSegmentMean:()=>wc,SparseSegmentSum:()=>kc,SparseToDense:()=>Wm,SplitV:()=>Eu,Sqrt:()=>so,Square:()=>Ic,SquaredDifference:()=>lo,Step:()=>xs,StridedSlice:()=>$u,StringNGrams:()=>Sc,StringSplit:()=>Tc,StringToHashBucketFast:()=>Nc,Sub:()=>uo,Sum:()=>io,SymbolicTensor:()=>Ba,Tan:()=>po,Tanh:()=>co,Tensor:()=>Te,TensorBuffer:()=>Ht,Tile:()=>ys,TopK:()=>Fu,Transform:()=>Du,Transpose:()=>_r,Unique:()=>Bm,Unpack:()=>Ru,UnsortedSegmentSum:()=>Cc,UpperBound:()=>sD,Variable:()=>is,ZerosLike:()=>Mu,_FusedMatMul:()=>Qs,abs:()=>Lt,acos:()=>Xx,acosh:()=>Yx,add:()=>Y,addN:()=>qS,all:()=>jm,any:()=>Qp,argMax:()=>ri,argMin:()=>Zx,asin:()=>Jx,asinh:()=>Qx,atan:()=>ev,atan2:()=>tv,atanh:()=>nv,avgPool:()=>ba,avgPool3d:()=>rv,backend:()=>ES,backend_util:()=>N,basicLSTMCell:()=>ZS,batchNorm:()=>ks,batchNorm2d:()=>sv,batchNorm3d:()=>iv,batchNorm4d:()=>ov,batchToSpaceND:()=>Pc,bincount:()=>lv,booleanMaskAsync:()=>DT,broadcastArgs:()=>JS,broadcastTo:()=>Xs,broadcast_util:()=>Ou,browser:()=>ho,buffer:()=>Oe,callbacks:()=>_H,cast:()=>oe,ceil:()=>uv,clipByValue:()=>en,clone:()=>ir,complex:()=>Ar,concat:()=>Ze,concat1d:()=>pv,concat2d:()=>cv,concat3d:()=>dv,concat4d:()=>hv,constraints:()=>yN,conv1d:()=>qm,conv2d:()=>$t,conv2dTranspose:()=>Km,conv3d:()=>fv,conv3dTranspose:()=>gv,copyRegisteredKernels:()=>uD,cos:()=>Oc,cosh:()=>Xm,cosineWindow:()=>bf,cumprod:()=>ec,cumsum:()=>Ym,customGrad:()=>ur,data:()=>U2,denseBincount:()=>zh,deprecationWarn:()=>Vx,depthToSpace:()=>bv,depthwiseConv2d:()=>Is,deregisterOp:()=>$H,device_util:()=>$c,diag:()=>eT,dilation2d:()=>yv,disableDeprecationWarnings:()=>OR,dispose:()=>_e,disposeVariables:()=>LR,div:()=>he,divNoNan:()=>xv,dot:()=>vv,dropout:()=>qv,einsum:()=>tT,elu:()=>Lu,enableDebugMode:()=>PR,enableProdMode:()=>MR,enclosingPowerOfTwo:()=>Kv,engine:()=>_a,env:()=>H,equal:()=>ea,erf:()=>wv,euclideanNorm:()=>Sv,exp:()=>fn,expandDims:()=>Zt,expm1:()=>Tv,eye:()=>Zm,fft:()=>Hc,fill:()=>gn,findBackend:()=>HR,findBackendFactory:()=>jR,floor:()=>Wu,floorDiv:()=>Hm,forceHalfFloat:()=>lE,fused:()=>kl,gather:()=>Bu,gatherND:()=>OT,gather_util:()=>Ux,getBackend:()=>UR,getGradient:()=>Cy,getKernel:()=>Dh,getKernelsForBackend:()=>Rh,getThreadsCount:()=>Spe,gpgpu_util:()=>W_,grad:()=>gO,grads:()=>bO,greater:()=>Cn,greaterEqual:()=>Fr,ifft:()=>wl,imag:()=>Dc,image:()=>za,inTopKAsync:()=>LT,initializers:()=>xN,input:()=>LN,io:()=>Ut,irfft:()=>hf,isFinite:()=>Nv,isInf:()=>Cv,isNaN:()=>_v,keep:()=>Jt,kernel_impls:()=>hr,layers:()=>vN,leakyRelu:()=>Lc,less:()=>Jm,lessEqual:()=>Ss,linalg:()=>Zv,linspace:()=>iT,loadGraphModel:()=>R6,loadGraphModelSync:()=>M6,loadLayersModel:()=>EU,localResponseNormalization:()=>Ev,log:()=>ta,log1p:()=>zc,logSigmoid:()=>Av,logSoftmax:()=>ef,logSumExp:()=>tf,logicalAnd:()=>$a,logicalNot:()=>Wc,logicalOr:()=>nf,logicalXor:()=>$v,losses:()=>YT,lowerBound:()=>lT,matMul:()=>Fe,math:()=>_S,max:()=>ma,maxPool:()=>Dt,maxPool3d:()=>Fv,maxPoolWithArgmax:()=>uT,maximum:()=>dr,mean:()=>Nt,memory:()=>Oh,meshgrid:()=>pT,metrics:()=>f2,min:()=>yl,minimum:()=>Vu,mirrorPad:()=>Dv,mod:()=>Rv,model:()=>FU,models:()=>g2,moments:()=>Bc,movingAverage:()=>RT,mul:()=>z,multiRNNCell:()=>cT,multinomial:()=>dT,neg:()=>vt,nextFrame:()=>Jv,norm:()=>zu,notEqual:()=>oi,oneHot:()=>gl,ones:()=>Jn,onesLike:()=>na,op:()=>L,outerProduct:()=>hT,pad:()=>ya,pad1d:()=>mT,pad2d:()=>fT,pad3d:()=>gT,pad4d:()=>bT,pool:()=>Mv,pow:()=>$r,prelu:()=>Uc,print:()=>zx,prod:()=>Pv,profile:()=>zR,raggedGather:()=>yT,raggedRange:()=>xT,raggedTensorToTensor:()=>vT,rand:()=>wT,randomGamma:()=>kT,randomNormal:()=>rf,randomStandardNormal:()=>IT,randomUniform:()=>Uu,range:()=>xl,ready:()=>VR,real:()=>bl,reciprocal:()=>zv,registerBackend:()=>Gm,registerCallbackConstructor:()=>RU,registerGradient:()=>aS,registerKernel:()=>_c,registerOp:()=>AH,regularizers:()=>b2,relu:()=>Xe,relu6:()=>sf,removeBackend:()=>GR,reshape:()=>W,reverse:()=>ga,reverse1d:()=>ST,reverse2d:()=>TT,reverse3d:()=>NT,reverse4d:()=>CT,rfft:()=>jc,round:()=>of,rsqrt:()=>lf,scalar:()=>ye,scatterND:()=>MT,scatter_util:()=>Gx,searchSorted:()=>af,selu:()=>uf,separableConv2d:()=>Ts,sequential:()=>DU,serialization:()=>ne,setBackend:()=>BR,setPlatform:()=>qR,setThreadsCount:()=>Ipe,setWasmPath:()=>wpe,setWasmPaths:()=>kpe,setWebGLContext:()=>p_,setdiff1dAsync:()=>_T,sigmoid:()=>ha,sign:()=>Wv,signal:()=>XT,sin:()=>pf,sinh:()=>cf,slice:()=>Be,slice1d:()=>Gc,slice2d:()=>df,slice3d:()=>fo,slice4d:()=>vl,slice_util:()=>jt,softmax:()=>Ka,softplus:()=>mo,spaceToBatchND:()=>Vc,sparse:()=>ZT,sparseToDense:()=>PT,spectral:()=>KT,split:()=>zn,sqrt:()=>un,square:()=>lt,squaredDifference:()=>mf,squeeze:()=>Ns,stack:()=>Ft,step:()=>go,stridedSlice:()=>Bv,string:()=>JT,sub:()=>pe,sum:()=>fe,sumOutType:()=>Um,tan:()=>Vv,tanh:()=>si,tensor:()=>In,tensor1d:()=>Ke,tensor2d:()=>Aa,tensor3d:()=>Rc,tensor4d:()=>Da,tensor5d:()=>ET,tensor6d:()=>AT,tensor_util:()=>Va,test_util:()=>GS,tidy:()=>P,tile:()=>Ln,time:()=>WR,topk:()=>Uv,train:()=>Ws,transpose:()=>Ee,truncatedNormal:()=>ff,unique:()=>Gv,unregisterGradient:()=>lD,unregisterKernel:()=>oD,unsortedSegmentSum:()=>gf,unstack:()=>ct,upcastType:()=>fa,upperBound:()=>$T,util:()=>v,valueAndGrad:()=>yO,valueAndGrads:()=>xO,variable:()=>Hv,variableGrads:()=>oT,version:()=>Mpe,version_converter:()=>O6,version_core:()=>TM,version_layers:()=>vw,version_wasm:()=>Tpe,version_webgl:()=>mJ,webgl:()=>fJ,webgl_util:()=>u_,where:()=>mn,whereAsync:()=>jv,zeros:()=>It,zerosLike:()=>qe});var mF=Object.create,Nx=Object.defineProperty,fF=Object.getOwnPropertyDescriptor,gF=Object.getOwnPropertyNames,bF=Object.getPrototypeOf,yF=Object.prototype.hasOwnProperty,WI=(e=>typeof Xr!="undefined"?Xr:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof Xr!="undefined"?Xr:t)[n]}):e)(function(e){if(typeof Xr!="undefined")return Xr.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),Bt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Ae=(e,t)=>{for(var n in t)Nx(e,n,{get:t[n],enumerable:!0})},xF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of gF(t))!yF.call(e,r)&&r!==n&&Nx(e,r,{get:()=>t[r],enumerable:!(a=fF(t,r))||a.enumerable});return e},ms=(e,t,n)=>(n=e!=null?mF(bF(e)):{},xF(t||!e||!e.__esModule?Nx(n,"default",{value:e,enumerable:!0}):n,e)),vF=Bt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,B){this.low=S|0,this.high=M|0,this.unsigned=!!B}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var B,U,G;return M?(S>>>=0,(G=0<=S&&S<256)&&(U=i[S],U)?U:(B=u(S,(S|0)<0?-1:0,!0),G&&(i[S]=B),B)):(S|=0,(G=-128<=S&&S<128)&&(U=s[S],U)?U:(B=u(S,S<0?-1:0,!1),G&&(s[S]=B),B))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?w:x;if(M){if(S<0)return w;if(S>=g)return A}else{if(S<=-b)return R;if(S+1>=b)return E}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,B){return new a(S,M,B)}a.fromBits=u;var p=Math.pow;function d(S,M,B){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(B=M,M=!1):M=!!M,B=B||10,B<2||36<B)throw RangeError("radix");var U;if((U=S.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(S.substring(1),M,B).neg();for(var G=l(p(B,8)),q=x,K=0;K<S.length;K+=8){var Z=Math.min(8,S.length-K),Q=parseInt(S.substring(K,K+Z),B);if(Z<8){var ee=l(p(B,Z));q=q.mul(ee).add(l(Q))}else q=q.mul(G),q=q.add(l(Q))}return q.unsigned=M,q}a.fromString=d;function c(S,M){return typeof S=="number"?l(S,M):typeof S=="string"?d(S,M):u(S.low,S.high,typeof M=="boolean"?M:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,b=g/2,y=o(m),x=o(0);a.ZERO=x;var w=o(0,!0);a.UZERO=w;var I=o(1);a.ONE=I;var T=o(1,!0);a.UONE=T;var C=o(-1);a.NEG_ONE=C;var E=u(-1,2147483647,!1);a.MAX_VALUE=E;var A=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=A;var R=u(0,-2147483648,!1);a.MIN_VALUE=R;var F=a.prototype;F.toInt=function(){return this.unsigned?this.low>>>0:this.low},F.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},F.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(R)){var M=l(S),B=this.div(M),U=B.mul(M).sub(this);return B.toString(S)+U.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var G=l(p(S,6),this.unsigned),q=this,K="";;){var Z=q.div(G),Q=q.sub(Z.mul(G)).toInt()>>>0,ee=Q.toString(S);if(q=Z,q.isZero())return ee+K;for(;ee.length<6;)ee="0"+ee;K=""+ee+K}},F.getHighBits=function(){return this.high},F.getHighBitsUnsigned=function(){return this.high>>>0},F.getLowBits=function(){return this.low},F.getLowBitsUnsigned=function(){return this.low>>>0},F.getNumBitsAbs=function(){if(this.isNegative())return this.eq(R)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<<M)==0;M--);return this.high!=0?M+33:M+1},F.isZero=function(){return this.high===0&&this.low===0},F.eqz=F.isZero,F.isNegative=function(){return!this.unsigned&&this.high<0},F.isPositive=function(){return this.unsigned||this.high>=0},F.isOdd=function(){return(this.low&1)===1},F.isEven=function(){return(this.low&1)===0},F.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},F.eq=F.equals,F.notEquals=function(S){return!this.eq(S)},F.neq=F.notEquals,F.ne=F.notEquals,F.lessThan=function(S){return this.comp(S)<0},F.lt=F.lessThan,F.lessThanOrEqual=function(S){return this.comp(S)<=0},F.lte=F.lessThanOrEqual,F.le=F.lessThanOrEqual,F.greaterThan=function(S){return this.comp(S)>0},F.gt=F.greaterThan,F.greaterThanOrEqual=function(S){return this.comp(S)>=0},F.gte=F.greaterThanOrEqual,F.ge=F.greaterThanOrEqual,F.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),B=S.isNegative();return M&&!B?-1:!M&&B?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},F.comp=F.compare,F.negate=function(){return!this.unsigned&&this.eq(R)?R:this.not().add(I)},F.neg=F.negate,F.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,B=this.high&65535,U=this.low>>>16,G=this.low&65535,q=S.high>>>16,K=S.high&65535,Z=S.low>>>16,Q=S.low&65535,ee=0,ae=0,te=0,le=0;return le+=G+Q,te+=le>>>16,le&=65535,te+=U+Z,ae+=te>>>16,te&=65535,ae+=B+K,ee+=ae>>>16,ae&=65535,ee+=M+q,ee&=65535,u(te<<16|le,ee<<16|ae,this.unsigned)},F.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},F.sub=F.subtract,F.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(R))return S.isOdd()?R:x;if(S.eq(R))return this.isOdd()?R:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(y)&&S.lt(y))return l(this.toNumber()*S.toNumber(),this.unsigned);var B=this.high>>>16,U=this.high&65535,G=this.low>>>16,q=this.low&65535,K=S.high>>>16,Z=S.high&65535,Q=S.low>>>16,ee=S.low&65535,ae=0,te=0,le=0,ie=0;return ie+=q*ee,le+=ie>>>16,ie&=65535,le+=G*ee,te+=le>>>16,le&=65535,le+=q*Q,te+=le>>>16,le&=65535,te+=U*ee,ae+=te>>>16,te&=65535,te+=G*Q,ae+=te>>>16,te&=65535,te+=q*Z,ae+=te>>>16,te&=65535,ae+=B*ee+U*Q+G*Z+q*K,ae&=65535,u(le<<16|ie,ae<<16|te,this.unsigned)},F.mul=F.multiply,F.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?w:x;var B,U,G;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return w;if(S.gt(this.shru(1)))return T;G=w}else{if(this.eq(R)){if(S.eq(I)||S.eq(C))return R;if(S.eq(R))return I;var q=this.shr(1);return B=q.div(S).shl(1),B.eq(x)?S.isNegative()?I:C:(U=this.sub(S.mul(B)),G=B.add(U.div(S)),G)}else if(S.eq(R))return this.unsigned?w:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();G=x}for(U=this;U.gte(S);){B=Math.max(1,Math.floor(U.toNumber()/S.toNumber()));for(var K=Math.ceil(Math.log(B)/Math.LN2),Z=K<=48?1:p(2,K-48),Q=l(B),ee=Q.mul(S);ee.isNegative()||ee.gt(U);)B-=Z,Q=l(B,this.unsigned),ee=Q.mul(S);Q.isZero()&&(Q=I),G=G.add(Q),U=U.sub(ee)}return G},F.div=F.divide,F.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},F.mod=F.modulo,F.rem=F.modulo,F.not=function(){return u(~this.low,~this.high,this.unsigned)},F.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},F.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},F.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},F.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},F.shl=F.shiftLeft,F.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},F.shr=F.shiftRight,F.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var B=this.low;return u(B>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},F.shru=F.shiftRightUnsigned,F.shr_u=F.shiftRightUnsigned,F.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},F.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},F.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},F.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},F.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,B){return B?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),wF=Bt(()=>{}),kF=Bt(()=>{}),IF=Bt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),SF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),TF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),NF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),CF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,b,y=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(b=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=m+b,f=h==0?f+1:0);for(f>=128&&(y[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=y[f+34&127],h=y[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,y[f]=m^h;d.w=b,d.X=y,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_F=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),EF=Bt(()=>{}),AF=Bt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var A=y(b(T.entropy?[I,w(a)]:I==null?x():I,3),E),R=new f(E),F=function(){for(var S=R.g(i),M=u,B=0;S<p;)S=(S+B)*s,M*=s,B=R.g(1);for(;S>=d;)S/=2,M/=2,B>>>=1;return(S+B)/M};return F.int32=function(){return R.g(4)|0},F.quick=function(){return R.g(4)/4294967296},F.double=F,y(w(R.S),a),(T.pass||C||function(S,M,B,U){return U&&(U.S&&g(U,R),S.state=function(){return g(R,{})}),B?(r[l]=S,M):S})(F,A,"global"in T?T.global:this==r,T.state)}function f(I){var T,C=I.length,E=this,A=0,R=E.i=E.j=0,F=E.S=[];for(C||(I=[C++]);A<s;)F[A]=A++;for(A=0;A<s;A++)F[A]=F[R=c&R+I[A%C]+(T=F[A])],F[R]=T;(E.g=function(S){for(var M,B=0,U=E.i,G=E.j,q=E.S;S--;)M=q[U=c&U+1],B=B*s+q[c&(q[U]=q[G=c&G+M])+(q[G]=M)];return E.i=U,E.j=G,B})(s)}function g(I,T){return T.i=I.i,T.j=I.j,T.S=I.S.slice(),T}function b(I,T){var C=[],E=typeof I,A;if(T&&E=="object")for(A in I)try{C.push(b(I[A],T-1))}catch(R){}return C.length?C:E=="string"?I:I+"\0"}function y(I,T){for(var C=I+"",E,A=0;A<C.length;)T[c&A]=c&(E^=T[c&A]*19)+C.charCodeAt(A++);return w(T)}function x(){try{var I;return h&&(I=h.randomBytes)?I=I(s):(I=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(I)),w(I)}catch(E){var T=n.navigator,C=T&&T.plugins;return[+new Date,n,C,n.screen,w(a)]}}function w(I){return String.fromCharCode.apply(0,I)}if(y(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=EF()}catch(I){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),im=Bt((e,t)=>{var n=IF(),a=SF(),r=TF(),s=NF(),i=CF(),o=_F(),l=AF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),BI=Bt(()=>{}),Cx=Bt(()=>{}),Ch=Bt(()=>{}),$F=Bt(()=>{}),FF=Bt(()=>{}),DF=Bt(()=>{}),RF=Bt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ue.buffer!=ze&&ot(ue.buffer),dt}function i(){return ue.buffer!=ze&&ot(ue.buffer),jn}function o(){return ue.buffer!=ze&&ot(ue.buffer),Mt}function l(){return ue.buffer!=ze&&ot(ue.buffer),on}function u(){return ue.buffer!=ze&&ot(ue.buffer),Fn}function p(){return ue.buffer!=ze&&ot(ue.buffer),oa}function d(){return ue.buffer!=ze&&ot(ue.buffer),Dn}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(D,j){h=D,m=j});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),b=[],y="./this.program",x=(D,j)=>{throw j},w=typeof window=="object",I=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=c.ENVIRONMENT_IS_PTHREAD||!1,E="";function A(D){return c.locateFile?c.locateFile(D,E):E+D}var R,F,S,M;function B(D){D instanceof Ms||Q("exiting due to exception: "+D)}if(T){I?E=Ch().dirname(E)+"/":E=__dirname+"/";var U,G;typeof WI=="function"&&(U=Cx(),G=Ch()),R=(j,re)=>(j=G.normalize(j),U.readFileSync(j,re?void 0:"utf8")),S=j=>{var re=R(j,!0);return re.buffer||(re=new Uint8Array(re)),re},F=(j,re,ce)=>{j=G.normalize(j),U.readFile(j,function(ke,je){ke?ce(ke):re(je.buffer)})},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),b=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof Ms))throw j}),process.on("unhandledRejection",function(j){throw j}),x=(j,re)=>{if(Ia())throw process.exitCode=j,re;B(re),process.exit(j)},c.inspect=function(){return"[Emscripten Module object]"};let D;try{D=$F()}catch(j){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),j}global.Worker=D.Worker}else(w||I)&&(I?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof a!="undefined"&&a&&(E=a),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(R=D=>{var j=new XMLHttpRequest;return j.open("GET",D,!1),j.send(null),j.responseText},I&&(S=D=>{var j=new XMLHttpRequest;return j.open("GET",D,!1),j.responseType="arraybuffer",j.send(null),new Uint8Array(j.response)}),F=(D,j,re)=>{var ce=new XMLHttpRequest;ce.open("GET",D,!0),ce.responseType="arraybuffer",ce.onload=()=>{if(ce.status==200||ce.status==0&&ce.response){j(ce.response);return}re()},ce.onerror=re,ce.send(null)}),M=D=>document.title=D);T&&typeof performance=="undefined"&&(global.performance=FF().performance);var q=console.log.bind(console),K=console.warn.bind(console);T&&(q=D=>U.writeSync(1,D+`
`),K=D=>U.writeSync(2,D+`
`));var Z=c.print||q,Q=c.printErr||K;Object.assign(c,g),g=null,c.arguments&&(b=c.arguments),c.thisProgram&&(y=c.thisProgram),c.quit&&(x=c.quit);var ee=4,ae=Atomics.load,te=Atomics.store,le=Atomics.compareExchange,ie;c.wasmBinary&&(ie=c.wasmBinary);var be=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Yo("no native wasm support detected");var ue,xe,Ie=!1,Se;function Le(D,j){D||Yo(j)}var Ve=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function nt(D,j,re){for(var ce=j+re,ke=j;D[ke]&&!(ke>=ce);)++ke;if(ke-j>16&&D.buffer&&Ve)return Ve.decode(D.buffer instanceof SharedArrayBuffer?D.slice(j,ke):D.subarray(j,ke));for(var je="";j<ke;){var Ce=D[j++];if(!(Ce&128)){je+=String.fromCharCode(Ce);continue}var Re=D[j++]&63;if((Ce&224)==192){je+=String.fromCharCode((Ce&31)<<6|Re);continue}var Ot=D[j++]&63;if((Ce&240)==224?Ce=(Ce&15)<<12|Re<<6|Ot:Ce=(Ce&7)<<18|Re<<12|Ot<<6|D[j++]&63,Ce<65536)je+=String.fromCharCode(Ce);else{var ua=Ce-65536;je+=String.fromCharCode(55296|ua>>10,56320|ua&1023)}}return je}function it(D,j){return D?nt(i(),D,j):""}function et(D,j,re,ce){if(!(ce>0))return 0;for(var ke=re,je=re+ce-1,Ce=0;Ce<D.length;++Ce){var Re=D.charCodeAt(Ce);if(Re>=55296&&Re<=57343){var Ot=D.charCodeAt(++Ce);Re=65536+((Re&1023)<<10)|Ot&1023}if(Re<=127){if(re>=je)break;j[re++]=Re}else if(Re<=2047){if(re+1>=je)break;j[re++]=192|Re>>6,j[re++]=128|Re&63}else if(Re<=65535){if(re+2>=je)break;j[re++]=224|Re>>12,j[re++]=128|Re>>6&63,j[re++]=128|Re&63}else{if(re+3>=je)break;j[re++]=240|Re>>18,j[re++]=128|Re>>12&63,j[re++]=128|Re>>6&63,j[re++]=128|Re&63}}return j[re]=0,re-ke}function at(D,j,re){return et(D,i(),j,re)}var ze,dt,jn,Mt,ia,on,Fn,oa,Dn;C&&(ze=c.buffer);function ot(D){ze=D,c.HEAP8=dt=new Int8Array(D),c.HEAP16=Mt=new Int16Array(D),c.HEAP32=on=new Int32Array(D),c.HEAPU8=jn=new Uint8Array(D),c.HEAPU16=ia=new Uint16Array(D),c.HEAPU32=Fn=new Uint32Array(D),c.HEAPF32=oa=new Float32Array(D),c.HEAPF64=Dn=new Float64Array(D)}var Rn=c.INITIAL_MEMORY||16777216;if(C)ue=c.wasmMemory,ze=c.buffer;else if(c.wasmMemory)ue=c.wasmMemory;else if(ue=new WebAssembly.Memory({initial:Rn/65536,maximum:32768,shared:!0}),!(ue.buffer instanceof SharedArrayBuffer))throw Q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ue&&(ze=ue.buffer),Rn=ze.byteLength,ot(ze);var qn,xr=[],qo=[],er=[],vp=!1;function Ia(){return be}function Ko(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Ng(c.preRun.shift());Sp(xr)}function Xt(){vp=!0,!C&&Sp(qo)}function Fd(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)G1(c.postRun.shift());Sp(er)}}function Ng(D){xr.unshift(D)}function Cg(D){qo.unshift(D)}function G1(D){er.unshift(D)}var jr=0,Xo=null,vr=null;function H1(D){jr++,c.monitorRunDependencies&&c.monitorRunDependencies(jr)}function j1(D){if(jr--,c.monitorRunDependencies&&c.monitorRunDependencies(jr),jr==0&&(Xo!==null&&(clearInterval(Xo),Xo=null),vr)){var j=vr;vr=null,j()}}function Yo(D){C?postMessage({cmd:"onAbort",arg:D}):c.onAbort&&c.onAbort(D),D="Aborted("+D+")",Q(D),Ie=!0,Se=1,D+=". Build with -sASSERTIONS for more info.";var j=new WebAssembly.RuntimeError(D);throw m(j),j}var _g="data:application/octet-stream;base64,";function Dd(D){return D.startsWith(_g)}function wp(D){return D.startsWith("file://")}var yn;yn="tfjs-backend-wasm-threaded-simd.wasm",Dd(yn)||(yn=A(yn));function Rd(D){try{if(D==yn&&ie)return new Uint8Array(ie);if(S)return S(D);throw"both async and sync fetching of the wasm failed"}catch(j){Yo(j)}}function Eg(){if(!ie&&(w||I)){if(typeof fetch=="function"&&!wp(yn))return fetch(yn,{credentials:"same-origin"}).then(function(D){if(!D.ok)throw"failed to load wasm binary file at '"+yn+"'";return D.arrayBuffer()}).catch(function(){return Rd(yn)});if(F)return new Promise(function(D,j){F(yn,function(re){D(new Uint8Array(re))},j)})}return Promise.resolve().then(function(){return Rd(yn)})}function Ag(){var D={env:jd,wasi_snapshot_preview1:jd};function j(Ce,Re){var Ot=Ce.exports;if(c.asm=Ot,Wg(c.asm._emscripten_tls_init),qn=c.asm.__indirect_function_table,Cg(c.asm.__wasm_call_ctors),xe=Re,!C){var ua=$e.unusedWorkers.length;$e.unusedWorkers.forEach(function(kr){$e.loadWasmModuleToWorker(kr,function(){--ua||j1("wasm-instantiate")})})}}C||H1("wasm-instantiate");function re(Ce){j(Ce.instance,Ce.module)}function ce(Ce){return Eg().then(function(Re){return WebAssembly.instantiate(Re,D)}).then(function(Re){return Re}).then(Ce,function(Re){Q("failed to asynchronously prepare wasm: "+Re),Yo(Re)})}function ke(){return!ie&&typeof WebAssembly.instantiateStreaming=="function"&&!Dd(yn)&&!wp(yn)&&!T&&typeof fetch=="function"?fetch(yn,{credentials:"same-origin"}).then(function(Ce){var Re=WebAssembly.instantiateStreaming(Ce,D);return Re.then(re,function(Ot){return Q("wasm streaming compile failed: "+Ot),Q("falling back to ArrayBuffer instantiation"),ce(re)})}):ce(re)}if(c.instantiateWasm)try{var je=c.instantiateWasm(D,j);return je}catch(Ce){Q("Module.instantiateWasm callback failed with error: "+Ce),m(Ce)}return ke().catch(m),{}}var $g,q1,Fg={};function Ms(D){this.name="ExitStatus",this.message="Program terminated with exit("+D+")",this.status=D}function Dg(D){var j=$e.pthreads[D];delete $e.pthreads[D],j.terminate(),ly(D),$e.runningWorkers.splice($e.runningWorkers.indexOf(j),1),j.pthread_ptr=0}function Rg(D){var j=$e.pthreads[D];j.postMessage({cmd:"cancel"})}function kp(D){var j=$e.pthreads[D];Le(j),$e.returnWorkerToPool(j)}function Md(D){var j=$e.getNewWorker();if(!j)return 6;$e.runningWorkers.push(j),$e.pthreads[D.pthread_ptr]=j,j.pthread_ptr=D.pthread_ptr;var re={cmd:"run",start_routine:D.startRoutine,arg:D.arg,pthread_ptr:D.pthread_ptr};return j.runPthread=()=>{re.time=performance.now(),j.postMessage(re,D.transferList)},j.loaded&&(j.runPthread(),delete j.runPthread),0}var Pd={varargs:void 0,get:function(){Pd.varargs+=4;var D=l()[Pd.varargs-4>>2];return D},getStr:function(D){var j=it(D);return j}};function Ip(D){if(C)return qr(1,1,D);Se=D,Ia()||($e.terminateAllThreads(),c.onExit&&c.onExit(D),Ie=!0),x(D,new Ms(D))}function K1(D,j){if(Se=D,!j&&C)throw Ld(D),"unwind";Ip(D)}var Od=K1;function Mg(D){if(D instanceof Ms||D=="unwind")return Se;x(1,D)}var $e={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){C?$e.initWorker():$e.initMainThread()},initMainThread:function(){for(var D=8;D--;)$e.allocateUnusedWorker()},initWorker:function(){be=!1},setExitStatus:function(D){Se=D},terminateAllThreads:function(){for(var D of Object.values($e.pthreads))$e.returnWorkerToPool(D);for(var D of $e.unusedWorkers)D.terminate();$e.unusedWorkers=[]},returnWorkerToPool:function(D){var j=D.pthread_ptr;delete $e.pthreads[j],$e.unusedWorkers.push(D),$e.runningWorkers.splice($e.runningWorkers.indexOf(D),1),D.pthread_ptr=0,ly(j)},receiveObjectTransfer:function(D){},threadInitTLS:function(){$e.tlsInitFunctions.forEach(D=>D())},loadWasmModuleToWorker:function(D,j){D.onmessage=re=>{var ce=re.data,ke=ce.cmd;if(D.pthread_ptr&&($e.currentProxiedOperationCallerThread=D.pthread_ptr),ce.targetThread&&ce.targetThread!=Jd()){var je=$e.pthreads[ce.targetThread];je?je.postMessage(ce,ce.transferList):Q('Internal error! Worker sent a message "'+ke+'" to target pthread '+ce.targetThread+", but that thread no longer exists!"),$e.currentProxiedOperationCallerThread=void 0;return}ke==="processProxyingQueue"?Tp(ce.queue):ke==="spawnThread"?Md(ce):ke==="cleanupThread"?kp(ce.thread):ke==="killThread"?Dg(ce.thread):ke==="cancelThread"?Rg(ce.thread):ke==="loaded"?(D.loaded=!0,j&&j(D),D.runPthread&&(D.runPthread(),delete D.runPthread)):ke==="print"?Z("Thread "+ce.threadId+": "+ce.text):ke==="printErr"?Q("Thread "+ce.threadId+": "+ce.text):ke==="alert"?alert("Thread "+ce.threadId+": "+ce.text):ce.target==="setimmediate"?D.postMessage(ce):ke==="onAbort"?c.onAbort&&c.onAbort(ce.arg):ke&&Q("worker sent an unknown command "+ke),$e.currentProxiedOperationCallerThread=void 0},D.onerror=re=>{var ce="worker sent an error!";throw Q(ce+" "+re.filename+":"+re.lineno+": "+re.message),re},T&&(D.on("message",function(re){D.onmessage({data:re})}),D.on("error",function(re){D.onerror(re)}),D.on("detachedExit",function(){})),D.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:ue,wasmModule:xe})},allocateUnusedWorker:function(){var D=A("tfjs-backend-wasm-threaded-simd.worker.js");$e.unusedWorkers.push(new Worker(D))},getNewWorker:function(){return $e.unusedWorkers.length==0&&($e.allocateUnusedWorker(),$e.loadWasmModuleToWorker($e.unusedWorkers[0])),$e.unusedWorkers.pop()}};c.PThread=$e;function Sp(D){for(;D.length>0;)D.shift()(c)}function Pg(D){var j=uy(),re=D();return Qd(j),re}function X1(D){return D}function Y1(D){var j=/\b_Z[\w\d_]+/g;return D.replace(j,function(re){var ce=re;return re===ce?re:ce+" ["+re+"]"})}function Og(){var D=Jd(),j=l()[D+44>>2],re=l()[D+48>>2],ce=j-re;ak(j,ce),Qd(j)}c.establishStackSpace=Og;function Ld(D){if(C)return qr(2,0,D);try{Od(D)}catch(j){Mg(j)}}var Zo=[];function Lg(D){var j=Zo[D];return j||(D>=Zo.length&&(Zo.length=D+1),Zo[D]=j=qn.get(D)),j}function zg(D,j){var re=Lg(D)(j);Ia()?$e.setExitStatus(re):nk(re)}c.invokeEntryPoint=zg;function Z1(){var D=new Error;if(!D.stack){try{throw new Error}catch(j){D=j}if(!D.stack)return"(no stack trace available)"}return D.stack.toString()}function Wg(D){$e.tlsInitFunctions.push(D)}function Bg(D,j){s().set(D,j)}function Vg(D){Q1(D,!I,1,!w),$e.threadInitTLS()}function Ug(D){C?postMessage({cmd:"cleanupThread",thread:D}):kp(D)}function zd(D,j,re,ce){return C?qr(3,1,D,j,re,ce):Wd(D,j,re,ce)}function Wd(D,j,re,ce){if(typeof SharedArrayBuffer=="undefined")return Q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ke=[],je=0;if(C&&(ke.length===0||je))return zd(D,j,re,ce);if(je)return je;var Ce={startRoutine:re,pthread_ptr:D,arg:ce,transferList:ke};return C?(Ce.cmd="spawnThread",postMessage(Ce,ke),0):Md(Ce)}function Gg(){return 2097152}var Hg=!0;function jg(){return Hg}function Tp(D){Atomics.store(l(),D>>2,1),Jd()&&tk(D),Atomics.compareExchange(l(),D>>2,1,0)}c.executeNotifiedProxyingQueue=Tp;function qg(D,j,re,ce){if(D==j)setTimeout(()=>Tp(ce));else if(C)postMessage({targetThread:D,cmd:"processProxyingQueue",queue:ce});else{var ke=$e.pthreads[D];if(!ke)return;ke.postMessage({cmd:"processProxyingQueue",queue:ce})}return 1}function Kg(D,j,re){return-1}function Xg(){Yo("")}function Ps(D){Ps.shown||(Ps.shown={}),Ps.shown[D]||(Ps.shown[D]=1,T&&(D="warning: "+D),Q(D))}function Yg(){T||I||Ps("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Zg(){return Date.now()}function Bd(){return 2147483648}function Jg(){return Bd()}var Jo;T?Jo=()=>{var D=process.hrtime();return D[0]*1e3+D[1]/1e6}:C?Jo=()=>performance.now()-c.__performance_now_clock_drift:Jo=()=>performance.now();function Qg(D,j,re){i().copyWithin(D,j,j+re)}function eb(){return T?DF().cpus().length:navigator.hardwareConcurrency}function qr(D,j){var re=arguments.length-2,ce=arguments;return Pg(()=>{for(var ke=re,je=eh(ke*8),Ce=je>>3,Re=0;Re<re;Re++){var Ot=ce[2+Re];d()[Ce+Re]=Ot}return ek(D,ke,je,j)})}var Np=[];function tb(D,j,re){Np.length=j;for(var ce=re>>3,ke=0;ke<j;ke++)Np[ke]=d()[ce+ke];var je=D<0,Ce=je?Fg[-D-1]:ub[D];return Ce.apply(null,Np)}function nb(D){try{return ue.grow(D-ze.byteLength+65535>>>16),ot(ue.buffer),1}catch(j){}}function ab(D){var j=i().length;if(D=D>>>0,D<=j)return!1;var re=Bd();if(D>re)return!1;let ce=(Ot,ua)=>Ot+(ua-Ot%ua)%ua;for(var ke=1;ke<=4;ke*=2){var je=j*(1+.2/ke);je=Math.min(je,D+100663296);var Ce=Math.min(re,ce(Math.max(D,je),65536)),Re=nb(Ce);if(Re)return!0}return!1}function rb(){throw"unwind"}function Vd(D){return C?qr(4,1,D):52}function Ud(D,j,re,ce,ke){return C?qr(5,1,D,j,re,ce,ke):70}var sb=[null,[],[]];function ib(D,j){var re=sb[D];j===0||j===10?((D===1?Z:Q)(nt(re,0)),re.length=0):re.push(j)}function Gd(D,j,re,ce){if(C)return qr(6,1,D,j,re,ce);for(var ke=0,je=0;je<re;je++){var Ce=u()[j>>2],Re=u()[j+4>>2];j+=8;for(var Ot=0;Ot<Re;Ot++)ib(D,i()[Ce+Ot]);ke+=Re}return u()[ce>>2]=ke,0}function Hd(D){var j=c["_"+D];return j}function ob(D,j,re,ce,ke){var je={string:pa=>{var nl=0;if(pa!=null&&pa!==0){var ik=(pa.length<<2)+1;nl=eh(ik),at(pa,nl,ik)}return nl},array:pa=>{var nl=eh(pa.length);return Bg(pa,nl),nl}};function Ce(pa){return j==="string"?it(pa):j==="boolean"?Boolean(pa):pa}var Re=Hd(D),Ot=[],ua=0;if(ce)for(var kr=0;kr<ce.length;kr++){var sk=je[re[kr]];sk?(ua===0&&(ua=uy()),Ot[kr]=sk(ce[kr])):Ot[kr]=ce[kr]}var py=Re.apply(null,Ot);function lF(pa){return ua!==0&&Qd(ua),Ce(pa)}return py=lF(py),py}function lb(D,j,re,ce){re=re||[];var ke=re.every(Ce=>Ce==="number"||Ce==="boolean"),je=j!=="string";return je&&ke&&!ce?Hd(D):function(){return ob(D,j,re,arguments,ce)}}$e.init();var ub=[null,Ip,Ld,zd,Vd,Ud,Gd],jd={__emscripten_init_main_thread_js:Vg,__emscripten_thread_cleanup:Ug,__pthread_create_js:Wd,_emscripten_default_pthread_stack_size:Gg,_emscripten_get_now_is_monotonic:jg,_emscripten_notify_task_queue:qg,_emscripten_set_offscreencanvas_size:Kg,abort:Xg,emscripten_check_blocking_allowed:Yg,emscripten_date_now:Zg,emscripten_get_heap_max:Jg,emscripten_get_now:Jo,emscripten_memcpy_big:Qg,emscripten_num_logical_cores:eb,emscripten_receive_on_main_thread_js:tb,emscripten_resize_heap:ab,emscripten_unwind_to_js_event_loop:rb,exit:Od,fd_close:Vd,fd_seek:Ud,fd_write:Gd,memory:ue||c.wasmMemory},J1=Ag(),pb=c.___wasm_call_ctors=function(){return(pb=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},cb=c._init=function(){return(cb=c._init=c.asm.init).apply(null,arguments)},db=c._init_with_threads_count=function(){return(db=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},hb=c._get_threads_count=function(){return(hb=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},mb=c._register_tensor=function(){return(mb=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},fb=c._dispose_data=function(){return(fb=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},gb=c._dispose=function(){return(gb=c._dispose=c.asm.dispose).apply(null,arguments)},bb=c._Abs=function(){return(bb=c._Abs=c.asm.Abs).apply(null,arguments)},yb=c._Add=function(){return(yb=c._Add=c.asm.Add).apply(null,arguments)},xb=c._AddN=function(){return(xb=c._AddN=c.asm.AddN).apply(null,arguments)},vb=c._All=function(){return(vb=c._All=c.asm.All).apply(null,arguments)},wb=c._Any=function(){return(wb=c._Any=c.asm.Any).apply(null,arguments)},kb=c._ArgMax=function(){return(kb=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},Ib=c._AvgPool=function(){return(Ib=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},Sb=c._BatchMatMul=function(){return(Sb=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},Tb=c._Ceil=function(){return(Tb=c._Ceil=c.asm.Ceil).apply(null,arguments)},Nb=c._ClipByValue=function(){return(Nb=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},Cb=c._Conv2D=function(){return(Cb=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},_b=c._Conv2DBackpropInput=function(){return(_b=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},Eb=c._Cos=function(){return(Eb=c._Cos=c.asm.Cos).apply(null,arguments)},Ab=c._Cosh=function(){return(Ab=c._Cosh=c.asm.Cosh).apply(null,arguments)},$b=c._CropAndResize=function(){return($b=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},Fb=c._Cumprod=function(){return(Fb=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},Db=c._Cumsum=function(){return(Db=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},Rb=c._DepthToSpace=function(){return(Rb=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},Mb=c._DepthwiseConv2dNative=function(){return(Mb=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},Pb=c._Elu=function(){return(Pb=c._Elu=c.asm.Elu).apply(null,arguments)},Ob=c._Equal=function(){return(Ob=c._Equal=c.asm.Equal).apply(null,arguments)},Lb=c._Exp=function(){return(Lb=c._Exp=c.asm.Exp).apply(null,arguments)},zb=c._FlipLeftRight=function(){return(zb=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},Wb=c._Floor=function(){return(Wb=c._Floor=c.asm.Floor).apply(null,arguments)},Bb=c._FloorDiv=function(){return(Bb=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},Vb=c._FusedBatchNorm=function(){return(Vb=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},Ub=c._FusedConv2D=function(){return(Ub=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},Gb=c._FusedDepthwiseConv2D=function(){return(Gb=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},Hb=c._Gather=function(){return(Hb=c._Gather=c.asm.Gather).apply(null,arguments)},jb=c._GatherNd=function(){return(jb=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},qb=c._Greater=function(){return(qb=c._Greater=c.asm.Greater).apply(null,arguments)},Kb=c._GreaterEqual=function(){return(Kb=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},Xb=c._LeakyRelu=function(){return(Xb=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},Yb=c._Less=function(){return(Yb=c._Less=c.asm.Less).apply(null,arguments)},Zb=c._LessEqual=function(){return(Zb=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},Jb=c._Log=function(){return(Jb=c._Log=c.asm.Log).apply(null,arguments)},Qb=c._LogicalAnd=function(){return(Qb=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},ey=c._LogicalNot=function(){return(ey=c._LogicalNot=c.asm.LogicalNot).apply(null,arguments)},ty=c._LogicalOr=function(){return(ty=c._LogicalOr=c.asm.LogicalOr).apply(null,arguments)},ny=c._LogicalXor=function(){return(ny=c._LogicalXor=c.asm.LogicalXor).apply(null,arguments)},ay=c._Max=function(){return(ay=c._Max=c.asm.Max).apply(null,arguments)},qd=c._MaxPool=function(){return(qd=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Kd=c._Maximum=function(){return(Kd=c._Maximum=c.asm.Maximum).apply(null,arguments)},Cp=c._Mean=function(){return(Cp=c._Mean=c.asm.Mean).apply(null,arguments)},ry=c._Min=function(){return(ry=c._Min=c.asm.Min).apply(null,arguments)},sy=c._Minimum=function(){return(sy=c._Minimum=c.asm.Minimum).apply(null,arguments)},Qo=c._MirrorPad=function(){return(Qo=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Xd=c._Multiply=function(){return(Xd=c._Multiply=c.asm.Multiply).apply(null,arguments)},el=c._Neg=function(){return(el=c._Neg=c.asm.Neg).apply(null,arguments)},tl=c._NonMaxSuppressionV3=function(){return(tl=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},iy=c._NonMaxSuppressionV4=function(){return(iy=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},X=c._NonMaxSuppressionV5=function(){return(X=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},se=c._NotEqual=function(){return(se=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},we=c._OneHot=function(){return(we=c._OneHot=c.asm.OneHot).apply(null,arguments)},He=c._PadV2=function(){return(He=c._PadV2=c.asm.PadV2).apply(null,arguments)},wt=c._Pow=function(){return(wt=c._Pow=c.asm.Pow).apply(null,arguments)},kt=c._Prelu=function(){return(kt=c._Prelu=c.asm.Prelu).apply(null,arguments)},Ue=c._Prod=function(){return(Ue=c._Prod=c.asm.Prod).apply(null,arguments)},We=c._RealDiv=function(){return(We=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},Pt=c._Relu=function(){return(Pt=c._Relu=c.asm.Relu).apply(null,arguments)},la=c._Relu6=function(){return(la=c._Relu6=c.asm.Relu6).apply(null,arguments)},wr=c._ResizeBilinear=function(){return(wr=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},Yd=c._ResizeNearestNeighbor=function(){return(Yd=c._ResizeNearestNeighbor=c.asm.ResizeNearestNeighbor).apply(null,arguments)},_p=c._Reverse=function(){return(_p=c._Reverse=c.asm.Reverse).apply(null,arguments)},oy=c._RotateWithOffset=function(){return(oy=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},Mn=c._Round=function(){return(Mn=c._Round=c.asm.Round).apply(null,arguments)},Kr=c._Rsqrt=function(){return(Kr=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},Zd=c._ScatterNd=function(){return(Zd=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},A$=c._SelectV2=function(){return(A$=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},$$=c._Sigmoid=function(){return($$=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},F$=c._Sin=function(){return(F$=c._Sin=c.asm.Sin).apply(null,arguments)},D$=c._Softmax=function(){return(D$=c._Softmax=c.asm.Softmax).apply(null,arguments)},R$=c._SparseFillEmptyRows=function(){return(R$=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},M$=c._SparseReshape=function(){return(M$=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},P$=c._SparseSegmentReduction=function(){return(P$=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},O$=c._Sqrt=function(){return(O$=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},L$=c._Square=function(){return(L$=c._Square=c.asm.Square).apply(null,arguments)},z$=c._SquaredDifference=function(){return(z$=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},W$=c._Step=function(){return(W$=c._Step=c.asm.Step).apply(null,arguments)},B$=c._StridedSlice=function(){return(B$=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},V$=c._Sub=function(){return(V$=c._Sub=c.asm.Sub).apply(null,arguments)},U$=c._Sum=function(){return(U$=c._Sum=c.asm.Sum).apply(null,arguments)},G$=c._Tan=function(){return(G$=c._Tan=c.asm.Tan).apply(null,arguments)},H$=c._Tanh=function(){return(H$=c._Tanh=c.asm.Tanh).apply(null,arguments)},j$=c._Tile=function(){return(j$=c._Tile=c.asm.Tile).apply(null,arguments)},q$=c._TopK=function(){return(q$=c._TopK=c.asm.TopK).apply(null,arguments)},K$=c._Transform=function(){return(K$=c._Transform=c.asm.Transform).apply(null,arguments)},X$=c._Transpose=function(){return(X$=c._Transpose=c.asm.Transpose).apply(null,arguments)},Y$=c.__FusedMatMul=function(){return(Y$=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},Z$=c._malloc=function(){return(Z$=c._malloc=c.asm.malloc).apply(null,arguments)},J$=c._free=function(){return(J$=c._free=c.asm.free).apply(null,arguments)},Q$=c.__emscripten_tls_init=function(){return(Q$=c.__emscripten_tls_init=c.asm._emscripten_tls_init).apply(null,arguments)},Jd=c._pthread_self=function(){return(Jd=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},eF=c.___errno_location=function(){return(eF=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},Q1=c.__emscripten_thread_init=function(){return(Q1=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},tF=c.__emscripten_thread_crashed=function(){return(tF=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},nF=c._emscripten_main_thread_process_queued_calls=function(){return(nF=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},aF=c._emscripten_main_browser_thread_id=function(){return(aF=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},ek=c._emscripten_run_in_main_runtime_thread_js=function(){return(ek=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},rF=c._emscripten_dispatch_to_thread_=function(){return(rF=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},tk=c.__emscripten_proxy_execute_task_queue=function(){return(tk=c.__emscripten_proxy_execute_task_queue=c.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},ly=c.__emscripten_thread_free_data=function(){return(ly=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},nk=c.__emscripten_thread_exit=function(){return(nk=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},ak=c._emscripten_stack_set_limits=function(){return(ak=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},uy=c.stackSave=function(){return(uy=c.stackSave=c.asm.stackSave).apply(null,arguments)},Qd=c.stackRestore=function(){return(Qd=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},eh=c.stackAlloc=function(){return(eh=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},sF=c.dynCall_iijjiiii=function(){return(sF=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},iF=c.dynCall_jiji=function(){return(iF=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)};c.keepRuntimeAlive=Ia,c.wasmMemory=ue,c.cwrap=lb,c.ExitStatus=Ms,c.PThread=$e;var th;vr=function D(){th||rk(),th||(vr=D)};function rk(D){if(D=D||b,jr>0)return;if(C){h(c),Xt(),postMessage({cmd:"loaded"});return}if(Ko(),jr>0)return;function j(){th||(th=!0,c.calledRun=!0,!Ie&&(Xt(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Fd()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),j()},1)):j()}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();rk();var nh;f&&(nh={uncaughtException:process.listeners("uncaughtException").filter(function(D){return!f.uncaughtException.indexOf(D)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(D){return!f.unhandledRejection.indexOf(D)>-1})});var ah;if(typeof WasmBackendModule!="undefined")ah=WasmBackendModule;else if(typeof r!="undefined")ah=r;else throw new Error("Could not find wasm module in post.js");if(nh){var oF=ah._dispose;ah._dispose=function(){oF(),nh.uncaughtException.forEach(function(D){process.removeListener("uncaughtException",D)}),nh.unhandledRejection.forEach(function(D){process.removeListener("unhandledRejection",D)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),MF=Bt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`}),PF=Bt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(X,se){i=X,o=se});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(X,se)=>{throw se},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function b(X){return s.locateFile?s.locateFile(X,g):g+X}var y,x,w,I;function T(X){X instanceof Xo||R("exiting due to exception: "+X)}if(f){m?g=Ch().dirname(g)+"/":g=__dirname+"/";var C,E;typeof WI=="function"&&(C=Cx(),E=Ch()),y=(X,se)=>(X=E.normalize(X),C.readFileSync(X,se?void 0:"utf8")),w=X=>{var se=y(X,!0);return se.buffer||(se=new Uint8Array(se)),se},x=(X,se,we)=>{X=E.normalize(X),C.readFile(X,function(He,wt){He?we(He):se(wt.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(X){if(!(X instanceof Xo))throw X}),process.on("unhandledRejection",function(X){throw X}),c=(X,se)=>{if(jn())throw process.exitCode=X,se;T(se),process.exit(X)},s.inspect=function(){return"[Emscripten Module object]"}}else(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",y=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.send(null),se.responseText},m&&(w=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),x=(X,se,we)=>{var He=new XMLHttpRequest;He.open("GET",X,!0),He.responseType="arraybuffer",He.onload=()=>{if(He.status==200||He.status==0&&He.response){se(He.response);return}we()},He.onerror=we,He.send(null)},I=X=>document.title=X);var A=s.print||console.log.bind(console),R=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var F=4,S;s.wasmBinary&&(S=s.wasmBinary);var M=s.noExitRuntime||!0;typeof WebAssembly!="object"&&er("no native wasm support detected");var B,U=!1,G;function q(X,se){X||er(se)}var K=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Z(X,se,we){for(var He=se+we,wt=se;X[wt]&&!(wt>=He);)++wt;if(wt-se>16&&X.buffer&&K)return K.decode(X.subarray(se,wt));for(var kt="";se<wt;){var Ue=X[se++];if(!(Ue&128)){kt+=String.fromCharCode(Ue);continue}var We=X[se++]&63;if((Ue&224)==192){kt+=String.fromCharCode((Ue&31)<<6|We);continue}var Pt=X[se++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|We<<6|Pt:Ue=(Ue&7)<<18|We<<12|Pt<<6|X[se++]&63,Ue<65536)kt+=String.fromCharCode(Ue);else{var la=Ue-65536;kt+=String.fromCharCode(55296|la>>10,56320|la&1023)}}return kt}function Q(X,se){return X?Z(ie,X,se):""}function ee(X,se,we,He){if(!(He>0))return 0;for(var wt=we,kt=we+He-1,Ue=0;Ue<X.length;++Ue){var We=X.charCodeAt(Ue);if(We>=55296&&We<=57343){var Pt=X.charCodeAt(++Ue);We=65536+((We&1023)<<10)|Pt&1023}if(We<=127){if(we>=kt)break;se[we++]=We}else if(We<=2047){if(we+1>=kt)break;se[we++]=192|We>>6,se[we++]=128|We&63}else if(We<=65535){if(we+2>=kt)break;se[we++]=224|We>>12,se[we++]=128|We>>6&63,se[we++]=128|We&63}else{if(we+3>=kt)break;se[we++]=240|We>>18,se[we++]=128|We>>12&63,se[we++]=128|We>>6&63,se[we++]=128|We&63}}return se[we]=0,we-wt}function ae(X,se,we){return ee(X,ie,se,we)}var te,le,ie,be,ue,xe,Ie,Se,Le;function Ve(X){te=X,s.HEAP8=le=new Int8Array(X),s.HEAP16=be=new Int16Array(X),s.HEAP32=xe=new Int32Array(X),s.HEAPU8=ie=new Uint8Array(X),s.HEAPU16=ue=new Uint16Array(X),s.HEAPU32=Ie=new Uint32Array(X),s.HEAPF32=Se=new Float32Array(X),s.HEAPF64=Le=new Float64Array(X)}var nt=s.INITIAL_MEMORY||16777216,it,et=[],at=[],ze=[],dt=!1;function jn(){return M}function Mt(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Fn(s.preRun.shift());vr(et)}function ia(){dt=!0,vr(at)}function on(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Dn(s.postRun.shift());vr(ze)}function Fn(X){et.unshift(X)}function oa(X){at.unshift(X)}function Dn(X){ze.unshift(X)}var ot=0,Rn=null,qn=null;function xr(X){ot++,s.monitorRunDependencies&&s.monitorRunDependencies(ot)}function qo(X){if(ot--,s.monitorRunDependencies&&s.monitorRunDependencies(ot),ot==0&&(Rn!==null&&(clearInterval(Rn),Rn=null),qn)){var se=qn;qn=null,se()}}function er(X){s.onAbort&&s.onAbort(X),X="Aborted("+X+")",R(X),U=!0,G=1,X+=". Build with -sASSERTIONS for more info.";var se=new WebAssembly.RuntimeError(X);throw o(se),se}var vp="data:application/octet-stream;base64,";function Ia(X){return X.startsWith(vp)}function Ko(X){return X.startsWith("file://")}var Xt;Xt="tfjs-backend-wasm.wasm",Ia(Xt)||(Xt=b(Xt));function Fd(X){try{if(X==Xt&&S)return new Uint8Array(S);if(w)return w(X);throw"both async and sync fetching of the wasm failed"}catch(se){er(se)}}function Ng(){if(!S&&(h||m)){if(typeof fetch=="function"&&!Ko(Xt))return fetch(Xt,{credentials:"same-origin"}).then(function(X){if(!X.ok)throw"failed to load wasm binary file at '"+Xt+"'";return X.arrayBuffer()}).catch(function(){return Fd(Xt)});if(x)return new Promise(function(X,se){x(Xt,function(we){X(new Uint8Array(we))},se)})}return Promise.resolve().then(function(){return Fd(Xt)})}function Cg(){var X={env:Ip,wasi_snapshot_preview1:Ip};function se(Ue,We){var Pt=Ue.exports;s.asm=Pt,B=s.asm.memory,Ve(B.buffer),it=s.asm.__indirect_function_table,oa(s.asm.__wasm_call_ctors),qo("wasm-instantiate")}xr("wasm-instantiate");function we(Ue){se(Ue.instance)}function He(Ue){return Ng().then(function(We){return WebAssembly.instantiate(We,X)}).then(function(We){return We}).then(Ue,function(We){R("failed to asynchronously prepare wasm: "+We),er(We)})}function wt(){return!S&&typeof WebAssembly.instantiateStreaming=="function"&&!Ia(Xt)&&!Ko(Xt)&&!f&&typeof fetch=="function"?fetch(Xt,{credentials:"same-origin"}).then(function(Ue){var We=WebAssembly.instantiateStreaming(Ue,X);return We.then(we,function(Pt){return R("wasm streaming compile failed: "+Pt),R("falling back to ArrayBuffer instantiation"),He(we)})}):He(we)}if(s.instantiateWasm)try{var kt=s.instantiateWasm(X,se);return kt}catch(Ue){R("Module.instantiateWasm callback failed with error: "+Ue),o(Ue)}return wt().catch(o),{}}var G1,jr;function Xo(X){this.name="ExitStatus",this.message="Program terminated with exit("+X+")",this.status=X}function vr(X){for(;X.length>0;)X.shift()(s)}function H1(X){return X}function j1(X){var se=/\b_Z[\w\d_]+/g;return X.replace(se,function(we){var He=we;return we===He?we:He+" ["+we+"]"})}function Yo(){var X=new Error;if(!X.stack){try{throw new Error}catch(se){X=se}if(!X.stack)return"(no stack trace available)"}return X.stack.toString()}function _g(X,se){le.set(X,se)}function Dd(){er("")}function wp(){return 2147483648}function yn(){return wp()}function Rd(X,se,we){ie.copyWithin(X,se,se+we)}function Eg(X){try{return B.grow(X-te.byteLength+65535>>>16),Ve(B.buffer),1}catch(se){}}function Ag(X){var se=ie.length;X=X>>>0;var we=wp();if(X>we)return!1;let He=(Pt,la)=>Pt+(la-Pt%la)%la;for(var wt=1;wt<=4;wt*=2){var kt=se*(1+.2/wt);kt=Math.min(kt,X+100663296);var Ue=Math.min(we,He(Math.max(X,kt),65536)),We=Eg(Ue);if(We)return!0}return!1}var $g={varargs:void 0,get:function(){$g.varargs+=4;var X=xe[$g.varargs-4>>2];return X},getStr:function(X){var se=Q(X);return se}};function q1(X){return 52}function Fg(X,se,we,He,wt){return 70}var Ms=[null,[],[]];function Dg(X,se){var we=Ms[X];se===0||se===10?((X===1?A:R)(Z(we,0)),we.length=0):we.push(se)}function Rg(X,se,we,He){for(var wt=0,kt=0;kt<we;kt++){var Ue=Ie[se>>2],We=Ie[se+4>>2];se+=8;for(var Pt=0;Pt<We;Pt++)Dg(X,ie[Ue+Pt]);wt+=We}return Ie[He>>2]=wt,0}function kp(X){var se=s["_"+X];return se}function Md(X,se,we,He,wt){var kt={string:Mn=>{var Kr=0;if(Mn!=null&&Mn!==0){var Zd=(Mn.length<<2)+1;Kr=Cp(Zd),ae(Mn,Kr,Zd)}return Kr},array:Mn=>{var Kr=Cp(Mn.length);return _g(Mn,Kr),Kr}};function Ue(Mn){return se==="string"?Q(Mn):se==="boolean"?Boolean(Mn):Mn}var We=kp(X),Pt=[],la=0;if(He)for(var wr=0;wr<He.length;wr++){var Yd=kt[we[wr]];Yd?(la===0&&(la=qd()),Pt[wr]=Yd(He[wr])):Pt[wr]=He[wr]}var _p=We.apply(null,Pt);function oy(Mn){return la!==0&&Kd(la),Ue(Mn)}return _p=oy(_p),_p}function Pd(X,se,we,He){we=we||[];var wt=we.every(Ue=>Ue==="number"||Ue==="boolean"),kt=se!=="string";return kt&&wt&&!He?kp(X):function(){return Md(X,se,we,arguments,He)}}var Ip={abort:Dd,emscripten_get_heap_max:yn,emscripten_memcpy_big:Rd,emscripten_resize_heap:Ag,fd_close:q1,fd_seek:Fg,fd_write:Rg},K1=Cg(),Od=s.___wasm_call_ctors=function(){return(Od=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},Mg=s._init=function(){return(Mg=s._init=s.asm.init).apply(null,arguments)},$e=s._init_with_threads_count=function(){return($e=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},Sp=s._get_threads_count=function(){return(Sp=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},Pg=s._register_tensor=function(){return(Pg=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},X1=s._dispose_data=function(){return(X1=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Y1=s._dispose=function(){return(Y1=s._dispose=s.asm.dispose).apply(null,arguments)},Og=s._Abs=function(){return(Og=s._Abs=s.asm.Abs).apply(null,arguments)},Ld=s._Add=function(){return(Ld=s._Add=s.asm.Add).apply(null,arguments)},Zo=s._AddN=function(){return(Zo=s._AddN=s.asm.AddN).apply(null,arguments)},Lg=s._All=function(){return(Lg=s._All=s.asm.All).apply(null,arguments)},zg=s._Any=function(){return(zg=s._Any=s.asm.Any).apply(null,arguments)},Z1=s._ArgMax=function(){return(Z1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},Wg=s._AvgPool=function(){return(Wg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},Bg=s._BatchMatMul=function(){return(Bg=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Vg=s._Ceil=function(){return(Vg=s._Ceil=s.asm.Ceil).apply(null,arguments)},Ug=s._ClipByValue=function(){return(Ug=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},zd=s._Conv2D=function(){return(zd=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Wd=s._Conv2DBackpropInput=function(){return(Wd=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Gg=s._Cos=function(){return(Gg=s._Cos=s.asm.Cos).apply(null,arguments)},Hg=s._Cosh=function(){return(Hg=s._Cosh=s.asm.Cosh).apply(null,arguments)},jg=s._CropAndResize=function(){return(jg=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Tp=s._Cumprod=function(){return(Tp=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},qg=s._Cumsum=function(){return(qg=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Kg=s._DepthToSpace=function(){return(Kg=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},Xg=s._DepthwiseConv2dNative=function(){return(Xg=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},Ps=s._Elu=function(){return(Ps=s._Elu=s.asm.Elu).apply(null,arguments)},Yg=s._Equal=function(){return(Yg=s._Equal=s.asm.Equal).apply(null,arguments)},Zg=s._Exp=function(){return(Zg=s._Exp=s.asm.Exp).apply(null,arguments)},Bd=s._FlipLeftRight=function(){return(Bd=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},Jg=s._Floor=function(){return(Jg=s._Floor=s.asm.Floor).apply(null,arguments)},Jo=s._FloorDiv=function(){return(Jo=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},Qg=s._FusedBatchNorm=function(){return(Qg=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},eb=s._FusedConv2D=function(){return(eb=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},qr=s._FusedDepthwiseConv2D=function(){return(qr=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},Np=s._Gather=function(){return(Np=s._Gather=s.asm.Gather).apply(null,arguments)},tb=s._GatherNd=function(){return(tb=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},nb=s._Greater=function(){return(nb=s._Greater=s.asm.Greater).apply(null,arguments)},ab=s._GreaterEqual=function(){return(ab=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},rb=s._LeakyRelu=function(){return(rb=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},Vd=s._Less=function(){return(Vd=s._Less=s.asm.Less).apply(null,arguments)},Ud=s._LessEqual=function(){return(Ud=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},sb=s._Log=function(){return(sb=s._Log=s.asm.Log).apply(null,arguments)},ib=s._LogicalAnd=function(){return(ib=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Gd=s._LogicalNot=function(){return(Gd=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},Hd=s._LogicalOr=function(){return(Hd=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},ob=s._LogicalXor=function(){return(ob=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},lb=s._Max=function(){return(lb=s._Max=s.asm.Max).apply(null,arguments)},ub=s._MaxPool=function(){return(ub=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},jd=s._Maximum=function(){return(jd=s._Maximum=s.asm.Maximum).apply(null,arguments)},J1=s._Mean=function(){return(J1=s._Mean=s.asm.Mean).apply(null,arguments)},pb=s._Min=function(){return(pb=s._Min=s.asm.Min).apply(null,arguments)},cb=s._Minimum=function(){return(cb=s._Minimum=s.asm.Minimum).apply(null,arguments)},db=s._MirrorPad=function(){return(db=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},hb=s._Multiply=function(){return(hb=s._Multiply=s.asm.Multiply).apply(null,arguments)},mb=s._Neg=function(){return(mb=s._Neg=s.asm.Neg).apply(null,arguments)},fb=s._NonMaxSuppressionV3=function(){return(fb=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},gb=s._NonMaxSuppressionV4=function(){return(gb=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},bb=s._NonMaxSuppressionV5=function(){return(bb=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},yb=s._NotEqual=function(){return(yb=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},xb=s._OneHot=function(){return(xb=s._OneHot=s.asm.OneHot).apply(null,arguments)},vb=s._PadV2=function(){return(vb=s._PadV2=s.asm.PadV2).apply(null,arguments)},wb=s._Pow=function(){return(wb=s._Pow=s.asm.Pow).apply(null,arguments)},kb=s._Prelu=function(){return(kb=s._Prelu=s.asm.Prelu).apply(null,arguments)},Ib=s._Prod=function(){return(Ib=s._Prod=s.asm.Prod).apply(null,arguments)},Sb=s._RealDiv=function(){return(Sb=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Tb=s._Relu=function(){return(Tb=s._Relu=s.asm.Relu).apply(null,arguments)},Nb=s._Relu6=function(){return(Nb=s._Relu6=s.asm.Relu6).apply(null,arguments)},Cb=s._ResizeBilinear=function(){return(Cb=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},_b=s._ResizeNearestNeighbor=function(){return(_b=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},Eb=s._Reverse=function(){return(Eb=s._Reverse=s.asm.Reverse).apply(null,arguments)},Ab=s._RotateWithOffset=function(){return(Ab=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},$b=s._Round=function(){return($b=s._Round=s.asm.Round).apply(null,arguments)},Fb=s._Rsqrt=function(){return(Fb=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Db=s._ScatterNd=function(){return(Db=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Rb=s._SelectV2=function(){return(Rb=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Mb=s._Sigmoid=function(){return(Mb=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Pb=s._Sin=function(){return(Pb=s._Sin=s.asm.Sin).apply(null,arguments)},Ob=s._Softmax=function(){return(Ob=s._Softmax=s.asm.Softmax).apply(null,arguments)},Lb=s._SparseFillEmptyRows=function(){return(Lb=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},zb=s._SparseReshape=function(){return(zb=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},Wb=s._SparseSegmentReduction=function(){return(Wb=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},Bb=s._Sqrt=function(){return(Bb=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Vb=s._Square=function(){return(Vb=s._Square=s.asm.Square).apply(null,arguments)},Ub=s._SquaredDifference=function(){return(Ub=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Gb=s._Step=function(){return(Gb=s._Step=s.asm.Step).apply(null,arguments)},Hb=s._StridedSlice=function(){return(Hb=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},jb=s._Sub=function(){return(jb=s._Sub=s.asm.Sub).apply(null,arguments)},qb=s._Sum=function(){return(qb=s._Sum=s.asm.Sum).apply(null,arguments)},Kb=s._Tan=function(){return(Kb=s._Tan=s.asm.Tan).apply(null,arguments)},Xb=s._Tanh=function(){return(Xb=s._Tanh=s.asm.Tanh).apply(null,arguments)},Yb=s._Tile=function(){return(Yb=s._Tile=s.asm.Tile).apply(null,arguments)},Zb=s._TopK=function(){return(Zb=s._TopK=s.asm.TopK).apply(null,arguments)},Jb=s._Transform=function(){return(Jb=s._Transform=s.asm.Transform).apply(null,arguments)},Qb=s._Transpose=function(){return(Qb=s._Transpose=s.asm.Transpose).apply(null,arguments)},ey=s.__FusedMatMul=function(){return(ey=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},ty=s._malloc=function(){return(ty=s._malloc=s.asm.malloc).apply(null,arguments)},ny=s._free=function(){return(ny=s._free=s.asm.free).apply(null,arguments)},ay=s.___errno_location=function(){return(ay=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},qd=s.stackSave=function(){return(qd=s.stackSave=s.asm.stackSave).apply(null,arguments)},Kd=s.stackRestore=function(){return(Kd=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Cp=s.stackAlloc=function(){return(Cp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},ry=s.dynCall_iijjiiii=function(){return(ry=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},sy=s.dynCall_jiji=function(){return(sy=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Pd;var Qo;qn=function X(){Qo||Xd(),Qo||(qn=X)};function Xd(X){if(X=X||p,ot>0||(Mt(),ot>0))return;function se(){Qo||(Qo=!0,s.calledRun=!0,!U&&(ia(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),on()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),se()},1)):se()}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Xd();var el;l&&(el={uncaughtException:process.listeners("uncaughtException").filter(function(X){return!l.uncaughtException.indexOf(X)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(X){return!l.unhandledRejection.indexOf(X)>-1})});var tl;if(typeof r!="undefined")tl=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")tl=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(el){var iy=tl._dispose;tl._dispose=function(){iy(),el.uncaughtException.forEach(function(X){process.removeListener("uncaughtException",X)}),el.unhandledRejection.forEach(function(X){process.removeListener("unhandledRejection",X)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),om=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},pc=class{refCount(e){return Kn("refCount")}incRef(e){return Kn("incRef")}timerAvailable(){return!0}time(e){return Kn("time")}read(e){return Kn("read")}readSync(e){return Kn("readSync")}readToGPU(e,t){return Kn("readToGPU")}numDataIds(){return Kn("numDataIds")}disposeData(e,t){return Kn("disposeData")}write(e,t,n){return Kn("write")}move(e,t,n,a,r){return Kn("move")}createTensorFromTexture(e,t,n){return Kn("createTensorFromTexture")}memory(){return Kn("memory")}floatPrecision(){return Kn("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Kn("dispose")}};function Kn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function VI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,_h(e,t,n)}function OF(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,_h(e,n,a),_h(t,n,a)}function Kp(e,t,n){return Math.max(e,Math.min(t,n))}function LF(e){return e%2===0?e:e+1}function _h(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function zF(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function WF(e,t){let n=Math.random();return t*n+(1-n)*e}function BF(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function $(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Tn(e,t,n=""){$(fs(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function mi(e){$(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Js(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let a=0;a<e.length;++a)Js(e[a],t,n);else t.push(e);return t}function mt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function VF(e){return e.length===0}function fs(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function hl(e){return e%1===0}function UF(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function GF(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function HF(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return VI(t),t}function Gp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function jF(e,t=r=>0,n,a){return new Promise((r,s)=>{let i=0,o=()=>{if(e()){r();return}i++;let l=t(i);if(n!=null&&i>=n){s();return}a!=null?a(o,l):setTimeout(o,l)};o()})}function qF(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Fa(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),$(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),$(e.every(a=>hl(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function UI(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Fa(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function GI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function HI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function jI(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function qI(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function KF(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function hn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Ny(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function KI(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Qr(e){return typeof e=="string"||e instanceof String}function XI(e){return typeof e=="boolean"}function YI(e){return typeof e=="number"}function lm(e){return Array.isArray(e)?lm(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":YI(e)?"float32":Qr(e)?"string":XI(e)?"bool":"float32"}function ss(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Eh(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function Fl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function ZI(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=ZI(e+l*o,i,n,a)}return r}function ul(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return ZI(0,e,t,n)}function _x(e,t){let n=um(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function um(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function XF(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return ul(e,new Float32Array(n));if(t==="int32")return ul(e,new Int32Array(n));if(t==="bool")return ul(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Ex(e){e.forEach(t=>{$(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function YF(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function ZF(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Ax(e){return e&&e.then&&typeof e.then=="function"}var ok="tfjsflags",JI=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=JF,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Ax(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);ok in e&&e[ok].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=eD(n,a)})}};function JF(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(QF(t,a[0],a[1]),a.join("="))),t}function QF(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function eD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function H(){return $x}var $x=null;function tD(e){$x=e}var dy;function QI(){if(dy==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");dy=e}return dy}function nD(){let e=QI();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Fx(e,t){let n=nD();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Dl="Abs",Rl="Acos",Ml="Acosh",gs="Add",fi="AddN",Pl="All",Ol="Any",gi="ArgMax",cc="ArgMin",Ll="Asin",zl="Asinh",Wl="Atan",Bl="Atanh",Vl="Atan2",bi="AvgPool",pm="AvgPoolGrad",dc="AvgPool3D",cm="AvgPool3DGrad",yi="BatchMatMul",Ul="BatchToSpaceND",dm="Bincount",eS="BroadcastTo",hm="BroadcastArgs",xi="Cast",vi="Ceil",bs="ClipByValue",mm="Complex",hc="ComplexAbs",Gl="Concat",wi="Conv2D",fm="Conv2DBackpropFilter",ki="Conv2DBackpropInput",mc="Conv3D",gm="Conv3DBackpropFilterV2",bm="Conv3DBackpropInputV2",Ii="Cos",Si="Cosh",Hl="Cumprod",Ti="Cumsum",jl="CropAndResize",ym="DenseBincount",ql="DepthToSpace",Ni="DepthwiseConv2dNative",xm="DepthwiseConv2dNativeBackpropFilter",vm="DepthwiseConv2dNativeBackpropInput",wm="Diag",fc="Dilation2D",Ah="Dilation2DBackpropInput",$h="Dilation2DBackpropFilter",Ci="RealDiv",km="Einsum",_i="Elu",Im="EluGrad",Kl="Erf",Xl="Equal",Ei="Exp",Yl="ExpandDims",Zl="Expm1",Sm="FFT",gc="Fill",Jl="FlipLeftRight",Ai="Floor",$i="FloorDiv",Fi="FusedBatchNorm",Ql="GatherV2",eu="GatherNd",tu="Greater",Di="GreaterEqual",Ri="Identity",Tm="IFFT",Nm="Imag",nu="IsFinite",au="IsInf",ru="IsNan",Mi="LeakyRelu",su="Less",iu="LessEqual",Cm="LinSpace",Pi="Log",ou="Log1p",lu="LogicalAnd",uu="LogicalNot",pu="LogicalOr",tS="LogicalXor",nS="LogSoftmax",aD="LowerBound",bc="LRN",_m="LRNGrad",Oi="Max",Li="Maximum",zi="MaxPool",Em="MaxPoolGrad",yc="MaxPool3D",Am="MaxPool3DGrad",$m="MaxPoolWithArgmax",Wi="Mean",Bi="Min",Vi="Minimum",Ui="MirrorPad",cu="Mod",Fm="Multinomial",Gi="Multiply",du="Neg",hu="NotEqual",mu="NonMaxSuppressionV3",fu="NonMaxSuppressionV4",gu="NonMaxSuppressionV5",bu="OnesLike",Hi="OneHot",yu="Pack",ji="PadV2",rD="Pool",qi="Pow",Ki="Prelu",Xi="Prod",Dm="RaggedGather",Rm="RaggedRange",Mm="RaggedTensorToTensor",xc="Range",Pm="Real",xu="Reciprocal",Yi="Relu",vu="Reshape",Zi="ResizeNearestNeighbor",Om="ResizeNearestNeighborGrad",Ji="ResizeBilinear",Lm="ResizeBilinearGrad",Qi="Relu6",eo="Reverse",to="Round",no="Rsqrt",wu="ScatterNd",zm="SearchSorted",ku="Select",Iu="Selu",Su="Slice",ao="Sin",Tu="Sinh",Nu="Sign",ro="Sigmoid",Cu="Softplus",so="Sqrt",io="Sum",_u="SpaceToBatchND",Eu="SplitV",oo="Softmax",vc="SparseFillEmptyRows",Au="SparseReshape",wc="SparseSegmentMean",kc="SparseSegmentSum",Wm="SparseToDense",lo="SquaredDifference",Ic="Square",$u="StridedSlice",Sc="StringNGrams",Tc="StringSplit",Nc="StringToHashBucketFast",uo="Sub",po="Tan",co="Tanh",ys="Tile",Fu="TopK",Du="Transform",_r="Transpose",Bm="Unique",Ru="Unpack",Cc="UnsortedSegmentSum",sD="UpperBound",Mu="ZerosLike",xs="Step",Fh="FromPixels",Pu="RotateWithOffset",Qs="_FusedMatMul",ei="FusedConv2D",ti="FusedDepthwiseConv2D";function Jr(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(...e)}function iD(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.log(...e)}var ml=Fx("kernelRegistry",()=>new Map),Xp=Fx("gradRegistry",()=>new Map);function Dh(e,t){let n=Dx(e,t);return ml.get(n)}function Cy(e){return Xp.get(e)}function Rh(e){let t=ml.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function _c(e){let{kernelName:t,backendName:n}=e,a=Dx(t,n);ml.has(a)&&Jr(`The kernel '${t}' for backend '${n}' is already registered`),ml.set(a,e)}function aS(e){let{kernelName:t}=e;Xp.has(t)&&H().getBool("DEBUG")&&Jr(`Overriding the gradient for '${t}'`),Xp.set(t,e)}function oD(e,t){let n=Dx(e,t);if(!ml.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ml.delete(n)}function lD(e){if(!Xp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Xp.delete(e)}function uD(e,t){Rh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});_c(a)})}function Dx(e,t){return`${t}_${e}`}var v={};Ae(v,{arraysEqual:()=>fs,assert:()=>$,assertNonNegativeIntegerDimensions:()=>Ex,assertNonNull:()=>mi,assertShapesMatch:()=>Tn,bytesFromStringArray:()=>KI,bytesPerElement:()=>Ny,checkConversionForErrors:()=>jI,clamp:()=>Kp,computeStrides:()=>Fl,createScalarValue:()=>fD,createShuffledIndices:()=>HF,decodeString:()=>Mh,distSquared:()=>BF,encodeString:()=>Ac,fetch:()=>bD,fingerPrint64:()=>mD,flatten:()=>Js,getArrayFromDType:()=>HI,getTypedArrayFromDType:()=>GI,hasEncodingLoss:()=>KF,hexToLong:()=>Ec,indexToLoc:()=>ZF,inferDtype:()=>lm,inferFromImplicitShape:()=>qF,isBoolean:()=>XI,isFunction:()=>ss,isInt:()=>hl,isNumber:()=>YI,isPromise:()=>Ax,isScalarShape:()=>VF,isString:()=>Qr,isTypedArray:()=>hn,isValidDtype:()=>qI,locToIndex:()=>YF,makeOnesTypedArray:()=>_x,makeZerosNestedTypedArray:()=>XF,makeZerosTypedArray:()=>um,nearestDivisor:()=>Eh,nearestLargerEven:()=>LF,now:()=>Yp,parseAxisParam:()=>Fa,randUniform:()=>WF,repeatedTry:()=>jF,rightPad:()=>Gp,shuffle:()=>VI,shuffleCombo:()=>OF,sizeFromShape:()=>mt,sizeToSquarishShape:()=>GF,squeezeShape:()=>UI,sum:()=>zF,swap:()=>_h,tanh:()=>UF,toNestedArray:()=>ul,toTypedArray:()=>Vm});var lk=ms(vF()),Bs=lk.default||lk;function Ec(e){return Bs.fromString(e,!0,16)}var rS=Ec("c3a5c85c97cb3127"),zs=Ec("b492b66fbe98f273"),xn=Ec("9ae16a3b2f90404f");function _y(e){return e.xor(e.shru(47))}function sS(e,t,n){let a=e.slice(t,t+n);return Bs.fromBytes(Array.from(a),!0,!0)}function ht(e,t){return sS(e,t,8)}function uk(e,t){return sS(e,t,4)}function Yt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ns(e,t,n=Ec("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function pD(e,t,n,a,r,s){r=r.add(e),s=Yt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Yt(r,44)),[r.add(a),s.add(i)]}function sh(e,t,n,a){return pD(ht(e,t),ht(e,t+8),ht(e,t+16),ht(e,t+24),n,a)}function cD(e,t=e.length){if(t>=8){let n=xn.add(t*2),a=ht(e,0).add(xn),r=ht(e,t-8),s=Yt(r,37).mul(n).add(a),i=Yt(a,25).add(r).mul(n);return ns(s,i,n)}if(t>=4){let n=xn.add(t*2),a=uk(e,0);return ns(a.shl(3).add(t),uk(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return _y(xn.mul(s).xor(rS.mul(i))).mul(xn)}return xn}function dD(e,t=e.length){let n=xn.add(t*2),a=ht(e,0).mul(zs),r=ht(e,8),s=ht(e,t-8).mul(n),i=ht(e,t-16).mul(xn);return ns(Yt(a.add(r),43).add(Yt(s,30)).add(i),a.add(Yt(r.add(xn),18)).add(s),n)}function hD(e,t=e.length){let n=xn.add(t*2),a=ht(e,0).mul(xn),r=ht(e,8),s=ht(e,t-8).mul(n),i=ht(e,t-16).mul(xn),o=Yt(a.add(r),43).add(Yt(s,30)).add(i),l=ns(o,a.add(Yt(r.add(xn),18)).add(s),n),u=ht(e,16).mul(n),p=ht(e,24),d=o.add(ht(e,t-32)).mul(n),c=l.add(ht(e,t-24)).mul(n);return ns(Yt(u.add(p),43).add(Yt(d,30)).add(c),u.add(Yt(p.add(a),18)).add(d),n)}function mD(e,t=e.length){let n=Bs.fromNumber(81,!0);if(t<=32)return t<=16?cD(e,t):dD(e,t);if(t<=64)return hD(e,t);let a=n,r=n.mul(zs).add(113),s=_y(r.mul(xn).add(113)).mul(xn),i=[Bs.UZERO,Bs.UZERO],o=[Bs.UZERO,Bs.UZERO];a=a.mul(xn).add(ht(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Yt(a.add(r).add(i[0]).add(ht(e,l+8)),37).mul(zs),r=Yt(r.add(i[1]).add(ht(e,l+48)),42).mul(zs),a=a.xor(o[1]),r=r.add(i[0]).add(ht(e,l+40)),s=Yt(s.add(o[0]),33).mul(zs),i=sh(e,l,i[1].mul(zs),a.add(o[0])),o=sh(e,l+32,s.add(o[1]),r.add(ht(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=zs.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Yt(a.add(r).add(i[0]).add(ht(e,l+8)),37).mul(d),r=Yt(r.add(i[1]).add(ht(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(ht(e,l+40))),s=Yt(s.add(o[0]),33).mul(d),i=sh(e,l,i[1].mul(d),a.add(o[0])),o=sh(e,l+32,s.add(o[1]),r.add(ht(e,l+16))),[s,a]=[a,s],ns(ns(i[0],o[0],d).add(_y(r).mul(rS)).add(s),ns(i[1],o[1],d).add(a),d)}function fD(e,t){return t==="string"?Ac(e):Vm([e],t)}function gD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Vm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Js(e)),H().getBool("DEBUG")&&jI(e,t),gD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Yp(){return H().platform.now()}function bD(e,t){return H().platform.fetch(e,t)}function Ac(e,t="utf-8"){return t=t||"utf-8",H().platform.encode(e,t)}function Mh(e,t="utf-8"){return t=t||"utf-8",H().platform.decode(e,t)}var yD=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new vD)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Yp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Yp()-i})}if(H().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{xD(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function xD(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var vD=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Gp(`${a}ms`,9):a.error,o=Gp(e,25),l=t.rank,u=t.size,p=Gp(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function wD(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function kD(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!fs(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var pk=20,Ep=3,hy=7;function ID(e,t,n,a){let r=Fl(t),s=SD(e,t,n,r),i=t.length,o=yh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function SD(e,t,n,a){let r=mt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Rp(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],Dp(l[p+d],0,n).length)}return i}function Dp(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(hy))} + ${parseFloat(e[1].toFixed(hy))}j`:Qr(e)?a=`'${e}'`:n==="bool"?a=iS(e):a=parseFloat(e.toFixed(hy)).toString(),Gp(a,t)}function iS(e){return e===0?"false":"true"}function yh(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Rp(e);return[Dp(f[0],0,n)]}return n==="bool"?[iS(e[0])]:[e[0].toString()]}if(l===1){if(o>pk){let g=Ep*i,b=Array.from(e.slice(0,g)),y=Array.from(e.slice((o-Ep)*i,o*i));return n==="complex64"&&(b=Rp(b),y=Rp(y)),["["+b.map((x,w)=>Dp(x,r[w],n)).join(", ")+", ..., "+y.map((x,w)=>Dp(x,r[o-Ep+w],n)).join(", ")+"]"]}let f=n==="complex64"?Rp(e):Array.from(e);return["["+f.map((g,b)=>Dp(g,r[b],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>pk){for(let f=0;f<Ep;f++){let g=f*d,b=g+d;c.push(...yh(e.slice(g,b),u,n,p,r,!1))}c.push("...");for(let f=o-Ep;f<o;f++){let g=f*d,b=g+d;c.push(...yh(e.slice(g,b),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,b=g+d;c.push(...yh(e.slice(g,b),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function Rp(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ht=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=mt(e),n!=null){let a=n.length;$(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||HI(t,this.size),this.strides=Fl(e)}set(e,...t){t.length===0&&(t=[0]),$(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Oa().makeTensor(this.values,this.shape,this.dtype)}},Oa=null,il=null,TD=null;function ND(e){Oa=e}function CD(e){il=e}function _D(e){TD=e}var Te=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=mt(e),this.strides=Fl(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return il.buffer(this.shape,this.dtype,e)}bufferSync(){return il.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return ul(this.shape,e,this.dtype==="complex64")}arraySync(){return ul(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Oa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Mh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Oa().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Oa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Mh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Oa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Oa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return il.print(this,e)}clone(){return this.throwIfDisposed(),il.clone(this)}toString(e=!1){let t=this.dataSync();return ID(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),il.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Oa().makeVariable(this,e,t,n)}};Object.defineProperty(Te,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function J(){return Fx("Tensor",()=>Te)}J();var is=class extends Te{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!fs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Oa().disposeTensor(this),this.dataId=e.dataId,Oa().incRef(this,null)}dispose(){Oa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(is,Symbol.hasInstance,{value:e=>e instanceof Te&&e.assign!=null&&e.assign instanceof Function});var Va={};Ae(Va,{assertTypesMatch:()=>oS,getTensorsInContainer:()=>Rx,isTensorInList:()=>AD,makeTypesMatch:()=>_t});var Ey;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Ey||(Ey={}));var Ay;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Ay||(Ay={}));var $y;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})($y||($y={}));var Fy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Fy||(Fy={}));var Dy;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Dy||(Dy={}));var ED={float32:Fy,int32:Ay,bool:$y,complex64:Dy};function fa(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return ED[e][t]}function Um(e){return fa(e,"int32")}function _t(e,t){if(e.dtype===t.dtype)return[e,t];let n=fa(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function oS(e,t){$(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function AD(e,t){return t.some(n=>n.id===e.id)}function Rx(e){let t=[];return lS(e,t,new Set),t}function lS(e,t,n){if(e==null)return;if(e instanceof Te){t.push(e);return}if(!$D(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),lS(s,t,n))}}function $D(e){return Array.isArray(e)||typeof e=="object"}function my(e){return e.kernelName!=null}var ck=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Zp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new ck}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Jr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new yD(this.backendInstance),!0}setupRegisteredKernels(){Rh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Rh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof pc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,Jr(`Initialization of backend ${e} failed`),Jr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Jr(`Initialization of backend ${e} failed`),Jr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Zp.nextTensorId++}nextVariableId(){return Zp.nextVariableId++}clone(e){let t=O.runKernel(Ri,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return O.runKernel(xi,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,Dh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=my(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(my(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=Dh(h,this.backendName);$(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let x=y.map(w=>w.rank!=null?w:this.makeTensorFromTensorInfo(w));if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=my(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Cy(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?($(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Qr(e[0])&&(r=e.map(o=>Ac(o)));let s=a.write(r,t,n),i=new Te(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=KI(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,a)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new Te(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new is(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Ny(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof is||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Ny(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Cy(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=um(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Rx(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if($(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));$(r instanceof Te,()=>"The result y returned by f() must be a tensor.");let s=wD(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?FD(r.shape):n,kD(i,s,l=>this.tidy(l),DD);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return $(ss(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{$(t.every(i=>i instanceof Te),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),$(n.value instanceof Te,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),$(ss(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];$(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),$(u.every(d=>d instanceof Te),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Yp(),n=await this.backend.time(e);return n.wallMs=Yp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new ck;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Zp.nextTensorId=0;Zp.nextVariableId=0;function FD(e){let t=_x(mt(e),"float32");return O.makeTensor(t,e,"float32")}function uS(){let e=QI();if(e._tfengine==null){let t=new JI(e);e._tfengine=new Zp(t)}return tD(e._tfengine.ENV),ND(()=>e._tfengine),e._tfengine}var O=uS();function DD(e,t){let n={a:e,b:t};return O.runKernel(gs,n)}var $c={};Ae($c,{isBrowser:()=>pS,isMobile:()=>PD,mockIsMobile:()=>MD});function RD(){return typeof navigator!="undefined"&&navigator!=null}var Ry;function MD(e){Ry=e}function PD(e){if(Ry!==void 0)return Ry;if(e||RD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function pS(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Qn=H();Qn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Qn.registerFlag("IS_BROWSER",()=>pS());Qn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Qn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Qn.registerFlag("PROD",()=>!1);Qn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Qn.getBool("DEBUG"));Qn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Qn.registerFlag("IS_TEST",()=>!1);Qn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Qn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Qn.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);Qn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);Qn.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function lr(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(typeof e=="object"&&"texture"in e){let r=e.channels||"RGBA";return[e.height,e.width*r.length]}if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&H().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&cS(e,a,[]),a}function cS(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){$(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}$(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),$(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)cS(e[r],a,n.concat(r))}function dk(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,a="numeric"){if(e instanceof Te)return dk(a,e.dtype,t,n),e;let r=lm(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),dk(a,r,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=lr(e,r);!hn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Vm(e,r):Js(e,[],!0);return O.makeTensor(i,s,r)}function Jp(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>_(r,`${t}[${s}]`,n,a))}var Mx="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Mx;let r=(...s)=>{O.startScope(n);try{let i=a(...s);return Ax(i)&&console.error("Cannot return a Promise inside of tidy."),O.endScope(i),i}catch(i){throw O.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function OD(e,t){let n=_(e,"real","complex"),a=_(t,"imag","complex");Tn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return O.runKernel(mm,r)}var Ar=L({complex_:OD});function vs(e,t,n,a){if(a==null&&(a=lm(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(typeof e=="object"&&"texture"in e){if(a!=="float32"&&a!=="int32")throw new Error(`Creating tensor from texture only supports 'float32'|'int32' dtype, while the dtype is ${a}.`);return e.channels=e.channels||"RGBA",O.backend.createTensorFromTexture(e,t||n,a)}if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Ex(t);let r=mt(t),s=mt(n);$(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==mt(t.slice(i)):!0;$(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Vm(e,a):Js(e,[],!0),O.makeTensor(e,t,a)}function In(e,t,n){let a=lr(e,n);return vs(e,t,a,n)}var My={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Ph=4;async function LD(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,b)=>g+b.length,0)+Ph*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let b=c[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);m.set(y,f),f+=Ph,m.set(b,f),f+=b.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:zD(s),specs:n}}function dS(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=mt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=My[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=HD()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=mt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+Ph))[0];r+=Ph;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=My[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let b=0;b<h.length;b++)h[b]=p[b*2],m[b]=p[b*2+1];let f=In(h,l,"float32"),g=In(m,l,"float32");n[i]=Ar(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=In(p,l,o))}return n}function zD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Px=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function hk(e){return Px?Buffer.byteLength(e):new Blob([e]).size}function WD(e){if(Px)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function BD(e){if(Px){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Ox(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function mk(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function hS(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(n.initializerSignature=e.initializerSignature),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}function mS(e,t,n){let a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(a.trainingConfig=e.trainingConfig),e.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!n)throw new Error("modelJSON has weightsManifest but weightData is null");a.weightSpecs=t,a.weightData=n}return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(a.initializerSignature=e.initializerSignature),a}async function Lx(e,t){let n,a;return e.weightsManifest!=null&&([n,a]=await t(e.weightsManifest)),mS(e,n,a)}function Fc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:hk(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:hk(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function fS(e){let t=[];for(let n of e)t.push(...n.weights);return t}function VD(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)===0;)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function UD(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function GD(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function HD(){let e=VD(),t=UD(),n=GD();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var At=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return At.instance==null&&(At.instance=new At),At.instance}static registerSaveRouter(e){At.getInstance().saveRouters.push(e)}static registerLoadRouter(e){At.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return At.getHandlers(e,"save")}static getLoadHandlers(e,t){return At.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?At.getInstance().loadRouters:At.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},jD=e=>At.registerSaveRouter(e),qD=e=>At.registerLoadRouter(e),KD=e=>At.getSaveHandlers(e),XD=(e,t)=>At.getLoadHandlers(e,t),Py="tensorflowjs",Oy=1,Hs="models_store",es="model_info_store";function gS(){if(!H().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Ly(e){let t=e.result;t.createObjectStore(Hs,{keyPath:"modelPath"}),t.createObjectStore(es,{keyPath:"modelPath"})}var ni=class{constructor(e){if(this.indexedDB=gS(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Py,Oy);r.onupgradeneeded=()=>Ly(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Hs,"readonly"),o=i.objectStore(Hs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Fc(t),o=s.transaction(es,"readwrite"),l=o.objectStore(es),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(Hs,"readwrite");let d=p.objectStore(Hs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=c=>{l=o.objectStore(es);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(d.error)),h.onerror=m=>(s.close(),a(d.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};ni.URL_SCHEME="indexeddb://";var bS=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ni.URL_SCHEME)?YD(e.slice(ni.URL_SCHEME.length)):null;At.registerSaveRouter(bS);At.registerLoadRouter(bS);function YD(e){return new ni(e)}function ZD(e){return e.startsWith(ni.URL_SCHEME)?e.slice(ni.URL_SCHEME.length):e}var JD=class{constructor(){this.indexedDB=gS()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Py,Oy);n.onupgradeneeded=()=>Ly(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(es,"readonly"),s=r.objectStore(es).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=ZD(e),new Promise((t,n)=>{let a=this.indexedDB.open(Py,Oy);a.onupgradeneeded=()=>Ly(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(es,"readwrite"),i=s.objectStore(es),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Hs,"readwrite");let d=l.objectStore(Hs).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Nr="/",ol="tensorflowjs_models",yS="info",QD="model_topology",eR="weight_specs",tR="weight_data",nR="model_metadata";function xS(e){return{info:[ol,e,yS].join(Nr),topology:[ol,e,QD].join(Nr),weightSpecs:[ol,e,eR].join(Nr),weightData:[ol,e,tR].join(Nr),modelMetadata:[ol,e,nR].join(Nr)}}function vS(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function aR(e){let t=e.split(Nr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Nr)}function rR(e){return e.startsWith(ai.URL_SCHEME)?e.slice(ai.URL_SCHEME.length):e}var ai=class{constructor(e){if(!H().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=xS(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Fc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,WD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,initializerSignature:e.initializerSignature!=null?e.initializerSignature:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw vS(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.initializerSignature!=null&&(t.initializerSignature=i.initializerSignature),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=BD(s),t}};ai.URL_SCHEME="localstorage://";var wS=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ai.URL_SCHEME)?sR(e.slice(ai.URL_SCHEME.length)):null;At.registerSaveRouter(wS);At.registerLoadRouter(wS);function sR(e){return new ai(e)}var iR=class{constructor(){$(H().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),$(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=ol+Nr,n=Nr+yS;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=aR(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=rR(e);let t=xS(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return vS(t),n}},pl="://",Pn=class{constructor(){this.managers={}}static getInstance(){return Pn.instance==null&&(Pn.instance=new Pn),Pn.instance}static registerManager(e,t){$(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(pl)&&(e=e.slice(0,e.indexOf(pl))),$(e.length>0,()=>"scheme must not be an empty string.");let n=Pn.getInstance();$(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=Pn.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(Pn.getInstance().managers)}};function xh(e){if(e.indexOf(pl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Pn.getSchemes().join(",")}`);return{scheme:e.split(pl)[0],path:e.split(pl)[1]}}async function kS(e,t,n=!1){$(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=At.getLoadHandlers(e);$(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),$(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=At.getSaveHandlers(t);$(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),$(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=xh(e).scheme,l=xh(e).path,u=o===xh(e).scheme,p=await r.load();n&&u&&await Pn.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await Pn.getManager(o).removeModel(l),d.modelArtifactsInfo}async function oR(){let e=Pn.getSchemes(),t={};for(let n of e){let a=await Pn.getManager(n).listModels();for(let r in a){let s=n+pl+r;t[s]=a[r]}}return t}async function lR(e){let t=xh(e);return Pn.getManager(t.scheme).removeModel(t.path)}async function uR(e,t){return kS(e,t,!1)}async function pR(e,t){return kS(e,t,!0)}var cR=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}setTimeoutCustom(e,t){if(typeof window=="undefined"||!H().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(e,t);return}this.functionRefs.push(e),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},t),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let a=this.functionRefs[n.data.index];a(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}};if(H().get("IS_BROWSER")){H().setPlatform("browser",new cR);try{Pn.registerManager(ai.URL_SCHEME,new iR)}catch(e){}try{Pn.registerManager(ni.URL_SCHEME,new JD)}catch(e){}}var dR={importFetch:()=>wF()},fy,hR=class{constructor(){this.util=kF(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return H().global.fetch!=null?H().global.fetch(e,t):(fy==null&&(fy=dR.importFetch()),fy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};H().get("IS_NODE")&&!H().get("IS_BROWSER")&&H().setPlatform("node",new hR);function Oe(e,t="float32",n){return t=t||"float32",Ex(e),new Ht(e,t,n)}function mR(e,t){let n=_(e,"x","cast");if(!qI(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return O.runKernel(xi,a,r)}var oe=L({cast_:mR});function fR(e){let t={x:_(e,"x","clone","string_or_numeric")};return O.runKernel(Ri,t)}var ir=L({clone_:fR});function zx(e,t=!1){console.log(e.toString(t))}uS();var gR={buffer:Oe,cast:oe,clone:ir,print:zx};CD(gR);var Ut={};Ae(Ut,{browserFiles:()=>IR,browserHTTPRequest:()=>_R,concatenateArrayBuffers:()=>Ox,copyModel:()=>uR,decodeWeights:()=>dS,encodeWeights:()=>LD,fromMemory:()=>AR,fromMemorySync:()=>CS,getLoadHandlers:()=>XD,getModelArtifactsForJSON:()=>Lx,getModelArtifactsForJSONSync:()=>mS,getModelArtifactsInfoForJSON:()=>Fc,getSaveHandlers:()=>KD,getWeightSpecs:()=>fS,http:()=>Bx,isHTTPScheme:()=>zy,listModels:()=>oR,loadWeights:()=>SR,moveModel:()=>pR,registerLoadRouter:()=>qD,registerSaveRouter:()=>jD,removeModel:()=>lR,weightsLoaderFactory:()=>SS,withSaveHandler:()=>$R,withSaveHandlerSync:()=>FR});var bR="model",yR=".json",xR=".weights.bin";function fk(e){return new Promise(t=>setTimeout(t)).then(e)}var fl=class{constructor(e){if(!H().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fl.URL_SCHEME)&&(e=e.slice(fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=bR),this.modelJsonFileName=e+yR,this.weightDataFileName=e+xR}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=hS(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await fk(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await fk(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Fc(e)}}}};fl.URL_SCHEME="downloads://";var vR=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=Lx(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Ox(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>mk(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=mk(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},wR=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(fl.URL_SCHEME)?kR(e.slice(fl.URL_SCHEME.length)):null;At.registerSaveRouter(wR);function kR(e="model"){return new fl(e)}function IR(e){return new vR(e)}function gk(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){$(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){$(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),$(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),$(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function IS(e,t){t==null&&(t={});let n=t.fetchFunc==null?H().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await gk(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await gk(i,t.onProgress,o,l)}async function SR(e,t="",n,a){return SS(r=>IS(r,{requestInit:a}))(e,t,n)}function SS(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=My[b]*mt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:y})};a!=null?a.forEach((w,I)=>{w===g.name&&(x(),i[I]=!0)}):x(),o.push(g.name),f+=y})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=p[c+x].byteLength;let g=new ArrayBuffer(f),b=new Uint8Array(g),y=0;for(let x=0;x<m;x++){let w=new Uint8Array(p[c+x]);b.set(w,y),y+=w.byteLength}s[h].forEach(x=>{let w=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),I=dS(w,[x.manifestEntry]);for(let T in I)d[T]=I[T]}),c+=m}),d}}var TR="application/octet-stream",NR="application/json",Wx=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?($(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=H().platform.fetch,$(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&$(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=hS(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:NR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:TR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Fc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Lx(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=CR(t),r=this.weightPathPrefix||n,s=fS(e),i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await IS(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Ox(l)]}};Wx.URL_SCHEME_REGEX=/^https?:\/\//;function CR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function zy(e){return e.match(Wx.URL_SCHEME_REGEX)!=null}var TS=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>zy(a)):n=zy(e),n)return Bx(e,t)}return null};At.registerSaveRouter(TS);At.registerLoadRouter(TS);function Bx(e,t){return new Wx(e,t)}function _R(e,t){return Bx(e,t)}var gy=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},NS=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},ER=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function AR(e,t,n,a){let r=arguments;return new ER(CS(...r))}function CS(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new gy(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new gy({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new gy({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function $R(e){return new NS(e)}function FR(e){return new NS(e)}var _S={};Ae(_S,{confusionMatrix:()=>QR});function DR(e,t,n=!1,a=!1){let r=_(e,"a","matMul"),s=_(t,"b","matMul");[r,s]=_t(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return O.runKernel(yi,i,o)}var Fe=L({matMul_:DR});function RR(e,t,n=1,a=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:_(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:a};return O.runKernel(Hi,s,i)}var gl=L({oneHot_:RR});function MR(){H().set("PROD",!0)}function PR(){H().set("DEBUG",!0)}function OR(){H().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Vx(e){H().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}_D(Vx);function LR(){O.disposeVariables()}function _a(){return O}function Oh(){return O.memory()}function zR(e){return O.profile(e)}function P(e,t){return O.tidy(e,t)}function _e(e){Rx(e).forEach(t=>t.dispose())}function Jt(e){return O.keep(e)}function WR(e){return O.time(e)}function BR(e){return O.setBackend(e)}function VR(){return O.ready()}function UR(){return O.backendName}function GR(e){O.removeBackend(e)}function HR(e){return O.findBackend(e)}function jR(e){return O.findBackendFactory(e)}function Gm(e,t,n=1){return O.registerBackend(e,t,n)}function ES(){return O.backend}function qR(e,t){H().setPlatform(e,t)}function KR(e){let t={input:_(e,"input","imag")};return O.runKernel(Nm,t)}var Dc=L({imag_:KR});function XR(e){let t={x:_(e,"x","neg")};return O.runKernel(du,t)}var vt=L({neg_:XR});function YR(e){let t={input:_(e,"input","real")};return O.runKernel(Pm,t)}var bl=L({real_:YR});function ZR(e,t,n){let a=_(e,"x","transpose");if(t==null&&(t=a.shape.map((i,o)=>o).reverse()),$(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of perm ${t}.`),t.forEach(i=>{$(i>=0&&i<a.rank,()=>`All entries in 'perm' must be between 0 and ${a.rank-1} but got ${t}`)}),a.rank<=1)return a.clone();let r={x:a},s={perm:t};return a.dtype==="complex64"?P(()=>{let i=bl(a),o=Dc(a);return i=O.runKernel(_r,{x:i},s),o=O.runKernel(_r,{x:o},s),n&&(o=vt(o)),Ar(i,o)}):O.runKernel(_r,r,s)}var Ee=L({transpose_:ZR});function JR(e,t,n){let a=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");$(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),$(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),$(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),$(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),$(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=gl(oe(a,"int32"),n),i=gl(oe(r,"int32"),n),o=Ee(s),l=Fe(o,i);return oe(l,"int32")}var QR=L({confusionMatrix_:JR}),Ou={};Ae(Ou,{assertAndGetBroadcastShape:()=>ut,getBroadcastDims:()=>AS,getReductionAxes:()=>Wt});function AS(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function ut(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}var ho={};Ae(ho,{fromPixels:()=>iM,fromPixelsAsync:()=>rM,toPixels:()=>sM});function Rc(e,t,n){if(mi(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=lr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return vs(e,t,a,n)}var Os;function $S(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(Dh(Fh,O.backendName)!=null){let c={pixels:e},h={numChannels:t};return O.runKernel(Fh,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Os==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Os=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Os=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Os.canvas.width=l,Os.canvas.height=u,Os.drawImage(e,0,0,l,u),p=Os.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return Rc(d,[u,l,t],"int32")}function eM(e){return e!=null&&e.data instanceof Uint8Array}function tM(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function nM(e){return e!=null&&e.width!==0&&e.height!==0}function aM(e){return tM()&&!(e instanceof ImageBitmap)&&nM(e)&&!eM(e)}async function rM(e,t=3){let n=null;if(H().getBool("WRAP_TO_IMAGEBITMAP")&&aM(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return $S(n,t)}async function sM(e,t){let n=_(e,"img","toPixels");if(!(e instanceof Te)){let u=n;n=oe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var iM=L({fromPixels_:$S}),Ux={};Ae(Ux,{prepareAndValidate:()=>FS});function FS(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...Fl(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var Gx={};Ae(Gx,{calculateShapes:()=>DS,validateInput:()=>jx,validateUpdateShape:()=>Hx});function Hx(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function jx(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Hx(n,t,e)}function DS(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=mt(t.shape)/o,u=[...Fl(n.slice(0,r)),1],p=mt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}var jt={};Ae(jt,{assertParamsValid:()=>lM,computeFlatOffset:()=>hM,computeOutShape:()=>pM,getNormalizedAxes:()=>cM,isSliceContinous:()=>dM,maskToAxes:()=>uM,parseSliceParams:()=>VS,sliceInfo:()=>mM,startForAxis:()=>WS,startIndicesWithElidedDims:()=>OS,stopForAxis:()=>BS,stopIndicesWithElidedDims:()=>LS,stridesForAxis:()=>zS,stridesWithElidedDims:()=>RS});var Wy=-2,oM=-1;function lM(e,t,n){let a=e.shape.length;$(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),$(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)$(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function uM(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function pM(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function RS(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function MS(e,t,n){return n<=e?n:n-(t-1)}function PS(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function cM(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=OS(i,h,m,a,e),d=LS(o,h,m,r,e),c=RS(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=WS(i,a,s,e,h,l),d[h]=BS(o,r,s,e,h,l),c[h]=zS(s,h,l);return{begin:p,end:d,strides:c}}function OS(e,t,n,a,r){let s=[...r],i=PS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=MS(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function LS(e,t,n,a,r){let s=[...r],i=PS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=MS(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=Kp(0,s[o],r[o])}return s}function zS(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function WS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=Kp(0,i,l-1),i}function BS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=Kp(0,i,l):i=Kp(-1,i,l-1),i}function dM(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function hM(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function VS(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{$(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:($(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function mM(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)p&&(1<<y&o)!==0&&d.numAddAxisAfterEllipsis++,1<<y&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};fM(d,c);let h=!0,m=!0,f=!0,g=[],b=[];for(let y=0;y<e.length;++y){if(c.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<y),w=e[y];if(w===-1){g.push(x?1:-1);continue}let I=[c.beginMask&1<<y,c.endMask&1<<y],T=[c.strides[y]>0?0:-1,c.strides[y]>0?w:w-1];if(x&&c.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[y]===1;let C=!!(c.beginMask&1<<y&&c.endMask&1<<y);if(c.beginValid&&c.endValid){if(x){let F=c.begin[y]<0?w+c.begin[y]:c.begin[y];if(c.begin[y]=F,c.end[y]=c.begin[y]+1,F<0||F>=w)throw Error(`slice index ${c.begin[y]} of dimension ${y} out of bounds.`)}else c.begin[y]=bk(c.begin[y],0,c.strides[y],w,I,T),c.end[y]=bk(c.end[y],1,c.strides[y],w,I,T);let R=c.strides[y]===1&&c.begin[y]===0&&c.end[y]===w;h=h&&R,m=m&&(y===0&&c.strides[y]===1||R)}else h=h&&c.strides[y]===1&&C,m=m&&(y===0&&c.strides[y]===1||C);let E,A=!1;if(c.beginValid&&c.endValid?(E=c.end[y]-c.begin[y],A=!0):x?(E=1,A=!0):C&&w>=0&&(c.strides[y]<0?E=-w:E=w,A=!0),A){let R;E===0||E<0!=c.strides[y]<0?R=0:R=Math.trunc(E/c.strides[y])+(E%c.strides[y]!==0?1:0),g.push(R)}else g.push(-1)}for(let y=0;y<c.finalShapeGatherIndices.length;++y){let x=c.finalShapeGatherIndices[y];x>=0?b.push(g[x]):x===Wy&&b.push(1)}return{finalShapeSparse:b.filter((y,x)=>c.finalShapeGatherIndices[x]!==Wy),finalShape:b,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function fM(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(Wy),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(oM),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function bk(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var ne={};Ae(ne,{Serializable:()=>US,SerializationMap:()=>Vs,registerClass:()=>ws});var US=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Vs=class{constructor(){this.classNameMap={}}static getMap(){return Vs.instance==null&&(Vs.instance=new Vs),Vs.instance}static register(e){Vs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ws(e){$(e.className!=null,()=>"Class being registered does not have the static className property defined."),$(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),$(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Vs.register(e)}var GS={};Ae(GS,{TEST_EPSILON_FLOAT16:()=>HS,createVideoElement:()=>IM,encodeStrings:()=>jS,expectArrayBuffersEqual:()=>kM,expectArraysClose:()=>bM,expectArraysEqual:()=>xM,expectNumbersClose:()=>vM,expectPromiseToFail:()=>yM,expectValuesInRange:()=>wM,play:()=>SM,testEpsilon:()=>qx});var gM=.001,HS=.1;function bM(e,t,n){return n==null&&(n=qx()),By(e,t,(a,r)=>Kx(a,r,n))}function qx(){return O.backend.floatPrecision()===32?gM:HS}function By(e,t,n){let a=!0;if((hn(e)||hn(t))&&(a=!1),hn(e)&&hn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=lr(e),o=lr(t);if(!fs(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=hn(e)?e:Js(e),s=hn(t)?t:Js(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function yM(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function xM(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Qr(e)||Qr(e[0])||Qr(t)||Qr(t[0])?By(e,n,(a,r)=>a==r):By(e,t,(a,r)=>Kx(a,r,0))}function vM(e,t,n){if(n==null&&(n=qx()),!Kx(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function Kx(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function wM(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function kM(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function jS(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?jS(n):e[t]=Ac(n)}return e}function IM(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(n=>{t.addEventListener("loadeddata",a=>n(t)),t.load()})}async function SM(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var TM="4.0.0";function NM(e,t){let n=_(e,"a","add"),a=_(t,"b","add");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(gs,r)}var Y=L({add_:NM});function CM(e,t){let n=_(e,"a","floorDiv"),a=_(t,"b","floorDiv");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel($i,r)}var Hm=L({floorDiv_:CM});function _M(e,t){let n=_(e,"a","div"),a=_(t,"b","div");if([n,a]=_t(n,a),n.dtype==="int32"&&a.dtype==="int32")return Hm(n,a);let r={a:n,b:a},s={};return O.runKernel(Ci,r,s)}var he=L({div_:_M});function EM(e,t){let n=_(e,"a","mul"),a=_(t,"b","mul");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(Gi,r)}var z=L({mul_:EM});function AM(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return O.runKernel(hc,n)}else{let n={x:t};return O.runKernel(Dl,n)}}var Lt=L({abs_:AM});function $M(e){let t={x:_(e,"x","acos")};return O.runKernel(Rl,t)}var Xx=L({acos_:$M});function FM(e){let t={x:_(e,"x","acosh")};return O.runKernel(Ml,t)}var Yx=L({acosh_:FM});function DM(e){$(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),$(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>_(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!fs(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return O.runKernel(fi,a)}var qS=L({addN_:DM});function RM(e,t=null,n=!1){let a={x:_(e,"x","all","bool")},r={axis:t,keepDims:n};return O.runKernel(Pl,a,r)}var jm=L({all_:RM});function MM(e,t=null,n=!1){let a={x:_(e,"x","any","bool")},r={axis:t,keepDims:n};return O.runKernel(Ol,a,r)}var Qp=L({any_:MM});function PM(e,t=0){let n={x:_(e,"x","argMax")},a={axis:t};return O.runKernel(gi,n,a)}var ri=L({argMax_:PM});function OM(e,t=0){let n={x:_(e,"x","argMin")},a={axis:t};return O.runKernel(cc,n,a)}var Zx=L({argMin_:OM});function LM(e){let t={x:_(e,"x","asin")};return O.runKernel(Ll,t)}var Jx=L({asin_:LM});function zM(e){let t={x:_(e,"x","asinh")};return O.runKernel(zl,t)}var Qx=L({asinh_:zM});function WM(e){let t={x:_(e,"x","atan")};return O.runKernel(Wl,t)}var ev=L({atan_:WM});function BM(e,t){let n=_(e,"a","atan2"),a=_(t,"b","atan2");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(Vl,r)}var tv=L({atan2_:BM});function VM(e){let t={x:_(e,"x","atanh")};return O.runKernel(Bl,t)}var nv=L({atanh_:VM});function UM(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=YS(r);return Mc(e,o,n,s,a,null,null,l)}function KS(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Lh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Mc(e,u,n,a,r,s,!1,i)}function GM(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Vy(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return XS(e,p,n,a,r,!1,d,s)}function Mc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=Lh(n),[b,y]=Lh(a),x=cl(c,b),w=cl(h,y),{padInfo:I,outHeight:T,outWidth:C}=qM(r,u,p,f,g,x,w,s,o),E=i?m*d:m,A;return o==="channelsFirst"?A=[l,E,T,C]:o==="channelsLast"&&(A=[l,T,C,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:C,outChannels:E,padInfo:I,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:b,dilationWidth:y,inShape:e,outShape:A,filterShape:t}}function XS(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[b,y,x]=Vy(n),[w,I,T]=Vy(a),C=cl(h,w),E=cl(m,I),A=cl(f,T),{padInfo:R,outDepth:F,outHeight:S,outWidth:M}=KM(r,u,p,d,b,y,x,C,E,A,o),B=s?g*c:g,U;return i==="channelsFirst"?U=[l,B,F,S,M]:i==="channelsLast"&&(U=[l,F,S,M,B]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:F,outHeight:S,outWidth:M,outChannels:B,padInfo:R,strideDepth:b,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:A,dilationDepth:w,dilationHeight:I,dilationWidth:T,inShape:e,outShape:U,filterShape:t}}function HM(e,t,n,a,r){a==null&&(a=av(e,t,n));let s=e[0],i=e[1],o=Ks((s-t+2*a)/n+1,r),l=Ks((i-t+2*a)/n+1,r);return[o,l]}function jM(e,t,n,a,r,s){r==null&&(r=av(e,t,a));let i=e[0],o=e[1],l=e[2],u=Ks((i-t+2*r)/a+1,s),p=Ks((o-t+2*r)/a+1,s),d=Ks((l-t+2*r)/a+1,s);return[u,p,d,n]}function av(e,t,n,a=1){let r=cl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Lh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Vy(e){return typeof e=="number"?[e,e,e]:e}function cl(e,t){return t<=1?e:e+(e-1)*(t-1)}function qM(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=HM([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),b=h-g;u={top:m,bottom:f,left:g,right:b,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=Ks((t-s+c+h)/a+1,o),d=Ks((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function KM(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=jM([t,n,a,1],o,1,r,e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,b=(m-1)*i+u-a,y=Math.floor(f/2),x=f-y,w=Math.floor(g/2),I=g-w,T=Math.floor(b/2),C=b-T;d={top:w,bottom:I,left:T,right:C,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function Ks(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function os(e){let[t,n,a]=Lh(e);return t===1&&n===1&&a===1}function cr(e,t){return os(e)||os(t)}function YS(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Nn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")$(hl(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{$(hl(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function XM(e,t){let n={x:_(e,"x","reshape","string_or_numeric")},a={shape:t};return O.runKernel(vu,n,a)}var W=L({reshape_:XM});function YM(e,t,n,a,r){let s=_(e,"x","avgPool","float32"),i=1;$(cr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Nn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(bi,u,p);return d=oe(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ba=L({avgPool_:YM});function ZM(e,t,n,a,r,s="NDHWC"){let i=_(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Nn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(dc,u,p);return d=oe(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var rv=L({avgPool3d_:ZM});function JM(e,t=0){$(e.length>=1,()=>"Pass at least one tensor to concat");let n=Jp(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return ir(n[0]);let a=n,r={axis:t};return O.runKernel(Gl,a,r)}var Ze=L({concat_:JM});function QM(e){let t={x:_(e,"x","sigmoid","float32")};return O.runKernel(ro,t)}var ha=L({sigmoid_:QM});function eP(e,t,n){let a=_(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return O.runKernel(Su,r,s)}var Be=L({slice_:eP});function tP(e){let t={x:_(e,"x","tanh","float32")};return O.runKernel(co,t)}var si=L({tanh_:tP});function nP(e,t,n,a,r,s){let i=_(e,"forgetBias","basicLSTMCell"),o=_(t,"lstmKernel","basicLSTMCell"),l=_(n,"lstmBias","basicLSTMCell"),u=_(a,"data","basicLSTMCell"),p=_(r,"c","basicLSTMCell"),d=_(s,"h","basicLSTMCell"),c=Ze([u,d],1),h=Fe(c,o),m=Y(h,l),f=m.shape[0],g=m.shape[1]/4,b=[f,g],y=Be(m,[0,0],b),x=Be(m,[0,g],b),w=Be(m,[0,g*2],b),I=Be(m,[0,g*3],b),T=Y(z(ha(y),si(x)),z(p,ha(Y(i,w)))),C=z(si(T),ha(I));return[T,C]}var ZS=L({basicLSTMCell_:nP});function aP(e,t,n){let a=_(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);$(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),$(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),$(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return O.runKernel(Ul,s,i)}var Pc=L({batchToSpaceND_:aP});function rP(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function sP(e,t,n,a,r,s){s==null&&(s=.001);let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;a!=null&&(p=_(a,"offset","batchNorm")),$(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),$(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),$(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:rP(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=O.runKernel(Fi,d,c);return W(h,i.shape)}var ks=L({batchNorm_:sP});function iP(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),$(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),$(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),$(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&$(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&$(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),ks(i,o,l,p,u,s)}var sv=L({batchNorm2d_:iP});function oP(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),$(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),$(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),$(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&$(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&$(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),ks(i,o,l,p,u,s)}var iv=L({batchNorm3d_:oP});function lP(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),$(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),$(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),$(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&$(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&$(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),ks(i,o,l,p,u,s)}var ov=L({batchNorm4d_:lP});function uP(e,t,n){let a=_(e,"x","bincount"),r=_(t,"weights","bincount");$(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return O.runKernel(dm,s,i)}var lv=L({bincount_:uP});function pP(e,t){let n=_(e,"s0","broadcastArgs","int32"),a=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return O.runKernel(hm,r)}var JS=L({broadcastArgs_:pP});function cP(e,t){let n=_(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=W(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return ir(n);let i={x:n},o={reps:s};return O.runKernel(ys,i,o)}var Xs=L({broadcastTo_:cP});function dP(e){let t={x:_(e,"x","ceil","float32")};return O.runKernel(vi,t)}var uv=L({ceil_:dP});function gn(e,t,n){let a={shape:e,value:t,dtype:n};return O.runKernel(gc,{},a)}function hP(e,t,n){let a=_(e,"x","clipByValue");if($(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`),t===n)return gn(a.shape,t,a.dtype);let r={x:a},s={clipValueMin:t,clipValueMax:n};return O.runKernel(bs,r,s)}var en=L({clipByValue_:hP});function mP(e){return Ze(e,0)}var pv=L({concat1d_:mP});function fP(e,t){return Ze(e,t)}var cv=L({concat2d_:fP});function gP(e,t){return Ze(e,t)}var dv=L({concat3d_:gP});function bP(e,t){return Ze(e,t)}var hv=L({concat4d_:bP});function yP(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","conv2d","float32"),l=_(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),$(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Nn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];$(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),$(cr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(wi,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var $t=L({conv2d_:yP});function xP(e,t,n,a,r="NWC",s=1,i){let o=_(e,"x","conv1d"),l=_(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),$(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),$(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Nn("conv1d",a,i),$(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),$(cr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),$(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=$t(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var qm=L({conv1d_:xP});function vP(e,t,n,a,r,s="NHWC",i){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),$(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),$(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),$(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];$(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),$(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Nn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=O.runKernel(ki,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var mv=L({conv2DBackpropInput_:vP});function wP(e,t,n,a,r,s){let i=_(e,"x","conv2dTranspose"),o=_(t,"filter","conv2dTranspose");return mv(n,i,o,a,r,"NHWC",s)}var Km=L({conv2dTranspose_:wP});function kP(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=_(e,"x","conv3d"),o=_(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),$(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),$(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),$(cr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),$(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=O.runKernel(mc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var fv=L({conv3d_:kP});function IP(e,t,n,a,r){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];$(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),$(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),$(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),$(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),$(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=O.runKernel(bm,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var QS=L({conv3DBackpropInput_:IP});function SP(e,t,n,a,r){let s=_(e,"x","conv3dTranspose"),i=_(t,"filter","conv3dTranspose");return QS(n,s,i,a,r)}var gv=L({conv3dTranspose_:SP});function TP(e){let t={x:_(e,"x","cos","float32")};return O.runKernel(Ii,t)}var Oc=L({cos_:TP});function NP(e){let t={x:_(e,"x","cosh","float32")};return O.runKernel(Si,t)}var Xm=L({cosh_:NP});function CP(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(Hl,r,s)}var ec=L({cumprod_:CP});function _P(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(Ti,r,s)}var Ym=L({cumsum_:_P});function EP(e,t,n,a=!1){let r=_(e,"x","denseBincount"),s=_(t,"weights","denseBincount");$(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),$(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return O.runKernel(ym,i,o)}var zh=L({denseBincount_:EP});function AP(e,t,n="NHWC"){let a=_(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];$(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),$(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),$(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),$(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return O.runKernel(ql,o,l)}var bv=L({depthToSpace_:AP});function $P(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","depthwiseConv2d","float32"),l=_(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),$(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];$(d===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d}) must match the inChannels dimension in filter ${l.shape[2]}.`),Nn("depthwiseConv2d",a,i);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(Ni,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Is=L({depthwiseConv2d_:$P});function FP(e){let t={x:_(e,"x","diag")};return O.runKernel(wm,t)}var eT=L({diag_:FP});function DP(e,t,n,a,r=[1,1],s="NHWC"){let i=_(e,"x","dilation2d"),o=_(t,"filter","dilation2d");$(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),$(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),$(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=O.runKernel(fc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var yv=L({dilation2d_:DP});function RP(e,t){let n=_(e,"a","equal","string_or_numeric"),a=_(t,"b","equal","string_or_numeric");[n,a]=_t(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Xl,r)}var ea=L({equal_:RP});function MP(e,t,n){let a=_(t,"a","where"),r=_(n,"b","where"),s=_(e,"condition","where","bool"),i=ut(ut(s.shape,a.shape),r.shape),o=Xs(s,i),l=Xs(a,i),u=Xs(r,i),p={condition:o,t:l,e:u};return O.runKernel(ku,p)}var mn=L({where_:MP});function PP(e){let t={x:_(e,"x","zerosLike")};return O.runKernel(Mu,t)}var qe=L({zerosLike_:PP});function OP(e,t){let n=_(e,"a","div"),a=_(t,"b","div");[n,a]=_t(n,a);let r=he(n,a),s=qe(r),i=ea(a,s);return mn(i,s,r)}var xv=L({divNoNan_:OP});function LP(e,t){let n=_(e,"t1","dot"),a=_(t,"t2","dot");$((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if($(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=Fe(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=Fe(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=Fe(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return Fe(n,i)}}var vv=L({dot_:LP});function zP(e,...t){let n=t.map((r,s)=>_(r,`tensors${s}`,"einsum")),a={equation:e};return O.runKernel(km,n,a)}var tT=L({einsum_:zP});function WP(e){let t={x:_(e,"x","elu","float32")};return O.runKernel(_i,t)}var Lu=L({elu_:WP});function BP(e){let t=_(e,"x","erf");$(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=oe(t,"float32"));let n={x:t};return O.runKernel(Kl,n)}var wv=L({erf_:BP});function kv(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function nT(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function aT(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function ii(e,t){let n=t.map(a=>1);return nT(e,n,t)}function VP(e,t,n){$(kv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function rT(e,t){if(kv(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function Iv(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function UP(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function GP(e,t=null,n=!1){let a={x:_(e,"x","max")},r={reductionIndices:t,keepDims:n};return O.runKernel(Oi,a,r)}var ma=L({max_:GP});function HP(e,t=null,n=!1){let a={x:_(e,"x","min")},r={axis:t,keepDims:n};return O.runKernel(Bi,a,r)}var yl=L({min_:HP});function jP(e,t){let n=_(e,"base","pow"),a=_(t,"exp","pow");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(qi,r)}var $r=L({pow_:jP});function ye(e,t){if((hn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&hn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return vs(e,[],[],t)}function qP(e){let t={x:_(e,"x","sqrt","float32")};return O.runKernel(so,t)}var un=L({sqrt_:qP});function KP(e){let t=_(e,"x","square"),n={};return O.runKernel("Square",{x:t},n)}var lt=L({square_:KP});function XP(e,t=null,n=!1){let a=_(e,"x","sum");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(io,r,s)}var fe=L({sum_:XP});function YP(e,t="euclidean",n=null,a=!1){e=_(e,"x","norm");let r=sT(e,t,n),s=r.shape;if(a){let i=Fa(n,e.shape);s=ii(r.shape,i)}return W(r,s)}function sT(e,t,n=null){if(e.rank===0)return Lt(e);if(e.rank!==1&&n===null)return sT(W(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return fe(Lt(e),n);if(t===1/0)return ma(Lt(e),n);if(t===-1/0)return yl(Lt(e),n);if(t==="euclidean"||t===2)return un(fe($r(Lt(e),ye(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return ma(fe(Lt(e),n[0]),n[1]-1);if(t===1/0)return ma(fe(Lt(e),n[1]),n[0]);if(t===-1/0)return yl(fe(Lt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return un(fe(lt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var zu=L({norm_:YP});function ZP(e,t=null,n=!1){return zu(e,"euclidean",t,n)}var Sv=L({euclideanNorm_:ZP});function JP(e){let t={x:_(e,"x","exp")};return O.runKernel(Ei,t)}var fn=L({exp_:JP});function QP(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");$(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return O.runKernel(Yl,a,r)}var Zt=L({expandDims_:QP});function eO(e){let t={x:_(e,"x","expm1")};return O.runKernel(Zl,t)}var Tv=L({expm1_:eO});function tO(e,t){let n=_(e,"x","tile","string_or_numeric");$(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return O.runKernel(ys,a,r)}var Ln=L({tile_:tO});function nO(e,t,n,a="float32"){t==null&&(t=e);let r=Oe([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=W(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ln(Zt(i,0),[n[0],1,1]);if(n.length===2)return Ln(Zt(Zt(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ln(Zt(Zt(Zt(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Zm=L({eye_:nO});function aO(e){let t={x:_(e,"x","floor","float32")};return O.runKernel(Ai,t)}var Wu=L({floor_:aO});function rO(e,t,n=0,a=0){let r=_(e,"x","gather"),s=_(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return O.runKernel(Ql,i,o)}var Bu=L({gather_:rO});function sO(e,t){let n=_(e,"a","greater","string_or_numeric"),a=_(t,"b","greater","string_or_numeric");[n,a]=_t(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(tu,r)}var Cn=L({greater_:sO});function iO(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),a=_(t,"b","greaterEqual","string_or_numeric");[n,a]=_t(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Di,r)}var Fr=L({greaterEqual_:iO});function oO(e){let t={x:_(e,"x","isFinite")};return O.runKernel(nu,t)}var Nv=L({isFinite_:oO});function lO(e){let t={x:_(e,"x","isInf")};return O.runKernel(au,t)}var Cv=L({isInf_:lO});function uO(e){let t={x:_(e,"x","isNaN")};return O.runKernel(ru,t)}var _v=L({isNaN_:uO});function pO(e,t=.2){let n={x:_(e,"x","leakyRelu")},a={alpha:t};return O.runKernel(Mi,n,a)}var Lc=L({leakyRelu_:pO});function cO(e,t){let n=_(e,"a","less","string_or_numeric"),a=_(t,"b","less","string_or_numeric");[n,a]=_t(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(su,r)}var Jm=L({less_:cO});function dO(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),a=_(t,"b","lessEqual","string_or_numeric");[n,a]=_t(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(iu,r)}var Ss=L({lessEqual_:dO});function iT(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return O.runKernel(Cm,{},a)}function hO(e,t=5,n=1,a=1,r=.5){let s=_(e,"x","localResponseNormalization");$(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),$(hl(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=O.runKernel(bc,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ev=L({localResponseNormalization_:hO});function mO(e){let t={x:_(e,"x","log","float32")};return O.runKernel(Pi,t)}var ta=L({log_:mO});function fO(e){let t={x:_(e,"x","log1p")};return O.runKernel(ou,t)}var zc=L({log1p_:fO});function gO(e){return $(ss(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(a),[a],r);return r!=null&&Tn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Qm(i),i[0]})}}function bO(e){return $(ss(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{$(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=Jp(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(...a),a,r);return r!=null&&Tn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Qm(i),i})}}function yO(e){return $(ss(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{$(t instanceof Te,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),$(n==null||n instanceof Te,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=O.gradients(()=>e(t),[t],n);return Qm(a),{grad:a[0],value:r}}}function xO(e){return $(ss(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{$(Array.isArray(t)&&t.every(r=>r instanceof Te),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),$(n==null||n instanceof Te,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=O.gradients(()=>e(...t),t,n);return n!=null&&Tn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Qm(a.grads),a}}function oT(e,t){$(ss(e),()=>"The f passed in variableGrads(f) must be a function"),$(t==null||Array.isArray(t)&&t.every(u=>u instanceof is),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in O.registeredVariables)t.push(O.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),$(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=O.gradients(e,t,null,s);$(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),$(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function ur(e){return O.customGrad(e)}function Qm(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function vO(e){let t={x:_(e,"x","softplus")};return O.runKernel(Cu,t)}var mo=L({softplus_:vO});function wO(e){let t=_(e,"x","logSigmoid");return ur(n=>({value:vt(mo(vt(n))),gradFunc:a=>z(a,ha(vt(n)))}))(t)}var Av=L({logSigmoid_:wO});function kO(e,t){let n=_(e,"a","sub"),a=_(t,"b","sub");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(uo,r)}var pe=L({sub_:kO});function IO(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ur((a,r)=>{let s=ma(a,t,!0),i=pe(a,s),o=pe(oe(i,"float32"),ta(fe(fn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=fn(p);return pe(l,z(fe(l,t,d),c))}}})(n)}var ef=L({logSoftmax_:IO});function SO(e,t=null,n=!1){let a=_(e,"x","logSumExp"),r=Fa(t,a.shape),s=ma(a,r,!0),i=pe(a,s),o=fn(i),l=fe(o,r),u=ta(l),p=Y(W(s,u.shape),u);if(n){let d=ii(p.shape,r);return W(p,d)}return p}var tf=L({logSumExp_:SO});function TO(e,t){let n=_(e,"a","logicalAnd","bool"),a=_(t,"b","logicalAnd","bool");ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(lu,r)}var $a=L({logicalAnd_:TO});function NO(e){let t={x:_(e,"x","logicalNot","bool")};return O.runKernel(uu,t)}var Wc=L({logicalNot_:NO});function CO(e,t){let n=_(e,"a","logicalOr","bool"),a=_(t,"b","logicalOr","bool");ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(pu,r)}var nf=L({logicalOr_:CO});function _O(e,t){let n=_(e,"a","logicalXor","bool"),a=_(t,"b","logicalXor","bool");return ut(n.shape,a.shape),$a(nf(e,t),Wc($a(e,t)))}var $v=L({logicalXor_:_O}),ih=2147483648;function EO(e,t,n="left"){let a=_(e,"sortedSequence","searchSorted"),r=_(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=W(a,[-1,s]),l=W(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(mt(l.shape)>=ih)throw new Error(`values tensor size must less than ${ih}`);if(o.shape[1]>=ih)throw new Error(`trailing dim_size must less than ${ih} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return O.runKernel(zm,u,p)}var af=L({searchSorted_:EO});function lT(e,t){return af(e,t,"left")}function AO(e,t,n,a,r){let s=_(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),$(cr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Nn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(zi,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Dt=L({maxPool_:AO});function $O(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=_(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Nn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(yc,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Fv=L({maxPool3d_:$O});function FO(e,t,n,a,r=!1){let s={x:_(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=O.runKernel($m,s,i);return{result:o[0],indexes:o[1]}}var uT=L({maxPoolWithArgmax_:FO});function DO(e,t){let n=_(e,"a","maximum"),a=_(t,"b","maximum");[n,a]=_t(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Li,r)}var dr=L({maximum_:DO});function RO(e,t=null,n=!1){let a={x:_(e,"x","mean")},r={axis:t,keepDims:n};return O.runKernel(Wi,a,r)}var Nt=L({mean_:RO});function It(e,t="float32"){if(t==="complex64"){let a=It(e,"float32"),r=It(e,"float32");return Ar(a,r)}let n=um(mt(e),t);return O.makeTensor(n,e,t)}function Jn(e,t="float32"){if(t==="complex64"){let a=Jn(e,"float32"),r=It(e,"float32");return Ar(a,r)}let n=_x(mt(e),t);return O.makeTensor(n,e,t)}function pT(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=_(e,"x","meshgrid",e instanceof Te?e.dtype:"float32");if(t===void 0)return[a];let r=_(t,"y","meshgrid",t instanceof Te?t.dtype:"float32"),s=mt(a.shape),i=mt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[Fe(Jn([i,1],a.dtype),a),Fe(r,Jn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[Fe(a,Jn([1,i],a.dtype)),Fe(Jn([s,1],r.dtype),r)])}function MO(e,t){let n=_(e,"a","minimum"),a=_(t,"b","minimum");[n,a]=_t(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Vi,r)}var Vu=L({minimum_:MO});function PO(e,t,n){$(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=_(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");$(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)$(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),$(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return O.runKernel(Ui,i,s)}var Dv=L({mirrorPad_:PO});function OO(e,t){let n=_(e,"a","mod"),a=_(t,"b","mod");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(cu,r)}var Rv=L({mod_:OO});function LO(e,t=null,n=!1){e=_(e,"x","moments");let a=Fa(t,e.shape),r=Nt(e,a,n),s=r.shape;n||(s=ii(r.shape,a));let i=lt(pe(oe(e,"float32"),W(r,s))),o=Nt(i,a,n);return{mean:r,variance:o}}var Bc=L({moments_:LO});function zO(e,t,n,a){let r=_(t,"data","multiRNNCell"),s=Jp(n,"c","multiRNNCell"),i=Jp(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var cT=L({multiRNNCell_:zO});function WO(e,t,n,a=!1){let r=_(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=O.runKernel(Fm,o,l);return i===1?W(u,[u.size]):u}var dT=L({multinomial_:WO});function BO(e,t){let n=_(e,"a","notEqual","string_or_numeric"),a=_(t,"b","notEqual","string_or_numeric");[n,a]=_t(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(hu,r)}var oi=L({notEqual_:BO});function VO(e){let t={x:_(e,"x","onesLike")};return O.runKernel(bu,t)}var na=L({onesLike_:VO});function UO(e,t){let n=_(e,"v1","outerProduct"),a=_(t,"v2","outerProduct");$(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return Fe(r,s)}var hT=L({outerProduct_:UO});function GO(e,t,n=0){let a=_(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return O.runKernel(ji,s,r)}var ya=L({pad_:GO});function HO(e,t,n=0){return $(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ya(e,[t],n)}var mT=L({pad1d_:HO});function jO(e,t,n=0){return $(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var fT=L({pad2d_:jO});function qO(e,t,n=0){return $(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var gT=L({pad3d_:qO});function KO(e,t,n=0){return $(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var bT=L({pad4d_:KO});function XO(e,t,n){let a=_(e,"x","spaceToBatchND");$(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),$(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),$(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return O.runKernel(_u,r,s)}var Vc=L({spaceToBatchND_:XO});function YO(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=_(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(cr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=KS(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=JO([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=ZO([p.inHeight,p.inWidth],d,c),g=h?a:"valid",b=h?l:Vc(l,d,m),y=(n==="avg"?()=>ba(b,t,s,g,i):()=>Dt(b,t,s,g,i))(),x=h?y:Pc(y,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function ZO(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function JO(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var Mv=L({pool_:YO});function QO(e,t){let n=_(e,"x","prelu"),a=_(t,"alpha","prelu"),r={x:n,alpha:a};return O.runKernel(Ki,r)}var Uc=L({prelu_:QO});function e3(e,t=null,n=!1){let a=_(e,"x","prod");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(Xi,r,s)}var Pv=L({prod_:e3});function t3(e,t,n,a){let r=e.map((p,d)=>_(p,`tensors${d}`,"raggedGather","int32")),s=_(t,"paramsDenseValues","raggedGather"),i=_(n,"indices","raggedGather","int32"),o={paramsNestedSplits:r,paramsDenseValues:s,indices:i},l={outputRaggedRank:a},u=O.runKernel(Dm,o,l);return{outputNestedSplits:u.slice(0,u.length-1),outputDenseValues:u[u.length-1]}}var yT=L({raggedGather_:t3});function n3(e,t,n){let a=_(e,"starts","raggedRange"),r=_(t,"limits","raggedRange",a.dtype),s=_(n,"deltas","raggedRange",a.dtype),i={starts:a,limits:r,deltas:s},o=O.runKernel(Rm,i);return{rtNestedSplits:o[0],rtDenseValues:o[1]}}var xT=L({raggedRange_:n3});function a3(e,t,n,a,r){let s=_(e,"shape","raggedTensorToTensor","int32"),i=_(t,"values","raggedTensorToTensor"),o=_(n,"defaultValue","raggedTensorToTensor",i.dtype),l=a.map((d,c)=>_(d,`tensors${c}`,"raggedTensorToTensor","int32")),u={shape:s,values:i,defaultValue:o,rowPartitionTensors:l},p={rowPartitionTypes:r};return O.runKernel(Mm,u,p)}var vT=L({raggedTensorToTensor_:a3});function r3(e,t,n){let a=mt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return O.makeTensor(r,e,n)}var wT=L({rand_:r3}),Ov=ms(im()),Lv=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=Ov.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},s3=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=Ov.alea(r.toString()),this.randn=new Lv(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},i3=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Ov.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function o3(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new s3(t,n,a,r),i=Oe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var kT=L({randomGamma_:o3});function l3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new Lv(t,n,a,!1,r),i=Oe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var rf=L({randomNormal_:l3});function u3(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return rf(e,0,1,t,n)}var IT=L({randomStandardNormal_:u3});function p3(e,t=0,n=1,a="float32",r){let s=Oe(e,a),i=new i3(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Uu=L({randomUniform_:p3});function xl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return O.runKernel(xc,{},r)}function c3(e){let t={x:_(e,"x","reciprocal")};return O.runKernel(xu,t)}var zv=L({reciprocal_:c3});function d3(e){let t={x:_(e,"x","relu")};return O.runKernel(Yi,t)}var Xe=L({relu_:d3});function h3(e){let t={x:_(e,"x","relu6")};return O.runKernel(Qi,t)}var sf=L({relu6_:h3});function m3(e,t){let n={x:_(e,"x","reverse")},a={dims:t};return O.runKernel(eo,n,a)}var ga=L({reverse_:m3});function f3(e){let t=_(e,"x","reverse");return $(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ga(t,0)}var ST=L({reverse1d_:f3});function g3(e,t){let n=_(e,"x","reverse");return $(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ga(n,t)}var TT=L({reverse2d_:g3});function b3(e,t){let n=_(e,"x","reverse");return $(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ga(n,t)}var NT=L({reverse3d_:b3});function y3(e,t){let n=_(e,"x","reverse");return $(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ga(n,t)}var CT=L({reverse4d_:y3});function x3(e){let t={x:_(e,"x","round")};return O.runKernel(to,t)}var of=L({round_:x3});function v3(e){let t={x:_(e,"x","rsqrt","float32")};return O.runKernel(no,t)}var lf=L({rsqrt_:v3});function w3(e){let t={x:_(e,"x","selu")};return O.runKernel(Iu,t)}var uf=L({selu_:w3});function k3(e,t,n,a,r,s=[1,1],i="NHWC"){let o=_(e,"x","separableConv2d"),l=_(t,"depthwiseFilter","separableConv2d"),u=_(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");$(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),$(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),$(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),$(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),$(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];$(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=Is(p,l,a,r,i,s),f=$t(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ts=L({separableConv2d_:k3});async function I3(e,t){let n=_(e,"x","setdiff1d"),a=_(t,"y","setdiff1d");$(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),$(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),$(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new Ht([o],n.dtype),u=new Ht([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var _T=I3;function S3(e){let t={x:_(e,"x","sign")};return O.runKernel(Nu,t)}var Wv=L({sign_:S3});function T3(e){let t={x:_(e,"x","sin","float32")};return O.runKernel(ao,t)}var pf=L({sin_:T3});function N3(e){let t={x:_(e,"x","sinh")};return O.runKernel(Tu,t)}var cf=L({sinh_:N3});function C3(e,t,n){let a=_(e,"x","slice1d");return $(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Be(a,[t],[n])}var Gc=L({slice1d_:C3});function _3(e,t,n){let a=_(e,"x","slice2d");return $(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var df=L({slice2d_:_3});function E3(e,t,n){let a=_(e,"x","slice3d");return $(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var fo=L({slice3d_:E3});function A3(e,t,n){let a=_(e,"x","slice4d");return $(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var vl=L({slice4d_:A3});function $3(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return O.runKernel(oo,a,r)}var Ka=L({softmax_:$3});function F3(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(Sm,t)}var Hc=L({fft_:F3});function D3(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(Tm,t)}var wl=L({ifft_:D3});function R3(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=wl(r)}else{let r=[n,2*(t-1)],s=W(bl(e),[n,t]),i=W(Dc(e),[n,t]),o=ga(Be(s,[0,1],[n,t-2]),1),l=z(ga(Be(i,[0,1],[n,t-2]),1),ye(-1)),u=Ze([s,o],1),p=Ze([i,l],1),d=W(Ar(u,p),[r[0],r[1]]);a=wl(d)}if(a=bl(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var hf=L({irfft_:R3});function M3(e,t,n=0){let a={x:_(e,"x","split")},r={numOrSizeSplits:t,axis:n};return O.runKernel(Eu,a,r)}var zn=L({split_:M3});function P3(e,t){$(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Be(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Ze([e,It(m)],e.shape.length-1),n=t}else r=e;let s=qe(r),i=W(Ar(r,s),[a,n]),o=Hc(i),l=Math.floor(n/2)+1,u=bl(o),p=Dc(o),d=zn(u,[l,n-l],u.shape.length-1),c=zn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W(Ar(d[0],c[0]),h)}var jc=L({rfft_:P3});function O3(e,t){let n=_(e,"a","squaredDifference"),a=_(t,"b","squaredDifference");[n,a]=_t(n,a),ut(n.shape,a.shape);let r={a:n,b:a},s={};return O.runKernel(lo,r,s)}var mf=L({squaredDifference_:O3});function L3(e,t){let n=_(e,"x","squeeze","string_or_numeric");return W(n,UI(n.shape,t).newShape)}var Ns=L({squeeze_:L3});function z3(e,t=0){let n=Jp(e,"tensors","stack","string_or_numeric");$(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&$(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return O.runKernel(yu,a,r)}var Ft=L({stack_:z3});function W3(e,t=0){let n={x:_(e,"x","step")},a={alpha:t};return O.runKernel(xs,n,a)}var go=L({step_:W3});function B3(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:_(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return O.runKernel($u,u,p)}var Bv=L({stridedSlice_:B3});function V3(e){let t={x:_(e,"x","tan","float32")};return O.runKernel(po,t)}var Vv=L({tan_:V3});function Ke(e,t){mi(e);let n=lr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return vs(e,null,n,t)}function Aa(e,t,n){if(mi(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=lr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return vs(e,t,a,n)}function Da(e,t,n){if(mi(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=lr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return vs(e,t,a,n)}function ET(e,t,n){if(mi(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=lr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return vs(e,t,a,n)}function AT(e,t,n){if(mi(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=lr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,vs(e,t,a,n)}function U3(e,t=1,n=!0){let a=_(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=O.runKernel(Fu,s,i);return{values:o,indices:l}}var Uv=L({topk_:U3});function G3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Lv(t,n,a,!0,r),i=Oe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var ff=L({truncatedNormal_:G3});function H3(e,t=0){let n=_(e,"x","unique","string_or_numeric");$(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=O.runKernel(Bm,a,r);return{values:s,indices:i}}var Gv=L({unique_:H3});function j3(e,t,n){let a=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");$(hl(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return O.runKernel(Cc,s,i)}var gf=L({unsortedSegmentSum_:j3});function q3(e,t=0){let n=_(e,"x","unstack","string_or_numeric");$(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return O.runKernel(Ru,a,r)}var ct=L({unstack_:q3});function $T(e,t){return af(e,t,"right")}function Hv(e,t=!0,n,a){return O.makeVariable(e,t,n,a)}function FT(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Oe(e,"int32"),r=Oe([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function K3(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),a=FT(t.shape,n);return e!==t&&t.dispose(),a}var jv=K3;async function X3(e,t,n){let a=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;$(i>0,()=>"mask cannot be scalar"),Tn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=W(a,u),d=W(r,[-1]),c=await jv(d),h=Ns(c,[1]),m=Bu(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var DT=X3;function Y3(e,t,n,a,r=!0){let s=_(e,"v","movingAverage"),i=_(t,"x","movingAverage"),o=_(n,"decay","movingAverage");oS(s,i),$(fs(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ye(1),u=pe(l,o),p=z(pe(i,s),u);if(r){$(a!=null,()=>"When using zeroDebias: true, step is required.");let d=_(a,"step","movingAverage");p=he(p,pe(l,$r(o,d)))}return Y(s,p)}var RT=L({movingAverage_:Y3});function Z3(e,t,n){let a=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");jx(r,a,n);let s={indices:a,updates:r},i={shape:n};return O.runKernel(wu,s,i)}var MT=L({scatterND_:Z3});function J3(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function Q3(e,t,n,a=0){let r=_(e,"sparseIndices","sparseToDense","int32"),s=_(t,"sparseValues","sparseToDense","string_or_numeric"),i=_(a,"defaultValue","sparseToDense",s.dtype);J3(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return O.runKernel(Wm,o,l)}var PT=L({sparseToDense_:Q3});function eL(e,t){let n=_(t,"indices","gatherND","int32"),a={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return O.runKernel(eu,a)}var OT=L({gatherND_:eL});function tL(e,t){if(t==null)return e.shape.slice();if(fs(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function nL(e,t,n,a){let r=_(e,"x","dropout");if($(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),$(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Te?r.clone():r;let s=tL(r,n),i=1-t,o=he(Wu(Y(Uu(s,0,1,"float32",a),i)),i);return z(r,o)}var qv=L({dropout_:nL});function Kv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function bf(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Ke(r,"float32")}async function aL(e,t,n=1){let a=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");$(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),$(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Tn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];$(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=GI("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),In(p,r.shape,"bool")}var LT=aL,kl={};Ae(kl,{conv2d:()=>iL,depthwiseConv2d:()=>pL,matMul:()=>dL});function rL(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),$(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),$(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),$(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];$(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),$(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Nn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return O.runKernel(fm,d,c)}var Xv=L({conv2DBackpropFilter_:rL});function yf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,go(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function xf(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=fe(n,a)),W(n,e.shape)}function vf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Xe(e);if(t==="elu")return Lu(e);if(t==="relu6")return sf(e);if(t==="prelu")return Uc(e,n);if(t==="leakyrelu")return Lc(e,a);if(t==="sigmoid")return ha(e);throw new Error(`Unknown fused activation ${t}.`)}var wf=(e,t)=>!(e>0)||t==="linear";function sL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",wf(O.state.gradientDepth,l)===!1){$(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let T=$t(e,t,n,a,r,s,i);return o!=null&&(T=Y(T,o)),vf(T,l,u,p)}let d=_(e,"x","conv2d","float32"),c=_(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),$(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),$(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Nn("fused conv2d",a,i);let f=r==="NHWC"?h.shape[3]:h.shape[1];$(c.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${c.shape[2]}.`),$(cr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let g=Mc(h.shape,c.shape,n,s,a,i),b;o!=null&&(b=_(o,"bias","fused conv2d"),[b]=_t(b,d),r==="NHWC"?ut(g.outShape,b.shape):($(b.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${b.shape.length}.`),$(b.shape.length===0||b.shape[0]===g.outChannels||b.shape[0]===1,()=>`Error in fused conv2d: bias shape (${b.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let y;if(u!=null){let T=u.shape;if($(T.length<=1||T.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${T.length}.`),T.length===1)$(T[0]===1||T[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the number of output channels (${g.outChannels}).`);else if(T.length===3)try{ut(T,g.outShape)}catch(C){let E=`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}y=_(u,"prelu weights","fused conv2d")}let x=(T,C)=>{$(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,A,R,F]=C,S=yf(T,R,l);$(os(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let M=mv(A.shape,S,E,n,a),B=Xv(A,S,E.shape,n,a),U=[M,B];if(F!=null){let G=xf(F,S);U.push(G)}return U},w={x:h,filter:c,bias:b,preluActivationWeights:y},I={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ur((T,C,E)=>{let A=O.runKernel(ei,w,I);return E([C,T,A]),m&&(A=W(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:x}})(h,c):ur((T,C,E,A)=>{let R=O.runKernel(ei,w,I);return A([C,T,R,E]),m&&(R=W(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,c,b)}var iL=L({fusedConv2d_:sL});function oL(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return O.runKernel(xm,u,p)}var zT=L({depthwiseConv2dNativeBackpropFilter_:oL});function lL(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=O.runKernel(vm,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var WT=L({depthwiseConv2dNativeBackpropInput_:lL});function uL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(wf(O.state.gradientDepth,l)===!1){let I=Is(e,t,n,a,r,s,i);return o!=null&&(I=Y(I,o)),vf(I,l,u,p)}let d=_(e,"x","depthwiseConv2d","float32"),c=_(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),$(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),$(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),$(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),$(cr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Nn("fused depthwiseConv2d",a,i);let f=Mc(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=_t(g,d),ut(f.outShape,g.shape));let b;u!=null&&(b=_(u,"prelu weights","fused depthwiseConv2d"));let y=(I,T)=>{$(os(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,E,A,R]=T,F=yf(I,A,l),S=WT(E.shape,F,C,n,a,s,i),M=zT(E,F,C.shape,n,a,s,i);if(R!=null){let B=xf(g,F);return[S,M,B]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:b},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ur((I,T,C)=>{let E=O.runKernel(ti,x,w);return C([T,I,E]),m&&(E=W(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(h,c):ur((I,T,C,E)=>{let A=O.runKernel(ti,x,w);return E([T,I,A,C]),m&&(A=W(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:y}})(h,c,g)}var pL=L({fusedDepthwiseConv2d_:uL});function cL({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(wf(O.state.gradientDepth,s)===!1){let R=Fe(e,t,n,a);return r!=null&&(R=Y(R,r)),vf(R,s,i,o)}let l=_(e,"a","fused matMul"),u=_(t,"b","fused matMul");[l,u]=_t(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=mt(m),b=mt(f);$(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let y=ut(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),w=a?W(u,[b,h,d]):W(u,[b,d,h]),I;r!=null&&(I=_(r,"bias","fused matMul"),[I]=_t(I,l),ut(y,I.shape));let T;i!=null&&(T=_(i,"prelu weights","fused matMul"));let C=(R,F)=>{let[S,M,B,U]=F,G=yf(W(R,B.shape),B,s),q,K;if(!n&&!a?(q=Fe(G,M,!1,!0),K=Fe(S,G,!0,!1)):!n&&a?(q=Fe(G,M,!1,!1),K=Fe(G,S,!0,!1)):n&&!a?(q=Fe(M,G,!1,!0),K=Fe(S,G,!1,!1)):(q=Fe(M,G,!0,!0),K=Fe(G,S,!0,!0)),r!=null){let Z=xf(U,G);return[q,K,Z]}else return[q,K]},E={a:x,b:w,bias:I,preluActivationWeights:T},A={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ur((R,F,S)=>{let M=O.runKernel(Qs,E,A);return S([R,F,M]),{value:W(M,y),gradFunc:C}})(x,w):ur((R,F,S,M)=>{let B=O.runKernel(Qs,E,A);return M([R,F,B,S]),{value:W(B,y),gradFunc:C}})(x,w,I)}var dL=L({fusedMatMul_:cL});function hL(e){return bf(e,.54,.46)}var mL=L({hammingWindow_:hL});function fL(e){return bf(e,.5,.5)}var BT=L({hannWindow_:fL});function gL(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Be(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Ze([Be(e,s,t-o),gn([o],r)]);i.push(l),s+=n}return i.length===0?Aa([],[0,t]):W(Ze(i),[i.length,t])}var VT=L({frame_:gL});function bL(e,t,n,a,r=BT){a==null&&(a=Kv(t));let s=VT(e,t,n),i=z(s,r(t));return jc(i,a)}var yL=L({stft_:bL});function xL(e,t,n,a,r="bilinear",s=0){let i=_(e,"image","cropAndResize"),o=_(t,"boxes","cropAndResize","float32"),l=_(n,"boxInd","cropAndResize","int32"),u=o.shape[0];$(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),$(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),$(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),$(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),$(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return O.runKernel(jl,p,d)}var vL=L({cropAndResize_:xL});function wL(e){let t=_(e,"image","flipLeftRight","float32");$(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return O.runKernel(Jl,n,{})}var kL=L({flipLeftRight_:wL});function IL(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];$(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),$(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ln(t,r)}var SL=L({grayscaleToRGB_:IL});function TL(e,t,n=0,a=.5){let r=_(e,"image","rotateWithOffset","float32");$(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return O.runKernel(Pu,s,i)}var NL=L({rotateWithOffset_:TL});function Gu(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),$(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),$(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),$(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),$(t.rank===1,()=>"scores must be a 1D tensor"),$(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),$(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function CL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppression","float32"),i=_(t,"scores","nonMaxSuppression","float32"),o=Gu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return O.runKernel(mu,{boxes:s,scores:i},l)}var _L=L({nonMaxSuppression_:CL});function EL(e,t,n){let a=AL(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function AL(e,t,n){return FL(e,t,n||$L)}function $L(e,t){return e>t?1:e<t?-1:0}function FL(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function UT(e,t,n,a,r){return Yv(e,t,n,a,r,0)}function GT(e,t,n,a,r,s){return Yv(e,t,n,a,r,0,!1,s,!0)}function HT(e,t,n,a,r,s){return Yv(e,t,n,a,r,s,!0)}function Yv(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(yk);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:b,boxIndex:y,suppressBeginIndex:x}=g;if(b<r)break;let w=!1;for(let I=d.length-1;I>=x;--I){let T=DL(e,y,d[I]);if(T>=a){w=!0;break}if(g.score=g.score*RL(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,w||(g.score===b?(d.push(y),c.push(g.score)):g.score>r&&EL(u,g,yk))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function DL(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),b=Math.min(o,d),y=Math.min(l,c),x=Math.max(b-f,0)*Math.max(y-g,0);return x/(h+m-x)}function RL(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function yk(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function ML(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),o=Gu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=UT(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ke(d,"int32")}var PL=ML;function OL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=Gu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=O.runKernel(gu,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var LL=L({nonMaxSuppressionWithScore_:OL});async function zL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=Gu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=HT(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(c,"int32"),selectedScores:Ke(h)}}var WL=zL;function BL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=Gu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=O.runKernel(fu,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var VL=L({nonMaxSuppressionPadded_:BL});async function UL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=Gu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=GT(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(m,"int32"),validOutputs:ye(f,"int32")}}var GL=UL;function HL(e,t,n=!1,a=!1){let r=_(e,"images","resizeBilinear");$(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),$(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(Ji,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var jT=L({resizeBilinear_:HL});function jL(e,t,n=!1,a=!1){let r=_(e,"images","resizeNearestNeighbor");$(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),$(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),$(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(Zi,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var qT=L({resizeNearestNeighbor_:jL});function qL(e,t="binary",n=!1,a=.5){let r=_(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=z(Ke([a]),255),p,d,c,h;if($(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),$(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),$(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),$(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=zn(r,[1,1,1],-1);let f=z(p,s),g=z(d,i),b=z(c,o);h=Y(Y(f,g),b)}else h=e;if(t==="otsu"){let f=lv(oe(of(h),"int32"),In([]),256);u=KL(f,l)}let m=n?Ss(h,u):Cn(h,u);return oe(z(m,255),"int32")}function KL(e,t){let n=Ke([-1]),a=Ke([0]),r=Ke([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=Be(e,0,d+1),i=Be(e,d+1),u=he(fe(s),t),p=he(fe(i),t);let c=fe(z(s,xl(0,s.size)));o=he(c,fe(s));let h=gn(i.shape,s.size),m=Y(xl(0,i.size),h),f=z(i,m);l=he(fe(f),fe(i));let g=pe(o,l),b=pe(o,l),y=z(u,p);r=z(z(y,g),b);let x=Cn(r,a);a=mn(x,r,a),n=mn(x,Ke([d]),n)}return n}var XL=L({threshold_:qL});function YL(e,t,n="nearest",a="constant",r=0,s){let i=_(e,"image","transform","float32"),o=_(t,"transforms","transform","float32");$(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),$(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return O.runKernel(Du,l,u)}var ZL=L({transform_:YL});function JL(e,t,n){$(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),$(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=_(e,"a","bandPart");$(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=W(xl(0,s,1,"int32"),[-1,1]),l=xl(0,i,1,"int32"),u=pe(o,l),p=$a(Ss(u,ye(+t,"int32")),Fr(u,ye(-n,"int32"))),d=It([s,i],a.dtype);return W(Ft(ct(W(a,[-1,s,i])).map(c=>mn(p,c,d))),r)}var QL=L({bandPart_:JL});function ez(e){let t;if(Array.isArray(e)){t=!1,$(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)$(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>Ns(r,[0]));$(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(O.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=z(fe(z(n[i],s)),n[i]);s=pe(s,o)}return he(s,zu(s,"euclidean"))}));return t?Ft(n,0):n}var tz=L({gramSchmidt_:ez});function nz(e,t=!1){if($(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return xk(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ct(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=xk(l,t);r.push(u),s.push(p)});let i=W(Ft(r,0),e.shape),o=W(Ft(s,0),e.shape);return[i,o]}}function xk(e,t=!1){return O.tidy(()=>{$(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=Zm(n),s=ir(e),i=Aa([[1]],[1,1]),o=ir(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=O.tidy(()=>{let h=Be(s,[u,u],[n-u,1]),m=zu(h),f=Be(s,[u,u],[1,1]),g=mn(Cn(f,0),Aa([[-1]]),Aa([[1]])),b=pe(f,z(g,m)),y=he(h,b);y.shape[0]===1?o=ir(i):o=Ze([i,Be(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=vt(he(Fe(g,b),m)),w=Be(s,[u,0],[n-u,a]),I=z(x,o),T=Ee(o);if(u===0)s=pe(w,Fe(I,Fe(T,w)));else{let A=pe(w,Fe(I,Fe(T,w)));s=Ze([Be(s,[0,0],[u,a]),A],0)}let C=Ee(I),E=Be(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=pe(E,Fe(Fe(E,o),C));else{let A=pe(E,Fe(Fe(E,o),C));r=Ze([Be(r,[0,0],[n,u]),A],1)}return[o,s,r]}),_e([p,d,c])}return!t&&n>a&&(r=Be(r,[0,0],[n,a]),s=Be(s,[0,0],[a,a])),[r,s]})}var az=L({qr_:nz}),vn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(vn||(vn={}));function rz(e,t,n=vn.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let s=r==null?a:z(a,r);if(n===vn.NONE)return s;if(n===vn.SUM)return fe(s);if(n===vn.MEAN){if(r==null)return Nt(s);{let i=a.size/r.size,o=he(fe(s),fe(r));return i>1?he(o,ye(i)):o}}if(n===vn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(fe(s),ye(a.size));{let i=z(r,Jn(a.shape)),o=oe(fe(oi(i,ye(0))),"float32");return he(fe(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Dr=L({computeWeightedLoss_:rz});function sz(e,t,n,a=vn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","absoluteDifference"),s=_(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=_(n,"weights","absoluteDifference")),Tn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(pe(r,s));return Dr(o,i,a)}var iz=L({absoluteDifference_:sz});function oz(e,t,n,a,r=vn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","cosineDistance"),i=_(t,"predictions","cosineDistance"),o=null;a!=null&&(o=_(a,"weights","cosineDistance")),Tn(s.shape,i.shape,"Error in cosineDistance: ");let l=ye(1),u=pe(l,fe(z(s,i),n,!0));return Dr(u,o,r)}var lz=L({cosineDistance_:oz});function uz(e,t,n,a=vn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","hingeLoss"),s=_(t,"predictions","hingeLoss"),i=null;n!=null&&(i=_(n,"weights","hingeLoss")),Tn(r.shape,s.shape,"Error in hingeLoss: ");let o=ye(1);r=pe(z(ye(2),r),o);let l=Xe(pe(o,z(r,s)));return Dr(l,i,a)}var pz=L({hingeLoss_:uz});function cz(e,t,n,a=1,r=vn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","huberLoss"),i=_(t,"predictions","huberLoss"),o=null;n!=null&&(o=_(n,"weights","huberLoss")),Tn(s.shape,i.shape,"Error in huberLoss: ");let l=ye(a),u=Lt(pe(i,s)),p=Vu(u,l),d=pe(u,p),c=Y(z(ye(.5),lt(p)),z(l,d));return Dr(c,o,r)}var dz=L({huberLoss_:cz});function hz(e,t,n,a=1e-7,r=vn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","logLoss"),i=_(t,"predictions","logLoss"),o=null;n!=null&&(o=_(n,"weights","logLoss")),Tn(s.shape,i.shape,"Error in logLoss: ");let l=ye(1),u=ye(a),p=vt(z(s,ta(Y(i,u)))),d=z(pe(l,s),ta(Y(pe(l,i),u))),c=pe(p,d);return Dr(c,o,r)}var mz=L({logLoss_:hz});function fz(e,t,n,a=vn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","meanSquaredError"),s=_(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=_(n,"weights","meanSquaredError")),Tn(r.shape,s.shape,"Error in meanSquaredError: ");let o=mf(r,s);return Dr(o,i,a)}var gz=L({meanSquaredError_:fz});function bz(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),a=_(t,"logits","sigmoidCrossEntropyWithLogits");Tn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xe(a),s=z(a,n),i=zc(fn(vt(Lt(a))));return Y(pe(r,s),i)}function yz(e,t,n,a=0,r=vn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"multiClassLabels","sigmoidCrossEntropy"),i=_(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","sigmoidCrossEntropy")),Tn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ye(a),p=ye(1),d=ye(.5);s=Y(z(s,pe(p,u)),z(d,u))}let l=bz(s,i);return Dr(l,o,r)}var xz=L({sigmoidCrossEntropy_:yz});function vz(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ur((a,r,s)=>{let i=tf(r,[n],!0),o=pe(oe(r,"float32"),i);s([a,o]);let l=vt(z(o,a));return{value:fe(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=ii(u.shape,[n]);return[z(W(u,h),pe(oe(d,"float32"),fn(c))),z(W(u,h),pe(fn(c),oe(d,"float32")))]}}})(e,t)}function wz(e,t,n,a=0,r=vn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"onehotLabels","softmaxCrossEntropy"),i=_(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","softmaxCrossEntropy")),Tn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ye(a),p=ye(1),d=ye(s.shape[1]);s=Y(z(s,pe(p,u)),he(u,d))}let l=vz(s,i);return Dr(l,o,r)}var kz=L({softmaxCrossEntropy_:wz});function Iz(e,t,n,a){let r=_(e,"indices","sparseFillEmptyRows","int32"),s=_(t,"values","sparseFillEmptyRows"),i=_(n,"denseShape","sparseFillEmptyRows","int32"),o=_(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=O.runKernel(vc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var Sz=L({sparseFillEmptyRows_:Iz});function Tz(e,t,n){let a=_(e,"inputIndices","sparseReshape","int32"),r=_(t,"inputShape","sparseReshape","int32"),s=_(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=O.runKernel(Au,i);return{outputIndices:o[0],outputShape:o[1]}}var Nz=L({sparseReshape_:Tz});function Cz(e,t,n){let a=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean","int32"),s=_(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(wc,i)}var _z=L({sparseSegmentMean_:Cz});function Ez(e,t,n){let a=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum","int32"),s=_(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(kc,i)}var Az=L({sparseSegmentSum_:Ez});function $z(e,t,n,a,r,s,i,o){let l=_(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=_(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=O.runKernel(Sc,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var Fz=L({stringNGrams_:$z});function Dz(e,t,n=!0){let a=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=O.runKernel(Tc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var Rz=L({stringSplit_:Dz});function Mz(e,t){let n=_(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return O.runKernel(Nc,r,a)}var Pz=L({stringToHashBucketFast_:Mz}),KT={fft:Hc,ifft:wl,rfft:jc,irfft:hf},XT={hammingWindow:mL,hannWindow:BT,frame:VT,stft:yL},za={flipLeftRight:kL,grayscaleToRGB:SL,resizeNearestNeighbor:qT,resizeBilinear:jT,rotateWithOffset:NL,cropAndResize:vL,nonMaxSuppression:_L,nonMaxSuppressionAsync:PL,nonMaxSuppressionWithScore:LL,nonMaxSuppressionWithScoreAsync:WL,nonMaxSuppressionPadded:VL,nonMaxSuppressionPaddedAsync:GL,threshold:XL,transform:ZL},Zv={bandPart:QL,gramSchmidt:tz,qr:az},YT={absoluteDifference:iz,computeWeightedLoss:Dr,cosineDistance:lz,hingeLoss:pz,huberLoss:dz,logLoss:mz,meanSquaredError:gz,sigmoidCrossEntropy:xz,softmaxCrossEntropy:kz},ZT={sparseFillEmptyRows:Sz,sparseReshape:Nz,sparseSegmentMean:_z,sparseSegmentSum:Az},JT={stringNGrams:Fz,stringSplit:Rz,stringToHashBucketFast:Pz},Rr=class extends US{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return _e(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return oT(e,t)}dispose(){this.iterations_!=null&&_e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ye(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Rr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var kf=class extends Rr{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>qe(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=Y(z(i,this.rho),z(lt(s),1-this.rho)),u=z(he(un(Y(o,this.epsilon)),un(Y(i,this.epsilon))),s),p=Y(z(o,this.rho),z(lt(u),1-this.rho));i.assign(l),o.assign(p);let d=Y(z(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(_e(this.accumulatedGrads.map(e=>e.variable)),_e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};kf.className="Adadelta";ws(kf);var If=class extends Rr{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>gn(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=Y(s,lt(r));s.assign(i);let o=Y(z(he(r,un(Y(i,O.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&_e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};If.className="Adagrad";ws(If);var Sf=class extends Rr{constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=ye(t).variable(),this.accBeta2=ye(n).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=pe(1,this.accBeta2);t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:P(()=>qe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:P(()=>qe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=Y(z(u,this.beta1),z(l,1-this.beta1)),c=Y(z(p,this.beta2),z(lt(l),1-this.beta2)),h=he(d,n),m=he(c,a);u.assign(d),p.assign(c);let f=Y(z(he(h,Y(un(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&_e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign($r(this.beta1,this.iterations_+1)),this.accBeta2.assign($r(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Sf.className="Adam";ws(Sf);var Tf=class extends Rr{constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=ye(0).variable(),this.accBeta1=ye(t).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=he(-this.learningRate,Y(z(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:qe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:qe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=Y(z(u,this.beta1),z(l,1-this.beta1)),c=z(p,this.beta2),h=Lt(l),m=dr(c,h);u.assign(d),p.assign(m);let f=Y(z(he(a,n),he(d,Y(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(Y(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&_e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Tf.className="Adamax";ws(Tf);var qc=class extends Rr{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=O.registeredVariables[t];P(()=>{let s=Y(z(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Jt(ye(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};qc.className="SGD";ws(qc);var Nf=class extends qc{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ye(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=Y(z(this.m,r),s);this.useNesterov?i=Y(z(this.c,Y(s,z(o,this.m))),a):i=Y(z(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&_e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Nf.className="Momentum";ws(Nf);var Cf=class extends Rr{constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=O.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=Y(z(i,this.decay),z(lt(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=Y(z(u,this.decay),z(s,1-this.decay)),d=he(z(s,this.learningRate),un(pe(l,Y(lt(p),this.epsilon)))),c=Y(z(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=pe(a,c);a.assign(h)}else{let u=Y(z(i,this.decay),z(lt(s),1-this.decay)),p=Y(z(o,this.momentum),he(z(s,this.learningRate),un(Y(u,this.epsilon))));i.assign(u),o.assign(p);let d=pe(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&_e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&_e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&_e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Cf.className="RMSProp";ws(Cf);var Yr=class{static sgd(e){return new qc(e)}static momentum(e,t,n=!1){return new Nf(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Cf(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Sf(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new kf(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Tf(e,t,n,a,r)}static adagrad(e,t=.1){return new If(e,t)}},Ws={sgd:Yr.sgd,momentum:Yr.momentum,adadelta:Yr.adadelta,adagrad:Yr.adagrad,rmsprop:Yr.rmsprop,adamax:Yr.adamax,adam:Yr.adam},Oz=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Jv(){return new Promise(e=>Oz(()=>e()))}var N={};Ae(N,{ERF_A1:()=>Jz,ERF_A2:()=>Qz,ERF_A3:()=>eW,ERF_A4:()=>tW,ERF_A5:()=>nW,ERF_P:()=>Zz,PARALLELIZE_THRESHOLD:()=>Qv,RowPartitionType:()=>nr,SELU_SCALE:()=>eN,SELU_SCALEALPHA:()=>QT,applyActivation:()=>vf,assertAndGetBroadcastShape:()=>ut,assertAxesAreInnerMostDims:()=>VP,assertParamsConsistent:()=>Lz,assignToTypedArray:()=>lW,axesAreInnerMostDims:()=>kv,calculateShapes:()=>DS,checkEinsumDimSizes:()=>mW,checkPadOnDimRoundingMode:()=>Nn,combineLocations:()=>nT,combineRaggedTensorToTensorShapes:()=>Wz,complexWithEvenIndex:()=>sW,complexWithOddIndex:()=>iW,computeConv2DInfo:()=>Mc,computeConv3DInfo:()=>XS,computeDefaultPad:()=>av,computeDilation2DInfo:()=>UM,computeOptimalWindowSize:()=>Gz,computeOutAndReduceShapes:()=>aT,computeOutShape:()=>zz,computePool2DInfo:()=>KS,computePool3DInfo:()=>GM,convertConv2DDataFormat:()=>YS,decodeEinsumEquation:()=>dW,eitherStridesOrDilationsAreOne:()=>cr,expandShapeToKeepDim:()=>ii,exponent:()=>pW,exponents:()=>uW,fromStringArrayToUint8:()=>MW,fromUint8ToStringArray:()=>RW,getAxesPermutation:()=>rT,getBroadcastDims:()=>AS,getComplexWithIndex:()=>oW,getEinsumComputePath:()=>fW,getEinsumPermutation:()=>hW,getFusedBiasGradient:()=>xf,getFusedDyActivation:()=>yf,getImageCenter:()=>Hz,getInnerMostAxes:()=>UP,getPermuted:()=>qz,getRaggedRank:()=>Vz,getReductionAxes:()=>Wt,getReshaped:()=>jz,getReshapedPermuted:()=>Kz,getRowPartitionTypesHelper:()=>Bz,getSliceBeginCoords:()=>Xz,getSliceSize:()=>Yz,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>xW,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>vW,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>wW,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>SW,getSparseReshapeInputOutputMismatchErrorMessage:()=>NW,getSparseReshapeInputOutputMultipleErrorMessage:()=>TW,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>kW,getSparseReshapeNegativeOutputDimErrorMessage:()=>IW,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>AW,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>CW,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>_W,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>EW,getUndoAxesPermutation:()=>Iv,isIdentityPermutation:()=>gW,log:()=>iD,mergeRealAndImagArrays:()=>aW,prepareAndValidate:()=>FS,prepareSplitSize:()=>yW,segment_util:()=>tN,shouldFuse:()=>wf,slice_util:()=>jt,splitRealAndImagArrays:()=>rW,tupleValuesAreOne:()=>os,upcastType:()=>fa,validateDefaultValueShape:()=>Uz,validateInput:()=>jx,validateUpdateShape:()=>Hx,warn:()=>Jr});function Lz(e,t){let n=e[0].length;e.forEach((r,s)=>{$(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),$(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)$(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function zz(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var nr;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(nr||(nr={}));function Wz(e,t,n){let a=new Array;if(n==null&&t==null)return a;if(t==null)for(;a.length<e+n.length;)a.push(-1);else a=t.slice();if(n==null)return a;if(e+n.length!==a.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+n.length}, but shape.rank = ${a.length}`);for(let r=1;r<n.length;++r){let s=n[r],i=a[a.length-n.length+r],o=a[i];if(s>=0)if(o>=0){if(o!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${s} but shape[${r+e}] = ${o}`)}else a[i]=s}return a}function Bz(e){let t={FIRST_DIM_SIZE:nr.FIRST_DIM_SIZE,VALUE_ROWIDS:nr.VALUE_ROWIDS,ROW_LENGTHS:nr.ROW_LENGTHS,ROW_SPLITS:nr.ROW_SPLITS,ROW_LIMITS:nr.ROW_LIMITS,ROW_STARTS:nr.ROW_STARTS},n=[];for(let a of e)if(a in t)n.push(t[a]);else break;return n}function Vz(e){return e.length===0?0:e[0]===nr.FIRST_DIM_SIZE?e.length-1:e.length}function Uz(e,t){if(e==null||t==null)return;let n=e.length,a=t.length;if(n>=a)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${a})`);for(let r=0;r<Math.min(n,a-1);++r){let s=e[r],i=t[r+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${s} but ragged tensor input.flatValues.shape[${r-e.length}] = ${i}`)}}var Qv=30;function Gz(e){return e<=Qv?e:Eh(e,Math.floor(Math.sqrt(e)))}function Hz(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function jz(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function qz(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function Kz(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function Xz(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function Yz(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var QT=1.7580993408473768,eN=1.0507009873554805,Zz=.3275911,Jz=.254829592,Qz=-.284496736,eW=1.421413741,tW=-1.453152027,nW=1.061405429;function aW(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function rW(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function sW(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function iW(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function oW(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function lW(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function uW(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function pW(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var by="->",cW=/->/g,vk=",",wk="...";function dW(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(cW,"").length)/by.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${by}").`);let[a,r]=e.split(by);$(a.indexOf(wk)===-1,()=>`The ellipsis notation ("${wk}") is not supported yet.`);let s=a.split(vk),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==vk&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function hW(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function mW(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:$(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function fW(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=bW(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function gW(e){return e.every((t,n)=>t===n)}function bW(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function yW(e,t,n=0){let a=[];if(typeof t=="number")$(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);$(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}$(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function xW(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function vW(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function wW(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function kW(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function IW(e,t){return`size ${e} must be non-negative, not ${t}`}function SW(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function TW(e,t){let n=mt(e),a=mt(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function NW(e,t){let n=mt(e),a=mt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function CW(){return"segment ids must be >= 0"}function _W(){return"segment ids are not increasing"}function EW(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function AW(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var tN={};Ae(tN,{collectGatherOpShapeInfo:()=>DW,computeOutShape:()=>FW,segOpComputeOptimalWindowSize:()=>$W});function $W(e,t){let n=!1,a;for(e<=Qv?(a=e,n=!0):a=Eh(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Eh(e,a+1);return a}function FW(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function DW(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function RW(e){try{return e.map(t=>Mh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function MW(e){return e.map(t=>Ac(t))}var hr={};Ae(hr,{nonMaxSuppressionV3Impl:()=>UT,nonMaxSuppressionV4Impl:()=>GT,nonMaxSuppressionV5Impl:()=>HT,whereImpl:()=>FT});var nN={kernelName:Dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,go(oe(n,"float32"),-1))}}},PW={kernelName:Rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=lt(oe(n,"float32")),r=un(pe(ye(1),a));return vt(he(e,r))}}}},OW={kernelName:Ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=un(pe(lt(oe(n,"float32")),1));return he(e,a)}}}},LW={kernelName:gs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}},zW={kernelName:fi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},WW={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},BW={kernelName:cc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},VW={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,un(pe(ye(1),lt(oe(n,"float32")))))}}},UW={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=un(Y(ye(1),lt(oe(n,"float32"))));return he(e,a)}}}},GW={kernelName:Vl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=Y(lt(n),lt(a)),i=z(e,he(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=fe(i,o)),W(i,n.shape)},b:()=>{let s=Y(lt(n),lt(a)),i=vt(z(e,he(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=fe(i,o)),W(i,a.shape)}}}},HW={kernelName:Wl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Y(lt(oe(n,"float32")),1))}}},jW={kernelName:Bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,pe(ye(1),lt(oe(n,"float32"))))}}};function qW(e,t,n,a,r,s){let i=_(e,"dy","avgPool3dGrad"),o=_(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),$(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),$(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Nn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=O.runKernel(cm,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var KW=L({avgPool3dGrad_:qW}),XW={kernelName:dc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>KW(e,a,r,s,i,o)}}};function YW(e,t,n,a,r){let s=_(e,"dy","avgPoolGrad"),i=_(t,"input","avgPoolGrad");$(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),$(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=O.runKernel(pm,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var ZW=L({avgPoolGrad_:YW}),JW={kernelName:bi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>ZW(e,a,r,s,i)}}},QW={kernelName:yi,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Fe(e,r,!1,!0),b:()=>Fe(a,e,!0,!1)}:!s&&i?{a:()=>Fe(e,r,!1,!1),b:()=>Fe(e,a,!0,!1)}:s&&!i?{a:()=>Fe(r,e,!1,!0),b:()=>Fe(a,e,!1,!1)}:{a:()=>Fe(r,e,!0,!0),b:()=>Fe(e,a,!0,!0)}}},eB={kernelName:Ul,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Vc(e,a,r)}}},tB={kernelName:eS,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>fe(e,o,!0)}}},nB={kernelName:xi,gradFunc:e=>({x:()=>e.clone()})},aB={kernelName:vi,gradFunc:e=>({x:()=>qe(e)})},rB={kernelName:bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>mn($a(Fr(a,r),Ss(a,s)),e,qe(e))}}},sB={kernelName:hc,inputsToSave:["x"],gradFunc:nN.gradFunc},iB={kernelName:Gl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Fa(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},oB={kernelName:wi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return $(os(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>mv(a.shape,e,r,i,o,l),filter:()=>Xv(a,e,r.shape,i,o,l)}}},lB={kernelName:ki,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>$t(e,r,s,i,o,1,l),filter:()=>Xv(e,a,r.shape,s,i,o,l)}}};function uB(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),$(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),$(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),$(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),$(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),$(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return O.runKernel(gm,o,l)}var pB=L({conv3DBackpropFilter_:uB}),cB={kernelName:mc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;$(os(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>QS(i.shape,e,o,r,s),filter:()=>pB(i,e,o.shape,r,s)}}},dB={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(vt(pf(oe(n,"float32"))),e)}}},hB={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(cf(oe(n,"float32")),e)}}},mB={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=rT([r],a.rank),l=Ym(e,r,s,!i);return o!=null&&(l=Ee(l,o)),l}}}},fB={kernelName:Ni,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;$(os(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return $(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),$(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),$(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),$(cr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Nn("depthwiseConv2d",s,i),{x:()=>WT(l.shape,e,u,r,s,o,i),filter:()=>zT(l,e,u.shape,r,s,o,i)}}},gB={kernelName:fc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>O.runKernel(Ah,s,n),filter:()=>O.runKernel($h,i,n)}}},bB={kernelName:_i,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>O.runKernel(Im,a)}}},yB={kernelName:Kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(fn(vt(lt(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,a)}}},xB={kernelName:Ei,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},vB={kernelName:Yl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},wB={kernelName:Zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,fn(n))}}},kB={kernelName:Ai,gradFunc:e=>({x:()=>qe(e)})},IB={kernelName:$i,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=he(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,oe(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=lt(a);return vt(he(s,oe(o,"float32")))}}}},SB={kernelName:Fi,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ye(1):o,u=Wt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=pe(r,s),c=z(e,l),h=lf(Y(i,ye(a))),m=z(z(z(h,h),h),ye(-.5));return{x:()=>s.rank===1?W(z(z(e,Ln(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(z(z(e,h),l),r.shape),mean:()=>{let f=z(z(h,ye(-1)),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},variance:()=>{let f=z(z(m,d),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},scale:()=>{let f=z(d,h),g=z(e,f);return s.rank===1&&(g=fe(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=fe(f,u)),W(f,s.shape)}}}},TB={kernelName:Ql,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Fa(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=kk(0,p),m=kk(p+1,p+1+c),f=Ik([u,[l],d]),g=W(e,f),b=W(r,[l]),y=Ik([[p],h,m]),x=Ee(g,y),w=gf(x,b,a.shape[i]),I=Iv(y);return w=Ee(w,I),w},indices:()=>r}}};function kk(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Ik(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var NB={kernelName:Di,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>qe(n),b:()=>qe(a)}}},CB={kernelName:Ri,gradFunc:e=>({x:()=>oe(e,"float32")})},_B={kernelName:nu,gradFunc:e=>({x:()=>qe(e)})},EB={kernelName:au,gradFunc:e=>({x:()=>qe(e)})},AB={kernelName:ru,gradFunc:e=>({x:()=>qe(e)})},$B={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Cn(a,0);return{x:()=>mn(s,e,z(e,r))}}},FB={kernelName:ou,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Y(n,1))}}},DB={kernelName:Pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,oe(n,"float32"))}}},RB={kernelName:nS,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=fn(a);return pe(e,z(fe(e,r,!0),s))}}}};function MB(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return O.runKernel(_m,o,l)}var PB=L({localResponseNormalizationBackprop_:MB}),OB={kernelName:bc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>PB(a,r,e,s,i,o,l)}}};function aN(e,t,n,a){return t.rank<n.rank&&(t=W(t,ii(t.shape,a))),e.rank<n.rank&&(e=W(e,ii(e.shape,a))),{x:()=>z(e,oe(ea(n,t),e.dtype))}}var Sk={kernelName:Oi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Fa(r,s.shape),l=aN(e,i,s,o);return{x:()=>l.x()}}},LB={kernelName:Li,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,oe(Fr(n,a),"float32")),b:()=>z(e,oe(Jm(n,a),"float32"))}}};function zB(e,t,n,a,r,s,i){let o=_(e,"dy","maxPool3dGrad"),l=_(t,"input","maxPool3dGrad"),u=_(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),$(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),$(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),$(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Nn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=O.runKernel(Am,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var WB=L({maxPool3dGrad_:zB}),BB={kernelName:yc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>WB(e,a,r,s,i,o,l)}}};function VB(e,t,n,a,r,s,i){let o=_(e,"dy","maxPoolGrad"),l=_(t,"input","maxPoolGrad"),u=_(n,"output","maxPoolGrad");$(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),$(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),$(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Nn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return O.runKernel(Em,p,d)}var UB=L({maxPoolGrad_:VB}),GB={kernelName:zi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>UB(e,a,r,s,i,o)}}},HB={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Fa(r,a.shape),i=aT(a.shape,s)[1],o=mt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return he(z(u,Jn(a.shape,"float32")),o)}}}},jB={kernelName:Bi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Fa(r,s.shape),l=aN(e,i,s,o);return{x:()=>l.x()}}},qB={kernelName:Vi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,oe(Ss(n,a),"float32")),b:()=>z(e,oe(Cn(n,a),"float32"))}}},KB={kernelName:Ui,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},XB={kernelName:cu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?W(fe(e,s),n.shape):e},b:()=>{let s=z(e,vt(Wu(he(n,a)))),i=Wt(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},YB={kernelName:Gi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=z(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,oe(n,"float32")),i=Wt(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},ZB={kernelName:du,gradFunc:e=>({x:()=>vt(e)})},JB={kernelName:Hi,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>It(n.shape,"float32")}}},QB={kernelName:bu,gradFunc:e=>({x:()=>qe(e)})},e4={kernelName:yu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ct(e,a).map(r=>()=>r)}},Tk={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},t4={kernelName:qi,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=ut(s.shape,i.shape);return{a:()=>{let l=oe(i,"float32"),u=z(e,z(l,$r(s,pe(l,ye(1))))),p=Wt(s.shape,o);return p.length>0&&(u=fe(u,p)),W(u,s.shape)},b:()=>{let l=Cn(s,0),u=mn(l,ta(s),qe(s)),p=z(e,z(r,u)),d=Wt(i.shape,o);return d.length>0&&(p=fe(p,d)),W(p,i.shape)}}}},n4={kernelName:Ki,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Cn(n,0);return{x:()=>mn(r,e,z(e,a)),alpha:()=>{let s=mn(r,qe(e),z(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}};function a4(e,t,n){let a=e.shape.slice();a[n]=1;let r=W(t,a),s=ec(e,n,!0,!1),i=ec(e,n,!0,!0),o=z(s,i);return z(r,o)}function r4(e,t,n){let a=e.shape.length,r=a-n.length,s=N.getAxesPermutation(n,a),i=e;s!=null&&(i=Ee(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=a4(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=N.getUndoAxesPermutation(s);p=Ee(p,d)}return p}var s4={kernelName:Xi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>r4(a,e,s)}}},i4={kernelName:Ci,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=he(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,oe(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=lt(a);return vt(he(s,oe(o,"float32")))}}}},o4={kernelName:xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,vt(lt(n)))}}},l4={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(Ss(n,6),go(n));return{x:()=>z(e,oe(a,"float32"))}}},u4={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,oe(go(n),"float32"))}}},p4={kernelName:vu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},c4={kernelName:Ji,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(Lm,r,n)}}},d4={kernelName:Zi,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(Om,r,n)}}},h4={kernelName:eo,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Fa(a,e.shape);return{x:()=>ga(e,r)}}},m4={kernelName:to,gradFunc:e=>({x:()=>qe(e)})},f4={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>vt(he(e,z($r(n,1.5),2)))}}},g4={kernelName:ku,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>oe(qe(n),"float32"),t:()=>z(e,oe(n,e.dtype)),e:()=>z(e,oe(Wc(n),e.dtype))}}},b4={kernelName:Iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Cn(n,ye(0)),r=ye(QT),s=ye(eN),i=z(e,s),o=z(z(e,r),fn(oe(n,"float32")));return mn(a,i,o)}}}},y4={kernelName:ro,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,pe(ye(1),n)))}}},x4={kernelName:Nu,gradFunc:e=>({x:()=>qe(e)})},v4={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Oc(oe(n,"float32")),e)}}},w4={kernelName:Tu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Xm(oe(n,"float32")),e)}}},k4={kernelName:Su,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=VS(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>ya(e,u)}}},I4={kernelName:oo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=z(e,a);return{logits:()=>pe(i,z(fe(i,[r],s),a))}}},S4={kernelName:Cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ha(n))}}},Nk={kernelName:_u,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Pc(e,a,r)}}},Ck={kernelName:Eu,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Ze(e,a)}}},T4={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,z(un(oe(n,"float32")),2))}}},N4={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(oe(n,"float32"),2))}}},C4={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ye(2);return{a:()=>z(e,z(r,pe(n,a))),b:()=>z(e,z(r,pe(a,n)))}}},_4={kernelName:xs,gradFunc:e=>({x:()=>qe(e)})},E4={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=fe(s,i)),W(vt(s),a.shape)}}}},A4={kernelName:io,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Fa(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=z(i,Jn(a.shape,"float32"));return{x:()=>o}}},$4={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,lt(Oc(n)))}}},F4={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(pe(ye(1),lt(n)),e)}}},D4={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=qe(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=Y(s,Be(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=Y(s,Be(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=Y(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=Y(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},R4={kernelName:_r,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=Iv(r);return{x:()=>Ee(e,s)}}},M4={kernelName:Ru,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Ft(e,r)}}},P4={kernelName:Cc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O4(e,n)}}};function O4(e,t){let n=dr(t,qe(t)),a=Bu(e,n),r=Fr(t,ye(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=Zt(r,o+1);r=$a(r,Jn(a.shape,"bool"));let i=qe(a);return mn(r,a,i)}var L4={kernelName:Mu,gradFunc:e=>({x:()=>qe(e)})},z4=[nN,PW,OW,LW,zW,WW,BW,VW,UW,GW,HW,jW,XW,JW,QW,eB,tB,nB,aB,rB,sB,iB,lB,oB,cB,dB,hB,mB,fB,gB,i4,bB,yB,xB,vB,wB,IB,kB,SB,TB,NB,CB,_B,EB,AB,$B,FB,DB,RB,OB,Sk,Sk,LB,BB,GB,HB,jB,qB,KB,XB,YB,ZB,JB,QB,e4,Tk,Tk,t4,n4,s4,o4,l4,u4,p4,c4,d4,h4,m4,f4,g4,b4,y4,x4,v4,w4,k4,I4,S4,Nk,Nk,Ck,Ck,T4,C4,N4,_4,E4,A4,$4,F4,D4,R4,M4,P4,L4];for(let e of z4)aS(e);J().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};J().prototype.acos=function(){return this.throwIfDisposed(),Xx(this)};J().prototype.acosh=function(){return this.throwIfDisposed(),Yx(this)};J().prototype.add=function(e){return this.throwIfDisposed(),Y(this,e)};J().prototype.all=function(e,t){return this.throwIfDisposed(),jm(this,e,t)};J().prototype.any=function(e,t){return this.throwIfDisposed(),Qp(this,e,t)};J().prototype.argMax=function(e){return this.throwIfDisposed(),ri(this,e)};J().prototype.argMin=function(e){return this.throwIfDisposed(),Zx(this,e)};J().prototype.asScalar=function(){return this.throwIfDisposed(),$(this.size===1,()=>"The array must have only 1 element."),W(this,[])};J().prototype.asType=function(e){return this.throwIfDisposed(),oe(this,e)};J().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};J().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};J().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};J().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};J().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};J().prototype.asin=function(){return this.throwIfDisposed(),Jx(this)};J().prototype.asinh=function(){return this.throwIfDisposed(),Qx(this)};J().prototype.atan=function(){return this.throwIfDisposed(),ev(this)};J().prototype.atan2=function(e){return this.throwIfDisposed(),tv(this,e)};J().prototype.atanh=function(){return this.throwIfDisposed(),nv(this)};J().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ba(this,e,t,n,a)};J().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Pc(this,e,t)};J().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),ks(this,e,t,n,a,r)};J().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Xs(this,e)};J().prototype.cast=function(e){return this.throwIfDisposed(),oe(this,e)};J().prototype.ceil=function(){return this.throwIfDisposed(),uv(this)};J().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),en(this,e,t)};J().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Te&&(e=[e]),Ze([this,...e],t)};J().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),qm(this,e,t,n,a,r,s)};J().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Km(this,e,t,n,a,r)};J().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),$t(this,e,t,n,a,r,s)};J().prototype.cos=function(){return this.throwIfDisposed(),Oc(this)};J().prototype.cosh=function(){return this.throwIfDisposed(),Xm(this)};J().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),ec(this,e,t,n)};J().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Ym(this,e,t,n)};J().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),bv(this,e,t)};J().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Is(this,e,t,n,a,r,s)};J().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),yv(this,e,t,n,a,r)};J().prototype.divNoNan=function(e){return this.throwIfDisposed(),xv(this,e)};J().prototype.div=function(e){return this.throwIfDisposed(),he(this,e)};J().prototype.dot=function(e){return this.throwIfDisposed(),vv(this,e)};J().prototype.elu=function(){return this.throwIfDisposed(),Lu(this)};J().prototype.equal=function(e){return this.throwIfDisposed(),ea(this,e)};J().prototype.erf=function(){return this.throwIfDisposed(),wv(this)};J().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),Sv(this,e,t)};J().prototype.exp=function(){return this.throwIfDisposed(),fn(this)};J().prototype.expandDims=function(e){return this.throwIfDisposed(),Zt(this,e)};J().prototype.expm1=function(){return this.throwIfDisposed(),Tv(this)};J().prototype.fft=function(){return this.throwIfDisposed(),Hc(this)};J().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};J().prototype.floor=function(){return this.throwIfDisposed(),Wu(this)};J().prototype.floorDiv=function(e){return this.throwIfDisposed(),Hm(this,e)};J().prototype.gather=function(e,t){return this.throwIfDisposed(),Bu(this,e,t)};J().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Fr(this,e)};J().prototype.greater=function(e){return this.throwIfDisposed(),Cn(this,e)};J().prototype.ifft=function(){return this.throwIfDisposed(),wl(this)};J().prototype.irfft=function(){return this.throwIfDisposed(),hf(this)};J().prototype.isFinite=function(){return this.throwIfDisposed(),Nv(this)};J().prototype.isInf=function(){return this.throwIfDisposed(),Cv(this)};J().prototype.isNaN=function(){return this.throwIfDisposed(),_v(this)};J().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Lc(this,e)};J().prototype.lessEqual=function(e){return this.throwIfDisposed(),Ss(this,e)};J().prototype.less=function(e){return this.throwIfDisposed(),Jm(this,e)};J().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),Ev(this,e,t,n,a)};J().prototype.logSigmoid=function(){return this.throwIfDisposed(),Av(this)};J().prototype.logSoftmax=function(e){return this.throwIfDisposed(),ef(this,e)};J().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),tf(this,e,t)};J().prototype.log=function(){return this.throwIfDisposed(),ta(this)};J().prototype.log1p=function(){return this.throwIfDisposed(),zc(this)};J().prototype.logicalAnd=function(e){return this.throwIfDisposed(),$a(this,e)};J().prototype.logicalNot=function(){return this.throwIfDisposed(),Wc(this)};J().prototype.logicalOr=function(e){return this.throwIfDisposed(),nf(this,e)};J().prototype.logicalXor=function(e){return this.throwIfDisposed(),$v(this,e)};J().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Fe(this,e,t,n)};J().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Dt(this,e,t,n,a)};J().prototype.max=function(e,t){return this.throwIfDisposed(),ma(this,e,t)};J().prototype.maximum=function(e){return this.throwIfDisposed(),dr(this,e)};J().prototype.mean=function(e,t){return this.throwIfDisposed(),Nt(this,e,t)};J().prototype.min=function(e,t){return this.throwIfDisposed(),yl(this,e,t)};J().prototype.minimum=function(e){return this.throwIfDisposed(),Vu(this,e)};J().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Dv(this,e,t)};J().prototype.mod=function(e){return this.throwIfDisposed(),Rv(this,e)};J().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};J().prototype.neg=function(){return this.throwIfDisposed(),vt(this)};J().prototype.norm=function(e,t,n){return this.throwIfDisposed(),zu(this,e,t,n)};J().prototype.notEqual=function(e){return this.throwIfDisposed(),oi(this,e)};J().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),gl(this,e,t,n)};J().prototype.onesLike=function(){return this.throwIfDisposed(),na(this)};J().prototype.pad=function(e,t){return this.throwIfDisposed(),ya(this,e,t)};J().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),Mv(this,e,t,n,a,r,s)};J().prototype.pow=function(e){return this.throwIfDisposed(),$r(this,e)};J().prototype.prelu=function(e){return this.throwIfDisposed(),Uc(this,e)};J().prototype.prod=function(e,t){return this.throwIfDisposed(),Pv(this,e,t)};J().prototype.reciprocal=function(){return this.throwIfDisposed(),zv(this)};J().prototype.relu=function(){return this.throwIfDisposed(),Xe(this)};J().prototype.relu6=function(){return this.throwIfDisposed(),sf(this)};J().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};J().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};J().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),jT(this,e,t,n)};J().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),qT(this,e,t,n)};J().prototype.reverse=function(e){return this.throwIfDisposed(),ga(this,e)};J().prototype.rfft=function(){return this.throwIfDisposed(),jc(this)};J().prototype.round=function(){return this.throwIfDisposed(),of(this)};J().prototype.rsqrt=function(){return this.throwIfDisposed(),lf(this)};J().prototype.selu=function(){return this.throwIfDisposed(),uf(this)};J().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ts(this,e,t,n,a,r,s)};J().prototype.sigmoid=function(){return this.throwIfDisposed(),ha(this)};J().prototype.sign=function(){return this.throwIfDisposed(),Wv(this)};J().prototype.sin=function(){return this.throwIfDisposed(),pf(this)};J().prototype.sinh=function(){return this.throwIfDisposed(),cf(this)};J().prototype.slice=function(e,t){return this.throwIfDisposed(),Be(this,e,t)};J().prototype.softmax=function(e){return this.throwIfDisposed(),Ka(this,e)};J().prototype.softplus=function(){return this.throwIfDisposed(),mo(this)};J().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Vc(this,e,t)};J().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};J().prototype.sqrt=function(){return this.throwIfDisposed(),un(this)};J().prototype.square=function(){return this.throwIfDisposed(),lt(this)};J().prototype.squaredDifference=function(e){return this.throwIfDisposed(),mf(this,e)};J().prototype.squeeze=function(e){return this.throwIfDisposed(),Ns(this,e)};J().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Te?[this,e]:[this,...e];return Ft(n,t)};J().prototype.step=function(e){return this.throwIfDisposed(),go(this,e)};J().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Bv(this,e,t,n,a,r,s,i,o)};J().prototype.sub=function(e){return this.throwIfDisposed(),pe(this,e)};J().prototype.sum=function(e,t){return this.throwIfDisposed(),fe(this,e,t)};J().prototype.tan=function(){return this.throwIfDisposed(),Vv(this)};J().prototype.tanh=function(){return this.throwIfDisposed(),si(this)};J().prototype.tile=function(e){return this.throwIfDisposed(),Ln(this,e)};J().prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};J().prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};J().prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};J().prototype.topk=function(e,t){return this.throwIfDisposed(),Uv(this,e,t)};J().prototype.transpose=function(e){return this.throwIfDisposed(),Ee(this,e)};J().prototype.unique=function(e){return this.throwIfDisposed(),Gv(this,e)};J().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),gf(this,e,t)};J().prototype.unstack=function(e){return this.throwIfDisposed(),ct(this,e)};J().prototype.where=function(e,t){return this.throwIfDisposed(),mn(e,this,t)};J().prototype.zerosLike=function(){return this.throwIfDisposed(),qe(this)};var Ir=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ir.prototype)}},Wa=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Wa.prototype)}},V=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,V.prototype)}},Me=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Me.prototype)}},rN=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,rN.prototype)}},sN=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function li(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ar(e,t){if(!e)throw new rN(t)}function _k(e,t){let n=0;for(let a of e)a===t&&n++;return n}function On(e){return e.length===1?e[0]:e}function xt(e){return Array.isArray(e)?e:[e]}function Sr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Us(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Sa={};function ew(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Uy(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Uy(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Uy(a))}}}function Kc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Sa)i=Sa[s];else if(i=t[s],i==null)throw new V(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Sa?[o,l]=Sa.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Sa))u[h]=Sa[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},Sa);for(let h of Object.keys(n))Sa[h]=n[h];Uy(s.config);let c=l(o,s.config,n,r);return Sa=Object.assign({},d),c}else{let u=Object.assign({},Sa);for(let d of Object.keys(n))Sa[d]=n[d];let p=new o(s.config);return Sa=Object.assign({},u),p}}}function W4(e,t){return e<t?-1:e>t?1:0}function oh(e,t){return-1*W4(e,t)}function as(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function B4(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function bo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function tw(e,t,n=0,a=1/0){return ar(n>=0),ar(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Qt(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Qt(n,`element ${a+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${iN(e)}.`)}function iN(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>iN(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function V4(e,t,n){let a=n!=null?n():v.now(),r;return(...s)=>{let i=n!=null?n():v.now();return i-a<t||(a=i,r=e(...s)),r}}function oN(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var U4=0;function lN(){return U4++}var lh={};function _f(e=""){return e in lh||(lh[e]=0),lh[e]+=1,e+lh[e].toString()}var G4=["channelsFirst","channelsLast"],H4=["nearest","bilinear"],j4=["valid","same","causal"],q4=["max","avg"],K4=["sum","mul","concat","ave"],al=new Map;function Rt(e){bo(G4,"DataFormat",e)}function X4(e){bo(H4,"InterpolationFormat",e)}function xa(e){bo(j4,"PaddingMode",e)}function uN(e){bo(q4,"PoolMode",e)}var Hp=[],Ek="/";function Ys(e,t){Hp.push(e);try{let n=t();return Hp.pop(),n}catch(n){throw Hp.pop(),n}}function Y4(){return Hp.length===0?"":Hp.join(Ek)+Ek}function pN(e){if(!dN(e))throw new Error("Not a valid tensor name: '"+e+"'");return Y4()+e}function cN(e){if(!dN(e))throw new Error("Not a valid tensor name: '"+e+"'");al.has(e)||al.set(e,0);let t=al.get(e);if(al.set(e,al.get(e)+1),t>0){let n=`${e}_${t}`;return al.set(n,1),n}else return e}var Z4=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function dN(e){return!!e.match(Z4)}function J4(e){return e===parseInt(e.toString(),10)}function rs(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function Il(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function ls(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function Ha(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var yy;function Gt(){return yy==null&&(yy=ES().epsilon()),yy}function ja(){return"channelsLast"}function yo(e,t){return oe(e,t)}function Xc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),W(e,n)}function Q4(e,t){return P(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Xc(e,1);return Gy(n,[1,t,1])})}function eV(e){let t=[rs(e.shape)];return W(e,t)}function tV(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],rs(e.shape,1)];return W(e,t)}function Zs(e,t,n){return P(()=>{switch(e.rank){case 1:return Gc(e,t,n);case 2:return df(e,[t,0],[n,e.shape[1]]);case 3:return fo(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return vl(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Be(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Be(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function xy(e,t,n){return P(()=>{switch(e.rank){case 1:return Gc(e,t,n);case 2:return df(e,[0,t],[e.shape[0],n]);case 3:return fo(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return vl(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function uh(e,t,n,a){return P(()=>{switch(e.rank){case 1:return Gc(e,t,n);case 2:switch(a){case 1:return Zs(e,t,n);case 2:return xy(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Zs(e,t,n);case 2:return fo(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return xy(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Zs(e,t,n);case 2:return vl(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return vl(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return xy(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function nw(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ze(e,t)}function Ak(e,t){switch(e.rank){case 1:return pv([e,t]);case 2:return cv([e,t],0);case 3:return dv([e,t],0);case 4:return hv([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Gy(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ln(e,t)}function Ef(e,t=0,n=1,a,r){return rf(e,t,n,a,r)}function or(e,t,n,a){if(e.rank<2||t.rank<2)throw new Me(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Me(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return kl.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?Hy(e.rank,a,ja()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W(Ee(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(kl.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?Hy(e.rank,a,ja()):null,activation:n}),d)}}function hN(e,t,n){return P(()=>(Array.isArray(t)?t=Ke(t,"int32"):t=oe(t,"int32"),Bu(e,t,n)))}function Yc(e){return z(e,e)}function Hy(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Xa(e,t,n){return P(()=>(n==null&&(n=ja()),Rt(n),Y(e,Hy(e.rank,t,n))))}function nV(e,t=1){if(t!==1)throw new Me(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Lu(e)}function aV(e){return P(()=>he(e,Y(Lt(e),1)))}function mN(e,t,n,a){return P(()=>qv(e,t,n,a))}function rV(e){return P(()=>{let t=Y(.5,z(.2,e));return en(t,0,1)})}function Zc(e,t,n=!1){return n?e():t()}var sV=["fanIn","fanOut","fanAvg"],iV=["normal","uniform","truncatedNormal"];function oV(e){bo(sV,"FanMode",e)}function lV(e){bo(iV,"Distribution",e)}var Ra=class extends ne.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},aw=class extends Ra{apply(e,t){return It(e,t)}};aw.className="Zeros";ne.registerClass(aw);var Af=class extends Ra{apply(e,t){return Jn(e,t)}};Af.className="Ones";ne.registerClass(Af);var rw=class extends Ra{constructor(e){if(super(),typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(ye(this.value),Jn(e,t)))}getConfig(){return{value:this.value}}};rw.className="Constant";ne.registerClass(rw);var sw=class extends Ra{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Uu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};sw.className="RandomUniform";ne.registerClass(sw);var iw=class extends Ra{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`randomNormal does not support dType ${t}.`);return Ef(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};iw.className="RandomNormal";ne.registerClass(iw);var ow=class extends Ra{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`truncatedNormal does not support dType ${t}.`);return ff(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ow.className="TruncatedNormal";ne.registerClass(ow);var lw=class extends Ra{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,Zm(e[0]))})}getConfig(){return{gain:this.gain}}};lw.className="Identity";ne.registerClass(lw);function uV(e,t="channelsLast"){let n,a;if(Rt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=rs(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=rs(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=rs(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Bn=class extends Ra{constructor(e){if(super(),e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,oV(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,lV(this.distribution),this.seed=e.seed}apply(e,t){let n=uV(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`${this.getClassName()} does not support dType ${t}.`);return ff(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Uu(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Bn.className="VarianceScaling";ne.registerClass(Bn);var $f=class extends Bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};$f.className="GlorotUniform";ne.registerClass($f);var Ff=class extends Bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};Ff.className="GlorotNormal";ne.registerClass(Ff);var Df=class extends Bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};Df.className="HeNormal";ne.registerClass(Df);var Rf=class extends Bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};Rf.className="HeUniform";ne.registerClass(Rf);var Mf=class extends Bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};Mf.className="LeCunNormal";ne.registerClass(Mf);var Pf=class extends Bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};Pf.className="LeCunNormal";ne.registerClass(Pf);var uw=class extends Ra{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Me("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return P(()=>{if(e.length<2)throw new Me("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Ef(n,0,1,"float32"),r=Zv.gramSchmidt(a);return e[0]>e[1]&&(r=Ee(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};uw.className="Orthogonal";ne.registerClass(uw);var $k={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Fk(e,t={}){return Kc(e,ne.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return ew(e)}function St(e){if(typeof e=="string"){let t=e in $k?$k[e]:e;if(t==="GlorotNormal")return new Ff;if(t==="GlorotUniform")return new $f;if(t==="HeNormal")return new Df;if(t==="HeUniform")return new Rf;if(t==="LeCunNormal")return new Mf;if(t==="LeCunUniform")return new Pf;{let n={};return n.className=t,n.config={},Fk(n)}}else return e instanceof Ra?e:Fk(e)}function jy(e){return Array.isArray(e)&&Array.isArray(e[0])}function Wh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ne(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function tt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Bh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var Dk="Variable",fN=class{constructor(e,t="float32",n=Dk,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=lN(),n=n==null?Dk:n,this.originalName=pN(n),this.name=cN(this.originalName),this.trainable_=a,this.constraint=r,this.val=Hv(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),pV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function pV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function qy(e){return e.map(t=>t.read())}function pw(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ba=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=lN(),s!=null&&(this.originalName=pN(s),this.name=cN(this.originalName)),this.rank=t.length}},cV=0,Of=class{constructor(e,t){this.callArgs=t,this.id=cV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},dV=0,Ge=class extends ne.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=dV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Sr(n)+"_"+_f(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Wa(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return On(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return On(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} is not connected, no input to return.`);return On(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return On(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=xt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=xt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=xt(e),a=!0;for(let s of n)if(!(s instanceof Ba)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ba){r=!1;break}if(a===r)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ys(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of xt(e))s.push(i.shape);this.build(On(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=xt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=On(o),this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=hV(e),i=this.computeOutputShape(s),o,l=mV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Ba(l,u,this,xt(e),t,this.name,p)):o=new Ba(l,i,this,xt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ir(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ir(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Wa(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Bh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return qy(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=qy(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!v.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}pw(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():St("zeros"));let l=a.apply(t,n),u=new fN(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=xt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=xt(e);t=xt(t),n=xt(n),a=xt(a),r=Wh(r),s=Wh(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new Of({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function hV(e){e=xt(e);let t=[];for(let n of e)t.push(n.shape);return On(t)}function mV(e){return"float32"}function gN(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=gN(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var Hu=class extends Ge{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:_f("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ba(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Hu.className="InputLayer";ne.registerClass(Hu);function bN(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Hu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function fV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return oe(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var js=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof js)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=fV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ba){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ba){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&_e(this.id2Mask)}},Vh=new sN,Uh=new sN;function gV(e){Vh!=null&&Vh.setMaxEntries(e),Uh!=null&&Uh.setMaxEntries(e)}function Mp(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=Vh.get(p),c;if(d==null){let m=bV(i,t);d=m.sorted,c=m.recipientCounts,Vh.put(p,d),Uh.put(p,c)}c={},r||Object.assign(c,Uh.get(p));let h=new js(t);for(let m=0;m<d.length;++m){if(a!=null){let A=Oh().numTensors;A>a.maxNumTensors&&(a.maxNumTensors=A),A<a.minNumTensors&&(a.minNumTensors=A)}let f=d[m],g=f.sourceLayer;if(g instanceof Hu)continue;let b=[],y=[],x=[],w=!1;for(let A of f.inputs){let R=h.getValue(A),F=h.getMask(A);b.push(R),y.push(F),F!=null&&(w=!0),r||(c[A.name]--,c[A.name]===0&&!t.hasKey(A)&&o.indexOf(A.name)===-1&&!R.isDisposed&&A.sourceLayer.stateful!==!0&&x.push(R))}w&&(n=n||{},n.mask=y[0]);let I=xt(g.apply(b,n)),T=null;g.supportsMasking&&(T=g.computeMask(b,y));let C=xV(f),E=Array.isArray(C)?C:[C];for(let A=0;A<E.length;++A){h.hasKey(E[A])||h.add(E[A],I[A],Array.isArray(T)?T[0]:T);let R=o.indexOf(E[A].name);R!==-1&&(l[R]=I[A])}r||_e(x)}return h.disposeMasks(),s?l:l[0]}function bV(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=Rk(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=Rk(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:yV(a)}}function yV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Rk(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function xV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var vV=H();vV.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,gV);var yN={};Ae(yN,{maxNorm:()=>wV,minMaxNorm:()=>SV,nonNeg:()=>IV,unitNorm:()=>kV});function cw(e,t){return P(()=>un(fe(z(e,e),t,!0)))}var Jc=class extends ne.Serializable{getConfig(){return{}}},dw=class extends Jc{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=cw(e,this.axis),n=en(t,0,this.maxValue);return z(e,he(n,Y(Gt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};dw.className="MaxNorm";ne.registerClass(dw);var hw=class extends Jc{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>he(e,Y(Gt(),cw(e,this.axis))))}getConfig(){return{axis:this.axis}}};hw.className="UnitNorm";ne.registerClass(hw);var mw=class extends Jc{apply(e){return Xe(e)}};mw.className="NonNeg";ne.registerClass(mw);var fw=class extends Jc{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=cw(e,this.axis),n=Y(z(this.rate,en(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,he(n,Y(Gt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};fw.className="MinMaxNorm";ne.registerClass(fw);var Mk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function qt(e){return ew(e)}function Pk(e,t={}){return Kc(e,ne.SerializationMap.getMap().classNameMap,t,"constraint")}function Kt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Mk?Mk[e]:e,config:{}};return Pk(t)}else return e instanceof Jc?e:Pk(e)}function wV(e){return new dw(e)}function kV(e){return new hw(e)}function IV(){return new mw}function SV(e){return new fw(e)}var xN={};Ae(xN,{constant:()=>CV,glorotNormal:()=>RV,glorotUniform:()=>DV,heNormal:()=>MV,heUniform:()=>PV,identity:()=>$V,leCunNormal:()=>OV,leCunUniform:()=>LV,ones:()=>NV,orthogonal:()=>zV,randomNormal:()=>EV,randomUniform:()=>_V,truncatedNormal:()=>AV,varianceScaling:()=>FV,zeros:()=>TV});function TV(){return new aw}function NV(){return new Af}function CV(e){return new rw(e)}function _V(e){return new sw(e)}function EV(e){return new iw(e)}function AV(e){return new ow(e)}function $V(e){return new lw(e)}function FV(e){return new Bn(e)}function DV(e){return new $f(e)}function RV(e){return new Ff(e)}function MV(e){return new Df(e)}function PV(e){return new Rf(e)}function OV(e){return new Mf(e)}function LV(e){return new Pf(e)}function zV(e){return new uw(e)}var vN={};Ae(vN,{Layer:()=>Ge,RNN:()=>mr,RNNCell:()=>ad,activation:()=>dG,add:()=>wG,alphaDropout:()=>rH,average:()=>kG,averagePooling1d:()=>T0,averagePooling2d:()=>N0,averagePooling3d:()=>C0,avgPool1d:()=>$G,avgPool2d:()=>DG,avgPool3d:()=>MG,avgPooling1d:()=>FG,avgPooling2d:()=>RG,avgPooling3d:()=>PG,batchNormalization:()=>_G,bidirectional:()=>YG,categoryEncoding:()=>lH,concatenate:()=>IG,conv1d:()=>aG,conv2d:()=>rG,conv2dTranspose:()=>sG,conv3d:()=>iG,conv3dTranspose:()=>oG,convLstm2d:()=>jG,convLstm2dCell:()=>qG,cropping2D:()=>uG,dense:()=>hG,depthwiseConv2d:()=>cG,dot:()=>CG,dropout:()=>mG,elu:()=>ZU,embedding:()=>vG,flatten:()=>gG,gaussianDropout:()=>aH,gaussianNoise:()=>nH,globalAveragePooling1d:()=>OG,globalAveragePooling2d:()=>LG,globalMaxPool1d:()=>JG,globalMaxPool2d:()=>QG,globalMaxPooling1d:()=>c2,globalMaxPooling2d:()=>d2,gru:()=>WG,gruCell:()=>BG,input:()=>LN,inputLayer:()=>YU,layerNormalization:()=>EG,leakyReLU:()=>QU,lstm:()=>VG,lstmCell:()=>UG,masking:()=>sH,maxPool1d:()=>eH,maxPool2d:()=>tH,maxPooling1d:()=>h2,maxPooling2d:()=>m2,maxPooling3d:()=>zG,maximum:()=>SG,minimum:()=>TG,multiply:()=>NG,permute:()=>xG,prelu:()=>eG,reLU:()=>JU,repeatVector:()=>bG,rescaling:()=>iH,reshape:()=>yG,resizing:()=>oH,rnn:()=>KG,separableConv2d:()=>lG,simpleRNN:()=>GG,simpleRNNCell:()=>HG,softmax:()=>tG,spatialDropout1d:()=>fG,stackedRNNCells:()=>XG,thresholdedReLU:()=>nG,timeDistributed:()=>ZG,upSampling2d:()=>pG,zeroPadding2d:()=>AG});async function Zr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];_e(a)}}function wN(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Ok;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Ok||(Ok={}));var WV=125,Sl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},kN=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},BV=class extends Sl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=P(()=>Y(this.totals[a],z(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let a=z(he(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Jt(t[n])}))}},IN=class extends Sl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},SN=class extends Sl{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Jv,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=WV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=V4(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Zr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Zr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Zr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Zr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Zr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Zr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Zr(e),await this.trainEnd(e))}};function TN(e,t){return e==null&&(e={}),e instanceof Sl?[e]:Array.isArray(e)&&e[0]instanceof Sl?e:xt(e).map(n=>new SN(n,t))}var Ca=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ca.checkForDuplicate(t),Ca.constructors[e]==null&&(Ca.constructors[e]=[]),Ca.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ca.constructors)Ca.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){Ca.constructors={}}static createCallbacks(e){let t=[];for(let n in Ca.constructors){let a=+n;e>=a&&t.push(...Ca.constructors[a])}return t.map(n=>new n)}};Ca.constructors={};function NN(e,t,n,a,r,s,i,o,l){let u=new IN,p=[new BV,...Ca.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new kN(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function Ua(e,t={},n=!1){return Kc(e,ne.SerializationMap.getMap().classNameMap,t,"layer",n)}function Gh(e,t){return P(()=>{e.dtype!=="float32"&&(e=oe(e,"float32"));let n=fe(Yc(e),t,!0),a=gn(n.shape,Gt()),r=un(dr(n,a));return he(e,r)})}function xo(e,t){return P(()=>Nt(Yc(pe(t,e)),-1))}function Lf(e,t){return P(()=>Nt(Lt(pe(t,e)),-1))}function ju(e,t){return P(()=>{let n=pe(e,t),a=en(Lt(e),Gt(),Number.MAX_VALUE),r=Lt(he(n,a));return z(100,Nt(r,-1))})}function VV(e,t){return P(()=>{let n=en(t,Gt(),Number.MAX_VALUE),a=ta(Y(1,n)),r=en(e,Gt(),Number.MAX_VALUE),s=ta(Y(1,r));return Nt(Yc(pe(a,s)),-1)})}function UV(e,t){return P(()=>{let n=dr(0,pe(1,z(e,t)));return Nt(Yc(n),-1)})}function GV(e,t){return P(()=>{let n=dr(0,pe(1,z(e,t)));return Nt(n,-1)})}function HV(e,t){return P(()=>{let n=fe(z(e,t),-1),a=ma(z(pe(1,e),t),-1);return dr(0,Y(1,pe(a,n)))})}function jV(e,t){return P(()=>{let n=Math.log(2),a=pe(t,e),r=pe(Y(a,mo(z(-2,a))),n);return Nt(r,-1)})}function tc(e,t,n=!1){return P(()=>{if(n)t=Ka(t);else{let a=fe(t,t.shape.length-1,!0);t=he(t,a)}return t=en(t,Gt(),1-Gt()),vt(fe(z(oe(e,"float32"),ta(t)),t.shape.length-1))})}function Hh(e,t,n=!1){return P(()=>{let a=oe(Wu(eV(e)),"int32");t=en(t,Gt(),1-Gt());let r=t.shape,s=W(gl(a,r[r.length-1]),r);return tc(s,t,n)})}function qV(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=Xe(t),a=vt(Lt(t));return Y(pe(n,z(t,e)),zc(fn(a)))})}function zf(e,t){return P(()=>{let n;return n=en(t,Gt(),1-Gt()),n=ta(he(n,pe(1,n))),Nt(qV(e,n),-1)})}function KV(e,t){return P(()=>{let n=en(e,Gt(),1),a=en(t,Gt(),1);return fe(z(e,ta(he(n,a))),-1)})}function XV(e,t){return P(()=>{let n=ta(Y(Gt(),t));return Nt(pe(t,z(e,n)),-1)})}function gw(e,t){return P(()=>{let n=Gh(e,-1),a=Gh(t,-1),r=z(n,a);return vt(fe(r,-1))})}var jh={meanSquaredError:xo,meanAbsoluteError:Lf,meanAbsolutePercentageError:ju,meanSquaredLogarithmicError:VV,squaredHinge:UV,hinge:GV,categoricalHinge:HV,logcosh:jV,categoricalCrossentropy:tc,sparseCategoricalCrossentropy:Hh,binaryCrossentropy:zf,kullbackLeiblerDivergence:KV,poisson:XV,cosineProximity:gw};function vy(e){if(typeof e=="string"){if(e in jh)return jh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function bw(e,t){return P(()=>{let n=z(.5,na(t)),a=yo(Cn(t,n),e.dtype);return Nt(ea(e,a),-1)})}function yw(e,t){return P(()=>yo(ea(ri(e,-1),ri(t,-1)),"float32"))}function CN(e,t){return P(()=>oe(fe($a(ea(e,1),ea(t,1))),"float32"))}function YV(e,t){return P(()=>oe(fe($a(ea(e,1),ea(t,0))),"float32"))}function ZV(e,t){return P(()=>oe(fe($a(ea(e,0),ea(t,1))),"float32"))}function _N(e,t){return P(()=>{let n=CN(e,t),a=ZV(e,t),r=Y(n,a);return oe(mn(Cn(r,0),he(n,r),0),"float32")})}function JV(e,t){return P(()=>{let n=CN(e,t),a=YV(e,t),r=Y(n,a);return oe(mn(Cn(r,0),he(n,r),0),"float32")})}function EN(e,t){return zf(e,t)}function AN(e,t){return e.rank===t.rank&&(e=Ns(e,[e.rank-1])),t=ri(t,-1),t.dtype!==e.dtype&&(t=oe(t,e.dtype)),oe(ea(e,t),"float32")}var QV=xo,eU=xo,tU=Lf,nU=Lf,aU=ju,rU=ju,xw=tc,sU=gw,$N=Hh,qh={binaryAccuracy:bw,categoricalAccuracy:yw,precision:_N,categoricalCrossentropy:xw,sparseCategoricalCrossentropy:$N,mse:QV,MSE:eU,mae:tU,MAE:nU,mape:aU,MAPE:rU,cosine:sU};function iU(e){if(typeof e=="string"&&e in qh)return qh[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function ph(e){if(ar(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(jh))if(jh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(qh))if(qh[n]===e){t=n;break}return t!==void 0?t:e.name}}function oU(e){let t={Adagrad:()=>Ws.adagrad(.01),Adadelta:()=>Ws.adadelta(1,.95,Gt()),Adam:()=>Ws.adam(.001,.9,.999,Gt()),Adamax:()=>Ws.adamax(.002,.9,.999,Gt(),0),RMSProp:()=>Ws.rmsprop(.001,.9,0,Gt()),SGD:()=>Ws.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}function Lk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Ky(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function Ky(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Ky(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Ky(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function lU(e,t,n,a=console.log){let r=pU(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),Kh(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?cU(o[p],n,a):dU(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=uU(e),u=Bh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function uU(e){let t;return e.collectedTrainableWeights!=null?t=Bh(e.collectedTrainableWeights):t=Bh(e.trainableWeights),t}function pU(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Kh(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function cU(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];Kh(o,t,n)}function dU(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];Kh(p,t,a);for(let d=1;d<i.length;++d)Kh(["","","","",i[d]],t,a)}function FN(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function nc(e,t){if(e===null)return null;if(typeof e=="string")return Us(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];FN(t,r,s)?n.push(s):n.push(nc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Us(a);n[s]=nc(r,s)}}return n}}function Xy(e,t){if(e==null)return null;if(typeof e=="string")return Sr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];FN(t,r,s)?n.push(s):n.push(Xy(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Sr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=Xy(r,a)}return n}}var vw="4.0.0",tr=class extends Ge{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=_f(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],as(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);as(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let b of this.inputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;ar(x===0,"input layer has >1 nodes"),ar(w===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof Hu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},a={},r={},s={},i=[],o=(b,y,x,w,I,T)=>{(w==null||I==null||T==null)&&(w=b.sourceLayer,I=b.nodeIndex,T=b.tensorIndex);let C=w.inboundNodes[I];if(x.indexOf(C)!==-1)throw new Wa(`The tensor ${b.name} at layer "${w.name}" is part of a cycle.`);if(y.indexOf(C)!==-1)return;this.containerNodes.add(tr.nodeKey(w,I)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(C)===-1&&x.push(C);let E=C.inboundLayers.length;for(let A=0;A<E;A++){let R=C.inputTensors[A],F=C.inboundLayers[A],S=C.nodeIndices[A],M=C.tensorIndices[A];o(R,y,x,F,S,M)}for(y.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);i.push(C)},l=[],u=[];for(let b of this.outputs)o(b,l,u);let p=i.slice().reverse();for(let b of p){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],x=a[b.outboundLayer.id]==null?0:a[b.outboundLayer.id];y=Math.max(y,x),a[b.outboundLayer.id]=y,r[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let w=0;w<b.inboundLayers.length;w++){let I=b.inboundLayers[w],T=b.nodeIndices[w],C=I.inboundNodes[T],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(y+1,E),n[C.id]=C}}let d={};for(let b in t){let y=t[b];y in d||(d[y]=[]),d[y].push(n[b])}let c={};for(let b in a){let y=a[b];y in c||(c[y]=[]),c[y].push(r[b])}let h=Object.keys(c).map(b=>parseInt(b,10)).sort(oh);this.layers=[];for(let b of h){let y=c[b];y.sort((x,w)=>{let I=s[x.id],T=s[w.id];return I<T?-1:I>T?1:0});for(let x of y)x instanceof tr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(b=>parseInt(b,10)).sort(oh);let m=this.inputs.slice(),f=[];for(let b of h)for(let y of d[b]){let x=y.outboundLayer;if(x!=null){for(let w of y.inputTensors)if(m.indexOf(w)===-1)throw new Wa(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of y.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(x=>x===b).length;if(y!==1)throw new Wa(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${a} weights are not set: ${s}`)}pw(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${vw}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Xy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=xt(e);let n=new js;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Mp(this.outputs,n,t)})}computeMask(e,t){return P(()=>{e=xt(e);let n;return t==null?n=li(null,e.length):n=xt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Wh(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(oh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],b=l.tensorIndices[m],y=`${f.name}_${g}_${b}`,x=n[y];p.push(x)}let d=u.computeOutputShape(On(p)),c=Wh(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];ar(o in n),r.push(n[o])}return On(r)}runInternalGraph(e,t){t==null&&(t=li(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(oh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,b,y;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),b=xt(p.call(x,m)),y=xt(p.computeMask(x,w)),f=[x],g=[w]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),b=xt(p.call(f,m)),y=xt(p.computeMask(f,g));if(p.activityRegularizer)throw new Me("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],I=b[x],T=y[x];n[w.id]=[I,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){ar(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof tr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=tr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return P(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=tr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=tr.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],b=d.nodeIndices[f],y=d.tensorIndices[f],x=tr.nodeKey(g,b),w=t[x];w==null&&(w=0),m.push([g.name,w,y,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=tr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=tr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let b=[],y;for(let x of g){let w=x[0],I=x[1],T=x[2];if(y=x[3]==null?{}:x[3],!(w in r)){i(f,g);return}let C=r[w];if(C.inboundNodes.length<=I){i(f,g);return}let E=C.inboundNodes[I];b.push(E.outputTensors[T])}b.length>0&&f.apply(On(b),y)}function l(f){let g=f.name,b=Ua(f,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(a),r[g]=b,f.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${y}`);i(b,y)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!B4(s);)for(let f of p){let g=r[f.name];if(g.name in s){let b=s[g.name];delete s[g.name];for(let y of b)o(g,y)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],b=f[1],y=f[2];ar(g in r);let x=r[g].inboundNodes[b].outputTensors;d.push(x[y])}let m=t.outputLayers;for(let f of m){let g=f[0],b=f[1],y=f[2];ar(g in r);let x=r[g].inboundNodes[b].outputTensors;c.push(x[y])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function hU(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function DN(e,t){return hU(e,t,"classWeight")}async function RN(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=P(()=>{if(e.shape.length===1)return ir(e);if(e.shape.length===2){if(e.shape[1]>1)return ri(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());_e(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Ke(i,"float32")}else return null}function mU(e,t){return z(e,t)}var fU=32;function MN(e,t){let n,a,r=t;n=r.xs,a=r.ys,v.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=zk("input",e.inputNames,n),i=zk("output",e.outputNames,a),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function zk(e,t,n){if(n instanceof Te)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function gU(e){if(e.length===3)throw new Me("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function bU(e,t,n){let a=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(Wk(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=gU(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=TN(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=NN(p,d,n.epochs,null,null,yU(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let b=0,y=0;for(a||(f=await t.iterator());!a||b<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:I}=MN(e,x.value),T={};T.batch=y,T.size=w[0].shape[0],await c.onBatchBegin(y,T);let C=[];if(n.classWeight!=null){let R=DN(n.classWeight,e.outputNames);for(let F=0;F<R.length;++F)C.push(await RN(I[F],null,R[F]))}let E=w.concat(I).concat(C),A=o(E);_e(E);for(let R=0;R<l.length;++R){let F=l[R],S=A[R];T[F]=S,Jt(S)}await c.onBatchEnd(y,T),wN(T),y++,b++}if(a?b>=n.batchesPerEpoch:x.done){if(r){let w;Wk(n.validationData)?w=xt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=xt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?fU:n.validationBatchSize,verbose:0}));for(let I=0;I<e.metricsNames.length;++I)g[`val_${e.metricsNames[I]}`]=w[I]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function yU(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Wk(e){return typeof e.iterator=="function"}function xU(e){return typeof e.next=="function"}async function vU(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Me("Verbose mode is not implemented yet.");v.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=xU(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=P(()=>{if(u.value){let{xs:p,ys:d}=MN(e,u.value),c=p.concat(d),h=P(()=>r(c));if(_e(c),l===0)for(let f=0;f<h.length;++f)s.push(ye(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],b=s[f];s[f]=P(()=>Y(s[f],z(m,g))),l>0&&_e(b)}_e(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=he(s[u],o),_e(p)}return On(s)}function Yy(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Pp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Zs(a,t,n-t)):Zs(e,t,n-t)}function ww(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>ww(n,t)):hN(e,t.dtype==="int32"?t:oe(t,"int32")))}function Zy(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function wU(e,t,n,a,r,s,i,o,l,u,p,d,c,h,m){r==null&&(r=32),s==null&&(s=1),p==null&&(p=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),b;g!=null&&(b=Ha(0,g)),i==null&&(i=1);let{callbackList:y,history:x}=NN(o,i,s,c,g,h,r,f,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let w=c;w<s;++w){await y.onEpochBegin(w);let I={};if(h!=null)throw new Me("stepsPerEpoch mode is not implemented yet.");{if(p==="batch")throw new Me("batch shuffling is not implemneted yet");p&&v.shuffle(b);let T=Ke(b),C=Zy(g,r);for(let E=0;E<C.length;++E){let A={};if(await y.onBatchBegin(E,A),P(()=>{let R=C[E][0],F=C[E][1],S=Zs(T,R,F-R);A.batch=E,A.size=F-R;let M=ww(n,S),B=t(M);for(let U=0;U<a.length;++U){let G=a[U],q=B[U];A[G]=q,Jt(q)}if(E===C.length-1&&f){let U=e.testLoop(l,u,r);for(let G=0;G<a.length;++G){let q=a[G],K=U[G];Jt(K),I["val_"+q]=K}}}),await y.onBatchEnd(E,A),wN(A),e.stopTraining_)break}T.dispose()}if(await y.onEpochEnd(w,I),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function kU(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,p,d,c;try{let h=a.batchSize==null?32:a.batchSize;Yy(h);let m=!1,f=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,m,h);r=f[0],s=f[1],c=f[2];let g=!1,b;if(a.validationData!=null&&a.validationData.length>0){if(g=!0,a.validationData.length===2)l=a.validationData[0],u=a.validationData[1];else throw a.validationData.length===3?new Me("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let E=!0,A=await e.standardizeUserData(l,u,null,null,E,h);p=A[0],d=A[1],b=p.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){g=!0;let E=Math.floor(r[0].shape[0]*(1-a.validationSplit)),A=r[0].shape[0];p=Pp(r,E,A),i=r,r=Pp(r,0,E),d=Pp(s,E,A),o=s,s=Pp(s,0,E),b=p.concat(d)}else a.validationSteps!=null&&(g=!0);let y=r.concat(s).concat(c);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),w=e.getDedupedMetricsNames(),I,T;g?(e.makeTestFunction(),I=e.testFunction,T=w.slice().concat(w.map(E=>"val_"+E))):(I=null,b=[],T=w.slice());let C=TN(a.callbacks,a.yieldEvery);return await wU(e,x,y,w,h,a.epochs,a.verbose,C,I,b,a.shuffle,T,a.initialEpoch,null,null)}finally{e.isTraining=!1,La(r,t),La(s,n),La(i,t),La(o,n),La(p,l),La(d,u),c!=null&&_e(c)}}function PN(e){let t=[];e instanceof Te&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Xc(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function La(e,t){if(e==null)return;let n=[];if(t instanceof Te)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Te)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function IU(e){return e instanceof Te}function Jy(e){return Array.isArray(e)}function Bk(e){return!IU(e)&&!Jy(e)}function Vk(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Jy(e)&&e.length>0)i=!0;else if(Bk(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(Bk(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Jy(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=PN(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new V(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function SU(e,t,n){let a=as(e.map(s=>s.shape[0]));a.sort();let r=as(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!v.arraysEqual(a,r))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function TU(e,t,n){let a=[xo,zf,tc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===tc&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Uk(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new V(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function NU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var CU="layers-model",Er=class extends tr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");lU(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=oU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Rr))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(vy(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>vy(s))}else{let s=vy(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ys("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=NU(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ys("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===zf?["accuracy","acc"].indexOf(c)!==-1?p=bw:["crossentropy","ce"].indexOf(c)!==-1&&(p=EN):this.lossFunctions[s]===Hh?["accuracy","acc"].indexOf(c)!==-1?p=AN:["crossentropy","ce"].indexOf(c)!==-1&&(p=$N):["accuracy","acc"].indexOf(c)!==-1?p=yw:["crossentropy","ce"].indexOf(c)!==-1&&(p=xw);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=iU(c),u=l+ph(c);let h;Ys(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;Yy(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return On(l)}finally{La(s[0],e),La(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),vU(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new V(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new js;if(e instanceof Te&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Mp(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=li(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let a=this.checkNumSamples(e);if(n)throw new Me("Verbose predictLoop() is not implemented yet.");let r=Zy(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)P(()=>{let o=r[i][0],l=r[i][1],u=Pp(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new js(p);return Mp(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return On(s.map(i=>Ze(i,0)))})}predict(e,t={}){let n=PN(e);Uk(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return Yy(a),this.predictLoop(n,a)}finally{La(n,e)}}predictOnBatch(e){Uk(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Wa("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Hh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=Vk(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Vk(t,this.feedOutputNames,r,!1,"target"),SU(e,t,null),TU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=DN(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await RN(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return P(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Me("Verbose mode is not implemented yet.");if(r!=null)throw new Me("steps mode in testLoop() is not implemented yet");{let o=Zy(s,n),l=Ke(Ha(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=Zs(l,p,d-p),h=ww(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ye(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=Y(i[f],z(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=he(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;_k(e,a)>1&&(r+=`_${_k(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new js(u),d=Mp(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h],f=m(a[h],d[h]);r[h]!=null&&(f=mU(f,r[h]));let g=Nt(f);t.push(g),h===0?c=f:c=Y(c,f)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Nt(f(a[g],d[g]))}Jt(m),s.push(m)}return c=Nt(c),this.calculateLosses().forEach(h=>{c=Y(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new js(s),o=Mp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=Nt(u(r[l],o[l]));l===0?n=p:n=Y(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=Nt(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){return kU(this,e,t,n)}async fitDataset(e,t){return bU(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return _e(s),La(n[0],e),La(n[1],t),On(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Oh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Oh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Sr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Sr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Sr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Sr(ph(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Sr(ph(e)));{let e={};for(let t in this.metrics)e[t]=Sr(ph(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=nc(e.optimizer_config),n=Ua(t),a;if(typeof e.loss=="string")a=Us(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Us(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Us(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Us(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Us(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Ut.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ut.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:CU,generatedBy:`TensorFlow.js tfjs-layers v${vw}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Ut.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Ut.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(Lk(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){Lk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Er.className="Model";ne.registerClass(Er);var ON=class extends Er{};ON.className="Functional";ne.registerClass(ON);async function _U(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=nc(n),r=Ua(a,t);if(e.weightsManifest!=null){let s=await Ut.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),_e(s)}return r}async function EU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ut.getLoadHandlers(e,t);if(n.length===0)n.push(Ut.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return AU(e,void 0,t)}async function AU(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Ua(nc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=$U(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),_e(u),_e(p.map(d=>d.tensor))}return o}function $U(e,t){let n=Ut.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Tl=class extends Er{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:_f("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Tl||e instanceof Er,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=bN({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=gN(this.outputs[0])}this.inboundNodes=[],new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:li(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(tt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Er({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Wa("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Wa("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Wa("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Wa("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Tl))throw new Me(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Ua(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Tl.className="Sequential";ne.registerClass(Tl);function FU(e){return new Er(e)}function DU(e){return new Tl(e)}function LN(e){return bN(e)}function RU(e,t){Ca.registerCallbackConstructor(e,t)}var Un=class extends ne.Serializable{getConfig(){return{}}},zN=class extends Un{apply(e,t=1){return nV(e,t)}};zN.className="elu";ne.registerClass(zN);var WN=class extends Un{apply(e){return uf(e)}};WN.className="selu";ne.registerClass(WN);var BN=class extends Un{apply(e){return Xe(e)}};BN.className="relu";ne.registerClass(BN);var VN=class extends Un{apply(e){return P(()=>Vu(6,Xe(e)))}};VN.className="relu6";ne.registerClass(VN);var UN=class extends Un{apply(e){return e}};UN.className="linear";ne.registerClass(UN);var GN=class extends Un{apply(e){return ha(e)}};GN.className="sigmoid";ne.registerClass(GN);var HN=class extends Un{apply(e){return rV(e)}};HN.className="hardSigmoid";ne.registerClass(HN);var jN=class extends Un{apply(e){return mo(e)}};jN.className="softplus";ne.registerClass(jN);var qN=class extends Un{apply(e){return aV(e)}};qN.className="softsign";ne.registerClass(qN);var KN=class extends Un{apply(e){return si(e)}};KN.className="tanh";ne.registerClass(KN);var kw=class extends Un{apply(e,t=-1){return Ka(e,t)}};kw.className="softmax";ne.registerClass(kw);var XN=class extends Un{apply(e,t=-1){return ef(e,t)}};XN.className="logSoftmax";ne.registerClass(XN);var YN=class extends Un{apply(e,t=1){return P(()=>z(ha(z(e,t)),e))}};YN.className="swish";ne.registerClass(YN);var ZN=class extends Un{apply(e){return P(()=>z(e,si(mo(e))))}};ZN.className="mish";ne.registerClass(ZN);function us(e){return e.getClassName()}function wy(e,t={}){return Kc(e,ne.SerializationMap.getMap().classNameMap,t,"activation")}function ps(e){if(e==null){let t={};return t.className="linear",t.config={},wy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},wy(t)}else return e instanceof Un?e:wy(e)}function Iw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var JN=class extends ne.Serializable{},Qc=class extends JN{constructor(e){super(),Iw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=It([1]);return this.hasL1&&(t=Y(t,fe(z(this.l1,Lt(e))))),this.hasL2&&(t=Y(t,fe(z(this.l2,Yc(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Qc.className="L1L2";ne.registerClass(Qc);function MU(e){return Iw(e),new Qc({l1:e!=null?e.l1:null,l2:0})}function PU(e){return Iw(e),new Qc({l2:e!=null?e.l2:null,l1:0})}var Gk={l1l2:"L1L2"};function pt(e){return ew(e)}function Hk(e,t={}){return Kc(e,ne.SerializationMap.getMap().classNameMap,t,"regularizer")}function Tt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Gk?Gk[e]:e,config:{}};return Hk(t)}else return e instanceof JN?e:Hk(e)}var Sw=class extends Ge{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ne(e);let n=Xe(e);return this.maxValue!=null&&(n=en(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Sw.className="ReLU";ne.registerClass(Sw);var Tw=class extends Ge{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ne(e);return Lc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Tw.className="LeakyReLU";ne.registerClass(Tw);var Nw=class extends Ge{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=St(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Tt(e.alphaRegularizer),this.alphaConstraint=Kt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=tt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ne(e),Uc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ct(this.alphaInitializer),alphaRegularizer:pt(this.alphaRegularizer),alphaConstraint:qt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Nw.className="PReLU";ne.registerClass(Nw);var Cw=class extends Ge{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Me(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ne(e);return Lu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Cw.className="ELU";ne.registerClass(Cw);var _w=class extends Ge{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ne(e);return z(n,oe(Cn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};_w.className="ThresholdedReLU";ne.registerClass(_w);var Ew=class extends Ge{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new kw().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ne(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ew.className="Softmax";ne.registerClass(Ew);function dl(e,t,n){if(typeof e=="number")return li(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!J4(r))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ga(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function rr(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ls([n-t,0]);else if(a==="same")e=e*t;else throw new V(`Unsupport padding mode: ${a}.`);return e}function Aw(e,t){return P(()=>(Rt(t),t==="channelsFirst"?Ee(e,[0,2,3,1]):e))}function QN(e,t){return P(()=>(Rt(t),t==="channelsFirst"?Ee(e,[0,2,3,4,1]):e))}function OU(e,t,n,a=1,r="valid",s,i=1){return P(()=>{if(s==null&&(s=ja()),Rt(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ee(e,[0,2,1])),r==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=qm(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Xa(o,n)),o})}function jk(e,t,n,a=[1,1],r="valid",s,i,o=null){return P(()=>{if(s==null&&(s=ja()),Rt(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Aw(e,s);if(r==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=kl.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ee(l,[0,3,1,2])),l})}function LU(e,t,n,a=[1,1,1],r="valid",s,i){return P(()=>{if(s==null&&(s=ja()),Rt(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=QN(e,s);if(r==="causal")throw new Me("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=fv(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Xa(o,n)),s==="channelsFirst"&&(o=Ee(o,[0,4,1,2,3])),o})}var $w=class extends Ge{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",$w.verifyArgs(t),this.rank=e,Qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Me(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=dl(t.kernelSize,e,"kernelSize"),this.strides=dl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,xa(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=ps(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=St(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Kt(t.biasConstraint),this.biasRegularizer=Tt(t.biasRegularizer),this.activityRegularizer=Tt(t.activityRegularizer),this.dilationRate=dl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ar("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!tw(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:us(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},ed=class extends $w{constructor(e,t){super(e,t),this.kernel=null,ed.verifyArgs(t),this.filters=t.filters,Qt(this.filters,"filters"),this.kernelInitializer=St(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Kt(t.kernelConstraint),this.kernelRegularizer=Tt(t.kernelRegularizer)}build(e){e=tt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=Ne(e);let n,a=this.bias==null?null:this.bias.read(),r=oN(this.activation.getClassName());if(r!=null&&this.rank===2)n=jk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=OU(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=jk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=LU(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Me("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=tt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ga(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Ct(this.kernelInitializer),kernelRegularizer:pt(this.kernelRegularizer),kernelConstraint:qt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},td=class extends ed{constructor(e){super(2,e),td.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!tw(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};td.className="Conv2D";ne.registerClass(td);var nd=class extends ed{constructor(e){super(3,e),nd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};nd.className="Conv3D";ne.registerClass(nd);var Fw=class extends td{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=tt(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Ne(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=rr(o,d,u,this.padding),m=rr(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ee(n,[0,2,3,1]));let g=Km(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ee(g,[0,3,1,2])),this.bias!=null&&(g=Xa(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=tt(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=rr(t[a],o,s,this.padding),t[r]=rr(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Fw.className="Conv2DTranspose";ne.registerClass(Fw);var Dw=class extends nd{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=tt(e),e.length!==5)throw new V("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Ne(e);if(n.shape.length!==5)throw new V(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],b=rr(l,m,d,this.padding),y=rr(u,f,c,this.padding),x=rr(p,g,h,this.padding),w=[r,b,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ee(n,[0,2,3,4,1]));let I=gv(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(I=Ee(I,[0,4,1,2,3])),this.bias!==null&&(I=Xa(I,this.bias.read(),this.dataFormat)),this.activation!==null&&(I=this.activation.apply(I)),I})}computeOutputShape(e){e=tt(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=rr(t[a],u,i,this.padding),t[r]=rr(t[r],p,o,this.padding),t[s]=rr(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Dw.className="Conv3DTranspose";ne.registerClass(Dw);var e2=class extends ed{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Tt(t.depthwiseRegularizer),this.depthwiseConstraint=Kt(t.depthwiseConstraint),this.pointwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Tt(t.pointwiseRegularizer),this.pointwiseConstraint=Kt(t.pointwiseConstraint)}build(e){if(e=tt(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{e=Ne(e);let n;if(this.rank===1)throw new Me("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ee(e,[0,2,3,1])),n=Ts(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Xa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ee(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.pointwiseRegularizer=pt(this.pointwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseConstraint),e.pointwiseConstraint=qt(this.pointwiseConstraint),e}};e2.className="SeparableConv";var Rw=class extends e2{constructor(e){super(2,e)}};Rw.className="SeparableConv2D";ne.registerClass(Rw);var Wf=class extends ed{constructor(e){super(1,e),Wf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!tw(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Wf.className="Conv1D";ne.registerClass(Wf);var Mw=class extends Ge{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=Ne(e),this.dataFormat==="channelsLast"){let n=uh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return uh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=uh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return uh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Mw.className="Cropping2D";ne.registerClass(Mw);var Pw=class extends Ge{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,X4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=Ne(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ee(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?za.resizeNearestNeighbor(n,[r,s]):za.resizeBilinear(n,[r,s]);return Ee(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?za.resizeNearestNeighbor(n,[r,s]):za.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};Pw.className="UpSampling2D";ne.registerClass(Pw);function zU(e,t,n=[1,1],a="valid",r,s){return P(()=>{r==null&&(r=ja()),Rt(r);let i=Aw(e,r);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Is(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ee(i,[0,3,1,2])),i})}var Ow=class extends $w{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=St(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Kt(e.depthwiseConstraint),this.depthwiseRegularizer=Tt(e.depthwiseRegularizer)}build(e){if(e=tt(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=Ne(e);let n=zU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Xa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=tt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ga(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ga(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseRegularizer),e}};Ow.className="DepthwiseConv2D";ne.registerClass(Ow);function t2(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function n2(e,t,n,a=!1,r,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ha(2,l));if(t=Ee(t,u),s!=null)throw new Me("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=oe(oe(r,"bool"),"float32"),r.rank===l-1&&(r=Zt(r,-1)),r=Ee(r,u)),a&&(t=ga(t,0),r!=null&&(r=ga(r,0)));let p=[],d,c=n,h=t.shape[0],m=ct(t),f;r!=null&&(f=ct(r));for(let b=0;b<h;++b){let y=m[b],x=P(()=>e(y,c));if(r==null)d=x[0],c=x[1];else{let w=P(()=>{let I=f[b],T=pe(na(I),I),C=Y(z(x[0],I),z(c[0],T)),E=c.map((A,R)=>Y(z(x[1][R],I),z(A,T)));return{output:C,newStates:E}});d=w.output,c=w.newStates}o&&p.push(d)}let g;return o&&(g=Ft(p,1)),[d,g,c]})}var mr=class extends Ge{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Uf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ha(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){jy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Me("Constants support is not implemented in RNN yet.");jy(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new zt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new zt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_=[It([n,this.cell.stateSize])];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_[0]=It([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(r.shape,i))throw new V(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Jt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=t2(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ba){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Ne(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=n2((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return P(()=>{let t=It(e.shape);return t=fe(t,[1,2]),t=Xc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Gy(t,[1,n]):t):this.cell.stateSize>1?[Gy(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===mr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),e),t)}static fromConfig(e,t,n={}){let a=t.cell,r=Ua(a,n);return new e(Object.assign(t,{cell:r}))}};mr.className="RNN";ne.registerClass(mr);var ad=class extends Ge{},Bf=class extends ad{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Qt(this.units,"units"),this.activation=ps(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=Il([1,ls([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Il([1,ls([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=tt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=cs({ones:()=>na(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=cs({ones:()=>na(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=or(z(e,s),this.kernel.read()):r=or(e,this.kernel.read()),this.bias!=null&&(r=Xa(r,this.bias.read())),i!=null&&(n=z(n,i));let o=Y(r,or(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:us(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},e),t)}};Bf.className="SimpleRNNCell";ne.registerClass(Bf);var Lw=class extends mr{constructor(e){e.cell=new Bf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Lw.className="SimpleRNN";ne.registerClass(Lw);var Vf=class extends ad{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Qt(this.units,"units"),this.activation=ps(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ps(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=Il([1,ls([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Il([1,ls([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=tt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=cs({ones:()=>na(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=cs({ones:()=>na(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=or(e,this.kernel.read());this.useBias&&(u=Xa(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=zn(p,[2*this.units,this.units],p.rank-1),h=or(a,d),[m,f,g]=zn(u,3,u.rank-1),[b,y]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(Y(m,b)),o=this.recurrentActivation.apply(Y(f,y));let x=or(z(o,a),c);l=this.activation.apply(Y(g,x));let w=Y(z(i,a),z(Y(1,vt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:us(this.activation),recurrentActivation:us(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign(Object.assign({},e),t)}};Vf.className="GRUCell";ne.registerClass(Vf);var zw=class extends mr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Vf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};zw.className="GRU";ne.registerClass(zw);var rd=class extends ad{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Qt(this.units,"units"),this.activation=ps(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ps(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=Il([1,ls([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Il([1,ls([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=tt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Ra{apply(i,o){let l=r.apply([s]),u=new Af().apply([s]),p=r.apply([s*2]);return Ak(Ak(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=cs({ones:()=>na(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=cs({ones:()=>na(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=z(e,s[0]));let d=or(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,i[0])),d=Y(d,or(a,this.recurrentKernel.read())),this.useBias&&(d=Xa(d,this.bias.read()));let[c,h,m,f]=zn(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=Y(z(l,r),z(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=z(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:us(this.activation),recurrentActivation:us(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign(Object.assign({},e),t)}};rd.className="LSTMCell";ne.registerClass(rd);var Ww=class extends mr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new rd(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Ww.className="LSTM";ne.registerClass(Ww);var Uf=class extends ad{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){jy(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Ys(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign(Object.assign({},e),n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Ua(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return qy(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}pw(t)}};Uf.className="StackedRNNCells";ne.registerClass(Uf);function cs(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):mN(t(),n),o=()=>Zc(i,t,a);return!r||r<=1?Jt(o().clone()):Array(r).fill(void 0).map(o).map(l=>Jt(l.clone()))}var WU=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},a2=class extends mr{constructor(e){if(e.unroll)throw new Me("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Me("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new zt({ndim:5})]}call(e,t){return P(()=>{if(this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=It(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_=[It(r)];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_[0]=It(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!v.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Jt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=Ga(l,a[0],r,s[0],i[0]),d=Ga(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};a2.className="ConvRNN2D";var Gf=class extends rd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign(Object.assign({},e),{units:t})),this.filters=t,Qt(this.filters,"filters"),this.kernelSize=dl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Qt(o,"kernelSize")),this.strides=dl(a||1,2,"strides"),this.strides.forEach(o=>Qt(o,"strides")),this.padding=r||"valid",xa(this.padding),this.dataFormat=s||"channelsLast",Rt(this.dataFormat),this.dilationRate=dl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Qt(o,"dilationRate"))}build(e){var t;e=tt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Ra{apply(p,d){let c=l.apply([u]),h=Jn([u]),m=l.apply([u*2]);return nw([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=cs({ones:()=>na(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(Z,Q,ee)=>!Q||!Q[ee]?Z:z(Q[ee],Z),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=cs({ones:()=>na(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),b=l(r,h,3),y=3,[x,w,I,T]=zn(this.kernel.read(),i,y),[C,E,A,R]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,C,this.padding),p=this.inputConv(p,w,E,this.padding),d=this.inputConv(d,I,A,this.padding),c=this.inputConv(c,T,R,this.padding);let[F,S,M,B]=zn(this.recurrentKernel.read(),i,y);m=this.recurrentConv(m,F),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),b=this.recurrentConv(b,B);let U=this.recurrentActivation.apply(Y(u,m)),G=this.recurrentActivation.apply(Y(p,f)),q=Y(z(G,s),z(U,this.activation.apply(Y(d,g)))),K=z(this.recurrentActivation.apply(Y(c,b)),this.activation.apply(q));return[K,K,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=WU(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),a)}inputConv(e,t,n,a){let r=$t(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Xa(r,n,this.dataFormat):r}recurrentConv(e,t){return $t(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Gf.className="ConvLSTM2DCell";ne.registerClass(Gf);var Bw=class extends a2{constructor(e){let t=new Gf(e);super(Object.assign(Object.assign({},e),{cell:t}))}static fromConfig(e,t){return new e(t)}};Bw.className="ConvLSTM2D";ne.registerClass(Bw);var Hf=class extends Ge{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Zc(()=>mN(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Hf.className="Dropout";ne.registerClass(Hf);var Vw=class extends Hf{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Vw.className="SpatialDropout1D";ne.registerClass(Vw);var Uw=class extends Ge{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Qt(this.units,"units"),this.activation=ps(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Kt(e.kernelConstraint),this.biasConstraint=Kt(e.biasConstraint),this.kernelRegularizer=Tt(e.kernelRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=tt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=tt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e),a=oN(this.activation.getClassName()),r;return a!=null?r=or(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=or(n,this.kernel.read()),this.bias!=null&&(r=Xa(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:us(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Uw.className="Dense";ne.registerClass(Uw);var Gw=class extends Ge{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=tt(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],rs(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=Ee(n,a)}return tV(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Gw.className="Flatten";ne.registerClass(Gw);var Hw=class extends Ge{constructor(e){super(e),this.supportsMasking=!0,this.activation=ps(e.activation)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);return this.activation.apply(n)})}getConfig(){let e={activation:us(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Hw.className="Activation";ne.registerClass(Hw);var jw=class extends Ge{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=Ne(e),Q4(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};jw.className="RepeatVector";ne.registerClass(jw);var qw=class extends Ge{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else r*=l}let i=rs(e);if(s!==null){if(r===0||i%r!==0)throw new V(n);a[s]=i/r}else if(i!==r)throw new V(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};qw.className="Reshape";ne.registerClass(qw);var Kw=class extends Ge{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ha(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=tt(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ee(Ne(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Kw.className="Permute";ne.registerClass(Kw);var Xw=class extends Ge{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ne(e),a=-1;return Qp(oi(n,this.maskValue),a)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e),a=-1,r=!0,s=Qp(oi(n,this.maskValue),a,r);return z(n,oe(s,n.dtype))})}};Xw.className="Masking";ne.registerClass(Xw);var Yw=class extends Ge{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(xt(e.inputLength))}this.inputDim=e.inputDim,Qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Qt(this.outputDim,"outputDim"),this.embeddingsInitializer=St(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Tt(e.embeddingsRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.embeddingsConstraint=Kt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=Ne(e),oi(e,qe(e))):null)}computeOutputShape(e){if(e=tt(e),this.inputLength==null)return[...e,this.outputDim];let t=xt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);n.dtype!=="int32"&&(n=yo(n,"int32"));let a=hN(this.embeddings.read(),W(n,[n.size]));return W(a,tt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:pt(this.embeddingsRegularizer),activityRegularizer:pt(this.activityRegularizer),embeddingsConstraint:qt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Yw.className="Embedding";ne.registerClass(Yw);var vo=class extends Ge{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Me}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[tt(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=as(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&as(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ls(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Xc(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=W(o,[p].concat(rs(u.slice(1))));c=Ee(c,[1,0]),c=W(c,d),n.push(c),r=!0}else if(l>1){let u=Ha(1,l).concat([0]);n.push(Ee(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W(Ee(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(Ha(0,i-1));s=Ee(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=as(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return P(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:Zt(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=$a(n,t[a]);return n})}},Zw=class extends vo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Y(t,e[n]);return t})}};Zw.className="Add";ne.registerClass(Zw);var Jw=class extends vo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};Jw.className="Multiply";ne.registerClass(Jw);var Qw=class extends vo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Y(t,e[n]);return z(1/e.length,t)})}};Qw.className="Average";ne.registerClass(Qw);var e0=class extends vo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=dr(t,e[n]);return t})}};e0.className="Maximum";ne.registerClass(e0);var t0=class extends vo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Vu(t,e[n]);return t})}};t0.className="Minimum";ne.registerClass(t0);var n0=class extends vo{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>nw(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(oe(na(e[s]),"bool")):t[s].rank<e[s].rank?a.push(Zt(t[s],-1)):a.push(t[s]);let r=Ze(a,this.axis);return jm(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};n0.className="Concatenate";ne.registerClass(n0);function Ap(e,t){for(;e<0;)e+=t;return e}function BU(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Me("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Me("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return P(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=W(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=W(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=fe(z(e,t),s[0]):o=fe(z(Ee(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Fe(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=Ns(o,u)}return o.shape.length===1&&(o=Zt(o,1)),o})}var a0=class extends vo{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new V(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Ap(r,e[s].shape.length)):a=[Ap(this.axes,t.shape.length),Ap(this.axes,n.shape.length)],this.normalize&&(t=Gh(t,a[0]),n=Gh(n,a[1])),BU(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Ap(this.axes,e.length),Ap(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};a0.className="Dot";ne.registerClass(a0);var r0=class extends Ge{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);return Zc(()=>Y(Ef(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};r0.className="GaussianNoise";ne.registerClass(r0);var s0=class extends Ge{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);return this.rate>0&&this.rate<1?Zc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return z(n,Ef(n.shape,1,a))},()=>n,t.training||!1):n})}};s0.className="GaussianDropout";ne.registerClass(s0);var i0=class extends Ge{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ne(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Zc(()=>{let a=Ne(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Fr(Uu(n),this.rate);o=yo(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=Y(z(a,o),z(Y(o,-1),i));return Y(z(p,l),u)},()=>Ne(e),t.training||!1)}return e})}};i0.className="AlphaDropout";ne.registerClass(i0);function ac(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=sv(e,t,n,a,r,s);else if(e.rank===3)i=iv(e,t,n,a,r,s);else if(e.rank===4)i=ov(e,t,n,a,r,s);else throw new Me(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function VU(e,t,n,a,r=.001){return P(()=>{let s=Bc(e,a),i=s.mean,o=s.variance;return[ac(e,i,o,n,t,r),i,o]})}function UU(e,t,n,a,r=.001){return P(()=>{let s=Bc(e,a),i=s.mean,o=s.variance,l=[];for(let h of Ha(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[ac(e,u,p,c,d,r),i,o]})}function GU(e,t,n,a,r=.001){return v.arraysEqual(a.slice().sort(),Ha(0,e.rank-1))?VU(e,t,n,a,r):UU(e,t,n,a,r)}var o0=class extends Ge{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.movingMeanInitializer=St(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=St(e.movingVarianceInitializer||"ones"),this.betaConstraint=Kt(e.betaConstraint),this.gammaConstraint=Kt(e.gammaConstraint),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer)}build(e){e=tt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,a=Ne(e),r=a.shape,s=r.length,i=Ha(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=li(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!v.arraysEqual(u,Ha(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),b=W(this.movingVariance.read(),l),y=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return ac(a,g,b,y,x,this.epsilon)}else return ac(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=GU(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,b,y)=>{P(()=>{let x=1-y,w=g.read(),I=z(pe(w,b),x);g.write(pe(w,I))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer),betaConstraint:qt(this.betaConstraint),gammaConstraint:qt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};o0.className="BatchNormalization";ne.registerClass(o0);var l0=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=tt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==as(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Ne(e),a=n.shape,r=a.length;return P(()=>{let{mean:s,variance:i}=Bc(n,this.axis,!0),o=li(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=Ln(s,d),i=Ln(i,d),u!=null&&(u=Ln(u,c)),p!=null&&(p=Ln(p,c)),ac(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};l0.className="LayerNormalization";ne.registerClass(l0);function HU(e,t,n){return P(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=ja()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ya(e,a)})}var u0=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ja():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=tt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>HU(Ne(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};u0.className="ZeroPadding2D";ne.registerClass(u0);function jf(e,t,n,a,r,s){return P(()=>{Rt(r),uN(s),xa(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=Aw(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Dt(e,t,n,o):i=ba(e,t,n,o),r==="channelsFirst"&&(i=Ee(i,[0,3,1,2])),i})}function r2(e,t,n,a,r,s){return P(()=>{Rt(r),uN(s),xa(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=QN(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Fv(e,t,n,o):i=rv(e,t,n,o),r==="channelsFirst"&&(i=Ee(i,[0,4,1,2,3])),i})}var s2=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,xa(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=tt(e);let t=Ga(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=Xc(Ne(e),2);let n=this.poolingFunction(Ne(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Ns(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},p0=class extends s2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),jf(e,t,n,a,r,"max")}};p0.className="MaxPooling1D";ne.registerClass(p0);var c0=class extends s2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),jf(e,t,n,a,r,"avg")}};c0.className="AveragePooling1D";ne.registerClass(c0);var i2=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Qt(this.poolSize,"poolSize"),Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),xa(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=tt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ga(t,this.poolSize[0],this.padding,this.strides[0]),n=Ga(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ne(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},d0=class extends i2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),jf(e,t,n,a,r,"max")}};d0.className="MaxPooling2D";ne.registerClass(d0);var h0=class extends i2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),jf(e,t,n,a,r,"avg")}};h0.className="AveragePooling2D";ne.registerClass(h0);var o2=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Qt(this.poolSize,"poolSize"),Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),xa(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=tt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ga(t,this.poolSize[0],this.padding,this.strides[0]),n=Ga(n,this.poolSize[1],this.padding,this.strides[1]),a=Ga(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ne(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},m0=class extends o2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),r2(e,t,n,a,r,"max")}};m0.className="MaxPooling3D";ne.registerClass(m0);var f0=class extends o2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),r2(e,t,n,a,r,"avg")}};f0.className="AveragePooling3D";ne.registerClass(f0);var l2=class extends Ge{constructor(e){super(e),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Me}},g0=class extends l2{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Ne(e);return Nt(n,1)})}};g0.className="GlobalAveragePooling1D";ne.registerClass(g0);var b0=class extends l2{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Ne(e);return ma(n,1)})}};b0.className="GlobalMaxPooling1D";ne.registerClass(b0);var u2=class extends Ge{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Me}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},y0=class extends u2{call(e,t){return P(()=>{let n=Ne(e);return this.dataFormat==="channelsLast"?Nt(n,[1,2]):Nt(n,[2,3])})}};y0.className="GlobalAveragePooling2D";ne.registerClass(y0);var x0=class extends u2{call(e,t){return P(()=>{let n=Ne(e);return this.dataFormat==="channelsLast"?ma(n,[1,2]):ma(n,[2,3])})}};x0.className="GlobalMaxPooling2D";ne.registerClass(x0);var p2=class extends Ge{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Ua(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},v0=class extends p2{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=tt(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=tt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return P(()=>(e=Ne(e),n2((n,a)=>[Ne(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};v0.className="TimeDistributed";ne.registerClass(v0);function jU(e){bo(K4,"BidirectionalMergeMode",e)}var qU="concat",w0=class extends p2{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ua(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Ua(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?qU:e.mergeMode,jU(this.mergeMode),e.weights)throw new Me("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):On(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=t2(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new zt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Me("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ba;for(let l of s)if(l instanceof Ba!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=ga(r,1));let i;return this.mergeMode==="concat"?i=nw([a,r]):this.mergeMode==="sum"?i=Y(a,r):this.mergeMode==="ave"?i=z(.5,Y(a,r)):this.mergeMode==="mul"?i=z(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ys(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ys(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ua(t.layer);if(delete t.layer,t.numConstants!=null)throw new Me("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};w0.className="Bidirectional";ne.registerClass(w0);var k0=class extends Ge{constructor(e){super(e),this.scale=e.scale,e.offset?this.offset=e.offset:this.offset=0}getConfig(){let e={scale:this.scale,offset:this.offset},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>(e=Ne(e),e.dtype!=="float32"&&(e=yo(e,"float32")),Y(z(e,this.scale),this.offset)))}};k0.className="Rescaling";ne.registerClass(k0);var KU=["bilinear","nearest"],qk=new Set(KU),I0=class extends Ge{constructor(e){if(super(e),this.height=e.height,this.width=e.width,e.interpolation)if(qk.has(e.interpolation))this.interpolation=e.interpolation;else throw new V(`Invalid interpolation parameter: ${e.interpolation} is not implemented`);else this.interpolation="bilinear";this.cropToAspectRatio=Boolean(e.cropToAspectRatio)}computeOutputShape(e){e=tt(e);let t=e[2];return[this.height,this.width,t]}getConfig(){let e={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>{let n=[this.height,this.width];if(this.interpolation==="bilinear")return za.resizeBilinear(e,n,!this.cropToAspectRatio);if(this.interpolation==="nearest")return za.resizeNearestNeighbor(e,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[...qk]} are supported`)})}};I0.className="Resizing";ne.registerClass(I0);function XU(e,t,n,a){let r=Ne(e);if(r.dtype!=="int32"&&(r=yo(r,"int32")),t==="int")return r;let s=r.shape;if(r.rank===0&&(r=Zt(r,-1)),t==="oneHot"&&r.shape[r.shape.length-1]!==1&&(r=Zt(r,-1)),r.rank>2)throw new V(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${r.rank}.`);let i=["multiHot","oneHot"].includes(t),o=r,l;if(typeof a!="undefined"&&t==="count"?l=zh(o,a,n,i):l=zh(o,[],n,i),t!=="tfIdf")return l;if(a)return z(l,a);throw new V("When outputMode is 'tfIdf', weights must be provided.")}var S0=class extends Ge{constructor(e){super(e),this.numTokens=e.numTokens,e.outputMode?this.outputMode=e.outputMode:this.outputMode="multiHot"}getConfig(){let e={numTokens:this.numTokens,outputMode:this.outputMode},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){return e=tt(e),e==null?[this.numTokens]:this.outputMode==="oneHot"&&e[e.length-1]!==1?(e.push(this.numTokens),e):(e[e.length-1]=this.numTokens,e)}call(e,t){return P(()=>{e=Ne(e),e.dtype!=="int32"&&(e=yo(e,"int32"));let n;if(typeof t.countWeights!="undefined"){if(this.outputMode!=="count")throw new V(`countWeights is not used when outputMode !== count.
Received countWeights=${t.countWeights}`);n=Ne(t.countWeights)}let a=ma(e),r=yl(e),s=Cn(this.numTokens,a).bufferSync().get(0),i=Fr(r,0).bufferSync().get(0);if(!(s&&i))throw new V(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return XU(e,this.outputMode,this.numTokens,n)})}};S0.className="CategoryEncoding";ne.registerClass(S0);function YU(e){return new Hu(e)}function ZU(e){return new Cw(e)}function JU(e){return new Sw(e)}function QU(e){return new Tw(e)}function eG(e){return new Nw(e)}function tG(e){return new Ew(e)}function nG(e){return new _w(e)}function aG(e){return new Wf(e)}function rG(e){return new td(e)}function sG(e){return new Fw(e)}function iG(e){return new nd(e)}function oG(e){return new Dw(e)}function lG(e){return new Rw(e)}function uG(e){return new Mw(e)}function pG(e){return new Pw(e)}function cG(e){return new Ow(e)}function dG(e){return new Hw(e)}function hG(e){return new Uw(e)}function mG(e){return new Hf(e)}function fG(e){return new Vw(e)}function gG(e){return new Gw(e)}function bG(e){return new jw(e)}function yG(e){return new qw(e)}function xG(e){return new Kw(e)}function vG(e){return new Yw(e)}function wG(e){return new Zw(e)}function kG(e){return new Qw(e)}function IG(e){return new n0(e)}function SG(e){return new e0(e)}function TG(e){return new t0(e)}function NG(e){return new Jw(e)}function CG(e){return new a0(e)}function _G(e){return new o0(e)}function EG(e){return new l0(e)}function AG(e){return new u0(e)}function T0(e){return new c0(e)}function $G(e){return T0(e)}function FG(e){return T0(e)}function N0(e){return new h0(e)}function DG(e){return N0(e)}function RG(e){return N0(e)}function C0(e){return new f0(e)}function MG(e){return C0(e)}function PG(e){return C0(e)}function OG(e){return new g0(e)}function LG(e){return new y0(e)}function c2(e){return new b0(e)}function d2(e){return new x0(e)}function h2(e){return new p0(e)}function m2(e){return new d0(e)}function zG(e){return new m0(e)}function WG(e){return new zw(e)}function BG(e){return new Vf(e)}function VG(e){return new Ww(e)}function UG(e){return new rd(e)}function GG(e){return new Lw(e)}function HG(e){return new Bf(e)}function jG(e){return new Bw(e)}function qG(e){return new Gf(e)}function KG(e){return new mr(e)}function XG(e){return new Uf(e)}function YG(e){return new w0(e)}function ZG(e){return new v0(e)}var JG=c2,QG=d2,eH=h2,tH=m2;function nH(e){return new r0(e)}function aH(e){return new s0(e)}function rH(e){return new i0(e)}function sH(e){return new Xw(e)}function iH(e){return new k0(e)}function oH(e){return new I0(e)}function lH(e){return new S0(e)}var f2={};Ae(f2,{MAPE:()=>xH,MSE:()=>kH,binaryAccuracy:()=>uH,binaryCrossentropy:()=>pH,categoricalAccuracy:()=>dH,categoricalCrossentropy:()=>hH,cosineProximity:()=>gH,mape:()=>vH,meanAbsoluteError:()=>bH,meanAbsolutePercentageError:()=>yH,meanSquaredError:()=>wH,mse:()=>IH,precision:()=>mH,recall:()=>fH,sparseCategoricalAccuracy:()=>cH});function uH(e,t){return bw(e,t)}function pH(e,t){return EN(e,t)}function cH(e,t){return AN(e,t)}function dH(e,t){return yw(e,t)}function hH(e,t){return xw(e,t)}function mH(e,t){return _N(e,t)}function fH(e,t){return JV(e,t)}function gH(e,t){return gw(e,t)}function bH(e,t){return Lf(e,t)}function yH(e,t){return ju(e,t)}function xH(e,t){return ju(e,t)}function vH(e,t){return ju(e,t)}function wH(e,t){return xo(e,t)}function kH(e,t){return xo(e,t)}function IH(e,t){return xo(e,t)}var g2={};Ae(g2,{modelFromJSON:()=>_U});var b2={};Ae(b2,{l1:()=>TH,l1l2:()=>SH,l2:()=>NH});function SH(e){return new Qc(e)}function TH(e){return MU(e)}function NH(e){return PU(e)}var y2=class extends Sl{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Er))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function ch(e,t){return e<t}function Kk(e,t){return e>t}var x2=class extends y2{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Me("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=ch:this.mode==="max"?this.monitorFunc=Kk:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Kk:this.monitorFunc=ch,this.monitorFunc===ch&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===ch?1/0:-1/0}async onEpochEnd(e,t){await Zr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function CH(e){return new x2(e)}var _H={earlyStopping:CH},EH=H();EH.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Na;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Na||(Na={}));var Xk;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Xk||(Xk={}));var _0={};function AH(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};_0[e]=n}function v2(e){return _0[e]}function $H(e){delete _0[e]}function k(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return wn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(d=>wn(d,n,a,r));let u=wn(t.inputNames.slice(o)[0],n,a,r),p=u.dataSync();return s.type==="number"?p[0]:v.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function wn(e,t,n,a){let[r,s]=Yn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Xh(r,o)]);return i!==void 0?t[Xh(r,i)][s]:void 0}function FH(e,t,n){return t[Xh(e,n.currentContextId)]}function sr(e,t){let[n,a,r]=Yn(e);return[Xh(n,t&&t.currentContextId),a,r]}function Xh(e,t){return t?`${e}-${t}`:e}function Yn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function vh(e,t,n){let a=k("pad",e,t,n);if(a==="explicit"){a=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Tr(e){return e.kept?e:ir(e)}var w2={};Ae(w2,{json:()=>DH});var DH=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],k2={};Ae(k2,{json:()=>RH});var RH=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],I2={};Ae(I2,{json:()=>MH});var MH=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],S2={};Ae(S2,{json:()=>PH});var PH=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],T2={};Ae(T2,{json:()=>OH});var OH=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],N2={};Ae(N2,{json:()=>LH});var LH=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],C2={};Ae(C2,{json:()=>zH});var zH=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],_2={};Ae(_2,{json:()=>WH});var WH=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],E2={};Ae(E2,{json:()=>BH});var BH=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],A2={};Ae(A2,{json:()=>VH});var VH=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],$2={};Ae($2,{json:()=>UH});var UH=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F2={};Ae(F2,{json:()=>GH});var GH=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],D2={};Ae(D2,{json:()=>HH});var HH=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],R2={};Ae(R2,{json:()=>jH});var jH=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],M2={};Ae(M2,{json:()=>qH});var qH=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],P2={};Ae(P2,{json:()=>KH});var KH=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],O2={};Ae(O2,{json:()=>XH});var XH=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],L2={};Ae(L2,{json:()=>YH});var YH=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],z2={};Ae(z2,{json:()=>ZH});var ZH=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Yk=class{constructor(){let e=[w2,k2,I2,S2,T2,N2,C2,_2,E2,A2,$2,F2,D2,R2,M2,P2,O2,L2,z2],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}static get Instance(){return this._instance||(this._instance=new this)}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,b)=>{let[y,,x]=sr(g),w=i[y];if(w.outputs!=null){let I=w.outputs.indexOf(x);if(I!==-1){let T=`${y}:${I}`;f.inputNames[b]=T}}f.inputs.push(w),w.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=sr(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=sr(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=v2(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Qy(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Qy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=ix(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ix(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=tx(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=tx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=sx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=sx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=ex(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ex(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=lx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=lx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=rx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=rx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=ox(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ox(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=nx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=nx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=ax(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ax(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=Zk(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Zk(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=sr(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:E0(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=sr(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let b=`${h}:${g}`;p.inputNames[c]=b}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=sr(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function JH(e){let t=H().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function W2(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):JH(e);return t?n:n.toLowerCase()}function Qy(e,t,n,a=!1){let r=e[t];return r!=null?W2(r.s,a):n}function ex(e,t,n){let a=e[t];return a?a.b:n}function tx(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function E0(e){switch(typeof e=="string"&&(e=Na[e]),e){case Na.DT_FLOAT:case Na.DT_HALF:return"float32";case Na.DT_INT32:case Na.DT_INT64:case Na.DT_INT8:case Na.DT_UINT8:return"int32";case Na.DT_BOOL:return"bool";case Na.DT_DOUBLE:return"float32";case Na.DT_STRING:return"string";default:return null}}function Zk(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function nx(e,t,n){let a=e[t];return a&&a.type?E0(a.type):n}function ax(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>E0(r)):n}function B2(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function rx(e,t,n){let a=e[t];return a&&a.shape?B2(a.shape):n}function sx(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function ix(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>W2(s,a)):n}function ox(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>B2(r)):n}function lx(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var QH=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return wn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return wn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return tx(this.node.rawAttrs,e,t);if(n.s!=null)return Qy(this.node.rawAttrs,e,t);if(n.b!=null)return ex(this.node.rawAttrs,e,t);if(n.shape!=null)return rx(this.node.rawAttrs,e,t);if(n.type!=null)return nx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return sx(this.node.rawAttrs,e,t);if(n.list.s!=null)return ix(this.node.rawAttrs,e,t);if(n.list.shape!=null)return ox(this.node.rawAttrs,e,t);if(n.list.b!=null)return lx(this.node.rawAttrs,e,t);if(n.list.type!=null)return ax(this.node.rawAttrs,e,t)}return t}},pn={};Ae(pn,{OP_SCOPE_SUFFIX:()=>Mx,abs:()=>Lt,acos:()=>Xx,acosh:()=>Yx,add:()=>Y,addN:()=>qS,all:()=>jm,any:()=>Qp,argMax:()=>ri,argMin:()=>Zx,asin:()=>Jx,asinh:()=>Qx,atan:()=>ev,atan2:()=>tv,atanh:()=>nv,avgPool:()=>ba,avgPool3d:()=>rv,basicLSTMCell:()=>ZS,batchNorm:()=>ks,batchNorm2d:()=>sv,batchNorm3d:()=>iv,batchNorm4d:()=>ov,batchToSpaceND:()=>Pc,bincount:()=>lv,booleanMaskAsync:()=>DT,broadcastArgs:()=>JS,broadcastTo:()=>Xs,buffer:()=>Oe,cast:()=>oe,ceil:()=>uv,clipByValue:()=>en,clone:()=>ir,complex:()=>Ar,concat:()=>Ze,concat1d:()=>pv,concat2d:()=>cv,concat3d:()=>dv,concat4d:()=>hv,conv1d:()=>qm,conv2d:()=>$t,conv2dTranspose:()=>Km,conv3d:()=>fv,conv3dTranspose:()=>gv,cos:()=>Oc,cosh:()=>Xm,cosineWindow:()=>bf,cumprod:()=>ec,cumsum:()=>Ym,denseBincount:()=>zh,depthToSpace:()=>bv,depthwiseConv2d:()=>Is,diag:()=>eT,dilation2d:()=>yv,div:()=>he,divNoNan:()=>xv,dot:()=>vv,dropout:()=>qv,einsum:()=>tT,elu:()=>Lu,enclosingPowerOfTwo:()=>Kv,equal:()=>ea,erf:()=>wv,euclideanNorm:()=>Sv,exp:()=>fn,expandDims:()=>Zt,expm1:()=>Tv,eye:()=>Zm,fft:()=>Hc,fill:()=>gn,floor:()=>Wu,floorDiv:()=>Hm,fused:()=>kl,gather:()=>Bu,gatherND:()=>OT,greater:()=>Cn,greaterEqual:()=>Fr,ifft:()=>wl,imag:()=>Dc,image:()=>za,inTopKAsync:()=>LT,irfft:()=>hf,isFinite:()=>Nv,isInf:()=>Cv,isNaN:()=>_v,leakyRelu:()=>Lc,less:()=>Jm,lessEqual:()=>Ss,linalg:()=>Zv,linspace:()=>iT,localResponseNormalization:()=>Ev,log:()=>ta,log1p:()=>zc,logSigmoid:()=>Av,logSoftmax:()=>ef,logSumExp:()=>tf,logicalAnd:()=>$a,logicalNot:()=>Wc,logicalOr:()=>nf,logicalXor:()=>$v,losses:()=>YT,lowerBound:()=>lT,matMul:()=>Fe,max:()=>ma,maxPool:()=>Dt,maxPool3d:()=>Fv,maxPoolWithArgmax:()=>uT,maximum:()=>dr,mean:()=>Nt,meshgrid:()=>pT,min:()=>yl,minimum:()=>Vu,mirrorPad:()=>Dv,mod:()=>Rv,moments:()=>Bc,movingAverage:()=>RT,mul:()=>z,multiRNNCell:()=>cT,multinomial:()=>dT,neg:()=>vt,norm:()=>zu,notEqual:()=>oi,oneHot:()=>gl,ones:()=>Jn,onesLike:()=>na,op:()=>L,outerProduct:()=>hT,pad:()=>ya,pad1d:()=>mT,pad2d:()=>fT,pad3d:()=>gT,pad4d:()=>bT,pool:()=>Mv,pow:()=>$r,prelu:()=>Uc,print:()=>zx,prod:()=>Pv,raggedGather:()=>yT,raggedRange:()=>xT,raggedTensorToTensor:()=>vT,rand:()=>wT,randomGamma:()=>kT,randomNormal:()=>rf,randomStandardNormal:()=>IT,randomUniform:()=>Uu,range:()=>xl,real:()=>bl,reciprocal:()=>zv,relu:()=>Xe,relu6:()=>sf,reshape:()=>W,reverse:()=>ga,reverse1d:()=>ST,reverse2d:()=>TT,reverse3d:()=>NT,reverse4d:()=>CT,rfft:()=>jc,round:()=>of,rsqrt:()=>lf,scalar:()=>ye,scatterND:()=>MT,searchSorted:()=>af,selu:()=>uf,separableConv2d:()=>Ts,setdiff1dAsync:()=>_T,sigmoid:()=>ha,sign:()=>Wv,signal:()=>XT,sin:()=>pf,sinh:()=>cf,slice:()=>Be,slice1d:()=>Gc,slice2d:()=>df,slice3d:()=>fo,slice4d:()=>vl,softmax:()=>Ka,softplus:()=>mo,spaceToBatchND:()=>Vc,sparse:()=>ZT,sparseToDense:()=>PT,spectral:()=>KT,split:()=>zn,sqrt:()=>un,square:()=>lt,squaredDifference:()=>mf,squeeze:()=>Ns,stack:()=>Ft,step:()=>go,stridedSlice:()=>Bv,string:()=>JT,sub:()=>pe,sum:()=>fe,tan:()=>Vv,tanh:()=>si,tensor:()=>In,tensor1d:()=>Ke,tensor2d:()=>Aa,tensor3d:()=>Rc,tensor4d:()=>Da,tensor5d:()=>ET,tensor6d:()=>AT,tile:()=>Ln,topk:()=>Uv,transpose:()=>Ee,truncatedNormal:()=>ff,unique:()=>Gv,unsortedSegmentSum:()=>gf,unstack:()=>ct,upperBound:()=>$T,variable:()=>Hv,where:()=>mn,whereAsync:()=>jv,zeros:()=>It,zerosLike:()=>qe});var e6=(e,t,n,a=pn)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[a.add(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[a.addN(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[a.mod(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[a.mul(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[a.div(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[a.divNoNan(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[a.floorDiv(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[a.sub(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[a.minimum(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[a.maximum(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[a.pow(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[a.squaredDifference(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},t6=(e,t,n,a=pn)=>{switch(e.op){case"Abs":case"ComplexAbs":return[a.abs(k("x",e,t,n))];case"Acos":return[a.acos(k("x",e,t,n))];case"Acosh":return[a.acosh(k("x",e,t,n))];case"Asin":return[a.asin(k("x",e,t,n))];case"Asinh":return[a.asinh(k("x",e,t,n))];case"Atan":return[a.atan(k("x",e,t,n))];case"Atan2":return[a.atan2(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[a.atanh(k("x",e,t,n))];case"Ceil":return[a.ceil(k("x",e,t,n))];case"Complex":return[a.complex(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[a.cos(k("x",e,t,n))];case"Cosh":return[a.cosh(k("x",e,t,n))];case"Elu":return[a.elu(k("x",e,t,n))];case"Erf":return[a.erf(k("x",e,t,n))];case"Exp":return[a.exp(k("x",e,t,n))];case"Expm1":return[a.expm1(k("x",e,t,n))];case"Floor":return[a.floor(k("x",e,t,n))];case"Log":return[a.log(k("x",e,t,n))];case"Log1p":return[a.log1p(k("x",e,t,n))];case"Imag":return[a.imag(k("x",e,t,n))];case"Neg":return[a.neg(k("x",e,t,n))];case"Reciprocal":return[a.reciprocal(k("x",e,t,n))];case"Real":return[a.real(k("x",e,t,n))];case"Relu":return[a.relu(k("x",e,t,n))];case"Round":return[a.round(k("x",e,t,n))];case"Selu":return[a.selu(k("x",e,t,n))];case"Sigmoid":return[a.sigmoid(k("x",e,t,n))];case"Sin":return[a.sin(k("x",e,t,n))];case"Sign":return[a.sign(k("x",e,t,n))];case"Sinh":return[a.sinh(k("x",e,t,n))];case"Softplus":return[a.softplus(k("x",e,t,n))];case"Sqrt":return[a.sqrt(k("x",e,t,n))];case"Square":return[a.square(k("x",e,t,n))];case"Tanh":return[a.tanh(k("x",e,t,n))];case"Tan":return[a.tan(k("x",e,t,n))];case"ClipByValue":return[a.clipByValue(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[a.relu6(k("x",e,t,n))];case"Rsqrt":return[a.rsqrt(wn(e.inputNames[0],t,n))];case"Prod":return[a.prod(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[a.leakyRelu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[a.prelu(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[a.isNaN(wn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ea(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];v.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function Jk(e){return!(typeof e=="number"||e.some(t=>t<0))}function $p(e,t,n){let a=ux(e,n),r=!Jk(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=ux(s.shape,a)}),!Jk(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function ux(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var n6=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ye(0),Jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ea(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return In([],[0].concat(this.elementShape));let n=this.readMany(e);return Ea(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Ft(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return In([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Ea(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Ze(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ct(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];P(()=>{t=W(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],p=[1,e[o],r];s[o]=W(Be(t,u,p),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Nl=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ea(t,r.shape,"TensorList shape mismatch: "),Jt(r)}),this.idTensor=ye(0),this.maxNumElements=a,Jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Nl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ea(e,this.elementShape,"TensorList shape mismatch: ");let a=$p(this.elementShape,this.tensors,e);return P(()=>{let r=this.tensors.map(s=>W(s,a));return Ft(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=$p(this.elementShape,this.tensors,e),a=this.tensors.pop();return a.kept=!1,Ea(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ea(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new Nl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ea(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=$p(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ea(this.elementShape,t.shape,"TensorList shape mismatch: "),Jt(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ea(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=$p(this.elementShape,this.tensors,n);return e.length===0?In([],[0].concat(a)):P(()=>{let r=e.map(s=>W(this.tensors[s],a));return Ft(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ea(this.elementShape,t,"TensorList shape mismatch: ");let n=$p(this.elementShape,this.tensors,t);return this.size()===0?In([],[0].concat(n)):P(()=>{let a=this.tensors.map(r=>W(r,n));return Ze(a,0)})}};function a6(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ea(r,t,"TensorList shape mismatch: ");let s=ct(e);return new Nl(s,t,a)}function r6(e,t,n,a){return new Nl([],e,t,a)}function s6(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Nl([],n,e.dtype,a),i=ct(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function i6(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=ux(s,n),o=a===0?0:e.size/a,l=P(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=d===0?0:r[d-1],h=[0,c,0],m=[1,t[d],o];p[d]=W(Be(e,h,m),i)}return e.dispose(),p}),u=new Nl([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var o6=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=k("body",e,t,n),r=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=k("pred",e,t,n);return[Tr(a)]}case"Switch":{let a=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Tr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>wn(r,t,n)!==void 0);if(a){let r=wn(a,t,n);return[Tr(r)]}return}case"Enter":{let a=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(a),[Tr(r)]}case"Exit":{let a=k("tensor",e,t,n);return n.exitFrame(),[Tr(a)]}case"NextIteration":{let a=k("tensor",e,t,n);return n.nextIteration(),[Tr(a)]}case"TensorArrayV3":{let a=k("size",e,t,n),r=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),p=new n6(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,ye(1)]}case"TensorArrayWriteV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=k("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ye(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=k("indices",e,t,n),r=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=s6(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=k("elementShape",e,t,n),r=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=e.op==="TensorListReserve"?-1:i,l=r6(a,r,i,o);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let a=k("tensorListId",e,t,n),r=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=a6(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=k("tensorListId",e,t,n),r=k("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=i6(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id);return[ye(r.size(),"int32")]}case"TensorListResize":{let a=k("tensorListId",e,t,n),r=k("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Qk(e,t,n){let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=k("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=k("strides",e,t,n),d=vh(e,t,n),c=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[m,f]=k("args",e,t,n);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var l6=(e,t,n,a=pn)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[a.conv1d(k("x",e,t,n),k("filter",e,t,n),r,s,i,o)]}case"Conv2D":{let r=k("strides",e,t,n),s=vh(e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv2d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=Qk(e,t,n);return[a.fused.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=Qk(e,t,n);return[a.fused.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),s=k("strides",e,t,n),i=vh(e,t,n);return[a.conv2dTranspose(k("x",e,t,n),k("filter",e,t,n),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),s=vh(e,t,n),i=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[a.depthwiseConv2d(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv3d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:l,indexes:u}=a.maxPoolWithArgmax(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dilations",e,t,n),o=r[1],l=r[2],u=i[1],p=i[2];return[a.dilation2d(k("x",e,t,n),k("filter",e,t,n),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},u6=(e,t,n,a=pn)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),s=k("dtype",e,t,n),i=k("value",e,t,n);return[a.fill(r,i,s)]}case"LinSpace":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("num",e,t,n);return[a.linspace(r,s,i)]}case"Multinomial":{let r=k("logits",e,t,n),s=k("numSamples",e,t,n),i=k("seed",e,t,n);return[a.multinomial(r,s,i)]}case"OneHot":{let r=k("indices",e,t,n),s=k("depth",e,t,n),i=k("onValue",e,t,n),o=k("offValue",e,t,n),l=k("dtype",e,t,n);return[a.oneHot(r,s,i,o,l)]}case"Ones":return[a.ones(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[a.onesLike(k("x",e,t,n))];case"RandomStandardNormal":return[a.randomStandardNormal(k("shape",e,t,n),k("dtype",e,t,n),k("seed",e,t,n))];case"RandomUniform":return[a.randomUniform(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("step",e,t,n);return[a.range(r,s,i,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),s=k("mean",e,t,n),i=k("stdDev",e,t,n),o=k("seed",e,t,n);return[a.truncatedNormal(r,s,i,k("dtype",e,t,n),o)]}case"Zeros":return[a.zeros(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[a.zerosLike(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ky(e,t,n){let a=k("boxes",e,t,n),r=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var p6=async(e,t,n,a,r=pn)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=ky(e,t,n),d=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=ky(e,t,n),p=k("padToMaxOutputSize",e,t,n),d=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=ky(e,t,n);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(k("condition",e,t,n),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},c6=(e,t,n,a=pn)=>{switch(e.op){case"LowerBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.lowerBound(r,s)]}case"TopKV2":{let r=k("x",e,t,n),s=k("k",e,t,n),i=k("sorted",e,t,n),o=a.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.upperBound(r,s)]}case"Unique":{let r=k("x",e,t,n),s=a.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=k("x",e,t,n),s=k("axis",e,t,n),i=a.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},d6=(e,t,n,a=pn)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[wn(e.name,t,n)||r];case"Placeholder":return[wn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=k("x",e,t,n);return[Tr(p)]}case"IdentityN":return k("x",e,t,n).map(p=>Tr(p));case"Snapshot":let s=k("x",e,t,n);return[Tr(s)];case"Shape":return[a.tensor1d(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(p=>a.tensor1d(p.shape));case"Size":return[a.scalar(k("x",e,t,n).size,"int32")];case"Rank":return[a.scalar(k("x",e,t,n).rank,"int32")];case"NoOp":return[a.scalar(1)];case"Print":let i=k("x",e,t,n),o=k("data",e,t,n),l=k("message",e,t,n),u=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;p<o.length;p++)console.log(Array.prototype.slice.call(o[p].dataSync()).slice(0,u));return[i];default:throw TypeError(`Node type ${e.op} is not implemented`)}},h6=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ye(0),this.tensorMap=new Map,Jt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ye(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),P(()=>{let a=ct(t),r=n.length,s=a.length;v.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Jt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return P(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Ft(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},m6=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=a.getHashTableHandleByName(e.name);if(r!=null)return[r];{let s=k("keyDType",e,t,n),i=k("valueDType",e,t,n),o=new h6(s,i);return a.addHashTable(e.name,o),[o.handle]}}case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},f6=(e,t,n,a=pn)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=k("image",e,t,n),s=k("boxes",e,t,n),i=k("boxInd",e,t,n),o=k("cropSize",e,t,n),l=k("method",e,t,n),u=k("extrapolationValue",e,t,n);return[a.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=k("images",e,t,n),s=k("transforms",e,t,n),i=k("outputShape",e,t,n),o=k("fillValue",e,t,n),l=k("interpolation",e,t,n),u=k("fillMode",e,t,n);return[a.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},g6=(e,t,n,a=pn)=>{switch(e.op){case"Equal":return[a.equal(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[a.notEqual(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[a.greater(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[a.greaterEqual(k("a",e,t,n),k("b",e,t,n))];case"Less":return[a.less(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[a.lessEqual(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[a.logicalAnd(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[a.logicalNot(k("a",e,t,n))];case"LogicalOr":return[a.logicalOr(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[a.where(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},b6=(e,t,n,a=pn)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[a.matMul(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[a.einsum(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[a.transpose(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,s]=k("fusedOps",e,t,n),i=r==="biasadd",o=s==="prelu",l=k("numArgs",e,t,n),u=k("leakyreluAlpha",e,t,n);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,d]=k("args",e,t,n);return[a.fused.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:p,activation:s,preluActivationWeights:d,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},y6=(e,t,n,a=pn)=>{switch(e.op){case"EuclideanNorm":return[a.euclideanNorm(k("x",e,t,n),k("axis",e,t,n),k("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[a.localResponseNormalization(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[a.softmax(k("x",e,t,n))];case"LogSoftmax":return[a.logSoftmax(k("x",e,t,n))];case"SparseToDense":return[a.sparseToDense(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},x6=(e,t,n,a=pn)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.max(k("x",e,t,n),o,l)]}case"Mean":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.mean(k("x",e,t,n),o,l)]}case"Min":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.min(k("x",e,t,n),o,l)]}case"Sum":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.sum(k("x",e,t,n),o,l)]}case"All":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.all(k("x",e,t,n),o,l)]}case"Any":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.any(k("x",e,t,n),o,l)]}case"ArgMax":{let o=k("axis",e,t,n);return[a.argMax(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[a.argMin(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.prod(k("x",e,t,n),o,l)]}case"Cumprod":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumprod(k("x",e,t,n),o,l,u)]}case"Cumsum":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumsum(k("x",e,t,n),o,l,u)]}case"Bincount":let r=k("x",e,t,n),s=k("weights",e,t,n),i=k("size",e,t,n);return[a.bincount(r,s,i)];case"DenseBincount":{let o=k("x",e,t,n),l=k("weights",e,t,n),u=k("size",e,t,n),p=k("binaryOutput",e,t,n);return[a.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},v6=(e,t,n,a=pn)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),s=k("axis",e,t,n),i=k("tensors",e,t,n);return i=i.slice(0,r),[a.concat(i,s)]}case"Gather":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gather(r,a.cast(s,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),s=k("batchDims",e,t,n),i=k("x",e,t,n),o=k("indices",e,t,n);return[a.gather(i,a.cast(o,"int32"),r,s)]}case"Reverse":{let r=k("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let i=k("x",e,t,n);return[a.reverse(i,s)]}case"ReverseV2":{let r=k("axis",e,t,n),s=k("x",e,t,n);return[a.reverse(s,r)]}case"Slice":{let r=k("begin",e,t,n),s=k("size",e,t,n);return[a.slice(k("x",e,t,n),r,s)]}case"StridedSlice":{let r=k("begin",e,t,n),s=k("end",e,t,n),i=k("strides",e,t,n),o=k("beginMask",e,t,n),l=k("endMask",e,t,n),u=k("ellipsisMask",e,t,n),p=k("newAxisMask",e,t,n),d=k("shrinkAxisMask",e,t,n),c=k("x",e,t,n);return[a.stridedSlice(c,r,s,i,o,l,u,p,d)]}case"Pack":return P(()=>{let r=k("axis",e,t,n),s=k("tensors",e,t,n),i=s[0].shape,o=a.squeeze(s[0]).shape,l=s.map(u=>{let p=v.arraysEqual(u.shape,i);if(!p&&!v.arraysEqual(a.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:a.reshape(u,i)});return[a.stack(l,r)]});case"Unpack":{let r=k("axis",e,t,n),s=k("tensor",e,t,n);return a.unstack(s,r)}case"Tile":{let r=k("reps",e,t,n);return[a.tile(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),s=k("numOrSizeSplits",e,t,n),i=k("x",e,t,n);return a.split(i,s,r)}case"ScatterNd":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("shape",e,t,n);return[a.scatterND(r,s,i)]}case"GatherNd":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gatherND(r,s)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),s=k("outputShape",e,t,n),i=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[a.sparseToDense(r,i,s,i.dtype===o.dtype?o:a.cast(o,i.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},w6=(e,t,n,a=pn)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=a.sparse.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=a.sparse.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[a.sparse.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[a.sparse.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},k6=(e,t,n,a=pn)=>{switch(e.op){case"FFT":return[a.fft(k("x",e,t,n))];case"IFFT":return[a.ifft(k("x",e,t,n))];case"RFFT":return[a.rfft(k("x",e,t,n))];case"IRFFT":return[a.irfft(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},I6=(e,t,n,a=pn)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=a.string.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=a.string.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[r,s,i]}case"StringToHashBucketFast":return[a.string.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},S6=(e,t,n,a=pn)=>{switch(e.op){case"Cast":return[a.cast(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[a.expandDims(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[a.squeeze(k("x",e,t,n),r)]}case"Reshape":return[a.reshape(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[a.mirrorPad(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[a.pad(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),s=k("paddings",e,t,n);return[a.spaceToBatchND(k("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),s=k("crops",e,t,n);return[a.batchToSpaceND(k("x",e,t,n),r,s)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),s=k("dataFormat",e,t,n).toUpperCase();return[a.depthToSpace(k("x",e,t,n),r,s)]}case"BroadcastTo":return[a.broadcastTo(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[a.broadcastArgs(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function eI(e,t,n,a,r=P){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>e6(i,o,l));case"basic_math":return r(()=>t6(i,o,l));case"control":return o6(i,o,l);case"convolution":return r(()=>l6(i,o,l));case"creation":return r(()=>u6(i,o,l));case"dynamic":return p6(i,o,l);case"evaluation":return r(()=>c6(i,o,l));case"image":return r(()=>f6(i,o,l));case"graph":return r(()=>d6(i,o,l));case"logical":return r(()=>g6(i,o,l));case"matrices":return r(()=>b6(i,o,l));case"normalization":return r(()=>y6(i,o,l));case"reduction":return r(()=>x6(i,o,l));case"slice_join":return r(()=>v6(i,o,l));case"sparse":return r(()=>w6(i,o,l));case"spectral":return r(()=>k6(i,o,l));case"string":return r(()=>I6(i,o,l));case"transformation":return r(()=>S6(i,o,l));case"hash_table":return m6(i,o,l,a);case"custom":let u=v2(i.op);if(u&&u.customExecutor)return u.customExecutor(new QH(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var tI=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function nI(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Yn(c)[0]),p=[];a!=null&&(p=a.map(c=>Yn(c.name)[0]));let d=[...t];for(;d.length>0;){let c=d.pop();if((V2(c)||E6(c)||A6(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&p.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function T6(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(p=>Yn(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{a.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{a.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{a.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(d=>{!l.has(d.name)&&a.has(d.name)&&d.inputs.every(c=>l.has(c.name))&&s.push(d)})}return u}var N6=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],C6=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],_6=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function V2(e){return N6.indexOf(e.op)>=0}function E6(e){return C6.indexOf(e.op)>=0}function A6(e){return _6.indexOf(e.op)>=0}var px=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new px(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=nI(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return T6(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(p=>this.graph.nodes[Yn(p)[0]]),r=t.map(p=>Yn(p)[0]),s=r.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return P(()=>{let p=new tI(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Yn(m),b=[];b[g]=e[m],d[f]=b});let c=this.getFrozenTensorIds(d),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!d[f.name]){let g=eI(f,d,p,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=g,this.checkTensorForDisposal(f.name,f,d,p,c,r,h)}}return this.parent==null&&p.dispose(c),t.map(m=>wn(m,d,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=FH(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];if(p===1){if(!this.keepTensorForDebug)u.dispose();else{let[d,c]=sr(t.name,a);this.intermediateTensors[d]?this.intermediateTensors[d][c]=u:(this.intermediateTensors[d]=[],this.intermediateTensors[d][c]=u)}delete i[u.id]}else p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=H().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new tI(this.weightMap,a,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,n);let i=t.map(u=>wn(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(y=>this.graph.nodes[Yn(y)[0]]),i=n.map(y=>Yn(y)[0]),o=i.map(y=>this.graph.nodes[y]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:d}=nI(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,w]=Yn(y),I=[];I[w]=e[y],h[x]=I});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let y=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(y)}p==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=o.filter(y=>!V2(y)&&!wn(y.name,h,t)).map(y=>y.name);if(b.length>0){let y="";throw p!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&k("isConstant",p.node,a,n)&&([d]=sr(p.node.name,n)),a[p.node.name]==null){let c=eI(p.node,a,n,this._resourceManager);d||([d]=sr(p.node.name,n));let h=n.currentContext;v.isPromise(c)?u.push(c.then(m=>(a[d]=m,n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=sr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!wn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!wn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Yn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Yn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Yn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},$6=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},F6="?tfjs-format=file",D6="model.json",A0=class{constructor(e,t={},n=Ut){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new $6}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new px(Yk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Yk.Instance.transformGraph(e.modelInitializer);this.initializer=new px(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=e.initializerSignature}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let a=n instanceof Te?[n]:n,r={};return a.forEach((s,i)=>r[this.structuredOutputKeys[i]]=s),r}return n}normalizeInputs(e){if(!(e instanceof Te)&&!Array.isArray(e)){if(this.signature!=null&&this.signature.inputs!=null)for(let a in this.signature.inputs){let r=this.signature.inputs[a];r.resourceId!=null&&(e[a]=this.resourceIdToCapturedInput[r.resourceId])}return e}e=Array.isArray(e)?e:[e];let t=Object.keys(this.resourceIdToCapturedInput).length;if(e.length+t!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-t} non-resource placeholders, while there are ${e.length} input tensors provided.`);let n=0;return this.inputNodes.reduce((a,r)=>{let s=this.signature?this.signature.inputs[r]:null;return s!=null&&s.resourceId!=null?a[r]=this.resourceIdToCapturedInput[s.resourceId]:a[r]=e[n++],a},{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(e){if(this.resourceIdToCapturedInput={},this.initializerSignature){let t=Object.keys(this.initializerSignature.outputs);for(let n=0;n<t.length;n++){let a=t[n],r=this.initializerSignature.outputs[a];this.resourceIdToCapturedInput[r.resourceId]=e[n]}}}execute(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&_e(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function R6(e,t={},n=Ut){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=P6(e));let a=new A0(e,t,n);return await a.load(),a}function M6(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(e instanceof Array){let[a,r]=e;if(!a)throw new Error("modelJSON must be the first element of the array");if(!r||!(r instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in a))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in a))throw new Error("Model JSON is missing 'weightsManifest'");let s=Ut.getWeightSpecs(a.weightsManifest),i=Ut.getModelArtifactsForJSONSync(a,s,r);t=Ut.fromMemorySync(i)}else if("load"in e)t=e;else if("modelTopology"in e&&"weightSpecs"in e&&"weightData"in e)t=Ut.fromMemorySync(e);else throw new Error("Unknown model format");let n=new A0(t);return n.load(),n}function P6(e){return e.endsWith("/")||(e=e+"/"),`${e}${D6}${F6}`}var O6="4.0.0",U2={};Ae(U2,{CSVDataset:()=>J2,Dataset:()=>qu,FileDataSource:()=>sC,TextLineDataset:()=>Z2,URLDataSource:()=>iC,array:()=>ij,csv:()=>bj,func:()=>yj,generator:()=>xj,microphone:()=>wj,version_data:()=>kj,webcam:()=>vj,zip:()=>oj});var L6=ms(im()),z6=ms(im());function W6(e,t){return Yh(e,t)}function Yh(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Cl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=Yh(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function B6(e,t=H2){return G2(e,t)}function G2(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Cl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=G2(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function H2(e){return e===null?null:Cl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function j2(e,t){let n=new Map;Yh(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(v.isPromise(r)){let s=await r;n.set(a,s)}}return Yh(e,t,n)}function Cl(e){let t=!1;if(H().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=BI();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Te)&&!(e instanceof Promise)&&!t)}function V6(e){return e==null||U6(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Te||v.isTypedArray(e)}function U6(e){return e===null||typeof e!="object"&&typeof e!="function"}function G6(e){return W6(e,H6)}function H6(e){return e instanceof Te?{value:e.clone(),recurse:!1}:Cl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var q2=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},$0=class extends q2{constructor(){super($0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};$0.INITIAL_CAPACITY=32;function K2(e){return new K6(e)}function F0(e){return new X6(e)}function j6(e,t){return new X2(e,t)}function q6(e,t=ts.FAIL){return new rj(e,t)}var tn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new nj(this,e)}filter(e){return new ej(this,e)}map(e){return new tj(this,e)}mapAsync(e){return new aI(this,e)}serialMapAsync(e){return new aI(this,e).serial()}flatmap(e){return new aj(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Q6(this,e,t)}columnMajorBatch(e,t=!0,n=H2){return this.rowMajorBatch(e,t).map(a=>B6(a,n))}concatenate(e,t){return new X2(K2([this,e]),t)}take(e){return e<0||e==null?this:new J6(this,e)}skip(e){return e<0||e==null?this:new Z6(this,e)}prefetch(e){return new Y2(this,e)}shuffle(e,t){return new sj(this,e,t)}serial(){return new Y6(this)}},K6=class extends tn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:G6(e),done:!1}}},X6=class extends tn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Y6=class extends tn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Z6=class extends tn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;_e(e.value)}return this.upstream.next()}},J6=class extends tn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Q6=class extends tn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},ej=class extends tn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;_e(e.value)}}},tj=class extends tn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Va.getTensorsInContainer(e.value),n=this.transform(e.value),a=Va.getTensorsInContainer(n);for(let r of t)Va.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},nj=class extends tn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},aI=class extends tn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Va.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Va.getTensorsInContainer(n);for(let r of t)Va.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},D0=class extends tn{constructor(){super(),this.outputQueue=new $0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},aj=class extends D0{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Va.getTensorsInContainer(e.value),n=this.transform(e.value),a=Va.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Va.isTensorInList(r,a)||r.dispose();return!0}},X2=class extends tn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ts;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ts||(ts={}));var rj=class extends tn{constructor(e,t=ts.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof tn?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await j2(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ts.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ts.SHORTEST:return{value:null,done:!0};case ts.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Y2=class extends tn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new q2(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},sj=class extends Y2{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=z6.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},qu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Xn(async()=>(await n.iterator()).columnMajorBatch(e,t,lj),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Xn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Xn(async()=>(await t.iterator()).filter(a=>P(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Xn(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return Xn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Xn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Xn(async()=>{let a=F0(async()=>({value:await t.iterator(),done:!1}));return j6(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Xn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=L6.alea(t||v.now().toString());return Xn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Xn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};qu.MAX_BUFFER_SIZE=1e4;function Xn(e,t=null){return new class extends qu{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function ij(e){return Xn(async()=>K2(e),e.length)}function oj(e){if(!Cl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Xn(async()=>{let n=await j2(e,a=>{if(a instanceof qu)return{value:a.iterator(),recurse:!1};if(Cl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return q6(n,ts.SHORTEST)},t)}function lj(e){if(e===null)return null;let t=e[0];return V6(t)?{value:uj(e),recurse:!1}:{value:null,recurse:!0}}function uj(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Te?Ft(e):In(e)}var Z2=class extends qu{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},dh='"',Fp=Symbol("out"),rI=Symbol("field"),hh=Symbol("quote"),Iy=Symbol("quoteafterquote"),sI=Symbol("quoteinquote"),J2=class extends qu{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Z2(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Fp;for(let i=0;i<r;i++)switch(s){case Fp:switch(e.charAt(i)){case dh:a=i+1,s=hh;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Fp;break;default:s=rI,a=i;break}break;case rI:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Fp,a=i+1;break;default:}break;case hh:switch(e.charAt(i)){case dh:s=Iy;break;default:}break;case Iy:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Fp,a=i+1;break;case dh:s=hh;break;default:s=sI;break}break;case sI:switch(e.charAt(i)){case dh:s=hh;break;default:}break;default:}if(s===Iy?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},Q2=class extends tn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!H().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new Q2(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),In(n,t)}},eC=class extends tn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ke([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Aa([s,r,o,i],[1,4])}else this.cropBox=Aa([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!H().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new eC(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ho.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=Zt(oe(e,"float32"),0),n;n=za.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},tC=class{},nC=class extends tn{split(e){return new pj(this,e)}},pj=class extends nC{constructor(e,t){super(),this.upstream=e,this.impl=new cj(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},cj=class extends D0{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},dj=class extends tn{decodeUTF8(){return new hj(this)}},hj=class extends nC{constructor(e){super(),this.upstream=e,this.impl=new mj(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},mj=class extends D0{constructor(e){if(super(),this.upstream=e,H().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=BI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return H().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},aC=class extends dj{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(H().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function fj(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=gj(e));let s=await(n||v.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new aC(i,t)}else throw new Error(s.statusText)}var gj=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function rC(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var sC=class extends tC{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(rC(this.input)&&H().get("IS_NODE")){let e=Cx();this.input=e.readFileSync(this.input.slice(7))}return new aC(this.input,this.options)}},iC=class extends tC{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return rC(this.url)?new sC(this.url,this.fileOptions).iterator():fj(this.url,this.fileOptions)}};function bj(e,t={}){return new J2(new iC(e),t)}function yj(e){let t=F0(e);return Xn(async()=>t)}function xj(e){return Xn(async()=>{let t=await e();return F0(()=>t.next())})}async function vj(e,t){return eC.create(e,t)}async function wj(e){return Q2.create(e)}var kj="4.0.0";function ge(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var Ij=hr.whereImpl,R0=class extends pc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new om(this,_a())}nextDataId(){return R0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,H().get("IS_NODE")&&N.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Oe(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Oe(e.shape,e.dtype,t)}makeOutput(e,t,n){return _a().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ge([e],"where");let t=this.readSync(e.dataId);return Ij(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};R0.nextDataId=0;var oC={};Ae(oC,{addImpl:()=>pC,bincountImpl:()=>P0,bincountReduceImpl:()=>cC,castImpl:()=>uC,ceilImpl:()=>dC,concatImpl:()=>O0,equalImpl:()=>hC,expImpl:()=>fC,expm1Impl:()=>bC,floorImpl:()=>yC,gatherNdImpl:()=>xC,gatherV2Impl:()=>vC,greaterEqualImpl:()=>kC,greaterImpl:()=>wC,lessEqualImpl:()=>SC,lessImpl:()=>IC,linSpaceImpl:()=>TC,logImpl:()=>NC,maxImpl:()=>CC,maximumImpl:()=>_C,minimumImpl:()=>EC,multiplyImpl:()=>L0,negImpl:()=>AC,notEqualImpl:()=>$C,prodImpl:()=>FC,raggedGatherImpl:()=>DC,raggedRangeImpl:()=>RC,raggedTensorToTensorImpl:()=>MC,rangeImpl:()=>W0,rsqrtImpl:()=>PC,scatterImpl:()=>ll,sigmoidImpl:()=>bq,simpleAbsImpl:()=>lC,sliceImpl:()=>Jh,sparseFillEmptyRowsImpl:()=>LC,sparseReshapeImpl:()=>zC,sparseSegmentReductionImpl:()=>B0,sqrtImpl:()=>vq,squaredDifferenceImpl:()=>WC,stridedSliceImpl:()=>BC,stringNGramsImpl:()=>V0,stringSplitImpl:()=>U0,stringToHashBucketFastImpl:()=>G0,subImpl:()=>VC,tileImpl:()=>UC,topKImpl:()=>HC,transposeImpl:()=>z0,uniqueImpl:()=>jC});function lC(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var Sj=e=>{let{x:t}=e.inputs,n=e.backend;ge(t,"abs");let a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=lC(r),n.makeOutput(a,t.shape,t.dtype)},Tj={kernelName:Dl,backendName:"cpu",kernelFunc:Sj};function Vt(e){return(t,n,a,r,s)=>{let i=N.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),p=v.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=v.computeStrides(t),m=v.computeStrides(n),f=N.getBroadcastDims(t,i),g=N.getBroadcastDims(n,i);if(f.length+g.length===0)for(let b=0;b<p.length;++b)p[b]=e(a[b%a.length],r[b%r.length]);else for(let b=0;b<p.length;++b){let y=v.indexToLoc(b,o,l),x=y.slice(-d);f.forEach(C=>x[C]=0);let w=v.locToIndex(x,d,h),I=y.slice(-c);g.forEach(C=>I[C]=0);let T=v.locToIndex(I,c,m);p[b]=e(a[w],r[T])}return[p,i]}}function Zn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var Nj={kernelName:mm,backendName:"cpu",kernelFunc:Zn};function Zh(e,t,n="float32"){if(n==="complex64"){let r=Zh(e,t,"float32"),s=Zh(e,t,"float32");return Zn({inputs:{real:r,imag:s},backend:e})}let a=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function pr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var Cj={kernelName:Ri,backendName:"cpu",kernelFunc:pr};function ui(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var _j={kernelName:Pm,backendName:"cpu",kernelFunc:ui};function uC(e,t,n,a){if(a==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(a==="bool"){let r=v.toTypedArray([0],n),[s,i]=Vt((o,l)=>o!==l?1:0)(t,[],e,r,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${n} to ${a}`)}function ds(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return pr({inputs:{x:r},backend:n});let p=Zh(n,r.shape,r.dtype),d=ds({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),c=Zn({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),c}if(r.dtype==="complex64"){let p=ui({inputs:{input:r},backend:n}),d=ds({inputs:{x:p},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(p),d}if(!v.hasEncodingLoss(r.dtype,s)){let p=pr({inputs:{x:r},backend:n});return{dataId:p.dataId,shape:p.shape,dtype:s}}let i=n.data.get(r.dataId).values,[o,l,u]=uC(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}var Ej={kernelName:xi,backendName:"cpu",kernelFunc:ds};function nn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ge([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?N.fromUint8ToStringArray(u):u,c=i.dtype==="string"?N.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=ds({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=ds({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(b.dataId).values,w=l.data.get(y.dataId).values,[I,T,C]=n(i.shape,o.shape,h,m,x,w),E=l.makeTensorInfo(C,"float32",I),A=l.makeTensorInfo(C,"float32",T),R=Zn({inputs:{real:E,imag:A},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(A),R}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function M0(e){return(t,n,a,r,s,i)=>{let o=N.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,p=v.computeStrides(o),d=v.getTypedArrayFromDType("float32",l),c=v.getTypedArrayFromDType("float32",l),h=N.getBroadcastDims(t,o),m=N.getBroadcastDims(n,o),f=N.mergeRealAndImagArrays(a,r),g=N.mergeRealAndImagArrays(s,i),b=t.length,y=v.computeStrides(t),x=n.length,w=v.computeStrides(n);if(h.length+m.length===0)for(let I=0;I<d.length;I++){let T=I%f.length,C=I%g.length,E=e(f[T*2],f[T*2+1],g[C*2],g[C*2+1]);d[I]=E.real,c[I]=E.imag}else for(let I=0;I<d.length;I++){let T=v.indexToLoc(I,u,p),C=T.slice(-b);h.forEach(S=>C[S]=0);let E=v.locToIndex(C,b,y),A=T.slice(-x);m.forEach(S=>A[S]=0);let R=v.locToIndex(A,x,w),F=e(f[E*2],f[E*2+1],g[R*2],g[R*2+1]);d[I]=F.real,c[I]=F.imag}return[d,c,o]}}var pC=Vt((e,t)=>e+t),Aj=M0((e,t,n,a)=>({real:e+n,imag:t+a})),_l=nn(gs,pC,Aj),$j={kernelName:gs,backendName:"cpu",kernelFunc:_l};function P0(e,t,n,a,r){let s=v.sizeFromShape(a),i=v.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function cC(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Oe([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Cs(e){return(t,n,a)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function rt(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ge(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),p=n||i.dtype,d=v.getArrayFromDType(p,u);for(let c=0;c<u;++c)d[c]=t(l[c],r);return o.makeTensorInfo(i.shape,p,d)}}function Ku(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ge(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var dC=Cs(e=>Math.ceil(e)),Fj=Ku(vi,dC),Dj={kernelName:vi,backendName:"cpu",kernelFunc:Fj};function O0(e,t,n,a){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?N.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var hC=Vt((e,t)=>e===t?1:0),mC=nn(Xl,hC,null,"bool"),Rj={kernelName:Xl,backendName:"cpu",kernelFunc:mC},fC=Cs(e=>Math.exp(e)),gC=Ku(Ei,fC,"float32"),Mj={kernelName:Ei,backendName:"cpu",kernelFunc:gC},bC=Cs(e=>Math.expm1(e)),Pj=Ku(Zl,bC),Oj={kernelName:Zl,backendName:"cpu",kernelFunc:Pj},yC=Cs(e=>Math.floor(e)),Lj=Ku(Ai,yC),zj={kernelName:Ai,backendName:"cpu",kernelFunc:Lj};function xC(e,t,n,a,r,s,i,o,l){let u=Oe([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function vC(e,t,n){let a=Oe(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var wC=Vt((e,t)=>e>t?1:0),Wj=nn(tu,wC,null,"bool"),Bj={kernelName:tu,backendName:"cpu",kernelFunc:Wj},kC=Vt((e,t)=>e>=t?1:0),Vj=nn(Di,kC,null,"bool"),Uj={kernelName:Di,backendName:"cpu",kernelFunc:Vj},IC=Vt((e,t)=>e<t?1:0),Gj=nn(su,IC,null,"bool"),Hj={kernelName:su,backendName:"cpu",kernelFunc:Gj},SC=Vt((e,t)=>e<=t?1:0),jj=nn(iu,SC,null,"bool"),qj={kernelName:iu,backendName:"cpu",kernelFunc:jj};function TC(e,t,n){let a=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var NC=Cs(e=>Math.log(e)),Kj=Ku(Pi,NC),Xj={kernelName:Pi,backendName:"cpu",kernelFunc:Kj};function CC(e,t,n,a){let r=v.getTypedArrayFromDType(a,v.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var _C=Vt((e,t)=>Math.max(e,t)),Yj=nn(Li,_C),Zj={kernelName:Li,backendName:"cpu",kernelFunc:Yj},EC=Vt((e,t)=>Math.min(e,t)),Jj=nn(Vi,EC),Qj={kernelName:Vi,backendName:"cpu",kernelFunc:Jj},L0=Vt((e,t)=>e*t),eq=M0((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),qf=nn(Gi,L0,eq),tq={kernelName:Gi,backendName:"cpu",kernelFunc:qf};function AC(e,t,n){let a=v.createScalarValue(-1,n);return L0([],t,a,e,n)}function nq(e){let{inputs:t,backend:n}=e,{x:a}=t;ge(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=AC(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var aq={kernelName:du,backendName:"cpu",kernelFunc:nq},$C=Vt((e,t)=>e!==t?1:0),rq=nn(hu,$C,null,"bool"),sq={kernelName:hu,backendName:"cpu",kernelFunc:rq};function z0(e,t,n,a,r){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let p=0;p<i;++p){let d=v.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=v.locToIndex(c,s,l);u[h]=e[p]}return u}function Vn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ge(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=z0(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var iq={kernelName:_r,backendName:"cpu",kernelFunc:Vn};function FC(e,t,n,a){let[r,s]=N.computeOutAndReduceShapes(e,a),i=fa(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(r),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function oq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"prod");let o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=N.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=N.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=FC(d.shape,d.dtype,h,p),b=f;return i&&(b=N.expandShapeToKeepDim(f,l)),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,m)}var lq={kernelName:Xi,backendName:"cpu",kernelFunc:oq};function uq(e,t,n){e.forEach((a,r)=>{if(a<0||a>=n){let s=v.indexToLoc(r,t.length,v.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${a} is not in [0, ${n})`)}})}function pq(e,t){for(let n=0;n<e.length;++n){let a=e[n],r=n===e.length-1?t:e[n+1].length;if(a.length===0)throw new Error("Ragged splits may not be empty");if(a[0]<0)throw new Error("Ragged splits must be non-negative");if(a[a.length-1]>r)throw new Error("Ragged splits must not point past values");for(let s=1;s<a.length;++s)if(a[s-1]>a[s])throw new Error("Ragged splits must be sorted in ascending order")}}function cq(e,t,n,a){let r=[],s=0,i=t.length-1+n.length,o=new Array(i).fill(null).map(()=>[0]);pq(n,a);let l=1;for(let u=0;u<t.length-1;++u){l*=t[u];let p=t[u+1];for(let d=1;d<l+1;++d)o[u].push(d*p)}for(let u=0;u<e.length;++u){let p=e[u],d=e[u]+1;for(let c=0;c<n.length;++c){let h=n[c],m=c+t.length-1;if(m>=0){let f=o[m],g=f[f.length-1]-h[p];for(let b=p;b<d;++b)o[m].push(h[b+1]+g)}p=h[p],d=h[d]}d!==p&&(r.push([p,d]),s+=d-p)}return{outSplits:o,valueSlices:r,numValues:s}}function dq(e){let t=[];for(let n=0;n<e.length;++n){let a=e[n].length,r=v.getArrayFromDType("int32",a);t.push(r),e[n].forEach((s,i)=>r[i]=s)}return t}function iI(e,t){let n=e.slice(0,t);for(;n.length<t;)n.push(1);for(let a=t;a<e.length;a++)n[t-1]*=e[a];return n}function hq(e,t,n,a,r,s){let i=iI(t,2)[1],o=iI(s,2)[1],l=0;for(let u of n)for(let p=u[0];p<u[1];++p){for(let d=0;d<a;++d)r[l*o+d]=e[p*i+d];++l}}function mq(e,t,n,a,r){let s=t.slice();s[0]=r;let i=v.getArrayFromDType(n,v.sizeFromShape(s)),o=e.length,l=o===0?0:o/t[0];return hq(e,t,a,l,i,s),[i,s]}function DC(e,t,n,a,r,s,i,o){if(e.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let l=t[0][0]-1;if(uq(s,i,l),a.length===0)throw new Error("params.rank must be nonzero");let u=a[0],{outSplits:p,valueSlices:d,numValues:c}=cq(s,i,e,u),h=dq(p),m=mq(n,a,r,d,c);return[h,m[0],m[1]]}var oI=2147483647;function RC(e,t,n,a,r,s,i){if(t.length>1)throw new Error("starts must be a scalar or vector");if(r.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let o=t.length===0,l=r.length===0,u=i.length===0,p=[];o||p.push(t[0]),l||p.push(r[0]),u||p.push(i[0]);for(let g=1;g<p.length;++g)if(p[g]!==p[g-1])throw new Error("starts, limits, and deltas must have the same shape");let d=p.length===0?1:p[0],c=v.getArrayFromDType("int32",d+1);c[0]=0;for(let g=0;g<d;++g){let b=o?e[0]:e[g],y=l?a[0]:a[g],x=u?s[0]:s[g];if(x===0)throw new Error("Requires delta != 0");let w;if(x>0&&y<b||x<0&&y>b)w=0;else if(w=Math.ceil(Math.abs((y-b)/x)),w>oI)throw new Error(`Requires ((limit - start) / delta) <= ${oI}`);c[g+1]=c[g]+w}let h=c[d],m=v.getArrayFromDType(n,h),f=0;for(let g=0;g<d;++g){let b=c[g+1]-c[g],y=o?e[0]:e[g],x=u?s[0]:s[g];for(let w=0;w<b;++w)m[f++]=y,y+=x}return[c,m]}var Ta=N.RowPartitionType,cx=class{constructor(e,t,n,a,r,s,i,o,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=a,this.valuesDType=r,this.defaultValue=s,this.defaultValueShape=i,this.rowPartitionValues=o,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=N.getRowPartitionTypesHelper(u),this.raggedRank=N.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===Ta.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===Ta.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case Ta.VALUE_ROWIDS:return cx.getMaxWidthValueRowID(t);case Ta.ROW_SPLITS:return cx.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${Ta[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let a=0;a<t-1;++a){let r=e[a+1]-e[a];r>n&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,a=e[0],r=0;for(let s=1;s<t;++s){let i=e[s];i!==a&&(a=i,r=Math.max(s-n,r),n=s)}return Math.max(t-n,r)}tensorShapeFromTensor(e,t,n=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return uI(e,n)}calculateOutputSize(e){let t=this.valuesShape,n=this.defaultValueShape;N.validateDefaultValueShape(n,t);let a=this.tensorShapeFromTensor(this.shape,this.shapeShape),r=N.combineRaggedTensorToTensorShapes(this.raggedRank,a,t);r[0]<0&&(r[0]=e);for(let s=1;s<=this.raggedRank;++s)r[s]<0&&(r[s]=this.getMaxWidth(s));return r}calculateFirstParentOutputIndex(e,t,n){let a=Math.min(e,n),r=[],s=0;for(let i=0;i<a;++i,s+=t)r.push(s);for(let i=a;i<e;++i)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,a){let r=e.length,s=[];for(let i=0;i<r-1;++i){let o=e[i+1]-e[i],l=Math.min(a,o),u=t[i];u===-1&&(l=0);for(let p=0;p<l;++p)s.push(u),u+=n;for(let p=0;p<o-l;++p)s.push(-1)}if(r>0&&s.length!==e[r-1])throw new Error("Invalid row split size.");return s}calculateOutputIndexValueRowID(e,t,n,a){let r=e.length,s=[];if(r===0)return[];let i=0,o=e[0];if(o>=t.length)throw new Error(`Got currentValueRowId=${o}, which is not less than ${t.length}`);let l=t[o];s.push(l);for(let u=1;u<r;++u){let p=e[u];if(p===o)l>=0&&(++i,i<a?l+=n:l=-1);else{if(i=0,o=p,p>=t.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${t.length}`);l=t[p]}s.push(l)}if(s.length!==e.length)throw new Error("Invalid row ids.");return s}calculateOutputIndex(e,t,n,a){let r=this.getRowPartitionTensor(e),s=this.getRowPartitionTypeByDimension(e);switch(s){case Ta.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,a);case Ta.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,a);default:throw new Error(`Unsupported partition type: ${Ta[s]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case Ta.FIRST_DIM_SIZE:return e[0];case Ta.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case Ta.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Ta[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),t=this.calculateOutputSize(e),n=new Array(this.raggedRank+1);n[n.length-1]=1;for(let s=n.length-2;s>=0;--s)n[s]=n[s+1]*t[s+1];let a=uI(t,!1),r=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(a));if(n[0]*t[0]>0){let s=this.calculateFirstParentOutputIndex(e,n[0],t[0]);for(let i=1;i<=this.raggedRank;++i)s=this.calculateOutputIndex(i-1,s,n[i],t[i]);this.setOutput(this.raggedRank,s,r,a)}return[a,r]}setOutput(e,t,n,a){if(n.length===0)return;let r=this.values,s=n,i=a.slice();i=i.slice(e+1);let o=v.sizeFromShape(i),l=t.length,u=this.defaultValue;if(u.length!==o&&u.length!==1){let h=this.defaultValueShape;P(()=>{let m=W(u,h);u=Xs(m,i).dataSync()})}let p=0,d=0,c=0;for(let h=0;h<=l;++h){let m=h<l?t[h]:-1;if(m===c){++c;continue}if(d<c){let f=r.subarray(p*o),g=s.subarray(d*o),b=(c-d)*o;lI(g,f,b)}if(h>=l){let f=n.length;m=Math.floor(f/o)}if(m>c)if(this.defaultValue.length===1)s.subarray(c*o,m*o).fill(this.defaultValue[0]),c=m;else for(;m>c;){let f=s.slice(c*o);lI(f,u,o),++c}m<0?(p=h+1,d=c):(p=h,d=c,c=d+1)}}};function lI(e,t,n){for(let a=0;a<n;a++)e[a]=t[a]}function uI(e,t){let n=[];for(let a of e){if(a<0){if(!t)throw new Error(`Dimension ${a} must be >= 0`);if(a<-1)throw new Error(`Dimension ${a} must be >= -1`);a=-1}n.push(a)}return n}function MC(e,t,n,a,r,s,i,o,l,u){return new cx(e,t,n,a,r,s,i,o,l,u).compute()}function W0(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return v.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var PC=Cs(e=>1/Math.sqrt(e)),fq=Ku(no,PC),gq={kernelName:no,backendName:"cpu",kernelFunc:fq};function ll(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return Oe(n,t.dtype);let h=Oe(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let b=0;b<i;b++){let y=d[m*i+b];f.push(y),g+=y*o[b]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let b=0;b<r;b++)u?h.values[g*r+b]+=c[m*r+b]:h.values[g*r+b]=t.rank===0?c[0]:c[m*r+b]}return h}var bq=Cs(e=>1/(1+Math.exp(-e))),OC=rt(ro,e=>1/(1+Math.exp(-e))),yq={kernelName:ro,backendName:"cpu",kernelFunc:OC};function Jh(e,t,n,a,r){let s=jt.isSliceContinous(a,t,n),i=v.sizeFromShape(n),o=v.computeStrides(a);if(s){let d=jt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?N.fromUint8ToStringArray(e):e,u=Oe(a,r,l),p=Oe(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?N.fromStringArrayToUint8(p.values):p.values}function pi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ge(r,"slice");let[o,l]=jt.parseSliceParams(r,s,i);jt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=Jh(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var xq={kernelName:Su,backendName:"cpu",kernelFunc:pi};function LC(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(n,0),b=v.getArrayFromDType(r,0);return[g,[0,d],b,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let b=e[g*d];if(b<0)throw new Error(N.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=l)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,l));++m[b],c=c&&b>=h,h=b}let f=!0;for(let g=0;g<l;++g){let b=m[g]===0;u[g]=b,f=f&&!b,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,b=a;for(let y=0;y<o;++y)p[y]=y;return[g,[o,d],b,u,p]}else{let g=m[l-1],b=v.getArrayFromDType(n,g*d),y=v.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let w=0;w<o;++w){let I=e[w*d],T=x[I],C=(I===0?0:m[I-1])+T;x[I]++;for(let E=0;E<d;++E)b[C*d+E]=e[w*d+E];y[C]=a[w],p[w]=C}for(let w=0;w<l;++w)if(x[w]===0){let I=w===0?0:m[w-1];b[I*d+0]=w;for(let T=1;T<d;++T)b[I*d+T]=0;y[I]=i}return[b,[g,d],y,u,p]}}function zC(e,t,n,a,r){let s=v.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(N.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(N.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(v.sizeFromShape(l)!==s)throw new Error(N.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=v.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let b=0;b<d;++b)g+=e[f*d+b]*c[b];for(let b=0;b<o;++b)m[f*o+b]=Math.trunc(g/h[b]),g%=h[b]}return[m,[i,o],l]}function B0(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((y,x)=>y*x,1),h=v.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,b=r[m];for(;;){let y=0;if(f<o){if(y=r[f],b===y){++f;continue}if(b>=y)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>g&&h.fill(i,g*u,b*u);for(let x=m;x<f;++x){let w=a[x];if(w<0||w>=l[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let I=0;I<u;I++)h[b*u+I]+=e[w*u+I]}if(s)for(let x=0;x<u;x++)h[b*u+x]/=f-m;if(m=f,++f,g=b+1,b=y,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var vq=Cs(e=>Math.sqrt(e)),wq=rt(so,e=>Math.sqrt(e)),kq={kernelName:so,backendName:"cpu",kernelFunc:wq},WC=Vt((e,t)=>{let n=e-t;return n*n}),Iq=nn(lo,WC),Sq={kernelName:lo,backendName:"cpu",kernelFunc:Iq};function BC(e,t,n,a){let r=Oe(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var Tq=class{constructor(e,t,n,a,r,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let g=0;g<p;++g)c+=e[d+g].length;c+=u*this.rightPad.length,c+=(l+u+p-1)*this.separator.length,n[a+i]=new Uint8Array(c);let h=n[a+i],m=0,f=g=>g.forEach(b=>h[m++]=b);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<p-1;++g)f(e[d+g]),f(this.separator);if(p>0){f(e[d+p-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=v.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function V0(e,t,n,a,r,s,i,o){return new Tq(n,a,r,s,i,o).compute(e,t)}function Nq(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function U0(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;Nq(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function G0(e,t){let n=v.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=v.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var VC=Vt((e,t)=>e-t),Cq=M0((e,t,n,a)=>({real:e-n,imag:t-a})),H0=nn(uo,VC,Cq),_q={kernelName:uo,backendName:"cpu",kernelFunc:H0};function UC(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Oe(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var Op=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function GC(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));GC(e,t,c,h)}let r=e[t],s=n,i=a;for(v.swap(e,n,t),Op(e[a],r)>0&&v.swap(e,n,a);s<i;){for(v.swap(e,s,i),s++,i--;Op(e[s],r)<0;)s=s+1;for(;Op(e[i],r)>0;)i=i-1}Op(e[n],r)===0?v.swap(e,n,i):(i=i+1,v.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function HC(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*a),u=v.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((y,x)=>m[x]={value:y,index:x}),a<m.length&&(GC(m,a),m=m.slice(0,a)),r&&m.sort(Op);let f=d*a,g=l.subarray(f,f+a),b=u.subarray(f,f+a);for(let y=0;y<a;y++)g[y]=m[y].value,b[y]=m[y].index}let p=t.slice();return p[p.length-1]=a,[Oe(p,n,l),Oe(p,"int32",u)]}function jC(e,t,n,a){let r=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Ht(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let g=[];for(let b=0;b<s[0];b++)for(let y=0;y<s[2];y++)g.push(l.get(b,m,y));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let d=s.slice();d[1]=Object.keys(i).length;let c=new Ht(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let b=0;b<s[2];b++)c.set(l.get(g,m,b),g,f,b)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}Gm("cpu",()=>new R0,1);var qC=rt(_i,e=>e>=0?e:Math.exp(e)-1),Eq={kernelName:_i,backendName:"cpu",kernelFunc:qC};function KC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ge([r],"leakyRelu");let i=v.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var Aq={kernelName:Mi,backendName:"cpu",kernelFunc:KC},$q=Vt((e,t)=>e<0?t*e:e);function XC(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ge([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=$q(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var Fq={kernelName:Ki,backendName:"cpu",kernelFunc:XC},YC=rt(Yi,e=>Math.max(0,e)),Dq={kernelName:Yi,backendName:"cpu",kernelFunc:YC},ZC=rt(Qi,e=>Math.min(Math.max(0,e),6)),Rq={kernelName:Qi,backendName:"cpu",kernelFunc:ZC};function Qh(e,t,n,a,r){if(n==="linear")return pr({inputs:{x:t},backend:e});if(n==="relu")return YC({inputs:{x:t},backend:e});if(n==="elu")return qC({inputs:{x:t},backend:e});if(n==="relu6")return ZC({inputs:{x:t},backend:e});if(n==="prelu")return XC({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return KC({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return OC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ft(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=v.sizeFromShape(r.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var Mq={kernelName:vu,backendName:"cpu",kernelFunc:ft};function JC(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ge([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=Ou.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=ft({inputs:{x:r},backend:n,attrs:{shape:x}}),T=ft({inputs:{x:s},backend:n,attrs:{shape:w}}),C=i?I.shape[1]:I.shape[2],E=i?I.shape[2]:I.shape[1],A=o?T.shape[1]:T.shape[2],R=Math.max(g,b),F=n.data.get(I.dataId).values,S=n.data.get(T.dataId).values,M=v.computeStrides(I.shape),B=v.computeStrides(T.shape),[U,G,q]=i?[M[0],1,M[1]]:[M[0],M[1],1],[K,Z,Q]=o?[1,B[1],B[0]]:[B[1],1,B[0]],ee=E*A,ae=Oe([R,E,A],I.dtype),te=ae.values,le=n.blockSize;for(let ie=0;ie<R;ie++)for(let be=0;be<E;be+=le)for(let ue=0;ue<A;ue+=le)for(let xe=0;xe<C;xe+=le){let Ie=Math.min(be+le,E),Se=Math.min(ue+le,A),Le=Math.min(xe+le,C);for(let Ve=be;Ve<Ie;Ve++)for(let nt=ue;nt<Se;nt++){let it=0;for(let et=xe;et<Le;et++){let at=Math.min(ie,g-1)*U,ze=Math.min(ie,b-1)*Q,dt=F[at+Ve*G+et*q],jn=S[et*K+nt*Z+ze];it+=dt*jn}te[ie*ee+(Ve*A+nt)]+=it}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(y,ae.dtype,ae.values)}var Pq={kernelName:yi,backendName:"cpu",kernelFunc:JC};function Oq(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=JC({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=_l({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=Qh(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var Lq={kernelName:Qs,backendName:"cpu",kernelFunc:Oq},zq=rt(Rl,e=>Math.acos(e)),Wq={kernelName:Rl,backendName:"cpu",kernelFunc:zq},Bq=rt(Ml,e=>Math.acosh(e)),Vq={kernelName:Ml,backendName:"cpu",kernelFunc:Bq};function Uq(e){let{inputs:t,backend:n}=e,a=t;ge(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Oe(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var Gq={kernelName:fi,backendName:"cpu",kernelFunc:Uq};function Hq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"all");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x&&I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=ft({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var jq={kernelName:Pl,backendName:"cpu",kernelFunc:Hq};function qq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"any");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x||I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=ft({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var Kq={kernelName:Ol,backendName:"cpu",kernelFunc:qq};function Xq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMax");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I>y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Yq={kernelName:gi,backendName:"cpu",kernelFunc:Xq};function Zq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMin");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I<y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Jq={kernelName:cc,backendName:"cpu",kernelFunc:Zq},Qq=rt(Ll,e=>Math.asin(e)),e5={kernelName:Ll,backendName:"cpu",kernelFunc:Qq},t5=rt(zl,e=>Math.asinh(e)),n5={kernelName:zl,backendName:"cpu",kernelFunc:t5},a5=rt(Wl,e=>Math.atan(e)),r5={kernelName:Wl,backendName:"cpu",kernelFunc:a5},s5=Vt((e,t)=>Math.atan2(e,t)),i5=nn(Vl,s5),o5={kernelName:Vl,backendName:"cpu",kernelFunc:i5},l5=rt(Bl,e=>Math.atanh(e)),u5={kernelName:Bl,backendName:"cpu",kernelFunc:l5};function j0(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Oe(r.outShape,n),g=f.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let I=w*b,T=w*a[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let A=E*i-c,R=Math.max(0,A),F=Math.min(r.inHeight,p+A),S=I+E*y;for(let M=0;M<r.outWidth;++M){let B=M*o-h,U=Math.max(0,B),G=Math.min(r.inWidth,d+B),q=m,K=0,Z=0;for(let ee=R;ee<F;ee+=l){let ae=T+ee*a[1];for(let te=U;te<G;te+=u){let le=ae+te*a[2],ie=e[le+C];s==="max"&&ie>q?q=ie:s==="avg"&&(K+=ie,Z++)}if(isNaN(q))break}let Q=S+M*x+C;g[Q]=s==="avg"?K/Z:q}}}return f}function QC(e,t,n,a,r=!1,s=!1){let i=Oe(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Oe(t,n,e);for(let g=0;g<a.batchSize;++g)for(let b=0;b<a.inChannels;++b)for(let y=0;y<a.outHeight;++y){let x=y*o-h,w=x;for(;w<0;)w+=u;let I=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let C=T*l-m,E=C;for(;E<0;)E+=p;let A=Math.min(a.inWidth,c+C),R=Number.NEGATIVE_INFINITY,F=-1;for(let S=w;S<I;S+=u){let M=S-x;for(let B=E;B<A;B+=p){let U=B-C,G=f.get(g,S,B,b);G>R&&(R=G,r?F=s?((g*a.inHeight+S)*a.inWidth+B)*a.inChannels+b:(S*a.inWidth+B)*a.inChannels+b:F=M*c+U)}}i.set(F,g,y,T,b)}}return i}function e_(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,b=r.padInfo.left,y=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Oe(r.outShape,n),w=x.values,I=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let A=0;A<r.batchSize;++A){let R=A*I,F=A*a[0];for(let S=0;S<r.inChannels;++S)for(let M=0;M<r.outDepth;++M){let B=M*i-f,U=B;for(;U<0;)U+=u;let G=Math.min(r.inDepth,c+B),q=R+M*T;for(let K=0;K<r.outHeight;++K){let Z=K*o-g,Q=Z;for(;Q<0;)Q+=p;let ee=Math.min(r.inHeight,h+Z),ae=q+K*C;for(let te=0;te<r.outWidth;++te){let le=te*l-b,ie=le;for(;ie<0;)ie+=d;let be=Math.min(r.inWidth,m+le),ue=ae+te*E,xe=y,Ie=0,Se=0;for(let Ve=U;Ve<G;Ve+=u){let nt=F+Ve*a[1];for(let it=Q;it<ee;it+=p){let et=nt+it*a[2];for(let at=ie;at<be;at+=d){let ze=et+at*a[3],dt=e[ze+S];if(s==="max"&&dt>xe?xe=dt:s==="avg"&&(Ie+=dt,Se++),isNaN(xe))break}if(isNaN(xe))break}if(isNaN(xe))break}let Le=ue+S;w[Le]=s==="avg"?Ie/Se:xe}}}}return x}function p5(e,t){let n=Oe(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*a-c,x=y;for(;x<0;)x+=i;let w=Math.min(t.inDepth,u+y);for(let I=0;I<t.outHeight;++I){let T=I*r-h,C=T;for(;C<0;)C+=o;let E=Math.min(t.inHeight,p+T);for(let A=0;A<t.outWidth;++A){let R=A*s-m,F=R;for(;F<0;)F+=l;let S=Math.min(t.inWidth,d+R),M=Number.NEGATIVE_INFINITY,B=-1;for(let U=x;U<w;U+=i){let G=U-y;for(let q=C;q<E;q+=o){let K=q-T;for(let Z=F;Z<S;Z+=l){let Q=Z-R,ee=e.get(f,U,q,Z,g);ee>=M&&(M=ee,B=G*p*d+K*p+Q)}}}n.set(B,f,b,I,A,g)}}}return n}function c5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=pr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=j0(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var d5={kernelName:bi,backendName:"cpu",kernelFunc:c5};function h5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"avgPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=e_(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var m5={kernelName:dc,backendName:"cpu",kernelFunc:h5};function f5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"avgPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,b=p.dilationDepth,y=p.dilationHeight,x=p.dilationWidth,w=p.effectiveFilterDepth,I=p.effectiveFilterHeight,T=p.effectiveFilterWidth,C=w-1-p.padInfo.front,E=T-1-p.padInfo.left,A=I-1-p.padInfo.top,R=Oe(s.shape,"float32"),F=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let B=0;B<p.inChannels;++B)for(let U=0;U<p.inDepth;++U)for(let G=0;G<p.inHeight;++G)for(let q=0;q<p.inWidth;++q){let K=U-C,Z=G-A,Q=q-E,ee=0;for(let ae=0;ae<w;ae+=b){let te=(K+ae)/d;if(!(te<0||te>=p.outDepth||Math.floor(te)!==te))for(let le=0;le<I;le+=y){let ie=(Z+le)/c;if(!(ie<0||ie>=p.outHeight||Math.floor(ie)!==ie))for(let be=0;be<T;be+=x){let ue=(Q+be)/h;ue<0||ue>=p.outWidth||Math.floor(ue)!==ue||(ee+=S.get(M,te,ie,ue,B))}}}R.set(ee*F,M,U,G,q,B)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var g5={kernelName:cm,backendName:"cpu",kernelFunc:f5};function b5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ge([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,b=p.effectiveFilterHeight,y=p.effectiveFilterWidth,x=y-1-p.padInfo.left,w=b-1-p.padInfo.top,I=Oe(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,E=Oe(r.shape,"float32",C);for(let A=0;A<p.batchSize;++A)for(let R=0;R<p.inChannels;++R)for(let F=0;F<p.inHeight;++F)for(let S=0;S<p.inWidth;++S){let M=F-w,B=S-x,U=0;for(let G=0;G<b;G+=f){let q=(M+G)/d;if(!(q<0||q>=p.outHeight||Math.floor(q)!==q))for(let K=0;K<y;K+=g){let Z=(B+K)/c;Z<0||Z>=p.outWidth||Math.floor(Z)!==Z||(U+=E.get(A,q,Z,R))}}I.set(U*T,A,F,S,R)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var y5={kernelName:pm,backendName:"cpu",kernelFunc:b5};function x5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ge([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,b=h.length,y=c.length,x=d.length,w=0,I=0,T=0,C=0;for(let E=0;E<p.length;++E)f[E]=m[w++]+(p[E]-d[I++])*h[T++]/Math.sqrt(c[C++]+u),w>=g&&(w=0),I>=x&&(I=0),T>=b&&(T=0),C>=y&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var v5={kernelName:Fi,backendName:"cpu",kernelFunc:x5};function w5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ge([r],"batchToSpaceND");let o=s.reduce((b,y)=>b*y),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=ft({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:p}}),g=pi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var k5={kernelName:Ul,backendName:"cpu",kernelFunc:w5};function I5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=P0(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var S5={kernelName:dm,backendName:"cpu",kernelFunc:I5};function T5(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var N5={kernelName:hm,backendName:"cpu",kernelFunc:T5},C5=rt(bs,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),_5={kernelName:bs,backendName:"cpu",kernelFunc:C5},E5=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},A5={kernelName:hc,backendName:"cpu",kernelFunc:E5};function El(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var $5={kernelName:Nm,backendName:"cpu",kernelFunc:El};function Al(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(f=>f.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(f=>v.sizeFromShape(f.shape)>0);if(l.length===1)return pr({inputs:{x:l[0]},backend:n});if(l[0].dtype==="complex64"){let f=l.map(w=>ui({inputs:{input:w},backend:n})),g=l.map(w=>El({inputs:{input:w},backend:n})),b=Al({inputs:f,backend:n,attrs:{axis:s}}),y=Al({inputs:g,backend:n,attrs:{axis:s}}),x=Zn({inputs:{real:b,imag:y},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),x}let u=l.map(f=>{let g=v.sizeFromShape(f.shape.slice(s));return ft({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));o=N.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=O0(p,o,t[0].dtype,d),h=N.computeOutShape(l.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var F5={kernelName:Gl,backendName:"cpu",kernelFunc:Al};function t_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;ge([r,s],"conv2d");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,b=c.padInfo.left,y=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new Ht(c.outShape,r.dtype),I=v.computeStrides(r.shape),T=v.computeStrides(s.shape),C=I[0],E=x?I[1]:I[2],A=x?I[2]:1,R=x?1:I[1],F=w.strides[0],S=x?w.strides[1]:w.strides[2],M=x?w.strides[2]:1,B=x?1:w.strides[1],U=n.data.get(r.dataId).values,G=n.data.get(s.dataId).values,q=w.values;for(let K=0;K<c.batchSize;++K){let Z=K*C,Q=K*F;for(let ee=0;ee<c.outHeight;++ee){let ae=Q+ee*S,te=ee*c.strideHeight-y;for(let le=0;le<h;++le){let ie=te+le*f;if(ie<0||ie>=c.inHeight)continue;let be=le*T[0],ue=Z+ie*E;for(let xe=0;xe<c.outWidth;++xe){let Ie=ae+xe*M,Se=xe*c.strideWidth-b;for(let Le=0;Le<m;++Le){let Ve=Se+Le*g;if(Ve<0||Ve>=c.inWidth)continue;let nt=be+Le*T[1],it=ue+Ve*A,et=nt;for(let at=0;at<c.inChannels;++at){let ze=U[it+at*R];for(let dt=0;dt<c.outChannels;++dt)q[Ie+dt*B]+=ze*G[et+dt];et+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,q)}var D5={kernelName:wi,backendName:"cpu",kernelFunc:t_};function R5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"conv2dBackpropFilter");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,b=c.dataFormat==="channelsLast",y=new Ht(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=new Ht(r.shape,r.dtype,I),E=new Ht(s.shape,s.dtype,T);for(let A=0;A<f;++A){let R=Math.max(0,Math.ceil((w-A)/h)),F=Math.min(c.outHeight,(c.inHeight+w-A)/h);for(let S=0;S<g;++S){let M=Math.max(0,Math.ceil((x-S)/m)),B=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let U=0;U<c.inChannels;++U)for(let G=0;G<c.outChannels;++G){let q=0;for(let K=0;K<c.batchSize;++K)for(let Z=R;Z<F;++Z){let Q=A+Z*h-w;for(let ee=M;ee<B;++ee){let ae=S+ee*m-x;b?q+=C.get(K,Q,ae,U)*E.get(K,Z,ee,G):q+=C.get(K,U,Q,ae)*E.get(K,G,Z,ee)}}y.set(q,A,S,U,G)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var M5={kernelName:fm,backendName:"cpu",kernelFunc:R5};function P5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;ge([r,s],"conv2dBackpropInput");let d=v.computeStrides(s.shape),c=v.computeStrides(r.shape),h=N.convertConv2DDataFormat(u),m=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new Ht(m.inShape,"float32"),g=f.values,b=n.data.get(r.dataId).values,y=n.data.get(s.dataId).values,[x,w,I]=d,{batchSize:T,filterHeight:C,filterWidth:E,inChannels:A,inHeight:R,inWidth:F,outChannels:S,outHeight:M,outWidth:B,strideHeight:U,strideWidth:G}=m;h=m.dataFormat;let q=C-1-m.padInfo.top,K=E-1-m.padInfo.left,Z=h==="channelsLast",Q=f.strides[0],ee=Z?f.strides[1]:f.strides[2],ae=Z?f.strides[2]:1,te=Z?1:f.strides[1],le=c[0],ie=Z?c[1]:c[2],be=Z?c[2]:1,ue=Z?1:c[1];for(let xe=0;xe<T;++xe)for(let Ie=0;Ie<A;++Ie)for(let Se=0;Se<R;++Se){let Le=Se-q,Ve=Math.max(0,Math.ceil(Le/U)),nt=Math.min(M,(C+Le)/U);for(let it=0;it<F;++it){let et=it-K,at=Math.max(0,Math.ceil(et/G)),ze=Math.min(B,(E+et)/G),dt=0;for(let Mt=Ve;Mt<nt;++Mt){let ia=Mt*U-Le;for(let on=at;on<ze;++on){let Fn=on*G-et,oa=le*xe+ie*Mt+be*on,Dn=x*(C-1-ia)+w*(E-1-Fn)+I*Ie;for(let ot=0;ot<S;++ot){let Rn=b[oa+ue*ot],qn=y[Dn+ot];dt+=Rn*qn}}}let jn=Q*xe+ee*Se+ae*it+te*Ie;g[jn]=dt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var O5={kernelName:ki,backendName:"cpu",kernelFunc:P5};function L5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ge([r,s],"conv3d");let u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,b=g.front,y=g.left,x=g.top,w=new Ht(u.outShape,r.dtype),I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=w.values,E=v.computeStrides(r.shape),A=v.computeStrides(s.shape);for(let R=0;R<u.batchSize;++R){let F=R*E[0],S=R*w.strides[0];for(let M=0;M<u.outDepth;++M){let B=S+M*w.strides[1],U=M*u.strideDepth-b;for(let G=0;G<p;++G){let q=U+G*h;if(q<0||q>=u.inDepth)continue;let K=G*A[0],Z=F+q*E[1];for(let Q=0;Q<u.outHeight;++Q){let ee=B+Q*w.strides[2],ae=Q*u.strideHeight-x;for(let te=0;te<d;++te){let le=ae+te*m;if(le<0||le>=u.inHeight)continue;let ie=K+te*A[1],be=Z+le*E[2];for(let ue=0;ue<u.outWidth;++ue){let xe=ee+ue*u.outChannels,Ie=ue*u.strideWidth-y;for(let Se=0;Se<c;++Se){let Le=Ie+Se*f;if(Le<0||Le>=u.inWidth)continue;let Ve=ie+Se*A[2],nt=be+Le*u.inChannels,it=Ve;for(let et=0;et<u.inChannels;++et){let at=I[nt+et];for(let ze=0;ze<u.outChannels;++ze)C[xe+ze]+=at*T[it+ze];it+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var z5={kernelName:mc,backendName:"cpu",kernelFunc:L5};function W5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ge([r,s],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,b=d.filterWidth,y=new Ht(d.filterShape,"float32"),x=y.values,[w,I,T,C]=y.strides,E=n.data.get(s.dataId).values,[A,R,F,S]=p,M=n.data.get(r.dataId).values,[B,U,G,q]=u,K=d.padInfo.front,Z=d.padInfo.left,Q=d.padInfo.top;for(let ee=0;ee<f;++ee){let ae=Math.max(0,Math.ceil((K-ee)/c)),te=Math.min(d.outDepth,(d.inDepth+K-ee)/c),le=ee*w;for(let ie=0;ie<g;++ie){let be=Math.max(0,Math.ceil((Q-ie)/h)),ue=Math.min(d.outHeight,(d.inHeight+Q-ie)/h),xe=ie*I+le;for(let Ie=0;Ie<b;++Ie){let Se=Math.max(0,Math.ceil((Z-Ie)/m)),Le=Math.min(d.outWidth,(d.inWidth+Z-Ie)/m),Ve=Ie*T+xe;for(let nt=0;nt<d.inChannels;++nt){let it=nt*C+Ve;for(let et=0;et<d.outChannels;++et){let at=0;for(let ze=0;ze<d.batchSize;++ze){let dt=ze*B,jn=ze*A;for(let Mt=ae;Mt<te;++Mt){let ia=(ee+Mt*c-K)*U+dt,on=Mt*R+jn;for(let Fn=be;Fn<ue;++Fn){let oa=(ie+Fn*h-Q)*G+ia,Dn=Fn*F+on;for(let ot=Se;ot<Le;++ot){let Rn=(Ie+ot*m-Z)*q+oa,qn=ot*S+Dn;at+=M[Rn+nt]*E[qn+et]}}}}x[it+et]=at}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var B5={kernelName:gm,backendName:"cpu",kernelFunc:W5};function V5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ge([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(l,s.shape,o,1,i),c=new Ht(d.inShape,"float32"),h=c.values,[m,f,g,b]=c.strides,y=n.data.get(r.dataId).values,[x,w,I,T]=u,C=n.data.get(s.dataId).values,[E,A,R,F]=p,{batchSize:S,filterDepth:M,filterHeight:B,filterWidth:U,inChannels:G,inDepth:q,inHeight:K,inWidth:Z,outChannels:Q,outDepth:ee,outHeight:ae,outWidth:te,strideDepth:le,strideHeight:ie,strideWidth:be}=d,ue=M-1-d.padInfo.front,xe=B-1-d.padInfo.top,Ie=U-1-d.padInfo.left;for(let Se=0;Se<S;++Se)for(let Le=0;Le<G;++Le)for(let Ve=0;Ve<q;++Ve){let nt=Ve-ue,it=Math.max(0,Math.ceil(nt/le)),et=Math.min(ee,(M+nt)/le);for(let at=0;at<K;++at){let ze=at-xe,dt=Math.max(0,Math.ceil(ze/ie)),jn=Math.min(ae,(B+ze)/ie);for(let Mt=0;Mt<Z;++Mt){let ia=Mt-Ie,on=Math.max(0,Math.ceil(ia/be)),Fn=Math.min(te,(U+ia)/be),oa=0;for(let Dn=it;Dn<et;++Dn){let ot=Dn*le-nt;for(let Rn=dt;Rn<jn;++Rn){let qn=Rn*ie-ze;for(let xr=on;xr<Fn;++xr){let qo=xr*be-ia,er=x*Se+w*Dn+I*Rn+T*xr,vp=E*(M-1-ot)+A*(B-1-qn)+R*(U-1-qo)+F*Le;for(let Ia=0;Ia<Q;++Ia){let Ko=y[er+Ia],Xt=C[vp+Ia];oa+=Ko*Xt}}}}h[m*Se+f*Ve+g*at+b*Mt+Le]=oa}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var U5={kernelName:bm,backendName:"cpu",kernelFunc:V5},G5=rt(Ii,e=>Math.cos(e)),H5={kernelName:Ii,backendName:"cpu",kernelFunc:G5},j5=rt(Si,e=>Math.cosh(e)),q5={kernelName:Si,backendName:"cpu",kernelFunc:j5};function K5(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,b=Oe([m,f,g,h],"float32"),y=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,I=v.computeStrides(r.shape),T=v.computeStrides(b.shape);for(let C=0;C<m;C++){let E=C*4,A=y[E],R=y[E+1],F=y[E+2],S=y[E+3],M=x[C];if(M>=p)continue;let B=f>1?(F-A)*(d-1)/(f-1):0,U=g>1?(S-R)*(c-1)/(g-1):0;for(let G=0;G<f;G++){let q=f>1?A*(d-1)+G*B:.5*(A+F)*(d-1);if(q<0||q>d-1){for(let K=0;K<g;K++)for(let Z=0;Z<h;Z++){let Q=Z+K*T[2]+G*T[1]+C*T[0];b.values[Q]=u}continue}if(l==="bilinear"){let K=Math.floor(q),Z=Math.ceil(q),Q=q-K;for(let ee=0;ee<g;ee++){let ae=g>1?R*(c-1)+ee*U:.5*(R+S)*(c-1);if(ae<0||ae>c-1){for(let be=0;be<h;be++){let ue=be+ee*T[2]+G*T[1]+C*T[0];b.values[ue]=u}continue}let te=Math.floor(ae),le=Math.ceil(ae),ie=ae-te;for(let be=0;be<h;be++){let ue=be+te*I[2]+K*I[1]+M*I[0],xe=w[ue];ue=be+le*I[2]+K*I[1]+M*I[0];let Ie=w[ue];ue=be+te*I[2]+Z*I[1]+M*I[0];let Se=w[ue];ue=be+le*I[2]+Z*I[1]+M*I[0];let Le=w[ue],Ve=xe+(Ie-xe)*ie,nt=Se+(Le-Se)*ie;ue=be+ee*T[2]+G*T[1]+C*T[0],b.values[ue]=Ve+(nt-Ve)*Q}}}else for(let K=0;K<g;++K){let Z=g>1?R*(c-1)+K*U:.5*(R+S)*(c-1);if(Z<0||Z>c-1){for(let ae=0;ae<h;ae++){let te=ae+K*T[2]+G*T[1]+C*T[0];b.values[te]=u}continue}let Q=Math.round(Z),ee=Math.round(q);for(let ae=0;ae<h;ae++){let te=ae+Q*I[2]+ee*I[1]+M*I[0],le=ae+K*T[2]+G*T[1]+C*T[0];b.values[le]=w[te]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var X5={kernelName:jl,backendName:"cpu",kernelFunc:K5};function Y5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumprod");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=fa(u.dtype,"int32"),c=v.makeOnesTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?1:h[x];else{let w=f(b,y-1);c[x]=i?h[w]*c[w]:h[x]*c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=N.getUndoAxesPermutation(l),y=Vn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var Z5={kernelName:Hl,backendName:"cpu",kernelFunc:Y5};function J5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumsum");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=fa(u.dtype,"int32"),c=v.makeZerosTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?0:h[x];else{let w=f(b,y-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=N.getUndoAxesPermutation(l),y=Vn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var Q5={kernelName:Ti,backendName:"cpu",kernelFunc:J5};function e8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=P0(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=cC(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var t8={kernelName:ym,backendName:"cpu",kernelFunc:e8};function n8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let b=0;b<o;++b)for(let y=0;y<d;++y){let x=Math.floor(y/s),w=y%s;for(let I=0;I<c;++I){let T=Math.floor(I/s),C=I%s,E=(w*s+C)*h;for(let A=0;A<h;++A){let R=A+E+p*(T+u*(x+l*b));f[g++]=m[R]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var a8={kernelName:ql,backendName:"cpu",kernelFunc:n8};function n_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ge([r,s],"depthwiseConv2DNative");let p=v.computeStrides(r.shape),d=v.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=N.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:b,padInfo:y}=h,x=y.left,w=y.top,I=h.outChannels/h.inChannels,T=new Ht(h.outShape,r.dtype),C=n.data.get(r.dataId).values,E=n.data.get(s.dataId).values,A=T.values;for(let R=0;R<h.batchSize;++R){let F=R*p[0],S=R*T.strides[0];for(let M=0;M<h.outHeight;++M){let B=S+M*T.strides[1],U=M*h.strideHeight-w;for(let G=0;G<m;++G){let q=U+G*g;if(q<0||q>=h.inHeight)continue;let K=G*d[0],Z=F+q*p[1];for(let Q=0;Q<h.outWidth;++Q){let ee=B+Q*T.strides[2],ae=Q*h.strideWidth-x;for(let te=0;te<f;++te){let le=ae+te*b;if(le<0||le>=h.inWidth)continue;let ie=K+te*d[1],be=Z+le*h.inChannels,ue=ee,xe=ie;for(let Ie=0;Ie<h.inChannels;++Ie){let Se=C[be+Ie];for(let Le=0;Le<I;++Le)A[ue+Le]+=Se*E[xe+Le];ue+=I,xe+=I}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var r8={kernelName:Ni,backendName:"cpu",kernelFunc:n_};function s8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"depthwiseConv2dNativeBackpropFilter");let d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new Ht(d.filterShape,"float32"),b=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,w=n.data.get(r.dataId).values,I=new Ht(r.shape,r.dtype,w),T=n.data.get(s.dataId).values,C=new Ht(s.shape,s.dtype,T);for(let E=0;E<m;++E){let A=Math.max(0,Math.ceil((y-E)/c)),R=Math.min(d.outHeight,(d.inHeight+y-E)/c);for(let F=0;F<f;++F){let S=Math.max(0,Math.ceil((b-F)/h)),M=Math.min(d.outWidth,(d.inWidth+b-F)/h);for(let B=0;B<d.outChannels;++B){let U=Math.trunc(B/x),G=B%x,q=0;for(let K=0;K<d.batchSize;++K)for(let Z=A;Z<R;++Z){let Q=E+Z*c-y;for(let ee=S;ee<M;++ee){let ae=F+ee*h-b;q+=I.get(K,Q,ae,U)*C.get(K,Z,ee,B)}}g.set(q,E,F,U,G)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var i8={kernelName:xm,backendName:"cpu",kernelFunc:s8};function o8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;ge([r,s],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),c=v.computeStrides(s.shape),h=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new Ht(h.inShape,"float32"),f=m.values,[g,b,y]=m.strides,x=n.data.get(r.dataId).values,[w,I,T]=d,C=n.data.get(s.dataId).values,[E,A,R]=c,{batchSize:F,filterHeight:S,filterWidth:M,inChannels:B,inHeight:U,inWidth:G,outChannels:q,outHeight:K,outWidth:Z,strideHeight:Q,strideWidth:ee}=h,ae=S-1-h.padInfo.top,te=M-1-h.padInfo.left,le=q/B;for(let ie=0;ie<F;++ie)for(let be=0;be<B;++be)for(let ue=0;ue<U;++ue){let xe=ue-ae,Ie=Math.max(0,Math.ceil(xe/Q)),Se=Math.min(K,(S+xe)/Q);for(let Le=0;Le<G;++Le){let Ve=Le-te,nt=Math.max(0,Math.ceil(Ve/ee)),it=Math.min(Z,(M+Ve)/ee),et=0;for(let at=Ie;at<Se;++at){let ze=at*Q-xe;for(let dt=nt;dt<it;++dt){let jn=dt*ee-Ve,Mt=w*ie+I*at+T*dt,ia=E*(S-1-ze)+A*(M-1-jn)+R*be;for(let on=0;on<le;++on){let Fn=be*le+on,oa=x[Mt+Fn],Dn=C[ia+on];et+=oa*Dn}}}f[g*ie+b*ue+y*Le+be]=et}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var l8={kernelName:vm,backendName:"cpu",kernelFunc:o8};function u8(e){let{inputs:t,backend:n}=e,{x:a}=t,r=v.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Oe([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var p8={kernelName:wm,backendName:"cpu",kernelFunc:u8},c8={kernelName:fc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:b,outWidth:y,padInfo:x,strideHeight:w,strideWidth:I,filterHeight:T,filterWidth:C,dilationHeight:E,dilationWidth:A,outShape:R}=N.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),F=v.sizeFromShape(R),S=R.length,M=v.getArrayFromDType(a.dtype,F);for(let B=0;B<h;++B)for(let U=0;U<b;++U){let G=U*w-x.top;for(let q=0;q<y;++q){let K=q*I-x.left;for(let Z=0;Z<g;++Z){let Q=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<T;++ae){let te=G+ae*E;if(te>=0&&te<m)for(let le=0;le<C;++le){let ie=K+le*A;if(ie>=0&&ie<f){let be=v.locToIndex([B,te,ie,Z],p,v.computeStrides(a.shape)),ue=v.locToIndex([ae,le,Z],c,v.computeStrides(r.shape)),xe=u[be]+d[ue];xe>Q&&(Q=xe)}}}let ee=v.locToIndex([B,U,q,Z],S,v.computeStrides(R));M[ee]=Q}}}return{dataId:l.write(v.toTypedArray(M,a.dtype),R,a.dtype),shape:R,dtype:a.dtype}}},d8={kernelName:$h,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:A}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===A.length,()=>`Error in ${$h}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let R=v.toNestedArray(A,u.data.get(s.dataId).values),F=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let B=M*x-y.top;for(let U=0;U<b;++U){let G=U*w-y.left;for(let q=0;q<f;++q){let K=Number.MIN_SAFE_INTEGER,Z=0,Q=0;for(let ee=0;ee<I;++ee){let ae=B+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let le=G+te*E;if(le>=0&&le<m){let ie=p[S][ae][le][q]+d[ee][te][q];ie>K&&(K=ie,Z=ee,Q=te)}}}F[Z][Q][q]+=R[S][M][U][q]}}}return{dataId:u.write(v.toTypedArray(F,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},h8={kernelName:Ah,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:A}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===A.length,()=>`Error in ${Ah}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let R=v.toNestedArray(A,u.data.get(s.dataId).values),F=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let B=M*x-y.top;for(let U=0;U<b;++U){let G=U*w-y.left;for(let q=0;q<f;++q){let K=Number.MIN_SAFE_INTEGER,Z=B<0?0:B,Q=G<0?0:G;for(let ee=0;ee<I;++ee){let ae=B+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let le=G+te*E;if(le>=0&&le<m){let ie=p[S][ae][le][q]+d[ee][te][q];ie>K&&(K=ie,Z=ae,Q=le)}}}F[S][Z][Q][q]+=R[S][M][U][q]}}}return{dataId:u.write(v.toTypedArray(F,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function sd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"sum");let o;r.dtype==="bool"?o=ds({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=pr({inputs:{x:r},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),p=N.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Vn({inputs:{x:o},backend:n,attrs:{perm:p}}),d=N.getInnerMostAxes(d.length,l)),N.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=N.computeOutAndReduceShapes(c.shape,d),f=N.upcastType(c.dtype,"int32"),g=Zh(n,h,f),b=v.sizeFromShape(m),y=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<y.length;++w){let I=w*b,T=0;for(let C=0;C<b;++C)T+=x[I+C];y[w]=T}if(i){let w=N.expandShapeToKeepDim(g.shape,u),I=g;g=ft({inputs:{x:g},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(I)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var m8={kernelName:io,backendName:"cpu",kernelFunc:sd};function f8(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(b)?x=s[g]:(x=Vn({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=ft({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=qf({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=sd({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var g8={kernelName:km,backendName:"cpu",kernelFunc:f8};function b8(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ge([a,r],"eluGrad");let s=new Float32Array(v.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var y8={kernelName:Im,backendName:"cpu",kernelFunc:b8},x8=N.ERF_P,v8=N.ERF_A1,w8=N.ERF_A2,k8=N.ERF_A3,I8=N.ERF_A4,S8=N.ERF_A5,T8=rt(Kl,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+x8*n);return t*(1-((((S8*a+I8)*a+k8)*a+w8)*a+v8)*a*Math.exp(-n*n))}),N8={kernelName:Kl,backendName:"cpu",kernelFunc:T8};function em(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ft({inputs:{x:r},backend:n,attrs:{shape:o}})}var C8={kernelName:Yl,backendName:"cpu",kernelFunc:em},_8=Vt((e,t)=>e/t),q0=nn(Ci,_8),dx={kernelName:Ci,backendName:"cpu",kernelFunc:q0};function a_(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=v.sizeFromShape(u),d=v.getTypedArrayFromDType("float32",p),c=v.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let b=pi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),y=pi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Zn({inputs:{real:b,imag:y},backend:n}),{real:w,imag:I}=E8(x,t,n),T=N.mergeRealAndImagArrays(w,I);for(let C=0;C<s;C++){let E=N.getComplexWithIndex(T,C);d[g*s+C]=E.real,c[g*s+C]=E.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Zn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function E8(e,t,n){let a=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(A8(a)){let o=hx(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),c=pr({inputs:{x:d},backend:n}),h=dx.kernelFunc({inputs:{a:u,b:d},backend:n}),m=dx.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=N.mergeRealAndImagArrays(s,i),l=$8(o,a,t);return N.splitRealAndImagArrays(l)}}function A8(e){return(e&e-1)===0}function hx(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=N.mergeRealAndImagArrays(e,t),i=n/2,o=N.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Zn({inputs:{real:d,imag:c},backend:r}),m=N.complexWithOddIndex(s),f=m.real,g=m.imag,b=[f.length],y=r.makeTensorInfo(b,"float32",f),x=r.makeTensorInfo(b,"float32",g),w=Zn({inputs:{real:y,imag:x},backend:r}),I=hx(l,u,i,a,r),T=I.real,C=I.imag,E=[T.length],A=r.makeTensorInfo(E,"float32",T),R=r.makeTensorInfo(E,"float32",C),F=Zn({inputs:{real:A,imag:R},backend:r}),S=hx(f,g,i,a,r),M=S.real,B=S.imag,U=[M.length],G=r.makeTensorInfo(U,"float32",M),q=r.makeTensorInfo(U,"float32",B),K=Zn({inputs:{real:G,imag:q},backend:r}),Z=N.exponents(n,a),Q=[Z.real.length],ee=r.makeTensorInfo(Q,"float32",Z.real),ae=r.makeTensorInfo(Q,"float32",Z.imag),te=Zn({inputs:{real:ee,imag:ae},backend:r}),le=qf({inputs:{a:te,b:K},backend:r}),ie=_l({inputs:{a:F,b:le},backend:r}),be=H0({inputs:{a:F,b:le},backend:r}),ue=ui({inputs:{input:ie},backend:r}),xe=ui({inputs:{input:be},backend:r}),Ie=El({inputs:{input:ie},backend:r}),Se=El({inputs:{input:be},backend:r}),Le=Al({inputs:[ue,xe],backend:r,attrs:{axis:0}}),Ve=Al({inputs:[Ie,Se],backend:r,attrs:{axis:0}}),nt=r.data.get(Le.dataId).values,it=r.data.get(Ve.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo(xe),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(Le),r.disposeIntermediateTensorInfo(Ve),{real:nt,imag:it}}function $8(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=N.exponent(r*o,t,n),u=N.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),N.assignToTypedArray(a,s,i,r)}return a}function F8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ft({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=a_(o,!1,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var D8={kernelName:Sm,backendName:"cpu",kernelFunc:F8};function K0(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||v.inferDtype(r),o=v.getArrayFromDType(i,v.sizeFromShape(a));return M8(o,r,i),t.makeTensorInfo(a,i,o)}var R8={kernelName:gc,backendName:"cpu",kernelFunc:K0};function M8(e,t,n){e.fill(t)}var P8={kernelName:Jl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let b=0;b<u;b++){let y=Math.round(l-f-1),x=c+m+g+b,w=p[x];if(y>=0&&y<l){let I=y*u,T=c+m+I+b;w=p[T]}s[x]=w}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},O8=Vt((e,t)=>Math.floor(e/t)),L8=nn($i,O8,null,"int32"),z8={kernelName:$i,backendName:"cpu",kernelFunc:L8};function W8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=t_({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let b=ft({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=_l({inputs:{a:f,b},backend:n}),n.disposeIntermediateTensorInfo(b)}else f=_l({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let b=ft({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});f=Qh(n,f,h,b,m),n.disposeIntermediateTensorInfo(b)}else f=Qh(n,f,h,o,m);n.disposeIntermediateTensorInfo(g)}return f}var B8={kernelName:ei,backendName:"cpu",kernelFunc:W8};function V8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=n_({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=_l({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Qh(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var U8={kernelName:ti,backendName:"cpu",kernelFunc:V8};function G8(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=v.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=N.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=xC(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var H8={kernelName:eu,backendName:"cpu",kernelFunc:G8};function j8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ge([r,s],"gatherV2");let l=v.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let w=0;w<u.length;++w){let I=u[w];v.assert(I<=p-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=v.sizeFromShape(s.shape),h=N.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=ft({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=ft({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],b=n.bufferSync(f),y=n.bufferSync(m),x=vC(y,b,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var q8={kernelName:Ql,backendName:"cpu",kernelFunc:j8};function K8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ft({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=a_(o,!0,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var X8={kernelName:Tm,backendName:"cpu",kernelFunc:K8},Y8=rt(nu,e=>Number.isFinite(e)?1:0,"bool"),Z8={kernelName:nu,backendName:"cpu",kernelFunc:Y8},J8=rt(au,e=>Math.abs(e)===1/0?1:0,"bool"),Q8={kernelName:au,backendName:"cpu",kernelFunc:J8},eK=rt(ru,e=>Number.isNaN(e)?1:0,"bool"),tK={kernelName:ru,backendName:"cpu",kernelFunc:eK};function nK(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=TC(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var aK={kernelName:Cm,backendName:"cpu",kernelFunc:nK},rK=rt(ou,e=>Math.log1p(e)),sK={kernelName:ou,backendName:"cpu",kernelFunc:rK},iK=Vt((e,t)=>e&&t),oK=nn(lu,iK,null,"bool"),lK={kernelName:lu,backendName:"cpu",kernelFunc:oK},uK=rt(uu,e=>e?0:1,"bool"),pK={kernelName:uu,backendName:"cpu",kernelFunc:uK},cK=Vt((e,t)=>e||t),dK=nn(pu,cK,null,"bool"),hK={kernelName:pu,backendName:"cpu",kernelFunc:dK};function mK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ge(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,b=f-g+Math.max(0,g-s),y=f-g+Math.min(g+s,p),x=0;for(;b<=y;b++){let w=d[b];x+=w*w}return x}for(let f=0;f<c;f++){let g=m(f),b=d[f]*Math.pow(i+o*g,-l);h[f]=b}return n.makeTensorInfo(r.shape,r.dtype,h)}var fK={kernelName:bc,backendName:"cpu",kernelFunc:mK};function gK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;ge(i,"LRNGrad");let d=v.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),b=d;for(let y=0;y<b;y++){let x=y%c,w=y-x+Math.max(0,x-o),I=y-x+Math.min(c,x+o+1),T=0;for(let C=w;C<I;C++)T+=Math.pow(m[C],2);T=u*T+l;for(let C=w;C<I;C++){let E=-2*u*p*m[C]*f[y]/T;y===C&&(E+=Math.pow(T,-p)),E*=h[y],g[C]+=E}}return n.makeTensorInfo(i.shape,r.dtype,g)}var bK={kernelName:_m,backendName:"cpu",kernelFunc:gK};function r_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=v.parseAxisParam(s,l),d=p,c=N.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(u);for(let I=0;I<w.length;I++)w[I]=l[c[I]];h=z0(h,l,r.dtype,c,w),d=N.getInnerMostAxes(d.length,u),l=w}ge(r,"max"),N.assertAxesAreInnerMostDims("max",d,u);let[m,f]=N.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(f),b=CC(h,g,m,r.dtype),y=o.write(b,m,r.dtype),x=m;return i&&(x=N.expandShapeToKeepDim(m,p)),{dataId:y,shape:x,dtype:r.dtype}}var yK={kernelName:Oi,backendName:"cpu",kernelFunc:r_};function xK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=pr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=j0(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var vK={kernelName:zi,backendName:"cpu",kernelFunc:xK};function wK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"maxPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=e_(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var kK={kernelName:yc,backendName:"cpu",kernelFunc:wK};function IK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"maxPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=p5(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,b=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterDepth,w=p.effectiveFilterHeight,I=p.effectiveFilterWidth,T=x-1-p.padInfo.front,C=I-1-p.padInfo.left,E=w-1-p.padInfo.top,A=Oe(s.shape,"float32"),R=n.bufferSync(r);for(let F=0;F<p.batchSize;++F)for(let S=0;S<p.inChannels;++S)for(let M=0;M<p.inDepth;++M)for(let B=0;B<p.inHeight;++B)for(let U=0;U<p.inWidth;++U){let G=M-T,q=B-E,K=U-C,Z=0;for(let Q=0;Q<x;Q+=g){let ee=(G+Q)/h;if(!(ee<0||ee>=p.outDepth||Math.floor(ee)!==ee))for(let ae=0;ae<w;ae+=b){let te=(q+ae)/m;if(!(te<0||te>=p.outHeight||Math.floor(te)!==te))for(let le=0;le<I;le+=y){let ie=(K+le)/f;if(ie<0||ie>=p.outWidth||Math.floor(ie)!==ie)continue;let be=x*w*I-1-c.get(F,ee,te,ie,S),ue=Q*w*I+ae*I+le,xe=be===ue?1:0;xe!==0&&(Z+=R.get(F,ee,te,ie,S)*xe)}}}A.set(Z,F,M,B,U,S)}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var SK={kernelName:Am,backendName:"cpu",kernelFunc:IK};function TK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ge([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=Oe(c.outShape,o.dtype,QC(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,b=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,I=w-1-c.padInfo.left,T=x-1-c.padInfo.top,C=Oe(o.shape,"float32"),E=n.data.get(r.dataId).values,A=Oe(r.shape,"float32",E);for(let R=0;R<c.batchSize;++R)for(let F=0;F<c.inChannels;++F)for(let S=0;S<c.inHeight;++S)for(let M=0;M<c.inWidth;++M){let B=S-T,U=M-I,G=0;for(let q=0;q<x;q+=b){let K=(B+q)/f;if(!(K<0||K>=c.outHeight||Math.floor(K)!==K))for(let Z=0;Z<w;Z+=y){let Q=(U+Z)/g;if(Q<0||Q>=c.outWidth||Math.floor(Q)!==Q)continue;let ee=x*w-1-m.get(R,K,Q,F),ae=q*w+Z,te=ee===ae?1:0;te!==0&&(G+=A.get(R,K,Q,F)*te)}}C.set(G,R,S,M,F)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var NK={kernelName:Em,backendName:"cpu",kernelFunc:TK};function CK(e,t,n,a,r){let s=v.computeStrides(t),i=j0(e,t,n,s,r,"max"),o=QC(e,t,n,r,!0,a);return[i.values,o.values]}var _K={kernelName:$m,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ge(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=N.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=CK(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function EK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=v.parseAxisParam(s,r.shape),l=N.computeOutAndReduceShapes(r.shape,o)[1],u=v.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=ds({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=q0({inputs:{a:c,b:d},backend:n});p.push(h);let m=sd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var AK={kernelName:Wi,backendName:"cpu",kernelFunc:EK};function $K(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"min");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];(Number.isNaN(I)||I<x)&&(x=I)}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=ft({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var FK={kernelName:Bi,backendName:"cpu",kernelFunc:$K};function DK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ge(r,"mirrorPad");let o=s.map((y,x)=>y[0]+r.shape[x]+y[1]),l=s.map(y=>y[0]),u=s.map((y,x)=>y[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=v.computeStrides(r.shape),m=v.sizeFromShape(o),f=o.length,g=v.computeStrides(o),b=v.getTypedArrayFromDType(r.dtype,m);for(let y=0;y<m;y++){let x=v.indexToLoc(y,f,g);for(let I=0;I<f;I++)x[I]<l[I]?x[I]=l[I]*2-x[I]-p:x[I]>=u[I]&&(x[I]=(u[I]-1)*2-x[I]+p);x=x.map((I,T)=>I-l[T]);let w=v.locToIndex(x,c,h);b[y]=d[w]}return{dataId:n.write(b,o,r.dtype),shape:o,dtype:r.dtype}}var RK={kernelName:Ui,backendName:"cpu",kernelFunc:DK},MK=Vt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),PK=nn(cu,MK),OK={kernelName:cu,backendName:"cpu",kernelFunc:PK},LK=ms(im());function s_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],r.shape),u=r_({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=N.expandShapeToKeepDim(u.shape,l),d=ft({inputs:{x:u},backend:n,attrs:{shape:p}}),c=H0({inputs:{a:r,b:d},backend:n}),h=gC({inputs:{x:c},backend:n}),m=sd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:p}}),g=q0({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var zK={kernelName:oo,backendName:"cpu",kernelFunc:s_};function WK(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ge(r,"multinomial");let l=o?r:s_({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=v.makeZerosTypedArray(v.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let b=LK.alea(i.toString()),y=m*s;for(let x=0;x<s;++x){let w=b();h[y+x]=g.length;for(let I=0;I<g.length;I++)if(w<g[I]){h[y+x]=I;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var BK={kernelName:Fm,backendName:"cpu",kernelFunc:WK},VK=hr.nonMaxSuppressionV3Impl;function UK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ge(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=VK(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var GK={kernelName:mu,backendName:"cpu",kernelFunc:UK},HK=hr.nonMaxSuppressionV4Impl;function jK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ge(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=HK(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var qK={kernelName:fu,backendName:"cpu",kernelFunc:jK},KK=hr.nonMaxSuppressionV5Impl;function XK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ge(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=KK(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var YK={kernelName:gu,backendName:"cpu",kernelFunc:XK};function ZK(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a;ge(r,"oneHot");let u=v.sizeFromShape(r.shape),p=new Float32Array(u*i);p.fill(l);let d=n.data.get(r.dataId).values;for(let c=0;c<u;++c)d[c]>=0&&d[c]<i&&(p[c*i+d[c]]=o);return n.makeTensorInfo([...r.shape,i],s,p)}var JK={kernelName:Hi,backendName:"cpu",kernelFunc:ZK};function tm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=ui({inputs:{input:a},backend:n}),s=tm({inputs:{x:r},backend:n}),i=El({inputs:{input:a},backend:n}),o=tm({inputs:{x:i},backend:n}),l=Zn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return K0({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var QK={kernelName:Mu,backendName:"cpu",kernelFunc:tm};function i_(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=ui({inputs:{input:a},backend:n}),s=i_({inputs:{x:r},backend:n}),i=El({inputs:{input:a},backend:n}),o=tm({inputs:{x:i},backend:n}),l=Zn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return K0({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var eX={kernelName:bu,backendName:"cpu",kernelFunc:i_};function o_(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return em({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=em({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=Al({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var tX={kernelName:yu,backendName:"cpu",kernelFunc:o_};function nX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ge(r,"pad");let o=s.map((b,y)=>b[0]+r.shape[y]+b[1]),l=s.map(b=>b[0]),u=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),d=r.shape.length,c=v.computeStrides(r.shape),h=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),g=v.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let b=0;b<p;b++){let y=v.indexToLoc(b,d,c).map((w,I)=>w+l[I]),x=v.locToIndex(y,m,f);g[x]=u[b]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var l_={kernelName:ji,backendName:"cpu",kernelFunc:nX},aX=Vt((e,t)=>Math.pow(e,t)),rX=nn(qi,aX),sX={kernelName:qi,backendName:"cpu",kernelFunc:rX};function iX(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(b=>n.data.get(b.dataId).values),u=r.map(b=>b.shape),p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,[c,h,m]=DC(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(b=>n.makeTensorInfo([b.length],"int32",b)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var oX={kernelName:Dm,backendName:"cpu",kernelFunc:iX};function lX(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=RC(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var uX={kernelName:Rm,backendName:"cpu",kernelFunc:lX};function pX(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,c=o.map(g=>n.data.get(g.dataId).values),h=o.map(g=>g.shape),[m,f]=MC(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var cX={kernelName:Mm,backendName:"cpu",kernelFunc:pX};function dX(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=W0(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var hX={kernelName:xc,backendName:"cpu",kernelFunc:dX},mX=rt(xu,e=>1/e),fX={kernelName:xu,backendName:"cpu",kernelFunc:mX};function gX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,u,p,m])),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,w=b[0]/y[0],I=b[1]/y[1];for(let T=0;T<d;T++)for(let C=0;C<u;C++){let E;i?E=w*(C+.5)-.5:E=w*C;let A=Math.max(0,Math.floor(E)),R=E-A,F=Math.min(c-1,Math.ceil(E)),S=T*l[0]+A*l[1],M=T*l[0]+F*l[1];for(let B=0;B<p;B++){let U;i?U=I*(B+.5)-.5:U=I*B;let G=Math.max(0,Math.floor(U)),q=U-G,K=Math.min(h-1,Math.ceil(U)),Z=S+G*l[2],Q=M+G*l[2],ee=S+K*l[2],ae=M+K*l[2];for(let te=0;te<m;te++){let le=f[Z+te],ie=f[Q+te],be=f[ee+te],ue=f[ae+te],xe=le+(be-le)*q,Ie=ie+(ue-ie)*q,Se=xe+(Ie-xe)*R;g[x++]=Se}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var bX={kernelName:Ji,backendName:"cpu",kernelFunc:gX};function yX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeBilinearGrad");let o=v.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],b=f[0]/g[0],y=f[1]/g[1],x=n.data.get(s.dataId).values,w=0;for(let I=0;I<l;I++){let T=I*o[0];for(let C=0;C<c;C++){let E=C*b,A=Math.floor(E),R=Math.min(Math.ceil(E),u-1),F=T+A*o[1],S=T+R*o[1],M=E-A,B=1-M;for(let U=0;U<h;U++){let G=U*y,q=Math.floor(G),K=Math.min(Math.ceil(G),p-1),Z=G-q,Q=1-Z,ee=F+q*o[2],ae=F+K*o[2],te=S+q*o[2],le=S+K*o[2],ie=B*Q,be=B*Z,ue=M*Q,xe=M*Z;for(let Ie=0;Ie<d;Ie++){let Se=x[w++];m[ee+Ie]+=Se*ie,m[ae+Ie]+=Se*be,m[te+Ie]+=Se*ue,m[le+Ie]+=Se*xe}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var xX={kernelName:Lm,backendName:"cpu",kernelFunc:yX};function vX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=b[0]/y[0],w=b[1]/y[1],I=0;for(let T=0;T<d;T++){let C=T*l[0];for(let E=0;E<u;E++){let A=i?x*(E+.5):x*E,R=Math.min(c-1,s?Math.round(A):Math.floor(A));i&&(R=Math.max(0,R));let F=C+R*l[1];for(let S=0;S<p;S++){let M=i?w*(S+.5):w*S,B=Math.min(h-1,s?Math.round(M):Math.floor(M));i&&(B=Math.max(0,B));let U=F+B*l[2];for(let G=0;G<m;G++){let q=f[U+G];g[I++]=q}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var wX={kernelName:Zi,backendName:"cpu",kernelFunc:vX};function kX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeNearestNeighborGrad");let o=v.computeStrides(r.shape),l=v.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,b=[i&&h>1?p-1:p,i&&m>1?d-1:d],y=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=b[0]/y[0],w=b[1]/y[1],I=1/x,T=1/w,C=Math.ceil(I)*2+2,E=Math.ceil(T)*2+2;for(let A=0;A<u;A++){let R=A*o[0];for(let F=0;F<p;F++){let S=R+F*o[1],M=Math.floor(F*I),B=Math.floor(M-C/2);for(let U=0;U<d;U++){let G=S+U*o[2],q=Math.floor(U*T),K=Math.floor(q-E/2);for(let Z=0;Z<c;Z++){let Q=0;for(let ee=0;ee<C;ee++){let ae=ee+B;if(ae<0||ae>=h)continue;let te=R+ae*l[1],le=ae*x,ie=Math.min(p-1,i?Math.round(le):Math.floor(le));if(F===ie)for(let be=0;be<E;be++){let ue=be+K;if(ue<0||ue>=m)continue;let xe=te+ue*l[2],Ie=ue*w,Se=Math.min(d-1,i?Math.round(Ie):Math.floor(Ie));U===Se&&(Q+=g[xe+Z])}}f[G+Z]=Q}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var IX={kernelName:Om,backendName:"cpu",kernelFunc:kX};function SX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ge(r,"reverse");let i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return pr({inputs:{x:r},backend:n});let l=new Ht(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var TX={kernelName:eo,backendName:"cpu",kernelFunc:SX},NX={kernelName:Pu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=N.getImageCenter(i,p,d),f=255,g=Math.sin(r),b=Math.cos(r),y=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let w=x*d*p*c;for(let I=0;I<p;I++){let T=I*(d*c);for(let C=0;C<d;C++){let E=C*c;for(let A=0;A<c;A++){let R=[u,I,C,A],F=R[2],S=R[1],M=(F-h)*b-(S-m)*g,B=(F-h)*g+(S-m)*b;M=Math.round(M+h),B=Math.round(B+m);let U=s;if(typeof s!="number"&&(A===3?U=f:U=s[A]),M>=0&&M<d&&B>=0&&B<p){let q=B*(d*c),K=M*c,Z=w+q+K+A;U=y[Z]}let G=w+T+E+A;l[G]=U}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},CX=rt(to,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),_X={kernelName:to,backendName:"cpu",kernelFunc:CX};function EX(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=ll(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var AX={kernelName:wu,backendName:"cpu",kernelFunc:EX};function $X(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<t?n=r+1:a=r;return a}function FX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<=t?n=r+1:a=r;return a}function DX(e,t,n,a,r,s){let i=v.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let l=e.slice(o*a,(o+1)*a),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?$X(l,t[p+u]):FX(l,t[p+u])}return i}function RX(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=DX(o,l,r.shape[0],r.shape[1],s.shape[1],i);return n.makeTensorInfo(s.shape,"int32",u)}var MX={kernelName:zm,backendName:"cpu",kernelFunc:RX};function PX(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ge([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=fa(r.dtype,s.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var OX={kernelName:ku,backendName:"cpu",kernelFunc:PX},LX=N.SELU_SCALEALPHA,zX=N.SELU_SCALE,WX=rt(Iu,e=>e>=0?zX*e:LX*(Math.exp(e)-1)),BX={kernelName:Iu,backendName:"cpu",kernelFunc:WX},VX=rt(Nu,e=>e<0?-1:e>0?1:0),UX={kernelName:Nu,backendName:"cpu",kernelFunc:VX},GX=rt(ao,e=>Math.sin(e)),HX={kernelName:ao,backendName:"cpu",kernelFunc:GX},jX=rt(Tu,e=>Math.sinh(e)),qX={kernelName:Tu,backendName:"cpu",kernelFunc:jX},KX=11920928955078125e-23,pI=Math.log(KX)+2,XX=rt(Cu,e=>{let t=e>-pI,n=e<pI,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),YX={kernelName:Cu,backendName:"cpu",kernelFunc:XX};function ZX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ge([r],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=l_.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=ft({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:d}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var JX={kernelName:_u,backendName:"cpu",kernelFunc:ZX};function QX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=LC(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var eY={kernelName:vc,backendName:"cpu",kernelFunc:QX};function tY(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=zC(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var nY={kernelName:Au,backendName:"cpu",kernelFunc:tY};function aY(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=B0(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var rY={kernelName:wc,backendName:"cpu",kernelFunc:aY};function sY(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=B0(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var iY={kernelName:kc,backendName:"cpu",kernelFunc:sY};function oY(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),b=Boolean(n.data.get(i.dataId).values[0]);f=ll(m,g,o,c,p,u,l,d,b,h);break}case"float32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=ll(m,g,o,c,p,u,l,d,b,h);break}case"int32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=ll(m,g,o,c,p,u,l,d,b,h);break}case"string":{let g=n.bufferSync(s),b=v.decodeString(n.data.get(i.dataId).values[0]);f=ll(m,g,o,c,p,u,l,d,b,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var lY={kernelName:Wm,backendName:"cpu",kernelFunc:oY};function uY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=pi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var pY={kernelName:Eu,backendName:"cpu",kernelFunc:uY},cY={kernelName:Ic,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ge(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},dY=rt(xs,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),hY={kernelName:xs,backendName:"cpu",kernelFunc:dY};function mY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;ge(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=jt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=ft({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=jt.computeOutShape(y,x,w),C=pi({inputs:{x:r},backend:n,attrs:{begin:y,size:T}});I=ft({inputs:{x:C},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(r),C=BC(h,T,w,y);I=n.makeTensorInfo(m,C.dtype,C.values)}return I}var fY={kernelName:$u,backendName:"cpu",kernelFunc:mY};function gY(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=V0(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var bY={kernelName:Sc,backendName:"cpu",kernelFunc:gY};function yY(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=U0(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var xY={kernelName:Tc,backendName:"cpu",kernelFunc:yY};function vY(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=G0(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var wY={kernelName:Nc,backendName:"cpu",kernelFunc:vY},kY=rt(po,e=>Math.tan(e)),IY={kernelName:po,backendName:"cpu",kernelFunc:kY},SY=rt(co,e=>Math.tanh(e)),TY={kernelName:co,backendName:"cpu",kernelFunc:SY};function NY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ge(r,"tile");let i=UC(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var CY={kernelName:ys,backendName:"cpu",kernelFunc:NY};function _Y(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ge(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=HC(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var EY={kernelName:Fu,backendName:"cpu",kernelFunc:_Y};function AY(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=v.computeStrides(r.shape),y=b[0],x=b[1],w=b[2],I=v.computeStrides(g),T=I[0],C=I[1],E=I[2],A=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));A.fill(l);let R=a.data.get(r.dataId).values,F=a.data.get(s.dataId).values;for(let S=0;S<p;++S){let M=s.shape[0]===1?F:F.subarray(S*8,S*8+8);for(let B=0;B<m;++B)for(let U=0;U<f;++U)for(let G=0;G<h;++G){let q,K=M[6]*U+M[7]*B+1;if(K===0)continue;let Z=(M[0]*U+M[1]*B+M[2])/K,Q=(M[3]*U+M[4]*B+M[5])/K,ee=cI(Z,c,o),ae=cI(Q,d,o);switch(i){case"nearest":q=PY(R,d,c,y,x,w,S,ae,ee,G,l);break;case"bilinear":q=OY(R,d,c,y,x,w,S,ae,ee,G,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let te=S*T+B*C+U*E+G;A[te]=q}return a.makeTensorInfo(g,r.dtype,A)}return{dataId:a.write(A,g,r.dtype),shape:r.shape,dtype:r.dtype}}var $Y={kernelName:Du,backendName:"cpu",kernelFunc:AY};function cI(e,t,n){switch(n){case"reflect":return FY(e,t);case"wrap":return DY(e,t);case"nearest":return MY(e,t);case"constant":default:return RY(e,t)}}function FY(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return v.clamp(0,n,t-1)}function DY(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return v.clamp(0,n,t-1)}function RY(e,t){return e}function MY(e,t){return v.clamp(0,e,t-1)}function Lp(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function PY(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return Lp(e,t,n,a,r,s,i,d,c,u,p)}function OY(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*Lp(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*Lp(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*Lp(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*Lp(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function LY(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ge(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=jC(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var zY={kernelName:Bm,backendName:"cpu",kernelFunc:LY};function WY(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=pi({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=ft({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var BY={kernelName:Ru,backendName:"cpu",kernelFunc:WY};function VY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ge(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=em({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),b=mC({inputs:{a:g,b:c},backend:n}),y=ds({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),x=qf({inputs:{a:y,b:r},backend:n}),w=sd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),p.push(g),p.push(b),p.push(y),p.push(x),p.push(w)}let h=o_({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var UY={kernelName:Cc,backendName:"cpu",kernelFunc:VY},GY=[Lq,Tj,Wq,Vq,$j,Gq,jq,Kq,Yq,Jq,e5,n5,r5,o5,u5,d5,m5,g5,y5,Pq,v5,k5,S5,N5,Ej,Dj,_5,Nj,A5,F5,D5,M5,O5,z5,B5,U5,H5,q5,X5,Z5,Q5,t8,a8,r8,i8,l8,p8,c8,d8,h8,g8,Eq,y8,Rj,N8,Mj,C8,Oj,D8,R8,P8,zj,z8,B8,U8,H8,q8,Bj,Uj,Cj,X8,$5,Z8,Q8,tK,Aq,Hj,qj,aK,Xj,sK,lK,pK,hK,fK,bK,yK,Zj,vK,kK,SK,NK,_K,AK,FK,Qj,RK,OK,BK,tq,aq,GK,qK,YK,sq,JK,eX,tX,l_,sX,Fq,lq,oX,uX,cX,hX,_j,dx,fX,Dq,Rq,Mq,bX,xX,wX,IX,TX,NX,_X,gq,AX,MX,OX,BX,yq,UX,HX,qX,xq,zK,YX,JX,eY,nY,rY,iY,lY,pY,kq,cY,Sq,hY,fY,bY,xY,wY,_q,m8,IY,TY,CY,EY,$Y,iq,zY,BY,UY,QK];for(let e of GY)_c(e);var u_={};Ae(u_,{assertNotComplex:()=>Yu,bindCanvasToFramebuffer:()=>tZ,bindColorTextureToFramebuffer:()=>kh,bindTextureToProgramUniformSampler:()=>T_,bindTextureUnit:()=>k_,bindVertexBufferToProgramAttribute:()=>mx,callAndCheck:()=>me,canBeRepresented:()=>c_,createFragmentShader:()=>m_,createFramebuffer:()=>w_,createProgram:()=>f_,createStaticIndexBuffer:()=>y_,createStaticVertexBuffer:()=>b_,createTexture:()=>x_,createVertexShader:()=>h_,getBatchDim:()=>ci,getExtensionOrThrow:()=>zp,getFramebufferErrorMessage:()=>N_,getMaxTexturesInShader:()=>A_,getNumChannels:()=>QY,getProgramUniformLocation:()=>S_,getProgramUniformLocationOrThrow:()=>I_,getRowsCols:()=>di,getShapeAs3D:()=>Bp,getTextureShapeFromLogicalShape:()=>__,getWebGLDisjointQueryTimerVersion:()=>$_,getWebGLErrorMessage:()=>d_,getWebGLMaxTextureSize:()=>E_,hasExtension:()=>da,isCapableOfRenderingToFloatTexture:()=>F_,isDownloadFloatTextureEnabled:()=>D_,isReshapeFree:()=>sc,isWebGLFenceEnabled:()=>R_,isWebGLVersionEnabled:()=>gx,linkProgram:()=>g_,logShaderSourceAndInfoLog:()=>Y0,resetMaxTextureSize:()=>nZ,resetMaxTexturesInShader:()=>aZ,unbindColorTextureFromFramebuffer:()=>fx,unbindTextureUnit:()=>eZ,validateFramebuffer:()=>Wp,validateProgram:()=>wh,validateTextureSize:()=>v_});var Gs={},mh={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function p_(e,t){Gs[e]=t}function qa(e,t){if(!(e in Gs)||t!=null){let a=jY(e,t);if(a!==null)Gs[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Gs[e];return n==null||n.isContextLost()?(delete Gs[e],qa(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Gs[e])}function HY(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function jY(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?HY(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Gs[e]},!1),H().getBool("SOFTWARE_WEBGL_ENABLED")&&(mh.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",mh)||n.getContext("experimental-webgl",mh):n.getContext("webgl2",mh)}var rc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(rc||(rc={}));var ca;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ca||(ca={}));var ln;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(ln||(ln={}));function id(e,t){return[t,e]}function qY(e,t){return e*t}function fh(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Xu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function KY(e,t){let[n,a]=Xu(e,t);return n*a*4}function X0(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return H().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function me(e,t){let n=t();return H().getBool("DEBUG")&&XY(e),n}function XY(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+d_(e,t))}var YY=596e-10,ZY=65504;function c_(e){return!!(H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||YY<Math.abs(e)&&Math.abs(e)<ZY)}function d_(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function zp(e,t){return Mr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function h_(e,t){let n=Mr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(me(e,()=>e.shaderSource(n,t)),me(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function m_(e,t){let n=Mr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(me(e,()=>e.shaderSource(n,t)),me(e,()=>e.compileShader(n)),H().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Y0(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var JY=/ERROR: [0-9]+:([0-9]+):/g;function Y0(e,t){let n=JY.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((d,c)=>v.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
`))}function f_(e){return Mr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function g_(e,t){if(me(e,()=>e.linkProgram(t)),!H().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function wh(e,t){if(me(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function b_(e,t){let n=Mr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),me(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function y_(e,t){let n=Mr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return me(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),me(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function QY(){return H().getNumber("WEBGL_VERSION")===2?1:4}function x_(e){return Mr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function v_(e,t){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function w_(e){return Mr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function mx(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),me(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),me(e,()=>e.enableVertexAttribArray(o)),!0)}function k_(e,t,n){C_(e,n),me(e,()=>e.activeTexture(e.TEXTURE0+n)),me(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function eZ(e,t){C_(e,t),me(e,()=>e.activeTexture(e.TEXTURE0+t)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function I_(e,t,n){return Mr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function S_(e,t,n){return e.getUniformLocation(t,n)}function T_(e,t,n,a){me(e,()=>k_(e,t,a)),me(e,()=>e.uniform1i(n,a))}function tZ(e){me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),me(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),me(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function kh(e,t,n){me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),me(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function fx(e,t){me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),me(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Wp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+N_(e,t))}function N_(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Mr(e,t,n){let a=me(e,()=>t());if(a==null)throw new Error(n);return a}function C_(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function ci(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function di(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Bp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ci(e),...di(e)]),t}function __(e,t=!1){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE"),a=H().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");a===1/0&&H().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(a=n/2),t&&(n=n*2,a=a*2,e=e.map((o,l)=>l>=e.length-2?v.nearestLargerEven(e[l]):e[l]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e),s=null;e.length<=1&&r<=n?s=[1,r]:e.length===2&&e[0]<=n&&e[1]<=n?s=e:e.length===3&&e[0]*e[1]<=n&&e[2]<=n?s=[e[0]*e[1],e[2]]:e.length===3&&e[0]<=n&&e[1]*e[2]<=n?s=[e[0],e[1]*e[2]]:e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n?s=[e[0]*e[1]*e[2],e[3]]:e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n&&(s=[e[0],e[1]*e[2]*e[3]]);let i=s!=null&&Math.max(...s)>a&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let o=ci(e),l=2,u=2;e.length&&([l,u]=di(e)),r=o*(l/2)*(u/2),s=v.sizeToSquarishShape(r).map(p=>p*2)}else s=v.sizeToSquarishShape(r);return s}function gh(e){return e%2===0}function sc(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||gh(n)&&gh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&gh(e[0])&&gh(t[0])}var Ih,Sh;function E_(e){if(Ih==null){let t=qa(e);Ih=t.getParameter(t.MAX_TEXTURE_SIZE)}return Ih}function nZ(){Ih=null}function aZ(){Sh=null}function A_(e){if(Sh==null){let t=qa(e);Sh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Sh)}function $_(e){if(e===0)return 0;let t,n=qa(e);return da(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:da(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function da(e,t){return e.getExtension(t)!=null}function gx(e){try{if(qa(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function F_(e){if(e===0)return!1;let t=qa(e);if(e===1){if(!da(t,"OES_texture_float"))return!1}else if(!da(t,"EXT_color_buffer_float"))return!1;return bx(t)}function D_(e){if(e===0)return!1;let t=qa(e);if(e===1){if(!da(t,"OES_texture_float")||!da(t,"WEBGL_color_buffer_float"))return!1}else{if(da(t,"EXT_color_buffer_float"))return bx(t);let n="EXT_color_buffer_half_float";if(da(t,n)){let a=t.getExtension(n);return rZ(t,a)}return!1}return bx(t)}function bx(e){let t=X0(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function rZ(e,t){let n=X0(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function R_(e){return e!==2?!1:qa(e).fenceSync!=null}function Yu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var ve=H();ve.registerFlag("HAS_WEBGL",()=>ve.getNumber("WEBGL_VERSION")>0);ve.registerFlag("WEBGL_VERSION",()=>gx(2)?2:gx(1)?1:0);ve.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);ve.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>ve.get("WEBGL_VERSION")===2);ve.registerFlag("WEBGL_CPU_FORWARD",()=>!0);ve.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);ve.registerFlag("WEBGL_PACK",()=>ve.getBool("HAS_WEBGL"));ve.registerFlag("WEBGL_PACK_NORMALIZATION",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_CLIP",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_REDUCE",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_LAZILY_UNPACK",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_CONV_IM2COL",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>E_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>A_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=ve.getNumber("WEBGL_VERSION");return e===0?0:$_(e)});ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>ve.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!$c.isMobile());ve.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>F_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>ve.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:ve.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));ve.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>D_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_FENCE_API_ENABLED",()=>R_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>ve.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);ve.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});ve.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>$c.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});ve.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);ve.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);ve.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);ve.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);ve.registerFlag("WEBGL_EXP_CONV",()=>!1);ve.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>ve.getBool("IS_TEST"));ve.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);ve.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);ve.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);function _n(){let e,t,n,a,r,s,i,o,l,u;return H().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=H().getBool("WEBGL2_ISNAN_CUSTOM")?`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`:"",l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function wo(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Kf(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function sZ(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function iZ(e,t,n="index"){let a=e.map((s,i)=>i),r=sZ(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function Z0(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function J0(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var M_=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:P_}=N;function oZ(e,t,n){let a=[];if(e.forEach(c=>{let h=v.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=Q0(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
`),s=e.map(c=>lZ(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),i=t.texShape,o=_n(),l=cZ(o),u,p,d=mZ(o);return t.isPacked?(u=uZ(t.logicalShape,i,n.enableShapeUniforms),p=hZ(o)):(u=pZ(t.logicalShape,i,n.enableShapeUniforms),p=dZ(o)),n.packedInputs&&(d+=yZ),[d,l,p,r,u,s,n.userCode].join(`
`)}function Zu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return AZ(e,t);case 1:return FZ(e,t);case 2:return RZ(e,t);case 3:return PZ(e,t);case 4:return LZ(e,t);case 5:return zZ(e);case 6:return WZ(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function O_(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return EZ(e);case 1:return $Z(e,t);case 2:return DZ(e,t);case 3:return MZ(e,t);default:return OZ(e,t)}}function lZ(e,t,n=!1,a){let r="";n?r+=O_(e,a):r+=Zu(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=BZ(e,t):r+=VZ(e,t)),r}function uZ(e,t,n){switch(e.length){case 0:return L_();case 1:return xZ(e,t,n);case 2:return CZ(e,t,n);case 3:return wZ(e,t,n);default:return IZ(e,t,n)}}function pZ(e,t,n){switch(e.length){case 0:return L_();case 1:return vZ(e,t,n);case 2:return _Z(e,t,n);case 3:return kZ(e,t,n);case 4:return SZ(e,t,n);case 5:return TZ(e,t);case 6:return NZ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function cZ(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function dZ(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function hZ(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function mZ(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${fZ}
${gZ}
${bZ}
`}var fZ=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,gZ=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,bZ=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,yZ=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function L_(){return`
int getOutputCoords() {
return 0;
}
`}function xZ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${a[1]}.0);
}
`:a[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${a[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
}
`}function vZ(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function wZ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function kZ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Kf(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let a=wo(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec3(r, c, d);
}
`}function IZ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
int b${u} = index / ${i};
index -= b${u} * ${i};
`+o,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
${o}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function SZ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Kf(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let a=wo(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec4(r, c, d, d2);
}
`}function TZ(e,t){let n=wo(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function NZ(e,t){let n=wo(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function CZ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function _Z(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function ko(e){return`offset${e}`}function EZ(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=_n();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function AZ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
float ${a}() {
return sampleTexture(${n}, halfCR);
}
`;let i=ko(n);if(t)return`
float ${a}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
return sampleTexture(${n}, uv);
}
`;let[o,l]=e.shapeInfo.texShape;return`
float ${a}() {
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
return sampleTexture(${n}, uv);
}
`}function $Z(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=_n();if(t)return`
vec4 ${a}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${n}, uv);
}
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${a}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${n}, uv);
}
`}function FZ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${a}(int index) {
${Ju(e)}
}
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
float ${a}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let o=ko(n);return i===1?t?`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
return sampleTexture(${n}, uv);
}
`:s===1?t?`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${a}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
return sampleTexture(${n}, uv);
}
`}function DZ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=_n();if(s!=null&&v.arraysEqual(n,s))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return ${l.texture2D}(${a}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
return ${l.texture2D}(${a}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${a}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${a}, uv);
}
`}function RZ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(n,s)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`;let c=s[0],h=s[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`}let{newShape:i,keptDims:o}=v.squeezeShape(n),l=i;if(l.length<n.length){let c=Qu(e,l),h=["row","col"];return`
${Zu(c,t)}
float ${r}(int row, int col) {
return ${r}(${ep(h,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${Ju(e)}
}
`;let u=s[0],p=s[1],d=ko(a);return p===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${a}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
return sampleTexture(${a}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${a}, uv);
}
`}function MZ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=Qu(e,c),f=["b","row","col"];return`
${O_(m,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${ep(f,h)});
}
`}let o=_n();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${d}, ${p}, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`}function PZ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=v.squeezeShape(n),u=o;if(u.length<n.length){let f=Qu(e,u),g=["row","col","depth"];return`
${Zu(f,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${ep(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${Ju(e)}
}
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${a}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;if(c===i&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;let m=ko(a);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${a}Shape[1] * ${a}Shape[2];
int stride1 = ${a}Shape[2];
int index = row * stride0 + col * stride1 + depth + ${m};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${d}, ${c}, index);
return sampleTexture(${a}, uv);
}
`}function OZ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=_n();if(t)return`
vec4 ${a}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
vec4 ${a}(${h}) {
int index = ${m};
int texR = index / ${p};
int texC = index - texR * ${p};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function LZ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let y=Qu(e,l),x=["row","col","depth","depth2"];return`
${Zu(y,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${ep(x,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, 1)));
${Ju(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${m}
${f}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;if(h===s&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;let b=ko(a);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${m}
${f}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${b});
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${c}, ${h}, index + ${b});
return sampleTexture(${a}, uv);
}
`}function zZ(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=Qu(e,l),g=["row","col","depth","depth2","depth3"];return`
${Zu(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${ep(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${Ju(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let m=ko(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${c}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function WZ(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=v.squeezeShape(t);if(r.length<t.length){let g=Qu(e,r),b=["row","col","depth","depth2","depth3","depth4"];return`
${Zu(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${ep(b,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${p}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${Ju(e)}
}
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=ko(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${p} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function Ju(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function BZ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=P_(e.shapeInfo.logicalShape,t.logicalShape),l=gt(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,b)=>`coords.${d[b+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,b=s-1;o.indexOf(g)>-1&&o.indexOf(b)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(b)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${p}
vec4 outputValue = get${a}(${c});
${h}
}
`}function VZ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=gt(l),p=P_(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${c}
return get${a}(${m});
}
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Q0(e,t,n){let{newShape:a,keptDims:r}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!v.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function Qu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function ep(e,t){return t.map(n=>e[n]).join(", ")}function UZ(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=oZ(r,i,t),l=m_(e.gl,o),u=e.createProgram(l);return H().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},z_(e,t,u))}function z_(e,t,n){let a={},r={},s={},i=[],o,l,u,p=null,d=null;d=e.getUniformLocation(n,"NAN",!1),H().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(n,"INFINITY",!1));let c=!1;for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h];a[m]=e.getUniformLocation(n,m,c),a[`offset${m}`]=e.getUniformLocation(n,`offset${m}`,c),t.enableShapeUniforms&&(r[`${m}Shape`]=e.getUniformLocation(n,`${m}Shape`,c),s[`${m}TexShape`]=e.getUniformLocation(n,`${m}TexShape`,c))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",c),u=e.getUniformLocation(n,"outShapeStrides",c),l=e.getUniformLocation(n,"outTexShape",c)),t.customUniforms&&t.customUniforms.forEach((h,m)=>{i[m]=e.getUniformLocation(n,h.name,c)}),{uniformLocations:a,customUniformLocations:i,infLoc:p,nanLoc:d,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function dI(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!v.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function GZ(e,t,n,a,r){t.program.enableShapeUniforms||(dI(t.inShapeInfos,n),dI([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),H().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let p=t.program.variableNames[u],d=t.uniformLocations[p],c=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],m=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:f}=Q0(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,d,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(p,d);else if(l.type==="vec2")e.gl.uniform2fv(p,d);else if(l.type==="vec3")e.gl.uniform3fv(p,d);else if(l.type==="vec4")e.gl.uniform4fv(p,d);else if(l.type==="int")e.gl.uniform1iv(p,d);else if(l.type==="ivec2")e.gl.uniform2iv(p,d);else if(l.type==="ivec3")e.gl.uniform3iv(p,d);else if(l.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function HZ(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=Q0(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let I=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${I[0]>1}_${I[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let I=v.computeStrides(p);m=`${I[0]===l[1]}_${I[I.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&v.arraysEqual(i.shape,l),b=v.sizeFromShape(i.shape)===1,y=N.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&v.arraysEqual(l,n.texData.texShape),w=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${b}_${y}_${g}_${c}_${h}_${m}_${w}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${H().getNumber("WEBGL_VERSION")}`,s}function En(e){return H().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var jZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=rc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=_n();this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Kf(["r","c","d"],e):wo(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},qZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=rc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=_n();this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Kf(["r","c","d"],e):wo(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},KZ=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ca.DOWNLOAD;let t=_n();this.outputShape=e,this.userCode=`
${M_}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},XZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ca.DOWNLOAD;let t=_n();this.outputShape=e,this.userCode=`
${M_}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},YZ={R:0,G:1,B:2,A:3},hI=class{constructor(e,t=!1,n="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let a=_n();this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)");let s="";for(let i=0;i<n.length;i++){let o=n[i];s+=`
if(offset == ${i}) {
result = values[${YZ[o]}];
}`}this.userCode=`
${this.enableShapeUniforms?J0():Z0(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
float result = 0.;
int offset = imod(flatIndex, ${n.length});
flatIndex = idiv(flatIndex, ${n.length}, 1.);
int r = flatIndex / texShape[1];
if (r < texShape[0]) {
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${a.texture2D}(A, uv);
${s}
}
${a.output} = vec4(${r}, 0., 0., 0.);
}
`}},ZZ=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=_n();this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${s};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${o}] = values[0];
} else if (offset == 1) {
result[${o}] = values[1];
} else if (offset == 2) {
result[${o}] = values[2];
} else {
result[${o}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?J0():Z0(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${a}
${n.output} = ${r};
}
`}},W_={};Ae(W_,{bindVertexProgramAttributeStreams:()=>X_,createBufferFromOutputTexture:()=>J_,createFloat16MatrixTexture:()=>H_,createFloat16PackedMatrixTexture:()=>K_,createFloat32MatrixTexture:()=>G_,createIndexBuffer:()=>U_,createPackedMatrixTexture:()=>q_,createUnsignedBytesMatrixTexture:()=>j_,createVertexBuffer:()=>V_,createVertexShader:()=>B_,downloadByteEncodedFloatMatrixFromOutputTexture:()=>eE,downloadFloat32MatrixFromBuffer:()=>Q_,downloadMatrixFromPackedOutputTexture:()=>nE,downloadPackedMatrixFromBuffer:()=>tE,getInternalFormatForFloat16MatrixTexture:()=>t1,getInternalFormatForFloat16PackedMatrixTexture:()=>r1,getInternalFormatForFloat32MatrixTexture:()=>e1,getInternalFormatForPackedMatrixTexture:()=>a1,getInternalFormatForUnsignedBytesMatrixTexture:()=>n1,uploadDenseMatrixToTexture:()=>Y_,uploadPixelDataToTexture:()=>Z_});function B_(e){let t=_n(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return h_(e,n)}function V_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return b_(e,t)}function U_(e){let t=new Uint16Array([0,1,2,2,1,3]);return y_(e,t)}function od(e,t,n,a,r,s){v_(t,n);let i=x_(e),o=e.TEXTURE_2D;return me(e,()=>e.bindTexture(o,i)),me(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),me(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),me(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),me(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),H().getNumber("WEBGL_VERSION")===1?me(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):me(e,()=>e.texStorage2D(o,1,a,t,n)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function e1(e){return e.internalFormatFloat}function G_(e,t,n,a){let[r,s]=id(t,n);return od(e,r,s,e1(a),a.textureFormatFloat,e.FLOAT)}function t1(e){return e.internalFormatHalfFloat}function H_(e,t,n,a){let[r,s]=id(t,n);return od(e,r,s,t1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function n1(e){return e.downloadTextureFormat}function j_(e,t,n,a){let[r,s]=id(t,n);return od(e,r,s,n1(a),e.RGBA,e.UNSIGNED_BYTE)}function a1(e){return e.internalFormatPackedFloat}function q_(e,t,n,a){let[r,s]=Xu(t,n);return od(e,r,s,a1(a),e.RGBA,e.FLOAT)}function r1(e){return e.internalFormatPackedHalfFloat}function K_(e,t,n,a){let[r,s]=Xu(t,n);return od(e,r,s,r1(a),e.RGBA,a.textureTypeHalfFloat)}function X_(e,t,n){return me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),mx(e,t,"clipSpacePos",n,3,20,0)&&mx(e,t,"uv",n,2,20,12)}function Y_(e,t,n,a,r,s){me(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),H().getNumber("WEBGL_VERSION")===2?me(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):me(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Z_(e,t,n){me(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?H().getNumber("WEBGL_VERSION")===2?me(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):me(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):H().getNumber("WEBGL_VERSION")===2?me(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):me(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function J_(e,t,n,a){let r=e.createBuffer();me(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return me(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),me(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),me(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function Q_(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function eE(e,t,n,a){let[r,s]=id(t,n),i=4,o=new Uint8Array(qY(t*n,i));return me(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function tE(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(KY(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function nE(e,t,n){let a=new Float32Array(t*n*4);return me(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Th=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=H().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,p_(t,e)):this.gl=qa(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),H().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=zp(this.gl,r),da(this.gl,s))this.textureHalfFloatExtension=zp(this.gl,s);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),da(this.gl,a))this.colorBufferHalfFloatExtension=zp(this.gl,a);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",da(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(da(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=V_(this.gl),this.indexBuffer=U_(this.gl),this.framebuffer=w_(this.gl),this.textureConfig=X0(this.gl,this.textureHalfFloatExtension)}get debug(){return H().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;me(e,()=>e.finish()),me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),me(e,()=>e.deleteFramebuffer(this.framebuffer)),me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),me(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),me(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),G_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),H_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),j_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Z_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),Y_(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),K_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),q_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(fx(this.gl,this.framebuffer),this.outputTexture=null),me(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>eE(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return tE(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Q_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=J_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(H().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>nE(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=B_(t));let n=f_(t);return me(t,()=>t.attachShader(n,this.vertexShader)),me(t,()=>t.attachShader(n,e)),g_(t,n),this.debug&&wh(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=X_(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&me(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&wh(this.gl,this.program),me(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?I_(this.gl,e,t):S_(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),me(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),T_(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Xu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&wh(this.gl,this.program),Wp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),me(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),me(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=zp(this.gl,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=JZ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;let n;"setTimeoutCustom"in H().platform&&(n=H().platform.setTimeoutCustom.bind(H().platform)),v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(e){this.throwIfDisposed(),kh(this.gl,e,this.framebuffer),this.debug&&Wp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(kh(this.gl,this.outputTexture,this.framebuffer),this.debug&&Wp(this.gl)):fx(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;kh(a,e,this.framebuffer),this.debug&&Wp(a),this.outputTexture=e,me(a,()=>a.viewport(0,0,t,n)),me(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),me(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function JZ(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:QZ,bincountImpl:aE,bincountReduceImpl:e7,castImpl:t7,ceilImpl:n7,concatImpl:a7,equalImpl:r7,expImpl:s7,expm1Impl:i7,floorImpl:o7,gatherNdImpl:l7,gatherV2Impl:u7,greaterImpl:p7,greaterEqualImpl:c7,lessImpl:d7,lessEqualImpl:h7,linSpaceImpl:m7,logImpl:f7,maxImpl:g7,maximumImpl:b7,minimumImpl:y7,multiplyImpl:x7,negImpl:v7,notEqualImpl:w7,prodImpl:k7,raggedGatherImpl:I7,raggedRangeImpl:S7,raggedTensorToTensorImpl:T7,rangeImpl:N7,rsqrtImpl:C7,scatterImpl:_7,sigmoidImpl:E7,simpleAbsImpl:rE,sliceImpl:A7,sparseFillEmptyRowsImpl:$7,sparseReshapeImpl:F7,sparseSegmentReductionImpl:sE,sqrtImpl:D7,stridedSliceImpl:R7,stringNGramsImpl:M7,stringSplitImpl:P7,stringToHashBucketFastImpl:O7,subImpl:L7,tileImpl:z7,topKImpl:W7,transposeImpl:s1,uniqueImpl:B7}=oC;function iE(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function kn(e,t){return t===1?[e]:iE(e,t)}function V7(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var U7=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=En(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=kn("rc",this.rank),n=gt(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${s}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${a};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},oE=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${G7(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?J0():Z0(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function G7(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?iZ(["r","c","d"],"inputShape"):wo(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var H7=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=fI(t,n),r=gI(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=mI(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===ln.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===ln.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===ln.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===ln.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===ln.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=fI(n,a),s=gI(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=mI(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=H().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function j7(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function mI(e,t,n,a,r){let s=q7(t,a),i;if(r){let[l,u]=Xu(e[0],e[1]);i=l*u}else{let[l,u]=id(e[0],e[1]);i=l*u}let o=j7(n,s);return i*o}function q7(e,t){switch(e){case ln.PACKED_2X2_FLOAT32:return a1(t);case ln.PACKED_2X2_FLOAT16:return r1(t);case ln.UNPACKED_FLOAT32:return e1(t);case ln.UNPACKED_FLOAT16:return t1(t);case ln.PACKED_4X1_UNSIGNED_BYTE:return n1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function K7(e){return H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?ln.PACKED_2X2_FLOAT32:ln.UNPACKED_FLOAT32:e?ln.PACKED_2X2_FLOAT16:ln.UNPACKED_FLOAT16}function fI(e,t){if(e===ca.UPLOAD)return ln.PACKED_2X2_FLOAT32;if(e===ca.RENDER||e==null)return K7(t);if(e===ca.DOWNLOAD||e===ca.PIXELS)return ln.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function gI(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Cr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Ma="if (isnan(x)) return x;",X7="return x;",bI="return abs(x);",Y7="return (x >= 0.0) ? x : (exp(x) - 1.0);",Z7=Ma+`
return (x < 0.0) ? 0.0 : x;
`,J7=Ma+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,rl="return x;",Q7="return 1.0 / (1.0 + exp(-1.0 * x));",eJ="return x;",tJ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,nJ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,aJ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,rJ="return 1.0 / (1.0 + exp(-1.0 * x));",qs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},sJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length);let t=e.length,n=kn("rc",t),a=gt(t),r=V7(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},iJ=hr.whereImpl,oJ=1e-7,lJ=1e-4,Sy={};function uJ(e){return e in Sy||(Sy[e]={}),Sy[e]}var pJ=H().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),cJ=600;function dJ(){return H().global.screen==null?1024:H().global.screen.height*H().global.screen.width*window.devicePixelRatio*cJ/1024/1024}var Xf=class extends pc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!H().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Th)t=e;else{let n=qa(H().getNumber("WEBGL_VERSION"),e);t=new Th(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=qa(H().getNumber("WEBGL_VERSION"));t=new Th(n),this.binaryCache=uJ(H().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new H7(this.gpgpu),this.numMBBeforeWarning=dJ(),this.texData=new om(this,_a())}nextDataId(){return Xf.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(e,t,n,a,r,s){let i=this.makeTensorInfo(t,n),o=this.texData.get(i.dataId);o.isPacked=!1,o.texture={texture:e,texShape:[a,r]},o.texShape=[a,r];let l=Bp(t),u=new hI(l,!1,s),p=this.runWebGLProgram(u,[i],n,[[a,r]]);return p.shape=t,o.texture=null,this.disposeIntermediateTensorInfo(i),p.dataId}write(e,t,n){if((H().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||H().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:ca.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(H().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:ca.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new qs(i,rl):d=new Cr(i,rl);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=N.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new qs(a,rl):h=new Cr(a,rl);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(H().getBool("DEBUG")&&!H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&H().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&H().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...fh(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=N.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;me(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&_a().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new qs(r,rl):c=new Cr(r,rl);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=_a().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Oe(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Oe(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!c_(n))throw H().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=v.sizeFromShape(t);if(H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...fh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=H().getBool("WEBGL_PACK")&&a===!0,i=s?Bp(t):t,o=s?new XZ(i):new KZ(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=pJ){return H().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return iJ(e.shape,t)}packedUnaryOp(e,t,n){let a=new qs(e.shape,t),r=this.compileAndRun(a,[e],n);return _a().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=rE(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(H().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,bI,e.dtype);let t=new Cr(e.shape,bI),n=this.compileAndRun(t,[e]);return _a().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return _a().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new sJ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new U7(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ci(e.shape),...di(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[ci(t),...di(t)],s=new oE(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=v.sizeFromShape(r),c=t[0]*t[1]*4;v.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=Bp(r),o;a?o=new qZ(i):o=new jZ(i);let l=!0,u=[t!=null?t:fh(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===rc.DENSE){let g=s!=null?s:fh(e.outputShape);o.texShape=g.map(b=>b*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(g.dataId);if(b.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=H().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!b.isPacked!=!!e.packedInputs)g=b.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),b=this.texData.get(g.dataId);else if(b.isPacked&&!sc(b.shape,g.shape)){let y=g,x=g.shape;g.shape=b.shape,g=this.packedReshape(g,x),l.push(g),b=this.texData.get(g.dataId),y.shape=x}return{shape:g.shape,texData:b,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=HZ(e,u,p),c=this.getAndSaveBinary(d,()=>UZ(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),H().get("ENGINE_COMPILE_ONLY")||GZ(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=H().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=v.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!H().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(H().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!H().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=H().getBool("DEBUG");H().set("DEBUG",!1);let t=this.abs(ye(1e-8)).dataSync()[0];if(H().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?oJ:lJ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let p=t.texShape;if(p==null&&(p=__(n,o),t.texShape=p),r!=null){let d=Bp(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=Xu(p[0],p[1])),o?c=new ZZ(d,f):c=new hI(d,f);let g=f?[m,h]:p,b=this.makeTensorInfo(g,a),y=this.texData.get(b.dataId);f?y.usage=ca.PIXELS:y.usage=ca.UPLOAD,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,m,r);let x=[[m,h]],w=!0,I=this.runWebGLProgram(c,[b],a,x,w),T=this.texData.get(I.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,H().get("ENGINE_COMPILE_ONLY")?this.disposeData(I.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(I.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=v.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=hJ(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await Jv(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(Y0(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=z_(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}createTensorFromTexture(e,t,n){let{texture:a,height:r,width:s,channels:i}=e,o=_a().backend;if(!o.gpgpu.gl.isTexture(a))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=o.writeTexture(a,t,n,r,s,i);return _a().makeTensorFromDataId(l,t,n,o)}};Xf.nextDataId=0;function hJ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var mJ="4.0.0";function lE(){H().set("WEBGL_FORCE_F16_TEXTURES",!0)}$c.isBrowser()&&Gm("webgl",()=>new Xf,2);var fJ={forceHalfFloat:lE},i1=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,$l=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=En(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},ld=`
result.r = isNaN.r ? NAN : result.r;
result.g = isNaN.g ? NAN : result.g;
result.b = isNaN.b ? NAN : result.b;
result.a = isNaN.a ? NAN : result.a;
`,ud=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=En(r);let s="";if(a)if(r===0||v.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${gt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?s+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=kn("coords",r);this.enableShapeUniforms?s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function aa(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var gJ={kernelName:Ri,backendName:"webgl",kernelFunc:aa};function _s(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=aa({inputs:{x:a},backend:n}),l=aa({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var bJ={kernelName:mm,backendName:"webgl",kernelFunc:_s},uE="return (a < 0.) ? b * a : a;",pE=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function yJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ud(pE,r.shape,i.shape):new $l(uE,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var xJ={kernelName:Mi,backendName:"webgl",kernelFunc:yJ},cE="return (a < 0.) ? b * a : a;",dE=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function vJ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ud(dE,a.shape,r.shape):new $l(cE,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var wJ={kernelName:Ki,backendName:"webgl",kernelFunc:vJ},tp="if (isnan(x)) return x;";function Ye({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=H().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new qs(i.shape,t):p=new Cr(i.shape,e),o.runWebGLProgram(p,[i],l)}}function cn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,b]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,I]=x,T={dataId:w.dataId,dtype:w.dtype,shape:l.shape},C={dataId:I.dataId,dtype:I.dtype,shape:u.shape},E=new $l(e,l.shape,u.shape);return p.runWebGLProgram(E,[T,C],fa(w.dtype,I.dtype))}),y=_s({inputs:{real:g,imag:b},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(b),y}let d=s||fa(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(m):m,b=l.dtype==="string"?N.fromUint8ToStringArray(f):f,[y,x]=r(l.shape,u.shape,g,b,d),w=p.makeTensorInfo(x,d),I=p.texData.get(w.dataId);return I.values=y,w}let c=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new ud(t,l.shape,u.shape,n):h=new $l(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function ic(e,t=!1){if(e==="linear")return t?eJ:X7;if(e==="relu")return t?nJ:Z7;if(e==="elu")return t?tJ:Y7;if(e==="relu6")return t?aJ:J7;if(e==="prelu")return t?dE:cE;if(e==="leakyrelu")return t?pE:uE;if(e==="sigmoid")return t?rJ:Q7;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var hE=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=En(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let b=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${y};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${c});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${g}
setOutput(result);
}
`}},yI={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},xI=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},vI="return a * b;";function o1(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=N.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new xI(yI.REAL,a.shape,r.shape),p=new xI(yI.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=_s({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=x7(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new ud(vI,a.shape,r.shape):i=new $l(vI,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var kJ={kernelName:Gi,backendName:"webgl",kernelFunc:o1};function IJ(e,t,n){let a=[ci(e.shape),...di(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[ci(t),...di(t)],i=new oE(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function de(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!sc(r.shape,l)&&!(p.texture!==null&&sc(p.shape,l))?IJ(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var SJ={kernelName:vu,backendName:"webgl",kernelFunc:de},wI=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${v.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},TJ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${o}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,c="vec4";t==="all"?(i="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,c="bvec4"):t==="any"&&(i="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,c="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
${c} values = ${c}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${p===2}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${p===3}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function NJ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=N.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Io(e,t,n,a){let r=NJ(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new wI({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new wI({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new TJ({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var CJ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=gt(this.rank),r=_J(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function _J(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var EJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=gt(this.rank),r=iE("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Yf(e,t,n){let a=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new EJ(e.shape,t):new CJ(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function AJ(e,t,n,a){let r=t,s=e.shape.length,i=v.parseAxisParam(r,e.shape),o=i,l=N.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=Yf(e,l,a),o=N.getInnerMostAxes(o.length,s)),N.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=N.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=N.expandShapeToKeepDim(d,i));let m=v.sizeFromShape(c),f=v.sizeFromShape(e.shape)/m,g=de({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),b=Um(e.dtype),y=Io(g,b,"sum",a),x=de({inputs:{x:y},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(y),u&&a.disposeIntermediateTensorInfo(p),x}function Zf(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return AJ(r,s,i,n)}var $J={kernelName:io,backendName:"webgl",kernelFunc:Zf};function Sn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=s1(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=Yf(r,s,i);return u}var FJ={kernelName:_r,backendName:"webgl",kernelFunc:Sn},mE=1e3;function nm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=v.sizeFromShape(f),y=v.sizeFromShape(g),x=Ou.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);v.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let w=n?[b,d,h]:[b,h,d],I=a?[y,m,c]:[y,c,m],T=de({inputs:{x:e},backend:r,attrs:{shape:w}}),C=de({inputs:{x:t},backend:r,attrs:{shape:I}}),E=[T,C],A=Math.max(b,y),R=n?T.shape[1]:T.shape[2],F=s!=null,S=i!=null,M=l==="leakyrelu",B=l!=null?ic(l,!0):null,U=F||S||M||B!=null,G;if((h===1||m===1)&&R>mE&&U===!1){let K=T,Z=C;n&&(K=Sn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),E.push(K)),a&&(Z=Sn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(Z));let Q=m!==1,ee=m===1,ae=K;Q&&(ae=de({inputs:{x:K},backend:r,attrs:{shape:[A,R,1]}}),E.push(ae));let te=m===1?2:1,le=Z;ee&&(le=de({inputs:{x:Z},backend:r,attrs:{shape:[A,1,R]}}),E.push(le));let ie=o1({inputs:{a:ae,b:le},backend:r});G=Zf({inputs:{x:ie},backend:r,attrs:{axis:te,keepDims:!0}}),E.push(ie)}else{let K=fa(e.dtype,t.dtype),Z=new hE(w,I,[A,h,m],n,a,F,B,S,M),Q=[T,C];if(s!=null&&Q.push(s),S&&Q.push(i),M){let ee=r.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));Q.push(ee),E.push(ee)}G=r.runWebGLProgram(Z,Q,K)}let q=de({inputs:{x:G},backend:r,attrs:{shape:x}});E.push(G);for(let K of E)r.disposeIntermediateTensorInfo(K);return q}function DJ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return nm({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var RJ={kernelName:Qs,backendName:"webgl",kernelFunc:DJ},kI="return abs(x);";function MJ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=rE(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new qs(a.shape,kI):r=new Cr(a.shape,kI),n.runWebGLProgram(r,[a],a.dtype)}var PJ={kernelName:Dl,backendName:"webgl",kernelFunc:MJ},OJ=Ma+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,LJ=Ye({opSnippet:OJ}),zJ={kernelName:Rl,backendName:"webgl",kernelFunc:LJ},WJ=Ma+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,BJ=Ye({opSnippet:WJ}),VJ={kernelName:Ml,backendName:"webgl",kernelFunc:BJ},II="return a + b;",UJ=cn({opSnippet:II,packedOpSnippet:II,supportsComplex:!0,cpuKernelImpl:QZ}),GJ={kernelName:gs,backendName:"webgl",kernelFunc:UJ},HJ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},jJ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function Nh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return aa({inputs:{x:a[0]},backend:n});if(a.length>H().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Nh({inputs:a.slice(0,o),backend:n}),u=Nh({inputs:a.slice(o),backend:n});return Nh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>fa(o,l)),s=a.map(o=>o.shape),i=H().getBool("WEBGL_PACK")?new jJ(a[0].shape,s):new HJ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var qJ={kernelName:fi,backendName:"webgl",kernelFunc:Nh};function KJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("all",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=de({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Io(f,f.dtype,"all",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=de({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=de({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var XJ={kernelName:Pl,backendName:"webgl",kernelFunc:KJ};function YJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("any",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=de({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Io(f,f.dtype,"any",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=de({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=de({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var ZJ={kernelName:Ol,backendName:"webgl",kernelFunc:YJ},JJ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},QJ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=gt(o),u=kn("coords",o),p,d;if(s===1){d=o+1;let C=gt(d);p=`
${C} sourceLocR = ${C}(${u.join()}, 0);
++${u[o-1]};
${C} sourceLocG = ${C}(${u.join()}, 0);
++${u[o-2]};
${C} sourceLocA = ${C}(${u.join()}, 0);
--${u[o-1]};
${C} sourceLocB = ${C}(${u.join()}, 0);
--${u[o-2]};`}else d=o,p=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(C=>"int "+C),f=kn("sourceLocR",d-1).concat("inIdx.r"),g=kn("sourceLocG",d-1).concat("inIdx.g"),b=kn("sourceLocB",d-1).concat("inIdx.b"),y=kn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${y.join()})));`,I=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,T=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${c.join()}),
vec2(${c.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${c.join()}),
vec2(${c.slice(-2).join()}));
}
${T}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${I};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${w}
vec4 candidate = ${I};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function fE(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=N.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new JJ(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=fE(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function gE(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=N.computeOptimalWindowSize(s),o=new QJ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=gE(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function bE(e,t,n,a){let r=[n];if(N.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!H().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=N.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(p),c=de({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=fE(e,c,a);s.push(h);let m=de({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return gE(e,t,a)}function e9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=bE(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var t9={kernelName:gi,backendName:"webgl",kernelFunc:e9};function n9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=bE(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var a9={kernelName:cc,backendName:"webgl",kernelFunc:n9},r9=Ma+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,s9=Ye({opSnippet:r9}),i9={kernelName:Ll,backendName:"webgl",kernelFunc:s9},o9=Ma+"return log(x + sqrt(x * x + 1.0));",l9=Ye({opSnippet:o9}),u9={kernelName:zl,backendName:"webgl",kernelFunc:l9},p9=Ma+`
return atan(x);
`,c9=Ye({opSnippet:p9}),d9={kernelName:Wl,backendName:"webgl",kernelFunc:c9},h9=i1+`
return atan(a, b);
`,m9=`
vec4 result = atan(a, b);
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+ld+`
return result;
`,f9=cn({opSnippet:h9,packedOpSnippet:m9}),g9={kernelName:Vl,backendName:"webgl",kernelFunc:f9},b9=Ma+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,y9=Ye({opSnippet:b9}),x9={kernelName:Bl,backendName:"webgl",kernelFunc:y9},oc=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(m||(b="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,I=s%4,T=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${y}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${w}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${T}
}
int xC = xCCorner + ${w};
if (${I===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${I===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${T}
} else if (${I===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${T}
}
}
setOutput(${x});
}
`}},l1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let A=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${A} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",I=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(I="avgValue / count");let T=Math.floor(s/4)*4,C=s%4,E=`
if (${y}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${b});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${E}
}
int xC = xCCorner + ${T};
if (${C===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${C===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${C===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${E}
}
}
setOutput(${I});
}
}
`}};function v9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Yu(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return aa({inputs:{x:r},backend:n});let d=new oc(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var w9={kernelName:bi,backendName:"webgl",kernelFunc:v9};function k9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new l1(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var I9={kernelName:dc,backendName:"webgl",kernelFunc:k9},S9=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${p});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},T9=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function N9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new T9(c);return n.runWebGLProgram(h,[r],i.dtype)}var C9={kernelName:cm,backendName:"webgl",kernelFunc:N9};function _9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Yu([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=new S9(p);return n.runWebGLProgram(d,[r],i.dtype)}var E9={kernelName:pm,backendName:"webgl",kernelFunc:_9};function A9(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return nm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var $9={kernelName:yi,backendName:"webgl",kernelFunc:A9},F9=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},D9=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},R9=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;v.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=H().getBool("WEBGL_PACK_NORMALIZATION")?new D9(a.shape,r.shape,s.shape,p,d,l):new F9(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},M9={kernelName:Fi,backendName:"webgl",kernelFunc:R9},P9=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=O9(this.rank),a,r=e.map((s,i)=>`sourceLoc.${yx[i]} = start[${i}] + coords.${yx[i]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${a}
setOutput(getSource(${n}));
}
`}},yx=["x","y","z","w","u","v"];function O9(e){if(e===1)return"sourceLoc";if(e<=6)return yx.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var L9=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),n=kn("coords",this.rank),a=kn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}};function z9(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=jt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function np(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=jt.parseSliceParams(r,s,i);if(jt.assertParamsValid(r,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=A7(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=jt.isSliceContinous(r.shape,o,l);if(u||!p){let d=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new L9(l):new P9(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),z9(r,o,l,n)}var W9={kernelName:Su,backendName:"webgl",kernelFunc:np},B9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,x)=>y*x),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=[],m=de({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Sn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=de({inputs:{x:f},backend:n,attrs:{shape:p}}),b=np({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},V9={kernelName:Ul,backendName:"webgl",kernelFunc:B9};function U9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=aE(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var G9={kernelName:dm,backendName:"webgl",kernelFunc:U9};function H9(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var j9={kernelName:hm,backendName:"webgl",kernelFunc:H9},q9="return float(a != b);",yE=cn({opSnippet:q9,cpuKernelImpl:w7,dtype:"bool"}),K9={kernelName:hu,backendName:"webgl",kernelFunc:yE};function pd(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return aa({inputs:{x:r.complexTensorInfos.real},backend:n})}var X9={kernelName:Pm,backendName:"webgl",kernelFunc:pd},Y9="return float(int(x));";function Z9(e,t){let n=new Cr(e.shape,Y9),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function xx(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return aa({inputs:{x:r},backend:n});let i=It(r.shape),o=xx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=_s({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=pd({inputs:{input:r},backend:n}),o=xx({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=aa({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(n.shouldExecuteOnCPU([r])){let i=n.texData.get(r.dataId).values,[o,l,u]=t7(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}if(s==="int32")return Z9(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=yE({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var J9={kernelName:xi,backendName:"webgl",kernelFunc:xx},SI="return ceil(x);",Q9=Ye({opSnippet:SI,packedOpSnippet:SI,cpuKernelImpl:n7}),eQ={kernelName:vi,backendName:"webgl",kernelFunc:Q9},tQ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},nQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function aQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;H().getBool("WEBGL_PACK_CLIP")?o=new nQ(r.shape):o=new tQ(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var rQ={kernelName:bs,backendName:"webgl",kernelFunc:aQ},sQ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function TI(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function iQ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new sQ(a.shape),i=[TI(a,r.complexTensorInfos.real),TI(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var oQ={kernelName:hc,backendName:"webgl",kernelFunc:iQ},lQ=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},uQ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=gt(a),s=kn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${p}), vec2(${u.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${bh(i,l,f)}),
vec2(${bh(u,l,f)}));
}`}let c=o.length,h=o[o.length-1];d+=`
return getChannel(
getT${c}(${bh(i,l,h)}),
vec2(${bh(u,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function bh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Jf(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return aa({inputs:{x:r.complexTensorInfos.imag},backend:n})}var pQ={kernelName:Nm,backendName:"webgl",kernelFunc:Jf};function Vp(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(g=>pd({inputs:{input:g},backend:n})),c=e.map(g=>Jf({inputs:{input:g},backend:n})),h=Vp(d,t,n),m=Vp(c,t,n),f=_s({inputs:{real:h,imag:m},backend:n});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(y=>{let x=v.sizeFromShape(y.shape.slice(t));return de({inputs:{x:y},backend:n,attrs:{shape:[-1,x]}})}),c=d.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),h=N.computeOutShape(d.map(y=>y.shape),1),m=d[0].shape[0]===1,f=a7(c,h,a,m),g=N.computeOutShape(e.map(y=>y.shape),t),b=n.makeTensorInfo(g,a,f);return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}let s=H().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>s){let d=[];for(let h=0;h<e.length;h+=s){let m=e.slice(h,h+s);d.push(Vp(m,t,n))}let c=Vp(d,t,n);for(let h of d)n.disposeIntermediateTensorInfo(h);return c}if(H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new uQ(e.map(c=>c.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:i,outShape:o}=cQ(e,t,n),l=new lQ(i.map(d=>d.shape)),u=n.runWebGLProgram(l,i,a);i.forEach(d=>n.disposeIntermediateTensorInfo(d));let p=de({inputs:{x:u},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(u),p}function cQ(e,t,n){let a=N.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>de({inputs:{x:r},attrs:{shape:[-1,v.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function xE(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?aa({inputs:{x:l[0]},backend:n}):Vp(l,s,n)}var dQ={kernelName:Gl,backendName:"webgl",kernelFunc:xE},vE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,b=f?2:3,y=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,w="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${y}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${I}
${w}
setOutput(result);
}
`}},hQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},wE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=En(this.outputShape.length);let s=e.padInfo.left,i=e.strideWidth,o=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,p=u,d=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let f=0;f<u;f++)d+=`
vec4 xTexelC${f*2};
int xTexelC${f*2}Ready;
vec4 xTexelC${f*2+1};
int xTexelC${f*2+1}Ready;
vec4 xC${f};`;d+=`
for (int r = 0; r < ${l}; r++) {
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
`;for(let f=0;f<u;f++)d+=`
xTexelC${f*2} = vec4(0.0);
xTexelC${f*2}Ready = 0;
xTexelC${f*2+1} = vec4(0.0);
xTexelC${f*2+1}Ready = 0;
xC${f} = vec4(0.0);`;d+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let f=0;f<(p+1)/2;f++){let g=f*2;if(d+=`
xC = xCCorner + ${g*o};
`,i===1){if(g<u&&(s%2===1?(d+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
`,o===1&&g>0?d+=`
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
`:d+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
} else {
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
}
`):d+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xC${g} = xTexelC${g};
`,g+1<u)){let b=s%2===0?v.nearestLargerEven(o):o;o%2===0&&s%2===1||o%2!==0&&s%2!==1?(d+=`
xCOffset = xC + imod(pads[1], 2) + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
`,o>1?d+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
} else {
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
}
`:d+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
`):b===1?d+=`
xC${g+1} = xTexelC${g};
`:d+=`
xCOffset = xC + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g+1} = xTexelC${g+1};
`}}else g<u&&(s%2===1?(d+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`,g+1<u&&(d+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
`)):(d+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(
xTexelC${g}.xy, xTexelC${g+1}.xy);
`,g+1<u&&(d+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`)));g<u&&(d+=`
wTexel = getW(r, ${g}, d1, d2);
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,g+1<u&&(d+=`
wTexel = getW(r, ${g+1}, d1, d2);
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}d+=`
}
`,d+=`
}
`,d+=`
}
`;let c="",h="";n&&(a?c=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?c=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:c=`vec4 activation(vec4 x) {
${n}
}`,h="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${c}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${d}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${h}
setOutput(result);
}
`}},mQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length);let{dataFormat:n}=t,a=_n(),r=n==="channelsLast",s=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.z + ${p};
pos = rc.y + ${u};
${o}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${s}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+p}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+p}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${a.output} = result;
}
`}};function am(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function kE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,b=[];if(s!=null){let y=am(s.shape,h);y!=null&&(s=de({inputs:{x:s},backend:a,attrs:{shape:y}}),b.push(s))}if(r!=null){let y=am(r.shape,h);y!=null&&(r=de({inputs:{x:r},backend:a,attrs:{shape:y}}),b.push(r))}if(!((d===1||c===1)&&p>mE)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let y=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,y,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(sc(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let I=de({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(I);let T=nm({a:x,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);v.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,C.shape=n.outShape,g=aa({inputs:{x:T},backend:a}),g.shape=n.outShape,b.push(T)}else{let y=n.outHeight*n.outWidth,x=de({inputs:{x:e},backend:a,attrs:{shape:h?[n.batchSize,y,n.inChannels]:[n.batchSize,n.inChannels,y]}}),w=de({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=nm({a:h?x:w,b:h?w:x,transposeA:!h,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=de({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),b.push(x),b.push(w),b.push(I)}for(let y of b)a.disposeIntermediateTensorInfo(y);return g}function IE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,b=[n.batchSize,f,g],y=!0,x=!1,w=[];if(s!=null){let K=am(s.shape,m);K!=null&&(s=de({inputs:{x:s},backend:a,attrs:{shape:K}}),w.push(s))}if(r!=null){let K=am(r.shape,m);K!=null&&(r=de({inputs:{x:r},backend:a,attrs:{shape:K}}),w.push(r))}let I=de({inputs:{x:t},backend:a,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});w.push(I);let T=new mQ(b,n),C=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=a.runWebGLProgram(T,[e],"float32",C),A=de({inputs:{x:E},backend:a,attrs:{shape:b}});w.push(E),w.push(A);let R=r!=null,F=s!=null,S=o==="leakyrelu",M=o?ic(o,!0):null,B=new hE(m?A.shape:I.shape,m?I.shape:A.shape,m?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],y,x,R,M,F,S),U=m?[A,I]:[I,A];if(r&&U.push(r),F&&U.push(s),S){let K=a.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));U.push(K),w.push(K)}let G=a.runWebGLProgram(B,U,"float32"),q=de({inputs:{x:G},backend:a,attrs:{shape:n.outShape}});w.push(G);for(let K of w)a.disposeIntermediateTensorInfo(K);return q}function fQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=kE({x:r,filter:s,convInfo:c,backend:n});else if(c.strideWidth<=2&&d==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let f=new wE(c),g=[[c.padInfo.top,c.padInfo.left],[c.strideHeight,c.strideWidth],[c.dilationHeight,c.dilationWidth],[c.inHeight,c.inWidth]];h=n.runWebGLProgram(f,[r,s],"float32",g)}else if(H().getBool("WEBGL_CONV_IM2COL"))h=IE({x:r,filter:s,convInfo:c,backend:n});else{let f=new vE(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=de({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var gQ={kernelName:wi,backendName:"webgl",kernelFunc:fQ},bQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},yQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},xQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},vQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function wQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new bQ(c);return n.runWebGLProgram(h,[r,s],"float32")}var kQ={kernelName:fm,backendName:"webgl",kernelFunc:wQ};function IQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(u),c=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d),h=new yQ(c);return n.runWebGLProgram(h,[r,s],"float32")}var SQ={kernelName:ki,backendName:"webgl",kernelFunc:IQ};function TQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new hQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var NQ={kernelName:mc,backendName:"webgl",kernelFunc:TQ};function CQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=N.computeConv3DInfo(r.shape,l,i,1,o),p=new xQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var _Q={kernelName:gm,backendName:"webgl",kernelFunc:CQ};function EQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=N.computeConv3DInfo(l,s.shape,o,1,i),p=new vQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var AQ={kernelName:bm,backendName:"webgl",kernelFunc:EQ},$Q=tp+`
return cos(x);
`,FQ=Ye({opSnippet:$Q}),DQ={kernelName:Ii,backendName:"webgl",kernelFunc:FQ},RQ=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,MQ=Ye({opSnippet:RQ}),PQ={kernelName:Si,backendName:"webgl",kernelFunc:MQ},OQ=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,w]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${y});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${w};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${c} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},LQ=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new OQ(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},zQ={kernelName:jl,backendName:"webgl",kernelFunc:LQ},lc;(function(e){e.Prod="*",e.Sum="+"})(lc||(lc={}));var NI=class{constructor(e,t,n,a){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===lc.Prod?"1.0":"0.0",i=n?s:`getX(${CI(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${gt(r)} coords = getOutputCoords();
int end = ${_I(r,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${_I(r,"coords",this.op)} = idx;
val ${this.op}= getX(${CI(r,"coords",this.op)});
}
setOutput(val);
}
`}};function CI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function _I(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function SE(e,t,n,a,r,s){let i=t.shape.length,o=N.getAxesPermutation([a],i),l=t;o!=null&&(l=Sn({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=N.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=aa({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new NI(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new NI(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=N.getUndoAxesPermutation(o),h=Sn({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function WQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return SE(lc.Prod,r,n,s,i,o)}var BQ={kernelName:Hl,backendName:"webgl",kernelFunc:WQ};function VQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return SE(lc.Sum,r,n,s,i,o)}var UQ={kernelName:Ti,backendName:"webgl",kernelFunc:VQ};function GQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=aE(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=e7(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var HQ={kernelName:ym,backendName:"webgl",kernelFunc:GQ},jQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function qQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new jQ(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var KQ={kernelName:ql,backendName:"webgl",kernelFunc:qQ},TE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=En(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${o};
int q = d2 - d1 * ${o};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${s}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${u}
setOutput(result);
}
`}},NE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=En(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;c+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<p;g++)c+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;c+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let b=g*2;if(c+=`
xC = xCCorner + ${b*l};
`,o===1){if(b<p&&(i%2===1?(c+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
`,l===1&&b>0?c+=`
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
`:c+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
} else {
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
}
`):c+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xC${b} = xTexelC${b};
`,b+1<p)){let y=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
xCOffset = xC + imod(pads[1], 2) + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
`,l>1?c+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);
} else {
xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);
}
`:c+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
`):y===1?c+=`
xC${b+1} = xTexelC${b};
`:c+=`
xCOffset = xC + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b+1} = xTexelC${b+1};
`}}else b<p&&(i%2===1?(c+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`,b+1<p&&(c+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
`)):(c+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(
xTexelC${b}.xy, xTexelC${b+1}.xy);
`,b+1<p&&(c+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`)));b<p&&(c+=`
wTexel = getW(r, ${b}, d1, q);
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
`,b+1<p&&(c+=`
wTexel = getW(r, ${b+1}, d1, q);
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
`))}c+=`
}
`,c+=`
}
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${c}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${m}
setOutput(result);
}
`}};function XQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=N.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;H().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new NE(d):c=new TE(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var YQ={kernelName:Ni,backendName:"webgl",kernelFunc:XQ},ZQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},JQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function QQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new ZQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var eee={kernelName:xm,backendName:"webgl",kernelFunc:QQ};function tee(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new JQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var nee={kernelName:vm,backendName:"webgl",kernelFunc:tee},aee=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function ree(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=v.sizeFromShape(a.shape),i=de({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new aee(s),l=n.runWebGLProgram(o,[i],i.dtype),u=de({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var see={kernelName:wm,backendName:"webgl",kernelFunc:ree},iee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${p}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function oee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new iee(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=de({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var lee={kernelName:fc,backendName:"webgl",kernelFunc:oee};function uee(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(b)?x=s[g]:(x=Sn({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=de({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=o1({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=Zf({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var pee={kernelName:km,backendName:"webgl",kernelFunc:uee},cee="return (x >= 0.0) ? x : (exp(x) - 1.0);",dee=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,hee=Ye({opSnippet:cee,packedOpSnippet:dee}),mee={kernelName:_i,backendName:"webgl",kernelFunc:hee},fee="return (b >= 1.0) ? a : a * (b + 1.0);",gee=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,bee=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ud(gee,a.shape,r.shape):new $l(fee,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},yee={kernelName:Im,backendName:"webgl",kernelFunc:bee},xee=`
return vec4(equal(a, b));
`,vee="return float(a == b);",wee=cn({opSnippet:vee,packedOpSnippet:xee,dtype:"bool",cpuKernelImpl:r7}),kee={kernelName:Xl,backendName:"webgl",kernelFunc:wee},Iee=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${N.ERF_P};
float a1 = ${N.ERF_A1};
float a2 = ${N.ERF_A2};
float a3 = ${N.ERF_A3};
float a4 = ${N.ERF_A4};
float a5 = ${N.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,See=Ye({opSnippet:Iee}),Tee={kernelName:Kl,backendName:"webgl",kernelFunc:See},Nee=tp+`
return exp(x);
`,Cee=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,CE=Ye({opSnippet:Nee,packedOpSnippet:Cee,cpuKernelImpl:s7,dtype:"float32"}),_ee={kernelName:Ei,backendName:"webgl",kernelFunc:CE};function vx(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),de({inputs:{x:s},backend:a,attrs:{shape:o}})}var Eee={kernelName:Yl,backendName:"webgl",kernelFunc:vx},EI="return exp(x) - 1.0;",Aee=Ye({opSnippet:EI,packedOpSnippet:EI,cpuKernelImpl:i7}),$ee={kernelName:Zl,backendName:"webgl",kernelFunc:Aee},AI=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function _E(e,t,n){let a=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=de({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new AI("real",l,t),p=new AI("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=_s({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=de({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function Fee(e){let{inputs:t,backend:n}=e,{input:a}=t;return _E(a,!1,n)}var Dee={kernelName:Sm,backendName:"webgl",kernelFunc:Fee},Ree=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function cd(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new Ree(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var Mee={kernelName:gc,backendName:"webgl",kernelFunc:cd},Pee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},Oee={kernelName:Jl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new Pee(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},$I="return floor(x);",Lee=Ye({opSnippet:$I,packedOpSnippet:$I,cpuKernelImpl:o7}),zee={kernelName:Ai,backendName:"webgl",kernelFunc:Lee},Wee=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Bee=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Vee=cn({opSnippet:Wee,packedOpSnippet:Bee,dtype:"int32"}),Uee={kernelName:$i,backendName:"webgl",kernelFunc:Vee},Gee=class{constructor(e){this.variableNames=["A"];let t=_n(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},Hee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=_n(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},jee={kernelName:Fh,backendName:"webgl",kernelFunc:qee},sl,Ty=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function qee(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];if(o||i){let f=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(sl==null||f!==Ty)&&(Ty=f,sl=document.createElement("canvas").getContext("2d",{willReadFrequently:Ty})),sl.canvas.width=l,sl.canvas.height=u,sl.drawImage(r,0,0,l,u),r=sl.canvas}let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=ca.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=H().getBool("WEBGL_PACK")?new Hee(d):new Gee(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function Kee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=N.convertConv2DDataFormat(p),g=N.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),b,y=[],x=i!=null,w=o!=null,I=h==="leakyrelu",T=()=>{let E=[r,s],A=(R,F)=>{if(F==="NCHW"&&R.shape.length===1&&R.shape[0]!==1){let S=de({inputs:{x:R},backend:n,attrs:{shape:[R.shape[0],1,1]}});return y.push(S),S}return R};if(x&&E.push(A(i,p)),w&&E.push(A(o,p)),I){let R=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));E.push(R),y.push(R)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=kE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(g.strideWidth<=2&&f==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let E=h?ic(h,!0):null,A=new wE(g,x,E,w,I),R=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=T();b=n.runWebGLProgram(A,F,"float32",R)}else if(H().getBool("WEBGL_CONV_IM2COL"))b=IE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let E=h?ic(h,!1):null,A=new vE(g,x,E,w,I),R=T();b=n.runWebGLProgram(A,R,"float32")}let C=de({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var Xee={kernelName:ei,backendName:"webgl",kernelFunc:Kee};function Yee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=N.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),b=H().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=c?ic(c,b):null,x=[r,s],w=i!=null,I=o!=null,T=c==="leakyrelu";if(w&&x.push(i),I&&x.push(o),T){let R=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(R),m.push(R)}let C;b?C=new NE(g,w,y,I,T):C=new TE(g,w,y,I,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],A=n.runWebGLProgram(C,x,"float32",E);return m.forEach(R=>n.disposeIntermediateTensorInfo(R)),A}var Zee={kernelName:ti,backendName:"webgl",kernelFunc:Yee},Jee=class{constructor(e,t,n,a){this.sliceDim=e,this.strides=t,this.paramsShape=a,this.variableNames=["x","indices"],this.outputShape=n;let r=gt(n.length),s=`
int index;`;for(let i=0;i<this.sliceDim;i++)s+=`
index = round(getIndices(coords[0], ${i}));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[i]};
flattenIndex += index * ${this.strides[i]};`;this.userCode=`
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
${s}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function Qee(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(a.shape),[l,u,p,d]=N.prepareAndValidate(a,r),c=de({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=de({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let b=n.readSync(r.dataId),y=n.bufferSync(a),x=l7(b,y,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new Jee(i,d,[u,p],a.shape),f=n.runWebGLProgram(m,[h,c],h.dtype),g=de({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var ete={kernelName:eu,backendName:"webgl",kernelFunc:Qee},tte=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=gt(this.rank),a=nte(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${a}));
}
`}};function nte(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function EE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0];if(H().get("DEBUG")){let y=n.readSync(s.dataId),x=r.shape[l];for(let w=0;w<y.length;++w){let I=y[w];v.assert(I<=x-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${x-1}]`)}}let u=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),d=[],c=de({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=de({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=n.bufferSync(h),x=n.bufferSync(c),w=u7(x,y,m);return d.forEach(I=>n.disposeIntermediateTensorInfo(I)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new tte(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let b=de({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var ate={kernelName:Ql,backendName:"webgl",kernelFunc:EE},rte="return float(a > b);",ste=`
return vec4(greaterThan(a, b));
`,ite=cn({opSnippet:rte,packedOpSnippet:ste,cpuKernelImpl:p7,dtype:"bool"}),ote={kernelName:tu,backendName:"webgl",kernelFunc:ite},lte="return float(a >= b);",ute=`
return vec4(greaterThanEqual(a, b));
`,pte=cn({opSnippet:lte,packedOpSnippet:ute,dtype:"bool",cpuKernelImpl:c7}),cte={kernelName:Di,backendName:"webgl",kernelFunc:pte};function dte(e){let{inputs:t,backend:n}=e,{input:a}=t;return _E(a,!0,n)}var hte={kernelName:Tm,backendName:"webgl",kernelFunc:dte},mte="return float(!isnan(x) && !isinf(x));",fte=Ye({opSnippet:mte,dtype:"bool"}),gte={kernelName:nu,backendName:"webgl",kernelFunc:fte},bte="return float(isinf(x));",yte=Ye({opSnippet:bte,dtype:"bool"}),xte={kernelName:au,backendName:"webgl",kernelFunc:yte},vte="return float(isnan(x));",wte=Ye({opSnippet:vte,dtype:"bool"}),kte={kernelName:ru,backendName:"webgl",kernelFunc:wte},Ite="return float(a < b);",Ste=`
return vec4(lessThan(a, b));
`,Tte=cn({opSnippet:Ite,packedOpSnippet:Ste,cpuKernelImpl:d7,dtype:"bool"}),Nte={kernelName:su,backendName:"webgl",kernelFunc:Tte},Cte="return float(a <= b);",_te=`
return vec4(lessThanEqual(a, b));
`,Ete=cn({opSnippet:Cte,packedOpSnippet:_te,cpuKernelImpl:h7,dtype:"bool"}),Ate={kernelName:iu,backendName:"webgl",kernelFunc:Ete};function $te(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=m7(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var Fte={kernelName:Cm,backendName:"webgl",kernelFunc:$te},Dte=tp+`
return x < 0.0 ? 0./0. : log(x);
`,Rte=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,Mte=Ye({opSnippet:Dte,packedOpSnippet:Rte,cpuKernelImpl:f7}),Pte={kernelName:Pi,backendName:"webgl",kernelFunc:Mte},Ote=tp+`
return log(1.0 + x);
`,Lte=Ye({opSnippet:Ote}),zte={kernelName:ou,backendName:"webgl",kernelFunc:Lte},Wte="return float(a >= 1.0 && b >= 1.0);",Bte=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Vte=cn({opSnippet:Wte,packedOpSnippet:Bte,dtype:"bool"}),Ute={kernelName:lu,backendName:"webgl",kernelFunc:Vte},Gte="return float(!(x >= 1.0));",Hte=Ye({opSnippet:Gte}),jte={kernelName:uu,backendName:"webgl",kernelFunc:Hte},qte="return float(a >= 1.0 || b >= 1.0);",Kte=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Xte=cn({opSnippet:qte,packedOpSnippet:Kte,dtype:"bool"}),Yte={kernelName:pu,backendName:"webgl",kernelFunc:Xte},Zte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},Jte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},Qte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=H().getBool("WEBGL_PACK_NORMALIZATION")?new Jte(r.shape,s,i,o,l):new Zte(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},ene={kernelName:bc,backendName:"webgl",kernelFunc:Qte},tne=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},nne=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new tne(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},ane={kernelName:_m,backendName:"webgl",kernelFunc:nne};function rne(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=de({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Io(i,e.dtype,"max",a),l=de({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function AE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let y=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let w=s1(y,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let I=n.texData.get(h.dataId);I.values=w}else h=Yf(r,p,n);u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("max",u,o);let[m,f]=N.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=N.expandShapeToKeepDim(m,l));let b;if(c){let y=n.texData.get(h.dataId).values,x=g7(y,v.sizeFromShape(f),g,r.dtype);b=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(b.dataId);w.values=x}else b=rne(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),b}var sne={kernelName:Oi,backendName:"webgl",kernelFunc:AE},ine=i1+`
return max(a, b);
`,one=`
vec4 result = vec4(max(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+ld+`
return result;
`,lne=cn({opSnippet:ine,packedOpSnippet:one,cpuKernelImpl:b7}),une={kernelName:Li,backendName:"webgl",kernelFunc:lne};function pne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Yu(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return aa({inputs:{x:r},backend:n});let d=new oc(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var cne={kernelName:zi,backendName:"webgl",kernelFunc:pne};function dne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new l1(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var hne={kernelName:yc,backendName:"webgl",kernelFunc:dne},mne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},fne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${d}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function gne(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new l1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new fne(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var bne={kernelName:Am,backendName:"webgl",kernelFunc:gne};function yne(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Yu([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new oc(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new mne(c),b=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),b}var xne={kernelName:Em,backendName:"webgl",kernelFunc:yne};function vne(e,t,n,a){let r=new oc(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new oc(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var wne={kernelName:$m,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=N.computePool2DInfo(a.shape,r,s,u,i),[d,c]=vne(a,o,p,l);return[d,c]}};function kne(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=de({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Io(i,"float32","mean",a),l=de({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var Ine={kernelName:Wi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let C=0;C<w.length;C++)w[C]=a.shape[p[C]];let I=s1(x,a.shape,a.dtype,p,w);m=i.makeTensorInfo(w,a.dtype);let T=i.texData.get(m.dataId);T.values=I}else m=Yf(a,p,i);h.push(m),u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=N.computeOutAndReduceShapes(m.shape,u),b=f;r&&(b=N.expandShapeToKeepDim(f,l));let y=kne(m,g,b,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return y}};function Sne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=de({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Io(f,f.dtype,"min",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=de({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=de({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var Tne={kernelName:Bi,backendName:"webgl",kernelFunc:Sne},Nne=i1+`
return min(a, b);
`,Cne=`
vec4 result = vec4(min(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+ld+`
return result;
`,_ne=cn({opSnippet:Nne,packedOpSnippet:Cne,cpuKernelImpl:y7}),Ene={kernelName:Vi,backendName:"webgl",kernelFunc:_ne},Ane=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=gt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},$ne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=gt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=kn("rc",a),l=kn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${c}
setOutput(result);
}
`}},Fne=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $ne(a.shape,r,s):new Ane(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},Dne={kernelName:Ui,backendName:"webgl",kernelFunc:Fne},Rne=`if (b == 0.0) return NAN;
return mod(a, b);`,Mne=`
vec4 result = mod(a, b);
bvec4 isNaN = equal(b, vec4(0.0));
`+ld+`
return result;
`,Pne=cn({opSnippet:Rne,packedOpSnippet:Mne}),One={kernelName:cu,backendName:"webgl",kernelFunc:Pne},Lne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},zne=`
if (a == b) {
return 1.0;
};
return a / b;`,Wne=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,$E=cn({opSnippet:zne,packedOpSnippet:Wne,checkOutOfBounds:!0}),Bne={kernelName:Ci,backendName:"webgl",kernelFunc:$E},FI="return a - b;",FE=cn({opSnippet:FI,packedOpSnippet:FI,supportsComplex:!0,cpuKernelImpl:L7}),Vne={kernelName:uo,backendName:"webgl",kernelFunc:FE};function DE(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=v.parseAxisParam([s],r.shape),o=AE({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=de({inputs:{x:o},backend:n,attrs:{shape:l}}),p=FE({inputs:{a:r,b:u},backend:n}),d=CE({inputs:{x:p},backend:n}),c=Zf({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=de({inputs:{x:c},backend:n,attrs:{shape:l}}),m=$E({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var Une={kernelName:oo,backendName:"webgl",kernelFunc:DE};function Gne(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:DE({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new Lne(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var Hne={kernelName:Fm,backendName:"webgl",kernelFunc:Gne},jne=Ma+`
return -x;
`,qne=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Kne(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=v7(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new qs(a.shape,qne):r=new Cr(a.shape,jne),n.runWebGLProgram(r,[a],a.dtype)}var Xne={kernelName:du,backendName:"webgl",kernelFunc:Kne},Yne=hr.nonMaxSuppressionV3Impl;function Zne(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=Yne(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Jne={kernelName:mu,backendName:"webgl",kernelFunc:Zne},Qne=hr.nonMaxSuppressionV4Impl;function eae(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=Qne(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var tae={kernelName:fu,backendName:"webgl",kernelFunc:eae},nae=hr.nonMaxSuppressionV5Impl;function aae(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=nae(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var rae={kernelName:gu,backendName:"webgl",kernelFunc:aae},sae=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},iae=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=v.sizeFromShape(r.shape),p=new sae(u,i,o,l),d=de({inputs:{x:r},backend:n,attrs:{shape:[u]}}),c=n.runWebGLProgram(p,[d],s);n.disposeIntermediateTensorInfo(d);let h=[...r.shape,i],m=de({inputs:{x:c},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(c),m},oae={kernelName:Hi,backendName:"webgl",kernelFunc:iae};function rm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=pd({inputs:{input:a},backend:n}),s=rm({inputs:{x:r},backend:n}),i=Jf({inputs:{input:a},backend:n}),o=rm({inputs:{x:i},backend:n}),l=_s({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return cd({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var lae={kernelName:Mu,backendName:"webgl",kernelFunc:rm};function RE(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=pd({inputs:{input:a},backend:n}),s=RE({inputs:{x:r},backend:n}),i=Jf({inputs:{input:a},backend:n}),o=rm({inputs:{x:i},backend:n}),l=_s({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return cd({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var uae={kernelName:bu,backendName:"webgl",kernelFunc:RE};function pae(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return vx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=vx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=xE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var cae={kernelName:yu,backendName:"webgl",kernelFunc:pae},dae=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=gt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},hae=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=gt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=kn("rc",a),l=kn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${u}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${d[m]}
if (${c}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${p});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},ME=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(v.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return cd({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new hae(r.shape,s,i):new dae(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},mae={kernelName:ji,backendName:"webgl",kernelFunc:ME},fae=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,gae=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
bvec4 isNaN1 = lessThan(a, vec4(0.0));
bvec4 isNaN2 = lessThan(floor(b), b);
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
`+ld+`
return result;
`,bae=cn({opSnippet:fae,packedOpSnippet:gae}),yae={kernelName:qi,backendName:"webgl",kernelFunc:bae};function xae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=v.parseAxisParam(s,r.shape),p=u,d=N.getAxesPermutation(p,o),c=r;d!=null&&(c=Sn({inputs:{x:r},backend:n,attrs:{perm:d}}),p=N.getInnerMostAxes(p.length,o),l.push(c)),N.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:b}=k7(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,b,f)}else{let[m,f]=N.computeOutAndReduceShapes(c.shape,p),g=v.sizeFromShape(f),b=de({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),y=Um(r.dtype),x=Io(b,y,"prod",n);h=de({inputs:{x},backend:n,attrs:{shape:m}}),l.push(b),l.push(x)}if(i){l.push(h);let m=N.expandShapeToKeepDim(h.shape,u);h=de({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var vae={kernelName:Xi,backendName:"webgl",kernelFunc:xae};function wae(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(b=>n.readSync(b.dataId)),u=r.map(b=>b.shape),p=n.readSync(s.dataId),d=n.readSync(i.dataId),[c,h,m]=I7(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(b=>n.makeTensorInfo([b.length],"int32",b)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var kae={kernelName:Dm,backendName:"webgl",kernelFunc:wae};function Iae(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=S7(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var Sae={kernelName:Rm,backendName:"webgl",kernelFunc:Iae};function Tae(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=n.readSync(i.dataId),c=o.map(g=>n.readSync(g.dataId)),h=o.map(g=>g.shape),[m,f]=T7(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var Nae={kernelName:Mm,backendName:"webgl",kernelFunc:Tae},PE=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=N7(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},Cae={kernelName:xc,backendName:"webgl",kernelFunc:PE},_ae="return 1.0 / x;",Eae=Ye({opSnippet:_ae}),Aae={kernelName:xu,backendName:"webgl",kernelFunc:Eae},$ae=Ma+`
return (x < 0.0) ? 0.0 : x;
`,Fae=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Dae=Ye({opSnippet:$ae,packedOpSnippet:Fae}),Rae={kernelName:Yi,backendName:"webgl",kernelFunc:Dae},Mae=Ma+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Pae=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Oae=Ye({opSnippet:Mae,packedOpSnippet:Pae}),Lae={kernelName:Qi,backendName:"webgl",kernelFunc:Oae},zae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Wae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Bae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Wae(r.shape,l,u,s,i):new zae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var Vae={kernelName:Ji,backendName:"webgl",kernelFunc:Bae},Uae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Gae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Uae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Hae={kernelName:Lm,backendName:"webgl",kernelFunc:Gae},jae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},qae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Kae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new qae(r.shape,l,u,s,i):new jae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var Xae={kernelName:Zi,backendName:"webgl",kernelFunc:Kae},Yae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Zae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Yae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Jae={kernelName:Om,backendName:"webgl",kernelFunc:Zae},Qae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=gt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},ere=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=kn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=gt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${u(a.slice())};
if(${r}) {
result.a = ${p(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((b,y)=>c(y,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function tre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return aa({inputs:{x:r},backend:n});let l=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ere(r.shape,o):new Qae(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var nre={kernelName:eo,backendName:"webgl",kernelFunc:tre},are=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},rre={kernelName:Pu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new are(a.shape,s),[u,p]=N.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},sre=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,ire=Ye({opSnippet:sre}),ore={kernelName:to,backendName:"webgl",kernelFunc:ire},lre="return inversesqrt(x);",ure=Ye({opSnippet:lre,cpuKernelImpl:C7}),pre={kernelName:no,backendName:"webgl",kernelFunc:ure},OE=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=gt(r.length),l=gt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let p=`getIndices(${u})`,d="";a===1?d="i":a===2&&(d="i, coords[1]");let c=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${c};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function cre(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=de({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=de({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new OE(l,o,h.shape.length,m.shape.length,p,c),b=n.runWebGLProgram(g,[m,h,f],m.dtype),y=de({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(f),y}var dre={kernelName:wu,backendName:"webgl",kernelFunc:cre},hre=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=H().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${o} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function mre(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new hre(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var fre={kernelName:zm,backendName:"webgl",kernelFunc:mre},gre=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=gt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function bre(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new gre(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],fa(r.dtype,s.dtype))}var yre={kernelName:ku,backendName:"webgl",kernelFunc:bre},xre=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${N.SELU_SCALEALPHA};
float scale = ${N.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,vre=Ye({opSnippet:xre}),wre={kernelName:Iu,backendName:"webgl",kernelFunc:vre},kre=tp+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,Ire=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Sre=Ye({opSnippet:kre,packedOpSnippet:Ire,cpuKernelImpl:E7}),Tre={kernelName:ro,backendName:"webgl",kernelFunc:Sre},Nre=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,Cre=Ye({opSnippet:Nre}),_re={kernelName:Nu,backendName:"webgl",kernelFunc:Cre},Ere=tp+`
return sin(x);
`,Are=Ye({opSnippet:Ere}),$re={kernelName:ao,backendName:"webgl",kernelFunc:Are},Fre=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,Dre=Ye({opSnippet:Fre}),Rre={kernelName:Tu,backendName:"webgl",kernelFunc:Dre},Mre=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,Pre=Ye({opSnippet:Mre}),Ore={kernelName:Cu,backendName:"webgl",kernelFunc:Pre},Lre=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,y)=>b*y),l=[[0,0]];l.push(...i);for(let b=1+s.length;b<r.shape.length;++b)l.push([0,0]);let u=[],p=ME({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(p.shape,s,o,!1),c=N.getPermuted(d.length,s.length,!1),h=N.getReshapedPermuted(p.shape,s,o,!1),m=de({inputs:{x:p},backend:n,attrs:{shape:d}}),f=Sn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=de({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},zre={kernelName:_u,backendName:"webgl",kernelFunc:Lre};function Wre(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=$7(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var Bre={kernelName:vc,backendName:"webgl",kernelFunc:Wre};function Vre(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=F7(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var Ure={kernelName:Au,backendName:"webgl",kernelFunc:Vre};function Gre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=sE(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var Hre={kernelName:wc,backendName:"webgl",kernelFunc:Gre};function jre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=sE(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var qre={kernelName:kc,backendName:"webgl",kernelFunc:jre};function Kre(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let b=n.bufferSync(r),y=n.bufferSync(s),x=v.decodeString(n.readSync(i.dataId)[0]),w=_7(b,y,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,w.dtype,w.values)}let m=new OE(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=de({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var Xre={kernelName:Wm,backendName:"webgl",kernelFunc:Kre};function Yre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=np({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var Zre={kernelName:Eu,backendName:"webgl",kernelFunc:Yre},DI="return sqrt(x);",Jre=Ye({opSnippet:DI,packedOpSnippet:DI,cpuKernelImpl:D7}),Qre={kernelName:so,backendName:"webgl",kernelFunc:Jre},ese="return x * x;",tse=Ye({opSnippet:ese}),nse={kernelName:Ic,backendName:"webgl",kernelFunc:tse},RI="return (a - b) * (a - b);",ase=cn({opSnippet:RI,packedOpSnippet:RI}),rse={kernelName:lo,backendName:"webgl",kernelFunc:ase};function sse({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ma+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Cr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var ise={kernelName:xs,backendName:"webgl",kernelFunc:sse},ose=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=gt(n.length),s=gt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function lse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=jt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=de({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=jt.computeOutShape(y,x,w),E=np({inputs:{x:r},backend:n,attrs:{begin:y,size:C}});I=de({inputs:{x:E},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),E=Oe(r.shape,r.dtype,C),A=R7(h,E,w,y);I=n.makeTensorInfo(m,r.dtype,A.values)}else{let C=new ose(y,w,h);I=n.runWebGLProgram(C,[r],r.dtype)}let T=de({inputs:{x:I},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(I),T}var use={kernelName:$u,backendName:"webgl",kernelFunc:lse};function pse(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=M7(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var cse={kernelName:Sc,backendName:"webgl",kernelFunc:pse};function dse(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=P7(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var hse={kernelName:Tc,backendName:"webgl",kernelFunc:dse};function mse(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=O7(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var fse={kernelName:Nc,backendName:"webgl",kernelFunc:mse},gse="return tan(x);",bse=Ye({opSnippet:gse}),yse={kernelName:po,backendName:"webgl",kernelFunc:bse},xse=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,vse=Ye({opSnippet:xse}),wse={kernelName:co,backendName:"webgl",kernelFunc:vse},kse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=gt(this.rank),r=Ise(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function Ise(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function LE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>v.decodeString(d)):o,u=Oe(r.shape,r.dtype,l),p=z7(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new kse(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var Sse={kernelName:ys,backendName:"webgl",kernelFunc:LE},Tse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},Nse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Ls(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function MI(e){let t=1;for(;t<e;)t*=2;return t}function Cse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=H().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=H().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let A=n.readSync(r.dataId),[R,F]=W7(A,u,r.dtype,s,i);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,cd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=v.sizeFromShape(u)/p,f=de({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Ls(n,h);let g=MI(s),b=MI(p),y=null,x=()=>y===null?[f,f]:[f,y],w=(A,R,F)=>{let S=x(),M=new Tse(F),B=[[p],[y===null?1:0],[Number.NEGATIVE_INFINITY],[A],[R]],U=y;y=n.runWebGLProgram(M,S,"int32",B),Ls(n,U)};for(let A=1;A<g;A*=2){let R=A*2;for(let F=A;F>=1;F/=2)w(R,F,[m,b])}for(let A=b;A>g;A/=2){let R=x(),F=new Nse([m,A/2]),S=[[p],[y===null?1:0],[g]],M=y;y=n.runWebGLProgram(F,R,"int32",S),Ls(n,M);let B=g/2,U=B*2;for(let G=B;G>=1;G/=2)w(U,G,y.shape)}let I=y;y=np({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,s]}}),Ls(n,I);let T=EE({inputs:{x:f,indices:y},backend:n,attrs:{axis:1,batchDims:1}});Ls(n,f);let C=u.slice(0,-1);C.push(s),I=y,y=de({inputs:{x:y},attrs:{shape:C},backend:n}),Ls(n,I);let E=T;return T=de({inputs:{x:T},attrs:{shape:C},backend:n}),Ls(n,E),[T,y]}var _se={kernelName:Fu,backendName:"webgl",kernelFunc:Cse},Ese=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function Ase(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Ese(d,c,i,o,l,g);return n.runWebGLProgram(b,[r,s],"float32")}var $se={kernelName:Du,backendName:"webgl",kernelFunc:Ase};function Fse(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Yu(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=B7(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var Dse={kernelName:Bm,backendName:"webgl",kernelFunc:Fse};function Rse(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=np({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),b=de({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=b,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Mse={kernelName:Ru,backendName:"webgl",kernelFunc:Rse},Pse=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
sumValue += dot(values, segFilter);
`,c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function Ose(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=N.getAxesPermutation([u],o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=N.getInnerMostAxes(1,o)[0]);let c=N.segment_util.computeOutShape(d.shape,u,i),h=v.sizeFromShape([d.shape[u]]),m=de({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Um(r.dtype),g=(w,I,T,C,E)=>{let A=w.shape[0],R=w.shape[1],F=N.segment_util.segOpComputeOptimalWindowSize(R,E),S={windowSize:F,inSize:R,batchSize:A,numSegments:E},M=new Pse(S,I),B=n.compileAndRun(M,[w,T],C);if(l.push(B),B.shape[1]===E)return B;let U=PE({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),G=LE({inputs:{x:U},backend:n,attrs:{reps:[R/F]}});return l.push(U),l.push(G),g(B,I,G,C,E)},b=g(m,"unsortedSegmentSum",s,f,i),y=de({inputs:{x:b},backend:n,attrs:{shape:c}}),x=y;if(p!=null){l.push(y);let w=N.getUndoAxesPermutation(p);x=Sn({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var Lse={kernelName:Cc,backendName:"webgl",kernelFunc:Ose},zse=[RJ,PJ,zJ,VJ,GJ,qJ,XJ,ZJ,t9,a9,i9,u9,d9,g9,x9,w9,I9,C9,E9,$9,M9,V9,G9,j9,J9,eQ,rQ,bJ,oQ,dQ,gQ,kQ,SQ,NQ,_Q,AQ,DQ,PQ,zQ,BQ,UQ,HQ,KQ,YQ,eee,nee,see,lee,pee,mee,yee,kee,Tee,_ee,Eee,$ee,Dee,Mee,Oee,zee,Uee,jee,Xee,Zee,ete,ate,ote,cte,gJ,hte,pQ,gte,xte,kte,xJ,Nte,Ate,Fte,Pte,zte,Ute,jte,Yte,ene,ane,sne,une,cne,hne,bne,xne,wne,Ine,Tne,Ene,Dne,One,Hne,kJ,Xne,Jne,tae,rae,K9,oae,uae,cae,mae,yae,wJ,vae,kae,Sae,Nae,Cae,X9,Bne,Aae,Rae,Lae,SJ,Vae,Hae,Xae,Jae,nre,rre,ore,pre,dre,fre,yre,wre,Tre,_re,$re,Rre,W9,Une,Ore,zre,Bre,Ure,Hre,qre,Xre,Zre,Qre,nse,rse,ise,use,cse,hse,fse,Vne,$J,yse,wse,Sse,_se,$se,FJ,Dse,Mse,Lse,lae];for(let e of zse)_c(e);var Et;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Et||(Et={}));var uc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(uc||(uc={}));var zE;function Wse(e){zE=e.wasm.cwrap(Qs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Bse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=n.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=uc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let b=l?r.shape[2]:r.shape[1],y=u?s.shape[1]:s.shape[2],x=Ou.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),w=n.makeOutput([...x,b,y],r.dtype),I=n.dataIdMap.get(w.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return zE(c,T,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,I),w}var Vse={kernelName:Qs,backendName:"wasm",setupFunc:Wse,kernelFunc:Bse};function an(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,Et[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var Use=an(Dl);function dn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=N.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(v.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),b=new Uint8Array(new Int32Array(p.shape).buffer),y=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,b,p.shape.length,Et[u.dtype],y),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Gse=!0,Hse=dn(gs,Gse),WE;function jse(e){WE=e.wasm.cwrap(fi,null,["array","number","number","number"])}function qse(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return WE(s,r.length,Et[a.dtype],i),a}var Kse={kernelName:fi,backendName:"wasm",setupFunc:jse,kernelFunc:qse};function Qf(e){let{inputs:{x:t},backend:n}=e;if(t.dtype==="string")return In(n.readSync(t.dataId),t.shape,t.dtype);let a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Xse={kernelName:Ri,backendName:"wasm",kernelFunc:Qf},BE;function Yse(e){BE=e.wasm.cwrap(_r,null,["number","array","number","number","number","array","number"])}function hs(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Jse(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Zse(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Qf({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return BE(p,h,l.shape.length,Et[l.dtype],d,c,s.length),u}function Zse(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Jse(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Qse={kernelName:_r,backendName:"wasm",kernelFunc:hs,setupFunc:Yse};function Es(e,t,n){let a=e.shape,r=e.shape.length,s=v.parseAxisParam(t,a),i=s,o=N.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=N.getInnerMostAxes(i.length,r),l=hs({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var VE;function eie(e){VE=e.wasm.cwrap(Pl,null,["number, number, number"])}function tie(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Es(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("all",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;VE(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var nie={kernelName:Pl,backendName:"wasm",setupFunc:eie,kernelFunc:tie},UE;function aie(e){UE=e.wasm.cwrap(Ol,null,["number, number, number"])}function rie(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Es(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("any",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;UE(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var sie={kernelName:Ol,backendName:"wasm",setupFunc:aie,kernelFunc:rie},GE;function iie(e){GE=e.wasm.cwrap(gi,null,["number","number","number","number","number"])}function oie(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:d}=Es(s,r,t);if(d){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(l=u,o=b)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=v.sizeFromShape(h.shape),g=l.shape[p[0]];return GE(o,Et[l.dtype],f,g,m),d&&t.disposeData(u.dataId),h}var lie={kernelName:gi,backendName:"wasm",kernelFunc:oie,setupFunc:iie},HE;function uie(e){HE=e.wasm.cwrap(bi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function pie(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.strideHeight,y=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let w=a.makeOutput(p.outShape,"float32"),I=a.dataIdMap.get(w.dataId).id;return HE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,I),w}var cie={kernelName:bi,backendName:"wasm",setupFunc:uie,kernelFunc:pie};function Wn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=v.sizeFromShape(a.shape),i=v.inferFromImplicitShape(r,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var die={kernelName:vu,backendName:"wasm",kernelFunc:Wn},jE;function hie(e){jE=e.wasm.cwrap(yi,null,["number","array","number","number","array","number","number","number","number"])}function mie(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=Ou.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=Wn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Wn({inputs:{x:s},backend:n,attrs:{shape:w}}),C=n.dataIdMap.get(I.dataId).id,E=n.dataIdMap.get(T.dataId).id,A=i?I.shape[2]:I.shape[1],R=o?T.shape[1]:T.shape[2],F=Math.max(g,b),S=n.makeOutput([F,A,R],I.dtype),M=n.dataIdMap.get(S.dataId).id,B=new Uint8Array(new Int32Array(I.shape).buffer),U=new Uint8Array(new Int32Array(T.shape).buffer);return jE(C,B,I.shape.length,E,U,T.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData(T.dataId),S.shape=y,S}var fie={kernelName:yi,backendName:"wasm",setupFunc:hie,kernelFunc:mie};function hi(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=jt.parseSliceParams(t,n,a),o=jt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=v.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=jt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+v.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=Jh(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)gie(l,p[0],c,s,i);else if(h===3)bie(l,p[0],p[1],c,s,i);else if(h===4)yie(l,p[0],p[1],p[2],c,s,i);else{let m=Jh(l,s,i,t.shape,t.dtype);c.set(m)}return u}function gie(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function bie(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function yie(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let b=p;b<h;b++){let y=f*t+g*n+b*a+m;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var xie={kernelName:Su,backendName:"wasm",kernelFunc:hi};function vie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((b,y)=>b*y),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=Wn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=hs({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=hi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var wie={kernelName:Ul,backendName:"wasm",kernelFunc:vie};function ap(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var kie={kernelName:xi,backendName:"wasm",kernelFunc:ap},Iie=an(vi),qE;function Sie(e){qE=e.wasm.cwrap(bs,null,["number","number","number","number"])}function Tie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return qE(o,s,i,u),l}var Nie={kernelName:bs,backendName:"wasm",setupFunc:Sie,kernelFunc:Tie};function KE(e){let{inputs:t,backend:n}=e,a=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);N.assertParamsConsistent(r,a);let s=N.computeOutShape(t.map(h=>h.shape),a),i=t.filter(h=>v.sizeFromShape(h.shape)>0);if(i.length===1)return Qf({inputs:{x:i[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(v.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(x=>{let w=v.sizeFromShape(x.shape.slice(a));return Wn({inputs:{x},backend:n,attrs:{shape:[-1,w]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=N.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=O0(m,s,t[0].dtype,f),b=N.computeOutShape(i.map(x=>x.shape),a);o.shape=b;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=N.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=v.sizeFromShape(i[0].shape.slice(0,a)),u=0,p=i.map(h=>{let m=v.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=i.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],b=h*g,y=d[f].subarray(b,b+g);c.set(y,m),m+=g}}return o}var Cie={kernelName:Gl,backendName:"wasm",kernelFunc:KE},XE;function _ie(e){XE=e.wasm.cwrap(wi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Eie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=N.convertConv2DDataFormat(c),m=N.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,b=m.padInfo.top,y=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,I=m.dilationHeight,T=m.dilationWidth,C=m.strideHeight,E=m.strideWidth,A=m.inChannels,R=m.outChannels,F=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),M=a.dataIdMap.get(S.dataId).id;return XE(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,b,y,x,w,F,I,T,C,E,A,R,M),S}var Aie={kernelName:wi,backendName:"wasm",setupFunc:_ie,kernelFunc:Eie},YE;function $ie(e){YE=e.wasm.cwrap(ki,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Fie(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=N.convertConv2DDataFormat(l),h=N.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:b,inHeight:y,inWidth:x,outChannels:w,outHeight:I,outWidth:T,strideHeight:C,strideWidth:E}=h,A=f-1-h.padInfo.top,R=g-1-h.padInfo.left,F=h.dataFormat==="channelsLast",S=v.computeStrides(h.inShape),M=v.computeStrides(r.shape),[B,U,G]=v.computeStrides(s.shape),q=S[0],K=F?S[1]:S[2],Z=F?S[2]:1,Q=F?1:S[1],ee=M[0],ae=F?M[1]:M[2],te=F?M[2]:1,le=F?1:M[1],ie=t.makeOutput(h.inShape,"float32"),be=t.dataIdMap.get(ie.dataId).id,ue=t.dataIdMap.get(r.dataId).id,xe=t.dataIdMap.get(s.dataId).id;return YE(ue,xe,m,f,g,y,x,b,I,T,w,C,E,A,R,B,U,G,q,K,Z,Q,ee,ae,te,le,be),ie}var Die={kernelName:ki,backendName:"wasm",setupFunc:$ie,kernelFunc:Fie},Rie=an(Ii),Mie=an(Si),wx;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(wx||(wx={}));var ZE;function Pie(e){ZE=e.wasm.cwrap(jl,null,["number","number","number","number","array","number","number","number","number","number"])}function Oie(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=ap({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,b=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,I=new Uint8Array(new Int32Array(o.shape).buffer);return ZE(g,b,y,p,I,d,c,wx[r],s,w),f!=null&&t.disposeData(f.dataId),x}var Lie={kernelName:jl,backendName:"wasm",setupFunc:Pie,kernelFunc:Oie},JE;function zie(e){JE=e.wasm.cwrap(Hl,null,["number","number","number","number","number","number"])}function Wie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=hs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;JE(m,i?1:0,o?1:0,h,f,Et[r.dtype]);let g=c;if(u!==null){let b=N.getUndoAxesPermutation(u);g=hs({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Bie={kernelName:Hl,backendName:"wasm",setupFunc:zie,kernelFunc:Wie},QE;function Vie(e){QE=e.wasm.cwrap(Ti,null,["number","number","number","number","number","number"])}function Uie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=hs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;QE(m,i?1:0,o?1:0,h,f,Et[r.dtype]);let g=c;if(u!==null){let b=N.getUndoAxesPermutation(u);g=hs({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Gie={kernelName:Ti,backendName:"wasm",setupFunc:Vie,kernelFunc:Uie},eA;function Hie(e){eA=e.wasm.cwrap(ql,null,["number","number","number","array","number","array","array","number","number"])}function jie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return eA(g,s,i==="NHWC"?1:0,b,r.shape.length-1,y,x,m.length,w),f}var qie={kernelName:ql,backendName:"wasm",setupFunc:Hie,kernelFunc:jie},tA;function Kie(e){tA=e.wasm.cwrap(Ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Xie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=N.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,I=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,E=h.inChannels,A=h.outChannels,R=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let F=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get(F.dataId).id;return tA(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,b,y,x,R,w,I,T,C,E,A,S),F}var Yie={kernelName:Ni,backendName:"wasm",setupFunc:Kie,kernelFunc:Xie},Zie=an(_i),Jie=!1,Qie=dn(Xl,Jie,"bool"),eoe=an(Ei,"float32");function kx(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Wn({inputs:{x:r},backend:a,attrs:{shape:o}})}var toe={kernelName:Yl,backendName:"wasm",kernelFunc:kx};function nA(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var noe={kernelName:gc,backendName:"wasm",kernelFunc:nA},aA;function aoe(e){aA=e.wasm.cwrap(Jl,null,["number","number","number","number","number","number"])}function roe(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return aA(s,o,l,u,p,i),r}var soe={kernelName:Jl,backendName:"wasm",kernelFunc:roe,setupFunc:aoe},ioe=an(Ai),ooe=!1,loe=dn($i,ooe),rA;function uoe(e){rA=e.wasm.cwrap(Fi,null,["number","number","number","number","number","number","number"])}function poe(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return rA(p,d,c,h,m,r,g),f}var coe={kernelName:Fi,backendName:"wasm",setupFunc:uoe,kernelFunc:poe},sA;function doe(e){sA=e.wasm.cwrap(ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hoe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=uc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,A=f.padInfo.bottom,R=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,G=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Q=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(Q.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return sA(b,q,K,Z,y,I,T,w,C,E,A,R,G,F,S,M,B,U,x,g,ae,m||0,ee),Q}var moe={kernelName:ei,backendName:"wasm",setupFunc:doe,kernelFunc:hoe},iA;function foe(e){iA=e.wasm.cwrap(ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function goe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=uc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,A=f.padInfo.bottom,R=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,G=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Q=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(Q.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return iA(b,q,K,Z,y,I,T,w,C,E,A,R,G,F,S,M,B,U,x,g,ae,m||0,ee),Q}var boe={kernelName:ti,backendName:"wasm",setupFunc:foe,kernelFunc:goe},oA;function yoe(e){oA=e.wasm.cwrap(eu,null,["number","number","number","number","number","number","array","number"])}function xoe(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Ux.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return oA(c,Et[a.dtype],h,i,d,o,m,f),u}var voe={kernelName:eu,backendName:"wasm",setupFunc:yoe,kernelFunc:xoe},lA;function woe(e){lA=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function koe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let E=u[C];v.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Wn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),m=Wn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let b=c.shape.length-1,y=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,w=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer);return lA(y,Et[r.dtype],I,b,x,d.batchSize,T,w),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var Ioe={kernelName:Ql,backendName:"wasm",setupFunc:woe,kernelFunc:koe},Soe=!1,Toe=dn(tu,Soe,"bool"),Noe=!1,Coe=dn(Di,Noe,"bool"),uA;function _oe(e){uA=e.wasm.cwrap(Mi,null,["number","number","number","number"])}function Eoe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;uA(r,Et[t.dtype],n,i)}return s}var Aoe={kernelName:Mi,backendName:"wasm",setupFunc:_oe,kernelFunc:Eoe},$oe=!1,Foe=dn(su,$oe,"bool"),Doe=!1,Roe=dn(iu,Doe,"bool"),Moe=an(Pi),Poe=!1,Ooe=dn(lu,Poe,"bool"),Loe=an(uu),zoe=!1,Woe=dn(pu,zoe,"bool"),Boe=!1,Voe=dn(tS,Boe,"bool"),pA;function Uoe(e){pA=e.wasm.cwrap(Oi,null,["number","number","number","number"])}function Goe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Es(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("max",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;pA(o,Et[i.dtype],g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var Hoe={kernelName:Oi,backendName:"wasm",setupFunc:Uoe,kernelFunc:Goe},joe=!1,qoe=dn(Li,joe),cA;function Koe(e){cA=e.wasm.cwrap(zi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Xoe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.dilationHeight,y=p.dilationWidth,x=p.strideHeight,w=p.strideWidth,I=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),E=a.dataIdMap.get(C.dataId).id;return cA(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,w,I,T,E),C}var Yoe={kernelName:zi,backendName:"wasm",setupFunc:Koe,kernelFunc:Xoe},dA;function Zoe(e){dA=e.wasm.cwrap(Wi,null,["number, number, number"])}function Joe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Es(i,r,t),m=d;if(h){let w=t.dataIdMap.get(p.dataId).id;w!==o&&(u=p,l=w,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=ap({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;dA(l,b,w)}if(h&&t.disposeData(p.dataId),s){let w=N.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var Qoe={kernelName:Wi,backendName:"wasm",setupFunc:Zoe,kernelFunc:Joe},hA;function ele(e){hA=e.wasm.cwrap(Bi,null,["number","number","number","number"])}function tle(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Es(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;N.assertAxesAreInnerMostDims("min",d,m);let[f,g]=N.computeOutAndReduceShapes(u.shape,d),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;hA(l,Et[i.dtype],b,x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var nle={kernelName:Bi,backendName:"wasm",setupFunc:ele,kernelFunc:tle},ale=!1,rle=dn(Vi,ale),Ix;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Ix||(Ix={}));var mA;function sle(e){mA=e.wasm.cwrap(Ui,null,["number","array","number","number","array","array","number","number"])}function ile(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return mA(i,u,t.shape.length,Et[t.dtype],c,h,Ix[r],l),o}var ole={kernelName:Ui,backendName:"wasm",kernelFunc:ile,setupFunc:sle},lle=!0,ule=dn(Gi,lle),ple=an(du);function u1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var fA;function cle(e){fA=e.wasm.cwrap(mu,"number",["number","number","number","number","number"])}function dle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=fA(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=u1(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var hle={kernelName:mu,backendName:"wasm",setupFunc:cle,kernelFunc:dle},gA;function mle(e){gA=e.wasm.cwrap(fu,"number",["number","number","number","number","number","bool"])}function fle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=gA(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=u1(t,c);t.wasm._free(f);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var gle={kernelName:fu,backendName:"wasm",setupFunc:mle,kernelFunc:fle},bA;function ble(e){bA=e.wasm.cwrap(gu,"number",["number","number","number","number","number","number"])}function yle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=bA(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=u1(t,c);t.wasm._free(g);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([m],"float32",f);return[b,y]}var xle={kernelName:gu,backendName:"wasm",setupFunc:ble,kernelFunc:yle},vle=!1,wle=dn(hu,vle,"bool"),yA;function kle(e){yA=e.wasm.cwrap(Hi,null,["number","number","number","number","number"])}function Ile(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=n.makeOutput([...r.shape,i],s),p=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return yA(d,i,o,l,p),u}var Sle={kernelName:Hi,backendName:"wasm",setupFunc:kle,kernelFunc:Ile};function Tle(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Nle={kernelName:bu,backendName:"wasm",kernelFunc:Tle};function Cle(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return kx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=kx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=KE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var _le={kernelName:yu,backendName:"wasm",kernelFunc:Cle},xA;function Ele(e){xA=e.wasm.cwrap(ji,null,["number","array","number","number","array","array","number","number"])}function Ale(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(v.sizeFromShape(t.shape)===0)return nA({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return xA(i,u,t.shape.length,Et[t.dtype],c,h,r,l),o}var vA={kernelName:ji,backendName:"wasm",kernelFunc:Ale,setupFunc:Ele},$le=!1,Fle=dn(qi,$le),wA;function Dle(e){wA=e.wasm.cwrap(Ki,null,["number","number","number"])}function Rle(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=ap({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return wA(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var Mle={kernelName:Ki,backendName:"wasm",setupFunc:Dle,kernelFunc:Rle},kA;function Ple(e){kA=e.wasm.cwrap(Xi,null,["number","number","number","number"])}function Ole(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Es(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;kA(l,b,Et[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Lle={kernelName:Xi,backendName:"wasm",setupFunc:Ple,kernelFunc:Ole},zle=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=W0(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Wle={kernelName:xc,backendName:"wasm",kernelFunc:zle},Ble=!0,Vle=dn(Ci,Ble),Ule=an(Yi),Gle=an(Qi),IA;function Hle(e){IA=e.wasm.cwrap(Ji,null,["number","number","number","number","number","number","number","number","number","number"])}function jle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=ap({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let b=f.id,y=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return IA(b,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),y}var qle={kernelName:Ji,backendName:"wasm",setupFunc:Hle,kernelFunc:jle},SA;function Kle(e){SA=e.wasm.cwrap(Zi,null,["number","number","number","number","number","number","number","number","number","number"])}function Xle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),b;g.dtype!=="float32"&&(b=ap({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(b.dataId));let y=g.id,x=t.dataIdMap.get(f.dataId).id;return SA(y,p,d,c,h,l,u,s?1:0,i?1:0,x),b!=null&&t.disposeData(b.dataId),f}var Yle={kernelName:Zi,backendName:"wasm",setupFunc:Kle,kernelFunc:Xle},TA;function Zle(e){TA=e.wasm.cwrap(eo,null,["number","array","number","array","number","number"])}function Jle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=v.parseAxisParam(s,r.shape);if(r.shape.length===0)return Qf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);TA(l,p,i.length,d,r.shape.length,u);let c=Wn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var Qle={kernelName:eo,backendName:"wasm",kernelFunc:Jle,setupFunc:Zle},NA;function eue(e){NA=e.wasm.cwrap(Pu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function tue(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=N.getImageCenter(o,c,h),b=i===0,y=255,x=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],w=new Uint8Array(new Int32Array(x).buffer);return NA(u,d,c,h,m,s,f,g,w,x.length,p),l}var nue={kernelName:Pu,backendName:"wasm",kernelFunc:tue,setupFunc:eue},aue=an(to),rue=an(no),CA;function sue(e){CA=e.wasm.cwrap(wu,null,["number","number","number","number","number","number","array","number","number"])}function iue(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=Gx.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return CA(h,m,Et[s.dtype],l,u,p,f,c,g),o}var oue={kernelName:wu,backendName:"wasm",setupFunc:sue,kernelFunc:iue},_A;function lue(e){_A=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function uue(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:v.sizeFromShape(r.shape.slice(1));return _A(i,o,l,h,p),u}var pue={kernelName:ku,backendName:"wasm",kernelFunc:uue,setupFunc:lue},EA;function cue(e){EA=e.wasm.cwrap(ro,null,["number","number"])}function due(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||EA(a,s),r}var hue={kernelName:"Sigmoid",backendName:"wasm",setupFunc:cue,kernelFunc:due},mue=an(ao),AA;function fue(e){AA=e.wasm.cwrap(oo,null,["number","number","number","number"])}function gue(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||AA(r,i,o,l),s}var bue={kernelName:oo,backendName:"wasm",setupFunc:fue,kernelFunc:gue};function yue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=vA.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=Wn({inputs:{x:u},backend:n,attrs:{shape:p}}),m=hs({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var xue={kernelName:_u,backendName:"wasm",kernelFunc:yue},$A;function vue(e){$A=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function wue(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([u],"bool"),x=t.dataIdMap.get(y.dataId).id,w=t.makeOutput([o],a.dtype),I=t.dataIdMap.get(w.dataId).id,T=t.makeOutput([4],"int32"),C=t.dataIdMap.get(T.dataId).id,E=$A(d,c,Et[r.dtype],o,u,l,h,f,b,x,I,C),A=t.readSync(T.dataId),R;switch(A[0]){case 1:{R=N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(A[1]);break}case 2:{R=N.getSparseFillEmptyRowsNegativeIndexErrorMessage(A[1],A[2]);break}case 3:R=N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(A[1],A[2],A[3]);break;default:R=""}if(t.disposeData(T.dataId),R)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(w.dataId),new Error(R);let F=m,S=g;return E!==p[0]&&(F=hi({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=hi({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[F,S,y,w]}var kue={kernelName:vc,backendName:"wasm",setupFunc:vue,kernelFunc:wue},FA;function Iue(e){FA=e.wasm.cwrap(Au,null,["number","number","number","number","number","number","number"])}function Sue(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=v.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;FA(i,o,l,u,c,m,g);let b=t.readSync(f.dataId),y;switch(b[0]){case 0:{y=N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=N.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMultipleErrorMessage(x,w);break}case 4:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMismatchErrorMessage(x,w);break}default:y=""}if(t.disposeData(f.dataId),y)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(y);return[d,h]}var Tue={kernelName:Au,backendName:"wasm",setupFunc:Iue,kernelFunc:Sue},DA;function RA(e){DA=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function MA(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),b=n.dataIdMap.get(g.dataId).id;DA(d,Et[r.dtype],r.shape[0],c,h,f,b,t,0);let y=n.readSync(g.dataId),x;switch(y[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Nue(e){return MA(e,!0)}var Cue={kernelName:wc,backendName:"wasm",setupFunc:RA,kernelFunc:Nue};function _ue(e){return MA(e,!1)}var Eue={kernelName:kc,backendName:"wasm",setupFunc:RA,kernelFunc:_ue};function Aue(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=hi({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var $ue={kernelName:Eu,backendName:"wasm",kernelFunc:Aue},Fue=an(so),Due=an(Ic),Rue=!0,Mue=dn(lo,Rue),PA;function Pue(e){PA=e.wasm.cwrap(xs,null,["number","number","number","number"])}function Oue(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return PA(i,r,Et[s.dtype],l),o}var Lue={kernelName:xs,backendName:"wasm",setupFunc:Pue,kernelFunc:Oue},OA;function zue(e){OA=e.wasm.cwrap($u,null,["number","array","number","array","array","array","array","array","number","number"])}function Wue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=jt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=Wn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=jt.computeOutShape(y,x,w),C=hi({inputs:{x:r},backend:t,attrs:{begin:y,size:T}});I=Wn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(y).buffer),R=new Uint8Array(new Int32Array(x).buffer),F=new Uint8Array(new Int32Array(w).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),B=t.dataIdMap.get(T.dataId).id;OA(C,E,r.shape.length,A,R,F,S,M,h.length,B),I=Wn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return I}var Bue={kernelName:$u,backendName:"wasm",setupFunc:zue,kernelFunc:Wue};function Vue(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=V0(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),b=t.dataIdMap.get(g.dataId);b.stringBytes=m;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(f),[g,y]}var Uue={kernelName:Sc,backendName:"wasm",kernelFunc:Vue};function Gue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=U0(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var Hue={kernelName:Tc,backendName:"wasm",kernelFunc:Gue};function jue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=G0(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var que={kernelName:Nc,backendName:"wasm",kernelFunc:jue},Kue=!0,Xue=dn(uo,Kue),LA;function Yue(e){LA=e.wasm.cwrap(io,null,["number","number","number","number"])}function Zue(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Es(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;LA(l,b,Et[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Jue={kernelName:io,backendName:"wasm",setupFunc:Yue,kernelFunc:Zue},Que=an(po),epe=an(co),zA;function tpe(e){zA=e.wasm.cwrap(ys,null,["number","array","number","array","number","number"])}function npe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return zA(s,l,r.shape.length,u,o.length,Et[p.dtype],d),p}var ape={kernelName:ys,backendName:"wasm",setupFunc:tpe,kernelFunc:npe},WA;function rpe(e){WA=e.wasm.cwrap(Fu,null,["number","array","number","number","number","bool","number","number"])}var spe=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return WA(i,o,a.shape.length,Et[a.dtype],r,s,p,c),[u,d]},ipe={kernelName:Fu,backendName:"wasm",setupFunc:rpe,kernelFunc:spe},BA;function ope(e){BA=e.wasm.cwrap(Du,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function lpe(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),w=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,T=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,E;switch(o){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return BA(I,T,s.shape[0]>1,p,m,f,h,c,d,b,r.shape.length-1,y,g.length-1,C,E,l,w),x}var upe={kernelName:Du,backendName:"wasm",setupFunc:ope,kernelFunc:lpe};function ppe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=hi({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var cpe={kernelName:Ru,backendName:"wasm",kernelFunc:ppe};function dpe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var hpe={kernelName:Mu,backendName:"wasm",kernelFunc:dpe},mpe=[Vse,Use,Hse,Kse,nie,sie,lie,cie,fie,wie,kie,Iie,Nie,Cie,Aie,Die,Rie,Mie,Lie,Bie,Gie,qie,Yie,Zie,Qie,eoe,toe,noe,soe,ioe,loe,coe,moe,boe,voe,Ioe,Toe,Coe,Xse,Aoe,Foe,Roe,Moe,Ooe,Loe,Woe,Voe,Hoe,qoe,Yoe,Qoe,nle,rle,ole,ule,ple,hle,gle,xle,wle,Sle,Nle,_le,vA,Fle,Mle,Lle,Wle,Vle,Ule,Gle,die,qle,Yle,Qle,nue,aue,rue,oue,pue,hue,mue,xie,bue,xue,kue,Tue,Cue,Eue,$ue,Fue,Due,Mue,Lue,Bue,Uue,Hue,que,Xue,Jue,Que,epe,ape,ipe,upe,Qse,cpe,hpe];for(let e of mpe)_c(e);var Sx=H();Sx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});Sx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Sx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var PI=ms(RF()),fpe=ms(MF()),OI=ms(PF()),LI=PI.default||PI,gpe=OI.default||OI,VA=class extends pc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(UA),Tx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new om(this,_a())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||v.sizeFromShape(s);let o=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return xpe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function bpe(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function zI(e,t,n){if(sm!=null)return sm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),jp!=null&&jp[a]!=null?jp[a]:n+a}async function ype(){let[e,t]=await Promise.all([H().getAsync("WASM_HAS_SIMD_SUPPORT"),H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=fpe.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?zI(e,t,Up!=null?Up:l):l+o},p1&&(r.instantiateWasm=bpe(zI(e,t,Up!=null?Up:"")));let s=!1;r.onAbort=()=>{s||qp||(qp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&sm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+LI.toString()],{type:"text/javascript"}),i=LI(r)):i=gpe(r),i.then(o=>{s=!0,qp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function xpe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var vpe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],sm=null,Up=null,jp={},qp=!1,p1=!1;function wpe(e,t=!1){if(Vx("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),qp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");sm=e,p1=t}function kpe(e,t=!1){if(qp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Up=e;else{jp=e;let n=vpe.filter(a=>jp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}p1=t}var UA=-1,Tx=-1;function Ipe(e){UA=e}function Spe(){if(Tx===-1)throw new Error("WASM backend not initialized.");return Tx}var Tpe="4.0.0",Npe=2;Gm("wasm",async()=>{let{wasm:e}=await ype();return new VA(e)},Npe);var Cpe="4.0.0",_pe="4.0.0",Epe="4.0.0",Ape="4.0.0",$pe="4.0.0",Fpe="4.0.0",Dpe="4.0.0",Rpe="4.0.0",Mpe={tfjs:Cpe,"tfjs-core":_pe,"tfjs-data":Epe,"tfjs-layers":Ape,"tfjs-converter":$pe,"tfjs-backend-cpu":Fpe,"tfjs-backend-webgl":Dpe,"tfjs-backend-wasm":Rpe};var M1={};rh(M1,{AnchorPosition:()=>N1,DrawBox:()=>md,DrawBoxOptions:()=>ag,DrawFaceLandmarks:()=>mg,DrawFaceLandmarksOptions:()=>hg,DrawTextField:()=>zr,DrawTextFieldOptions:()=>op,drawContour:()=>Pr,drawDetections:()=>Gpe,drawFaceExpressions:()=>Xpe,drawFaceLandmarks:()=>Zpe});function Pr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var m1={};rh(m1,{computeReshapedDimensions:()=>h1,getCenterPoint:()=>No,isDimensions:()=>tg,isEven:()=>eg,isFloat:()=>d1,isTensor:()=>So,isTensor1D:()=>Ppe,isTensor2D:()=>c1,isTensor3D:()=>Or,isTensor4D:()=>va,isValidNumber:()=>Ya,isValidProbablitiy:()=>rp,range:()=>fr,round:()=>To});var bn=class{constructor(t,n){if(!Ya(t)||!Ya(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new bn(1/this.width,1/this.height)}};function So(e,t){return e instanceof Te&&e.shape.length===t}function Ppe(e){return So(e,1)}function c1(e){return So(e,2)}function Or(e){return So(e,3)}function va(e){return So(e,4)}function d1(e){return e%1!==0}function eg(e){return e%2===0}function To(e,t=2){let n=10**t;return Math.floor(e*n)/n}function tg(e){return e&&e.width&&e.height}function h1({width:e,height:t},n){let a=n/Math.max(t,e);return new bn(Math.round(e*a),Math.round(t*a))}function No(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function fr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Ya(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function rp(e){return Ya(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var st=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Ya)}static assertIsValidBox(t,n,a=!1){if(!st.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Ya),s=[a.x,a.y,a.width,a.height].every(Ya);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];st.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new st({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new st({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new st({x:t,y:n,width:a,height:r})}rescale(t){let n=tg(t)?t.width:t,a=tg(t)?t.height:t;return new st({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new st({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new st({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new st({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new st({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Co=class extends st{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Lr=class{constructor(t,n,a,r,s){this._imageDims=new bn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new st(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new st(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Lr(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var bt=class extends Lr{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new bt(a,r,s)}};function f1(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function g1(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new Co(a,r,s,i)}function b1(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(f1(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function Za(e,t){return P(()=>{let[n,a,r]=t,s=gn([...e.shape.slice(0,3),1],n,"float32"),i=gn([...e.shape.slice(0,3),1],a,"float32"),o=gn([...e.shape.slice(0,3),1],r,"float32"),l=Ze([s,i,o],3);return pe(e,l)})}function y1(e,t=!1){return P(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,gn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>oe(c,"float32"));return Ze(d,i)})}function Ope(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function dd(e){return 1/(1+Math.exp(-e))}function Lpe(e){return Math.log(e/(1-e))}var _o=class extends st{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var zpe=.5,Wpe=.43,Bpe=.45,ra=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new bn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof bt?t.box.floor():new st(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Bpe),l=No(t),u=Math.floor(Math.max(0,l.x-zpe*o)),p=Math.floor(Math.max(0,l.y-Wpe*o));return new _o(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=g1(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var x1=class extends ra{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],No([t[3],t[4]])]}};var Eo=class extends ra{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(No)}};var sp=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${To(this.distance)})`:""}`}};var ip=class extends st{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(st.assertIsValidBox(n,a),!Ya(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var gr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new gr(t.label,n)}};var v1=class extends ip{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(ip.assertIsValidLabeledBox(n,a),!rp(n.score)||!rp(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function br(e){return e.detection instanceof bt}function Ao(e,t){return{...e,...{detection:t}}}function w1(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function hd(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function ng(e){let t="";if(!e&&hd())try{e=Xr("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function k1(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=ng();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function I1(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var rn;function Vpe(){if(!rn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return rn}function S1(e){rn=e}function T1(){return I1()?S1(w1()):hd()?S1(k1()):null}function Upe(e){if(rn||T1(),!rn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=rn.Canvas,Image:n=rn.Image}=e;rn.Canvas=t,rn.Image=n,rn.createCanvasElement=e.createCanvasElement||(()=>new t),rn.createImageElement=e.createImageElement||(()=>new n),rn.ImageData=e.ImageData||rn.ImageData,rn.Video=e.Video||rn.Video,rn.fetch=e.fetch||rn.fetch,rn.readFile=e.readFile||rn.readFile}var Je={getEnv:Vpe,setEnv:S1,initialize:T1,createBrowserEnv:w1,createFileSystem:ng,createNodejsEnv:k1,monkeyPatch:Upe,isBrowser:I1,isNodejs:hd};T1();function $o(e){return!Je.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Gn(e){let{Canvas:t,CanvasRenderingContext2D:n}=Je.getEnv();if(e instanceof n)return e;let a=$o(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var N1=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(N1||{}),op=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},zr=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof zr?t.text:t,this.anchor=n,this.options=new op(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=$o(t),a=Gn(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var ag=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new op({...i,...s})}},md=class{constructor(t,n={}){this.box=new st(t),this.options=new ag(n)}draw(t){let n=Gn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new zr([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Gpe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof bt?a.score:br(a)?a.detection.score:void 0,s=a instanceof bt?a.box:br(a)?a.detection.box:new st(a),i=r?`${To(r)}`:void 0;new md(s,{label:i}).draw(e)})}function fd(e){let{Image:t,Video:n}=Je.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function C1(e){return new Promise((t,n)=>{(e instanceof Je.getEnv().Canvas||fd(e))&&t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function _1(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=Je.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Fo(e){let{Image:t,Video:n}=Je.getEnv();return e instanceof t?new bn(e.naturalWidth,e.naturalHeight):e instanceof n?new bn(e.videoWidth,e.videoHeight):new bn(e.width,e.height)}function Do({width:e,height:t}){let{createCanvasElement:n}=Je.getEnv(),a=n();return a.width=e,a.height=t,a}function gd(e,t){let{ImageData:n}=Je.getEnv();if(!(e instanceof n)&&!fd(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Fo(e),s=Do({width:a,height:r});return e instanceof n?Gn(s).putImageData(e,0,0):Gn(s).drawImage(e,0,0,a,r),s}async function E1(e,t){let n=t||Je.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(va(e)?1:0),i=P(()=>e.as3D(a,r,s).toInt());return await ho.toPixels(i,n),i.dispose(),n}function rg(e){let{Image:t,Canvas:n,Video:a}=Je.getEnv();return e instanceof t||e instanceof n||e instanceof a}function A1(e,t,n=!1){let{Image:a,Canvas:r}=Je.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Do({width:1,height:1});let s=Fo(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=Do({width:t,height:t}),p=e instanceof r?e:gd(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&Gn(u).drawImage(p,c,h,o,l),u}var yr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Or(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(va(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof Je.getEnv().Canvas?a:gd(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return fr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return h1({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,P(()=>{let a=fr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Te){let o=va(i)?i:Zt(i);return o=y1(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=za.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof Je.getEnv().Canvas)return ho.fromPixels(A1(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Ft(a.map(s=>oe(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function yt(e){if(e instanceof yr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map($o);return a.forEach((r,s)=>{if(!rg(r)&&!Or(r)&&!va(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(va(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>rg(r)&&C1(r))),new yr(a,Array.isArray(e))}async function lp(e,t){let{Canvas:n}=Je.getEnv(),a=e;if(!(e instanceof n)){let i=await yt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await E1(o)}let r=Gn(a);return t.map(i=>i instanceof bt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=Do({width:l,height:u});return l>0&&u>0&&Gn(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function up(e,t){if(!Or(e)&&!va(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(va(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return P(()=>{let[n,a,r]=e.shape.slice(va(e)?1:0);return t.map(o=>o instanceof bt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>fo(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Wr(e,t){let{fetch:n}=Je.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function Hpe(e){let t=await Wr(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return _1(n)}async function $1(e){return(await Wr(e)).json()}async function jpe(e){return new Float32Array(await(await Wr(e)).arrayBuffer())}function GA(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=Je.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function qpe(e){let t=await Wr(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return GA(n)}function sg(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function F1(e,t){let{manifestUri:n,modelBaseUri:a}=sg(e,t),r=await $1(n);return Ut.loadWeights(r,a)}function Kpe(e,t,n=!1){let{width:a,height:r}=n?Fo(t):t;return e.width=a,e.height=r,{width:a,height:r}}var sn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof is)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof is))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=In(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await F1(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=Je.getEnv(),{manifestUri:a,modelBaseUri:r}=sg(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=Ut.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Te))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Hn(e,t,n){return P(()=>{let a=Ts(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Y(a,t.bias),a})}function ig(e,t,n=!1){return P(()=>{let a=Xe(n?Y($t(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Hn(e,t.conv0,[2,2])),r=Hn(a,t.conv1,[1,1]),s=Xe(Y(a,r)),i=Hn(s,t.conv2,[1,1]);return Xe(Y(a,Y(r,i)))})}function bd(e,t,n=!1,a=!0){return P(()=>{let r=Xe(n?Y($t(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Hn(e,t.conv0,a?[2,2]:[1,1])),s=Hn(r,t.conv1,[1,1]),i=Xe(Y(r,s)),o=Hn(i,t.conv2,[1,1]),l=Xe(Y(r,Y(s,o))),u=Hn(l,t.conv3,[1,1]);return Xe(Y(r,Y(s,Y(o,u))))})}function Ro(e,t,n="same",a=!1){return P(()=>{let r=Y($t(e,t.filters,[1,1],n),t.bias);return a?Xe(r):r})}function An(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function pp(e,t){return(n,a,r,s)=>{let i=Da(e(n*a*r*r),[r,r,n,a]),o=Ke(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function og(e,t){return(n,a,r)=>{let s=Aa(e(n*a),[n,a]),i=Ke(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var yd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function cp(e,t){return(n,a,r)=>{let s=Da(e(9*n),[3,3,n,1]),i=Da(e(n*a),[1,1,n,a]),o=Ke(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new yd(s,i,o)}}function dp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new yd(n,a,r)}}function sa(e,t){return(n,a,r)=>{let s=e[n];if(!So(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function $n(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function lg(e,t){let n=pp(e,t),a=cp(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function HA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractDenseBlock4Params:r}=lg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function ug(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function pg(e,t){let n=sa(e,t),a=ug(n),r=dp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function jA(e){let t=[],{extractDenseBlock4Params:n}=pg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return An(e,t),{params:a,paramMappings:t}}var hp=class extends sn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return P(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=Za(a,[122.782,117.001,104.298]).div(255),i=bd(s,n.dense0,!0);return i=bd(i,n.dense1),i=bd(i,n.dense2),i=bd(i,n.dense3),i=ba(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await yt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return jA(t)}extractParams(t){return HA(t)}};function xd(e,t){return P(()=>Y(Fe(e,t.weights),t.bias))}function qA(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=$n(e),o=og(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function KA(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return An(e,t),{params:r,paramMappings:t}}function cg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var mp=class extends sn{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof yr?this.faceFeatureExtractor.forwardInput(n):n;return xd(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return qA(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=cg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),KA(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var D1=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Br=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);D1.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return D1.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var vd=class extends mp{constructor(t=new hp){super("FaceExpressionNet",t)}forwardInput(t){return P(()=>Ka(this.runNet(t)))}async forward(t){return this.forwardInput(await yt(t))}async predictExpressions(t){let n=await yt(t),a=await this.forwardInput(n),r=await Promise.all(ct(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Br(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function R1(e){return e.expressions instanceof Br}function dg(e,t){return{...e,...{expressions:t}}}function Xpe(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Br?s:R1(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=br(s)?s.detection.box.bottomLeft:a||new De(0,0);new zr(l.map(d=>`${d.expression} (${To(d.probability)})`),u).draw(e)})}function Mo(e){return br(e)&&e.landmarks instanceof ra&&e.unshiftedLandmarks instanceof ra&&e.alignedRect instanceof bt}function Ype(e){let t=(o,l,u,p)=>Math.atan2(p-l,u-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,1/0),i=r.reduce((o,l)=>o>l._y?o:l._y,-1/0);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function fp(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new bt(e.detection.score,r.rescale(s.reverse()),s),o=Ype(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var hg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},mg=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new hg(n)}draw(t){let n=Gn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof Eo&&(n.strokeStyle=i,n.lineWidth=s,Pr(n,this.faceLandmarks.getJawOutline()),Pr(n,this.faceLandmarks.getLeftEyeBrow()),Pr(n,this.faceLandmarks.getRightEyeBrow()),Pr(n,this.faceLandmarks.getNose()),Pr(n,this.faceLandmarks.getLeftEye(),!0),Pr(n,this.faceLandmarks.getRightEye(),!0),Pr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function Zpe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ra?a:Mo(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new mg(r).draw(e)})}var XA="1.7.5";function ece(e,t){let n=pp(e,t),a=cp(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function YA(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=$n(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=ece(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};fr(t,0,1).forEach(b=>{h[`main_block_${b}`]=l(128,`middle_flow/main_block_${b}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function tce(e,t){let n=sa(e,t),a=ug(n),r=dp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function ZA(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=tce(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};fr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return An(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function JA(e,t,n){return Y($t(e,t.filters,n,"same"),t.bias)}function P1(e,t,n=!0){let a=n?Xe(e):e;return a=Hn(a,t.separable_conv0,[1,1]),a=Hn(Xe(a),t.separable_conv1,[1,1]),a=Dt(a,[3,3],[2,2],"same"),a=Y(a,JA(e,t.expansion_conv,[2,2])),a}function nce(e,t){let n=Hn(Xe(e),t.separable_conv0,[1,1]);return n=Hn(Xe(n),t.separable_conv1,[1,1]),n=Hn(Xe(n),t.separable_conv2,[1,1]),n=Y(n,e),n}var fg=class extends sn{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return P(()=>{let r=oe(n.toBatchTensor(112,!0),"float32"),i=Za(r,[122.782,117.001,104.298]).div(255),o=Xe(JA(i,a.entry_flow.conv_in,[2,2]));return o=P1(o,a.entry_flow.reduction_block_0,!1),o=P1(o,a.entry_flow.reduction_block_1),fr(this._numMainBlocks,0,1).forEach(l=>{o=nce(o,a.middle_flow[`main_block_${l}`])}),o=P1(o,a.exit_flow.reduction_block),o=Xe(Hn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await yt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return ZA(n,this._numMainBlocks)}extractParams(n){return YA(n,this._numMainBlocks)}};function QA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),r=og(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function e$(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return An(e,t),{params:r,paramMappings:t}}var gg=(n=>(n.FEMALE="female",n.MALE="male",n))(gg||{});var wd=class extends sn{constructor(n=new fg(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof yr?this.faceFeatureExtractor.forwardInput(n):n,s=ba(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=xd(s,a.fc.age).as1D(),o=xd(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return P(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Ka(r)}})}async forward(n){return this.forwardInput(await yt(n))}async predictAgeAndGender(n){let a=await yt(n),r=await this.forwardInput(a),s=ct(r.age),i=ct(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return QA(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=cg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),e$(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var gp=class extends mp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return P(()=>{let i=(d,c)=>Ft([gn([68],d,"float32"),gn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(gn([s,136],n,"float32")).sub(Ft(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Ft(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return P(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await yt(t))}async detectLandmarks(t){let n=await yt(t),a=P(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>eg(d)),u=o.filter((p,d)=>!eg(d));return new Eo(Array(68).fill(0).map((p,d)=>new De(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var Po=class extends gp{constructor(t=new hp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function t$(e){let t=[],{extractDenseBlock3Params:n}=pg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return An(e,t),{params:a,paramMappings:t}}function n$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractDenseBlock3Params:r}=lg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var bg=class extends sn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return P(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=Za(a,[122.782,117.001,104.298]).div(255),i=ig(s,n.dense0,!0);return i=ig(i,n.dense1),i=ig(i,n.dense2),i=ba(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await yt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return t$(t)}extractParams(t){return n$(t)}};var kd=class extends gp{constructor(t=new bg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var O1=class extends Po{};function a$(e,t){return Y(z(e,t.weights),t.biases)}function L1(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=$t(e,s,n,r);return o=Y(o,i),o=a$(o,t.scale),a?Xe(o):o}function r$(e,t){return L1(e,t,[1,1],!0)}function z1(e,t){return L1(e,t,[1,1],!1)}function yg(e,t){return L1(e,t,[2,2],!0,"valid")}function ace(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(d1(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return P(()=>Ee(Da(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=Ke(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=Ke(e(o)),p=Ke(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function s$(e){let{extractWeights:t,getRemainingWeights:n}=$n(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=ace(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),b=s(589824,256,3,"conv256_down",!0),y=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),w=s(589824,256,3,"conv256_down_out"),I=P(()=>Ee(Aa(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:x,conv256_down_out:w,fc:I},paramMappings:a}}function rce(e,t){let n=sa(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function i$(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=rce(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),b=a("conv256_2"),y=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!c1(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let w={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:x};return An(e,t),{params:w,paramMappings:t}}function Ja(e,t){let n=r$(e,t.conv1);return n=z1(n,t.conv2),n=Y(n,e),n=Xe(n),n}function Id(e,t){let n=yg(e,t.conv1);n=z1(n,t.conv2);let a=ba(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=Ze([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=Ze([n,p],2)}return a=s?Ze([a,r],3):a,n=Y(a,n),n=Xe(n),n}var Oo=class extends sn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return P(()=>{let a=oe(t.toBatchTensor(150,!0),"float32"),s=Za(a,[122.782,117.001,104.298]).div(255),i=yg(s,n.conv32_down);i=Dt(i,3,2,"valid"),i=Ja(i,n.conv32_1),i=Ja(i,n.conv32_2),i=Ja(i,n.conv32_3),i=Id(i,n.conv64_down),i=Ja(i,n.conv64_1),i=Ja(i,n.conv64_2),i=Ja(i,n.conv64_3),i=Id(i,n.conv128_down),i=Ja(i,n.conv128_1),i=Ja(i,n.conv128_2),i=Id(i,n.conv256_down),i=Ja(i,n.conv256_1),i=Ja(i,n.conv256_2),i=Id(i,n.conv256_down_out);let o=i.mean([1,2]);return Fe(o,n.fc)})}async forward(t){return this.forwardInput(await yt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await yt(t),a=P(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return i$(t)}extractParams(t){return s$(t)}};function sce(e){let t=new Oo;return t.extractWeights(e),t}function xg(e,t){return{...e,...{descriptor:t}}}function ice(e){return typeof e.age=="number"}function vg(e,t){return{...e,...{age:t}}}function oce(e){return(e.gender==="male"||e.gender==="female")&&rp(e.genderProbability)}function wg(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function lce(e,t){function n(l,u){let p=Da(e(9*l),[3,3,l,1]),d=Ke(e(l)),c=Ke(e(l)),h=Ke(e(l)),m=Ke(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Da(e(l*u*p*p),[p,p,l,u]),m=Ke(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),b=s(512,512,"mobilenetv1/conv_9"),y=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),w=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:b,conv_10:y,conv_11:x,conv_12:w,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),w=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),E=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),A=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),R=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),F=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:x},box_predictor_2:{box_encoding_predictor:w,class_predictor:I},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:E,class_predictor:A},box_predictor_5:{box_encoding_predictor:R,class_predictor:F}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function o$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=lce(n,t),i=r(),o=s(),u={extra_dim:Rc(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function uce(e,t){let n=sa(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function l$(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=uce(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Or(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return An(e,t),{params:s,paramMappings:t}}function Pa(e,t,n){return P(()=>{let a=$t(e,t.filters,n,"same");return a=Y(a,t.batch_norm_offset),en(a,0,6)})}var pce=.0010000000474974513;function cce(e,t,n){return P(()=>{let a=Is(e,t.filters,n,"same");return a=ks(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,pce),en(a,0,6)})}function dce(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function u$(e,t){return P(()=>{let n,a=Pa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=dce(o);a=cce(a,s.depthwise_conv,l),a=Pa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function hce(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),b=Math.min(o,d),y=Math.max(g-m,0)*Math.max(b-f,0);return y/(c+h-y)}function p$(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=hce(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function mce(e){let t=ct(Ee(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[Y(t[0],he(n[0],2)),Y(t[1],he(n[1],2))];return{sizes:n,centers:a}}function fce(e,t){let{sizes:n,centers:a}=mce(e),r=ct(Ee(t,[1,0])),s=he(z(fn(he(r[2],5)),n[0]),2),i=Y(z(he(r[0],10),n[0]),a[0]),o=he(z(fn(he(r[3],5)),n[1]),2),l=Y(z(he(r[1],10),n[1]),a[1]);return Ee(Ft([pe(i,s),pe(l,o),Y(i,s),Y(l,o)]),[1,0])}function c$(e,t,n){return P(()=>{let a=e.shape[0],r=fce(W(Ln(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ha(Be(t,[0,0,1],[-1,-1,-1])),i=Be(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=ct(r),l=ct(i);return{boxes:o,scores:l}})}function Lo(e,t){return P(()=>{let n=e.shape[0],a=W(Ro(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(Ro(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function d$(e,t,n){return P(()=>{let a=Pa(e,n.conv_0,[1,1]),r=Pa(a,n.conv_1,[2,2]),s=Pa(r,n.conv_2,[1,1]),i=Pa(s,n.conv_3,[2,2]),o=Pa(i,n.conv_4,[1,1]),l=Pa(o,n.conv_5,[2,2]),u=Pa(l,n.conv_6,[1,1]),p=Pa(u,n.conv_7,[2,2]),d=Lo(t,n.box_predictor_0),c=Lo(e,n.box_predictor_1),h=Lo(r,n.box_predictor_2),m=Lo(i,n.box_predictor_3),f=Lo(l,n.box_predictor_4),g=Lo(p,n.box_predictor_5),b=Ze([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),y=Ze([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var wa=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var As=class extends sn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return P(()=>{let a=oe(t.toBatchTensor(512,!1),"float32"),r=pe(he(a,127.5),1),s=u$(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=d$(s.out,s.conv11,n.prediction_layer);return c$(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await yt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new wa(n),s=await yt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=p$(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,b=l.arraySync(),y=c.map(x=>{let[w,I]=[Math.max(0,b[x][0]),Math.min(1,b[x][2])].map(E=>E*g),[T,C]=[Math.max(0,b[x][1]),Math.min(1,b[x][3])].map(E=>E*f);return new bt(p[x],new _o(T,w,C-T,I-w),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return l$(t)}extractParams(t){return o$(t)}};function h$(e){let t=new As;return t.extractWeights(e),t}function gce(e){return h$(e)}var W1=class extends As{};var m$=.4,f$=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],g$=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],b$=[117.001,114.697,97.404],y$="tiny_yolov2_model",x$="tiny_yolov2_separable_conv_model";var kg=e=>typeof e=="number";function B1(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!kg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>kg(t.x)&&kg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(kg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function bp(e){return P(()=>{let t=z(e,ye(.10000000149011612));return Y(Xe(pe(e,t)),t)})}function Vr(e,t){return P(()=>{let n=ya(e,[[0,0],[1,1],[1,1],[0,0]]);return n=$t(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=Y(n,t.conv.bias),bp(n)})}function Ur(e,t){return P(()=>{let n=ya(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ts(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Y(n,t.bias),bp(n)})}function bce(e,t){let n=pp(e,t);function a(i,o){let l=Ke(e(i)),u=Ke(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=cp(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function v$(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=$n(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=bce(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,b,y,x]=a,w=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),T=u(h,m,"conv2"),C=u(m,f,"conv3"),E=u(f,g,"conv4"),A=u(g,b,"conv5"),R=y?u(b,y,"conv6"):void 0,F=x?u(y,x,"conv7"):void 0,S=o(x||y||b,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:A,conv6:R,conv7:F,conv8:S}}else{let[d,c,h,m,f,g,b,y,x]=a,w=l(d,c,"conv0"),I=l(c,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),E=l(f,g,"conv4"),A=l(g,b,"conv5"),R=l(b,y,"conv6"),F=l(y,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:A,conv6:R,conv7:F,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function yce(e,t){let n=sa(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=dp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function w$(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=yce(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return An(e,n),{params:i,paramMappings:n}}var Qa=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var V1=class extends sn{constructor(n){super("TinyYolov2");B1(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=Vr(n,a.conv0);return r=Dt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv1),r=Dt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv2),r=Dt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv3),r=Dt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv4),r=Dt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv5),r=Dt(r,[2,2],[1,1],"same"),r=Vr(r,a.conv6),r=Vr(r,a.conv7),Ro(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?bp(Ro(n,a.conv0,"valid",!1)):Ur(n,a.conv0);return r=Dt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv1),r=Dt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv2),r=Dt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv3),r=Dt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv4),r=Dt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv5),r=Dt(r,[2,2],[1,1],"same"),r=a.conv6?Ur(r,a.conv6):r,r=a.conv7?Ur(r,a.conv7):r,Ro(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return P(()=>{let s=oe(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?Za(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await yt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new Qa(a),i=await yt(n),o=await this.forwardInput(i,r),l=P(()=>ct(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(b=>b.box),c=p.map(b=>b.score),h=p.map(b=>b.classScore),m=p.map(b=>this.config.classes[b.label]);return b1(d.map(b=>b.rescale(r)),c,this.config.iouThreshold,!0).map(b=>new Lr(c[b],h[b],m[b],d[b],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return w$(n,this.config)}extractParams(n){let a=this.config.filterSizes||V1.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return v$(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=P(()=>{let y=n.reshape([p,p,d,this.boxEncodingSize]),x=y.slice([0,0,0,0],[p,p,d,4]),w=y.slice([0,0,0,4],[p,p,d,1]),I=this.withClassScores?Ka(y.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):ye(0);return[x,w,I]}),f=[],g=await h.array(),b=await c.array();for(let y=0;y<p;y++)for(let x=0;x<p;x++)for(let w=0;w<d;w++){let I=dd(g[y][x][w][0]);if(!r||I>r){let T=(x+dd(b[y][x][w][0]))/p*l,C=(y+dd(b[y][x][w][1]))/p*u,E=Math.exp(b[y][x][w][2])*this.config.anchors[w].x/p*l,A=Math.exp(b[y][x][w][3])*this.config.anchors[w].y/p*u,R=T-E/2,F=C-A/2,S={row:y,col:x,anchor:w},{classScore:M,label:B}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new Co(R,F,R+E,F+A),score:I,classScore:I*M,label:B,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},zo=V1;zo.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Wo=class extends zo{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:m$,classes:["face"],...t?{anchors:g$,meanRgb:b$}:{anchors:f$,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new bt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?x$:y$}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function xce(e,t=!0){let n=new Wo(t);return n.extractWeights(e),n}var Sd=class extends Qa{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var ka=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function Bo(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>Mo(l)?r(l):l.detection),i=a||(t instanceof Te?await up(t,s):await lp(t,s)),o=await n(i);return i.forEach(l=>l instanceof Te&&l.dispose()),o}async function yp(e,t,n,a,r){return Bo([e],t,async s=>n(s[0]),a,r)}var k$=.4,I$=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],S$=[117.001,114.697,97.404];var Vo=class extends zo{constructor(){let t={withSeparableConvs:!0,iouThreshold:k$,classes:["face"],anchors:I$,meanRgb:S$,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new bt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var Qe={ssdMobilenetv1:new As,tinyFaceDetector:new Vo,tinyYolov2:new Wo,faceLandmark68Net:new Po,faceLandmark68TinyNet:new kd,faceRecognitionNet:new Oo,faceExpressionNet:new vd,ageGenderNet:new wd},T$=(e,t)=>Qe.ssdMobilenetv1.locateFaces(e,t),vce=(e,t)=>Qe.tinyFaceDetector.locateFaces(e,t),wce=(e,t)=>Qe.tinyYolov2.locateFaces(e,t),N$=e=>Qe.faceLandmark68Net.detectLandmarks(e),kce=e=>Qe.faceLandmark68TinyNet.detectLandmarks(e),Ice=e=>Qe.faceRecognitionNet.computeFaceDescriptor(e),Sce=e=>Qe.faceExpressionNet.predictExpressions(e),Tce=e=>Qe.ageGenderNet.predictAgeAndGender(e),C$=e=>Qe.ssdMobilenetv1.load(e),Nce=e=>Qe.tinyFaceDetector.load(e),Cce=e=>Qe.tinyYolov2.load(e),_ce=e=>Qe.faceLandmark68Net.load(e),Ece=e=>Qe.faceLandmark68TinyNet.load(e),Ace=e=>Qe.faceRecognitionNet.load(e),$ce=e=>Qe.faceExpressionNet.load(e),Fce=e=>Qe.ageGenderNet.load(e),Dce=C$,Rce=T$,Mce=N$;var Ig=class extends ka{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Uo=class extends Ig{async run(){let t=await this.parentTask,n=await Bo(t,this.input,async a=>Promise.all(a.map(r=>Qe.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>dg(a,n[r]))}withAgeAndGender(){return new Ho(this,this.input)}},Go=class extends Ig{async run(){let t=await this.parentTask;if(!t)return;let n=await yp(t,this.input,a=>Qe.faceExpressionNet.predictExpressions(a),this.extractedFaces);return dg(t,n)}withAgeAndGender(){return new jo(this,this.input)}},$s=class extends Uo{withAgeAndGender(){return new Ds(this,this.input)}withFaceDescriptors(){return new Gr(this,this.input)}},Fs=class extends Go{withAgeAndGender(){return new Rs(this,this.input)}withFaceDescriptor(){return new Hr(this,this.input)}};var Sg=class extends ka{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Ho=class extends Sg{async run(){let t=await this.parentTask,n=await Bo(t,this.input,async a=>Promise.all(a.map(r=>Qe.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return vg(wg(a,i,o),s)})}withFaceExpressions(){return new Uo(this,this.input)}},jo=class extends Sg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await yp(t,this.input,s=>Qe.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return vg(wg(t,a,r),n)}withFaceExpressions(){return new Go(this,this.input)}},Ds=class extends Ho{withFaceExpressions(){return new $s(this,this.input)}withFaceDescriptors(){return new Gr(this,this.input)}},Rs=class extends jo{withFaceExpressions(){return new Fs(this,this.input)}withFaceDescriptor(){return new Hr(this,this.input)}};var Td=class extends ka{constructor(n,a){super();this.parentTask=n;this.input=a}},Gr=class extends Td{async run(){let t=await this.parentTask;return(await Bo(t,this.input,a=>Promise.all(a.map(r=>Qe.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>xg(t[r],a))}withFaceExpressions(){return new $s(this,this.input)}withAgeAndGender(){return new Ds(this,this.input)}},Hr=class extends Td{async run(){let t=await this.parentTask;if(!t)return;let n=await yp(t,this.input,a=>Qe.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return xg(t,n)}withFaceExpressions(){return new Fs(this,this.input)}withAgeAndGender(){return new Rs(this,this.input)}};var Nd=class extends ka{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?Qe.faceLandmark68TinyNet:Qe.faceLandmark68Net}},Cd=class extends Nd{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Te?await up(this.input,n):await lp(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Te&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>fp(i,r[o]))}withFaceExpressions(){return new $s(this,this.input)}withAgeAndGender(){return new Ds(this,this.input)}withFaceDescriptors(){return new Gr(this,this.input)}},_d=class extends Nd{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Te?await up(this.input,[n]):await lp(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Te&&s.dispose()),fp(t,r)}withFaceExpressions(){return new Fs(this,this.input)}withAgeAndGender(){return new Rs(this,this.input)}withFaceDescriptor(){return new Hr(this,this.input)}};var Ed=class extends ka{constructor(n,a=new wa){super();this.input=n;this.options=a}},xp=class extends Ed{async run(){let{input:t,options:n}=this,a;if(n instanceof Sd)a=Qe.tinyFaceDetector.locateFaces(t,n);else if(n instanceof wa)a=Qe.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof Qa)a=Qe.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>Ao({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new Cd(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Uo(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Ho(this.runAndExtendWithFaceDetections(),this.input)}},Ad=class extends Ed{async run(){let t=await new xp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Ao({},n):void 0)})}withFaceLandmarks(t=!1){return new _d(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Go(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new jo(this.runAndExtendWithFaceDetection(),this.input)}};function Pce(e,t=new wa){return new Ad(e,t)}function Tg(e,t=new wa){return new xp(e,t)}async function _$(e,t){return Tg(e,new wa(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Oce(e,t={}){return Tg(e,new Qa(t)).withFaceLandmarks().withFaceDescriptors()}var Lce=_$;function U1(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var $d=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof gr)return i;if(i instanceof Float32Array)return new gr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new gr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>U1(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new sp(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new sp("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>gr.fromJSON(a));return new $d(n,t.distanceThreshold)}};function zce(e){let t=new Vo;return t.extractWeights(e),t}function E$(e,t){let{width:n,height:a}=new bn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>E$(r,{width:n,height:a}));if(Mo(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return fp(Ao(e,r),s)}return br(e)?Ao(e,e.detection.forSize(n,a)):e instanceof ra||e instanceof bt?e.forSize(n,a):e}var Wce=XA;return hF(Bce);})();