face-api/dist/face-api.esm.js

4342 lines
1.1 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var m_=Object.defineProperty;var bg=(e,t)=>{for(var n in t)m_(e,n,{get:t[n],enumerable:!0})};var f_={};bg(f_,{Abs:()=>xo,Acos:()=>vo,Acosh:()=>wo,AdadeltaOptimizer:()=>kh,AdagradOptimizer:()=>Ih,AdamOptimizer:()=>Th,AdamaxOptimizer:()=>Nh,Add:()=>Lr,AddN:()=>vs,All:()=>td,Any:()=>nd,ArgMax:()=>ws,ArgMin:()=>zu,Asin:()=>ko,Asinh:()=>Io,Atan:()=>To,Atan2:()=>So,Atanh:()=>No,AvgPool:()=>ks,AvgPool3D:()=>Wu,AvgPool3DGrad:()=>rd,AvgPoolGrad:()=>ad,BackendWasm:()=>CS,BatchMatMul:()=>Is,BatchToSpaceND:()=>Bu,Bincount:()=>sd,BroadcastTo:()=>Ww,Callback:()=>wI,CallbackList:()=>x1,Cast:()=>Ts,Ceil:()=>Ns,ClipByValue:()=>zr,Complex:()=>id,ComplexAbs:()=>Vu,Concat:()=>Co,Conv2D:()=>Ss,Conv2DBackpropFilter:()=>od,Conv2DBackpropInput:()=>Cs,Conv3D:()=>Uu,Conv3DBackpropFilterV2:()=>ld,Conv3DBackpropInputV2:()=>ud,Cos:()=>_s,Cosh:()=>_o,CropAndResize:()=>Eo,Cumsum:()=>Es,CustomCallback:()=>w1,DataStorage:()=>Jp,DenseBincount:()=>cd,DepthToSpace:()=>Fo,DepthwiseConv2dNative:()=>Fs,DepthwiseConv2dNativeBackpropFilter:()=>pd,DepthwiseConv2dNativeBackpropInput:()=>dd,Diag:()=>hd,Dilation2D:()=>Gu,Dilation2DBackpropFilter:()=>fd,Dilation2DBackpropInput:()=>md,ENV:()=>Ig,EarlyStopping:()=>II,Elu:()=>Ao,EluGrad:()=>gd,Environment:()=>Lw,Equal:()=>Do,Erf:()=>$o,Exp:()=>$s,ExpandDims:()=>Ro,Expm1:()=>Mo,FFT:()=>yd,Fill:()=>Hu,FlipLeftRight:()=>Po,Floor:()=>Ds,FloorDiv:()=>Rs,FromPixels:()=>$d,FusedBatchNorm:()=>Ms,FusedConv2D:()=>hi,FusedDepthwiseConv2D:()=>mi,GatherNd:()=>Lo,GatherV2:()=>Oo,GraphModel:()=>ZI,Greater:()=>zo,GreaterEqual:()=>Ps,History:()=>v1,IFFT:()=>bd,Identity:()=>Os,Imag:()=>xd,InputSpec:()=>Yt,IsFinite:()=>Wo,IsInf:()=>Bo,IsNan:()=>Vo,KernelBackend:()=>Pu,LRN:()=>Ku,LRNGrad:()=>wd,LayerVariable:()=>m1,LayersModel:()=>xr,LeakyRelu:()=>Ls,Less:()=>Uo,LessEqual:()=>Go,LinSpace:()=>vd,Log:()=>zs,Log1p:()=>Ho,LogSoftmax:()=>Bw,LogicalAnd:()=>jo,LogicalNot:()=>ju,LogicalOr:()=>qu,Max:()=>Ws,MaxPool:()=>Vs,MaxPool3D:()=>Xu,MaxPool3DGrad:()=>Id,MaxPoolGrad:()=>kd,MaxPoolWithArgmax:()=>Td,Maximum:()=>Bs,Mean:()=>Us,Min:()=>Gs,Minimum:()=>Hs,MirrorPad:()=>Yu,Mod:()=>qo,MomentumOptimizer:()=>Sh,Multinomial:()=>Nd,Multiply:()=>js,Neg:()=>Ko,NonMaxSuppressionV3:()=>Yo,NonMaxSuppressionV4:()=>Jo,NonMaxSuppressionV5:()=>Qo,NotEqual:()=>Xo,OP_SCOPE_SUFFIX:()=>Qw,OneHot:()=>qs,OnesLike:()=>Zo,Optimizer:()=>gr,Pack:()=>el,PadV2:()=>Ks,Pool:()=>pE,Pow:()=>Xs,Prelu:()=>Ys,Prod:()=>tl,RMSPropOptimizer:()=>Ch,RNN:()=>Za,Range:()=>Ju,Rank:()=>Fg,Real:()=>Sd,RealDiv:()=>As,Reciprocal:()=>nl,Reduction:()=>mn,Relu:()=>Js,Relu6:()=>Zs,Reshape:()=>al,ResizeBilinear:()=>Qs,ResizeBilinearGrad:()=>_d,ResizeNearestNeighbor:()=>Qu,ResizeNearestNeighborGrad:()=>Cd,Reverse:()=>ei,RotateWithOffset:()=>yl,Round:()=>ti,Rsqrt:()=>ni,SGDOptimizer:()=>Cc,ScatterNd:()=>rl,Select:()=>sl,Selu:()=>il,Sequential:()=>Vl,Sigmoid:()=>ri,Sign:()=>ul,Sin:()=>ai,Sinh:()=>ll,Slice:()=>ol,Softmax:()=>oi,Softplus:()=>cl,SpaceToBatchND:()=>Zu,SparseToDense:()=>Ed,SplitV:()=>pl,Sqrt:()=>si,Square:()=>ec,SquaredDifference:()=>li,Step:()=>Br,StridedSlice:()=>dl,Sub:()=>ui,Sum:()=>ii,SymbolicTensor:()=>Ea,Tan:()=>hl,Tanh:()=>ci,Tensor:()=>Ee,TensorBuffer:()=>Lt,Tile:()=>Wr,TopK:()=>ml,Transform:()=>Fd,Transpose:()=>pi,Unique:()=>Ad,Unpack:()=>fl,UnsortedSegmentSum:()=>tc,Variable:()=>Vr,ZerosLike:()=>gl,_FusedMatMul:()=>di,abs:()=>zt,acos:()=>ty,acosh:()=>ny,add:()=>J,addN:()=>M0,all:()=>jd,any:()=>hc,argMax:()=>mc,argMin:()=>ay,asin:()=>ry,asinh:()=>sy,atan:()=>iy,atan2:()=>oy,atanh:()=>ly,avgPool:()=>Qn,avgPool3d:()=>py,backend:()=>R0,backend_util:()=>_,basicLSTMCell:()=>GA,batchNorm:()=>hr,batchNorm2d:()=>z0,batchNorm3d:()=>W0,batchNorm4d:()=>B0,batchToSpaceND:()=>gc,bincount:()=>V0,booleanMaskAsync:()=>KR,broadcastTo:()=>yc,browser:()=>bi,buffer:()=>Me,callbacks:()=>OB,cast:()=>ue,ceil:()=>dy,clipByValue:()=>Kt,clone:()=>jr,complex:()=>Ur,concat:()=>Je,concat1d:()=>U0,concat2d:()=>G0,concat3d:()=>H0,concat4d:()=>j0,constraints:()=>Bk,conv1d:()=>Kd,conv2d:()=>At,conv2dTranspose:()=>Xd,conv3d:()=>my,conv3dTranspose:()=>d$,copyRegisteredKernels:()=>mE,cos:()=>bc,cosh:()=>Yd,cosineWindow:()=>Wy,cumsum:()=>Jd,customGrad:()=>Ha,data:()=>tT,denseBincount:()=>K0,deprecationWarn:()=>ey,depthToSpace:()=>fy,depthwiseConv2d:()=>Xr,deregisterOp:()=>zB,device_util:()=>cc,diag:()=>v$,dilation2d:()=>gy,disableDeprecationWarnings:()=>nA,dispose:()=>Ae,disposeVariables:()=>aA,div:()=>ye,divNoNan:()=>yy,dot:()=>X0,dropout:()=>gk,elu:()=>Cl,enableDebugMode:()=>tA,enableProdMode:()=>eA,enclosingPowerOfTwo:()=>yk,engine:()=>Va,env:()=>Z,equal:()=>Yr,erf:()=>by,exp:()=>dn,expandDims:()=>hn,expm1:()=>xy,eye:()=>vy,fft:()=>Nc,fill:()=>Sn,findBackend:()=>cA,findBackendFactory:()=>pA,floor:()=>_l,floorDiv:()=>Hd,fused:()=>Zr,gather:()=>wi,gatherND:()=>fk,gather_util:()=>qg,getBackend:()=>lA,getGradient:()=>Cg,getKernel:()=>Dd,getKernelsForBackend:()=>Rd,grad:()=>X$,grads:()=>Y$,greater:()=>ca,greaterEqual:()=>Jr,ifft:()=>Rl,imag:()=>Qd,image:()=>Ka,inTopKAsync:()=>sM,initializers:()=>Kk,input:()=>o1,io:()=>jt,irfft:()=>hh,isFinite:()=>Y0,isInf:()=>J0,isNaN:()=>Q0,keep:()=>qt,kernel_impls:()=>Xa,layers:()=>i1,leakyRelu:()=>xc,less:()=>Zd,lessEqual:()=>ki,linalg:()=>Ek,linspace:()=>Z0,loadGraphModel:()=>L4,loadLayersModel:()=>aB,localResponseNormalization:()=>wy,log:()=>Mn,log1p:()=>eh,logSigmoid:()=>tk,logSoftmax:()=>nh,logSumExp:()=>Ty,logicalAnd:()=>pa,logicalNot:()=>vc,logicalOr:()=>ah,logicalXor:()=>sk,losses:()=>kP,matMul:()=>ze,math:()=>m0,max:()=>Zn,maxPool:()=>$t,maxPool3d:()=>Ny,maxPoolWithArgmax:()=>ik,maximum:()=>ja,mean:()=>Ct,memory:()=>Ud,metrics:()=>bI,min:()=>Fl,minimum:()=>Al,mirrorPad:()=>Sy,mod:()=>Cy,model:()=>tB,models:()=>xI,moments:()=>rh,movingAverage:()=>JR,mul:()=>W,multiRNNCell:()=>ND,multinomial:()=>ok,neg:()=>St,nextFrame:()=>_h,norm:()=>yh,notEqual:()=>Ti,oneHot:()=>Il,ones:()=>qa,onesLike:()=>Pn,op:()=>O,outerProduct:()=>FD,pad:()=>ea,pad1d:()=>DD,pad2d:()=>MD,pad3d:()=>OD,pad4d:()=>zD,pool:()=>lk,pow:()=>mr,prelu:()=>kc,print:()=>l0,prod:()=>sh,profile:()=>rA,rand:()=>KD,randomGamma:()=>QD,randomNormal:()=>uk,randomUniform:()=>$l,range:()=>ih,ready:()=>oA,real:()=>Ic,reciprocal:()=>Fy,registerBackend:()=>Gd,registerCallbackConstructor:()=>rB,registerGradient:()=>Vw,registerKernel:()=>ac,registerOp:()=>LB,regularizers:()=>vI,relu:()=>qe,relu6:()=>oh,removeBackend:()=>uA,reshape:()=>U,reverse:()=>On,reverse1d:()=>oR,reverse2d:()=>uR,reverse3d:()=>pR,reverse4d:()=>hR,rfft:()=>Sc,round:()=>Ay,rsqrt:()=>lh,scalar:()=>ve,scatterND:()=>mk,scatter_util:()=>Kg,selu:()=>uh,separableConv2d:()=>Ni,sequential:()=>nB,serialization:()=>re,setBackend:()=>iA,setPlatform:()=>dA,setWasmPath:()=>zae,setWasmPaths:()=>Wae,setdiff1dAsync:()=>ck,sigmoid:()=>ua,sign:()=>$y,signal:()=>wP,sin:()=>ch,sinh:()=>ph,slice:()=>Be,slice1d:()=>dh,slice2d:()=>Dy,slice3d:()=>Dl,slice4d:()=>Tc,slice_util:()=>an,softmax:()=>Ia,softplus:()=>El,spaceToBatchND:()=>wc,sparseToDense:()=>zy,spectral:()=>vP,split:()=>Ln,sqrt:()=>rn,square:()=>ot,squaredDifference:()=>mh,squeeze:()=>Qr,stack:()=>Dt,step:()=>Ml,stridedSlice:()=>Ry,sub:()=>he,sum:()=>Se,sumOutType:()=>Ld,tan:()=>My,tanh:()=>Sl,tensor:()=>Yn,tensor1d:()=>Qe,tensor2d:()=>Ta,tensor3d:()=>Bd,tensor4d:()=>Na,tensor5d:()=>zR,tensor6d:()=>WR,tensor_util:()=>wa,test_util:()=>F0,tidy:()=>D,tile:()=>Ga,time:()=>sA,topk:()=>Py,train:()=>Ci,transpose:()=>Ve,truncatedNormal:()=>fh,unique:()=>gh,unregisterGradient:()=>hE,unregisterKernel:()=>dE,unsortedSegmentSum:()=>Oy,unstack:()=>lt,upcastType:()=>la,util:()=>w,valueAndGrad:()=>J$,valueAndGrads:()=>Q$,variable:()=>pk,variableGrads:()=>ek,version:()=>HZ,version_converter:()=>eT,version_core:()=>D0,version_layers:()=>Qh,version_wasm:()=>Bae,where:()=>Nn,whereAsync:()=>Ly,zeros:()=>bt,zerosLike:()=>Ge});var g_=Object.create,Yp=Object.defineProperty,y_=Object.getPrototypeOf,b_=Object.prototype.hasOwnProperty,x_=Object.getOwnPropertyNames,v_=Object.getOwnPropertyDescriptor,w_=e=>Yp(e,"__esModule",{value:!0}),Tt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Le=(e,t)=>{for(var n in t)Yp(e,n,{get:t[n],enumerable:!0})},k_=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of x_(t))!b_.call(e,a)&&a!=="default"&&Yp(e,a,{get:()=>t[a],enumerable:!(n=v_(t,a))||n.enumerable});return e},go=e=>k_(w_(Yp(e!=null?g_(y_(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),I_=Tt(()=>{}),T_=Tt((e,t)=>{(function(n,a,r){function s(c){var u=this,p=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(c),u.s0<0&&(u.s0+=1),u.s1-=p(c),u.s1<0&&(u.s1+=1),u.s2-=p(c),u.s2<0&&(u.s2+=1),p=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var p=new s(c),d=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var c=4022871197,u=function(p){p=p.toString();for(var d=0;d<p.length;d++){c+=p.charCodeAt(d);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),N_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),S_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,p==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),C_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.x,d=c.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,c.i=d+1&7,m};function u(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.x&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),__=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.w,d=c.X,h=c.i,m,f;return c.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,c.i=h,f+(p^p>>>16)|0};function u(p,d){var h,m,f,g,y,b=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,g=-32;g<x;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.X&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),E_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.b,h=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^h,c.c=h=h-m|0,c.d=m<<16^h>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)c.b^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Tw=Tt(()=>{}),F_=Tt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),p=u*2,d=s-1,h;function m(T,k,S){var F=[];k=k==!0?{entropy:!0}:k||{};var A=b(y(k.entropy?[T,v(n)]:T==null?x():T,3),F),R=new f(F),P=function(){for(var z=R.g(i),V=c,G=0;z<u;)z=(z+G)*s,V*=s,G=R.g(1);for(;z>=p;)z/=2,V/=2,G>>>=1;return(z+G)/V};return P.int32=function(){return R.g(4)|0},P.quick=function(){return R.g(4)/4294967296},P.double=P,b(v(R.S),n),(k.pass||S||function(z,V,G,H){return H&&(H.S&&g(H,R),z.state=function(){return g(R,{})}),G?(a[l]=z,V):z})(P,A,"global"in k?k.global:this==a,k.state)}a["seed"+l]=m;function f(T){var k,S=T.length,F=this,A=0,R=F.i=F.j=0,P=F.S=[];for(S||(T=[S++]);A<s;)P[A]=A++;for(A=0;A<s;A++)P[A]=P[R=d&R+T[A%S]+(k=P[A])],P[R]=k;(F.g=function(z){for(var V,G=0,H=F.i,K=F.j,j=F.S;z--;)V=j[H=d&H+1],G=G*s+j[d&(j[H]=j[K=d&K+V])+(j[K]=V)];return F.i=H,F.j=K,G})(s)}function g(T,k){return k.i=T.i,k.j=T.j,k.S=T.S.slice(),k}function y(T,k){var S=[],F=typeof T,A;if(k&&F=="object")for(A in T)try{S.push(y(T[A],k-1))}catch(R){}return S.length?S:F=="string"?T:T+"\0"}function b(T,k){for(var S=T+"",F,A=0;A<S.length;)k[d&A]=d&(F^=k[d&A]*19)+S.charCodeAt(A++);return v(k)}function x(){try{var T;return h&&(T=h.randomBytes)?T=T(s):(T=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(T)),v(T)}catch(F){var k=r.navigator,S=k&&k.plugins;return[+new Date,r,S,r.screen,v(n)]}}function v(T){return String.fromCharCode.apply(0,T)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=Tw()}catch(T){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),Nw=Tt((e,t)=>{var n=T_(),a=N_(),r=S_(),s=C_(),i=__(),o=E_(),l=F_();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),A_=Tt((e,t)=>{(function(n,a,r){function s(c){var u=this,p=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(c),u.s0<0&&(u.s0+=1),u.s1-=p(c),u.s1<0&&(u.s1+=1),u.s2-=p(c),u.s2<0&&(u.s2+=1),p=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var p=new s(c),d=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var c=4022871197,u=function(p){p=String(p);for(var d=0;d<p.length;d++){c+=p.charCodeAt(d);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),$_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),D_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,p==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),R_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.x,d=c.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,c.i=d+1&7,m};function u(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.x&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),M_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.w,d=c.X,h=c.i,m,f;return c.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,c.i=h,f+(p^p>>>16)|0};function u(p,d){var h,m,f,g,y,b=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,g=-32;g<x;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.X&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),P_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.b,h=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^h,c.c=h=h-m|0,c.d=m<<16^h>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)c.b^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),O_=Tt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),p=u*2,d=s-1,h;function m(T,k,S){var F=[];k=k==!0?{entropy:!0}:k||{};var A=b(y(k.entropy?[T,v(a)]:T==null?x():T,3),F),R=new f(F),P=function(){for(var z=R.g(i),V=c,G=0;z<u;)z=(z+G)*s,V*=s,G=R.g(1);for(;z>=p;)z/=2,V/=2,G>>>=1;return(z+G)/V};return P.int32=function(){return R.g(4)|0},P.quick=function(){return R.g(4)/4294967296},P.double=P,b(v(R.S),a),(k.pass||S||function(z,V,G,H){return H&&(H.S&&g(H,R),z.state=function(){return g(R,{})}),G?(r[l]=z,V):z})(P,A,"global"in k?k.global:this==r,k.state)}function f(T){var k,S=T.length,F=this,A=0,R=F.i=F.j=0,P=F.S=[];for(S||(T=[S++]);A<s;)P[A]=A++;for(A=0;A<s;A++)P[A]=P[R=d&R+T[A%S]+(k=P[A])],P[R]=k;(F.g=function(z){for(var V,G=0,H=F.i,K=F.j,j=F.S;z--;)V=j[H=d&H+1],G=G*s+j[d&(j[H]=j[K=d&K+V])+(j[K]=V)];return F.i=H,F.j=K,G})(s)}function g(T,k){return k.i=T.i,k.j=T.j,k.S=T.S.slice(),k}function y(T,k){var S=[],F=typeof T,A;if(k&&F=="object")for(A in T)try{S.push(y(T[A],k-1))}catch(R){}return S.length?S:F=="string"?T:T+"\0"}function b(T,k){for(var S=T+"",F,A=0;A<S.length;)k[d&A]=d&(F^=k[d&A]*19)+S.charCodeAt(A++);return v(k)}function x(){try{var T;return h&&(T=h.randomBytes)?T=T(s):(T=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(T)),v(T)}catch(F){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,v(a)]}}function v(T){return String.fromCharCode.apply(0,T)}if(b(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=Tw()}catch(T){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Sw=Tt((e,t)=>{var n=A_(),a=$_(),r=D_(),s=R_(),i=M_(),o=P_(),l=O_();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),L_=Tt(()=>{}),Mu=Tt(()=>{}),z_=Tt(()=>{}),W_=Tt(()=>{}),B_=Tt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ee.buffer!=We&&tn(ee.buffer),vn}function i(){return ee.buffer!=We&&tn(ee.buffer),It}function o(){return ee.buffer!=We&&tn(ee.buffer),wn}function l(){return ee.buffer!=We&&tn(ee.buffer),Kn}function c(){return ee.buffer!=We&&tn(ee.buffer),pn}var u=typeof r!="undefined"?r:{},p,d;u.ready=new Promise(function(N,C){p=N,d=C});var h={},m;for(m in u)u.hasOwnProperty(m)&&(h[m]=u[m]);var f=[],g="./this.program",y=function(N,C){throw C},b=!1,x=!1,v=!1,T=!1;b=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",T=!b&&!v&&!x;var k=u.ENVIRONMENT_IS_PTHREAD||!1;k&&(We=u.buffer);var S="";function F(N){return u.locateFile?u.locateFile(N,S):S+N}var A,R,P,z,V,G;if(v){x?S=Mu().dirname(S)+"/":S=__dirname+"/",A=function(N,C){return V||(V=require("fs")),G||(G=Mu()),N=G.normalize(N),V.readFileSync(N,C?null:"utf8")},P=function(N){var C=A(N,!0);return C.buffer||(C=new Uint8Array(C)),me(C.buffer),C},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof Ru))throw N}),process.on("unhandledRejection",lr),y=function(N){process.exit(N)},u.inspect=function(){return"[Emscripten Module object]"};var H;try{H=z_()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=H.Worker}else T?(typeof read!="undefined"&&(A=function(N){return read(N)}),P=function(N){var C;return typeof readbuffer=="function"?new Uint8Array(readbuffer(N)):(C=read(N,"binary"),me(typeof C=="object"),C)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(b||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof a!="undefined"&&a&&(S=a),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",v?(A=function(N,C){return V||(V=require("fs")),G||(G=Mu()),N=G.normalize(N),V.readFileSync(N,C?null:"utf8")},P=function(N){var C=A(N,!0);return C.buffer||(C=new Uint8Array(C)),me(C.buffer),C}):(A=function(N){var C=new XMLHttpRequest;return C.open("GET",N,!1),C.send(null),C.responseText},x&&(P=function(N){var C=new XMLHttpRequest;return C.open("GET",N,!1),C.responseType="arraybuffer",C.send(null),new Uint8Array(C.response)}),R=function(N,C,L){var q=new XMLHttpRequest;q.open("GET",N,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){C(q.response);return}L()},q.onerror=L,q.send(null)}),z=function(N){document.title=N});v&&typeof performance=="undefined"&&(global.performance=W_().performance);var K=u.print||console.log.bind(console),j=u.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(u[m]=h[m]);h=null,u.arguments&&(f=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(y=u.quit);var te=Atomics.load,Q=Atomics.store,se=Atomics.compareExchange,ne;u.wasmBinary&&(ne=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&lr("no native wasm support detected");var ee,pe,oe=!1,fe;function me(N,C){N||lr("Assertion failed: "+C)}function we(N){var C=u["_"+N];return me(C,"Cannot call unknown function "+N+", make sure it is exported"),C}function Te(N,C,L,q,de){var le={string:function(Tn){var fo=0;if(Tn!=null&&Tn!==0){var Iw=(Tn.length<<2)+1;fo=po(Iw),nt(Tn,fo,Iw)}return fo},array:function(Tn){var fo=po(Tn.length);return Xe(Tn,fo),fo}};function ce(Tn){return C==="string"?Fe(Tn):C==="boolean"?Boolean(Tn):Tn}var be=we(N),at=[],Gt=0;if(q)for(var Pt=0;Pt<q.length;Pt++){var Mr=le[L[Pt]];Mr?(Gt===0&&(Gt=Du()),at[Pt]=Mr(q[Pt])):at[Pt]=q[Pt]}var mo=be.apply(null,at);return mo=ce(mo),Gt!==0&&co(Gt),mo}function _e(N,C,L,q){L=L||[];var de=L.every(function(ce){return ce==="number"}),le=C!=="string";return le&&de&&!q?we(N):function(){return Te(N,C,L,arguments,q)}}function De(N,C,L){for(var q=C+L,de="";!(C>=q);){var le=N[C++];if(!le)return de;if(!(le&128)){de+=String.fromCharCode(le);continue}var ce=N[C++]&63;if((le&224)==192){de+=String.fromCharCode((le&31)<<6|ce);continue}var be=N[C++]&63;if((le&240)==224?le=(le&15)<<12|ce<<6|be:le=(le&7)<<18|ce<<12|be<<6|N[C++]&63,le<65536)de+=String.fromCharCode(le);else{var at=le-65536;de+=String.fromCharCode(55296|at>>10,56320|at&1023)}}return de}function Fe(N,C){return N?De(i(),N,C):""}function tt(N,C,L,q){if(!(q>0))return 0;for(var de=L,le=L+q-1,ce=0;ce<N.length;++ce){var be=N.charCodeAt(ce);if(be>=55296&&be<=57343){var at=N.charCodeAt(++ce);be=65536+((be&1023)<<10)|at&1023}if(be<=127){if(L>=le)break;C[L++]=be}else if(be<=2047){if(L+1>=le)break;C[L++]=192|be>>6,C[L++]=128|be&63}else if(be<=65535){if(L+2>=le)break;C[L++]=224|be>>12,C[L++]=128|be>>6&63,C[L++]=128|be&63}else{if(L+3>=le)break;C[L++]=240|be>>18,C[L++]=128|be>>12&63,C[L++]=128|be>>6&63,C[L++]=128|be&63}}return C[L]=0,L-de}function nt(N,C,L){return tt(N,i(),C,L)}function it(N){for(var C=0,L=0;L<N.length;++L){var q=N.charCodeAt(L);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|N.charCodeAt(++L)&1023),q<=127?++C:q<=2047?C+=2:q<=65535?C+=3:C+=4}return C}function Xe(N,C){s().set(N,C)}function ht(N,C){return N%C>0&&(N+=C-N%C),N}var We,vn,It,qn,en,wn,Kn,Rn,pn;function tn(N){We=N,u.HEAP8=vn=new Int8Array(N),u.HEAP16=qn=new Int16Array(N),u.HEAP32=wn=new Int32Array(N),u.HEAPU8=It=new Uint8Array(N),u.HEAPU16=en=new Uint16Array(N),u.HEAPU32=Kn=new Uint32Array(N),u.HEAPF32=Rn=new Float32Array(N),u.HEAPF64=pn=new Float64Array(N)}var za=u.INITIAL_MEMORY||16777216;if(k)ee=u.wasmMemory,We=u.buffer;else if(u.wasmMemory)ee=u.wasmMemory;else if(ee=new WebAssembly.Memory({initial:za/65536,maximum:2147483648/65536,shared:!0}),!(ee.buffer instanceof SharedArrayBuffer))throw j("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ee&&(We=ee.buffer),za=We.byteLength,tn(We);var ra,sa=[],Er=[],ir=[],Fr=[],ao=[],va=!1,Cp=!1;k||Er.push({func:function(){Up()}}),k&&(va=!0);function nf(){if(!k){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)Fp(u.preRun.shift());so(sa)}}function _p(){va=!0,so(Er)}function af(){k||so(ir)}function Ep(){k||(Cp=!0)}function kn(){if(!k){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)rf(u.postRun.shift());so(ao)}}function Fp(N){sa.unshift(N)}function rf(N){ao.unshift(N)}var or=0,Ar=null,fs=null;function sf(N){me(!k,"addRunDependency cannot be used in a pthread worker"),or++,u.monitorRunDependencies&&u.monitorRunDependencies(or)}function of(N){if(or--,u.monitorRunDependencies&&u.monitorRunDependencies(or),or==0&&(Ar!==null&&(clearInterval(Ar),Ar=null),fs)){var C=fs;fs=null,C()}}u.preloadedImages={},u.preloadedAudios={};function lr(N){u.onAbort&&u.onAbort(N),k&&console.error("Pthread aborting at "+new Error().stack),N+="",j(N),oe=!0,fe=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var C=new WebAssembly.RuntimeError(N);throw d(C),C}function Ap(N,C){return String.prototype.startsWith?N.startsWith(C):N.indexOf(C)===0}var ro="data:application/octet-stream;base64,";function $p(N){return Ap(N,ro)}var lf="file://";function Dp(N){return Ap(N,lf)}var In="tfjs-backend-wasm-threaded-simd.wasm";$p(In)||(In=F(In));function uf(N){try{if(N==In&&ne)return new Uint8Array(ne);if(P)return P(N);throw"both async and sync fetching of the wasm failed"}catch(C){lr(C)}}function Rp(){if(!ne&&(b||x)){if(typeof fetch=="function"&&!Dp(In))return fetch(In,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+In+"'";return N.arrayBuffer()}).catch(function(){return uf(In)});if(R)return new Promise(function(N,C){R(In,function(L){N(new Uint8Array(L))},C)})}return Promise.resolve().then(function(){return uf(In)})}function cf(){var N={a:eg};function C(ce,be){var at=ce.exports;if(u.asm=at,ra=u.asm.F,pe=be,!k){var Gt=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Pt){ke.loadWasmModuleToWorker(Pt,function(){--Gt||of("wasm-instantiate")})})}}k||sf("wasm-instantiate");function L(ce){C(ce.instance,ce.module)}function q(ce){return Rp().then(function(be){return WebAssembly.instantiate(be,N)}).then(ce,function(be){j("failed to asynchronously prepare wasm: "+be),lr(be)})}function de(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!$p(In)&&!Dp(In)&&typeof fetch=="function"?fetch(In,{credentials:"same-origin"}).then(function(ce){var be=WebAssembly.instantiateStreaming(ce,N);return be.then(L,function(at){return j("wasm streaming compile failed: "+at),j("falling back to ArrayBuffer instantiation"),q(L)})}):q(L)}if(u.instantiateWasm)try{var le=u.instantiateWasm(N,C);return le}catch(ce){return j("Module.instantiateWasm callback failed with error: "+ce),!1}return de().catch(d),{}}var Mp={8991:function(N,C){setTimeout(function(){yw(N,C)},0)}};function pf(){ke.initRuntime()}function so(N){for(;N.length>0;){var C=N.shift();if(typeof C=="function"){C(u);continue}var L=C.func;typeof L=="number"?C.arg===void 0?ra.get(L)():ra.get(L)(C.arg):L(C.arg===void 0?null:C.arg)}}function io(N,C){if(N<=0||N>s().length||N&!0||C<0)return-28;if(C==0)return 0;C>=2147483647&&(C=Infinity);var L=Atomics.load(o(),ho>>2),q=0;if(L==N){var de=Atomics.compareExchange(o(),ho>>2,L,0);if(de==L&&(--C,q=1,C<=0))return 1}var le=Atomics.notify(o(),N>>2,C);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=io;function df(N){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";o()[N+12>>2]=0;var C=ke.pthreads[N];C.worker.terminate(),ke.freeThreadData(C),ke.runningWorkers.splice(ke.runningWorkers.indexOf(C.worker),1),C.worker.pthread=void 0}function hf(N){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var C=ke.pthreads[N];C.worker.postMessage({cmd:"cancel"})}function mf(N){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[N+12>>2]=0;var C=ke.pthreads[N];if(C){var L=C.worker;ke.returnWorkerToPool(L)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=8,C=0;C<N;++C)ke.allocateUnusedWorker()},initRuntime:function(){for(var N=ys(228),C=0;C<228/4;++C)l()[N/4+C]=0;o()[N+12>>2]=N;var L=N+152;o()[L>>2]=L;for(var q=ys(512),C=0;C<128;++C)l()[q/4+C]=0;Atomics.store(l(),N+100>>2,q),Atomics.store(l(),N+40>>2,N),Kp(N,!x,1),gw(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();k&&uo()&&fw()},threadExit:function(N){var C=uo();C&&(Atomics.store(l(),C+4>>2,N),Atomics.store(l(),C+0>>2,1),Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),ke.runExitHandlers(),io(C+0,2147483647),Kp(0,0,0),k&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlers();var N=uo();Atomics.store(l(),N+4>>2,-1),Atomics.store(l(),N+0>>2,1),io(N+0,2147483647),Kp(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in ke.pthreads){var C=ke.pthreads[N];C&&C.worker&&ke.returnWorkerToPool(C.worker)}ke.pthreads={};for(var L=0;L<ke.unusedWorkers.length;++L){var q=ke.unusedWorkers[L];q.terminate()}ke.unusedWorkers=[];for(var L=0;L<ke.runningWorkers.length;++L){var q=ke.runningWorkers[L],C=q.pthread;ke.freeThreadData(C),q.terminate()}ke.runningWorkers=[]},freeThreadData:function(N){if(N){if(N.threadInfoStruct){var C=o()[N.threadInfoStruct+100>>2];o()[N.threadInfoStruct+100>>2]=0,$u(C),$u(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&$u(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[N.pthread.threadInfoStruct],ke.unusedWorkers.push(N),ke.runningWorkers.splice(ke.runningWorkers.indexOf(N),1),ke.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){o()[kw>>2]=0;try{N()}finally{o()[kw>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,C){N.onmessage=function(L){var q=L.data,de=q.cmd;if(N.pthread&&(ke.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=uo()){var le=ke.pthreads[q.targetThread];le?le.worker.postMessage(L.data,q.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")fg();else if(de==="spawnThread")Bp(L.data);else if(de==="cleanupThread")mf(q.thread);else if(de==="killThread")df(q.thread);else if(de==="cancelThread")hf(q.thread);else if(de==="loaded")N.loaded=!0,C&&C(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(de==="print")K("Thread "+q.threadId+": "+q.text);else if(de==="printErr")j("Thread "+q.threadId+": "+q.text);else if(de==="alert")alert("Thread "+q.threadId+": "+q.text);else if(de==="exit"){var ce=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);ce&&ke.returnWorkerToPool(N)}else if(de==="exitProcess")try{h_(q.returnCode)}catch(be){if(be instanceof Ru)return;throw be}else de==="cancelDone"?ke.returnWorkerToPool(N):de==="objectTransfer"?ke.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?N.postMessage(L.data):j("worker sent an unknown command "+de);ke.currentProxiedOperationCallerThread=void 0},N.onerror=function(L){j("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},v&&(N.on("message",function(L){N.onmessage({data:L})}),N.on("error",function(L){N.onerror(L)}),N.on("exit",function(L){})),N.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||a,wasmMemory:ee,wasmModule:pe})},allocateUnusedWorker:function(){var N=F("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(N){for(var C=performance.now()+N;performance.now()<C;);}};function ff(N,C){vw(N,C),co(N)}u.establishStackSpace=ff;function gf(){return ie}u.getNoExitRuntime=gf;function yf(N,C){return ra.get(N)(C)}u.invokeEntryPoint=yf;function bf(N,C,L,q){lr("Assertion failed: "+Fe(N)+", at: "+[C?Fe(C):"unknown filename",L,q?Fe(q):"unknown function"])}function xf(N,C){var L=_main(N,C)}var gs;v?gs=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?gs=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?gs=dateNow:gs=function(){return performance.now()};function vf(N){return o()[hw()>>2]=N,N}function wf(N,C){if(k)return $r(1,1,N,C)}function kf(N,C){if(N==C)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var L=ke.pthreads[N],q=L&&L.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function If(){lr()}function Tf(N,C,L){var q=Ef(C,L);return Mp[N].apply(null,q)}function Nf(N,C){}function Sf(N,C,L){if(N<=0||N>s().length||N&!0)return-28;if(b){if(Atomics.load(o(),N>>2)!=C)return-6;for(var q=performance.now(),de=q+L,le=Atomics.exchange(o(),ho>>2,N);;){if(q=performance.now(),q>de)return le=Atomics.exchange(o(),ho>>2,0),-73;if(le=Atomics.exchange(o(),ho>>2,0),le==0)break;if(fg(),Atomics.load(o(),N>>2)!=C)return-6;le=Atomics.exchange(o(),ho>>2,N)}return 0}else{var ce=Atomics.wait(o(),N>>2,C,L);if(ce==="timed-out")return-73;if(ce==="not-equal")return-6;if(ce==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ce}}function Cf(N,C,L){i().copyWithin(N,C,C+L)}function _f(){return v?require("os").cpus().length:navigator.hardwareConcurrency}function $r(N,C){for(var L=arguments.length-2,q=Du(),de=L,le=po(de*8),ce=le>>3,be=0;be<L;be++){var at=arguments[2+be];c()[ce+be]=at}var Gt=xw(N,de,le,C);return co(q),Gt}var Su=[],Cu=[];function Ef(N,C){Cu.length=0;var L;for(C>>=2;L=i()[N++];){var q=L<105;q&&C&1&&C++,Cu.push(q?c()[C++>>1]:o()[C]),++C}return Cu}function Ff(N,C,L){Su.length=C;for(var q=L>>3,de=0;de<C;de++)Su[de]=c()[q+de];var le=N<0,ce=le?Mp[-N-1]:Zf[N];return ce.apply(null,Su)}function Af(){return i().length}function $f(N){try{return ee.grow(N-We.byteLength+65535>>>16),tn(ee.buffer),1}catch(C){}}function Df(N){var C=Af();if(N<=C)return!1;var L=2147483648;if(N>L)return!1;for(var q=1;q<=4;q*=2){var de=C*(1+.2/q);de=Math.min(de,N+100663296);var le=Math.min(L,ht(Math.max(N,de),65536)),ce=$f(le);if(ce)return!0}return!1}var Oe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Oe.eventHandlers.length-1;N>=0;--N)Oe._removeHandler(N);Oe.eventHandlers=[],Oe.deferredCalls=[]},registerRemoveEventListeners:function(){Oe.removeEventListenersRegistered||(Fr.push(Oe.removeAllEventListeners),Oe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,C,L){function q(ce,be){if(ce.length!=be.length)return!1;for(var at in ce)if(ce[at]!=be[at])return!1;return!0}for(var de in Oe.deferredCalls){var le=Oe.deferredCalls[de];if(le.targetFunction==N&&q(le.argsList,L))return}Oe.deferredCalls.push({targetFunction:N,precedence:C,argsList:L}),Oe.deferredCalls.sort(function(ce,be){return ce.precedence<be.precedence})},removeDeferredCalls:function(N){for(var C=0;C<Oe.deferredCalls.length;++C)Oe.deferredCalls[C].targetFunction==N&&(Oe.deferredCalls.splice(C,1),--C)},canPerformEventHandlerRequests:function(){return Oe.inEventHandler&&Oe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Oe.canPerformEventHandlerRequests())for(var N=0;N<Oe.deferredCalls.length;++N){var C=Oe.deferredCalls[N];Oe.deferredCalls.splice(N,1),--N,C.targetFunction.apply(null,C.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,C){for(var L=0;L<Oe.eventHandlers.length;++L)Oe.eventHandlers[L].target==N&&(!C||C==Oe.eventHandlers[L].eventTypeString)&&Oe._removeHandler(L--)},_removeHandler:function(N){var C=Oe.eventHandlers[N];C.target.removeEventListener(C.eventTypeString,C.eventListenerFunc,C.useCapture),Oe.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var C=function(q){++Oe.inEventHandler,Oe.currentEventHandler=N,Oe.runDeferredCalls(),N.handlerFunc(q),Oe.runDeferredCalls(),--Oe.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=C,N.target.addEventListener(N.eventTypeString,C,N.useCapture),Oe.eventHandlers.push(N),Oe.registerRemoveEventListeners();else for(var L=0;L<Oe.eventHandlers.length;++L)Oe.eventHandlers[L].target==N.target&&Oe.eventHandlers[L].eventTypeString==N.eventTypeString&&Oe._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(N,C,L,q,de){var le=Du(),ce=po(12);o()[ce>>2]=L,o()[ce+4>>2]=q,o()[ce+8>>2]=de,gg(0,N,637534208,C,q,ce),co(le)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Rf(N){var C=it(N)+1,L=ys(C);return nt(N,L,C),L}function Mf(N,C,L,q){var de=Du(),le=po(12),ce=0;C&&(ce=Rf(C)),o()[le>>2]=ce,o()[le+4>>2]=L,o()[le+8>>2]=q,gg(0,N,657457152,0,ce,le),co(de)}function Pf(N,C,L,q){C=C?Fe(C):"",Mf(N,C,L,q)}function Of(N){return N>2?Fe(N):N}var Lf=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function zf(N){N=Of(N);var C=Lf[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return C}function _u(N){return zf(N)}function Pp(N,C,L){var q=_u(N);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=C,o()[q.canvasSharedPtr+4>>2]=L),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var de=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);de=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=C,q.height=L,de&&q.GLctxObject.GLctx.viewport(0,0,C,L)}else if(q.canvasSharedPtr){var ce=o()[q.canvasSharedPtr+8>>2];return Pf(ce,N,C,L),1}else return-4;return 0}function Op(N,C,L){return k?$r(2,1,N,C,L):Pp(N,C,L)}function Wf(N,C,L){var q=_u(N);return q?Pp(N,C,L):Op(N,C,L)}function Bf(N){}function Vf(N,C){}function Uf(N){var C=N.getExtension("ANGLE_instanced_arrays");if(C)return N.vertexAttribDivisor=function(L,q){C.vertexAttribDivisorANGLE(L,q)},N.drawArraysInstanced=function(L,q,de,le){C.drawArraysInstancedANGLE(L,q,de,le)},N.drawElementsInstanced=function(L,q,de,le,ce){C.drawElementsInstancedANGLE(L,q,de,le,ce)},1}function Gf(N){var C=N.getExtension("OES_vertex_array_object");if(C)return N.createVertexArray=function(){return C.createVertexArrayOES()},N.deleteVertexArray=function(L){C.deleteVertexArrayOES(L)},N.bindVertexArray=function(L){C.bindVertexArrayOES(L)},N.isVertexArray=function(L){return C.isVertexArrayOES(L)},1}function Hf(N){var C=N.getExtension("WEBGL_draw_buffers");if(C)return N.drawBuffers=function(L,q){C.drawBuffersWEBGL(L,q)},1}function jf(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Ze={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(N){Ze.lastError||(Ze.lastError=N)},getNewId:function(N){for(var C=Ze.counter++,L=N.length;L<C;L++)N[L]=null;return C},getSource:function(N,C,L,q){for(var de="",le=0;le<C;++le){var ce=q?o()[q+le*4>>2]:-1;de+=Fe(o()[L+le*4>>2],ce<0?void 0:ce)}return de},createContext:function(N,C){var L=N.getContext("webgl",C);if(!L)return 0;var q=Ze.registerContext(L,C);return q},registerContext:function(N,C){var L=ys(8);o()[L+4>>2]=uo();var q={handle:L,attributes:C,version:C.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=q),Ze.contexts[L]=q,(typeof C.enableExtensionsByDefault=="undefined"||C.enableExtensionsByDefault)&&Ze.initExtensions(q),L},makeContextCurrent:function(N){return Ze.currentContext=Ze.contexts[N],u.ctx=Dr=Ze.currentContext&&Ze.currentContext.GLctx,!(N&&!Dr)},getContext:function(N){return Ze.contexts[N]},deleteContext:function(N){Ze.currentContext===Ze.contexts[N]&&(Ze.currentContext=null),typeof Oe=="object"&&Oe.removeAllHandlersOnTarget(Ze.contexts[N].GLctx.canvas),Ze.contexts[N]&&Ze.contexts[N].GLctx.canvas&&(Ze.contexts[N].GLctx.canvas.GLctxObject=void 0),$u(Ze.contexts[N].handle),Ze.contexts[N]=null},initExtensions:function(N){if(N||(N=Ze.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var C=N.GLctx;Uf(C),Gf(C),Hf(C),C.disjointTimerQueryExt=C.getExtension("EXT_disjoint_timer_query"),jf(C);var L=C.getSupportedExtensions()||[];L.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&C.getExtension(q)})}},populateUniformTable:function(N){for(var C=Ze.programs[N],L=Ze.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=L.uniforms,de=Dr.getProgramParameter(C,35718),le=0;le<de;++le){var ce=Dr.getActiveUniform(C,le),be=ce.name;L.maxUniformLength=Math.max(L.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var at=Dr.getUniformLocation(C,be);if(at){var Gt=Ze.getNewId(Ze.uniforms);q[be]=[ce.size,Gt],Ze.uniforms[Gt]=at;for(var Pt=1;Pt<ce.size;++Pt){var Mr=be+"["+Pt+"]";at=Dr.getUniformLocation(C,Mr),Gt=Ze.getNewId(Ze.uniforms),Ze.uniforms[Gt]=at}}}}},qf=["default","low-power","high-performance"];function Kf(N,C){var L=C>>2,q=o()[L+(24>>2)],de={alpha:!!o()[L+(0>>2)],depth:!!o()[L+(4>>2)],stencil:!!o()[L+(8>>2)],antialias:!!o()[L+(12>>2)],premultipliedAlpha:!!o()[L+(16>>2)],preserveDrawingBuffer:!!o()[L+(20>>2)],powerPreference:qf[q],failIfMajorPerformanceCaveat:!!o()[L+(28>>2)],majorVersion:o()[L+(32>>2)],minorVersion:o()[L+(36>>2)],enableExtensionsByDefault:o()[L+(40>>2)],explicitSwapControl:o()[L+(44>>2)],proxyContextToMainThread:o()[L+(48>>2)],renderViaOffscreenBackBuffer:o()[L+(52>>2)]},le=_u(N);if(!le||de.explicitSwapControl)return 0;var ce=Ze.createContext(le,de);return ce}function Xf(N,C){return Kf(N,C)}var oo={mappings:{},buffers:[null,[],[]],printChar:function(N,C){var L=oo.buffers[N];C===0||C===10?((N===1?K:j)(De(L,0)),L.length=0):L.push(C)},varargs:void 0,get:function(){oo.varargs+=4;var N=o()[oo.varargs-4>>2];return N},getStr:function(N){var C=Fe(N);return C},get64:function(N,C){return N}};function Lp(N){return k?$r(3,1,N):0}function zp(N,C,L,q,de){if(k)return $r(4,1,N,C,L,q,de)}function Wp(N,C,L,q){if(k)return $r(5,1,N,C,L,q);for(var de=0,le=0;le<L;le++){for(var ce=o()[C+le*8>>2],be=o()[C+(le*8+4)>>2],at=0;at<be;at++)oo.printChar(N,i()[ce+at]);de+=be}return o()[q>>2]=de,0}function Yf(N){var C=ke.threadExitHandlers.pop();N&&C()}function Jf(N,C){ke.threadExitHandlers.push(function(){ra.get(N)(C)})}function Bp(N){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var C=ke.getNewWorker();if(C.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(C);for(var L=ys(128*4),q=0;q<128;++q)o()[L+q*4>>2]=0;var de=N.stackBase+N.stackSize,le=ke.pthreads[N.pthread_ptr]={worker:C,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},ce=le.threadInfoStruct>>2;Atomics.store(l(),ce+(64>>2),N.detached),Atomics.store(l(),ce+(100>>2),L),Atomics.store(l(),ce+(40>>2),le.threadInfoStruct),Atomics.store(l(),ce+(80>>2),N.stackSize),Atomics.store(l(),ce+(76>>2),de),Atomics.store(l(),ce+(104>>2),N.stackSize),Atomics.store(l(),ce+(104+8>>2),de),Atomics.store(l(),ce+(104+12>>2),N.detached);var be=mw(),at=be+40;Atomics.store(l(),ce+(172>>2),at),C.pthread=le;var Gt={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};C.runPthread=function(){Gt.time=performance.now(),C.postMessage(Gt,N.transferList)},C.loaded&&(C.runPthread(),delete C.runPthread)}function Qf(N,C,L,q){if(typeof SharedArrayBuffer=="undefined")return j("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return j("pthread_create called with a null thread pointer!"),28;var de=[],le=0;if(k&&(de.length===0||le))return bw(687865856,N,C,L,q);if(le)return le;var ce=0,be=0,at=0;C&&C!=-1?(ce=o()[C>>2],ce+=81920,be=o()[C+8>>2],at=o()[C+12>>2]!==0):ce=2097152;var Gt=be==0;Gt?be=ww(16,ce):(be-=ce,me(be>0));for(var Pt=ys(228),Mr=0;Mr<228>>2;++Mr)l()[(Pt>>2)+Mr]=0;o()[N>>2]=Pt,o()[Pt+12>>2]=Pt;var mo=Pt+152;o()[mo>>2]=mo;var Tn={stackBase:be,stackSize:ce,allocatedOwnStack:Gt,detached:at,startRoutine:L,pthread_ptr:Pt,arg:q,transferList:de};return k?(Tn.cmd="spawnThread",postMessage(Tn,de)):Bp(Tn),0}function Vp(N){if(k)return $r(6,1,N);switch(N){case 30:return 16384;case 85:var C=2147483648;return C/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return vf(28),-1}k||ke.initMainThreadBlock();var Dr,Zf=[null,wf,Op,Lp,zp,Wp,Vp],eg={e:bf,r:xf,x:kf,b:If,y:Tf,j:Nf,c:Sf,d:io,f:gs,p:Cf,z:_f,u:Ff,q:Df,v:Wf,i:Bf,t:Vf,w:Xf,m:Lp,n:zp,g:Wp,o:pf,a:ee||u.wasmMemory,k:Yf,l:Jf,h:Qf,s:Vp},dw=cf(),Up=u.___wasm_call_ctors=function(){return(Up=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},tg=u._init=function(){return(tg=u._init=u.asm.B).apply(null,arguments)},ng=u._register_tensor=function(){return(ng=u._register_tensor=u.asm.C).apply(null,arguments)},ag=u._dispose_data=function(){return(ag=u._dispose_data=u.asm.D).apply(null,arguments)},rg=u._dispose=function(){return(rg=u._dispose=u.asm.E).apply(null,arguments)},sg=u._Abs=function(){return(sg=u._Abs=u.asm.G).apply(null,arguments)},ig=u._Add=function(){return(ig=u._Add=u.asm.H).apply(null,arguments)},og=u._AddN=function(){return(og=u._AddN=u.asm.I).apply(null,arguments)},lg=u._ArgMax=function(){return(lg=u._ArgMax=u.asm.J).apply(null,arguments)},ug=u._AvgPool=function(){return(ug=u._AvgPool=u.asm.K).apply(null,arguments)},cg=u._BatchMatMul=function(){return(cg=u._BatchMatMul=u.asm.L).apply(null,arguments)},pg=u._Ceil=function(){return(pg=u._Ceil=u.asm.M).apply(null,arguments)},dg=u._ClipByValue=function(){return(dg=u._ClipByValue=u.asm.N).apply(null,arguments)},hg=u._Conv2D=function(){return(hg=u._Conv2D=u.asm.O).apply(null,arguments)},Gp=u._Conv2DBackpropInput=function(){return(Gp=u._Conv2DBackpropInput=u.asm.P).apply(null,arguments)},Hp=u._Cos=function(){return(Hp=u._Cos=u.asm.Q).apply(null,arguments)},Eu=u._CropAndResize=function(){return(Eu=u._CropAndResize=u.asm.R).apply(null,arguments)},lo=u._Cumsum=function(){return(lo=u._Cumsum=u.asm.S).apply(null,arguments)},mg=u._DepthToSpace=function(){return(mg=u._DepthToSpace=u.asm.T).apply(null,arguments)},Fu=u._DepthwiseConv2dNative=function(){return(Fu=u._DepthwiseConv2dNative=u.asm.U).apply(null,arguments)},X=u._Equal=function(){return(X=u._Equal=u.asm.V).apply(null,arguments)},ae=u._Exp=function(){return(ae=u._Exp=u.asm.W).apply(null,arguments)},Ne=u._FlipLeftRight=function(){return(Ne=u._FlipLeftRight=u.asm.X).apply(null,arguments)},Ye=u._Floor=function(){return(Ye=u._Floor=u.asm.Y).apply(null,arguments)},Et=u._FloorDiv=function(){return(Et=u._FloorDiv=u.asm.Z).apply(null,arguments)},gt=u._FusedBatchNorm=function(){return(gt=u._FusedBatchNorm=u.asm._).apply(null,arguments)},Ue=u._FusedConv2D=function(){return(Ue=u._FusedConv2D=u.asm.$).apply(null,arguments)},He=u._FusedDepthwiseConv2D=function(){return(He=u._FusedDepthwiseConv2D=u.asm.aa).apply(null,arguments)},nn=u._Gather=function(){return(nn=u._Gather=u.asm.ba).apply(null,arguments)},ur=u._GatherNd=function(){return(ur=u._GatherNd=u.asm.ca).apply(null,arguments)},cr=u._Greater=function(){return(cr=u._Greater=u.asm.da).apply(null,arguments)},jp=u._GreaterEqual=function(){return(jp=u._GreaterEqual=u.asm.ea).apply(null,arguments)},Au=u._LeakyRelu=function(){return(Au=u._LeakyRelu=u.asm.fa).apply(null,arguments)},Xn=u._Less=function(){return(Xn=u._Less=u.asm.ga).apply(null,arguments)},Rr=u._LessEqual=function(){return(Rr=u._LessEqual=u.asm.ha).apply(null,arguments)},qp=u._Log=function(){return(qp=u._Log=u.asm.ia).apply(null,arguments)},kC=u._LogicalAnd=function(){return(kC=u._LogicalAnd=u.asm.ja).apply(null,arguments)},IC=u._Max=function(){return(IC=u._Max=u.asm.ka).apply(null,arguments)},TC=u._MaxPool=function(){return(TC=u._MaxPool=u.asm.la).apply(null,arguments)},NC=u._Maximum=function(){return(NC=u._Maximum=u.asm.ma).apply(null,arguments)},SC=u._Mean=function(){return(SC=u._Mean=u.asm.na).apply(null,arguments)},CC=u._Min=function(){return(CC=u._Min=u.asm.oa).apply(null,arguments)},_C=u._Minimum=function(){return(_C=u._Minimum=u.asm.pa).apply(null,arguments)},EC=u._Multiply=function(){return(EC=u._Multiply=u.asm.qa).apply(null,arguments)},FC=u._Neg=function(){return(FC=u._Neg=u.asm.ra).apply(null,arguments)},AC=u._NonMaxSuppressionV3=function(){return(AC=u._NonMaxSuppressionV3=u.asm.sa).apply(null,arguments)},$C=u._NonMaxSuppressionV4=function(){return($C=u._NonMaxSuppressionV4=u.asm.ta).apply(null,arguments)},DC=u._NonMaxSuppressionV5=function(){return(DC=u._NonMaxSuppressionV5=u.asm.ua).apply(null,arguments)},RC=u._NotEqual=function(){return(RC=u._NotEqual=u.asm.va).apply(null,arguments)},MC=u._OneHot=function(){return(MC=u._OneHot=u.asm.wa).apply(null,arguments)},PC=u._PadV2=function(){return(PC=u._PadV2=u.asm.xa).apply(null,arguments)},OC=u._Pow=function(){return(OC=u._Pow=u.asm.ya).apply(null,arguments)},LC=u._Prelu=function(){return(LC=u._Prelu=u.asm.za).apply(null,arguments)},zC=u._Prod=function(){return(zC=u._Prod=u.asm.Aa).apply(null,arguments)},WC=u._RealDiv=function(){return(WC=u._RealDiv=u.asm.Ba).apply(null,arguments)},BC=u._Relu=function(){return(BC=u._Relu=u.asm.Ca).apply(null,arguments)},VC=u._Relu6=function(){return(VC=u._Relu6=u.asm.Da).apply(null,arguments)},UC=u._ResizeBilinear=function(){return(UC=u._ResizeBilinear=u.asm.Ea).apply(null,arguments)},GC=u._Reverse=function(){return(GC=u._Reverse=u.asm.Fa).apply(null,arguments)},HC=u._RotateWithOffset=function(){return(HC=u._RotateWithOffset=u.asm.Ga).apply(null,arguments)},jC=u._Round=function(){return(jC=u._Round=u.asm.Ha).apply(null,arguments)},qC=u._Rsqrt=function(){return(qC=u._Rsqrt=u.asm.Ia).apply(null,arguments)},KC=u._ScatterNd=function(){return(KC=u._ScatterNd=u.asm.Ja).apply(null,arguments)},XC=u._SelectV2=function(){return(XC=u._SelectV2=u.asm.Ka).apply(null,arguments)},YC=u._Sigmoid=function(){return(YC=u._Sigmoid=u.asm.La).apply(null,arguments)},JC=u._Sin=function(){return(JC=u._Sin=u.asm.Ma).apply(null,arguments)},QC=u._Softmax=function(){return(QC=u._Softmax=u.asm.Na).apply(null,arguments)},ZC=u._Sqrt=function(){return(ZC=u._Sqrt=u.asm.Oa).apply(null,arguments)},e_=u._Square=function(){return(e_=u._Square=u.asm.Pa).apply(null,arguments)},t_=u._SquaredDifference=function(){return(t_=u._SquaredDifference=u.asm.Qa).apply(null,arguments)},n_=u._Step=function(){return(n_=u._Step=u.asm.Ra).apply(null,arguments)},a_=u._StridedSlice=function(){return(a_=u._StridedSlice=u.asm.Sa).apply(null,arguments)},r_=u._Sub=function(){return(r_=u._Sub=u.asm.Ta).apply(null,arguments)},s_=u._Sum=function(){return(s_=u._Sum=u.asm.Ua).apply(null,arguments)},i_=u._Tanh=function(){return(i_=u._Tanh=u.asm.Va).apply(null,arguments)},o_=u._Tile=function(){return(o_=u._Tile=u.asm.Wa).apply(null,arguments)},l_=u._TopK=function(){return(l_=u._TopK=u.asm.Xa).apply(null,arguments)},u_=u._Transpose=function(){return(u_=u._Transpose=u.asm.Ya).apply(null,arguments)},c_=u.__FusedMatMul=function(){return(c_=u.__FusedMatMul=u.asm.Za).apply(null,arguments)},ys=u._malloc=function(){return(ys=u._malloc=u.asm._a).apply(null,arguments)},$u=u._free=function(){return($u=u._free=u.asm.$a).apply(null,arguments)},hw=u.___errno_location=function(){return(hw=u.___errno_location=u.asm.ab).apply(null,arguments)},mw=u._emscripten_get_global_libc=function(){return(mw=u._emscripten_get_global_libc=u.asm.bb).apply(null,arguments)},uo=u._pthread_self=function(){return(uo=u._pthread_self=u.asm.cb).apply(null,arguments)},fw=u.___pthread_tsd_run_dtors=function(){return(fw=u.___pthread_tsd_run_dtors=u.asm.db).apply(null,arguments)},fg=u._emscripten_main_thread_process_queued_calls=function(){return(fg=u._emscripten_main_thread_process_queued_calls=u.asm.eb).apply(null,arguments)},p_=u._emscripten_current_thread_process_queued_calls=function(){return(p_=u._emscripten_current_thread_process_queued_calls=u.asm.fb).apply(null,arguments)},gw=u._emscripten_register_main_browser_thread_id=function(){return(gw=u._emscripten_register_main_browser_thread_id=u.asm.gb).apply(null,arguments)},yw=u.__emscripten_do_dispatch_to_thread=function(){return(yw=u.__emscripten_do_dispatch_to_thread=u.asm.hb).apply(null,arguments)},bw=u._emscripten_sync_run_in_main_thread_4=function(){return(bw=u._emscripten_sync_run_in_main_thread_4=u.asm.ib).apply(null,arguments)},xw=u._emscripten_run_in_main_runtime_thread_js=function(){return(xw=u._emscripten_run_in_main_runtime_thread_js=u.asm.jb).apply(null,arguments)},gg=u.__emscripten_call_on_thread=function(){return(gg=u.__emscripten_call_on_thread=u.asm.kb).apply(null,arguments)},d_=u._emscripten_tls_init=function(){return(d_=u._emscripten_tls_init=u.asm.lb).apply(null,arguments)},Kp=u.__emscripten_thread_init=function(){return(Kp=u.__emscripten_thread_init=u.asm.mb).apply(null,arguments)},Du=u.stackSave=function(){return(Du=u.stackSave=u.asm.nb).apply(null,arguments)},co=u.stackRestore=function(){return(co=u.stackRestore=u.asm.ob).apply(null,arguments)},po=u.stackAlloc=function(){return(po=u.stackAlloc=u.asm.pb).apply(null,arguments)},vw=u._emscripten_stack_set_limits=function(){return(vw=u._emscripten_stack_set_limits=u.asm.qb).apply(null,arguments)},ww=u._memalign=function(){return(ww=u._memalign=u.asm.rb).apply(null,arguments)},kw=u.__emscripten_allow_main_runtime_queued_calls=9880,ho=u.__emscripten_main_thread_futex=11368;u.cwrap=_e,u.PThread=ke,u.PThread=ke,u.wasmMemory=ee,u.ExitStatus=Ru;var Xp;function Ru(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}fs=function N(){Xp||yg(),Xp||(fs=N)};function yg(N){if(N=N||f,or>0)return;if(k){p(u),postMessage({cmd:"loaded"});return}if(nf(),or>0)return;function C(){Xp||(Xp=!0,u.calledRun=!0,!oe&&(_p(),af(),p(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),kn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),C()},1)):C()}u.run=yg;function h_(N,C){if(!(C&&ie&&N===0)){if(!C&&k)throw postMessage({cmd:"exitProcess",returnCode:N}),new Ru(N);ie||(ke.terminateAllThreads(),fe=N,Ep(),u.onExit&&u.onExit(N),oe=!0),y(N,new Ru(N))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return k&&(ie=!1,ke.initWorker()),yg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),V_=Tt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(X,ae){i=X,o=ae});var l={},c;for(c in s)s.hasOwnProperty(c)&&(l[c]=s[c]);var u=[],p="./this.program",d=function(X,ae){throw ae},h=!1,m=!1,f=!1,g=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!f&&!m;var y="";function b(X){return s.locateFile?s.locateFile(X,y):y+X}var x,v,T,k,S,F;f?(m?y=Mu().dirname(y)+"/":y=__dirname+"/",x=function(X,ae){return S||(S=require("fs")),F||(F=Mu()),X=F.normalize(X),S.readFileSync(X,ae?null:"utf8")},T=function(X){var ae=x(X,!0);return ae.buffer||(ae=new Uint8Array(ae)),K(ae.buffer),ae},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(X){if(!(X instanceof mg))throw X}),process.on("unhandledRejection",va),d=function(X){process.exit(X)},s.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(X){return read(X)}),T=function(X){var ae;return typeof readbuffer=="function"?new Uint8Array(readbuffer(X)):(ae=read(X,"binary"),K(typeof ae=="object"),ae)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(d=function(X){quit(X)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(X){var ae=new XMLHttpRequest;return ae.open("GET",X,!1),ae.send(null),ae.responseText},m&&(T=function(X){var ae=new XMLHttpRequest;return ae.open("GET",X,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),v=function(X,ae,Ne){var Ye=new XMLHttpRequest;Ye.open("GET",X,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){ae(Ye.response);return}Ne()},Ye.onerror=Ne,Ye.send(null)},k=function(X){document.title=X});var A=s.print||console.log.bind(console),R=s.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(s[c]=l[c]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(d=s.quit);var P;s.wasmBinary&&(P=s.wasmBinary);var z=s.noExitRuntime||!0;typeof WebAssembly!="object"&&va("no native wasm support detected");var V,G=!1,H;function K(X,ae){X||va("Assertion failed: "+ae)}function j(X){var ae=s["_"+X];return K(ae,"Cannot call unknown function "+X+", make sure it is exported"),ae}function te(X,ae,Ne,Ye,Et){var gt={string:function(Xn){var Rr=0;if(Xn!=null&&Xn!==0){var qp=(Xn.length<<2)+1;Rr=Eu(qp),pe(Xn,Rr,qp)}return Rr},array:function(Xn){var Rr=Eu(Xn.length);return oe(Xn,Rr),Rr}};function Ue(Xn){return ae==="string"?ie(Xn):ae==="boolean"?Boolean(Xn):Xn}var He=j(X),nn=[],ur=0;if(Ye)for(var cr=0;cr<Ye.length;cr++){var jp=gt[Ne[cr]];jp?(ur===0&&(ur=Gp()),nn[cr]=jp(Ye[cr])):nn[cr]=Ye[cr]}var Au=He.apply(null,nn);return Au=Ue(Au),ur!==0&&Hp(ur),Au}function Q(X,ae,Ne,Ye){Ne=Ne||[];var Et=Ne.every(function(Ue){return Ue==="number"}),gt=ae!=="string";return gt&&Et&&!Ye?j(X):function(){return te(X,ae,Ne,arguments,Ye)}}var se=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(X,ae,Ne){for(var Ye=ae+Ne,Et=ae;X[Et]&&!(Et>=Ye);)++Et;if(Et-ae>16&&X.subarray&&se)return se.decode(X.subarray(ae,Et));for(var gt="";ae<Et;){var Ue=X[ae++];if(!(Ue&128)){gt+=String.fromCharCode(Ue);continue}var He=X[ae++]&63;if((Ue&224)==192){gt+=String.fromCharCode((Ue&31)<<6|He);continue}var nn=X[ae++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|He<<6|nn:Ue=(Ue&7)<<18|He<<12|nn<<6|X[ae++]&63,Ue<65536)gt+=String.fromCharCode(Ue);else{var ur=Ue-65536;gt+=String.fromCharCode(55296|ur>>10,56320|ur&1023)}}return gt}function ie(X,ae){return X?ne(Te,X,ae):""}function ee(X,ae,Ne,Ye){if(!(Ye>0))return 0;for(var Et=Ne,gt=Ne+Ye-1,Ue=0;Ue<X.length;++Ue){var He=X.charCodeAt(Ue);if(He>=55296&&He<=57343){var nn=X.charCodeAt(++Ue);He=65536+((He&1023)<<10)|nn&1023}if(He<=127){if(Ne>=gt)break;ae[Ne++]=He}else if(He<=2047){if(Ne+1>=gt)break;ae[Ne++]=192|He>>6,ae[Ne++]=128|He&63}else if(He<=65535){if(Ne+2>=gt)break;ae[Ne++]=224|He>>12,ae[Ne++]=128|He>>6&63,ae[Ne++]=128|He&63}else{if(Ne+3>=gt)break;ae[Ne++]=240|He>>18,ae[Ne++]=128|He>>12&63,ae[Ne++]=128|He>>6&63,ae[Ne++]=128|He&63}}return ae[Ne]=0,Ne-Et}function pe(X,ae,Ne){return ee(X,Te,ae,Ne)}function oe(X,ae){we.set(X,ae)}function fe(X,ae){return X%ae>0&&(X+=ae-X%ae),X}var me,we,Te,_e,De,Fe,tt,nt,it;function Xe(X){me=X,s.HEAP8=we=new Int8Array(X),s.HEAP16=_e=new Int16Array(X),s.HEAP32=Fe=new Int32Array(X),s.HEAPU8=Te=new Uint8Array(X),s.HEAPU16=De=new Uint16Array(X),s.HEAPU32=tt=new Uint32Array(X),s.HEAPF32=nt=new Float32Array(X),s.HEAPF64=it=new Float64Array(X)}var ht=s.INITIAL_MEMORY||16777216,We,vn=[],It=[],qn=[],en=[],wn=!1;It.push({func:function(){Rp()}});function Kn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)za(s.preRun.shift());Ar(vn)}function Rn(){wn=!0,Ar(It)}function pn(){Ar(qn)}function tn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)ra(s.postRun.shift());Ar(en)}function za(X){vn.unshift(X)}function ra(X){en.unshift(X)}var sa=0,Er=null,ir=null;function Fr(X){sa++,s.monitorRunDependencies&&s.monitorRunDependencies(sa)}function ao(X){if(sa--,s.monitorRunDependencies&&s.monitorRunDependencies(sa),sa==0&&(Er!==null&&(clearInterval(Er),Er=null),ir)){var ae=ir;ir=null,ae()}}s.preloadedImages={},s.preloadedAudios={};function va(X){s.onAbort&&s.onAbort(X),X+="",R(X),G=!0,H=1,X="abort("+X+"). Build with -s ASSERTIONS=1 for more info.";var ae=new WebAssembly.RuntimeError(X);throw o(ae),ae}function Cp(X,ae){return String.prototype.startsWith?X.startsWith(ae):X.indexOf(ae)===0}var nf="data:application/octet-stream;base64,";function _p(X){return Cp(X,nf)}var af="file://";function Ep(X){return Cp(X,af)}var kn="tfjs-backend-wasm.wasm";_p(kn)||(kn=b(kn));function Fp(X){try{if(X==kn&&P)return new Uint8Array(P);if(T)return T(X);throw"both async and sync fetching of the wasm failed"}catch(ae){va(ae)}}function rf(){if(!P&&(h||m)){if(typeof fetch=="function"&&!Ep(kn))return fetch(kn,{credentials:"same-origin"}).then(function(X){if(!X.ok)throw"failed to load wasm binary file at '"+kn+"'";return X.arrayBuffer()}).catch(function(){return Fp(kn)});if(v)return new Promise(function(X,ae){v(kn,function(Ne){X(new Uint8Array(Ne))},ae)})}return Promise.resolve().then(function(){return Fp(kn)})}function or(){var X={a:In};function ae(Ue,He){var nn=Ue.exports;s.asm=nn,V=s.asm.g,Xe(V.buffer),We=s.asm.m,ao("wasm-instantiate")}Fr("wasm-instantiate");function Ne(Ue){ae(Ue.instance)}function Ye(Ue){return rf().then(function(He){return WebAssembly.instantiate(He,X)}).then(Ue,function(He){R("failed to asynchronously prepare wasm: "+He),va(He)})}function Et(){return!P&&typeof WebAssembly.instantiateStreaming=="function"&&!_p(kn)&&!Ep(kn)&&typeof fetch=="function"?fetch(kn,{credentials:"same-origin"}).then(function(Ue){var He=WebAssembly.instantiateStreaming(Ue,X);return He.then(Ne,function(nn){return R("wasm streaming compile failed: "+nn),R("falling back to ArrayBuffer instantiation"),Ye(Ne)})}):Ye(Ne)}if(s.instantiateWasm)try{var gt=s.instantiateWasm(X,ae);return gt}catch(Ue){return R("Module.instantiateWasm callback failed with error: "+Ue),!1}return Et().catch(o),{}}function Ar(X){for(;X.length>0;){var ae=X.shift();if(typeof ae=="function"){ae(s);continue}var Ne=ae.func;typeof Ne=="number"?ae.arg===void 0?We.get(Ne)():We.get(Ne)(ae.arg):Ne(ae.arg===void 0?null:ae.arg)}}function fs(){va()}function sf(X,ae,Ne){Te.copyWithin(X,ae,ae+Ne)}function of(){return Te.length}function lr(X){try{return V.grow(X-me.byteLength+65535>>>16),Xe(V.buffer),1}catch(ae){}}function Ap(X){var ae=of(),Ne=2147483648;if(X>Ne)return!1;for(var Ye=1;Ye<=4;Ye*=2){var Et=ae*(1+.2/Ye);Et=Math.min(Et,X+100663296);var gt=Math.min(Ne,fe(Math.max(X,Et),65536)),Ue=lr(gt);if(Ue)return!0}return!1}var ro={mappings:{},buffers:[null,[],[]],printChar:function(X,ae){var Ne=ro.buffers[X];ae===0||ae===10?((X===1?A:R)(ne(Ne,0)),Ne.length=0):Ne.push(ae)},varargs:void 0,get:function(){ro.varargs+=4;var X=Fe[ro.varargs-4>>2];return X},getStr:function(X){var ae=ie(X);return ae},get64:function(X,ae){return X}};function $p(X){return 0}function lf(X,ae,Ne,Ye,Et){}function Dp(X,ae,Ne,Ye){for(var Et=0,gt=0;gt<Ne;gt++){for(var Ue=Fe[ae+gt*8>>2],He=Fe[ae+(gt*8+4)>>2],nn=0;nn<He;nn++)ro.printChar(X,Te[Ue+nn]);Et+=He}return Fe[Ye>>2]=Et,0}var In={a:fs,d:sf,e:Ap,f:$p,c:lf,b:Dp},uf=or(),Rp=s.___wasm_call_ctors=function(){return(Rp=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},cf=s._init=function(){return(cf=s._init=s.asm.i).apply(null,arguments)},Mp=s._register_tensor=function(){return(Mp=s._register_tensor=s.asm.j).apply(null,arguments)},pf=s._dispose_data=function(){return(pf=s._dispose_data=s.asm.k).apply(null,arguments)},so=s._dispose=function(){return(so=s._dispose=s.asm.l).apply(null,arguments)},io=s._Abs=function(){return(io=s._Abs=s.asm.n).apply(null,arguments)},df=s._Add=function(){return(df=s._Add=s.asm.o).apply(null,arguments)},hf=s._AddN=function(){return(hf=s._AddN=s.asm.p).apply(null,arguments)},mf=s._ArgMax=function(){return(mf=s._ArgMax=s.asm.q).apply(null,arguments)},ke=s._AvgPool=function(){return(ke=s._AvgPool=s.asm.r).apply(null,arguments)},ff=s._BatchMatMul=function(){return(ff=s._BatchMatMul=s.asm.s).apply(null,arguments)},gf=s._Ceil=function(){return(gf=s._Ceil=s.asm.t).apply(null,arguments)},yf=s._ClipByValue=function(){return(yf=s._ClipByValue=s.asm.u).apply(null,arguments)},bf=s._Conv2D=function(){return(bf=s._Conv2D=s.asm.v).apply(null,arguments)},xf=s._Conv2DBackpropInput=function(){return(xf=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},gs=s._Cos=function(){return(gs=s._Cos=s.asm.x).apply(null,arguments)},vf=s._CropAndResize=function(){return(vf=s._CropAndResize=s.asm.y).apply(null,arguments)},wf=s._Cumsum=function(){return(wf=s._Cumsum=s.asm.z).apply(null,arguments)},kf=s._DepthToSpace=function(){return(kf=s._DepthToSpace=s.asm.A).apply(null,arguments)},If=s._DepthwiseConv2dNative=function(){return(If=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},Tf=s._Equal=function(){return(Tf=s._Equal=s.asm.C).apply(null,arguments)},Nf=s._Exp=function(){return(Nf=s._Exp=s.asm.D).apply(null,arguments)},Sf=s._FlipLeftRight=function(){return(Sf=s._FlipLeftRight=s.asm.E).apply(null,arguments)},Cf=s._Floor=function(){return(Cf=s._Floor=s.asm.F).apply(null,arguments)},_f=s._FloorDiv=function(){return(_f=s._FloorDiv=s.asm.G).apply(null,arguments)},$r=s._FusedBatchNorm=function(){return($r=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},Su=s._FusedConv2D=function(){return(Su=s._FusedConv2D=s.asm.I).apply(null,arguments)},Cu=s._FusedDepthwiseConv2D=function(){return(Cu=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},Ef=s._Gather=function(){return(Ef=s._Gather=s.asm.K).apply(null,arguments)},Ff=s._GatherNd=function(){return(Ff=s._GatherNd=s.asm.L).apply(null,arguments)},Af=s._Greater=function(){return(Af=s._Greater=s.asm.M).apply(null,arguments)},$f=s._GreaterEqual=function(){return($f=s._GreaterEqual=s.asm.N).apply(null,arguments)},Df=s._LeakyRelu=function(){return(Df=s._LeakyRelu=s.asm.O).apply(null,arguments)},Oe=s._Less=function(){return(Oe=s._Less=s.asm.P).apply(null,arguments)},Rf=s._LessEqual=function(){return(Rf=s._LessEqual=s.asm.Q).apply(null,arguments)},Mf=s._Log=function(){return(Mf=s._Log=s.asm.R).apply(null,arguments)},Pf=s._LogicalAnd=function(){return(Pf=s._LogicalAnd=s.asm.S).apply(null,arguments)},Of=s._Max=function(){return(Of=s._Max=s.asm.T).apply(null,arguments)},Lf=s._MaxPool=function(){return(Lf=s._MaxPool=s.asm.U).apply(null,arguments)},zf=s._Maximum=function(){return(zf=s._Maximum=s.asm.V).apply(null,arguments)},_u=s._Mean=function(){return(_u=s._Mean=s.asm.W).apply(null,arguments)},Pp=s._Min=function(){return(Pp=s._Min=s.asm.X).apply(null,arguments)},Op=s._Minimum=function(){return(Op=s._Minimum=s.asm.Y).apply(null,arguments)},Wf=s._Multiply=function(){return(Wf=s._Multiply=s.asm.Z).apply(null,arguments)},Bf=s._Neg=function(){return(Bf=s._Neg=s.asm._).apply(null,arguments)},Vf=s._NonMaxSuppressionV3=function(){return(Vf=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},Uf=s._NonMaxSuppressionV4=function(){return(Uf=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},Gf=s._NonMaxSuppressionV5=function(){return(Gf=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},Hf=s._NotEqual=function(){return(Hf=s._NotEqual=s.asm.ca).apply(null,arguments)},jf=s._OneHot=function(){return(jf=s._OneHot=s.asm.da).apply(null,arguments)},Ze=s._PadV2=function(){return(Ze=s._PadV2=s.asm.ea).apply(null,arguments)},qf=s._Pow=function(){return(qf=s._Pow=s.asm.fa).apply(null,arguments)},Kf=s._Prelu=function(){return(Kf=s._Prelu=s.asm.ga).apply(null,arguments)},Xf=s._Prod=function(){return(Xf=s._Prod=s.asm.ha).apply(null,arguments)},oo=s._RealDiv=function(){return(oo=s._RealDiv=s.asm.ia).apply(null,arguments)},Lp=s._Relu=function(){return(Lp=s._Relu=s.asm.ja).apply(null,arguments)},zp=s._Relu6=function(){return(zp=s._Relu6=s.asm.ka).apply(null,arguments)},Wp=s._ResizeBilinear=function(){return(Wp=s._ResizeBilinear=s.asm.la).apply(null,arguments)},Yf=s._Reverse=function(){return(Yf=s._Reverse=s.asm.ma).apply(null,arguments)},Jf=s._RotateWithOffset=function(){return(Jf=s._RotateWithOffset=s.asm.na).apply(null,arguments)},Bp=s._Round=function(){return(Bp=s._Round=s.asm.oa).apply(null,arguments)},Qf=s._Rsqrt=function(){return(Qf=s._Rsqrt=s.asm.pa).apply(null,arguments)},Vp=s._ScatterNd=function(){return(Vp=s._ScatterNd=s.asm.qa).apply(null,arguments)},Dr=s._SelectV2=function(){return(Dr=s._SelectV2=s.asm.ra).apply(null,arguments)},Zf=s._Sigmoid=function(){return(Zf=s._Sigmoid=s.asm.sa).apply(null,arguments)},eg=s._Sin=function(){return(eg=s._Sin=s.asm.ta).apply(null,arguments)},dw=s._Softmax=function(){return(dw=s._Softmax=s.asm.ua).apply(null,arguments)},Up=s._Sqrt=function(){return(Up=s._Sqrt=s.asm.va).apply(null,arguments)},tg=s._Square=function(){return(tg=s._Square=s.asm.wa).apply(null,arguments)},ng=s._SquaredDifference=function(){return(ng=s._SquaredDifference=s.asm.xa).apply(null,arguments)},ag=s._Step=function(){return(ag=s._Step=s.asm.ya).apply(null,arguments)},rg=s._StridedSlice=function(){return(rg=s._StridedSlice=s.asm.za).apply(null,arguments)},sg=s._Sub=function(){return(sg=s._Sub=s.asm.Aa).apply(null,arguments)},ig=s._Sum=function(){return(ig=s._Sum=s.asm.Ba).apply(null,arguments)},og=s._Tanh=function(){return(og=s._Tanh=s.asm.Ca).apply(null,arguments)},lg=s._Tile=function(){return(lg=s._Tile=s.asm.Da).apply(null,arguments)},ug=s._TopK=function(){return(ug=s._TopK=s.asm.Ea).apply(null,arguments)},cg=s._Transpose=function(){return(cg=s._Transpose=s.asm.Fa).apply(null,arguments)},pg=s.__FusedMatMul=function(){return(pg=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},dg=s._malloc=function(){return(dg=s._malloc=s.asm.Ha).apply(null,arguments)},hg=s._free=function(){return(hg=s._free=s.asm.Ia).apply(null,arguments)},Gp=s.stackSave=function(){return(Gp=s.stackSave=s.asm.Ja).apply(null,arguments)},Hp=s.stackRestore=function(){return(Hp=s.stackRestore=s.asm.Ka).apply(null,arguments)},Eu=s.stackAlloc=function(){return(Eu=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=Q;var lo;function mg(X){this.name="ExitStatus",this.message="Program terminated with exit("+X+")",this.status=X}ir=function X(){lo||Fu(),lo||(ir=X)};function Fu(X){if(X=X||u,sa>0||(Kn(),sa>0))return;function ae(){lo||(lo=!0,s.calledRun=!0,!G&&(Rn(),pn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),tn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ae()},1)):ae()}if(s.run=Fu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Fu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),U_=1e-7,G_=1e-4,Jp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Pu=class{refCount(e){return ia("refCount")}incRef(e){return ia("incRef")}timerAvailable(){return!0}time(e){return ia("time")}read(e){return ia("read")}readSync(e){return ia("readSync")}numDataIds(){return ia("numDataIds")}disposeData(e,t){return ia("disposeData")}write(e,t,n){return ia("write")}move(e,t,n,a,r){return ia("move")}memory(){return ia("memory")}floatPrecision(){return ia("floatPrecision")}epsilon(){return this.floatPrecision()===32?U_:G_}dispose(){return ia("dispose")}};function ia(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Cw(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function H_(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function Ou(e,t,n){return Math.max(e,Math.min(t,n))}function j_(e){return e%2==0?e:e+1}function q_(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function K_(e,t){let n=Math.random();return t*n+(1-n)*e}function X_(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function $(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function ln(e,t,n=""){$(pr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function bs(e){$(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function xs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||un(e)&&!n)for(let a=0;a<e.length;++a)xs(e[a],t,n);else t.push(e);return t}function Ot(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function Y_(e){return e.length===0}function pr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ht(e){return e%1==0}function J_(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function Q_(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function Z_(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return Cw(t),t}function Lu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function eE(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function tE(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function oa(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),$(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),$(e.every(a=>Ht(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function _w(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:oa(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function Ew(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Fw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Aw(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function $w(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function nE(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function un(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function xg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Dw(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Pr(e){return typeof e=="string"||e instanceof String}function Rw(e){return typeof e=="boolean"}function Mw(e){return typeof e=="number"}function Qp(e){return Array.isArray(e)?Qp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Mw(e)?"float32":Pr(e)?"string":Rw(e)?"bool":"float32"}function Or(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Zp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function yo(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function Pw(e,t,n){let a=new Array;if(t.length===1){let r=t[0];for(let s=0;s<r;s++)a[s]=n[e+s]}else{let r=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<r;o++)a[o]=Pw(e+o*i,s,n)}return a}function bo(e,t){if(e.length===0)return t[0];let n=e.reduce((a,r)=>a*r);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return Pw(0,e,t)}function vg(e,t){let n=ed(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function ed(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function aE(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return bo(e,new Float32Array(n));if(t==="int32")return bo(e,new Int32Array(n));if(t==="bool")return bo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function wg(e){e.forEach(t=>{$(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function rE(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function sE(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function kg(e){return e&&e.then&&typeof e.then=="function"}var Ow="tfjsflags",Lw=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(kg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=iE(this.global.location.search);Ow in e&&e[Ow].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=oE(n,a)})}};function iE(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(lE(t,a[0],a[1]),a.join("="))),t}function lE(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function oE(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Z(){return Ig}var Ig=null;function uE(e){Ig=e}var Tg;function zw(){if(Tg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Tg=e}return Tg}function cE(){let e=zw();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Ng(e,t){let n=cE();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var xo="Abs",vo="Acos",wo="Acosh",Lr="Add",vs="AddN",td="All",nd="Any",ws="ArgMax",zu="ArgMin",ko="Asin",Io="Asinh",To="Atan",No="Atanh",So="Atan2",ks="AvgPool",ad="AvgPoolGrad",Wu="AvgPool3D",rd="AvgPool3DGrad",Is="BatchMatMul",Bu="BatchToSpaceND",sd="Bincount",Ww="BroadcastTo",Ts="Cast",Ns="Ceil",zr="ClipByValue",id="Complex",Vu="ComplexAbs",Co="Concat",Ss="Conv2D",od="Conv2DBackpropFilter",Cs="Conv2DBackpropInput",Uu="Conv3D",ld="Conv3DBackpropFilterV2",ud="Conv3DBackpropInputV2",_s="Cos",_o="Cosh",Es="Cumsum",Eo="CropAndResize",cd="DenseBincount",Fo="DepthToSpace",Fs="DepthwiseConv2dNative",pd="DepthwiseConv2dNativeBackpropFilter",dd="DepthwiseConv2dNativeBackpropInput",hd="Diag",Gu="Dilation2D",md="Dilation2DBackpropInput",fd="Dilation2DBackpropFilter",As="RealDiv",Ao="Elu",gd="EluGrad",$o="Erf",Do="Equal",$s="Exp",Ro="ExpandDims",Mo="Expm1",yd="FFT",Hu="Fill",Po="FlipLeftRight",Ds="Floor",Rs="FloorDiv",Ms="FusedBatchNorm",Oo="GatherV2",Lo="GatherNd",zo="Greater",Ps="GreaterEqual",Os="Identity",bd="IFFT",xd="Imag",Wo="IsFinite",Bo="IsInf",Vo="IsNan",Ls="LeakyRelu",Uo="Less",Go="LessEqual",vd="LinSpace",zs="Log",Ho="Log1p",jo="LogicalAnd",ju="LogicalNot",qu="LogicalOr",Bw="LogSoftmax",Ku="LRN",wd="LRNGrad",Ws="Max",Bs="Maximum",Vs="MaxPool",kd="MaxPoolGrad",Xu="MaxPool3D",Id="MaxPool3DGrad",Td="MaxPoolWithArgmax",Us="Mean",Gs="Min",Hs="Minimum",Yu="MirrorPad",qo="Mod",Nd="Multinomial",js="Multiply",Ko="Neg",Xo="NotEqual",Yo="NonMaxSuppressionV3",Jo="NonMaxSuppressionV4",Qo="NonMaxSuppressionV5",Zo="OnesLike",qs="OneHot",el="Pack",Ks="PadV2",pE="Pool",Xs="Pow",Ys="Prelu",tl="Prod",Ju="Range",Sd="Real",nl="Reciprocal",Js="Relu",al="Reshape",Qu="ResizeNearestNeighbor",Cd="ResizeNearestNeighborGrad",Qs="ResizeBilinear",_d="ResizeBilinearGrad",Zs="Relu6",ei="Reverse",ti="Round",ni="Rsqrt",rl="ScatterNd",sl="Select",il="Selu",ol="Slice",ai="Sin",ll="Sinh",ul="Sign",ri="Sigmoid",cl="Softplus",si="Sqrt",ii="Sum",Zu="SpaceToBatchND",pl="SplitV",oi="Softmax",li="SquaredDifference",ec="Square",ui="Sub",Ed="SparseToDense",dl="StridedSlice",hl="Tan",ci="Tanh",Wr="Tile",ml="TopK",Fd="Transform",pi="Transpose",Ad="Unique",fl="Unpack",tc="UnsortedSegmentSum",gl="ZerosLike",Br="Step",$d="FromPixels",yl="RotateWithOffset",di="_FusedMatMul",hi="FusedConv2D",mi="FusedDepthwiseConv2D",bl=Ng("kernelRegistry",()=>new Map),nc=Ng("gradRegistry",()=>new Map);function Dd(e,t){let n=Sg(e,t);return bl.get(n)}function Cg(e){return nc.get(e)}function Rd(e){let t=bl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function ac(e){let{kernelName:t,backendName:n}=e,a=Sg(t,n);bl.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),bl.set(a,e)}function Vw(e){let{kernelName:t}=e;nc.has(t)&&Z().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),nc.set(t,e)}function dE(e,t){let n=Sg(e,t);if(!bl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);bl.delete(n)}function hE(e){if(!nc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);nc.delete(e)}function mE(e,t){Rd(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});ac(a)})}function Sg(e,t){return`${t}_${e}`}var w={};Le(w,{arraysEqual:()=>pr,assert:()=>$,assertNonNegativeIntegerDimensions:()=>wg,assertNonNull:()=>bs,assertShapesMatch:()=>ln,bytesFromStringArray:()=>Dw,bytesPerElement:()=>xg,checkConversionForErrors:()=>Aw,clamp:()=>Ou,computeStrides:()=>yo,createScalarValue:()=>fE,createShuffledIndices:()=>Z_,decodeString:()=>Pd,distSquared:()=>X_,encodeString:()=>sc,fetch:()=>gE,flatten:()=>xs,getArrayFromDType:()=>Fw,getTypedArrayFromDType:()=>Ew,hasEncodingLoss:()=>nE,indexToLoc:()=>sE,inferDtype:()=>Qp,inferFromImplicitShape:()=>tE,isBoolean:()=>Rw,isFunction:()=>Or,isInt:()=>Ht,isNumber:()=>Mw,isPromise:()=>kg,isScalarShape:()=>Y_,isString:()=>Pr,isTypedArray:()=>un,isValidDtype:()=>$w,locToIndex:()=>rE,makeOnesTypedArray:()=>vg,makeZerosNestedTypedArray:()=>aE,makeZerosTypedArray:()=>ed,nearestDivisor:()=>Zp,nearestLargerEven:()=>j_,now:()=>rc,parseAxisParam:()=>oa,randUniform:()=>K_,repeatedTry:()=>eE,rightPad:()=>Lu,shuffle:()=>Cw,shuffleCombo:()=>H_,sizeFromShape:()=>Ot,sizeToSquarishShape:()=>Q_,squeezeShape:()=>_w,sum:()=>q_,tanh:()=>J_,toNestedArray:()=>bo,toTypedArray:()=>Md});function fE(e,t){return t==="string"?sc(e):Md([e],t)}function yE(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Md(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=xs(e)),Z().getBool("DEBUG")&&Aw(e,t),yE(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function rc(){return Z().platform.now()}function gE(e,t){return Z().platform.fetch(e,t)}function sc(e,t="utf-8"){return t=t||"utf-8",Z().platform.encode(e,t)}function Pd(e,t="utf-8"){return t=t||"utf-8",Z().platform.decode(e,t)}var vE=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new xE)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=rc();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:rc()-i})}if(Z().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(c=>{bE(c,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function bE(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var xE=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Lu(`${a}ms`,9):a.error,o=Lu(e,25),l=t.rank,c=t.size,u=Lu(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${d}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function wE(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let p in u){let d=u[p],h=!1;for(let m=0;m<t.length;m++)if(a[d.id]){c.outputs.forEach(f=>a[f.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let p=0;p<c.outputs.length;p++)if(s[c.outputs[p].id]){for(let d in u)s[u[d].id]=!0,i[c.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&i[c.id]){let u={};for(let d in c.inputs){let h=c.inputs[d];a[h.id]&&(u[d]=h)}let p=Object.assign({},c);p.inputs=u,p.outputs=c.outputs,o.push(p)}}return o}function kE(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!pr(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let p=e[u.id];e[u.id]=a(p,c),p.dispose()}}}}var Uw=20,ic=3,_g=7;function TE(e,t,n,a){let r=yo(t),s=IE(e,t,n,r),i=t.length,o=Od(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(`
`)),l.join(`
`)}function IE(e,t,n,a){let r=Ot(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?lc(e):e;if(o>1)for(let c=0;c<r/s;c++){let u=c*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],oc(l[u+p],0,n).length)}return i}function oc(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(_g))} + ${parseFloat(e[1].toFixed(_g))}j`:Pr(e)?a=`'${e}'`:n==="bool"?a=Gw(e):a=parseFloat(e.toFixed(_g)).toString(),Lu(a,t)}function Gw(e){return e===0?"false":"true"}function Od(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=lc(e);return[oc(f[0],0,n)]}return n==="bool"?[Gw(e[0])]:[e[0].toString()]}if(l===1){if(o>Uw){let g=ic*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-ic)*i,o*i));return n==="complex64"&&(y=lc(y),b=lc(b)),["["+y.map((x,v)=>oc(x,r[v],n)).join(", ")+", ..., "+b.map((x,v)=>oc(x,r[o-ic+v],n)).join(", ")+"]"]}let f=n==="complex64"?lc(e):Array.from(e);return["["+f.map((g,y)=>oc(g,r[y],n)).join(", ")+"]"]}let c=t.slice(1),u=a.slice(1),p=a[0]*i,d=[];if(o>Uw){for(let f=0;f<ic;f++){let g=f*p,y=g+p;d.push(...Od(e.slice(g,y),c,n,u,r,!1))}d.push("...");for(let f=o-ic;f<o;f++){let g=f*p,y=g+p;d.push(...Od(e.slice(g,y),c,n,u,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*p,y=g+p;d.push(...Od(e.slice(g,y),c,n,u,r,f===o-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let f=1;f<d.length-1;f++)d[f]=" "+d[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function lc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Lt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ot(e),n!=null){let a=n.length;$(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Fw(t,this.size),this.strides=yo(e)}set(e,...t){t.length===0&&(t=[0]),$(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Wa().makeTensor(this.values,this.shape,this.dtype)}},Wa=null,xl=null,NE=null;function SE(e){Wa=e}function CE(e){xl=e}function _E(e){NE=e}var Ee=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ot(e),this.strides=yo(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return xl.buffer(this.shape,this.dtype,e)}bufferSync(){return xl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return bo(this.shape,e)}arraySync(){return bo(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Wa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Pd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Wa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Pd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Wa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Wa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return xl.print(this,e)}clone(){return this.throwIfDisposed(),xl.clone(this)}toString(e=!1){let t=this.dataSync();return TE(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),xl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Wa().makeVariable(this,e,t,n)}};Object.defineProperty(Ee,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Y(){return Ng("Tensor",()=>Ee)}Y();var Vr=class extends Ee{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!pr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Wa().disposeTensor(this),this.dataId=e.dataId,Wa().incRef(this,null)}dispose(){Wa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Vr,Symbol.hasInstance,{value:e=>e instanceof Ee&&e.assign!=null&&e.assign instanceof Function});var wa={};Le(wa,{assertTypesMatch:()=>Hw,getTensorsInContainer:()=>Eg,isTensorInList:()=>EE,makeTypesMatch:()=>Nt});var Fg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Fg||(Fg={}));var Ag;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Ag||(Ag={}));var $g;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})($g||($g={}));var Dg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Dg||(Dg={}));var Rg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Rg||(Rg={}));var FE={float32:Dg,int32:Ag,bool:$g,complex64:Rg};function la(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return FE[e][t]}function Ld(e){return la(e,"int32")}function Nt(e,t){if(e.dtype===t.dtype)return[e,t];let n=la(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Hw(e,t){$(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function EE(e,t){return t.some(n=>n.id===e.id)}function Eg(e){let t=[],n=new Set;return jw(e,t,n),t}function jw(e,t,n){if(e==null)return;if(e instanceof Ee){t.push(e);return}if(!AE(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),jw(s,t,n))}}function AE(e){return Array.isArray(e)||typeof e=="object"}function Mg(e){return e.kernelName!=null}var qw=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},uc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new qw}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new vE(this.backendInstance),!0}setupRegisteredKernels(){Rd(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Rd(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Pu)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return uc.nextTensorId++}nextVariableId(){return uc.nextVariableId++}clone(e){let t=M.runKernel(Os,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return M.runKernel(Ts,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(Dd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Mg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Mg(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=Dd(h,this.backendName);$(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(v=>{if(v.rank!=null)return v;let{dataId:T,shape:k,dtype:S}=v;return this.makeTensorFromDataId(T,k,S)});if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:c,attrs:u}=e,p=Mg(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),a&&this.addTapeNode(l,c,t,p,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Cg(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?($(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Pr(e[0])&&(r=e.map(o=>sc(o)));let s=a.write(r,t,n),i=new Ee(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=Dw(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Ee(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Vr(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*xg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Vr||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*xg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Cg(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let p=n[u],d=ed(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return c}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Eg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if($(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));$(r instanceof Ee,()=>"The result y returned by f() must be a tensor.");let s=wE(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?$E(r.shape):n,kE(i,s,l=>this.tidy(l),DE);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return $(Or(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{$(t.every(i=>i instanceof Ee),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),$(n.value instanceof Ee,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),$(Or(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];$(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),$(c.every(p=>p instanceof Ee),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((p,d)=>{u[d]=()=>p}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=rc(),n=await this.backend.time(e);return n.wallMs=rc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new qw;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};uc.nextTensorId=0;uc.nextVariableId=0;function $E(e){let t=vg(Ot(e),"float32");return M.makeTensor(t,e,"float32")}function Kw(){let e=zw();if(e._tfengine==null){let t=new Lw(e);e._tfengine=new uc(t)}return uE(e._tfengine.ENV),SE(()=>e._tfengine),e._tfengine}var M=Kw();function DE(e,t){let n={a:e,b:t};return M.runKernel(Lr,n)}var cc={};Le(cc,{isBrowser:()=>Xw,isMobile:()=>RE});function ME(){return typeof navigator!="undefined"&&navigator!=null}function RE(){if(ME()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function Xw(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ka=Z();ka.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ka.registerFlag("IS_BROWSER",()=>Xw());ka.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ka.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ka.registerFlag("PROD",()=>!1);ka.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ka.getBool("DEBUG"));ka.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ka.registerFlag("IS_TEST",()=>!1);ka.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ka.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Ba(e,t){let n=e;if(un(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||un(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&Z().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Yw(e,a,[]),a}function Yw(e,t,n){if(n=n||[],!Array.isArray(e)&&!un(e)){$(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}$(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),$(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)Yw(e[r],a,n.concat(r))}function Jw(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function E(e,t,n,a="numeric"){if(e instanceof Ee)return Jw(a,e.dtype,t,n),e;let r=Qp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),Jw(a,r,t,n),e==null||!un(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Ba(e,r);!un(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Md(e,r):xs(e,[],!0);return M.makeTensor(i,s,r)}function pc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>E(r,`${t}[${s}]`,n,a))}var Qw="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Qw;let r=(...s)=>{M.startScope(n);try{let i=a(...s);return kg(i)&&console.error("Cannot return a Promise inside of tidy."),M.endScope(i),i}catch(i){throw M.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function PE(e,t){let n=E(e,"real","complex"),a=E(t,"imag","complex");ln(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return M.runKernel(id,r)}var Ur=O({complex_:PE});function Gr(e,t,n,a){if(a==null&&(a=Qp(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!un(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){wg(t);let r=Ot(t),s=Ot(n);$(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Ot(t.slice(i)):!0;$(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!un(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Md(e,a):xs(e,[],!0),M.makeTensor(e,t,a)}function Yn(e,t,n){let a=Ba(e,n);return Gr(e,t,a,n)}var Pg={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},zd=4;async function LE(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let c={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+zd*d.length,m=new Uint8Array(h),f=0;for(let g=0;g<d.length;g++){let y=d[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=zd,m.set(y,f),f+=y.length}p(m)});a.push(u)}else a.push(l.data());t!=null&&(c.group=t),n.push(c)}let s=await Promise.all(a);return{data:OE(s),specs:n}}function Zw(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,c=Ot(l),u;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=Pg[p.dtype],h=e.slice(r,r+c*d),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){u=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];u[f]=g*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=zE()),u=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);u=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];u[f]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=c*d}else if(o==="string"){let p=Ot(s.shape);u=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+zd))[0];r+=zd;let m=new Uint8Array(e.slice(r,r+h));u.push(m),r+=h}}else{let p=Pg[o],d=e.slice(r,r+c*p);if(o==="float32")u=new Float32Array(d);else if(o==="int32")u=new Int32Array(d);else if(o==="bool")u=new Uint8Array(d);else if(o==="complex64"){u=new Float32Array(d);let h=new Float32Array(u.length/2),m=new Float32Array(u.length/2);for(let y=0;y<h.length;y++)h[y]=u[y*2],m[y]=u[y*2+1];let f=Yn(h,l,"float32"),g=Yn(m,l,"float32");n[i]=Ur(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=c*p}o!=="complex64"&&(n[i]=Yn(u,l,o))}return n}function OE(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Og=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function e0(e){return Og?Buffer.byteLength(e):new Blob([e]).size}function WE(e){if(Og)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function BE(e){if(Og){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Lg(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function t0(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function dc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:e0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:e0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function VE(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function UE(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function GE(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function zE(){let e=VE(),t=UE(),n=GE();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Ft=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ft.instance==null&&(Ft.instance=new Ft),Ft.instance}static registerSaveRouter(e){Ft.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ft.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ft.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ft.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Ft.getInstance().loadRouters:Ft.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},HE=e=>Ft.registerSaveRouter(e),jE=e=>Ft.registerLoadRouter(e),qE=e=>Ft.getSaveHandlers(e),KE=(e,t)=>Ft.getLoadHandlers(e,t),zg="tensorflowjs",Wg=1,fi="models_store",Hr="model_info_store";function n0(){if(!Z().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Bg(e){let t=e.result;t.createObjectStore(fi,{keyPath:"modelPath"}),t.createObjectStore(Hr,{keyPath:"modelPath"})}var gi=class{constructor(e){if(this.indexedDB=n0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(zg,Wg);r.onupgradeneeded=()=>Bg(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(fi,"readonly"),o=i.objectStore(fi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=dc(t),o=s.transaction(Hr,"readwrite"),l=o.objectStore(Hr),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(fi,"readwrite");let p=u.objectStore(fi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=d=>{l=o.objectStore(Hr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},c.onerror=p=>(s.close(),a(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};gi.URL_SCHEME="indexeddb://";var a0=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(gi.URL_SCHEME)?XE(e.slice(gi.URL_SCHEME.length)):null;Ft.registerSaveRouter(a0);Ft.registerLoadRouter(a0);function XE(e){return new gi(e)}function YE(e){return e.startsWith(gi.URL_SCHEME)?e.slice(gi.URL_SCHEME.length):e}var JE=class{constructor(){this.indexedDB=n0()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(zg,Wg);n.onupgradeneeded=()=>Bg(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Hr,"readonly"),s=r.objectStore(Hr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=YE(e),new Promise((t,n)=>{let a=this.indexedDB.open(zg,Wg);a.onupgradeneeded=()=>Bg(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Hr,"readwrite"),i=s.objectStore(Hr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=r.transaction(fi,"readwrite");let p=l.objectStore(fi).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=p=>(u(),r.close(),n(o.error))}},o.onerror=c=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},dr="/",vl="tensorflowjs_models",r0="info",QE="model_topology",ZE="weight_specs",eF="weight_data",tF="model_metadata";function s0(e){return{info:[vl,e,r0].join(dr),topology:[vl,e,QE].join(dr),weightSpecs:[vl,e,ZE].join(dr),weightData:[vl,e,eF].join(dr),modelMetadata:[vl,e,tF].join(dr)}}function nF(e){let t=e.split(dr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(dr)}function aF(e){return e.startsWith(yi.URL_SCHEME)?e.slice(yi.URL_SCHEME.length):e}var yi=class{constructor(e){if(!Z().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=s0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=dc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,WE(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=BE(s),t}};yi.URL_SCHEME="localstorage://";var i0=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(yi.URL_SCHEME)?rF(e.slice(yi.URL_SCHEME.length)):null;Ft.registerSaveRouter(i0);Ft.registerLoadRouter(i0);function rF(e){return new yi(e)}var sF=class{constructor(){$(Z().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),$(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=vl+dr,n=dr+r0;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=nF(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=aF(e);let t=s0(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},wl="://",Jn=class{constructor(){this.managers={}}static getInstance(){return Jn.instance==null&&(Jn.instance=new Jn),Jn.instance}static registerManager(e,t){$(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(wl)&&(e=e.slice(0,e.indexOf(wl))),$(e.length>0,()=>"scheme must not be an empty string.");let n=Jn.getInstance();$(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Wd(e){if(e.indexOf(wl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Jn.getSchemes().join(",")}`);return{scheme:e.split(wl)[0],path:e.split(wl)[1]}}async function o0(e,t,n=!1){$(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Ft.getLoadHandlers(e);$(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),$(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Ft.getSaveHandlers(t);$(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),$(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Wd(e).scheme,l=Wd(e).path,c=o===Wd(e).scheme,u=await r.load();n&&c&&await Jn.getManager(o).removeModel(l);let p=await i.save(u);return n&&!c&&await Jn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function iF(){let e=Jn.getSchemes(),t={};for(let n of e){let a=await Jn.getManager(n).listModels();for(let r in a){let s=n+wl+r;t[s]=a[r]}}return t}async function oF(e){let t=Wd(e);return Jn.getManager(t.scheme).removeModel(t.path)}async function lF(e,t){return o0(e,t,!1)}async function uF(e,t){return o0(e,t,!0)}var cF=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Z().get("IS_BROWSER")){Z().setPlatform("browser",new cF);try{Jn.registerManager(yi.URL_SCHEME,new sF)}catch(e){}try{Jn.registerManager(gi.URL_SCHEME,new JE)}catch(e){}}var pF={importFetch:()=>I_()},Vg,dF=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Z().global.fetch!=null?Z().global.fetch(e,t):(Vg==null&&(Vg=pF.importFetch()),Vg(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Z().get("IS_NODE")&&Z().setPlatform("node",new dF);function Me(e,t="float32",n){return t=t||"float32",wg(e),new Lt(e,t,n)}function hF(e,t){let n=E(e,"x","cast");if(!$w(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return M.runKernel(Ts,a,r)}var ue=O({cast_:hF});function mF(e){let t={x:E(e,"x","clone","string_or_numeric")};return M.runKernel(Os,t)}var jr=O({clone_:mF});function l0(e,t=!1){console.log(e.toString(t))}Kw();var fF={buffer:Me,cast:ue,clone:jr,print:l0};CE(fF);var jt={};Le(jt,{browserFiles:()=>gF,browserHTTPRequest:()=>bF,concatenateArrayBuffers:()=>Lg,copyModel:()=>lF,decodeWeights:()=>Zw,encodeWeights:()=>LE,fromMemory:()=>xF,getLoadHandlers:()=>KE,getModelArtifactsInfoForJSON:()=>dc,getSaveHandlers:()=>qE,http:()=>Gg,isHTTPScheme:()=>Ug,listModels:()=>iF,loadWeights:()=>yF,moveModel:()=>uF,registerLoadRouter:()=>jE,registerSaveRouter:()=>HE,removeModel:()=>oF,weightsLoaderFactory:()=>u0,withSaveHandler:()=>vF});var wF="model",kF=".json",IF=".weights.bin";function c0(e){return new Promise(t=>setTimeout(t)).then(e)}var kl=class{constructor(e){if(!Z().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(kl.URL_SCHEME)&&(e=e.slice(kl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=wF),this.modelTopologyFileName=e+kF,this.weightDataFileName=e+IF}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await c0(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await c0(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:dc(e)}}}};kl.URL_SCHEME="downloads://";var TF=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let u=[],p=[],d=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),d.push(null)}),u.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=g=>{let y=g.target.result,b=p.indexOf(m);if(d[b]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Lg(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=g=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>t0(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=t0(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},SF=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(kl.URL_SCHEME)?NF(e.slice(kl.URL_SCHEME.length)):null;Ft.registerSaveRouter(SF);function NF(e="model"){return new kl(e)}function gF(e){return new TF(e)}function p0(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(c=>{let u=n+ ++r/e.length*(a-n);return t(u),c}),l);function i(l){$(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){$(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),$(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),$(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function d0(e,t){t==null&&(t={});let n=t.fetchFunc==null?Z().platform.fetch:t.fetchFunc,a=e.map(c=>n(c,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await p0(a,t.onProgress,r,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await p0(i,t.onProgress,o,l)}async function yF(e,t="",n,a){return u0(r=>d0(r,{requestInit:a}))(e,t,n)}function u0(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=Pg[y]*Ot(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((v,T)=>{v===g.name&&(x(),i[T]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),p={},d=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=u[d+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let v=new Uint8Array(u[d+x]);y.set(v,b),b+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),T=Zw(v,[x.manifestEntry]);for(let k in T)p[k]=T[k]}),d+=m}),p}}var CF="application/octet-stream",_F="application/json",Hg=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?($(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Z().platform.fetch,$(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&$(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:_F}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:CF}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:dc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;a!=null&&([c,u]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(p.modelInitializer=d),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=EF(t),r=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(r+u+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await d0(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Lg(l)]}};Hg.URL_SCHEME_REGEX=/^https?:\/\//;function EF(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Ug(e){return e.match(Hg.URL_SCHEME_REGEX)!=null}var h0=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Ug(a)):n=Ug(e),n)return Gg(e,t)}return null};Ft.registerSaveRouter(h0);Ft.registerLoadRouter(h0);function Gg(e,t){return new Hg(e,t)}function bF(e,t){return Gg(e,t)}var jg=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},FF=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function xF(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new jg(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new jg({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new jg({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function vF(e){return new FF(e)}var m0={};Le(m0,{confusionMatrix:()=>AF});function $F(e,t,n=!1,a=!1){let r=E(e,"a","matMul"),s=E(t,"b","matMul");[r,s]=Nt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return M.runKernel(Is,i,o)}var ze=O({matMul_:$F});function DF(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:E(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return M.runKernel(qs,r,s)}var Il=O({oneHot_:DF});function RF(e,t){let n=E(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),$(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{$(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return M.runKernel(pi,a,r)}var Ve=O({transpose_:RF});function MF(e,t,n){let a=E(e,"labels","confusionMatrix"),r=E(t,"predictions","confusionMatrix");$(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),$(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),$(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),$(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),$(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Il(ue(a,"int32"),n),i=Il(ue(r,"int32"),n),o=Ve(s),l=ze(o,i);return ue(l,"int32")}var AF=O({confusionMatrix_:MF}),bi={};Le(bi,{fromPixels:()=>LF,fromPixelsAsync:()=>PF,toPixels:()=>OF});function Bd(e,t,n){if(bs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Ba(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Gr(e,t,a,n)}var Tl;function f0(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let d=2;if(r&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Dd($d,M.backendName)!=null){let d={pixels:e},h={numChannels:t};return M.runKernel($d,d,h)}let[l,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:a||n?u=e.data:(s||r||o)&&(Tl==null&&(Tl=document.createElement("canvas").getContext("2d")),Tl.canvas.width=l,Tl.canvas.height=c,Tl.drawImage(e,0,0,l,c),u=Tl.getImageData(0,0,l,c).data);let p;if(t===4)p=new Int32Array(u);else{let d=l*c;p=new Int32Array(d*t);for(let h=0;h<d;h++)for(let m=0;m<t;++m)p[h*t+m]=u[h*4+m]}return Bd(p,[c,l,t],"int32")}function zF(e){return e!=null&&e.data instanceof Uint8Array}function WF(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function BF(e){return e!=null&&e.width!==0&&e.height!==0}function VF(e){return WF()&&!(e instanceof ImageBitmap)&&BF(e)&&!zF(e)}async function PF(e,t=3){let n=null;if(Z().getBool("WRAP_TO_IMAGEBITMAP")&&VF(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return f0(n,t)}async function OF(e,t){let n=E(e,"img","toPixels");if(!(e instanceof Ee)){let c=n;n=ue(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let c=0;c<a*r;++c){let u=[0,0,0,255];for(let d=0;d<s;d++){let h=i[c*s+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(u[0]=h*o,u[1]=h*o,u[2]=h*o):u[d]=h*o}let p=c*4;l[p+0]=Math.round(u[0]),l[p+1]=Math.round(u[1]),l[p+2]=Math.round(u[2]),l[p+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=a;let c=t.getContext("2d"),u=new ImageData(l,r,a);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var LF=O({fromPixels_:f0}),qg={};Le(qg,{prepareAndValidate:()=>g0});function g0(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Ot(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let c=1;for(let p=s;p<n;++p)c*=o[p],l.push(o[p]);let u=[...yo(e.shape).map(p=>p/c),1].slice(0,s);return[l,i,c,u]}var Kg={};Le(Kg,{calculateShapes:()=>y0,validateInput:()=>Yg,validateUpdateShape:()=>Xg});function Xg(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Yg(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Xg(n,t,e)}function y0(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Ot(t.shape)/o,c=[...yo(n.slice(0,r)),1],u=Ot(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:c,outputSize:u}}var an={};Le(an,{assertParamsValid:()=>UF,computeFlatOffset:()=>HF,computeOutShape:()=>b0,getNormalizedAxes:()=>v0,isSliceContinous:()=>GF,maskToAxes:()=>Vd,parseSliceParams:()=>S0,sliceInfo:()=>jF,startForAxis:()=>T0,startIndicesWithElidedDims:()=>w0,stopForAxis:()=>N0,stopIndicesWithElidedDims:()=>k0,stridesForAxis:()=>I0,stridesWithElidedDims:()=>x0});function UF(e,t,n){let a=e.shape.length;$(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),$(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)$(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Vd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function b0(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function x0(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function C0(e,t,n){return n<=e?n:n-(t-1)}function _0(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function v0(e,t,n,a,r,s,i,o,l){let c=e.length,u=new Array(c),p=new Array(c),d=new Array(c);if(t.length&&n>0){let h=t[0],m=n+1;u=w0(i,h,m,a,e),p=k0(o,h,m,r,e),d=x0(s,h,m,e)}else for(let h=0;h<c;h++)u[h]=T0(i,a,s,e,h,l),p[h]=N0(o,r,s,e,h,l),d[h]=I0(s,h,l);return{begin:u,end:p,strides:d}}function w0(e,t,n,a,r){let s=[...r],i=_0(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=C0(t,n,o),c=a[l];e&1<<l&&(c=0),s[o]=c}return s}function k0(e,t,n,a,r){let s=[...r],i=_0(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=C0(t,n,o),c=a[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),s[o]=c}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=Ou(0,s[o],r[o])}return s}function I0(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function T0(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=Ou(0,i,l-1),i}function N0(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=Ou(0,i,l):i=Ou(-1,i,l-1),i}function GF(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function HF(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function S0(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{$(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:($(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function jF(e,t,n,a,r,s,i,o,l){let c=t.slice(),u=n.slice(),p=a;a==null&&(p=new Array(c.length));let d=Vd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,m=Vd(o),f=e.slice();m.forEach(k=>{c[k]=0,u[k]=1,f.splice(k,0,1)});let{begin:g,end:y,strides:b}=v0(f,d,h,c,u,p,r,s,i);c=g,u=y,p=b;let x=Vd(l);x.forEach(k=>{u[k]=c[k]+1,p[k]=1});let v=b0(c,u,p),T=v.filter((k,S)=>x.indexOf(S)===-1);return{nonStrided:p.every(k=>k===1),$begin:c,$end:u,$strides:p,size:v,newShape:f,outShape:T}}var re={};Le(re,{Serializable:()=>E0,SerializationMap:()=>xi,registerClass:()=>qr});var E0=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},xi=class{constructor(){this.classNameMap={}}static getMap(){return xi.instance==null&&(xi.instance=new xi),xi.instance}static register(e){xi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function qr(e){$(e.className!=null,()=>"Class being registered does not have the static className property defined."),$(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),$(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),xi.register(e)}var F0={};Le(F0,{TEST_EPSILON_FLOAT16:()=>A0,encodeStrings:()=>$0,expectArrayBuffersEqual:()=>QF,expectArraysClose:()=>qF,expectArraysEqual:()=>XF,expectNumbersClose:()=>YF,expectPromiseToFail:()=>KF,expectValuesInRange:()=>JF,testEpsilon:()=>Jg});var ZF=.001,A0=.1;function qF(e,t,n){return n==null&&(n=Jg()),Qg(e,t,(a,r)=>Zg(a,r,n))}function Jg(){return M.backend.floatPrecision()===32?ZF:A0}function Qg(e,t,n){let a=!0;if((un(e)||un(t))&&(a=!1),un(e)&&un(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Ba(e),o=Ba(t);if(!pr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=un(e)?e:xs(e),s=un(t)?t:xs(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}}function KF(e,t){e().then(()=>t.fail(),()=>t())}function XF(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Pr(e)||Pr(e[0])||Pr(t)||Pr(t[0])?Qg(e,n,(a,r)=>a==r):Qg(e,t,(a,r)=>Zg(a,r,0))}function YF(e,t,n){if(n==null&&(n=Jg()),!Zg(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Zg(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function JF(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function QF(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function $0(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?$0(n):e[t]=sc(n)}return e}var D0="3.3.0";function eA(){Z().set("PROD",!0)}function tA(){Z().set("DEBUG",!0)}function nA(){Z().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function ey(e){Z().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}_E(ey);function aA(){M.disposeVariables()}function Va(){return M}function Ud(){return M.memory()}function rA(e){return M.profile(e)}function D(e,t){return M.tidy(e,t)}function Ae(e){Eg(e).forEach(t=>t.dispose())}function qt(e){return M.keep(e)}function sA(e){return M.time(e)}function iA(e){return M.setBackend(e)}function oA(){return M.ready()}function lA(){return M.backendName}function uA(e){M.removeBackend(e)}function cA(e){return M.findBackend(e)}function pA(e){return M.findBackendFactory(e)}function Gd(e,t,n=1){return M.registerBackend(e,t,n)}function R0(){return M.backend}function dA(e,t){Z().setPlatform(e,t)}function hA(e,t){let n=E(e,"a","add"),a=E(t,"b","add");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Lr,r)}var J=O({add_:hA});function mA(e,t){let n=E(e,"a","floorDiv"),a=E(t,"b","floorDiv");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Rs,r)}var Hd=O({floorDiv_:mA});function fA(e,t){let n=E(e,"a","div"),a=E(t,"b","div");if([n,a]=Nt(n,a),n.dtype==="int32"&&a.dtype==="int32")return Hd(n,a);let r={a:n,b:a},s={};return M.runKernel(As,r,s)}var ye=O({div_:fA});function gA(e,t){let n=E(e,"a","mul"),a=E(t,"b","mul");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(js,r)}var W=O({mul_:gA});function yA(e){let t=E(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return M.runKernel(Vu,n)}else{let n={x:t};return M.runKernel(xo,n)}}var zt=O({abs_:yA});function bA(e){let t={x:E(e,"x","acos")};return M.runKernel(vo,t)}var ty=O({acos_:bA});function xA(e){let t={x:E(e,"x","acosh")};return M.runKernel(wo,t)}var ny=O({acosh_:xA});function vA(e){$(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),$(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>E(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!pr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return M.runKernel(vs,a)}var M0=O({addN_:vA});function wA(e,t=null,n=!1){let a={x:E(e,"x","all","bool")},r={axis:t,keepDims:n};return M.runKernel(td,a,r)}var jd=O({all_:wA});function kA(e,t=null,n=!1){let a={x:E(e,"x","any","bool")},r={axis:t,keepDims:n};return M.runKernel(nd,a,r)}var hc=O({any_:kA});function IA(e,t=0){let n={x:E(e,"x","argMax")},a={axis:t};return M.runKernel(ws,n,a)}var mc=O({argMax_:IA});function TA(e,t=0){let n={x:E(e,"x","argMin")},a={axis:t};return M.runKernel(zu,n,a)}var ay=O({argMin_:TA});function NA(e){let t={x:E(e,"x","asin")};return M.runKernel(ko,t)}var ry=O({asin_:NA});function SA(e){let t={x:E(e,"x","asinh")};return M.runKernel(Io,t)}var sy=O({asinh_:SA});function CA(e){let t={x:E(e,"x","atan")};return M.runKernel(To,t)}var iy=O({atan_:CA});function _A(e,t){let n=E(e,"a","atan2"),a=E(t,"b","atan2");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(So,r)}var oy=O({atan2_:_A});function EA(e){let t={x:E(e,"x","atanh")};return M.runKernel(No,t)}var ly=O({atanh_:EA});function FA(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=P0(r);return fc(e,o,n,s,a,null,null,l)}function O0(e,t,n,a,r,s,i="channelsLast"){let[o,l]=qd(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return fc(e,c,n,a,r,s,!1,i)}function AA(e,t,n,a,r,s,i="NDHWC"){let[o,l,c]=uy(t),u,p;if(i==="NDHWC")p="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return L0(e,u,n,a,r,!1,p,s)}function fc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,c,u,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,p]=e;else if(o==="channelsFirst")[l,p,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,m]=t,[f,g]=qd(n),[y,b]=qd(a),x=Nl(d,y),v=Nl(h,b),{padInfo:T,outHeight:k,outWidth:S}=$A(r,c,u,f,g,x,v,s,o),F=i?m*p:m,A;return o==="channelsFirst"?A=[l,F,k,S]:o==="channelsLast"&&(A=[l,k,S,F]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:p,outHeight:k,outWidth:S,outChannels:F,padInfo:T,strideHeight:f,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:e,outShape:A,filterShape:t}}function L0(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,c,u,p,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,p,d]=e;else if(i==="channelsFirst")[l,d,c,u,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=uy(n),[v,T,k]=uy(a),S=Nl(h,v),F=Nl(m,T),A=Nl(f,k),{padInfo:R,outDepth:P,outHeight:z,outWidth:V}=DA(r,c,u,p,y,b,x,S,F,A,o),G=s?g*d:g,H;return i==="channelsFirst"?H=[l,G,P,z,V]:i==="channelsLast"&&(H=[l,P,z,V,G]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:p,inChannels:d,outDepth:P,outHeight:z,outWidth:V,outChannels:G,padInfo:R,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:S,effectiveFilterHeight:F,effectiveFilterWidth:A,dilationDepth:v,dilationHeight:T,dilationWidth:k,inShape:e,outShape:H,filterShape:t}}function RA(e,t,n,a,r){a==null&&(a=cy(e,t,n));let s=e[0],i=e[1],o=vi((s-t+2*a)/n+1,r),l=vi((i-t+2*a)/n+1,r);return[o,l]}function MA(e,t,n,a,r,s){r==null&&(r=cy(e,t,a));let i=e[0],o=e[1],l=e[2],c=vi((i-t+2*r)/a+1,s),u=vi((o-t+2*r)/a+1,s),p=vi((l-t+2*r)/a+1,s);return[c,u,p,n]}function cy(e,t,n,a=1){let r=Nl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function qd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function uy(e){return typeof e=="number"?[e,e,e]:e}function Nl(e,t){return t<=1?e:e+(e-1)*(t-1)}function $A(e,t,n,a,r,s,i,o,l){let c,u,p;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=RA([t,n],s,a,e,o);u=d[0],p=d[1]}else if(e==="same"){u=Math.ceil(t/a),p=Math.ceil(n/r);let d=Math.max(0,(u-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(d/2),f=d-m,g=Math.floor(h/2),y=h-g;c={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:h,left:m,right:f,type:d===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=vi((t-s+d+h)/a+1,o),p=vi((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:p}}function DA(e,t,n,a,r,s,i,o,l,c,u){let p,d,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=MA([t,n,a,1],o,1,r,e,u);d=f[0],h=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(d-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+c-a,b=Math.floor(f/2),x=f-b,v=Math.floor(g/2),T=g-v,k=Math.floor(y/2),S=y-k;p={top:v,bottom:T,left:k,right:S,front:b,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:m}}function vi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Kr(e){let[t,n,a]=qd(e);return t===1&&n===1&&a===1}function Ua(e,t){return Kr(e)||Kr(t)}function P0(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function PA(e,t){let n={x:E(e,"x","reshape","string_or_numeric")},a={shape:t};return M.runKernel(al,n,a)}var U=O({reshape_:PA});function OA(e,t,n,a,r){let s=E(e,"x","avgPool","float32"),i=1;$(Ua(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&$(Ht(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(ks,c,u);return p=ue(p,s.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Qn=O({avgPool_:OA});function LA(e,t,n,a,r,s="NDHWC"){let i=E(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&$(Ht(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(Wu,c,u);return p=ue(p,o.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var py=O({avgPool3d_:LA});function zA(e,t=0){$(e.length>=1,()=>"Pass at least one tensor to concat");let n=pc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return jr(n[0]);let a=n,r={axis:t};return M.runKernel(Co,a,r)}var Je=O({concat_:zA});function WA(e){let t={x:E(e,"x","sigmoid")};return M.runKernel(ri,t)}var ua=O({sigmoid_:WA});function BA(e,t,n){let a=E(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return M.runKernel(ol,r,s)}var Be=O({slice_:BA});function VA(e){let t={x:E(e,"x","tanh")};return M.runKernel(ci,t)}var Sl=O({tanh_:VA});function UA(e,t,n,a,r,s){let i=E(e,"forgetBias","basicLSTMCell"),o=E(t,"lstmKernel","basicLSTMCell"),l=E(n,"lstmBias","basicLSTMCell"),c=E(a,"data","basicLSTMCell"),u=E(r,"c","basicLSTMCell"),p=E(s,"h","basicLSTMCell"),d=Je([c,p],1),h=ze(d,o),m=J(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=Be(m,[0,0],y),x=Be(m,[0,g],y),v=Be(m,[0,g*2],y),T=Be(m,[0,g*3],y),k=J(W(ua(b),Sl(x)),W(u,ua(J(i,v)))),S=W(Sl(k),ua(T));return[k,S]}var GA=O({basicLSTMCell_:UA});function HA(e,t,n){let a=E(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);$(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),$(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),$(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return M.runKernel(Bu,s,i)}var gc=O({batchToSpaceND_:HA});function jA(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function qA(e,t,n,a,r,s){s==null&&(s=.001);let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;a!=null&&(u=E(a,"offset","batchNorm")),$(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),$(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),$(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:jA(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},h=M.runKernel(Ms,p,d);return U(h,i.shape)}var hr=O({batchNorm_:qA});function KA(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),$(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),$(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),$(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&$(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&$(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),hr(i,o,l,u,c,s)}var z0=O({batchNorm2d_:KA});function XA(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),$(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),$(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),$(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&$(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&$(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),hr(i,o,l,u,c,s)}var W0=O({batchNorm3d_:XA});function YA(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),$(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),$(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),$(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&$(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&$(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),hr(i,o,l,u,c,s)}var B0=O({batchNorm4d_:YA});function JA(e,t,n){let a=E(e,"x","bincount"),r=E(t,"weights","bincount");$(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return M.runKernel(sd,s,i)}var V0=O({bincount_:JA});function QA(e,t){let n=E(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=U(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return jr(n);let i={x:n},o={reps:s};return M.runKernel(Wr,i,o)}var yc=O({broadcastTo_:QA});function ZA(e){let t={x:E(e,"x","ceil")};return M.runKernel(Ns,t)}var dy=O({ceil_:ZA});function e$(e,t,n){let a=E(e,"x","clipByValue");$(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return M.runKernel(zr,r,s)}var Kt=O({clipByValue_:e$});function t$(e){return Je(e,0)}var U0=O({concat1d_:t$});function n$(e,t){return Je(e,t)}var G0=O({concat2d_:n$});function a$(e,t){return Je(e,t)}var H0=O({concat3d_:a$});function r$(e,t){return Je(e,t)}var j0=O({concat4d_:r$});function s$(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","conv2d"),l=E(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),$(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&$(Ht(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?c.shape[3]:c.shape[1];$(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),$(Ua(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=M.runKernel(Ss,d,h);return u?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var At=O({conv2d_:s$});function i$(e,t,n,a,r="NWC",s=1,i){let o=E(e,"x","conv1d"),l=E(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1]])),$(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),$(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&$(Ht(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),$(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),$(Ua(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),$(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=U(c,[c.shape[0],1,c.shape[1],c.shape[2]]),h=At(d,p,[1,n],a,"NHWC",[1,s],i);return u?U(h,[h.shape[2],h.shape[3]]):U(h,[h.shape[0],h.shape[2],h.shape[3]])}var Kd=O({conv1d_:i$});function o$(e,t,n,a,r,s="NHWC",i){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),$(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),$(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),$(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];$(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),$(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&$(Ht(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let d={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=M.runKernel(Cs,d,h);return c?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var hy=O({conv2DBackpropInput_:o$});function l$(e,t,n,a,r,s){let i=E(e,"x","conv2dTranspose"),o=E(t,"filter","conv2dTranspose");return hy(n,i,o,a,r,"NHWC",s)}var Xd=O({conv2dTranspose_:l$});function u$(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=E(e,"x","conv3d"),o=E(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),$(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),$(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),$(Ua(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),$(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},d=M.runKernel(Uu,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var my=O({conv3d_:u$});function c$(e,t,n,a,r){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];$(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),$(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),$(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),$(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),$(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},d=M.runKernel(ud,u,p);return o?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var q0=O({conv3DBackpropInput_:c$});function p$(e,t,n,a,r){let s=E(e,"x","conv3dTranspose"),i=E(t,"filter","conv3dTranspose");return q0(n,s,i,a,r)}var d$=O({conv3dTranspose_:p$});function h$(e){let t={x:E(e,"x","cos")};return M.runKernel(_s,t)}var bc=O({cos_:h$});function m$(e){let t={x:E(e,"x","cosh")};return M.runKernel(_o,t)}var Yd=O({cosh_:m$});function f$(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return M.runKernel(Es,r,s)}var Jd=O({cumsum_:f$});function g$(e,t,n,a=!1){let r=E(e,"x","denseBincount"),s=E(t,"weights","denseBincount");$(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),$(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return M.runKernel(cd,i,o)}var K0=O({denseBincount_:g$});function y$(e,t,n="NHWC"){let a=E(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];$(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),$(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),$(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return M.runKernel(Fo,o,l)}var fy=O({depthToSpace_:y$});function b$(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","depthwiseConv2d"),l=E(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),$(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),$(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&$(Ht(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:c,filter:l},d={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=M.runKernel(Fs,p,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Xr=O({depthwiseConv2d_:b$});function x$(e){let t={x:E(e,"x","diag")};return M.runKernel(hd,t)}var v$=O({diag_:x$});function w$(e,t,n,a,r=[1,1],s="NHWC"){let i=E(e,"x","dilation2d"),o=E(t,"filter","dilation2d");$(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),$(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),$(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},p={strides:n,pad:a,dilations:r},d=M.runKernel(Gu,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var gy=O({dilation2d_:w$});function k$(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function yt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function I$(e,t){let n=E(e,"a","equal"),a=E(t,"b","equal");[n,a]=Nt(n,a),yt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Do,r)}var Yr=O({equal_:I$});function T$(e,t,n){let a=E(t,"a","where"),r=E(n,"b","where"),s=E(e,"condition","where","bool"),i=yt(a.shape,r.shape),o=yc(a,i),l=yc(r,i);s.rank===1&&$(s.shape[0]===a.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&ln(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return M.runKernel(sl,c)}var Nn=O({where_:T$});function N$(e){let t={x:E(e,"x","zerosLike")};return M.runKernel(gl,t)}var Ge=O({zerosLike_:N$});function S$(e,t){let n=E(e,"a","div"),a=E(t,"b","div");[n,a]=Nt(n,a);let r=ye(n,a),s=Ge(r),i=Yr(a,s);return Nn(i,s,r)}var yy=O({divNoNan_:S$});function C$(e,t){let n=E(e,"t1","dot"),a=E(t,"t2","dot");$((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if($(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=U(n,[1,-1]),o=U(a,[-1,1]),l=ze(i,o);return U(l,[])}else if(n.rank===1&&a.rank===2){let i=U(n,[1,-1]),o=U(a,[a.shape[0],a.shape[1]]),l=ze(i,o);return U(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=U(a,[-1,1]),o=ze(n,i);return U(o,[o.size])}else{let i=U(a,[a.shape[0],a.shape[1]]);return ze(n,i)}}var X0=O({dot_:C$});function _$(e){let t={x:E(e,"x","elu")};return M.runKernel(Ao,t)}var Cl=O({elu_:_$});function E$(e){let t=E(e,"x","erf");$(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ue(t,"float32"));let n={x:t};return M.runKernel($o,n)}var by=O({erf_:E$});function F$(e){let t={x:E(e,"x","exp")};return M.runKernel($s,t)}var dn=O({exp_:F$});function A$(e,t=0){let n=E(e,"x","expandDims","string_or_numeric");$(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return M.runKernel(Ro,a,r)}var hn=O({expandDims_:A$});function $$(e){let t={x:E(e,"x","expm1")};return M.runKernel(Mo,t)}var xy=O({expm1_:$$});function D$(e,t){let n=E(e,"x","tile","string_or_numeric");$(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return M.runKernel(Wr,a,r)}var Ga=O({tile_:D$});function R$(e,t,n,a="float32"){t==null&&(t=e);let r=Me([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=U(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ga(hn(i,0),[n[0],1,1]);if(n.length===2)return Ga(hn(hn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ga(hn(hn(hn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var vy=O({eye_:R$});function Sn(e,t,n){let a={shape:e,value:t,dtype:n};return M.runKernel(Hu,{},a)}function M$(e){let t={x:E(e,"x","floor")};return M.runKernel(Ds,t)}var _l=O({floor_:M$});function P$(e,t,n=0,a=0){let r=E(e,"x","gather"),s=E(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return M.runKernel(Oo,i,o)}var wi=O({gather_:P$});function O$(e,t){let n=E(e,"a","greater"),a=E(t,"b","greater");[n,a]=Nt(n,a),yt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(zo,r)}var ca=O({greater_:O$});function L$(e,t){let n=E(e,"a","greaterEqual"),a=E(t,"b","greaterEqual");[n,a]=Nt(n,a),yt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Ps,r)}var Jr=O({greaterEqual_:L$});function z$(e){let t={input:E(e,"input","imag")};return M.runKernel(xd,t)}var Qd=O({imag_:z$});function W$(e){let t={x:E(e,"x","isFinite")};return M.runKernel(Wo,t)}var Y0=O({isFinite_:W$});function B$(e){let t={x:E(e,"x","isInf")};return M.runKernel(Bo,t)}var J0=O({isInf_:B$});function V$(e){let t={x:E(e,"x","isNaN")};return M.runKernel(Vo,t)}var Q0=O({isNaN_:V$});function U$(e,t=.2){let n={x:E(e,"x","leakyRelu")},a={alpha:t};return M.runKernel(Ls,n,a)}var xc=O({leakyRelu_:U$});function G$(e,t){let n=E(e,"a","less"),a=E(t,"b","less");[n,a]=Nt(n,a),yt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Uo,r)}var Zd=O({less_:G$});function H$(e,t){let n=E(e,"a","lessEqual"),a=E(t,"b","lessEqual");[n,a]=Nt(n,a),yt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Go,r)}var ki=O({lessEqual_:H$});function Z0(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return M.runKernel(vd,{},a)}function j$(e,t=5,n=1,a=1,r=.5){let s=E(e,"x","localResponseNormalization");$(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),$(Ht(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:a,beta:r},u=M.runKernel(Ku,l,c);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var wy=O({localResponseNormalization_:j$});function q$(e){let t={x:E(e,"x","log")};return M.runKernel(zs,t)}var Mn=O({log_:q$});function K$(e){let t={x:E(e,"x","log1p")};return M.runKernel(Ho,t)}var eh=O({log1p_:K$});function X$(e){return $(Or(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=E(t,"x","tf.grad","string_or_numeric"),r=n!=null?E(n,"dy","tf.grad"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(a),[a],r);return r!=null&&ln(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),th(i),i[0]})}}function Y$(e){return $(Or(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{$(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=pc(t,"args","tf.grads","string_or_numeric"),r=n!=null?E(n,"dy","tf.grads"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(...a),a,r);return r!=null&&ln(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),th(i),i})}}function J$(e){return $(Or(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{$(t instanceof Ee,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),$(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=M.gradients(()=>e(t),[t],n);return th(a),{grad:a[0],value:r}}}function Q$(e){return $(Or(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{$(Array.isArray(t)&&t.every(r=>r instanceof Ee),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),$(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=M.gradients(()=>e(...t),t,n);return n!=null&&ln(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),th(a.grads),a}}function ek(e,t){$(Or(e),()=>"The f passed in variableGrads(f) must be a function"),$(t==null||Array.isArray(t)&&t.every(c=>c instanceof Vr),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in M.registeredVariables)t.push(M.registeredVariables[c])}let a=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),$(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=M.gradients(e,t,null,s);$(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),$(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),a!=null&&a.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Ha(e){return M.customGrad(e)}function th(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function Z$(e){let t={x:E(e,"x","neg")};return M.runKernel(Ko,t)}var St=O({neg_:Z$});function eD(e){let t={x:E(e,"x","softplus")};return M.runKernel(cl,t)}var El=O({softplus_:eD});function tD(e){let t=E(e,"x","logSigmoid");return Ha(n=>({value:St(El(St(n))),gradFunc:a=>W(a,ua(St(n)))}))(t)}var tk=O({logSigmoid_:tD});function nD(e,t=null,n=!1){let a={x:E(e,"x","max")},r={reductionIndices:t,keepDims:n};return M.runKernel(Ws,a,r)}var Zn=O({max_:nD});function aD(e,t){let n=E(e,"a","sub"),a=E(t,"b","sub");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(ui,r)}var he=O({sub_:aD});function rD(e,t=null,n=!1){let a=E(e,"x","sum");a.dtype==="bool"&&(a=ue(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(ii,r,s)}var Se=O({sum_:rD});function sD(e,t=-1){let n=E(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Ha((a,r)=>{let s=!0,i=Zn(a,t,!0),o=he(a,i),l=he(ue(o,"float32"),Mn(Se(dn(o),t,s)));return r([l]),{value:l,gradFunc:(c,u)=>{let[p]=u,d=!0,h=dn(p);return he(c,W(Se(c,t,d),h))}}})(n)}var nh=O({logSoftmax_:sD});function ky(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function nk(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function ak(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function Ii(e,t){let n=t.map(a=>1);return nk(e,n,t)}function iD(e,t,n){$(ky(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function rk(e,t){if(ky(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function Iy(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function oD(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function lD(e,t=null,n=!1){let a=E(e,"x","logSumExp"),r=oa(t,a.shape),s=Zn(a,r,!0),i=he(a,s),o=dn(i),l=Se(o,r),c=Mn(l),u=J(U(s,c.shape),c);if(n){let p=Ii(u.shape,r);return U(u,p)}return u}var Ty=O({logSumExp_:lD});function uD(e,t){let n=E(e,"a","logicalAnd","bool"),a=E(t,"b","logicalAnd","bool");yt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(jo,r)}var pa=O({logicalAnd_:uD});function cD(e){let t={x:E(e,"x","logicalNot","bool")};return M.runKernel(ju,t)}var vc=O({logicalNot_:cD});function pD(e,t){let n=E(e,"a","logicalOr","bool"),a=E(t,"b","logicalOr","bool");yt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(qu,r)}var ah=O({logicalOr_:pD});function dD(e,t){let n=E(e,"a","logicalXor","bool"),a=E(t,"b","logicalXor","bool");return yt(n.shape,a.shape),pa(ah(e,t),vc(pa(e,t)))}var sk=O({logicalXor_:dD});function hD(e,t,n,a,r){let s=E(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),$(Ua(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&$(Ht(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(Vs,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var $t=O({maxPool_:hD});function mD(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=E(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&$(Ht(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(Xu,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Ny=O({maxPool3d_:mD});function fD(e,t,n,a,r=!1){let s={x:E(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=M.runKernel(Td,s,i);return{result:o[0],indexes:o[1]}}var ik=O({maxPoolWithArgmax_:fD});function gD(e,t){let n=E(e,"a","maximum"),a=E(t,"b","maximum");[n,a]=Nt(n,a),n.dtype==="bool"&&(n=ue(n,"int32"),a=ue(a,"int32")),yt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Bs,r)}var ja=O({maximum_:gD});function yD(e,t=null,n=!1){let a={x:E(e,"x","mean")},r={axis:t,keepDims:n};return M.runKernel(Us,a,r)}var Ct=O({mean_:yD});function bD(e,t=null,n=!1){let a={x:E(e,"x","min")},r={axis:t,keepDims:n};return M.runKernel(Gs,a,r)}var Fl=O({min_:bD});function xD(e,t){let n=E(e,"a","minimum"),a=E(t,"b","minimum");[n,a]=Nt(n,a),n.dtype==="bool"&&(n=ue(n,"int32"),a=ue(a,"int32")),yt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Hs,r)}var Al=O({minimum_:xD});function vD(e,t,n){$(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=E(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");$(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)$(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),$(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return M.runKernel(Yu,i,s)}var Sy=O({mirrorPad_:vD});function wD(e,t){let n=E(e,"a","mod"),a=E(t,"b","mod");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(qo,r)}var Cy=O({mod_:wD});function kD(e){let t=E(e,"x","square"),n={};return M.runKernel("Square",{x:t},n)}var ot=O({square_:kD});function ID(e,t=null,n=!1){e=E(e,"x","moments");let a=oa(t,e.shape),r=Ct(e,a,n),s=r.shape;n||(s=Ii(r.shape,a));let i=ot(he(ue(e,"float32"),U(r,s))),o=Ct(i,a,n);return{mean:r,variance:o}}var rh=O({moments_:ID});function TD(e,t,n,a){let r=E(t,"data","multiRNNCell"),s=pc(n,"c","multiRNNCell"),i=pc(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](o,s[p],i[p]);l.push(d[0]),l.push(d[1]),o=d[1]}let c=[],u=[];for(let p=0;p<l.length;p+=2)c.push(l[p]),u.push(l[p+1]);return[c,u]}var ND=O({multiRNNCell_:TD});function SD(e,t,n,a=!1){let r=E(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?U(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},c=M.runKernel(Nd,o,l);return i===1?U(c,[c.size]):c}var ok=O({multinomial_:SD});function CD(e,t){let n=E(e,"a","notEqual"),a=E(t,"b","notEqual");[n,a]=Nt(n,a),yt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Xo,r)}var Ti=O({notEqual_:CD});function bt(e,t="float32"){if(t==="complex64"){let a=bt(e,"float32"),r=bt(e,"float32");return Ur(a,r)}let n=ed(Ot(e),t);return M.makeTensor(n,e,t)}function qa(e,t="float32"){if(t==="complex64"){let a=qa(e,"float32"),r=bt(e,"float32");return Ur(a,r)}let n=vg(Ot(e),t);return M.makeTensor(n,e,t)}function _D(e){let t={x:E(e,"x","onesLike")};return M.runKernel(Zo,t)}var Pn=O({onesLike_:_D});function ED(e,t){let n=E(e,"v1","outerProduct"),a=E(t,"v2","outerProduct");$(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=U(n,[-1,1]),s=U(a,[1,-1]);return ze(r,s)}var FD=O({outerProduct_:ED});function AD(e,t,n=0){let a=E(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return M.runKernel(Ks,s,r)}var ea=O({pad_:AD});function $D(e,t,n=0){return $(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ea(e,[t],n)}var DD=O({pad1d_:$D});function RD(e,t,n=0){return $(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var MD=O({pad2d_:RD});function PD(e,t,n=0){return $(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var OD=O({pad3d_:PD});function LD(e,t,n=0){return $(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var zD=O({pad4d_:LD});function WD(e,t,n){let a=E(e,"x","spaceToBatchND");$(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),$(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),$(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return M.runKernel(Zu,r,s)}var wc=O({spaceToBatchND_:WD});function UD(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=E(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),$(Ua(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let c=O0(o.shape,t,s,r,a),u=[c.dilationHeight,c.dilationWidth],p;a==="same"?p=VD([c.filterHeight,c.filterWidth],u):p=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[h,m]=BD([c.inHeight,c.inWidth],u,p),f=d?a:"valid",g=d?o:wc(o,u,h),y=(n==="avg"?()=>Qn(g,t,s,f):()=>$t(g,t,s,f))(),b=d?y:gc(y,u,m);return l?U(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function BD(e,t,n){let a=n.map(u=>u[0]),r=n.map(u=>u[1]),s=e.concat(a,r),i=t.map((u,p)=>(u-s[p]%u)%u),o=r.map((u,p)=>u+i[p]),l=t.map((u,p)=>[a[p],o[p]]),c=t.map((u,p)=>[0,i[p]]);return[l,c]}function VD(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var lk=O({pool_:UD});function GD(e,t){let n=E(e,"base","pow"),a=E(t,"exp","pow");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Xs,r)}var mr=O({pow_:GD});function HD(e,t){let n=E(e,"x","prelu"),a=E(t,"alpha","prelu"),r={x:n,alpha:a};return M.runKernel(Ys,r)}var kc=O({prelu_:HD});function jD(e,t=null,n=!1){let a=E(e,"x","prod");a.dtype==="bool"&&(a=ue(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(tl,r,s)}var sh=O({prod_:jD});function qD(e,t,n){let a=Ot(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return M.makeTensor(r,e,n)}var KD=O({rand_:qD}),_y=go(Nw()),Ey=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=_y.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},XD=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=_y.alea(r.toString()),this.randn=new Ey(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},YD=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=_y.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function JD(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new XD(t,n,a,r),i=Me(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var QD=O({randomGamma_:JD});function ZD(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new Ey(t,n,a,!1,r),i=Me(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var uk=O({randomNormal_:ZD});function eR(e,t=0,n=1,a="float32",r){let s=Me(e,a),i=new YD(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var $l=O({randomUniform_:eR});function ih(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return M.runKernel(Ju,{},r)}function tR(e){let t={input:E(e,"input","real")};return M.runKernel(Sd,t)}var Ic=O({real_:tR});function nR(e){let t={x:E(e,"x","reciprocal")};return M.runKernel(nl,t)}var Fy=O({reciprocal_:nR});function aR(e){let t={x:E(e,"x","relu")};return M.runKernel(Js,t)}var qe=O({relu_:aR});function rR(e){let t={x:E(e,"x","relu6")};return M.runKernel(Zs,t)}var oh=O({relu6_:rR});function sR(e,t){let n={x:E(e,"x","reverse")},a={dims:t};return M.runKernel(ei,n,a)}var On=O({reverse_:sR});function iR(e){let t=E(e,"x","reverse");return $(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),On(t,0)}var oR=O({reverse1d_:iR});function lR(e,t){let n=E(e,"x","reverse");return $(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),On(n,t)}var uR=O({reverse2d_:lR});function cR(e,t){let n=E(e,"x","reverse");return $(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),On(n,t)}var pR=O({reverse3d_:cR});function dR(e,t){let n=E(e,"x","reverse");return $(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),On(n,t)}var hR=O({reverse4d_:dR});function mR(e){let t={x:E(e,"x","round")};return M.runKernel(ti,t)}var Ay=O({round_:mR});function fR(e){let t={x:E(e,"x","rsqrt")};return M.runKernel(ni,t)}var lh=O({rsqrt_:fR});function ve(e,t){if((un(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&un(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Gr(e,[],[],t)}function gR(e){let t={x:E(e,"x","selu")};return M.runKernel(il,t)}var uh=O({selu_:gR});function yR(e,t,n,a,r,s=[1,1],i="NHWC"){let o=E(e,"x","separableConv2d"),l=E(t,"depthwiseFilter","separableConv2d"),c=E(n,"pointwiseFilter","separableConv2d"),u=o,p=!1;if(o.rank===3&&(p=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");$(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),$(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),$(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),$(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),$(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],h=l.shape[3];$(c.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${c.shape[2]}.`);let m=Xr(u,l,a,r,i,s),f=At(m,c,1,"valid",i);return p?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ni=O({separableConv2d_:yR});async function bR(e,t){let n=E(e,"x","setdiff1d"),a=E(t,"y","setdiff1d");$(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),$(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),$(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let u=0;u<r.length;u++)i.has(r[u])||o++;let l=new Lt([o],n.dtype),c=new Lt([o],"int32");for(let u=0,p=0;u<r.length;u++)i.has(r[u])||(l.values[p]=r[u],c.values[p]=u,p++);return[l.toTensor(),c.toTensor()]}var ck=bR;function xR(e){let t={x:E(e,"x","sign")};return M.runKernel(ul,t)}var $y=O({sign_:xR});function vR(e){let t={x:E(e,"x","sin")};return M.runKernel(ai,t)}var ch=O({sin_:vR});function wR(e){let t={x:E(e,"x","sinh")};return M.runKernel(ll,t)}var ph=O({sinh_:wR});function kR(e,t,n){let a=E(e,"x","slice1d");return $(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Be(a,[t],[n])}var dh=O({slice1d_:kR});function IR(e,t,n){let a=E(e,"x","slice2d");return $(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Dy=O({slice2d_:IR});function TR(e,t,n){let a=E(e,"x","slice3d");return $(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Dl=O({slice3d_:TR});function NR(e,t,n){let a=E(e,"x","slice4d");return $(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Tc=O({slice4d_:NR});function SR(e,t=-1){let n=E(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return M.runKernel(oi,a,r)}var Ia=O({softmax_:SR});function CR(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(yd,t)}var Nc=O({fft_:CR});function _R(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(bd,t)}var Rl=O({ifft_:_R});function ER(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=U(e,[n,t]);a=Rl(r)}else{let r=[n,2*(t-1)],s=U(Ic(e),[n,t]),i=U(Qd(e),[n,t]),o=On(Be(s,[0,1],[n,t-2]),1),l=W(On(Be(i,[0,1],[n,t-2]),1),ve(-1)),c=Je([s,o],1),u=Je([i,l],1),p=U(Ur(c,u),[r[0],r[1]]);a=Rl(p)}if(a=Ic(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=U(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var hh=O({irfft_:ER});function FR(e,t,n=0){let a={x:E(e,"x","split")},r={numOrSizeSplits:t,axis:n};return M.runKernel(pl,a,r)}var Ln=O({split_:FR});function AR(e,t){$(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Be(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Je([e,bt(m)],e.shape.length-1),n=t}else r=e;let s=Ge(r),i=U(Ur(r,s),[a,n]),o=Nc(i),l=Math.floor(n/2)+1,c=Ic(o),u=Qd(o),p=Ln(c,[l,n-l],c.shape.length-1),d=Ln(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,U(Ur(p[0],d[0]),h)}var Sc=O({rfft_:AR});function $R(e){let t={x:E(e,"x","sqrt")};return M.runKernel(si,t)}var rn=O({sqrt_:$R});function DR(e,t){let n=E(e,"a","squaredDifference"),a=E(t,"b","squaredDifference");[n,a]=Nt(n,a),yt(n.shape,a.shape);let r={a:n,b:a},s={};return M.runKernel(li,r,s)}var mh=O({squaredDifference_:DR});function RR(e,t){let n=E(e,"x","squeeze");return U(n,_w(n.shape,t).newShape)}var Qr=O({squeeze_:RR});function MR(e,t=0){let n=pc(e,"tensors","stack","string_or_numeric");$(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&$(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return M.runKernel(el,a,r)}var Dt=O({stack_:MR});function PR(e,t=0){let n={x:E(e,"x","step")},a={alpha:t};return M.runKernel(Br,n,a)}var Ml=O({step_:PR});function OR(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let c={x:E(e,"x","stridedSlice")},u={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return M.runKernel(dl,c,u)}var Ry=O({stridedSlice_:OR});function LR(e){let t={x:E(e,"x","tan")};return M.runKernel(hl,t)}var My=O({tan_:LR});function Qe(e,t){bs(e);let n=Ba(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Gr(e,null,n,t)}function Ta(e,t,n){if(bs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Ba(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Gr(e,t,a,n)}function Na(e,t,n){if(bs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Ba(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Gr(e,t,a,n)}function zR(e,t,n){if(bs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Ba(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Gr(e,t,a,n)}function WR(e,t,n){if(bs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Ba(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Gr(e,t,a,n)}function BR(e,t=1,n=!0){let a=E(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=M.runKernel(ml,s,i);return{values:o,indices:l}}var Py=O({topk_:BR});function VR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Ey(t,n,a,!0,r),i=Me(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var fh=O({truncatedNormal_:VR});function UR(e,t=0){let n=E(e,"x","unique","string_or_numeric");$(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=M.runKernel(Ad,a,r);return{values:s,indices:i}}var gh=O({unique_:UR});function GR(e,t,n){let a=E(e,"x","unsortedSegmentSum"),r=E(t,"segmentIds","unsortedSegmentSum","int32");$(Ht(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return M.runKernel(tc,s,i)}var Oy=O({unsortedSegmentSum_:GR});function HR(e,t=0){let n=E(e,"x","unstack","string_or_numeric");$(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return M.runKernel(fl,a,r)}var lt=O({unstack_:HR});function pk(e,t=!0,n,a){return M.makeVariable(e,t,n,a)}function dk(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Me(e,"int32"),r=Me([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function jR(e){let t=E(e,"condition","whereAsync","bool"),n=await t.data(),a=dk(t.shape,n);return e!==t&&t.dispose(),a}var Ly=jR;async function qR(e,t,n){let a=E(e,"tensor","boolMask"),r=E(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;$(i>0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let c=o.slice(0,s).concat([l],o.slice(s+i)),u=U(a,c),p=U(r,[-1]),d=await Ly(p),h=Qr(d,[1]),m=wi(u,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),p.dispose(),d.dispose(),m}var KR=qR;function XR(e,t="euclidean",n=null,a=!1){e=E(e,"x","norm");let r=hk(e,t,n),s=r.shape;if(a){let i=oa(n,e.shape);s=Ii(r.shape,i)}return U(r,s)}function hk(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return hk(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(zt(e),n);if(t===Infinity)return Zn(zt(e),n);if(t===-Infinity)return Fl(zt(e),n);if(t==="euclidean"||t===2)return rn(Se(mr(zt(e),ve(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Zn(Se(zt(e),n[0]),n[1]-1);if(t===Infinity)return Zn(Se(zt(e),n[1]),n[0]);if(t===-Infinity)return Fl(Se(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return rn(Se(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var yh=O({norm_:XR});function YR(e,t,n,a,r=!0){let s=E(e,"v","movingAverage"),i=E(t,"x","movingAverage"),o=E(n,"decay","movingAverage");Hw(s,i),$(pr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ve(1),c=he(l,o),u=W(he(i,s),c);if(r){$(a!=null,()=>"When using zeroDebias: true, step is required.");let p=E(a,"step","movingAverage");u=ye(u,he(l,mr(o,p)))}return J(s,u)}var JR=O({movingAverage_:YR});function QR(e,t,n){let a=E(e,"indices","scatterND","int32"),r=E(t,"updates","scatterND");Yg(r,a,n);let s={indices:a,updates:r},i={shape:n};return M.runKernel(rl,s,i)}var mk=O({scatterND_:QR});function ZR(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function eM(e,t,n,a=0){let r=E(e,"sparseIndices","sparseToDense","int32"),s=E(t,"sparseValues","sparseToDense"),i=E(a,"defaultValue","sparseToDense",s.dtype);ZR(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return M.runKernel(Ed,o,l)}var zy=O({sparseToDense_:eM});function tM(e,t){let n=E(t,"indices","gatherND","int32"),a={params:E(e,"x","gatherND"),indices:n};return M.runKernel(Lo,a)}var fk=O({gatherND_:tM});function nM(e,t){if(t==null)return e.shape.slice();if(pr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function aM(e,t,n,a){let r=E(e,"x","dropout");if($(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),$(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ee?r.clone():r;let s=nM(r,n),i=1-t,o=ye(_l(J($l(s,0,1,"float32",a),i)),i);return W(r,o)}var gk=O({dropout_:aM});function yk(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Wy(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Qe(r,"float32")}async function rM(e,t,n=1){let a=E(e,"predictions","inTopK"),r=E(t,"targets","inTopK");$(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),$(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),ln(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];$(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,c]=[i.length/s,s],u=Ew("bool",l);for(let p=0;p<l;p++){let d=p*c,h=i.subarray(d,d+c),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),u[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){u[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Yn(u,r.shape,"bool")}var sM=rM,Zr={};Le(Zr,{conv2d:()=>iM,depthwiseConv2d:()=>oM,matMul:()=>lM});function uM(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),$(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),$(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),$(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];$(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),$(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&$(Ht(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},d={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return M.runKernel(od,p,d)}var By=O({conv2DBackpropFilter_:uM});function bh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return W(e,Ml(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function xh(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=Se(n,a)),U(n,e.shape)}function vh(e,t,n,a){if(t==="linear")return e;if(t==="relu")return qe(e);if(t==="elu")return Cl(e);if(t==="relu6")return oh(e);if(t==="prelu")return kc(e,n);if(t==="leakyrelu")return xc(e,a);throw new Error(`Unknown fused activation ${t}.`)}var wh=(e,t)=>!(e>0)||t==="linear";function cM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",wh(M.state.gradientDepth,l)===!1){let T=At(e,t,n,a,r,s,i);return o!=null&&(T=J(T,o)),vh(T,l,c,u)}let p=E(e,"x","conv2d"),d=E(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),$(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),$(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&$(Ht(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),$(h.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${d.shape[2]}.`),$(Ua(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),$(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=fc(h.shape,d.shape,n,s,a,i),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Nt(g,p),yt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused conv2d"));let b=(T,k)=>{let[S,F,A,R]=k,P=bh(T,A,l);$(Kr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let z=hy(F.shape,P,S,n,a),V=By(F,P,S.shape,n,a),G=[z,V];if(R!=null){let H=xh(R,P);G.push(H)}return G},x={x:h,filter:d,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Ha((T,k,S)=>{let F=M.runKernel(hi,x,v);return S([k,T,F]),m&&(F=U(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d):Ha((T,k,S,F)=>{let A=M.runKernel(hi,x,v);return F([k,T,A,S]),m&&(A=U(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,d,g)}var iM=O({fusedConv2d_:cM});function pM(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return M.runKernel(pd,c,u)}var bk=O({depthwiseConv2dNativeBackpropFilter_:pM});function dM(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=M.runKernel(dd,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var xk=O({depthwiseConv2dNativeBackpropInput_:dM});function hM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(wh(M.state.gradientDepth,l)===!1){let T=Xr(e,t,n,a,r,s,i);return o!=null&&(T=J(T,o)),vh(T,l,c,u)}let p=E(e,"x","depthwiseConv2d"),d=E(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),$(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),$(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),$(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),$(Ua(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&$(Ht(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=fc(h.shape,d.shape,n,s,a,i,!0),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Nt(g,p),yt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused depthwiseConv2d"));let b=(T,k)=>{$(Kr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[S,F,A,R]=k,P=bh(T,A,l),z=xk(F.shape,P,S,n,a,s,i),V=bk(F,P,S.shape,n,a,s,i);if(R!=null){let G=xh(g,P);return[z,V,G]}return[z,V]},x={x:h,filter:d,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Ha((T,k,S)=>{let F=M.runKernel(mi,x,v);return S([k,T,F]),m&&(F=U(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d):Ha((T,k,S,F)=>{let A=M.runKernel(mi,x,v);return F([k,T,A,S]),m&&(A=U(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,d,g)}var oM=O({fusedDepthwiseConv2d_:hM});function mM({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(wh(M.state.gradientDepth,s)===!1){let R=ze(e,t,n,a);return r!=null&&(R=J(R,r)),vh(R,s,i,o)}let l=E(e,"a","fused matMul"),c=E(t,"b","fused matMul");[l,c]=Nt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),g=Ot(m),y=Ot(f);$(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),$(pr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),$(u===p,()=>`Error in fused matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=l.shape.slice(0,-2).concat([d,h]),x=n?U(l,[g,u,d]):U(l,[g,d,u]),v=a?U(c,[y,h,p]):U(c,[y,p,h]),T;r!=null&&(T=E(r,"bias","fused matMul"),[T]=Nt(T,l),yt(b,T.shape));let k;i!=null&&(k=E(i,"prelu weights","fused matMul"));let S=(R,P)=>{let[z,V,G,H]=P,K=bh(U(R,G.shape),G,s),j,te;if(!n&&!a?(j=ze(K,V,!1,!0),te=ze(z,K,!0,!1)):!n&&a?(j=ze(K,V,!1,!1),te=ze(K,z,!0,!1)):n&&!a?(j=ze(V,K,!1,!0),te=ze(z,K,!1,!1)):(j=ze(V,K,!0,!0),te=ze(K,z,!0,!0)),r!=null){let Q=xh(H,K);return[j,te,Q]}else return[j,te]},F={a:x,b:v,bias:T,preluActivationWeights:k},A={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?Ha((R,P,z)=>{let V=M.runKernel(di,F,A);return z([R,P,V]),{value:U(V,b),gradFunc:S}})(x,v):Ha((R,P,z,V)=>{let G=M.runKernel(di,F,A);return V([R,P,G,z]),{value:U(G,b),gradFunc:S}})(x,v,T)}var lM=O({fusedMatMul_:mM});function fM(e){return Wy(e,.54,.46)}var gM=O({hammingWindow_:fM});function yM(e){return Wy(e,.5,.5)}var vk=O({hannWindow_:yM});function bM(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Be(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Je([Be(e,s,t-o),Sn([o],r)]);i.push(l),s+=n}return i.length===0?Ta([],[0,t]):U(Je(i),[i.length,t])}var wk=O({frame_:bM});function xM(e,t,n,a,r=vk){a==null&&(a=yk(t));let s=wk(e,t,n),i=W(s,r(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Sc(Be(i,[l,0],[1,t]),a));return Je(o)}var vM=O({stft_:xM});function wM(e,t,n,a,r="bilinear",s=0){let i=E(e,"image","cropAndResize"),o=E(t,"boxes","cropAndResize","float32"),l=E(n,"boxInd","cropAndResize","int32"),c=o.shape[0];$(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),$(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),$(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),$(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),$(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return M.runKernel(Eo,u,p)}var kM=O({cropAndResize_:wM});function IM(e){let t=E(e,"image","flipLeftRight","float32");$(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return M.runKernel(Po,n,{})}var TM=O({flipLeftRight_:IM});function NM(e,t,n=0,a=.5){let r=E(e,"image","rotateWithOffset","float32");$(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return M.runKernel(yl,s,i)}var SM=O({rotateWithOffset_:NM});function Pl(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),$(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),$(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),$(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),$(t.rank===1,()=>"scores must be a 1D tensor"),$(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),$(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function CM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppression"),i=E(t,"scores","nonMaxSuppression"),o=Pl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return M.runKernel(Yo,{boxes:s,scores:i},l)}var _M=O({nonMaxSuppression_:CM});function FM(e,t,n){let a=EM(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function EM(e,t,n){return $M(e,t,n||AM)}function AM(e,t){return e>t?1:e<t?-1:0}function $M(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function kk(e,t,n,a,r){return Vy(e,t,n,a,r,0)}function Ik(e,t,n,a,r,s){return Vy(e,t,n,a,r,0,!1,s,!0)}function Tk(e,t,n,a,r,s){return Vy(e,t,n,a,r,s,!0)}function Vy(e,t,n,a,r,s,i=!1,o=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(Nk);let u=s>0?-.5/s:0,p=[],d=[];for(;p.length<n&&c.length>0;){let g=c.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let T=p.length-1;T>=x;--T){let k=DM(e,b,p[T]);if(k>=a){v=!0;break}if(g.score=g.score*RM(a,u,k),g.score<=r)break}g.suppressBeginIndex=p.length,v||(g.score===y?(p.push(b),d.push(g.score)):g.score>r&&FM(c,g,Nk))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=d),l&&(f.validOutputs=h),f}function DM(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-c)*(d-u);if(h<=0||m<=0)return 0;let f=Math.max(s,c),g=Math.max(i,u),y=Math.min(o,p),b=Math.min(l,d),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function RM(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function Nk(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function MM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),o=Pl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:p}=kk(c,u,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Qe(p,"int32")}var PM=MM;function OM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Pl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=M.runKernel(Qo,c,u);return{selectedIndices:p[0],selectedScores:p[1]}}var LM=O({nonMaxSuppressionWithScore_:OM});async function zM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Pl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],p=c[1],{selectedIndices:d,selectedScores:h}=Tk(u,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qe(d,"int32"),selectedScores:Qe(h)}}var WM=zM;function BM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Pl(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:p,padToMaxOutputSize:s},m=M.runKernel(Jo,d,h);return{selectedIndices:m[0],validOutputs:m[1]}}var VM=O({nonMaxSuppressionPadded_:BM});async function UM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Pl(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Ik(d,h,c,u,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qe(m,"int32"),validOutputs:ve(f,"int32")}}var GM=UM;function HM(e,t,n=!1,a=!1){let r=E(e,"images","resizeBilinear");$(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),$(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(Qs,o,l);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Sk=O({resizeBilinear_:HM});function jM(e,t,n=!1,a=!1){let r=E(e,"images","resizeNearestNeighbor");$(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),$(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),$(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(Qu,o,l);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ck=O({resizeNearestNeighbor_:jM});function qM(e,t,n="nearest",a="constant",r=0,s){let i=E(e,"image","transform","float32"),o=E(t,"transforms","transform","float32");$(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),$(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return M.runKernel(Fd,l,c)}var KM=O({transform_:qM});function XM(e,t,n){$(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),$(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=E(e,"a","bandPart");$(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=U(ih(0,s,1,"int32"),[-1,1]),l=ih(0,i,1,"int32"),c=he(o,l),u=pa(ki(c,ve(+t,"int32")),Jr(c,ve(-n,"int32"))),p=bt([s,i],a.dtype);return U(Dt(lt(U(a,[-1,s,i])).map(d=>Nn(u,d,p))),r)}var YM=O({bandPart_:XM});function JM(e){let t;if(Array.isArray(e)){t=!1,$(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)$(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=Ln(e,e.shape[0],0).map(r=>Qr(r,[0]));$(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(M.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=W(Se(W(n[i],s)),n[i]);s=he(s,o)}return ye(s,yh(s,"euclidean"))}));return t?Dt(n,0):n}var QM=O({gramSchmidt_:JM});function ZM(e,t=!1){if($(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return _k(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),a=lt(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[c,u]=_k(l,t);r.push(c),s.push(u)});let i=U(Dt(r,0),e.shape),o=U(Dt(s,0),e.shape);return[i,o]}}function _k(e,t=!1){return M.tidy(()=>{$(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=vy(n),s=jr(e),i=Ta([[1]],[1,1]),o=jr(i),l=n>=a?a:n;for(let c=0;c<l;++c){let u=s,p=o,d=r;[o,s,r]=M.tidy(()=>{let h=Be(s,[c,c],[n-c,1]),m=yh(h),f=Be(s,[c,c],[1,1]),g=Nn(ca(f,0),Ta([[-1]]),Ta([[1]])),y=he(f,W(g,m)),b=ye(h,y);b.shape[0]===1?o=jr(i):o=Je([i,Be(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=St(ye(ze(g,y),m)),v=Be(s,[c,0],[n-c,a]),T=W(x,o),k=Ve(o);if(c===0)s=he(v,ze(T,ze(k,v)));else{let A=he(v,ze(T,ze(k,v)));s=Je([Be(s,[0,0],[c,a]),A],0)}let S=Ve(T),F=Be(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=he(F,ze(ze(F,o),S));else{let A=he(F,ze(ze(F,o),S));r=Je([Be(r,[0,0],[n,c]),A],1)}return[o,s,r]}),Ae([u,p,d])}return!t&&n>a&&(r=Be(r,[0,0],[n,a]),s=Be(s,[0,0],[a,a])),[r,s]})}var eP=O({qr_:ZM}),mn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(mn||(mn={}));function tP(e,t,n=mn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=E(t,"weights","computeWeightedLoss"));let s=r==null?a:W(a,r);if(n===mn.NONE)return s;if(n===mn.SUM)return Se(s);if(n===mn.MEAN){if(r==null)return Ct(s);{let i=a.size/r.size,o=ye(Se(s),Se(r));return i>1?ye(o,ve(i)):o}}if(n===mn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return ye(Se(s),ve(a.size));{let i=W(r,qa(a.shape)),o=ue(Se(Ti(i,ve(0))),"float32");return ye(Se(s),o)}}throw Error(`Unknown reduction: ${n}`)}var fr=O({computeWeightedLoss_:tP});function nP(e,t,n,a=mn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","absoluteDifference"),s=E(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=E(n,"weights","absoluteDifference")),ln(r.shape,s.shape,"Error in absoluteDifference: ");let o=zt(he(r,s));return fr(o,i,a)}var aP=O({absoluteDifference_:nP});function rP(e,t,n,a,r=mn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","cosineDistance"),i=E(t,"predictions","cosineDistance"),o=null;a!=null&&(o=E(a,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let l=ve(1),c=he(l,Se(W(s,i),n,!0));return fr(c,o,r)}var sP=O({cosineDistance_:rP});function iP(e,t,n,a=mn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","hingeLoss"),s=E(t,"predictions","hingeLoss"),i=null;n!=null&&(i=E(n,"weights","hingeLoss")),ln(r.shape,s.shape,"Error in hingeLoss: ");let o=ve(1);r=he(W(ve(2),r),o);let l=qe(he(o,W(r,s)));return fr(l,i,a)}var oP=O({hingeLoss_:iP});function lP(e,t,n,a=1,r=mn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","huberLoss"),i=E(t,"predictions","huberLoss"),o=null;n!=null&&(o=E(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let l=ve(a),c=zt(he(i,s)),u=Al(c,l),p=he(c,u),d=J(W(ve(.5),ot(u)),W(l,p));return fr(d,o,r)}var uP=O({huberLoss_:lP});function cP(e,t,n,a=1e-7,r=mn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","logLoss"),i=E(t,"predictions","logLoss"),o=null;n!=null&&(o=E(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let l=ve(1),c=ve(a),u=St(W(s,Mn(J(i,c)))),p=W(he(l,s),Mn(J(he(l,i),c))),d=he(u,p);return fr(d,o,r)}var pP=O({logLoss_:cP});function dP(e,t,n,a=mn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","meanSquaredError"),s=E(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=E(n,"weights","meanSquaredError")),ln(r.shape,s.shape,"Error in meanSquaredError: ");let o=mh(r,s);return fr(o,i,a)}var hP=O({meanSquaredError_:dP});function mP(e,t){let n=E(e,"labels","sigmoidCrossEntropyWithLogits"),a=E(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=qe(a),s=W(a,n),i=eh(dn(St(zt(a))));return J(he(r,s),i)}function fP(e,t,n,a=0,r=mn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"multiClassLabels","sigmoidCrossEntropy"),i=E(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let c=ve(a),u=ve(1),p=ve(.5);s=J(W(s,he(u,c)),W(p,c))}let l=mP(s,i);return fr(l,o,r)}var gP=O({sigmoidCrossEntropy_:fP});function yP(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Ha((a,r,s)=>{let i=Ty(r,[n],!0),o=he(ue(r,"float32"),i);s([a,o]);let l=St(W(o,a));return{value:Se(l,[n]),gradFunc:(c,u)=>{let[p,d]=u,h=Ii(c.shape,[n]);return[W(U(c,h),he(ue(p,"float32"),dn(d))),W(U(c,h),he(dn(d),ue(p,"float32")))]}}})(e,t)}function bP(e,t,n,a=0,r=mn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"onehotLabels","softmaxCrossEntropy"),i=E(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let c=ve(a),u=ve(1),p=ve(s.shape[1]);s=J(W(s,he(u,c)),ye(c,p))}let l=yP(s,i);return fr(l,o,r)}var xP=O({softmaxCrossEntropy_:bP}),vP={fft:Nc,ifft:Rl,rfft:Sc,irfft:hh},wP={hammingWindow:gM,hannWindow:vk,frame:wk,stft:vM},Ka={flipLeftRight:TM,resizeNearestNeighbor:Ck,resizeBilinear:Sk,rotateWithOffset:SM,cropAndResize:kM,nonMaxSuppression:_M,nonMaxSuppressionAsync:PM,nonMaxSuppressionWithScore:LM,nonMaxSuppressionWithScoreAsync:WM,nonMaxSuppressionPadded:VM,nonMaxSuppressionPaddedAsync:GM,transform:KM},Ek={bandPart:YM,gramSchmidt:QM,qr:eP},kP={absoluteDifference:aP,computeWeightedLoss:fr,cosineDistance:sP,hingeLoss:oP,huberLoss:uP,logLoss:pP,meanSquaredError:hP,sigmoidCrossEntropy:gP,softmaxCrossEntropy:xP},gr=class extends E0{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ae(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return ek(e,t)}dispose(){this.iterations_!=null&&Ae(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ve(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(gr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var kh=class extends gr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;D(()=>{let l=J(W(i,this.rho),W(ot(s),1-this.rho)),c=W(ye(rn(J(o,this.epsilon)),rn(J(i,this.epsilon))),s),u=J(W(o,this.rho),W(ot(c),1-this.rho));i.assign(l),o.assign(u);let p=J(W(c,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ae(this.accumulatedGrads.map(e=>e.variable)),Ae(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};kh.className="Adadelta";qr(kh);var Ih=class extends gr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:D(()=>Sn(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;D(()=>{let i=J(s,ot(r));s.assign(i);let o=J(W(ye(r,rn(J(i,M.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ae(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Ih.className="Adagrad";qr(Ih);var Th=class extends gr{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],D(()=>{this.accBeta1=ve(t).variable(),this.accBeta2=ve(n).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=he(1,this.accBeta1),a=he(1,this.accBeta2);t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:D(()=>Ge(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:D(()=>Ge(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,p=J(W(c,this.beta1),W(l,1-this.beta1)),d=J(W(u,this.beta2),W(ot(l),1-this.beta2)),h=ye(p,n),m=ye(d,a);c.assign(p),u.assign(d);let f=J(W(ye(h,J(rn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(W(this.accBeta1,this.beta1)),this.accBeta2.assign(W(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ae(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),D(()=>{this.accBeta1.assign(mr(this.beta1,this.iterations_+1)),this.accBeta2.assign(mr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Th.className="Adam";qr(Th);var Nh=class extends gr{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],D(()=>{this.iteration=ve(0).variable(),this.accBeta1=ve(t).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=he(1,this.accBeta1),a=ye(-this.learningRate,J(W(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ge(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ge(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,p=J(W(c,this.beta1),W(l,1-this.beta1)),d=W(u,this.beta2),h=zt(l),m=ja(d,h);c.assign(p),u.assign(m);let f=J(W(ye(a,n),ye(p,J(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(W(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ae(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Nh.className="Adamax";qr(Nh);var Cc=class extends gr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=M.registeredVariables[t];D(()=>{let s=J(W(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=qt(ve(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Cc.className="SGD";qr(Cc);var Sh=class extends Cc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ve(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&D(()=>{let i,o=J(W(this.m,r),s);this.useNesterov?i=J(W(this.c,J(s,W(o,this.m))),a):i=J(W(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ae(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Sh.className="Momentum";qr(Sh);var Ch=class extends gr{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=M.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;D(()=>{let l=J(W(i,this.decay),W(ot(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=J(W(c,this.decay),W(s,1-this.decay)),p=ye(W(s,this.learningRate),rn(he(l,J(ot(u),this.epsilon)))),d=J(W(o,this.momentum),p);i.assign(l),c.assign(u),o.assign(d);let h=he(a,d);a.assign(h)}else{let c=J(W(i,this.decay),W(ot(s),1-this.decay)),u=J(W(o,this.momentum),ye(W(s,this.learningRate),rn(J(c,this.epsilon))));i.assign(c),o.assign(u);let p=he(a,u);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ae(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ae(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ae(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Ch.className="RMSProp";qr(Ch);var Si=class{static sgd(e){return new Cc(e)}static momentum(e,t,n=!1){return new Sh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Ch(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Th(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new kh(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Nh(e,t,n,a,r)}static adagrad(e,t=.1){return new Ih(e,t)}},Ci={sgd:Si.sgd,momentum:Si.momentum,adadelta:Si.adadelta,adagrad:Si.adagrad,rmsprop:Si.rmsprop,adamax:Si.adamax,adam:Si.adam},IP=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function _h(){return new Promise(e=>IP(()=>e()))}var _={};Le(_,{ERF_A1:()=>RP,ERF_A2:()=>MP,ERF_A3:()=>PP,ERF_A4:()=>OP,ERF_A5:()=>LP,ERF_P:()=>DP,PARALLELIZE_THRESHOLD:()=>Uy,SELU_SCALE:()=>Ak,SELU_SCALEALPHA:()=>Fk,applyActivation:()=>vh,assertAndGetBroadcastShape:()=>yt,assertAxesAreInnerMostDims:()=>iD,assertParamsConsistent:()=>TP,assignToTypedArray:()=>jP,axesAreInnerMostDims:()=>ky,calculateShapes:()=>y0,combineLocations:()=>nk,complexWithEvenIndex:()=>UP,complexWithOddIndex:()=>GP,computeConv2DInfo:()=>fc,computeConv3DInfo:()=>L0,computeDefaultPad:()=>cy,computeDilation2DInfo:()=>FA,computeOptimalWindowSize:()=>SP,computeOutAndReduceShapes:()=>ak,computeOutShape:()=>NP,computePool2DInfo:()=>O0,computePool3DInfo:()=>AA,convertConv2DDataFormat:()=>P0,eitherStridesOrDilationsAreOne:()=>Ua,expandShapeToKeepDim:()=>Ii,exponent:()=>KP,exponents:()=>qP,fromStringArrayToUint8:()=>JP,fromUint8ToStringArray:()=>YP,getAxesPermutation:()=>rk,getBroadcastDims:()=>k$,getComplexWithIndex:()=>HP,getFusedBiasGradient:()=>xh,getFusedDyActivation:()=>bh,getImageCenter:()=>CP,getInnerMostAxes:()=>oD,getPermuted:()=>EP,getReductionAxes:()=>Wt,getReshaped:()=>_P,getReshapedPermuted:()=>FP,getSliceBeginCoords:()=>AP,getSliceSize:()=>$P,getUndoAxesPermutation:()=>Iy,log:()=>WP,mergeRealAndImagArrays:()=>BP,prepareAndValidate:()=>g0,prepareSplitSize:()=>XP,segment_util:()=>$k,shouldFuse:()=>wh,slice_util:()=>an,splitRealAndImagArrays:()=>VP,tupleValuesAreOne:()=>Kr,upcastType:()=>la,validateInput:()=>Yg,validateUpdateShape:()=>Xg,warn:()=>zP});function TP(e,t){let n=e[0].length;e.forEach((r,s)=>{$(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),$(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)$(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function NP(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var Uy=30;function SP(e){return e<=Uy?e:Zp(e,Math.floor(Math.sqrt(e)))}function CP(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function _P(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function EP(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function FP(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function AP(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function $P(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var Fk=1.7580993408473768,Ak=1.0507009873554805,DP=.3275911,RP=.254829592,MP=-.284496736,PP=1.421413741,OP=-1.453152027,LP=1.061405429;function zP(...e){Z().getBool("IS_TEST")||console.warn(...e)}function WP(...e){Z().getBool("IS_TEST")||console.log(...e)}function BP(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function VP(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function UP(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function GP(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function HP(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function jP(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function qP(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function KP(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}function XP(e,t,n=0){let a=[];if(typeof t=="number")$(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);$(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}$(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var $k={};Le($k,{collectGatherOpShapeInfo:()=>eO,computeOutShape:()=>ZP,segOpComputeOptimalWindowSize:()=>QP});function QP(e,t){let n=!1,a;for(e<=Uy?(a=e,n=!0):a=Zp(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Zp(e,a+1);return a}function ZP(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function eO(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,c=1,u=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),c*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),u*=e.shape[p];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:i,outputShape:o}}function YP(e){try{return e.map(t=>Pd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function JP(e){return e.map(t=>sc(t))}var Xa={};Le(Xa,{nonMaxSuppressionV3Impl:()=>kk,nonMaxSuppressionV4Impl:()=>Ik,nonMaxSuppressionV5Impl:()=>Tk,whereImpl:()=>dk});var Dk={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,Ml(ue(n,"float32"),-1))}}},tO={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ot(ue(n,"float32")),r=rn(he(ve(1),a));return St(ye(e,r))}}}},nO={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=rn(he(ot(ue(n,"float32")),1));return ye(e,a)}}}},aO={kernelName:Lr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=yt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Se(s,i)),U(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Se(s,i)),U(s,a.shape)}}}},rO={kernelName:vs,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},sO={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},iO={kernelName:zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},oO={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,rn(he(ve(1),ot(ue(n,"float32")))))}}},lO={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=rn(J(ve(1),ot(ue(n,"float32"))));return ye(e,a)}}}},uO={kernelName:So,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=yt(n.shape,a.shape);return{a:()=>{let s=J(ot(n),ot(a)),i=W(e,ye(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=Se(i,o)),U(i,n.shape)},b:()=>{let s=J(ot(n),ot(a)),i=St(W(e,ye(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=Se(i,o)),U(i,a.shape)}}}},cO={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,J(ot(ue(n,"float32")),1))}}},pO={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,he(ve(1),ot(ue(n,"float32"))))}}};function dO(e,t,n,a,r,s){let i=E(e,"dy","avgPool3dGrad"),o=E(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),$(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),$(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&$(Ht(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:c},d={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=M.runKernel(rd,p,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var hO=O({avgPool3dGrad_:dO}),mO={kernelName:Wu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>hO(e,a,r,s,i,o)}}};function fO(e,t,n,a,r){let s=E(e,"dy","avgPoolGrad"),i=E(t,"input","avgPoolGrad");$(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),$(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},p={filterSize:n,strides:a,pad:r},d=M.runKernel(ad,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var gO=O({avgPoolGrad_:fO}),yO={kernelName:ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>gO(e,a,r,s,i)}}},bO={kernelName:Is,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>ze(e,r,!1,!0),b:()=>ze(a,e,!0,!1)}:!s&&i?{a:()=>ze(e,r,!1,!1),b:()=>ze(e,a,!0,!1)}:s&&!i?{a:()=>ze(r,e,!1,!0),b:()=>ze(a,e,!1,!1)}:{a:()=>ze(r,e,!0,!0),b:()=>ze(e,a,!0,!0)}}},xO={kernelName:Bu,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>wc(e,a,r)}}},vO={kernelName:Ww,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Se(e,o,!0)}}},wO={kernelName:Ts,gradFunc:e=>({x:()=>e.clone()})},kO={kernelName:Ns,gradFunc:e=>({x:()=>Ge(e)})},IO={kernelName:zr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>Nn(pa(Jr(a,r),ki(a,s)),e,Ge(e))}}},TO={kernelName:Vu,inputsToSave:["x"],gradFunc:Dk.gradFunc},NO={kernelName:Co,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=oa(r,t[0].shape)[0],i=a.map(o=>o[s]);return Ln(e,i,s).map(o=>()=>o)}},SO={kernelName:Ss,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return $(Kr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>hy(a.shape,e,r,i,o,l),filter:()=>By(a,e,r.shape,i,o,l)}}},CO={kernelName:Cs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>At(e,r,s,i,o,1,l),filter:()=>By(e,a,r.shape,s,i,o,l)}}};function _O(e,t,n,a,r){let s=e;e.rank===4&&(s=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),$(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),$(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),$(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),$(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),$(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return M.runKernel(ld,o,l)}var EO=O({conv3DBackpropFilter_:_O}),FO={kernelName:Uu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;$(Kr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>q0(i.shape,e,o,r,s),filter:()=>EO(i,e,o.shape,r,s)}}},AO={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(St(ch(ue(n,"float32"))),e)}}},$O={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(ph(ue(n,"float32")),e)}}},DO={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=rk([r],a.rank),l=Jd(e,r,s,!i);return o!=null&&(l=Ve(l,o)),l}}}},RO={kernelName:Fs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;$(Kr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return $(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),$(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),$(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),$(Ua(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&$(Ht(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>xk(l.shape,e,c,r,s,a,i),filter:()=>bk(l,e,c.shape,r,s,a,i)}}},MO={kernelName:Gu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>M.runKernel(md,s,n),filter:()=>M.runKernel(fd,i,n)}}},PO={kernelName:Ao,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>M.runKernel(gd,a)}}},OO={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=W(dn(St(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>W(e,a)}}},LO={kernelName:$s,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n)}}},zO={kernelName:Ro,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},WO={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,dn(n))}}},BO={kernelName:Ds,gradFunc:e=>({x:()=>Ge(e)})},VO={kernelName:Rs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=yt(n.shape,a.shape);return{a:()=>{let s=ye(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=W(e,ue(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=U(Se(s,i),a.shape));let o=ot(a);return St(ye(s,ue(o,"float32")))}}}},UO={kernelName:Ms,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ve(1):o,c=Wt(s.shape,r.shape),u=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)u.push(r.shape[f]);u.push(1)}let p=he(r,s),d=W(e,l),h=lh(J(i,ve(a))),m=W(W(W(h,h),h),ve(-.5));return{x:()=>s.rank===1?U(W(W(e,Ga(U(h,[1,1,1,s.shape[0]]),u)),l),r.shape):U(W(W(e,h),l),r.shape),mean:()=>{let f=W(W(h,ve(-1)),d);return s.rank===1&&(f=Se(f,c)),U(f,s.shape)},variance:()=>{let f=W(W(m,p),d);return s.rank===1&&(f=Se(f,c)),U(f,s.shape)},scale:()=>{let f=W(p,h),g=W(e,f);return s.rank===1&&(g=Se(g,c)),U(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Se(f,c)),U(f,s.shape)}}}},GO={kernelName:Oo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=oa(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,c=o.slice(0,i),u=c.length,p=o.slice(s,o.length).slice(1),d=p.length,h=Rk(0,u),m=Rk(u+1,u+1+d),f=Mk([c,[l],p]),g=U(e,f),y=U(r,[l]),b=Mk([[u],h,m]),x=Ve(g,b),v=Oy(x,y,a.shape[i]),T=Iy(b);return v=Ve(v,T),v},indices:()=>r}}};function Rk(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Mk(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var HO={kernelName:Ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ge(n),b:()=>Ge(a)}}},jO={kernelName:Os,gradFunc:e=>({x:()=>ue(e,"float32")})},qO={kernelName:Wo,gradFunc:e=>({x:()=>Ge(e)})},KO={kernelName:Bo,gradFunc:e=>({x:()=>Ge(e)})},XO={kernelName:Vo,gradFunc:e=>({x:()=>Ge(e)})},YO={kernelName:Ls,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=ca(a,0);return{x:()=>Nn(s,e,W(e,r))}}},JO={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,J(n,1))}}},QO={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,ue(n,"float32"))}}},ZO={kernelName:Bw,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=dn(a);return he(e,W(Se(e,r,s),i))}}}};function eL(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return M.runKernel(wd,o,l)}var tL=O({localResponseNormalizationBackprop_:eL}),nL={kernelName:Ku,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>tL(a,r,e,s,i,o,l)}}};function Pk(e,t,n,a){return t.rank<n.rank&&(t=U(t,Ii(t.shape,a))),e.rank<n.rank&&(e=U(e,Ii(e.shape,a))),{x:()=>W(e,ue(Yr(n,t),e.dtype))}}var Ok={kernelName:Ws,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=oa(r,s.shape),l=Pk(e,i,s,o);return{x:()=>l.x()}}},aL={kernelName:Bs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>W(e,ue(Jr(n,a),"float32")),b:()=>W(e,ue(Zd(n,a),"float32"))}}};function rL(e,t,n,a,r,s,i){let o=E(e,"dy","maxPool3dGrad"),l=E(t,"input","maxPool3dGrad"),c=E(n,"output","maxPool3dGrad"),u=o,p=l,d=c,h=!1;l.rank===4&&(h=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=U(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),$(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),$(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),$(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&$(Ht(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:p,output:d},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=M.runKernel(Id,m,f);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var sL=O({maxPool3dGrad_:rL}),iL={kernelName:Xu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>sL(e,a,r,s,i,o,l)}}};function oL(e,t,n,a,r,s,i){let o=E(e,"dy","maxPoolGrad"),l=E(t,"input","maxPoolGrad"),c=E(n,"output","maxPoolGrad");$(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),$(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),$(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&$(Ht(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return M.runKernel(kd,u,p)}var lL=O({maxPoolGrad_:oL}),uL={kernelName:Vs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>lL(e,a,r,s,i,o)}}},cL={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=oa(r,a.shape),i=ak(a.shape,s)[1],o=Ot(i);return{x:()=>{let l=a.shape.slice();s.forEach(u=>{l[u]=1});let c=U(e,l);return ye(W(c,qa(a.shape,"float32")),o)}}}},pL={kernelName:Gs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=oa(r,s.shape),l=Pk(e,i,s,o);return{x:()=>l.x()}}},dL={kernelName:Hs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>W(e,ue(ki(n,a),"float32")),b:()=>W(e,ue(ca(n,a),"float32"))}}},hL={kernelName:Yu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},mL={kernelName:qo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=yt(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?U(Se(e,s),n.shape):e},b:()=>{let s=W(e,St(_l(ye(n,a)))),i=Wt(a.shape,r);return i.length>0?U(Se(s,i),a.shape):s}}}},fL={kernelName:js,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=yt(n.shape,a.shape);return{a:()=>{let s=W(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=W(e,ue(n,"float32")),i=Wt(a.shape,r);return i.length>0?U(Se(s,i),a.shape):s}}}},gL={kernelName:Ko,gradFunc:e=>({x:()=>St(e)})},yL={kernelName:qs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>bt(n.shape,"float32")}}},bL={kernelName:Zo,gradFunc:e=>({x:()=>Ge(e)})},xL={kernelName:el,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return lt(e,a).map(r=>()=>r)}},Lk={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},vL={kernelName:Xs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=yt(s.shape,i.shape);return{a:()=>{let l=ue(i,"float32"),c=W(e,W(l,mr(s,he(l,ve(1))))),u=Wt(s.shape,o);return u.length>0&&(c=Se(c,u)),U(c,s.shape)},b:()=>{let l=ca(s,0),c=Nn(l,Mn(s),Ge(s)),u=W(e,W(r,c)),p=Wt(i.shape,o);return p.length>0&&(u=Se(u,p)),U(u,i.shape)}}}},wL={kernelName:Ys,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=ca(n,0);return{x:()=>Nn(r,e,W(e,a)),alpha:()=>{let s=Nn(r,Ge(e),W(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=Se(s,i)),U(s,a.shape)}}}},kL={kernelName:As,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=yt(n.shape,a.shape);return{a:()=>{let s=ye(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=W(e,ue(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=U(Se(s,i),a.shape));let o=ot(a);return St(ye(s,ue(o,"float32")))}}}},IL={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,St(ot(n)))}}},TL={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=W(ki(n,6),Ml(n));return{x:()=>W(e,ue(a,"float32"))}}},NL={kernelName:Js,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,ue(Ml(n),"float32"))}}},SL={kernelName:al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},CL={kernelName:Qs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(_d,r,n)}}},_L={kernelName:Qu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(Cd,r,n)}}},EL={kernelName:ei,gradFunc:(e,t,n)=>{let{dims:a}=n,r=oa(a,e.shape);return{x:()=>On(e,r)}}},FL={kernelName:ti,gradFunc:e=>({x:()=>Ge(e)})},AL={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(ye(e,W(mr(n,1.5),2)))}}},$L={kernelName:sl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ue(Ge(n),"float32"),t:()=>W(e,ue(n,e.dtype)),e:()=>W(e,ue(vc(n),e.dtype))}}},DL={kernelName:il,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ca(n,ve(0)),r=ve(Fk),s=ve(Ak),i=W(e,s),o=W(W(e,r),dn(ue(n,"float32")));return Nn(a,i,o)}}}},RL={kernelName:ri,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(n,he(ve(1),n)))}}},ML={kernelName:ul,gradFunc:e=>({x:()=>Ge(e)})},PL={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(bc(ue(n,"float32")),e)}}},OL={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(Yd(ue(n,"float32")),e)}}},LL={kernelName:ol,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=S0(a,r,s),c=[];for(let u=0;u<e.rank;u++)c.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>ea(e,c)}}},zL={kernelName:oi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=W(e,a);return{logits:()=>he(i,W(Se(i,[r],s),a))}}},WL={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,ua(n))}}},zk={kernelName:Zu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>gc(e,a,r)}}},Wk={kernelName:pl,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Je(e,a)}}},BL={kernelName:si,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,W(rn(ue(n,"float32")),2))}}},VL={kernelName:ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(ue(n,"float32"),2))}}},UL={kernelName:li,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ve(2);return{a:()=>W(e,W(r,he(n,a))),b:()=>W(e,W(r,he(a,n)))}}},GL={kernelName:Br,gradFunc:e=>({x:()=>Ge(e)})},HL={kernelName:ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=yt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Se(s,i)),U(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Se(s,i)),U(St(s),a.shape)}}}},jL={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;oa(s,a.shape).forEach(l=>{r[l]=1});let i=U(e,r),o=W(i,qa(a.shape,"float32"));return{x:()=>o}}},qL={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,ot(bc(n)))}}},KL={kernelName:ci,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(he(ve(1),ot(n)),e)}}},XL={kernelName:Wr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ge(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=J(s,Be(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let c=0;c<r[3];++c)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],c*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},YL={kernelName:pi,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=Iy(r);return{x:()=>Ve(e,s)}}},JL={kernelName:fl,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Dt(e,r)}}},ZL={kernelName:tc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>QL(e,n)}}};function QL(e,t){let n=ja(t,Ge(t)),a=wi(e,n),r=Jr(t,ve(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=hn(r,o+1);r=pa(r,qa(a.shape,"bool"));let i=Ge(a);return Nn(r,a,i)}var e3={kernelName:gl,gradFunc:e=>({x:()=>Ge(e)})},t3=[Dk,tO,nO,aO,rO,sO,iO,oO,lO,uO,cO,pO,mO,yO,bO,xO,vO,wO,kO,IO,TO,NO,CO,SO,FO,AO,$O,DO,RO,MO,kL,PO,OO,LO,zO,WO,VO,BO,UO,GO,HO,jO,qO,KO,XO,YO,JO,QO,ZO,nL,Ok,Ok,aL,iL,uL,cL,pL,dL,hL,mL,fL,gL,yL,bL,xL,Lk,Lk,vL,wL,IL,TL,NL,SL,CL,_L,EL,FL,AL,$L,DL,RL,ML,PL,OL,LL,zL,WL,zk,zk,Wk,Wk,BL,UL,VL,GL,HL,jL,qL,KL,XL,YL,JL,ZL,e3];for(let e of t3)Vw(e);Y().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Y().prototype.acos=function(){return this.throwIfDisposed(),ty(this)};Y().prototype.acosh=function(){return this.throwIfDisposed(),ny(this)};Y().prototype.add=function(e){return this.throwIfDisposed(),J(this,e)};Y().prototype.all=function(e,t){return this.throwIfDisposed(),jd(this,e,t)};Y().prototype.any=function(e,t){return this.throwIfDisposed(),hc(this,e,t)};Y().prototype.argMax=function(e){return this.throwIfDisposed(),mc(this,e)};Y().prototype.argMin=function(e){return this.throwIfDisposed(),ay(this,e)};Y().prototype.asScalar=function(){return this.throwIfDisposed(),$(this.size===1,()=>"The array must have only 1 element."),U(this,[])};Y().prototype.asType=function(e){return this.throwIfDisposed(),ue(this,e)};Y().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};Y().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};Y().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};Y().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),U(this,[e,t,n,a])};Y().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),U(this,[e,t,n,a,r])};Y().prototype.asin=function(){return this.throwIfDisposed(),ry(this)};Y().prototype.asinh=function(){return this.throwIfDisposed(),sy(this)};Y().prototype.atan=function(){return this.throwIfDisposed(),iy(this)};Y().prototype.atan2=function(e){return this.throwIfDisposed(),oy(this,e)};Y().prototype.atanh=function(){return this.throwIfDisposed(),ly(this)};Y().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),Qn(this,e,t,n,a)};Y().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),gc(this,e,t)};Y().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),hr(this,e,t,n,a,r)};Y().prototype.broadcastTo=function(e){return this.throwIfDisposed(),yc(this,e)};Y().prototype.cast=function(e){return this.throwIfDisposed(),ue(this,e)};Y().prototype.ceil=function(){return this.throwIfDisposed(),dy(this)};Y().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Kt(this,e,t)};Y().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ee&&(e=[e]),Je([this,...e],t)};Y().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Kd(this,e,t,n,a,r,s)};Y().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Xd(this,e,t,n,a,r)};Y().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),At(this,e,t,n,a,r,s)};Y().prototype.cos=function(){return this.throwIfDisposed(),bc(this)};Y().prototype.cosh=function(){return this.throwIfDisposed(),Yd(this)};Y().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Jd(this,e,t,n)};Y().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),fy(this,e,t)};Y().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Xr(this,e,t,n,a,r,s)};Y().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),gy(this,e,t,n,a,r)};Y().prototype.divNoNan=function(e){return this.throwIfDisposed(),yy(this,e)};Y().prototype.div=function(e){return this.throwIfDisposed(),ye(this,e)};Y().prototype.dot=function(e){return this.throwIfDisposed(),X0(this,e)};Y().prototype.elu=function(){return this.throwIfDisposed(),Cl(this)};Y().prototype.equal=function(e){return this.throwIfDisposed(),Yr(this,e)};Y().prototype.erf=function(){return this.throwIfDisposed(),by(this)};Y().prototype.exp=function(){return this.throwIfDisposed(),dn(this)};Y().prototype.expandDims=function(e){return this.throwIfDisposed(),hn(this,e)};Y().prototype.expm1=function(){return this.throwIfDisposed(),xy(this)};Y().prototype.fft=function(){return this.throwIfDisposed(),Nc(this)};Y().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};Y().prototype.floor=function(){return this.throwIfDisposed(),_l(this)};Y().prototype.floorDiv=function(e){return this.throwIfDisposed(),Hd(this,e)};Y().prototype.gather=function(e,t){return this.throwIfDisposed(),wi(this,e,t)};Y().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Jr(this,e)};Y().prototype.greater=function(e){return this.throwIfDisposed(),ca(this,e)};Y().prototype.ifft=function(){return this.throwIfDisposed(),Rl(this)};Y().prototype.irfft=function(){return this.throwIfDisposed(),hh(this)};Y().prototype.isFinite=function(){return this.throwIfDisposed(),Y0(this)};Y().prototype.isInf=function(){return this.throwIfDisposed(),J0(this)};Y().prototype.isNaN=function(){return this.throwIfDisposed(),Q0(this)};Y().prototype.leakyRelu=function(e){return this.throwIfDisposed(),xc(this,e)};Y().prototype.lessEqual=function(e){return this.throwIfDisposed(),ki(this,e)};Y().prototype.less=function(e){return this.throwIfDisposed(),Zd(this,e)};Y().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),wy(this,e,t,n,a)};Y().prototype.logSigmoid=function(){return this.throwIfDisposed(),tk(this)};Y().prototype.logSoftmax=function(e){return this.throwIfDisposed(),nh(this,e)};Y().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Ty(this,e,t)};Y().prototype.log=function(){return this.throwIfDisposed(),Mn(this)};Y().prototype.log1p=function(){return this.throwIfDisposed(),eh(this)};Y().prototype.logicalAnd=function(e){return this.throwIfDisposed(),pa(this,e)};Y().prototype.logicalNot=function(){return this.throwIfDisposed(),vc(this)};Y().prototype.logicalOr=function(e){return this.throwIfDisposed(),ah(this,e)};Y().prototype.logicalXor=function(e){return this.throwIfDisposed(),sk(this,e)};Y().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),ze(this,e,t,n)};Y().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),$t(this,e,t,n,a)};Y().prototype.max=function(e,t){return this.throwIfDisposed(),Zn(this,e,t)};Y().prototype.maximum=function(e){return this.throwIfDisposed(),ja(this,e)};Y().prototype.mean=function(e,t){return this.throwIfDisposed(),Ct(this,e,t)};Y().prototype.min=function(e,t){return this.throwIfDisposed(),Fl(this,e,t)};Y().prototype.minimum=function(e){return this.throwIfDisposed(),Al(this,e)};Y().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Sy(this,e,t)};Y().prototype.mod=function(e){return this.throwIfDisposed(),Cy(this,e)};Y().prototype.mul=function(e){return this.throwIfDisposed(),W(this,e)};Y().prototype.neg=function(){return this.throwIfDisposed(),St(this)};Y().prototype.norm=function(e,t,n){return this.throwIfDisposed(),yh(this,e,t,n)};Y().prototype.notEqual=function(e){return this.throwIfDisposed(),Ti(this,e)};Y().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Il(this,e,t,n)};Y().prototype.onesLike=function(){return this.throwIfDisposed(),Pn(this)};Y().prototype.pad=function(e,t){return this.throwIfDisposed(),ea(this,e,t)};Y().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),lk(this,e,t,n,a,r)};Y().prototype.pow=function(e){return this.throwIfDisposed(),mr(this,e)};Y().prototype.prelu=function(e){return this.throwIfDisposed(),kc(this,e)};Y().prototype.prod=function(e,t){return this.throwIfDisposed(),sh(this,e,t)};Y().prototype.reciprocal=function(){return this.throwIfDisposed(),Fy(this)};Y().prototype.relu=function(){return this.throwIfDisposed(),qe(this)};Y().prototype.relu6=function(){return this.throwIfDisposed(),oh(this)};Y().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};Y().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};Y().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Sk(this,e,t,n)};Y().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Ck(this,e,t,n)};Y().prototype.reverse=function(e){return this.throwIfDisposed(),On(this,e)};Y().prototype.rfft=function(){return this.throwIfDisposed(),Sc(this)};Y().prototype.round=function(){return this.throwIfDisposed(),Ay(this)};Y().prototype.rsqrt=function(){return this.throwIfDisposed(),lh(this)};Y().prototype.selu=function(){return this.throwIfDisposed(),uh(this)};Y().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ni(this,e,t,n,a,r,s)};Y().prototype.sigmoid=function(){return this.throwIfDisposed(),ua(this)};Y().prototype.sign=function(){return this.throwIfDisposed(),$y(this)};Y().prototype.sin=function(){return this.throwIfDisposed(),ch(this)};Y().prototype.sinh=function(){return this.throwIfDisposed(),ph(this)};Y().prototype.slice=function(e,t){return this.throwIfDisposed(),Be(this,e,t)};Y().prototype.softmax=function(e){return this.throwIfDisposed(),Ia(this,e)};Y().prototype.softplus=function(){return this.throwIfDisposed(),El(this)};Y().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),wc(this,e,t)};Y().prototype.split=function(e,t){return this.throwIfDisposed(),Ln(this,e,t)};Y().prototype.sqrt=function(){return this.throwIfDisposed(),rn(this)};Y().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Y().prototype.squaredDifference=function(e){return this.throwIfDisposed(),mh(this,e)};Y().prototype.squeeze=function(e){return this.throwIfDisposed(),Qr(this,e)};Y().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ee?[this,e]:[this,...e];return Dt(n,t)};Y().prototype.step=function(e){return this.throwIfDisposed(),Ml(this,e)};Y().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Ry(this,e,t,n,a,r,s,i,o)};Y().prototype.sub=function(e){return this.throwIfDisposed(),he(this,e)};Y().prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};Y().prototype.tan=function(){return this.throwIfDisposed(),My(this)};Y().prototype.tanh=function(){return this.throwIfDisposed(),Sl(this)};Y().prototype.tile=function(e){return this.throwIfDisposed(),Ga(this,e)};Y().prototype.toBool=function(){return this.throwIfDisposed(),ue(this,"bool")};Y().prototype.toFloat=function(){return this.throwIfDisposed(),ue(this,"float32")};Y().prototype.toInt=function(){return this.throwIfDisposed(),ue(this,"int32")};Y().prototype.topk=function(e,t){return this.throwIfDisposed(),Py(this,e,t)};Y().prototype.transpose=function(e){return this.throwIfDisposed(),Ve(this,e)};Y().prototype.unique=function(e){return this.throwIfDisposed(),gh(this,e)};Y().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Oy(this,e,t)};Y().prototype.unstack=function(e){return this.throwIfDisposed(),lt(this,e)};Y().prototype.where=function(e,t){return this.throwIfDisposed(),Nn(e,this,t)};Y().prototype.zerosLike=function(){return this.throwIfDisposed(),Ge(this)};var Bk={};Le(Bk,{maxNorm:()=>n3,minMaxNorm:()=>s3,nonNeg:()=>r3,unitNorm:()=>a3});var Gy;function Bt(){return Gy==null&&(Gy=R0().epsilon()),Gy}function Sa(){return"channelsLast"}var yr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,yr.prototype)}},Ca=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ca.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},$e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$e.prototype)}},Vk=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Vk.prototype)}};function _i(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Ya(e,t){if(!e)throw new Vk(t)}function Uk(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Cn(e){return e.length===1?e[0]:e}function mt(e){return Array.isArray(e)?e:[e]}function br(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ei(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var da={};function Hy(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function jy(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>jy(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:jy(a))}}}function _c(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in da)i=da[s];else if(i=t[s],i==null)throw new B(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in da?[o,l]=da.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(da))c[h]=da[h];for(let h of Object.keys(n))c[h]=n[h];let u=s.config;u.customObjects=c;let p=Object.assign({},da);for(let h of Object.keys(n))da[h]=n[h];jy(s.config);let d=l(o,s.config,n,r);return da=Object.assign({},p),d}else{let c=Object.assign({},da);for(let p of Object.keys(n))da[p]=n[p];let u=new o(s.config);return da=Object.assign({},c),u}}}function i3(e,t){return e<t?-1:e>t?1:0}function Eh(e,t){return-1*i3(e,t)}function es(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function o3(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Fi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function qy(e,t,n=0,a=Infinity){return Ya(n>=0),Ya(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Xt(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Xt(n,`element ${a+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Gk(e)}.`)}function Gk(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Gk(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function l3(e,t){let n=w.now(),a;return(...r)=>{let s=w.now();return s-n<t||(n=s,a=e(...r)),a}}function Hk(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function Ky(e,t){return D(()=>rn(Se(W(e,e),t,!0)))}var Ec=class extends re.Serializable{getConfig(){return{}}},Xy=class extends Ec{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=Ky(e,this.axis),n=Kt(t,0,this.maxValue);return W(e,ye(n,J(Bt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Xy.className="MaxNorm";re.registerClass(Xy);var Yy=class extends Ec{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>ye(e,J(Bt(),Ky(e,this.axis))))}getConfig(){return{axis:this.axis}}};Yy.className="UnitNorm";re.registerClass(Yy);var Jy=class extends Ec{apply(e){return qe(e)}};Jy.className="NonNeg";re.registerClass(Jy);var Qy=class extends Ec{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=Ky(e,this.axis),n=J(W(this.rate,Kt(t,this.minValue,this.maxValue)),W(1-this.rate,t));return W(e,ye(n,J(Bt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Qy.className="MinMaxNorm";re.registerClass(Qy);var jk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Vt(e){return Hy(e)}function qk(e,t={}){return _c(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Ut(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in jk?jk[e]:e,config:{}};return qk(t)}else return e instanceof Ec?e:qk(e)}function n3(e){return new Xy(e)}function a3(e){return new Yy(e)}function r3(){return new Jy}function s3(e){return new Qy(e)}var Kk={};Le(Kk,{constant:()=>p3,glorotNormal:()=>b3,glorotUniform:()=>y3,heNormal:()=>x3,heUniform:()=>v3,identity:()=>f3,leCunNormal:()=>w3,leCunUniform:()=>k3,ones:()=>c3,orthogonal:()=>I3,randomNormal:()=>h3,randomUniform:()=>d3,truncatedNormal:()=>m3,varianceScaling:()=>g3,zeros:()=>u3});var T3=["channelsFirst","channelsLast"],N3=["nearest","bilinear"],S3=["valid","same","causal"],C3=["max","avg"],_3=["sum","mul","concat","ave"],Ol=new Map;function Rt(e){Fi(T3,"DataFormat",e)}function E3(e){Fi(N3,"InterpolationFormat",e)}function ta(e){Fi(S3,"PaddingMode",e)}function Xk(e){Fi(C3,"PoolMode",e)}var Fc=[],Yk="/";function Ai(e,t){Fc.push(e);try{let n=t();return Fc.pop(),n}catch(n){throw Fc.pop(),n}}function F3(){return Fc.length===0?"":Fc.join(Yk)+Yk}function Qk(e){if(!Jk(e))throw new Error("Not a valid tensor name: '"+e+"'");return F3()+e}function Zk(e){if(!Jk(e))throw new Error("Not a valid tensor name: '"+e+"'");Ol.has(e)||Ol.set(e,0);let t=Ol.get(e);if(Ol.set(e,Ol.get(e)+1),t>0){let n=`${e}_${t}`;return Ol.set(n,1),n}else return e}var A3=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Jk(e){return!!e.match(A3)}function $3(e){return e===parseInt(e.toString(),10)}function ts(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function e1(e){return e=Array.isArray(e)?new Float32Array(e):e,Qe(e)}function Ll(e){return Fl(e1(e)).dataSync()[0]}function ns(e){return Zn(e1(e)).dataSync()[0]}function _a(e,t){if(t<e)throw new B(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Ac(e,t){return e.asType(t)}function $c(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function D3(e,t){return D(()=>{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=$c(e,1);return Zy(n,[1,t,1])})}function R3(e){let t=[ts(e.shape)];return e.reshape(t)}function M3(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ts(e.shape,1)];return e.reshape(t)}function $i(e,t,n){return D(()=>{switch(e.rank){case 1:return dh(e,t,n);case 2:return Dy(e,[t,0],[n,e.shape[1]]);case 3:return Dl(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Tc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Be(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Be(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function eb(e,t,n){return D(()=>{switch(e.rank){case 1:return dh(e,t,n);case 2:return Dy(e,[0,t],[e.shape[0],n]);case 3:return Dl(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Tc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Fh(e,t,n,a){return D(()=>{switch(e.rank){case 1:return dh(e,t,n);case 2:switch(a){case 1:return $i(e,t,n);case 2:return eb(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return $i(e,t,n);case 2:return Dl(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return eb(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return $i(e,t,n);case 2:return Tc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Tc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return eb(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function tb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Je(e,t)}function t1(e,t){switch(e.rank){case 1:return U0([e,t]);case 2:return G0([e,t],0);case 3:return H0([e,t],0);case 4:return j0([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Zy(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ga(e,t)}function Ah(e,t=0,n=1,a,r){return uk(e,t,n,a,r)}function Ja(e,t,n,a){if(e.rank<2||t.rank<2)throw new $e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new $e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return Zr.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?nb(e.rank,a,Sa()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let p=[...r,...c],d=!1,h=!1;return Zr.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:a?nb(e.rank,a,Sa()):null,activation:n}).reshape(p)}}function n1(e,t,n){return D(()=>(Array.isArray(t)?t=Qe(t,"int32"):t=t.toInt(),wi(e,t,n)))}function Dc(e){return W(e,e)}function nb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Qa(e,t,n){return D(()=>(n==null&&(n=Sa()),Rt(n),e.add(nb(e.rank,t,n))))}function P3(e,t=1){if(t!==1)throw new $e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Cl(e)}function O3(e){return D(()=>ye(e,zt(e).add(1)))}function a1(e,t,n,a){return D(()=>gk(e,t,n,a))}function L3(e){return D(()=>{let t=J(.5,W(.2,e));return Kt(t,0,1)})}function Rc(e,t,n=!1){return n?e():t()}var z3=["fanIn","fanOut","fanAvg"],W3=["normal","uniform","truncatedNormal"];function B3(e){Fi(z3,"FanMode",e)}function V3(e){Fi(W3,"Distribution",e)}var ha=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},ab=class extends ha{apply(e,t){return bt(e,t)}};ab.className="Zeros";re.registerClass(ab);var $h=class extends ha{apply(e,t){return qa(e,t)}};$h.className="Ones";re.registerClass($h);var rb=class extends ha{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return D(()=>W(ve(this.value),qa(e,t)))}getConfig(){return{value:this.value}}};rb.className="Constant";re.registerClass(rb);var sb=class extends ha{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return $l(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};sb.className="RandomUniform";re.registerClass(sb);var ib=class extends ha{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`randomNormal does not support dType ${t}.`);return Ah(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ib.className="RandomNormal";re.registerClass(ib);var ob=class extends ha{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`truncatedNormal does not support dType ${t}.`);return fh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ob.className="TruncatedNormal";re.registerClass(ob);var lb=class extends ha{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return D(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return W(this.gain,vy(e[0]))})}getConfig(){return{gain:this.gain}}};lb.className="Identity";re.registerClass(lb);function U3(e,t="channelsLast"){let n,a;if(Rt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ts(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=ts(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=ts(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var _n=class extends ha{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,B3(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,V3(this.distribution),this.seed=e.seed}apply(e,t){let n=U3(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`${this.getClassName()} does not support dType ${t}.`);return fh(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return $l(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};_n.className="VarianceScaling";re.registerClass(_n);var Dh=class extends _n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Dh.className="GlorotUniform";re.registerClass(Dh);var Rh=class extends _n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Rh.className="GlorotNormal";re.registerClass(Rh);var Mh=class extends _n{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Mh.className="HeNormal";re.registerClass(Mh);var Ph=class extends _n{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Ph.className="HeUniform";re.registerClass(Ph);var Oh=class extends _n{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Oh.className="LeCunNormal";re.registerClass(Oh);var Lh=class extends _n{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Lh.className="LeCunNormal";re.registerClass(Lh);var ub=class extends ha{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new $e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return D(()=>{if(e.length<2)throw new $e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Ah(n,0,1,"float32"),r=Ek.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),W(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};ub.className="Orthogonal";re.registerClass(ub);var r1={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function s1(e,t={}){return _c(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function _t(e){return Hy(e)}function xt(e){if(typeof e=="string"){let t=e in r1?r1[e]:e;if(t==="GlorotNormal")return new Rh;if(t==="GlorotUniform")return new Dh;if(t==="HeNormal")return new Mh;if(t==="HeUniform")return new Ph;if(t==="LeCunNormal")return new Oh;if(t==="LeCunUniform")return new Lh;{let n={};return n.className=t,n.config={},s1(n)}}else return e instanceof ha?e:s1(e)}function u3(){return new ab}function c3(){return new $h}function p3(e){return new rb(e)}function d3(e){return new sb(e)}function h3(e){return new ib(e)}function m3(e){return new ob(e)}function f3(e){return new lb(e)}function g3(e){return new _n(e)}function y3(e){return new Dh(e)}function b3(e){return new Rh(e)}function x3(e){return new Mh(e)}function v3(e){return new Ph(e)}function w3(e){return new Oh(e)}function k3(e){return new Lh(e)}function I3(e){return new ub(e)}var i1={};Le(i1,{Layer:()=>je,RNN:()=>Za,RNNCell:()=>Mc,activation:()=>sz,add:()=>mz,alphaDropout:()=>Jz,average:()=>fz,averagePooling1d:()=>cb,averagePooling2d:()=>pb,averagePooling3d:()=>db,avgPool1d:()=>Tz,avgPool2d:()=>Sz,avgPool3d:()=>_z,avgPooling1d:()=>Nz,avgPooling2d:()=>Cz,avgPooling3d:()=>Ez,batchNormalization:()=>wz,bidirectional:()=>Uz,concatenate:()=>gz,conv1d:()=>J3,conv2d:()=>Q3,conv2dTranspose:()=>Z3,conv3d:()=>ez,convLstm2d:()=>zz,convLstm2dCell:()=>Wz,cropping2D:()=>nz,dense:()=>iz,depthwiseConv2d:()=>rz,dot:()=>vz,dropout:()=>oz,elu:()=>H3,embedding:()=>hz,flatten:()=>uz,gaussianDropout:()=>Yz,gaussianNoise:()=>Xz,globalAveragePooling1d:()=>Fz,globalAveragePooling2d:()=>Az,globalMaxPool1d:()=>Hz,globalMaxPool2d:()=>jz,globalMaxPooling1d:()=>l1,globalMaxPooling2d:()=>u1,gru:()=>Dz,gruCell:()=>Rz,input:()=>o1,inputLayer:()=>G3,layerNormalization:()=>kz,leakyReLU:()=>q3,lstm:()=>Mz,lstmCell:()=>Pz,masking:()=>Qz,maxPool1d:()=>qz,maxPool2d:()=>Kz,maxPooling1d:()=>c1,maxPooling2d:()=>p1,maxPooling3d:()=>$z,maximum:()=>yz,minimum:()=>bz,multiply:()=>xz,permute:()=>dz,prelu:()=>K3,reLU:()=>j3,repeatVector:()=>cz,reshape:()=>pz,rnn:()=>Bz,separableConv2d:()=>tz,simpleRNN:()=>Oz,simpleRNNCell:()=>Lz,softmax:()=>X3,spatialDropout1d:()=>lz,stackedRNNCells:()=>Vz,thresholdedReLU:()=>Y3,timeDistributed:()=>Gz,upSampling2d:()=>az,zeroPadding2d:()=>Iz});var Zz=0;function d1(){return Zz++}var zh={};function Wh(e=""){return e in zh||(zh[e]=0),zh[e]+=1,e+zh[e].toString()}function hb(e){return Array.isArray(e)&&Array.isArray(e[0])}function Bh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Pe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ut(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Vh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var h1="Variable",m1=class{constructor(e,t="float32",n=h1,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=d1(),n=n==null?h1:n,this.originalName=Qk(n),this.name=Zk(this.originalName),this.trainable_=a,this.constraint=r,this.val=pk(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),eW(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function eW(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function mb(e){return e.map(t=>t.read())}function fb(e){e.forEach(t=>{t[0].write(t[1])})}var Yt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ea=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=d1(),s!=null&&(this.originalName=Qk(s),this.name=Zk(this.originalName)),this.rank=t.length}},tW=0,Uh=class{constructor(e,t){this.callArgs=t,this.id=tW++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},nW=0,je=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=nW++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=br(n)+"_"+Wh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ca(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Cn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Cn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new yr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new yr(`Layer ${this.name} is not connected, no input to return.`);return Cn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new yr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new yr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Cn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=mt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=mt(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),c=r.axes[o],u=l>=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=mt(e),a=!0;for(let s of n)if(!(s instanceof Ea)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ea){r=!1;break}if(a===r)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ai(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of mt(e))s.push(i.shape);this.build(Cn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=mt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Cn(o),this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=aW(e),i=this.computeOutputShape(s),o,l=rW(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Ea(l,c,this,mt(e),t,this.name,u)):o=new Ea(l,i,this,mt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new yr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new yr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ca(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Vh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return mb(e?this.trainableWeights:this.weights)}setWeights(e){D(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=mb(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!w.arraysEqual(s.shape,o.shape))throw new B(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}fb(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=xt("zeros"));let o=a.apply(t,n),l=new m1(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=mt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=mt(e);t=mt(t),n=mt(n),a=mt(a),r=Bh(r),s=Bh(s);let l=[],c=[],u=[];for(let p of o)l.push(p.sourceLayer),c.push(p.nodeIndex),u.push(p.tensorIndex);new Uh({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function aW(e){e=mt(e);let t=[];for(let n of e)t.push(n.shape);return Cn(t)}function rW(e){return"float32"}function f1(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],c=f1(i,o,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var zl=class extends je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Wh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ea(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Uh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};zl.className="InputLayer";re.registerClass(zl);function g1(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new zl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function as(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ae(a)}}function y1(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var b1;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(b1||(b1={}));var sW=125,Wl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},x1=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},iW=class extends Wl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=D(()=>J(this.totals[a],W(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:D(()=>{let a=W(ye(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),qt(t[n])}))}},v1=class extends Wl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},w1=class extends Wl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=sW),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=l3(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await as(n),a.push(this.yield(e,t,n))),a.push(_h()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await as(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await as(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(_h()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await as(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await as(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(_h()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await as(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await as(e),await this.trainEnd(e))}};function k1(e,t){return e==null&&(e={}),e instanceof Wl?[e]:Array.isArray(e)&&e[0]instanceof Wl?e:mt(e).map(n=>new w1(n,t))}var ma=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ma.checkForDuplicate(t),ma.constructors[e]==null&&(ma.constructors[e]=[]),ma.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ma.constructors)ma.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){ma.constructors={}}static createCallbacks(e){let t=[];for(let n in ma.constructors){let a=+n;e>=a&&t.push(...ma.constructors[a])}return t.map(n=>new n)}};ma.constructors={};function I1(e,t,n,a,r,s,i,o,l){let c=new v1,u=[new iW,...ma.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let p=new x1(u);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:c}}function Fa(e,t={},n=!1){return _c(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Gh(e,t){return D(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Se(Dc(e),t,!0),a=Sn(n.shape,Bt()),r=rn(ja(n,a));return ye(e,r)})}function Di(e,t){return D(()=>Ct(Dc(he(t,e)),-1))}function Hh(e,t){return D(()=>Ct(zt(he(t,e)),-1))}function Bl(e,t){return D(()=>{let n=he(e,t),a=Kt(zt(e),Bt(),Number.MAX_VALUE),r=zt(ye(n,a));return W(100,Ct(r,-1))})}function oW(e,t){return D(()=>{let n=Kt(t,Bt(),Number.MAX_VALUE),a=Mn(J(1,n)),r=Kt(e,Bt(),Number.MAX_VALUE),s=Mn(J(1,r));return Ct(Dc(he(a,s)),-1)})}function lW(e,t){return D(()=>{let n=ja(0,he(1,W(e,t)));return Ct(Dc(n),-1)})}function uW(e,t){return D(()=>{let n=ja(0,he(1,W(e,t)));return Ct(n,-1)})}function cW(e,t){return D(()=>{let n=Se(W(e,t),-1),a=Zn(W(he(1,e),t),-1);return ja(0,J(1,he(a,n)))})}function pW(e,t){return D(()=>{let n=Math.log(2),a=he(t,e),r=he(J(a,El(W(-2,a))),n);return Ct(r,-1)})}function Pc(e,t,n=!1){return D(()=>{if(n)t=Ia(t);else{let a=Se(t,t.shape.length-1,!0);t=ye(t,a)}return t=Kt(t,Bt(),1-Bt()),St(Se(W(e.toFloat(),Mn(t)),t.shape.length-1))})}function jh(e,t,n=!1){return D(()=>{let a=_l(R3(e)).toInt();t=Kt(t,Bt(),1-Bt());let r=t.shape,s=Il(a,r[r.length-1]).reshape(r);return Pc(s,t,n)})}function dW(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return D(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function qh(e,t){return D(()=>{let n;return n=Kt(t,Bt(),1-Bt()),n=Mn(ye(n,he(1,n))),Ct(dW(e,n),-1)})}function hW(e,t){return D(()=>{let n=Kt(e,Bt(),1),a=Kt(t,Bt(),1);return Se(W(e,Mn(ye(n,a))),-1)})}function mW(e,t){return D(()=>{let n=Mn(J(Bt(),t));return Ct(he(t,W(e,n)),-1)})}function gb(e,t){return D(()=>{let n=Gh(e,-1),a=Gh(t,-1),r=W(n,a);return St(Se(r,-1))})}var Kh={meanSquaredError:Di,meanAbsoluteError:Hh,meanAbsolutePercentageError:Bl,meanSquaredLogarithmicError:oW,squaredHinge:lW,hinge:uW,categoricalHinge:cW,logcosh:pW,categoricalCrossentropy:Pc,sparseCategoricalCrossentropy:jh,binaryCrossentropy:qh,kullbackLeiblerDivergence:hW,poisson:mW,cosineProximity:gb};function yb(e){if(typeof e=="string"){if(e in Kh)return Kh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function bb(e,t){return D(()=>{let n=W(.5,Pn(t)),a=Ac(ca(t,n),e.dtype);return Ct(Yr(e,a),-1)})}function xb(e,t){return D(()=>Ac(Yr(mc(e,-1),mc(t,-1)),"float32"))}function T1(e,t){return D(()=>pa(e.equal(1),t.equal(1)).sum().cast("float32"))}function fW(e,t){return D(()=>pa(e.equal(1),t.equal(0)).sum().cast("float32"))}function gW(e,t){return D(()=>pa(e.equal(0),t.equal(1)).sum().cast("float32"))}function N1(e,t){return D(()=>{let n=T1(e,t),a=gW(e,t),r=n.add(a);return Nn(ca(r,0),n.div(r),0).cast("float32")})}function yW(e,t){return D(()=>{let n=T1(e,t),a=fW(e,t),r=n.add(a);return Nn(ca(r,0),n.div(r),0).cast("float32")})}function S1(e,t){return qh(e,t)}function C1(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Yr(e,t).asType("float32")}var bW=Di,xW=Di,vW=Hh,wW=Hh,kW=Bl,IW=Bl,vb=Pc,TW=gb,_1=jh,Xh={binaryAccuracy:bb,categoricalAccuracy:xb,precision:N1,categoricalCrossentropy:vb,sparseCategoricalCrossentropy:_1,mse:bW,MSE:xW,mae:vW,MAE:wW,mape:kW,MAPE:IW,cosine:TW};function NW(e){if(typeof e=="string"&&e in Xh)return Xh[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function Yh(e){if(Ya(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Kh))if(Kh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Xh))if(Xh[n]===e){t=n;break}return t!==void 0?t:e.name}}function SW(e){let t={Adagrad:()=>Ci.adagrad(.01),Adadelta:()=>Ci.adadelta(1,.95,Bt()),Adam:()=>Ci.adam(.001,.9,.999,Bt()),Adamax:()=>Ci.adamax(.002,.9,.999,Bt(),0),RMSProp:()=>Ci.rmsprop(.001,.9,0,Bt()),SGD:()=>Ci.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var E1=1*1024*1024;function F1(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!wb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>E1&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${E1}.`)}}function wb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!wb(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!wb(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function AW(e,t,n,a=console.log){let r=_W(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!r){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}a("_".repeat(t)),Jh(s,n,a),a("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)r?EW(o[u],n,a):FW(o[u],n,i,a),a((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=CW(e),c=Vh(e.nonTrainableWeights);a(`Total params: ${l+c}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${c}`),a("_".repeat(t))}function CW(e){let t;return e.collectedTrainableWeights!=null?t=Vh(e.collectedTrainableWeights):t=Vh(e.trainableWeights),t}function _W(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Jh(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function EW(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];Jh(i,t,n)}function FW(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let p=0;p<u.inboundLayers.length;++p){let d=u.inboundLayers[p].name,h=u.nodeIndices[p],m=u.tensorIndices[p];s.push(`${d}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],c=[`${i} (${o})`,r,e.countParams().toString(),l];Jh(c,t,a);for(let u=1;u<s.length;++u)Jh(["","","",s[u]],t,a)}function A1(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Oc(e,t){if(e===null)return null;if(typeof e=="string")return Ei(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];A1(t,r,s)?n.push(s):n.push(Oc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Ei(a);n[s]=Oc(r,s)}}return n}}function kb(e,t){if(e==null)return null;if(typeof e=="string")return br(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];A1(t,r,s)?n.push(s):n.push(kb(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=br(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=kb(r,a)}return n}}var Qh="3.3.0";function $W(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ue(t,e.dtype)}catch(n){throw new B(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Ri=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ri)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=$W(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ea){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ea){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ae(this.id2Mask)}},Ib={},$1={};function Lc(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),p,d;if(Ib[u]==null){let m=DW(i,t);p=m.sorted,d=m.recipientCounts,Ib[u]=p,$1[u]=d}p=Ib[u],d={},r||Object.assign(d,$1[u]);let h=new Ri(t);for(let m=0;m<p.length;++m){if(a!=null){let A=Ud().numTensors;A>a.maxNumTensors&&(a.maxNumTensors=A),A<a.minNumTensors&&(a.minNumTensors=A)}let f=p[m],g=f.sourceLayer;if(g instanceof zl)continue;let y=[],b=[],x=[],v=!1;for(let A of f.inputs){let R=h.getValue(A),P=h.getMask(A);y.push(R),b.push(P),P!=null&&(v=!0),r||(d[A.name]--,d[A.name]===0&&!t.hasKey(A)&&o.indexOf(A.name)===-1&&!R.isDisposed&&A.sourceLayer.stateful!==!0&&x.push(R))}v&&(n=n||{},n.mask=b[0]);let T=mt(g.apply(y,n)),k=null;g.supportsMasking&&(k=g.computeMask(y,b));let S=RW(f),F=Array.isArray(S)?S:[S];for(let A=0;A<F.length;++A){h.hasKey(F[A])||h.add(F[A],T[A],Array.isArray(k)?k[0]:k);let R=o.indexOf(F[A].name);R!==-1&&(l[R]=T[A])}r||Ae(x)}return h.disposeMasks(),s?l:l[0]}function DW(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=D1(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=D1(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(c=>a[l].add(c))}}return{sorted:n,recipientCounts:MW(a)}}function MW(e){let t={};for(let n in e)t[n]=e[n].size;return t}function D1(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:a,recipientMap:r}}function RW(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var er=class extends je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Wh(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],es(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);es(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Ya(x===0,"input layer has >1 nodes"),Ya(v===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof zl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,v,T,k)=>{(v==null||T==null||k==null)&&(v=y.sourceLayer,T=y.nodeIndex,k=y.tensorIndex);let S=v.inboundNodes[T];if(x.indexOf(S)!==-1)throw new Ca(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(b.indexOf(S)!==-1)return;this.containerNodes.add(er.nodeKey(v,T)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(S)===-1&&x.push(S);let F=S.inboundLayers.length;for(let A=0;A<F;A++){let R=S.inputTensors[A],P=S.inboundLayers[A],z=S.nodeIndices[A],V=S.tensorIndices[A];o(R,b,x,P,z,V)}for(b.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);i.push(S)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let v=0;v<y.inboundLayers.length;v++){let T=y.inboundLayers[v],k=y.nodeIndices[v],S=T.inboundNodes[k],F=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(b+1,F),n[S.id]=S}}let p={};for(let y in t){let b=t[y];b in p||(p[b]=[]),p[b].push(n[y])}let d={};for(let y in a){let b=a[y];b in d||(d[b]=[]),d[b].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(Eh);this.layers=[];for(let y of h){let b=d[y];b.sort((x,v)=>{let T=s[x.id],k=s[v.id];return T<k?-1:T>k?1:0});for(let x of b)x instanceof er&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Eh);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of p[y]){let x=b.outboundLayer;if(x!=null){for(let v of b.inputTensors)if(m.indexOf(v)===-1)throw new Ca(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of b.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new Ca(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Uh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${a} weights are not set: ${s}`)}fb(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Qh}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=kb(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return D(()=>{e=mt(e);let n=new Ri;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Lc(this.outputs,n,t)})}computeMask(e,t){return D(()=>{e=mt(e);let n;return t==null?n=_i(null,e.length):n=mt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Bh(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],c=o.name+"_0_0";n[c]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Eh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];u.push(x)}let p=c.computeOutputShape(Cn(u)),d=Bh(p),h=c.inboundNodes.indexOf(l);for(let m=0;m<d.length;m++){let f=`${c.name}_${h}_${m}`;n[f]=d[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${c}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];Ya(o in n),r.push(n[o])}return Cn(r)}runInternalGraph(e,t){t==null&&(t=_i(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],c=e[o],u=t[o];n[l.id]=[c,u]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Eh);for(let o of a){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,p=c.inputTensors,d=c.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,g,y,b;if(c.callArgs!=null&&(m=c.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=mt(u.call(x,m)),b=mt(u.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=mt(u.call(f,m)),b=mt(u.computeMask(f,g));if(u.activityRegularizer)throw new $e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<d.length;++x){let v=d[x],T=y[x],k=b[x];n[v.id]=[T,k]}}}}let r=[],s=[],i=[];for(let o of this.outputs){Ya(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,c]=n[o.id];i.push(l.shape),r.push(l),s.push(c)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof er?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=er.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return D(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=er.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let p=s.inboundNodes[u],d=er.nodeKey(s,u),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let g=p.inboundLayers[f],y=p.nodeIndices[f],b=p.tensorIndices[f],x=er.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,b,h])}l.push(m)}}}let c={};c.name=s.name,c.className=i,c.config=o,c.inboundNodes=l,n.push(c)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=er.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[s];a.push([i.name,c,u])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=er.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[s];r.push([i.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let v=x[0],T=x[1],k=x[2];if(b=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let S=r[v];if(S.inboundNodes.length<=T){i(f,g);return}let F=S.inboundNodes[T];y.push(F.outputTensors[k])}y.length>0&&f.apply(Cn(y),b)}function l(f){let g=f.name,y=Fa(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!o3(s);)for(let f of u){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let p=[],d=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];Ya(g in r);let x=r[g].inboundNodes[y].outputTensors;p.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];Ya(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}return new e({inputs:p,outputs:d,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){D(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function PW(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function R1(e,t){return PW(e,t,"classWeight")}async function M1(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=D(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ae(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Qe(i,"float32")}else return null}function OW(e,t){return W(e,t)}var LW=32;function O1(e,t){let n,a,r=t;n=r.xs,a=r.ys,w.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=P1("input",e.inputNames,n),i=P1("output",e.outputNames,a),o=s[0].shape[0];w.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)w.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)w.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function P1(e,t,n){if(n instanceof Ee)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function zW(e){if(e.length===3)throw new $e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function BW(e,t,n){let a=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(L1(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=zW(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=k1(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=I1(u,p,n.epochs,null,null,WW(t,n),null,r,c);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await d.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:T}=O1(e,x.value),k={};k.batch=b,k.size=v[0].shape[0],await d.onBatchBegin(b,k);let S=[];if(n.classWeight!=null){let R=R1(n.classWeight,e.outputNames);for(let P=0;P<R.length;++P)S.push(await M1(T[P],null,R[P]))}let F=v.concat(T).concat(S),A=o(F);Ae(F);for(let R=0;R<l.length;++R){let P=l[R],z=A[R];k[P]=z,qt(z)}await d.onBatchEnd(b,k),y1(k),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;L1(n.validationData)?v=mt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=mt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?LW:n.validationBatchSize,verbose:0}));for(let T=0;T<e.metricsNames.length;++T)g[`val_${e.metricsNames[T]}`]=v[T]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(m,g),m++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function WW(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function L1(e){return typeof e.iterator=="function"}function VW(e){return typeof e.next=="function"}async function UW(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new $e("Verbose mode is not implemented yet.");w.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=VW(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let c=await i.next();if(s=D(()=>{if(c.value){let{xs:u,ys:p}=O1(e,c.value),d=u.concat(p),h=D(()=>r(d));if(Ae(d),l===0)for(let f=0;f<h.length;++f)s.push(ve(0));let m=d[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=D(()=>J(s[f],W(m,g))),l>0&&Ae(y)}Ae(h),o+=m,++l}return s}),c.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<s.length;++c){let u=s[c];s[c]=ye(s[c],o),Ae(u)}return Cn(s)}function Tb(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function zc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>$i(a,t,n-t)):$i(e,t,n-t)}function Nb(e,t){return D(()=>e==null?null:Array.isArray(e)?e.map(n=>Nb(n,t)):n1(e,t.dtype==="int32"?t:t.toInt()))}function Sb(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function GW(e,t,n,a,r,s,i,o,l,c,u,p,d,h,m){r==null&&(r=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=_a(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=I1(o,i,s,d,g,h,r,f,p);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v<s;++v){await b.onEpochBegin(v);let T={};if(h!=null)throw new $e("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new $e("batch shuffling is not implemneted yet");u&&w.shuffle(y);let k=Qe(y),S=Sb(g,r);for(let F=0;F<S.length;++F){let A={};if(await b.onBatchBegin(F,A),D(()=>{let R=S[F][0],P=S[F][1],z=$i(k,R,P-R);A.batch=F,A.size=P-R;let V=Nb(n,z),G=t(V);for(let H=0;H<a.length;++H){let K=a[H],j=G[H];A[K]=j,qt(j)}if(F===S.length-1&&f){let H=e.testLoop(l,c,r);for(let K=0;K<a.length;++K){let j=a[K],te=H[K];qt(te),T["val_"+j]=te}}}),await b.onBatchEnd(F,A),y1(A),e.stopTraining_)break}k.dispose()}if(await b.onEpochEnd(v,T),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function HW(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,c,u;try{let p=a.batchSize==null?32:a.batchSize;Tb(p);let d=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,d,p);r=h[0],s=h[1],u=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new $e("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let k=!0,S=await e.standardizeUserData(i,o,null,null,k,p);l=S[0],c=S[1],f=l.concat(c)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let k=Math.floor(r[0].shape[0]*(1-a.validationSplit)),S=r[0].shape[0];l=zc(r,k,S),r=zc(r,0,k),c=zc(s,k,S),s=zc(s,0,k),f=l.concat(c)}else a.validationSteps!=null&&(m=!0);let g=r.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=b.slice().concat(b.map(k=>"val_"+k))):(x=null,f=[],v=b.slice());let T=k1(a.callbacks,a.yieldEvery);return await GW(e,y,g,b,p,a.epochs,a.verbose,T,x,f,a.shuffle,v,a.initialEpoch,null,null)}finally{e.isTraining=!1,Mi(r,t),Mi(s,n),Mi(l,i),Mi(c,o),u!=null&&Ae(u)}}function z1(e){let t=[];e instanceof Ee&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push($c(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Mi(e,t){if(e==null)return;let n=[];if(t instanceof Ee)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ee)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function jW(e){return e instanceof Ee}function Cb(e){return Array.isArray(e)}function W1(e){return!jW(e)&&!Cb(e)}function B1(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Cb(e)&&e.length>0)i=!0;else if(W1(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(W1(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Cb(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=z1(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&c!==u)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function qW(e,t,n){let a=es(e.map(s=>s.shape[0]));a.sort();let r=es(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!w.arraysEqual(a,r))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function KW(e,t,n){let a=[Di,qh,Pc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Pc&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),c=o.slice(1);for(let u=0;u<l.length;++u){let p=l[u],d=c[u];if(d!=null&&p!==d)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function V1(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new B(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u!==c)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function XW(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var YW="layers-model",xr=class extends er{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");AW(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=SW(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof gr))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(yb(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>yb(s))}else{let s=yb(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ai("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=XW(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ai("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",c,u,p;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===qh?["accuracy","acc"].indexOf(d)!==-1?u=bb:["crossentropy","ce"].indexOf(d)!==-1&&(u=S1):this.lossFunctions[s]===jh?["accuracy","acc"].indexOf(d)!==-1?u=C1:["crossentropy","ce"].indexOf(d)!==-1&&(u=_1):["accuracy","acc"].indexOf(d)!==-1?u=xb:["crossentropy","ce"].indexOf(d)!==-1&&(u=vb);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),p=u,c=l+f}else p=NW(d),c=l+Yh(d);let h;Ai(c,()=>{h=p}),r(s,c,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;Tb(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Cn(l)}finally{Mi(s[0],e),Mi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),UW(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new B(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Ri;if(e instanceof Ee&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new B(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Lc(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=_i(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return D(()=>{let a=this.checkNumSamples(e);if(n)throw new $e("Verbose predictLoop() is not implemented yet.");let r=Sb(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)D(()=>{let o=r[i][0],l=r[i][1],c=zc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;d<c.length;++d)u.push({key:this.inputs[d],value:c[d]});else u.push({key:this.inputs[0],value:c});let p=new Ri(u);return Lc(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return Cn(s.map(i=>Je(i,0)))})}predict(e,t={}){let n=z1(e);V1(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return Tb(a),this.predictLoop(n,a)}finally{Mi(n,e)}}predictOnBatch(e){V1(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ca("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===jh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=B1(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=B1(t,this.feedOutputNames,r,!1,"target"),qW(e,t,null),KW(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let c=R1(a,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await M1(o[u],null,c[u]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return D(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new $e("Verbose mode is not implemented yet.");if(r!=null)throw new $e("steps mode in testLoop() is not implemented yet");{let o=Sb(s,n),l=Qe(_a(0,s));for(let c=0;c<o.length;++c){let u=o[c][0],p=o[c][1],d=$i(l,u,p-u),h=Nb(t,d),m=e(h);if(c===0)for(let f=0;f<m.length;++f)i.push(ve(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=J(i[f],W(p-u,g))}}for(let c=0;c<i.length;++c)i[c]=ye(i[c],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;Uk(e,a)>1&&(r+=`_${Uk(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let h=0;h<this.inputs.length;++h)c.push({key:this.inputs[h],value:n[h]});let u=new Ri(c),p=Lc(this.outputs,u,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=OW(m,r[h]));let f=Ct(m);t.push(f),h===0?d=m:d=J(d,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Ct(f(a[g],p[g]))}qt(m),s.push(m)}return d=Ct(d),this.calculateLosses().forEach(h=>{d=J(d,h)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>D(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Ri(s),o=Lc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Ct(c(r[l],o[l]));l===0?n=u:n=J(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],p=Ct(c(r[u],o[u]));t.push(p)}return t})}async fit(e,t,n={}){return HW(this,e,t,n)}async fitDataset(e,t){return BW(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ae(s),Cn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Ud().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Ud().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=br(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>br(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=br(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[br(Yh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>br(Yh(e)));{let e={};for(let t in this.metrics)e[t]=br(Yh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Oc(e.optimizer_config),n=Fa(t),a;if(typeof e.loss=="string")a=Ei(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Ei(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Ei(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Ei(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Ei(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=jt.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await jt.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:YW,generatedBy:`TensorFlow.js tfjs-layers v${Qh}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await jt.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=jt.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;F1(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){F1(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};xr.className="Model";re.registerClass(xr);var U1=class extends xr{};U1.className="Functional";re.registerClass(U1);async function JW(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Oc(n),r=Fa(a,t);if(e.weightsManifest!=null){let s=await jt.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ae(s)}return r}async function ZW(e,t){if(t==null&&(t={}),typeof e=="string"){let n=jt.getLoadHandlers(e,t);if(n.length===0)n.push(jt.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return QW(e,void 0,t)}async function QW(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Fa(Oc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=eB(a.weightData,a.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Ae(c),Ae(u.map(p=>p.tensor))}return o}function eB(e,t){let n=jt.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Vl=class extends xr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Wh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Vl||e instanceof xr,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=g1({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=f1(this.outputs[0])}this.inboundNodes=[],new Uh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:_i(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ut(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new xr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ca("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ca("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ca("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ca("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Vl))throw new $e(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Fa(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Vl.className="Sequential";re.registerClass(Vl);function tB(e){return new xr(e)}function nB(e){return new Vl(e)}function aB(e,t){return t==null&&(t={}),ZW(e,t)}function o1(e){return g1(e)}function rB(e,t){ma.registerCallbackConstructor(e,t)}var zn=class extends re.Serializable{getConfig(){return{}}},G1=class extends zn{apply(e,t=1){return P3(e,t)}};G1.className="elu";re.registerClass(G1);var H1=class extends zn{apply(e){return uh(e)}};H1.className="selu";re.registerClass(H1);var j1=class extends zn{apply(e){return qe(e)}};j1.className="relu";re.registerClass(j1);var q1=class extends zn{apply(e){return D(()=>Al(6,qe(e)))}};q1.className="relu6";re.registerClass(q1);var K1=class extends zn{apply(e){return e}};K1.className="linear";re.registerClass(K1);var X1=class extends zn{apply(e){return ua(e)}};X1.className="sigmoid";re.registerClass(X1);var Y1=class extends zn{apply(e){return L3(e)}};Y1.className="hardSigmoid";re.registerClass(Y1);var J1=class extends zn{apply(e){return El(e)}};J1.className="softplus";re.registerClass(J1);var Q1=class extends zn{apply(e){return O3(e)}};Q1.className="softsign";re.registerClass(Q1);var Z1=class extends zn{apply(e){return Sl(e)}};Z1.className="tanh";re.registerClass(Z1);var _b=class extends zn{apply(e,t=-1){return Ia(e,t)}};_b.className="softmax";re.registerClass(_b);var eI=class extends zn{apply(e,t=-1){return nh(e,t)}};eI.className="logSoftmax";re.registerClass(eI);var tI=class extends zn{apply(e,t=1){return D(()=>ua(e.mul(t)).mul(e))}};tI.className="swish";re.registerClass(tI);function rs(e){return e.getClassName()}function Eb(e,t={}){return _c(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ss(e){if(e==null){let t={};return t.className="linear",t.config={},Eb(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Eb(t)}else return e instanceof zn?e:Eb(e)}function Fb(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var nI=class extends re.Serializable{},Wc=class extends nI{constructor(e){super();Fb(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return D(()=>{let t=bt([1]);return this.hasL1&&(t=J(t,Se(W(this.l1,zt(e))))),this.hasL2&&(t=J(t,Se(W(this.l2,Dc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Wc.className="L1L2";re.registerClass(Wc);function sB(e){return Fb(e),new Wc({l1:e!=null?e.l1:null,l2:0})}function iB(e){return Fb(e),new Wc({l2:e!=null?e.l2:null,l1:0})}var aI={l1l2:"L1L2"};function ct(e){return Hy(e)}function rI(e,t={}){return _c(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in aI?aI[e]:e,config:{}};return rI(t)}else return e instanceof nI?e:rI(e)}var Ab=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Pe(e);let n=qe(e);return this.maxValue!=null&&(n=Kt(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ab.className="ReLU";re.registerClass(Ab);var $b=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return xc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};$b.className="LeakyReLU";re.registerClass($b);var Db=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=xt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=vt(e.alphaRegularizer),this.alphaConstraint=Ut(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ut(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Yt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Pe(e),kc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:_t(this.alphaInitializer),alphaRegularizer:ct(this.alphaRegularizer),alphaConstraint:Vt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Db.className="PReLU";re.registerClass(Db);var Rb=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new $e(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return Cl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Rb.className="ELU";re.registerClass(Rb);var Mb=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Pe(e);return n.mul(Ac(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Mb.className="ThresholdedReLU";re.registerClass(Mb);var Pb=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new _b().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Pe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Pb.className="Softmax";re.registerClass(Pb);function Ul(e,t,n){if(typeof e=="number")return _i(e,t);if(e.length!==t)throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!$3(r))throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Aa(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function Zh(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ns([n-t,0]);else if(a==="same")e=e*t;else throw new B(`Unsupport padding mode: ${a}.`);return e}function Ob(e,t){return D(()=>(Rt(t),t==="channelsFirst"?Ve(e,[0,2,3,1]):e))}function sI(e,t){return D(()=>(Rt(t),t==="channelsFirst"?Ve(e,[0,2,3,4,1]):e))}function oB(e,t,n,a=1,r="valid",s,i=1){return D(()=>{if(s==null&&(s=Sa()),Rt(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ve(e,[0,2,1])),r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Kd(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Qa(o,n)),o})}function iI(e,t,n,a=[1,1],r="valid",s,i,o=null){return D(()=>{if(s==null&&(s=Sa()),Rt(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Ob(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Zr.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ve(l,[0,3,1,2])),l})}function lB(e,t,n,a=[1,1,1],r="valid",s,i){return D(()=>{if(s==null&&(s=Sa()),Rt(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=sI(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=my(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Qa(o,n)),s==="channelsFirst"&&(o=Ve(o,[0,4,1,2,3])),o})}var Lb=class extends je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Lb.verifyArgs(t),this.rank=e,Xt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new $e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ul(t.kernelSize,e,"kernelSize"),this.strides=Ul(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ta(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=ss(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=xt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ut(t.biasConstraint),this.biasRegularizer=vt(t.biasRegularizer),this.activityRegularizer=vt(t.activityRegularizer),this.dilationRate=Ul(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ya("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!qy(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:rs(this.activation),useBias:this.useBias,biasInitializer:_t(this.biasInitializer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Bc=class extends Lb{constructor(e,t){super(e,t);this.kernel=null,Bc.verifyArgs(t),this.filters=t.filters,Xt(this.filters,"filters"),this.kernelInitializer=xt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ut(t.kernelConstraint),this.kernelRegularizer=vt(t.kernelRegularizer)}build(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return D(()=>{e=Pe(e);let n,a=this.bias==null?null:this.bias.read(),r=Hk(this.activation.getClassName());if(r!=null&&this.rank===2)n=iI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=oB(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=iI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=lB(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new $e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ut(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Aa(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:_t(this.kernelInitializer),kernelRegularizer:ct(this.kernelRegularizer),kernelConstraint:Vt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Vc=class extends Bc{constructor(e){super(2,e);Vc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!qy(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Vc.className="Conv2D";re.registerClass(Vc);var em=class extends Bc{constructor(e){super(3,e);em.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};em.className="Conv3D";re.registerClass(em);var zb=class extends Vc{constructor(e){super(e);if(this.inputSpec=[new Yt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ut(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Yt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{let n=Pe(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],c=this.kernelSize[0],u=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Zh(o,p,c,this.padding),m=Zh(l,d,u,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ve(n,[0,2,3,1]));let g=Xd(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ve(g,[0,3,1,2])),this.bias!=null&&(g=Qa(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ut(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=Zh(t[a],o,s,this.padding),t[r]=Zh(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};zb.className="Conv2DTranspose";re.registerClass(zb);var oI=class extends Bc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=xt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=vt(t.depthwiseRegularizer),this.depthwiseConstraint=Ut(t.depthwiseConstraint),this.pointwiseInitializer=xt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=vt(t.pointwiseRegularizer),this.pointwiseConstraint=Ut(t.pointwiseConstraint)}build(e){if(e=ut(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Yt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{e=Pe(e);let n;if(this.rank===1)throw new $e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ve(e,[0,2,3,1])),n=Ni(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Qa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ve(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.pointwiseInitializer=_t(this.pointwiseInitializer),e.depthwiseRegularizer=ct(this.depthwiseRegularizer),e.pointwiseRegularizer=ct(this.pointwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseConstraint),e.pointwiseConstraint=Vt(this.pointwiseConstraint),e}};oI.className="SeparableConv";var Wb=class extends oI{constructor(e){super(2,e)}};Wb.className="SeparableConv2D";re.registerClass(Wb);var tm=class extends Bc{constructor(e){super(1,e);tm.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!qy(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};tm.className="Conv1D";re.registerClass(tm);var Bb=class extends je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return D(()=>{if(e=Pe(e),this.dataFormat==="channelsLast"){let n=Fh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Fh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Fh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Fh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Bb.className="Cropping2D";re.registerClass(Bb);var Vb=class extends je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,E3(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return D(()=>{let n=Pe(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ve(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ve(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Vb.className="UpSampling2D";re.registerClass(Vb);function uB(e,t,n=[1,1],a="valid",r,s){return D(()=>{r==null&&(r=Sa()),Rt(r);let i=Ob(e,r);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Xr(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ve(i,[0,3,1,2])),i})}var Ub=class extends Lb{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=xt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ut(e.depthwiseConstraint),this.depthwiseRegularizer=vt(e.depthwiseRegularizer)}build(e){if(e=ut(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{e=Pe(e);let n=uB(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Qa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Aa(t,this.kernelSize[0],this.padding,this.strides[0]),s=Aa(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.depthwiseRegularizer=ct(this.depthwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseRegularizer),e}};Ub.className="DepthwiseConv2D";re.registerClass(Ub);function lI(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function uI(e,t,n,a=!1,r,s,i=!1,o=!1){return D(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(_a(2,l));if(t=Ve(t,c),s!=null)throw new $e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=hn(r,-1)),r=Ve(r,c)),a&&(t=On(t,0),r!=null&&(r=On(r,0)));let u=[],p,d=n,h=t.shape[0],m=lt(t),f;r!=null&&(f=lt(r));for(let y=0;y<h;++y){let b=m[y],x=D(()=>e(b,d));if(r==null)p=x[0],d=x[1];else{let v=D(()=>{let T=f[y],k=Pn(T).sub(T),S=x[0].mul(T).add(d[0].mul(k)),F=d.map((A,R)=>x[1][R].mul(T).add(A.mul(k)));return{output:S,newStates:F}});p=v.output,d=v.newStates}o&&u.push(p)}let g;return o&&(g=Dt(u,1)),[p,g,d]})}var Za=class extends je{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new nm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Yt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return _a(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){hb(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return D(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new $e("Constants support is not implemented in RNN yet.");hb(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Yt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new $e("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Yt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new yr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>bt([n,a])):this.states_=[bt([n,this.cell.stateSize])];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>bt([n,a])):this.states_[0]=bt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!w.arraysEqual(r.shape,i))throw new B(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>qt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=lI(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Yt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ea){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Pe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=uI((d,h)=>{let m=this.cell.call([d].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,a);let p=this.returnSequences?c:l;return this.returnState?[p].concat(u):p})}getInitialState(e){return D(()=>{let t=bt(e.shape);return t=Se(t,[1,2]),t=$c(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Zy(t,[1,n]):t):this.cell.stateSize>1?[Zy(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Za.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Fa(a,n);return new e(Object.assign(t,{cell:r}))}};Za.className="RNN";re.registerClass(Za);var Mc=class extends je{},am=class extends Mc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Xt(this.units,"units"),this.activation=ss(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=xt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=Ll([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ll([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ut(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>Pn(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>Pn(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=Ja(W(e,s),this.kernel.read()):r=Ja(e,this.kernel.read()),this.bias!=null&&(r=Qa(r,this.bias.read())),i!=null&&(n=W(n,i));let o=J(r,Ja(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:rs(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:ct(this.kernelRegularizer),recurrentRegularizer:ct(this.recurrentRegularizer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};am.className="SimpleRNNCell";re.registerClass(am);var Gb=class extends Za{constructor(e){e.cell=new am(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Gb.className="SimpleRNN";re.registerClass(Gb);var rm=class extends Mc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Xt(this.units,"units"),this.activation=ss(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ss(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=xt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=Ll([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ll([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ut(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>Pn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>Pn(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=W(e,r[0]));let c=Ja(e,this.kernel.read());this.useBias&&(c=Qa(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=W(a,s[0]));let u=this.recurrentKernel.read(),[p,d]=Ln(u,[2*this.units,this.units],u.rank-1),h=Ja(a,p),[m,f,g]=Ln(c,3,c.rank-1),[y,b]=Ln(h,2,h.rank-1);i=this.recurrentActivation.apply(J(m,y)),o=this.recurrentActivation.apply(J(f,b));let x=Ja(W(o,a),d);l=this.activation.apply(J(g,x));let v=J(W(i,a),W(J(1,St(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:rs(this.activation),recurrentActivation:rs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:ct(this.kernelRegularizer),recurrentRegularizer:ct(this.recurrentRegularizer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};rm.className="GRUCell";re.registerClass(rm);var Hb=class extends Za{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new rm(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Hb.className="GRU";re.registerClass(Hb);var Uc=class extends Mc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Xt(this.units,"units"),this.activation=ss(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ss(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=xt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=Ll([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ll([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ut(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends ha{apply(i,o){let l=r.apply([s]),c=new $h().apply([s]),u=r.apply([s*2]);return t1(t1(l,c),u)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>Pn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>Pn(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0<this.dropout&&this.dropout<1&&(e=W(e,s[0]));let p=Ja(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=W(a,i[0])),p=J(p,Ja(a,this.recurrentKernel.read())),this.useBias&&(p=Qa(p,this.bias.read()));let[d,h,m,f]=Ln(p,4,p.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),c=J(W(l,r),W(o,this.activation.apply(m))),u=this.recurrentActivation.apply(f);let g=W(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:rs(this.activation),recurrentActivation:rs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ct(this.kernelRegularizer),recurrentRegularizer:ct(this.recurrentRegularizer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Uc.className="LSTMCell";re.registerClass(Uc);var jb=class extends Za{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Uc(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};jb.className="LSTM";re.registerClass(jb);var nm=class extends Mc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return D(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){hb(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Ai(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Fa(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return mb(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}fb(t)}};nm.className="StackedRNNCells";re.registerClass(nm);function is(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>a1(t(),n),i=()=>Rc(s,t,a);return!r||r<=1?qt(i().clone()):Array(r).fill(void 0).map(i).map(o=>qt(o.clone()))}var cB=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},cI=class extends Za{constructor(e){if(e.unroll)throw new $e("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new $e("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Yt({ndim:5})]}call(e,t){return D(()=>{if(this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return D(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=bt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new yr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>bt(r)):this.states_=[bt(r)];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>bt(r)):this.states_[0]=bt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!w.arraysEqual(i.shape,o))throw new B(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>qt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Aa(l,a[0],r,s[0],i[0]),p=Aa(c,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,p]:[u,p,n]]}};cI.className="ConvRNN2D";var sm=class extends Uc{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Xt(this.filters,"filters"),this.kernelSize=Ul(n,2,"kernelSize"),this.kernelSize.forEach(o=>Xt(o,"kernelSize")),this.strides=Ul(a||1,2,"strides"),this.strides.forEach(o=>Xt(o,"strides")),this.padding=r||"valid",ta(this.padding),this.dataFormat=s||"channelsLast",Rt(this.dataFormat),this.dilationRate=Ul(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Xt(o,"dilationRate"))}build(e){var t;e=ut(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends ha{apply(u,p){let d=l.apply([c]),h=qa([c]),m=l.apply([c*2]);return tb([d,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return D(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>Pn(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Q,se,ne)=>!se||!se[ne]?Q:W(se[ne],Q),c=l(a,o,0),u=l(a,o,1),p=l(a,o,2),d=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>Pn(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,v,T,k]=Ln(this.kernel.read(),i,b),[S,F,A,R]=this.useBias?Ln(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,S,this.padding),u=this.inputConv(u,v,F,this.padding),p=this.inputConv(p,T,A,this.padding),d=this.inputConv(d,k,R,this.padding);let[P,z,V,G]=Ln(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,P),f=this.recurrentConv(f,z),g=this.recurrentConv(g,V),y=this.recurrentConv(y,G);let H=this.recurrentActivation.apply(J(c,m)),K=this.recurrentActivation.apply(J(u,f)),j=J(W(K,s),W(H,this.activation.apply(J(p,g)))),te=W(this.recurrentActivation.apply(J(d,y)),this.activation.apply(j));return[te,te,j]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=cB(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=At(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Qa(r,n,this.dataFormat):r}recurrentConv(e,t){return At(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};sm.className="ConvLSTM2DCell";re.registerClass(sm);var qb=class extends cI{constructor(e){let t=new sm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};qb.className="ConvLSTM2D";re.registerClass(qb);var im=class extends je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Rc(()=>a1(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};im.className="Dropout";re.registerClass(im);var Kb=class extends im{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Kb.className="SpatialDropout1D";re.registerClass(Kb);var Xb=class extends je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Xt(this.units,"units"),this.activation=ss(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=xt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=xt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ut(e.kernelConstraint),this.biasConstraint=Ut(e.biasConstraint),this.kernelRegularizer=vt(e.kernelRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.activityRegularizer=vt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ut(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ut(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=Hk(this.activation.getClassName()),r;return a!=null?r=Ja(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=Ja(n,this.kernel.read()),this.bias!=null&&(r=Qa(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:rs(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:ct(this.kernelRegularizer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Xb.className="Dense";re.registerClass(Xb);var Yb=class extends je{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ut(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ts(e,1)]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return M3(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Yb.className="Flatten";re.registerClass(Yb);var Jb=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.activation=ss(e.activation)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.activation.apply(n)})}getConfig(){let e={activation:rs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Jb.className="Activation";re.registerClass(Jb);var Qb=class extends je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return D(()=>(e=Pe(e),D3(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Qb.className="RepeatVector";re.registerClass(Qb);var Zb=class extends je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new B("Can only specifiy one unknown dimension.");else r*=l}let i=ts(e);if(s!==null){if(r===0||i%r!=0)throw new B(n);a[s]=i/r}else if(i!==r)throw new B(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Zb.className="Reshape";re.registerClass(Zb);var ex=class extends je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=_a(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Yt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ut(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ve(Pe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};ex.className="Permute";re.registerClass(ex);var tx=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Pe(e),a=-1;return hc(Ti(n,this.maskValue),a)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=-1,r=!0,s=hc(Ti(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};tx.className="Masking";re.registerClass(tx);var nx=class extends je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(mt(e.inputLength))}this.inputDim=e.inputDim,Xt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Xt(this.outputDim,"outputDim"),this.embeddingsInitializer=xt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=vt(e.embeddingsRegularizer),this.activityRegularizer=vt(e.activityRegularizer),this.embeddingsConstraint=Ut(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return D(()=>this.maskZero?(e=Pe(e),Ti(e,Ge(e))):null)}computeOutputShape(e){if(e=ut(e),this.inputLength==null)return[...e,this.outputDim];let t=mt(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return n.dtype!=="int32"&&(n=Ac(n,"int32")),n1(this.embeddings.read(),n.as1D()).reshape(ut(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:_t(this.embeddingsInitializer),embeddingsRegularizer:ct(this.embeddingsRegularizer),activityRegularizer:ct(this.activityRegularizer),embeddingsConstraint:Vt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};nx.className="Embedding";re.registerClass(nx);var Pi=class extends je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new $e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ut(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=es(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&es(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return D(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ns(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=$c(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let c=o.shape,u=c[0],p=c.slice(1).concat([u]),d=o.reshape([u].concat(ts(c.slice(1))));d=Ve(d,[1,0]),d=d.reshape(p),n.push(d),r=!0}else if(l>1){let c=_a(1,l).concat([0]);n.push(Ve(o,c)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Ve(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(_a(0,i-1));s=Ve(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=es(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return D(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:hn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=pa(n,t[a]);return n})}},ax=class extends Pi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return t})}};ax.className="Add";re.registerClass(ax);var rx=class extends Pi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=W(t,e[n]);return t})}};rx.className="Multiply";re.registerClass(rx);var sx=class extends Pi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return W(1/e.length,t)})}};sx.className="Average";re.registerClass(sx);var ix=class extends Pi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=ja(t,e[n]);return t})}};ix.className="Maximum";re.registerClass(ix);var ox=class extends Pi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Al(t,e[n]);return t})}};ox.className="Minimum";re.registerClass(ox);var lx=class extends Pi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(w.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return D(()=>tb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return D(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(Pn(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(hn(t[s],-1)):a.push(t[s]);let r=Je(a,this.axis);return jd(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};lx.className="Concatenate";re.registerClass(lx);function Gc(e,t){for(;e<0;)e+=t;return e}function pB(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new $e("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new $e("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return D(()=>{let i;if(a>r){i=a-r;let l=[];for(let c=0;c<i;++c)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let c=0;c<i;++c)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,c=s[1]===t.shape.length-1;o=e.matMul(t,l,c)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let c=[];for(let u=l;u<l+i;++u)c.push(u);o=o.squeeze(c)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var ux=class extends Pi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new B(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Gc(r,e[s].shape.length)):a=[Gc(this.axes,t.shape.length),Gc(this.axes,n.shape.length)],this.normalize&&(t=Gh(t,a[0]),n=Gh(n,a[1])),pB(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Gc(this.axes,e.length),Gc(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ux.className="Dot";re.registerClass(ux);var cx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return Rc(()=>Ah(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};cx.className="GaussianNoise";re.registerClass(cx);var px=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.rate>0&&this.rate<1?Rc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(Ah(n.shape,1,a))},()=>n,t.training||!1):n})}};px.className="GaussianDropout";re.registerClass(px);var dx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Pe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Rc(()=>{let a=Pe(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Jr($l(n),this.rate);o=Ac(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>Pe(e),t.training||!1)}return e})}};dx.className="AlphaDropout";re.registerClass(dx);function Hc(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=z0(e,t,n,a,r,s);else if(e.rank===3)i=W0(e,t,n,a,r,s);else if(e.rank===4)i=B0(e,t,n,a,r,s);else throw new $e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function dB(e,t,n,a,r=.001){return D(()=>{let s=rh(e,a),i=s.mean,o=s.variance;return[Hc(e,i,o,n,t,r),i,o]})}function hB(e,t,n,a,r=.001){return D(()=>{let s=rh(e,a),i=s.mean,o=s.variance,l=[];for(let h of _a(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let c=i.reshape(l),u=o.reshape(l),p=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Hc(e,c,u,d,p,r),i,o]})}function mB(e,t,n,a,r=.001){return w.arraysEqual(a.slice().sort(),_a(0,e.rank-1))?dB(e,t,n,a,r):hB(e,t,n,a,r)}var hx=class extends je{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=xt(e.betaInitializer||"zeros"),this.gammaInitializer=xt(e.gammaInitializer||"ones"),this.movingMeanInitializer=xt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=xt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Ut(e.betaConstraint),this.gammaConstraint=Ut(e.gammaConstraint),this.betaRegularizer=vt(e.betaRegularizer),this.gammaRegularizer=vt(e.gammaRegularizer)}build(e){e=ut(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Yt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training,a=Pe(e),r=a.shape,s=r.length,i=_a(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=_i(1,s);l[o]=r[o];let c=i.slice();c.sort();let u=!w.arraysEqual(c,_a(0,s).slice(0,s-1)),p=()=>{if(u){let g=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),b=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return Hc(a,g,y,b,x,this.epsilon)}else return Hc(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,m]=mB(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{D(()=>{let x=1-b,v=g.read(),T=v.sub(y).mul(x);g.write(v.sub(T))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),movingMeanInitializer:_t(this.movingMeanInitializer),movingVarianceInitializer:_t(this.movingVarianceInitializer),betaRegularizer:ct(this.betaRegularizer),gammaRegularizer:ct(this.gammaRegularizer),betaConstraint:Vt(this.betaConstraint),gammaConstraint:Vt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};hx.className="BatchNormalization";re.registerClass(hx);var mx=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=xt(e.betaInitializer||"zeros"),this.gammaInitializer=xt(e.gammaInitializer||"ones"),this.betaRegularizer=vt(e.betaRegularizer),this.gammaRegularizer=vt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ut(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==es(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Pe(e),a=n.shape,r=a.length;return D(()=>{let s=!0,{mean:i,variance:o}=rh(n,this.axis,s),l=_i(1,r);for(let m of this.axis)l[m]=a[m];let c=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,u=c(this.gamma.read()),p=c(this.beta.read()),d=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(d.push(a[m]),h.push(1)):(d.push(1),h.push(a[m]));return i=i.tile(d),o=o.tile(d),u=u.tile(h),p=p.tile(h),Hc(n,i,o,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),betaRegularizer:ct(this.betaRegularizer),gammaRegularizer:ct(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};mx.className="LayerNormalization";re.registerClass(mx);function fB(e,t,n){return D(()=>{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Sa()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ea(e,a)})}var fx=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Sa():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=ut(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return D(()=>fB(Pe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};fx.className="ZeroPadding2D";re.registerClass(fx);function om(e,t,n,a,r,s){return D(()=>{Rt(r),Xk(s),ta(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Sa()),s==null&&(s="max"),e=Ob(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=$t(e,t,n,o):i=Qn(e,t,n,o),r==="channelsFirst"&&(i=Ve(i,[0,3,1,2])),i})}function pI(e,t,n,a,r,s){return D(()=>{Rt(r),Xk(s),ta(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Sa()),s==null&&(s="max"),e=sI(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Ny(e,t,n,o):i=py(e,t,n,o),r==="channelsFirst"&&(i=Ve(i,[0,4,1,2,3])),i})}var dI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Xt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ta(this.padding),this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){e=ut(e);let t=Aa(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return D(()=>{this.invokeCallHook(e,t),e=$c(Pe(e),2);let n=this.poolingFunction(Pe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Qr(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},gx=class extends dI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),om(e,t,n,a,r,"max")}};gx.className="MaxPooling1D";re.registerClass(gx);var yx=class extends dI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),om(e,t,n,a,r,"avg")}};yx.className="AveragePooling1D";re.registerClass(yx);var hI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Xt(this.poolSize,"poolSize"),Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),ta(this.padding),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Aa(t,this.poolSize[0],this.padding,this.strides[0]),n=Aa(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},bx=class extends hI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),om(e,t,n,a,r,"max")}};bx.className="MaxPooling2D";re.registerClass(bx);var xx=class extends hI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),om(e,t,n,a,r,"avg")}};xx.className="AveragePooling2D";re.registerClass(xx);var mI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Xt(this.poolSize,"poolSize"),Xt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),ta(this.padding),this.inputSpec=[new Yt({ndim:5})]}computeOutputShape(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Aa(t,this.poolSize[0],this.padding,this.strides[0]),n=Aa(n,this.poolSize[1],this.padding,this.strides[1]),a=Aa(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},vx=class extends mI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),pI(e,t,n,a,r,"max")}};vx.className="MaxPooling3D";re.registerClass(vx);var wx=class extends mI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),pI(e,t,n,a,r,"avg")}};wx.className="AveragePooling3D";re.registerClass(wx);var fI=class extends je{constructor(e){super(e);this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new $e}},kx=class extends fI{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Pe(e);return Ct(n,1)})}};kx.className="GlobalAveragePooling1D";re.registerClass(kx);var Ix=class extends fI{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Pe(e);return Zn(n,1)})}};Ix.className="GlobalMaxPooling1D";re.registerClass(Ix);var gI=class extends je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new $e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Tx=class extends gI{call(e,t){return D(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?Ct(n,[1,2]):Ct(n,[2,3])})}};Tx.className="GlobalAveragePooling2D";re.registerClass(Tx);var Nx=class extends gI{call(e,t){return D(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?Zn(n,[1,2]):Zn(n,[2,3])})}};Nx.className="GlobalMaxPooling2D";re.registerClass(Nx);var yI=class extends je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Fa(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},Sx=class extends yI{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ut(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ut(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return D(()=>(e=Pe(e),uI((n,a)=>[Pe(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Sx.className="TimeDistributed";re.registerClass(Sx);function gB(e){Fi(_3,"BidirectionalMergeMode",e)}var yB="concat",Cx=class extends yI{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Fa(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Fa(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?yB:e.mergeMode,gB(this.mergeMode),e.weights)throw new $e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Cn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=lI(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Yt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(a!=null)throw new $e("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ea;for(let l of s)if(l instanceof Ea!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let p=super.apply(l,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=On(r,1));let i;return this.mergeMode==="concat"?i=tb([a,r]):this.mergeMode==="sum"?i=J(a,r):this.mergeMode==="ave"?i=W(.5,J(a,r)):this.mergeMode==="mul"?i=W(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ai(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ai(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Fa(t.layer);if(delete t.layer,t.numConstants!=null)throw new $e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};Cx.className="Bidirectional";re.registerClass(Cx);function G3(e){return new zl(e)}function H3(e){return new Rb(e)}function j3(e){return new Ab(e)}function q3(e){return new $b(e)}function K3(e){return new Db(e)}function X3(e){return new Pb(e)}function Y3(e){return new Mb(e)}function J3(e){return new tm(e)}function Q3(e){return new Vc(e)}function Z3(e){return new zb(e)}function ez(e){return new em(e)}function tz(e){return new Wb(e)}function nz(e){return new Bb(e)}function az(e){return new Vb(e)}function rz(e){return new Ub(e)}function sz(e){return new Jb(e)}function iz(e){return new Xb(e)}function oz(e){return new im(e)}function lz(e){return new Kb(e)}function uz(e){return new Yb(e)}function cz(e){return new Qb(e)}function pz(e){return new Zb(e)}function dz(e){return new ex(e)}function hz(e){return new nx(e)}function mz(e){return new ax(e)}function fz(e){return new sx(e)}function gz(e){return new lx(e)}function yz(e){return new ix(e)}function bz(e){return new ox(e)}function xz(e){return new rx(e)}function vz(e){return new ux(e)}function wz(e){return new hx(e)}function kz(e){return new mx(e)}function Iz(e){return new fx(e)}function cb(e){return new yx(e)}function Tz(e){return cb(e)}function Nz(e){return cb(e)}function pb(e){return new xx(e)}function Sz(e){return pb(e)}function Cz(e){return pb(e)}function db(e){return new wx(e)}function _z(e){return db(e)}function Ez(e){return db(e)}function Fz(e){return new kx(e)}function Az(e){return new Tx(e)}function l1(e){return new Ix(e)}function u1(e){return new Nx(e)}function c1(e){return new gx(e)}function p1(e){return new bx(e)}function $z(e){return new vx(e)}function Dz(e){return new Hb(e)}function Rz(e){return new rm(e)}function Mz(e){return new jb(e)}function Pz(e){return new Uc(e)}function Oz(e){return new Gb(e)}function Lz(e){return new am(e)}function zz(e){return new qb(e)}function Wz(e){return new sm(e)}function Bz(e){return new Za(e)}function Vz(e){return new nm(e)}function Uz(e){return new Cx(e)}function Gz(e){return new Sx(e)}var Hz=l1,jz=u1,qz=c1,Kz=p1;function Xz(e){return new cx(e)}function Yz(e){return new px(e)}function Jz(e){return new dx(e)}function Qz(e){return new tx(e)}var bI={};Le(bI,{MAPE:()=>_B,MSE:()=>AB,binaryAccuracy:()=>bB,binaryCrossentropy:()=>xB,categoricalAccuracy:()=>wB,categoricalCrossentropy:()=>kB,cosineProximity:()=>NB,mape:()=>EB,meanAbsoluteError:()=>SB,meanAbsolutePercentageError:()=>CB,meanSquaredError:()=>FB,mse:()=>$B,precision:()=>IB,recall:()=>TB,sparseCategoricalAccuracy:()=>vB});function bB(e,t){return bb(e,t)}function xB(e,t){return S1(e,t)}function vB(e,t){return C1(e,t)}function wB(e,t){return xb(e,t)}function kB(e,t){return vb(e,t)}function IB(e,t){return N1(e,t)}function TB(e,t){return yW(e,t)}function NB(e,t){return gb(e,t)}function SB(e,t){return Hh(e,t)}function CB(e,t){return Bl(e,t)}function _B(e,t){return Bl(e,t)}function EB(e,t){return Bl(e,t)}function FB(e,t){return Di(e,t)}function AB(e,t){return Di(e,t)}function $B(e,t){return Di(e,t)}var xI={};Le(xI,{modelFromJSON:()=>JW});var vI={};Le(vI,{l1:()=>RB,l1l2:()=>DB,l2:()=>MB});function DB(e){return new Wc(e)}function RB(e){return sB(e)}function MB(e){return iB(e)}var wI=class extends Wl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof xr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function lm(e,t){return e<t}function kI(e,t){return e>t}var II=class extends wI{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new $e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=lm:this.mode==="max"?this.monitorFunc=kI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=kI:this.monitorFunc=lm,this.monitorFunc===lm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===lm?Infinity:-Infinity}async onEpochEnd(e,t){await as(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function PB(e){return new II(e)}var OB={earlyStopping:PB},$a;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})($a||($a={}));var TI;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(TI||(TI={}));var _x={};function LB(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};_x[e]=n}function NI(e){return _x[e]}function zB(e){delete _x[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return En(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>En(p,n,a,r));let c=En(t.inputNames.slice(o)[0],n,a,r),u=c.dataSync();return s.type==="number"?u[0]:w.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function En(e,t,n,a){let[r,s]=Wn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[um(r,o)]);return i!==void 0?t[um(r,i)][s]:void 0}function WB(e,t,n){return t[um(e,n.currentContextId)]}function vr(e,t){let[n,a]=Wn(e);return[um(n,t&&t.currentContextId),a]}function um(e,t){return t?`${e}-${t}`:e}function Wn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function cm(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function wr(e){return e.kept?e:jr(e)}var SI={};Le(SI,{json:()=>BB});var BB=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],CI={};Le(CI,{json:()=>VB});var VB=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],_I={};Le(_I,{json:()=>UB});var UB=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],EI={};Le(EI,{json:()=>GB});var GB=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],FI={};Le(FI,{json:()=>HB});var HB=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],AI={};Le(AI,{json:()=>jB});var jB=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],$I={};Le($I,{json:()=>qB});var qB=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],DI={};Le(DI,{json:()=>KB});var KB=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],RI={};Le(RI,{json:()=>XB});var XB=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],MI={};Le(MI,{json:()=>YB});var YB=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],PI={};Le(PI,{json:()=>JB});var JB=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],OI={};Le(OI,{json:()=>QB});var QB=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],LI={};Le(LI,{json:()=>ZB});var ZB=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],zI={};Le(zI,{json:()=>e4});var e4=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],WI={};Le(WI,{json:()=>t4});var t4=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],BI={};Le(BI,{json:()=>n4});var n4=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],VI={};Le(VI,{json:()=>a4});var a4=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],GI=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[SI,CI,_I,EI,FI,AI,$I,PI,MI,DI,OI,LI,zI,WI,BI,VI,RI],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(g=>{let[y]=vr(g);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=vr(m),g=i[f];g!=null&&(g.signatureKey=u[m],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=vr(m),g=i[f];g&&(g.signatureKey=c[m],o.push(g))}):o=a;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:d};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=NI(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Ex(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Ex(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Ox(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Ox(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Ax(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=Ax(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=Px(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Px(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Fx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Fx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=zx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=zx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=Mx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Mx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=Lx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Lx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Dx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Dx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=Rx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Rx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=UI(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=UI(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&a.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=vr(c.name),p={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:$x(c.type),type:"dtype"}},children:[]};p.signatureKey=c.name,s.push(p),r[u]=p}),Object.keys(r).forEach(c=>{let u=r[c];u.inputNames.forEach(p=>{let[d]=vr(p);u.inputs.push(r[d]),r[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,p]=vr(o[c.name]),d=r[u];d!=null&&(d.defaultOutput=p,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function r4(e){let t=Z().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function HI(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):r4(e);return t?n:n.toLowerCase()}function Ex(e,t,n,a=!1){let r=e[t];return r!=null?HI(r.s,a):n}function Fx(e,t,n){let a=e[t];return a?a.b:n}function Ax(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function $x(e){switch(typeof e=="string"&&(e=$a[e]),e){case $a.DT_FLOAT:return"float32";case $a.DT_INT32:case $a.DT_INT64:case $a.DT_INT8:case $a.DT_UINT8:return"int32";case $a.DT_BOOL:return"bool";case $a.DT_DOUBLE:return"float32";case $a.DT_STRING:return"string";default:return null}}function UI(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function Dx(e,t,n){let a=e[t];return a&&a.type?$x(a.type):n}function Rx(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>$x(r)):n}function jI(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Mx(e,t,n){let a=e[t];return a&&a.shape?jI(a.shape):n}function Px(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Ox(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>HI(s,a)):n}function Lx(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>jI(r)):n}function zx(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var s4=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return En(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return En(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Ax(this.node.rawAttrs,e,t);if(n.s!=null)return Ex(this.node.rawAttrs,e,t);if(n.b!=null)return Fx(this.node.rawAttrs,e,t);if(n.shape!=null)return Mx(this.node.rawAttrs,e,t);if(n.type!=null)return Dx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Px(this.node.rawAttrs,e,t);if(n.list.s!=null)return Ox(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Lx(this.node.rawAttrs,e,t);if(n.list.b!=null)return zx(this.node.rawAttrs,e,t);if(n.list.type!=null)return Rx(this.node.rawAttrs,e,t)}return t}},i4=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[J(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[M0(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Cy(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[W(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[ye(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[yy(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Hd(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[he(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Al(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[ja(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[mr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[mh(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},o4=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[ty(I("x",e,t,n))];case"Acosh":return[ny(I("x",e,t,n))];case"Asin":return[ry(I("x",e,t,n))];case"Asinh":return[sy(I("x",e,t,n))];case"Atan":return[iy(I("x",e,t,n))];case"Atan2":return[oy(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[ly(I("x",e,t,n))];case"Ceil":return[dy(I("x",e,t,n))];case"Complex":return[Ur(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[bc(I("x",e,t,n))];case"Cosh":return[Yd(I("x",e,t,n))];case"Elu":return[Cl(I("x",e,t,n))];case"Erf":return[by(I("x",e,t,n))];case"Exp":return[dn(I("x",e,t,n))];case"Expm1":return[xy(I("x",e,t,n))];case"Floor":return[_l(I("x",e,t,n))];case"Log":return[Mn(I("x",e,t,n))];case"Log1p":return[eh(I("x",e,t,n))];case"Imag":return[Qd(I("x",e,t,n))];case"Neg":return[St(I("x",e,t,n))];case"Reciprocal":return[Fy(I("x",e,t,n))];case"Real":return[Ic(I("x",e,t,n))];case"Relu":return[qe(I("x",e,t,n))];case"Round":return[Ay(I("x",e,t,n))];case"Selu":return[uh(I("x",e,t,n))];case"Sigmoid":return[ua(I("x",e,t,n))];case"Sin":return[ch(I("x",e,t,n))];case"Sign":return[$y(I("x",e,t,n))];case"Sinh":return[ph(I("x",e,t,n))];case"Softplus":return[El(I("x",e,t,n))];case"Sqrt":return[rn(I("x",e,t,n))];case"Square":return[ot(I("x",e,t,n))];case"Tanh":return[Sl(I("x",e,t,n))];case"Tan":return[My(I("x",e,t,n))];case"ClipByValue":return[Kt(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[oh(I("x",e,t,n))];case"Rsqrt":return[lh(En(e.inputNames[0],t,n))];case"Prod":return[sh(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[xc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[kc(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function fa(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];w.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function qI(e){return!(typeof e=="number"||e.some(t=>t<0))}function jc(e,t,n){let a=Wx(e,n),r=!qI(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=Wx(s.shape,a)}),!qI(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function Wx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var l4=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ve(0),qt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),fa(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,qt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Yn([],[0].concat(this.elementShape));let n=this.readMany(e);return fa(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Dt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Yn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return fa(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Je(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,lt(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];D(()=>{t=U(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],c=[0,l,0],u=[1,e[o],r];s[o]=U(Be(t,c,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},qc=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);fa(t,r.shape,"TensorList shape mismatch: "),qt(r)}),this.idTensor=ve(0),this.maxNumElements=a,qt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new qc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);fa(e,this.elementShape,"TensorList shape mismatch: ");let a=jc(this.elementShape,this.tensors,e);return D(()=>{let r=this.tensors.map(s=>U(s,a));return Dt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=jc(this.elementShape,this.tensors,e),a=this.tensors.pop();return fa(a.shape,e,"TensorList shape mismatch: "),U(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(fa(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");qt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);fa(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=jc(this.elementShape,this.tensors,t);return U(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);fa(this.elementShape,t.shape,"TensorList shape mismatch: "),qt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);fa(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=jc(this.elementShape,this.tensors,n);return e.length===0?Yn([],[0].concat(a)):D(()=>{let r=e.map(s=>U(this.tensors[s],a));return Dt(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);fa(this.elementShape,t,"TensorList shape mismatch: ");let n=jc(this.elementShape,this.tensors,t);return this.size()===0?Yn([],[0].concat(n)):D(()=>{let a=this.tensors.map(r=>U(r,n));return Je(a,0)})}};function u4(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);fa(r,t,"TensorList shape mismatch: ");let s=lt(e);return new qc(s,t,a)}function c4(e,t,n){return new qc([],e,t,n)}function p4(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new qc([],n,e.dtype,a),i=lt(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function d4(e,t,n){let a=0,r=t.map(u=>(a+=u,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Wx(s,n),o=a===0?0:e.size/a,l=D(()=>{let u=[];e=U(e,[1,a,o]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],m=[1,t[p],o];u[p]=U(Be(e,h,m),i)}return e.dispose(),u}),c=new qc([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var h4=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let p=c.map(h=>h.id);u.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let a=I("pred",e,t,n);return[wr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=wr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>En(r,t,n)!==void 0);if(a){let r=En(a,t,n);return[wr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[wr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[wr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[wr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new l4(c,r,a,s,l,i,o);return n.addTensorArray(u),[u.idTensor,ve(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ve(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=p4(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=c4(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=u4(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=d4(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function KI(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=I("strides",e,t,n),u=cm(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[h,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:p,dilations:d,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var m4=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Kd(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=cm(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[At(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=KI(e,t,n);return[Zr.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=KI(e,t,n);return[Zr.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=cm(e,t,n);return[Xd(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=cm(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[Xr(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[my(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Qn(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[$t(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=ik(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[py(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Ny(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],c=s[2];return[gy(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},f4=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[Sn(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[Z0(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[ok(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Il(a,r,s,i)]}case"Ones":return[qa(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Pn(I("x",e,t,n))];case"RandomUniform":return[$l(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[ih(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[fh(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[bt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ge(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Bx(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var g4=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Bx(e,t,n),c=await Ka.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Bx(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Ka.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Bx(e,t,n);return[await Ka.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=ue(I("condition",e,t,n),"bool"),r=[await Ly(a)];return a.dispose(),r}case"ListDiff":return ck(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},y4=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=Py(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=gh(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=gh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},b4=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[En(e.name,t,n)||a];case"Placeholder":return[En(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[wr(c)]}case"IdentityN":return I("x",e,t,n).map(c=>wr(c));case"Snapshot":let r=I("x",e,t,n);return[wr(r)];case"Shape":return[Qe(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>Qe(c.shape));case"Size":return[ve(I("x",e,t,n).size,"int32")];case"Rank":return[ve(I("x",e,t,n).rank,"int32")];case"NoOp":return[ve(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},x4=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ve(0),this.tensorMap=new Map,qt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ve(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),D(()=>{let a=lt(t),r=n.length,s=a.length;w.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];qt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return D(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Dt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},v4=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new x4(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},w4=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ka.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ka.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ka.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},k4=(e,t,n)=>{switch(e.op){case"Equal":return[Yr(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Ti(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[ca(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Jr(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Zd(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[ki(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[pa(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[vc(I("a",e,t,n))];case"LogicalOr":return[ah(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Nn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},I4=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ze(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[Ve(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[Zr.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},T4=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[hr(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[hr(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[wy(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Ia(I("x",e,t,n))];case"LogSoftmax":return[nh(I("x",e,t,n))];case"SparseToDense":return[zy(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},N4=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Zn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ct(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Fl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Se(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[jd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[hc(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[mc(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[ay(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[sh(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Jd(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[V0(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[K0(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},S4=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[Je(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[wi(a,ue(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[wi(s,ue(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[On(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[On(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[Be(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[Ry(p,a,r,s,i,o,l,c,u)]}case"Pack":return D(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=Qr(r[0]).shape,o=r.map(l=>{let c=w.arraysEqual(l.shape,s);if(!c&&!w.arraysEqual(Qr(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:U(l,s)});return[Dt(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return lt(r,a)}case"Tile":{let a=I("reps",e,t,n);return[Ga(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Ln(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[mk(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[fk(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[zy(a,s,r,s.dtype===i.dtype?i:ue(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},C4=(e,t,n)=>{switch(e.op){case"FFT":return[Nc(I("x",e,t,n))];case"IFFT":return[Rl(I("x",e,t,n))];case"RFFT":return[Sc(I("x",e,t,n))];case"IRFFT":return[hh(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_4=(e,t,n)=>{switch(e.op){case"Cast":return[ue(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[hn(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[Qr(I("x",e,t,n),a)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Sy(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ea(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[wc(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[gc(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[fy(I("x",e,t,n),a,r)]}case"BroadcastTo":return[yc(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function XI(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return D(()=>i4(s,i,o));case"basic_math":return D(()=>o4(s,i,o));case"control":return h4(s,i,o);case"convolution":return D(()=>m4(s,i,o));case"creation":return D(()=>f4(s,i,o));case"dynamic":return g4(s,i,o);case"evaluation":return D(()=>y4(s,i,o));case"image":return D(()=>w4(s,i,o));case"graph":return D(()=>b4(s,i,o));case"logical":return D(()=>k4(s,i,o));case"matrices":return D(()=>I4(s,i,o));case"normalization":return D(()=>T4(s,i,o));case"reduction":return D(()=>N4(s,i,o));case"slice_join":return D(()=>S4(s,i,o));case"spectral":return D(()=>C4(s,i,o));case"transformation":return D(()=>_4(s,i,o));case"hash_table":return v4(s,i,o,a);case"custom":let l=NI(s.op);if(l&&l.customExecutor)return l.customExecutor(new s4(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var YI=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function QI(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Wn(d)[0]),u=[];a!=null&&(u=a.map(d=>Wn(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((JI(d)||E4(d)||F4(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function A4(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(u=>Wn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{a.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{a.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{a.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&s.push(p)})}return c}var $4=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],D4=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],R4=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function JI(e){return $4.indexOf(e.op)>=0}function E4(e){return D4.indexOf(e.op)>=0}function F4(e){return R4.indexOf(e.op)>=0}var Vx=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Vx(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=QI(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return A4(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(u=>this.graph.nodes[Wn(u)[0]]),r=t.map(u=>Wn(u)[0]),s=r.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return D(()=>{let u=new YI(this.weightMap,l,c,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Wn(m),y=[];y[g]=e[m],p[f]=y});let d=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let g=XI(f,p,u,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=g,this.checkTensorForDisposal(f.name,f,p,u,d,r,h)}}return this.parent==null&&u.dispose(d),t.map(m=>En(m,p,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=WB(o.name,n,a);l!=null&&l.forEach(c=>{if(c&&!r.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new YI(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>En(p,i,s)),l=o.map(p=>p.id),c=Object.keys(e).map(p=>e[p].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(d=>{d&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Wn(b)[0]]),i=n.map(b=>Wn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:p}=QI(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,v]=Wn(b),T=[];T[v]=e[b],h[x]=T});let m={},f=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let b=this.processStack(s,d,t,h,g,f,i,m,l);await Promise.all(b)}u==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!JI(b)&&!En(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw u!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let p="";if(u.node.op==="Enter"&&I("isConstant",u.node,a,n)&&([p]=vr(u.node.name,n)),a[u.node.name]==null){let d=XI(u.node,a,n,this._resourceManager);p||([p]=vr(u.node.name,n));let h=n.currentContext;w.isPromise(d)?c.push(d.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l),m))):(a[p]=d,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l))}else this.processChildNodes(u.node,t,n,a,r,l)}return c}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=vr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!En(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!En(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Wn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Wn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Wn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},M4=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},P4="?tfjs-format=file",O4="model.json",ZI=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new M4}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=jt.browserHTTPRequest(e,this.loadOptions);else{let t=jt.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(jt.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=jt.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Vx(GI.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=GI.Instance.transformGraph(e.modelInitializer);this.initializer=new Vx(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=jt.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ee)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function L4(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${O4}${P4}`);let n=new ZI(e,t);return await n.load(),n}var eT="3.3.0",tT={};Le(tT,{CSVDataset:()=>aT,Dataset:()=>Gl,FileDataSource:()=>rT,TextLineDataset:()=>nT,URLDataSource:()=>sT,array:()=>z4,csv:()=>B4,func:()=>V4,generator:()=>U4,microphone:()=>H4,version_data:()=>iT,webcam:()=>G4,zip:()=>W4});var j4=go(Sw()),q4=go(Sw());function K4(e,t){return pm(e,t)}function pm(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Hl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=pm(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function X4(e,t=lT){return oT(e,t)}function oT(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Hl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(c=>c[i]),l=oT(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function lT(e){return e===null?null:Hl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function uT(e,t){let n=new Map;pm(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(w.isPromise(r)){let s=await r;n.set(a,s)}}return pm(e,t,n)}function Hl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ee))}function J4(e){return e==null||Y4(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ee||w.isTypedArray(e)}function Y4(e){return e===null||typeof e!="object"&&typeof e!="function"}function Z4(e){return K4(e,Q4)}function Q4(e){return e instanceof Ee?{value:e.clone(),recurse:!1}:Hl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var cT=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Ux=class extends cT{constructor(){super(Ux.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Ux.INITIAL_CAPACITY=32;function pT(e){return new eV(e)}function Gx(e){return new tV(e)}function nV(e,t){return new dT(e,t)}function rV(e,t=os.FAIL){return new aV(e,t)}var Jt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new pV(this,e)}filter(e){return new uV(this,e)}map(e){return new cV(this,e)}mapAsync(e){return new hT(this,e)}serialMapAsync(e){return new hT(this,e).serial()}flatmap(e){return new dV(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new lV(this,e,t)}columnMajorBatch(e,t=!0,n=lT){return this.rowMajorBatch(e,t).map(a=>X4(a,n))}concatenate(e,t){return new dT(pT([this,e]),t)}take(e){return e<0||e==null?this:new oV(this,e)}skip(e){return e<0||e==null?this:new iV(this,e)}prefetch(e){return new mT(this,e)}shuffle(e,t){return new hV(this,e,t)}serial(){return new sV(this)}},eV=class extends Jt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Z4(e),done:!1}}},tV=class extends Jt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},sV=class extends Jt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},iV=class extends Jt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ae(e.value)}return this.upstream.next()}},oV=class extends Jt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},lV=class extends Jt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},uV=class extends Jt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ae(e.value)}}},cV=class extends Jt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=wa.getTensorsInContainer(e.value),n=this.transform(e.value),a=wa.getTensorsInContainer(n);for(let r of t)wa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},pV=class extends Jt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},hT=class extends Jt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=wa.getTensorsInContainer(e.value),n=await this.transform(e.value),a=wa.getTensorsInContainer(n);for(let r of t)wa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},Hx=class extends Jt{constructor(){super();this.outputQueue=new Ux,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},dV=class extends Hx{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=wa.getTensorsInContainer(e.value),n=this.transform(e.value),a=wa.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)wa.isTensorInList(r,a)||r.dispose();return!0}},dT=class extends Jt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},os;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(os||(os={}));var aV=class extends Jt{constructor(e,t=os.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Jt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await uT(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case os.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case os.SHORTEST:return{value:null,done:!0};case os.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},mT=class extends Jt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new cT(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},hV=class extends mT{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=q4.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Gl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Bn(async()=>(await n.iterator()).columnMajorBatch(e,t,mV),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Bn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Bn(async()=>(await t.iterator()).filter(a=>D(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Bn(async()=>(await t.iterator()).map(n=>D(()=>e(n))),this.size)}mapAsync(e){let t=this;return Bn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Bn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Bn(async()=>{let a=Gx(async()=>({value:await t.iterator(),done:!1}));return nV(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Bn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=j4.alea(t||w.now().toString());return Bn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Bn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Gl.MAX_BUFFER_SIZE=1e4;function Bn(e,t=null){return new class extends Gl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function z4(e){return Bn(async()=>pT(e),e.length)}function W4(e){if(!Hl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Bn(async()=>{let n=await uT(e,a=>{if(a instanceof Gl)return{value:a.iterator(),recurse:!1};if(Hl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return rV(n,os.SHORTEST)},t)}function mV(e){if(e===null)return null;let t=e[0];return J4(t)?{value:fV(e),recurse:!1}:{value:null,recurse:!0}}function fV(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ee?Dt(e):Yn(e)}var nT=class extends Gl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},dm='"',Kc=Symbol("out"),fT=Symbol("field"),hm=Symbol("quote"),jx=Symbol("quoteafterquote"),gT=Symbol("quoteinquote"),aT=class extends Gl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new nT(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let c=Number(o);if(isNaN(c))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=c;else switch(i.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(o);break;default:l=c}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Kc;for(let i=0;i<r;i++)switch(s){case Kc:switch(e.charAt(i)){case dm:a=i+1,s=hm;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Kc;break;default:s=fT,a=i;break}break;case fT:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Kc,a=i+1;break;default:}break;case hm:switch(e.charAt(i)){case dm:s=jx;break;default:}break;case jx:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Kc,a=i+1;break;case dm:s=hm;break;default:s=gT;break}break;case gT:switch(e.charAt(i)){case dm:s=hm;break;default:}break;default:}if(s===jx?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},yT=class extends Jt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Z().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new yT(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Yn(n,t)}},bT=class extends Jt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Qe([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ta([s,r,o,i],[1,4])}else this.cropBox=Ta([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Z().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new bT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=bi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return D(()=>{let t=hn(ue(e,"float32"),0),n;n=Ka.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return U(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},xT=class{},vT=class extends Jt{split(e){return new gV(this,e)}},gV=class extends vT{constructor(e,t){super();this.upstream=e,this.impl=new yV(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},yV=class extends Hx{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},xV=class extends Jt{decodeUTF8(){return new bV(this)}},bV=class extends vT{constructor(e){super();this.upstream=e,this.impl=new vV(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},vV=class extends Hx{constructor(e){super();if(this.upstream=e,Z().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=L_();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Z().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},wT=class extends xV{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(Z().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function kV(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=wV(e));let r=await w.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new wT(s,t)}else throw new Error(r.statusText)}var wV=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function kT(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var rT=class extends xT{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(kT(this.input)&&Z().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new wT(this.input,this.options)}},sT=class extends xT{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return kT(this.url)?new rT(this.url,this.fileOptions).iterator():kV(this.url,this.fileOptions)}};function B4(e,t={}){return new aT(new sT(e),t)}function V4(e){let t=Gx(e);return Bn(async()=>t)}function U4(e){return Bn(async()=>{let t=await e();return Gx(()=>t.next())})}async function G4(e,t){return bT.create(e,t)}async function H4(e){return yT.create(e)}var iT="3.3.0";function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var IV=Xa.whereImpl,qx=class extends Pu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Jp(this,Va())}nextDataId(){return qx.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Z().get("IS_NODE")&&_.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Me(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return Va().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return IV(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};qx.nextDataId=0;var IT={};Le(IT,{addImpl:()=>NT,bincountImpl:()=>Kx,bincountReduceImpl:()=>ST,ceilImpl:()=>CT,concatImpl:()=>_T,expImpl:()=>ET,expm1Impl:()=>FT,floorImpl:()=>AT,gatherV2Impl:()=>$T,greaterImpl:()=>DT,lessImpl:()=>RT,linSpaceImpl:()=>MT,logImpl:()=>PT,maxImpl:()=>OT,maximumImpl:()=>LT,minimumImpl:()=>zT,multiplyImpl:()=>Xx,negImpl:()=>WT,notEqualImpl:()=>BT,prodImpl:()=>VT,rangeImpl:()=>UT,rsqrtImpl:()=>GT,simpleAbsImpl:()=>TT,sliceImpl:()=>HT,squaredDifferenceImpl:()=>jT,stridedSliceImpl:()=>qT,subImpl:()=>KT,tileImpl:()=>XT,topKImpl:()=>YT,transposeImpl:()=>Yx,uniqueImpl:()=>JT});function TT(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var TV=e=>{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=TT(r),n.makeOutput(a,t.shape,"float32")},NV={kernelName:xo,backendName:"cpu",kernelFunc:TV};function Mt(e){return(t,n,a,r,s)=>{let i=_.assertAndGetBroadcastShape(t,n),o=i.length,l=w.computeStrides(i),c=w.sizeFromShape(i),u=w.getTypedArrayFromDType(s,c),p=t.length,d=n.length,h=w.computeStrides(t),m=w.computeStrides(n),f=_.getBroadcastDims(t,i),g=_.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<u.length;++y)u[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<u.length;++y){let b=w.indexToLoc(y,o,l),x=b.slice(-p);f.forEach(S=>x[S]=0);let v=w.locToIndex(x,p,h),T=b.slice(-d);g.forEach(S=>T[S]=0);let k=w.locToIndex(T,d,m);u[y]=e(a[v],r[k])}return[u,i]}}function Vn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var SV={kernelName:id,backendName:"cpu",kernelFunc:Vn};function mm(e,t,n="float32"){if(n==="complex64"){let r=mm(e,t,"float32"),s=mm(e,t,"float32");return Vn({inputs:{real:r,imag:s},backend:e})}let a=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function tr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var CV={kernelName:Os,backendName:"cpu",kernelFunc:tr};function Oi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var _V={kernelName:Sd,backendName:"cpu",kernelFunc:Oi};function ls(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return tr({inputs:{x:r},backend:n});let i=mm(n,r.shape,r.dtype),o=ls({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Vn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Oi({inputs:{input:r},backend:n}),o=ls({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=tr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[l,c]=Mt((u,p)=>u!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var EV={kernelName:Ts,backendName:"cpu",kernelFunc:ls};function Qt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;xe([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=ls({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(d.dataId).values,f=ls({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(b.dataId).values,[T,k,S]=n(i.shape,o.shape,h,m,x,v),F=l.makeTensorInfo(S,"float32",T),A=l.makeTensorInfo(S,"float32",k),R=Vn({inputs:{real:F,imag:A},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(F),l.disposeIntermediateTensorInfo(A),R}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}}}function Jx(e){return(t,n,a,r,s,i)=>{let o=_.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(o),c=o.length,u=w.computeStrides(o),p=w.getTypedArrayFromDType("float32",l),d=w.getTypedArrayFromDType("float32",l),h=_.getBroadcastDims(t,o),m=_.getBroadcastDims(n,o),f=_.mergeRealAndImagArrays(a,r),g=_.mergeRealAndImagArrays(s,i),y=t.length,b=w.computeStrides(t),x=n.length,v=w.computeStrides(n);if(h.length+m.length===0)for(let T=0;T<p.length;T++){let k=T%f.length,S=T%g.length,F=e(f[k*2],f[k*2+1],g[S*2],g[S*2+1]);p[T]=F.real,d[T]=F.imag}else for(let T=0;T<p.length;T++){let k=w.indexToLoc(T,c,u),S=k.slice(-y);h.forEach(z=>S[z]=0);let F=w.locToIndex(S,y,b),A=k.slice(-x);m.forEach(z=>A[z]=0);let R=w.locToIndex(A,x,v),P=e(f[F*2],f[F*2+1],g[R*2],g[R*2+1]);p[T]=P.real,d[T]=P.imag}return[p,d,o]}}var NT=Mt((e,t)=>e+t),FV=Jx((e,t,n,a)=>({real:e+n,imag:t+a})),Xc=Qt(Lr,NT,FV),AV={kernelName:Lr,backendName:"cpu",kernelFunc:Xc};function Kx(e,t,n,a,r){let s=w.sizeFromShape(a),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function ST(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Me([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let c=e.get(o,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(a?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function jl(e){return(t,n,a)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function rt(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=w.sizeFromShape(i.shape),u=n||i.dtype,p=w.getArrayFromDType(u,c);for(let d=0;d<c;++d)p[d]=t(l[d],r);return o.makeTensorInfo(i.shape,u,p)}}function ql(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,r);return o.makeTensorInfo(i.shape,c,u)}}var CT=jl(e=>Math.ceil(e)),$V=ql(Ns,CT),DV={kernelName:Ns,backendName:"cpu",kernelFunc:$V};function _T(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let p=0;p<i.shape[1];++p)r[u+p]=o[l++]}s+=i.shape[1]})}return r}var ET=jl(e=>Math.exp(e)),QT=ql($s,ET),RV={kernelName:$s,backendName:"cpu",kernelFunc:QT},FT=jl(e=>Math.expm1(e)),MV=ql(Mo,FT),PV={kernelName:Mo,backendName:"cpu",kernelFunc:MV},AT=jl(e=>Math.floor(e)),OV=ql(Ds,AT),LV={kernelName:Ds,backendName:"cpu",kernelFunc:OV};function $T(e,t,n){let a=Me(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let c=e.locToIndex(s);a.values[r]=e.values[c]}return a}var DT=Mt((e,t)=>e>t?1:0),zV=Qt(zo,DT,null,"bool"),WV={kernelName:zo,backendName:"cpu",kernelFunc:zV},RT=Mt((e,t)=>e<t?1:0),BV=Qt(Uo,RT,null,"bool"),VV={kernelName:Uo,backendName:"cpu",kernelFunc:BV};function MT(e,t,n){let a=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var PT=jl(e=>Math.log(e)),UV=ql(zs,PT),GV={kernelName:zs,backendName:"cpu",kernelFunc:UV};function OT(e,t,n,a){let r=w.getTypedArrayFromDType(a,w.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let c=e[i+l];c>o&&(o=c)}r[s]=o}return r}var LT=Mt((e,t)=>Math.max(e,t)),HV=Qt(Bs,LT),jV={kernelName:Bs,backendName:"cpu",kernelFunc:HV},zT=Mt((e,t)=>Math.min(e,t)),qV=Qt(Hs,zT),KV={kernelName:Hs,backendName:"cpu",kernelFunc:qV},Xx=Mt((e,t)=>e*t),XV=Jx((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Qx=Qt(js,Xx,XV),YV={kernelName:js,backendName:"cpu",kernelFunc:Qx};function WT(e,t,n){let a=w.createScalarValue(-1,n);return Xx([],t,a,e,n)}function JV(e){let{inputs:t,backend:n}=e,{x:a}=t;xe(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=WT(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var QV={kernelName:Ko,backendName:"cpu",kernelFunc:JV},BT=Mt((e,t)=>e!==t?1:0),ZV=Qt(Xo,BT,null,"bool"),eU={kernelName:Xo,backendName:"cpu",kernelFunc:ZV};function Yx(e,t,n,a,r){let s=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),l=w.computeStrides(r),c=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let u=0;u<i;++u){let p=w.indexToLoc(u,s,o),d=new Array(p.length);for(let m=0;m<d.length;m++)d[m]=p[a[m]];let h=w.locToIndex(d,s,l);c[h]=e[u]}return c}function ga(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;xe(r,"transpose");let i=r.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=r.shape[s[u]];let l=a.data.get(r.dataId).values,c=Yx(l,r.shape,r.dtype,s,o);return{dataId:a.write(c,o,r.dtype),shape:o,dtype:r.dtype}}var tU={kernelName:pi,backendName:"cpu",kernelFunc:ga};function VT(e,t,n,a){let[r,s]=_.computeOutAndReduceShapes(e,a),i=la(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),l=w.sizeFromShape(s);for(let c=0;c<o.length;++c){let u=c*l,p=1;for(let d=0;d<l;++d)p*=n[u+d];o[c]=p}return{outVals:o,outShape:r,outDtype:i}}function nU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"prod");let o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=_.getAxesPermutation(l,o),u=l,p=r,d=[];c!=null&&(p=ga({inputs:{x:r},backend:n,attrs:{perm:c}}),d.push(p),u=_.getInnerMostAxes(u.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:g}=VT(p.shape,p.dtype,h,u),y=f;return i&&(y=_.expandShapeToKeepDim(f,l)),d.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var aU={kernelName:tl,backendName:"cpu",kernelFunc:nU};function UT(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var GT=jl(e=>1/Math.sqrt(e)),rU=ql(ni,GT),sU={kernelName:ni,backendName:"cpu",kernelFunc:rU};function HT(e,t,n,a,r){let s=an.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let p=an.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,c=Me(a,r,l),u=Me(n,r);for(let p=0;p<u.size;++p){let d=u.indexToLoc(p),h=d.map((m,f)=>m+t[f]);u.set(c.get(...h),...d)}return r==="string"?_.fromStringArrayToUint8(u.values):u.values}function Li(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;xe(r,"slice");let[o,l]=an.parseSliceParams(r,s,i);an.assertParamsValid(r,o,l);let c=n.data.get(r.dataId).values,u=HT(c,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var iU={kernelName:ol,backendName:"cpu",kernelFunc:Li},jT=Mt((e,t)=>{let n=e-t;return n*n}),oU=Qt(li,jT),lU={kernelName:li,backendName:"cpu",kernelFunc:oU};function qT(e,t,n,a){let r=Me(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var KT=Mt((e,t)=>e-t),uU=Jx((e,t,n,a)=>({real:e-n,imag:t-a})),Zx=Qt(ui,KT,uU),cU={kernelName:ui,backendName:"cpu",kernelFunc:Zx};function XT(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Me(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function YT(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=w.getTypedArrayFromDType(n,i*a),c=w.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let d=p*o,h=e.subarray(d,d+o),m=[];for(let b=0;b<h.length;b++)m.push({value:h[b],index:b});m.sort((b,x)=>x.value-b.value);let f=p*a,g=l.subarray(f,f+a),y=c.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let u=t.slice();return u[u.length-1]=a,[Me(u,n,l),Me(u,"int32",c)]}function JT(e,t,n,a){let r=w.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Lt(s,a,e),c=[],u=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(u)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,c.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let d=new Lt(p,a);c.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)d.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:o}}var pU="3.3.0";Gd("cpu",()=>new qx,1);var ZT=rt(Ao,e=>e>=0?e:Math.exp(e)-1),dU={kernelName:Ao,backendName:"cpu",kernelFunc:ZT};function e2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;xe([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",i);for(let c=0;c<o.length;c++)l[c]=o[c]<0?s*o[c]:o[c];return n.makeTensorInfo(r.shape,"float32",l)}var hU={kernelName:Ls,backendName:"cpu",kernelFunc:e2},mU=Mt((e,t)=>e<0?t*e:e);function t2(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;xe([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=mU(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var fU={kernelName:Ys,backendName:"cpu",kernelFunc:t2},n2=rt(Js,e=>Math.max(0,e)),gU={kernelName:Js,backendName:"cpu",kernelFunc:n2},a2=rt(Zs,e=>Math.min(Math.max(0,e),6)),yU={kernelName:Zs,backendName:"cpu",kernelFunc:a2};function ev(e,t,n,a,r){if(n==="linear")return tr({inputs:{x:t},backend:e});if(n==="relu")return n2({inputs:{x:t},backend:e});if(n==="elu")return ZT({inputs:{x:t},backend:e});if(n==="relu6")return a2({inputs:{x:t},backend:e});if(n==="prelu")return t2({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return e2({inputs:{x:t},backend:e,attrs:{alpha:r}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function wt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,i),l=w.sizeFromShape(o);w.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,p=c.complexTensorInfos.imag;u.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var bU={kernelName:al,backendName:"cpu",kernelFunc:wt};function r2(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;xe([r,s],"matMul");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=g===y||g===1||y===1;w.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);w.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,u,d]:[g,d,u],T=o?[y,h,p]:[y,p,h],k=wt({inputs:{x:r},backend:n,attrs:{shape:v}}),S=wt({inputs:{x:s},backend:n,attrs:{shape:T}}),F=i?k.shape[1]:k.shape[2],A=i?k.shape[2]:k.shape[1],R=o?S.shape[1]:S.shape[2],P=Math.max(g,y),z=n.data.get(k.dataId).values,V=n.data.get(S.dataId).values,G=w.computeStrides(k.shape),H=w.computeStrides(S.shape),[K,j,te]=i?[G[0],1,G[1]]:[G[0],G[1],1],[Q,se,ne]=o?[1,H[1],H[0]]:[H[1],1,H[0]],ie=A*R,ee=Me([P,A,R],k.dtype),pe=ee.values,oe=n.blockSize;for(let fe=0;fe<P;fe++)for(let me=0;me<A;me+=oe)for(let we=0;we<R;we+=oe)for(let Te=0;Te<F;Te+=oe){let _e=Math.min(me+oe,A),De=Math.min(we+oe,R),Fe=Math.min(Te+oe,F);for(let tt=me;tt<_e;tt++)for(let nt=we;nt<De;nt++){let it=0;for(let Xe=Te;Xe<Fe;Xe++){let ht=Math.min(fe,g-1)*K,We=Math.min(fe,y-1)*ne,vn=z[ht+tt*j+Xe*te],It=V[Xe*Q+nt*se+We];it+=vn*It}pe[fe*ie+(tt*R+nt)]+=it}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(S),n.makeTensorInfo(x,ee.dtype,ee.values)}var xU={kernelName:Is,backendName:"cpu",kernelFunc:r2};function vU(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d,h,m,f=[];d=r2({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:c},backend:n}),i&&(h=Xc({inputs:{a:d,b:i},backend:n}),f.push(d),d=h),u&&(m=ev(n,d,u,o,p),f.push(d),d=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return d}var wU={kernelName:di,backendName:"cpu",kernelFunc:vU},kU=rt(vo,e=>Math.acos(e)),IU={kernelName:vo,backendName:"cpu",kernelFunc:kU},TU=rt(wo,e=>Math.acosh(e)),NU={kernelName:wo,backendName:"cpu",kernelFunc:TU};function SU(e){let{inputs:t,backend:n}=e,a=t;xe(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Me(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let c=0;c<i.length;c++)i[c]+=l[c]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var CU={kernelName:vs,backendName:"cpu",kernelFunc:SU};function _U(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"all");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ga({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("all",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let T=f[b+v];x=x&&T}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=wt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var EU={kernelName:td,backendName:"cpu",kernelFunc:_U};function FU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"any");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ga({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("any",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let T=f[b+v];x=x||T}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=wt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var AU={kernelName:nd,backendName:"cpu",kernelFunc:FU};function $U(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMax");let i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=ga({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=w.sizeFromShape(u),h=w.makeZerosTypedArray(d,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let T=f[y+v];T>b&&(b=T,x=v)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var DU={kernelName:ws,backendName:"cpu",kernelFunc:$U};function RU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMin");let i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=ga({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=w.sizeFromShape(u),h=w.makeZerosTypedArray(d,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let T=f[y+v];T<b&&(b=T,x=v)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var MU={kernelName:zu,backendName:"cpu",kernelFunc:RU},PU=rt(ko,e=>Math.asin(e)),OU={kernelName:ko,backendName:"cpu",kernelFunc:PU},LU=rt(Io,e=>Math.asinh(e)),zU={kernelName:Io,backendName:"cpu",kernelFunc:LU},WU=rt(To,e=>Math.atan(e)),BU={kernelName:To,backendName:"cpu",kernelFunc:WU},VU=Mt((e,t)=>Math.atan2(e,t)),UU=Qt(So,VU),GU={kernelName:So,backendName:"cpu",kernelFunc:UU},HU=rt(No,e=>Math.atanh(e)),jU={kernelName:No,backendName:"cpu",kernelFunc:HU};function tv(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Me(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let T=v*y,k=v*a[0];for(let S=0;S<r.inChannels;++S)for(let F=0;F<r.outHeight;++F){let A=F*i-d,R=Math.max(0,A),P=Math.min(r.inHeight,u+A),z=T+F*b;for(let V=0;V<r.outWidth;++V){let G=V*o-h,H=Math.max(0,G),K=Math.min(r.inWidth,p+G),j=m,te=0,Q=0;for(let ne=R;ne<P;ne+=l){let ie=k+ne*a[1];for(let ee=H;ee<K;ee+=c){let pe=ie+ee*a[2],oe=e[pe+S];s==="max"&&oe>j?j=oe:s==="avg"&&(te+=oe,Q++)}if(isNaN(j))break}let se=z+V*x+S;g[se]=s==="avg"?te/Q:j}}}return f}function s2(e,t,n,a,r=!1,s=!1){let i=Me(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,c=a.dilationHeight,u=a.dilationWidth,p=a.effectiveFilterHeight,d=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Me(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,v=x;for(;v<0;)v+=c;let T=Math.min(a.inHeight,p+x);for(let k=0;k<a.outWidth;++k){let S=k*l-m,F=S;for(;F<0;)F+=u;let A=Math.min(a.inWidth,d+S),R=Number.NEGATIVE_INFINITY,P=-1;for(let z=v;z<T;z+=c){let V=z-x;for(let G=F;G<A;G+=u){let H=G-S,K=f.get(g,z,G,y);K>R&&(R=K,r?P=s?((g*a.inHeight+z)*a.inWidth+G)*a.inChannels+y:(z*a.inWidth+G)*a.inChannels+y:P=V*d+H)}}i.set(P,g,b,k,y)}}return i}function i2(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Me(r.outShape,n),v=x.values,T=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],F=r.outShape[4];for(let A=0;A<r.batchSize;++A){let R=A*T,P=A*a[0];for(let z=0;z<r.inChannels;++z)for(let V=0;V<r.outDepth;++V){let G=V*i-f,H=G;for(;H<0;)H+=c;let K=Math.min(r.inDepth,d+G),j=R+V*k;for(let te=0;te<r.outHeight;++te){let Q=te*o-g,se=Q;for(;se<0;)se+=u;let ne=Math.min(r.inHeight,h+Q),ie=j+te*S;for(let ee=0;ee<r.outWidth;++ee){let pe=ee*l-y,oe=pe;for(;oe<0;)oe+=p;let fe=Math.min(r.inWidth,m+pe),me=ie+ee*F,we=b,Te=0,_e=0;for(let Fe=H;Fe<K;Fe+=c){let tt=P+Fe*a[1];for(let nt=se;nt<ne;nt+=u){let it=tt+nt*a[2];for(let Xe=oe;Xe<fe;Xe+=p){let ht=it+Xe*a[3],We=e[ht+z];if(s==="max"&&We>we?we=We:s==="avg"&&(Te+=We,_e++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let De=me+z;v[De]=s==="avg"?Te/_e:we}}}}return x}function qU(e,t){let n=Me(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-d,x=b;for(;x<0;)x+=i;let v=Math.min(t.inDepth,c+b);for(let T=0;T<t.outHeight;++T){let k=T*r-h,S=k;for(;S<0;)S+=o;let F=Math.min(t.inHeight,u+k);for(let A=0;A<t.outWidth;++A){let R=A*s-m,P=R;for(;P<0;)P+=l;let z=Math.min(t.inWidth,p+R),V=Number.NEGATIVE_INFINITY,G=-1;for(let H=x;H<v;H+=i){let K=H-b;for(let j=S;j<F;j+=o){let te=j-k;for(let Q=P;Q<z;Q+=l){let se=Q-R,ne=e.get(f,H,j,Q,g);ne>=V&&(V=ne,G=K*u*p+te*u+se)}}}n.set(G,f,y,T,A,g)}}}return n}function KU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))p=tr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=tv(d,r.shape,r.dtype,h,u,"avg");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var XU={kernelName:ks,backendName:"cpu",kernelFunc:KU};function YU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;xe(r,"avgPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=i2(p,r.shape,r.dtype,w.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var JU={kernelName:Wu,backendName:"cpu",kernelFunc:YU};function QU(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;xe([r,s],"avgPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=u.strideDepth,d=u.strideHeight,h=u.strideWidth,m=u.filterDepth,f=u.filterHeight,g=u.filterWidth,y=u.dilationDepth,b=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,T=u.effectiveFilterHeight,k=u.effectiveFilterWidth,S=v-1-u.padInfo.front,F=k-1-u.padInfo.left,A=T-1-u.padInfo.top,R=Me(s.shape,"float32"),P=1/(m*f*g),z=n.bufferSync(r);for(let V=0;V<u.batchSize;++V)for(let G=0;G<u.inChannels;++G)for(let H=0;H<u.inDepth;++H)for(let K=0;K<u.inHeight;++K)for(let j=0;j<u.inWidth;++j){let te=H-S,Q=K-A,se=j-F,ne=0;for(let ie=0;ie<v;ie+=y){let ee=(te+ie)/p;if(!(ee<0||ee>=u.outDepth||Math.floor(ee)!==ee))for(let pe=0;pe<T;pe+=b){let oe=(Q+pe)/d;if(!(oe<0||oe>=u.outHeight||Math.floor(oe)!==oe))for(let fe=0;fe<k;fe+=x){let me=(se+fe)/h;me<0||me>=u.outWidth||Math.floor(me)!==me||(ne+=z.get(V,ee,oe,me,G))}}}R.set(ne*P,V,H,K,j,G)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var ZU={kernelName:rd,backendName:"cpu",kernelFunc:QU};function eG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;xe([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=u.strideHeight,d=u.strideWidth,h=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,g=u.dilationWidth,y=u.effectiveFilterHeight,b=u.effectiveFilterWidth,x=b-1-u.padInfo.left,v=y-1-u.padInfo.top,T=Me(i.shape,"float32"),k=1/(h*m),S=n.data.get(r.dataId).values,F=Me(r.shape,"float32",S);for(let A=0;A<u.batchSize;++A)for(let R=0;R<u.inChannels;++R)for(let P=0;P<u.inHeight;++P)for(let z=0;z<u.inWidth;++z){let V=P-v,G=z-x,H=0;for(let K=0;K<y;K+=f){let j=(V+K)/p;if(!(j<0||j>=u.outHeight||Math.floor(j)!==j))for(let te=0;te<b;te+=g){let Q=(G+te)/d;Q<0||Q>=u.outWidth||Math.floor(Q)!==Q||(H+=F.get(A,j,Q,R))}}T.set(H*k,A,P,z,R)}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var tG={kernelName:ad,backendName:"cpu",kernelFunc:eG};function nG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;w.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([r,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=a;c==null&&(c=.001);let u=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),g=m.length,y=h.length,b=d.length,x=p.length,v=0,T=0,k=0,S=0;for(let F=0;F<u.length;++F)f[F]=m[v++]+(u[F]-p[T++])*h[k++]/Math.sqrt(d[S++]+c),v>=g&&(v=0),T>=x&&(T=0),k>=y&&(k=0),S>=b&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var aG={kernelName:Ms,backendName:"cpu",kernelFunc:nG};function rG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;xe([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=wt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ga({inputs:{x:h},backend:n,attrs:{perm:c}}),f=wt({inputs:{x:m},backend:n,attrs:{shape:u}}),g=Li({inputs:{x:f},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var sG={kernelName:Bu,backendName:"cpu",kernelFunc:rG};function iG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,c=Kx(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var oG={kernelName:sd,backendName:"cpu",kernelFunc:iG},lG=rt(zr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),uG={kernelName:zr,backendName:"cpu",kernelFunc:lG},cG=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;c<o.length;c++){let u=o[c],p=l[c];a[c]=Math.hypot(u,p)}return n.makeOutput(a,t.shape,"float32")},pG={kernelName:Vu,backendName:"cpu",kernelFunc:cG};function Kl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var dG={kernelName:xd,backendName:"cpu",kernelFunc:Kl};function Xl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(f=>f.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>w.sizeFromShape(f.shape)>0);if(o.length===1)return tr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(_.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>Oi({inputs:{input:v},backend:n})),g=o.map(v=>Kl({inputs:{input:v},backend:n})),y=Xl({inputs:f,backend:n,attrs:{axis:s}}),b=Xl({inputs:g,backend:n,attrs:{axis:s}}),x=Vn({inputs:{real:y,imag:b},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let c=o.map(f=>{let g=w.sizeFromShape(f.shape.slice(s));return wt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=_.computeOutShape(c.map(f=>f.shape),1);let p=c[0].shape[0]===1,d=_T(u,i,t[0].dtype,p),h=_.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var hG={kernelName:Co,backendName:"cpu",kernelFunc:Xl};function o2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a;xe([r,s],"conv2d");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,b=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Lt(d.outShape,r.dtype),T=w.computeStrides(r.shape),k=w.computeStrides(s.shape),S=T[0],F=x?T[1]:T[2],A=x?T[2]:1,R=x?1:T[1],P=v.strides[0],z=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,G=x?1:v.strides[1],H=n.data.get(r.dataId).values,K=n.data.get(s.dataId).values,j=v.values;for(let te=0;te<d.batchSize;++te){let Q=te*S,se=te*P;for(let ne=0;ne<d.outHeight;++ne){let ie=se+ne*z,ee=ne*d.strideHeight-b;for(let pe=0;pe<h;++pe){let oe=ee+pe*f;if(oe<0||oe>=d.inHeight)continue;let fe=pe*k[0],me=Q+oe*F;for(let we=0;we<d.outWidth;++we){let Te=ie+we*V,_e=we*d.strideWidth-y;for(let De=0;De<m;++De){let Fe=_e+De*g;if(Fe<0||Fe>=d.inWidth)continue;let tt=fe+De*k[1],nt=me+Fe*A,it=tt;for(let Xe=0;Xe<d.inChannels;++Xe){let ht=H[nt+Xe*R];for(let We=0;We<d.outChannels;++We)j[Te+We*G]+=ht*K[it+We];it+=d.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,j)}var mG={kernelName:Ss,backendName:"cpu",kernelFunc:o2};function fG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a;xe([r,s],"conv2dBackpropFilter");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=d,y=d.dataFormat==="channelsLast",b=new Lt(d.filterShape,"float32"),x=d.padInfo.left,v=d.padInfo.top,T=n.data.get(r.dataId).values,k=n.data.get(s.dataId).values,S=new Lt(r.shape,r.dtype,T),F=new Lt(s.shape,s.dtype,k);for(let A=0;A<f;++A){let R=Math.max(0,Math.ceil((v-A)/h)),P=Math.min(d.outHeight,(d.inHeight+v-A)/h);for(let z=0;z<g;++z){let V=Math.max(0,Math.ceil((x-z)/m)),G=Math.min(d.outWidth,(d.inWidth+x-z)/m);for(let H=0;H<d.inChannels;++H)for(let K=0;K<d.outChannels;++K){let j=0;for(let te=0;te<d.batchSize;++te)for(let Q=R;Q<P;++Q){let se=A+Q*h-v;for(let ne=V;ne<G;++ne){let ie=z+ne*m-x;y?j+=S.get(te,se,ie,H)*F.get(te,Q,ne,K):j+=S.get(te,H,se,ie)*F.get(te,K,Q,ne)}}b.set(j,A,z,H,K)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var gG={kernelName:od,backendName:"cpu",kernelFunc:fG};function yG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a;xe([r,s],"conv2dBackpropInput");let p=w.computeStrides(s.shape),d=w.computeStrides(r.shape),h=_.convertConv2DDataFormat(c),m=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),f=new Lt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,v,T]=p,{batchSize:k,filterHeight:S,filterWidth:F,inChannels:A,inHeight:R,inWidth:P,outChannels:z,outHeight:V,outWidth:G,strideHeight:H,strideWidth:K}=m;h=m.dataFormat;let j=S-1-m.padInfo.top,te=F-1-m.padInfo.left,Q=h==="channelsLast",se=f.strides[0],ne=Q?f.strides[1]:f.strides[2],ie=Q?f.strides[2]:1,ee=Q?1:f.strides[1],pe=d[0],oe=Q?d[1]:d[2],fe=Q?d[2]:1,me=Q?1:d[1];for(let we=0;we<k;++we)for(let Te=0;Te<A;++Te)for(let _e=0;_e<R;++_e){let De=_e-j,Fe=Math.max(0,Math.ceil(De/H)),tt=Math.min(V,(S+De)/H);for(let nt=0;nt<P;++nt){let it=nt-te,Xe=Math.max(0,Math.ceil(it/K)),ht=Math.min(G,(F+it)/K),We=0;for(let It=Fe;It<tt;++It){let qn=It*H-De;for(let en=Xe;en<ht;++en){let wn=en*K-it,Kn=pe*we+oe*It+fe*en,Rn=x*(S-1-qn)+v*(F-1-wn)+T*Te;for(let pn=0;pn<z;++pn){let tn=y[Kn+me*pn],za=b[Rn+pn];We+=tn*za}}}let vn=se*we+ne*_e+ie*nt+ee*Te;g[vn]=We}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var bG={kernelName:Cs,backendName:"cpu",kernelFunc:yG};function xG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;xe([r,s],"conv3d");let c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=c,y=g.front,b=g.left,x=g.top,v=new Lt(c.outShape,r.dtype),T=n.data.get(r.dataId).values,k=n.data.get(s.dataId).values,S=v.values,F=w.computeStrides(r.shape),A=w.computeStrides(s.shape);for(let R=0;R<c.batchSize;++R){let P=R*F[0],z=R*v.strides[0];for(let V=0;V<c.outDepth;++V){let G=z+V*v.strides[1],H=V*c.strideDepth-y;for(let K=0;K<u;++K){let j=H+K*h;if(j<0||j>=c.inDepth)continue;let te=K*A[0],Q=P+j*F[1];for(let se=0;se<c.outHeight;++se){let ne=G+se*v.strides[2],ie=se*c.strideHeight-x;for(let ee=0;ee<p;++ee){let pe=ie+ee*m;if(pe<0||pe>=c.inHeight)continue;let oe=te+ee*A[1],fe=Q+pe*F[2];for(let me=0;me<c.outWidth;++me){let we=ne+me*c.outChannels,Te=me*c.strideWidth-b;for(let _e=0;_e<d;++_e){let De=Te+_e*f;if(De<0||De>=c.inWidth)continue;let Fe=oe+_e*A[2],tt=fe+De*c.inChannels,nt=Fe;for(let it=0;it<c.inChannels;++it){let Xe=T[tt+it];for(let ht=0;ht<c.outChannels;++ht)S[we+ht]+=Xe*k[nt+ht];nt+=c.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var vG={kernelName:Uu,backendName:"cpu",kernelFunc:xG};function wG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;xe([r,s],"conv3dBackpropFilterV2");let c=w.computeStrides(r.shape),u=w.computeStrides(s.shape),p=_.computeConv3DInfo(r.shape,l,i,1,o),d=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,g=p.filterHeight,y=p.filterWidth,b=new Lt(p.filterShape,"float32"),x=b.values,[v,T,k,S]=b.strides,F=n.data.get(s.dataId).values,[A,R,P,z]=u,V=n.data.get(r.dataId).values,[G,H,K,j]=c,te=p.padInfo.front,Q=p.padInfo.left,se=p.padInfo.top;for(let ne=0;ne<f;++ne){let ie=Math.max(0,Math.ceil((te-ne)/d)),ee=Math.min(p.outDepth,(p.inDepth+te-ne)/d),pe=ne*v;for(let oe=0;oe<g;++oe){let fe=Math.max(0,Math.ceil((se-oe)/h)),me=Math.min(p.outHeight,(p.inHeight+se-oe)/h),we=oe*T+pe;for(let Te=0;Te<y;++Te){let _e=Math.max(0,Math.ceil((Q-Te)/m)),De=Math.min(p.outWidth,(p.inWidth+Q-Te)/m),Fe=Te*k+we;for(let tt=0;tt<p.inChannels;++tt){let nt=tt*S+Fe;for(let it=0;it<p.outChannels;++it){let Xe=0;for(let ht=0;ht<p.batchSize;++ht){let We=ht*G,vn=ht*A;for(let It=ie;It<ee;++It){let qn=(ne+It*d-te)*H+We,en=It*R+vn;for(let wn=fe;wn<me;++wn){let Kn=(oe+wn*h-se)*K+qn,Rn=wn*P+en;for(let pn=_e;pn<De;++pn){let tn=(Te+pn*m-Q)*j+Kn,za=pn*z+Rn;Xe+=V[tn+tt]*F[za+it]}}}}x[nt+it]=Xe}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var kG={kernelName:ld,backendName:"cpu",kernelFunc:wG};function IG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;xe([r],"conv3dBackpropInputV2");let c=w.computeStrides(r.shape),u=w.computeStrides(s.shape),p=_.computeConv3DInfo(l,s.shape,o,1,i),d=new Lt(p.inShape,"float32"),h=d.values,[m,f,g,y]=d.strides,b=n.data.get(r.dataId).values,[x,v,T,k]=c,S=n.data.get(s.dataId).values,[F,A,R,P]=u,{batchSize:z,filterDepth:V,filterHeight:G,filterWidth:H,inChannels:K,inDepth:j,inHeight:te,inWidth:Q,outChannels:se,outDepth:ne,outHeight:ie,outWidth:ee,strideDepth:pe,strideHeight:oe,strideWidth:fe}=p,me=V-1-p.padInfo.front,we=G-1-p.padInfo.top,Te=H-1-p.padInfo.left;for(let _e=0;_e<z;++_e)for(let De=0;De<K;++De)for(let Fe=0;Fe<j;++Fe){let tt=Fe-me,nt=Math.max(0,Math.ceil(tt/pe)),it=Math.min(ne,(V+tt)/pe);for(let Xe=0;Xe<te;++Xe){let ht=Xe-we,We=Math.max(0,Math.ceil(ht/oe)),vn=Math.min(ie,(G+ht)/oe);for(let It=0;It<Q;++It){let qn=It-Te,en=Math.max(0,Math.ceil(qn/fe)),wn=Math.min(ee,(H+qn)/fe),Kn=0;for(let Rn=nt;Rn<it;++Rn){let pn=Rn*pe-tt;for(let tn=We;tn<vn;++tn){let za=tn*oe-ht;for(let ra=en;ra<wn;++ra){let sa=ra*fe-qn,Er=x*_e+v*Rn+T*tn+k*ra,ir=F*(V-1-pn)+A*(G-1-za)+R*(H-1-sa)+P*De;for(let Fr=0;Fr<se;++Fr){let ao=b[Er+Fr],va=S[ir+Fr];Kn+=ao*va}}}}h[m*_e+f*Fe+g*Xe+y*It+De]=Kn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var TG={kernelName:ud,backendName:"cpu",kernelFunc:IG},NG=rt(_s,e=>Math.cos(e)),SG={kernelName:_s,backendName:"cpu",kernelFunc:NG},CG=rt(_o,e=>Math.cosh(e)),_G={kernelName:_o,backendName:"cpu",kernelFunc:CG};function EG(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,[u,p,d,h]=r.shape,m=s.shape[0],[f,g]=o,y=Me([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,T=w.computeStrides(r.shape),k=w.computeStrides(y.shape);for(let S=0;S<m;S++){let F=S*4,A=b[F],R=b[F+1],P=b[F+2],z=b[F+3],V=x[S];if(V>=u)continue;let G=f>1?(P-A)*(p-1)/(f-1):0,H=g>1?(z-R)*(d-1)/(g-1):0;for(let K=0;K<f;K++){let j=f>1?A*(p-1)+K*G:.5*(A+P)*(p-1);if(j<0||j>p-1){for(let te=0;te<g;te++)for(let Q=0;Q<h;Q++){let se=Q+te*k[2]+K*k[1]+S*k[0];y.values[se]=c}continue}if(l==="bilinear"){let te=Math.floor(j),Q=Math.ceil(j),se=j-te;for(let ne=0;ne<g;ne++){let ie=g>1?R*(d-1)+ne*H:.5*(R+z)*(d-1);if(ie<0||ie>d-1){for(let fe=0;fe<h;fe++){let me=fe+ne*k[2]+K*k[1]+S*k[0];y.values[me]=c}continue}let ee=Math.floor(ie),pe=Math.ceil(ie),oe=ie-ee;for(let fe=0;fe<h;fe++){let me=fe+ee*T[2]+te*T[1]+V*T[0],we=v[me];me=fe+pe*T[2]+te*T[1]+V*T[0];let Te=v[me];me=fe+ee*T[2]+Q*T[1]+V*T[0];let _e=v[me];me=fe+pe*T[2]+Q*T[1]+V*T[0];let De=v[me],Fe=we+(Te-we)*oe,tt=_e+(De-_e)*oe;me=fe+ne*k[2]+K*k[1]+S*k[0],y.values[me]=Fe+(tt-Fe)*se}}}else for(let te=0;te<g;++te){let Q=g>1?R*(d-1)+te*H:.5*(R+z)*(d-1);if(Q<0||Q>d-1){for(let ie=0;ie<h;ie++){let ee=ie+te*k[2]+K*k[1]+S*k[0];y.values[ee]=c}continue}let se=Math.round(Q),ne=Math.round(j);for(let ie=0;ie<h;ie++){let ee=ie+se*T[2]+ne*T[1]+V*T[0],pe=ie+te*k[2]+K*k[1]+S*k[0];y.values[pe]=v[ee]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var FG={kernelName:Eo,backendName:"cpu",kernelFunc:EG};function AG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumsum");let l=_.getAxesPermutation([s],r.shape.length),c=r;l!=null&&(c=ga({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=_.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let p=la(c.dtype,"int32"),d=w.makeZerosTypedArray(w.sizeFromShape(c.shape),p),h=n.data.get(c.dataId).values,m=c.shape[c.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)d[x]=i?0:h[x];else{let v=f(y,b-1);d[x]=i?h[v]+d[v]:h[x]+d[v]}}let g=n.makeTensorInfo(c.shape,p,d);if(l!=null){let y=_.getUndoAxesPermutation(l),b=ga({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),b}return g}var $G={kernelName:Es,backendName:"cpu",kernelFunc:AG};function DG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=Kx(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=ST(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var RG={kernelName:cd,backendName:"cpu",kernelFunc:DG};function MG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],p=l*s,d=c*s,h=u/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*d*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<p;++b){let x=Math.floor(b/s),v=b%s;for(let T=0;T<d;++T){let k=Math.floor(T/s),S=T%s,F=(v*s+S)*h;for(let A=0;A<h;++A){let R=A+F+u*(k+c*(x+l*y));f[g++]=m[R]}}}return n.makeTensorInfo([o,p,d,h],r.dtype,f)}var PG={kernelName:Fo,backendName:"cpu",kernelFunc:MG};function l2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=a;xe([r,s],"depthwiseConv2DNative");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=_.computeConv2DInfo(r.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,v=b.top,T=h.outChannels/h.inChannels,k=new Lt(h.outShape,r.dtype),S=n.data.get(r.dataId).values,F=n.data.get(s.dataId).values,A=k.values;for(let R=0;R<h.batchSize;++R){let P=R*u[0],z=R*k.strides[0];for(let V=0;V<h.outHeight;++V){let G=z+V*k.strides[1],H=V*h.strideHeight-x;for(let K=0;K<m;++K){let j=H+K*g;if(j<0||j>=h.inHeight)continue;let te=K*p[0],Q=P+j*u[1];for(let se=0;se<h.outWidth;++se){let ne=G+se*k.strides[2],ie=se*h.strideWidth-v;for(let ee=0;ee<f;++ee){let pe=ie+ee*y;if(pe<0||pe>=h.inWidth)continue;let oe=te+ee*p[1],fe=Q+pe*h.inChannels,me=ne,we=oe;for(let Te=0;Te<h.inChannels;++Te){let _e=S[fe+Te];for(let De=0;De<T;++De)A[me+De]+=_e*F[we+De];me+=T,we+=T}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var OG={kernelName:Fs,backendName:"cpu",kernelFunc:l2};function LG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a;xe([r,s],"depthwiseConv2dNativeBackpropFilter");let p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),{strideHeight:d,strideWidth:h,filterHeight:m,filterWidth:f}=p,g=new Lt(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,x=p.outChannels/p.inChannels,v=n.data.get(r.dataId).values,T=new Lt(r.shape,r.dtype,v),k=n.data.get(s.dataId).values,S=new Lt(s.shape,s.dtype,k);for(let F=0;F<m;++F){let A=Math.max(0,Math.ceil((b-F)/d)),R=Math.min(p.outHeight,(p.inHeight+b-F)/d);for(let P=0;P<f;++P){let z=Math.max(0,Math.ceil((y-P)/h)),V=Math.min(p.outWidth,(p.inWidth+y-P)/h);for(let G=0;G<p.outChannels;++G){let H=Math.trunc(G/x),K=G%x,j=0;for(let te=0;te<p.batchSize;++te)for(let Q=A;Q<R;++Q){let se=F+Q*d-b;for(let ne=z;ne<V;++ne){let ie=P+ne*h-y;j+=T.get(te,se,ie,H)*S.get(te,Q,ne,G)}}g.set(j,F,P,H,K)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var zG={kernelName:pd,backendName:"cpu",kernelFunc:LG};function WG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a;xe([r,s],"depthwiseConv2DNativeBackpropInput");let p=w.computeStrides(r.shape),d=w.computeStrides(s.shape),h=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),m=new Lt(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[v,T,k]=p,S=n.data.get(s.dataId).values,[F,A,R]=d,{batchSize:P,filterHeight:z,filterWidth:V,inChannels:G,inHeight:H,inWidth:K,outChannels:j,outHeight:te,outWidth:Q,strideHeight:se,strideWidth:ne}=h,ie=z-1-h.padInfo.top,ee=V-1-h.padInfo.left,pe=j/G;for(let oe=0;oe<P;++oe)for(let fe=0;fe<G;++fe)for(let me=0;me<H;++me){let we=me-ie,Te=Math.max(0,Math.ceil(we/se)),_e=Math.min(te,(z+we)/se);for(let De=0;De<K;++De){let Fe=De-ee,tt=Math.max(0,Math.ceil(Fe/ne)),nt=Math.min(Q,(V+Fe)/ne),it=0;for(let Xe=Te;Xe<_e;++Xe){let ht=Xe*se-we;for(let We=tt;We<nt;++We){let vn=We*ne-Fe,It=v*oe+T*Xe+k*We,qn=F*(z-1-ht)+A*(V-1-vn)+R*fe;for(let en=0;en<pe;++en){let wn=fe*pe+en,Kn=x[It+wn],Rn=S[qn+en];it+=Kn*Rn}}}f[g*oe+y*me+b*De+fe]=it}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var BG={kernelName:dd,backendName:"cpu",kernelFunc:WG};function VG(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Me([r,r],a.dtype),o=i.values;for(let c=0;c<s.length;c++)o[c*r+c]=s[c];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var UG={kernelName:hd,backendName:"cpu",kernelFunc:VG},GG={kernelName:Gu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(a.dataId).values,u=a.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:v,strideWidth:T,filterHeight:k,filterWidth:S,dilationHeight:F,dilationWidth:A,outShape:R}=_.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),P=w.sizeFromShape(R),z=R.length,V=w.getArrayFromDType(a.dtype,P);for(let G=0;G<h;++G)for(let H=0;H<y;++H){let K=H*v-x.top;for(let j=0;j<b;++j){let te=j*T-x.left;for(let Q=0;Q<g;++Q){let se=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<k;++ie){let ee=K+ie*F;if(ee>=0&&ee<m)for(let pe=0;pe<S;++pe){let oe=te+pe*A;if(oe>=0&&oe<f){let fe=w.locToIndex([G,ee,oe,Q],u,w.computeStrides(a.shape)),me=w.locToIndex([ie,pe,Q],d,w.computeStrides(r.shape)),we=c[fe]+p[me];we>se&&(se=we)}}}let ne=w.locToIndex([G,H,j,Q],z,w.computeStrides(R));V[ne]=se}}}return{dataId:l.write(w.toTypedArray(V,a.dtype),R,a.dtype),shape:R,dtype:a.dtype}}},HG={kernelName:fd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=w.toNestedArray(a.shape,c.data.get(a.dataId).values),p=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:T,filterWidth:k,dilationHeight:S,dilationWidth:F,outShape:A}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===A.length,()=>`Error in ${fd}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let R=w.toNestedArray(A,c.data.get(s.dataId).values),P=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let z=0;z<d;++z)for(let V=0;V<g;++V){let G=V*x-b.top;for(let H=0;H<y;++H){let K=H*v-b.left;for(let j=0;j<f;++j){let te=Number.MIN_SAFE_INTEGER,Q=0,se=0;for(let ne=0;ne<T;++ne){let ie=G+ne*S;if(ie>=0&&ie<h)for(let ee=0;ee<k;++ee){let pe=K+ee*F;if(pe>=0&&pe<m){let oe=u[z][ie][pe][j]+p[ne][ee][j];oe>te&&(te=oe,Q=ne,se=ee)}}}P[Q][se][j]+=R[z][V][H][j]}}}return{dataId:c.write(w.toTypedArray(P,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},jG={kernelName:md,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=w.toNestedArray(a.shape,c.data.get(a.dataId).values),p=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:T,filterWidth:k,dilationHeight:S,dilationWidth:F,outShape:A}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===A.length,()=>`Error in ${md}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let R=w.toNestedArray(A,c.data.get(s.dataId).values),P=w.makeZerosNestedTypedArray(a.shape,a.dtype);for(let z=0;z<d;++z)for(let V=0;V<g;++V){let G=V*x-b.top;for(let H=0;H<y;++H){let K=H*v-b.left;for(let j=0;j<f;++j){let te=Number.MIN_SAFE_INTEGER,Q=G<0?0:G,se=K<0?0:K;for(let ne=0;ne<T;++ne){let ie=G+ne*S;if(ie>=0&&ie<h)for(let ee=0;ee<k;++ee){let pe=K+ee*F;if(pe>=0&&pe<m){let oe=u[z][ie][pe][j]+p[ne][ee][j];oe>te&&(te=oe,Q=ie,se=pe)}}}P[z][Q][se][j]+=R[z][V][H][j]}}}return{dataId:c.write(w.toTypedArray(P,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function qG(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;xe([a,r],"eluGrad");let s=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let c=i[l];c>=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",s)}var KG={kernelName:gd,backendName:"cpu",kernelFunc:qG},XG=Mt((e,t)=>e===t?1:0),u2=Qt(Do,XG,null,"bool"),YG={kernelName:Do,backendName:"cpu",kernelFunc:u2},JG=_.ERF_P,QG=_.ERF_A1,ZG=_.ERF_A2,eH=_.ERF_A3,tH=_.ERF_A4,nH=_.ERF_A5,aH=rt($o,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+JG*n);return t*(1-((((nH*a+tH)*a+eH)*a+ZG)*a+QG)*a*Math.exp(-n*n))}),rH={kernelName:$o,backendName:"cpu",kernelFunc:aH};function fm(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),wt({inputs:{x:r},backend:n,attrs:{shape:o}})}var sH={kernelName:Ro,backendName:"cpu",kernelFunc:fm},iH=Mt((e,t)=>e/t),nv=Qt(As,iH),av={kernelName:As,backendName:"cpu",kernelFunc:nv};function c2(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[r,s],u=w.sizeFromShape(c),p=w.getTypedArrayFromDType("float32",u),d=w.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let y=Li({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=Li({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Vn({inputs:{real:y,imag:b},backend:n}),{real:v,imag:T}=oH(x,t,n),k=_.mergeRealAndImagArrays(v,T);for(let S=0;S<s;S++){let F=_.getComplexWithIndex(k,S);p[g*s+S]=F.real,d[g*s+S]=F.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(c,"float32",p),m=n.makeTensorInfo(c,"float32",d),f=Vn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function oH(e,t,n){let a=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(lH(a)){let o=rv(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),d=tr({inputs:{x:p},backend:n}),h=av.kernelFunc({inputs:{a:c,b:p},backend:n}),m=av.kernelFunc({inputs:{a:u,b:d},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=_.mergeRealAndImagArrays(s,i),l=uH(o,a,t);return _.splitRealAndImagArrays(l)}}function lH(e){return(e&e-1)==0}function rv(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=_.mergeRealAndImagArrays(e,t),i=n/2,o=_.complexWithEvenIndex(s),l=o.real,c=o.imag,u=[l.length],p=r.makeTensorInfo(u,"float32",l),d=r.makeTensorInfo(u,"float32",c),h=Vn({inputs:{real:p,imag:d},backend:r}),m=_.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=Vn({inputs:{real:b,imag:x},backend:r}),T=rv(l,c,i,a,r),k=T.real,S=T.imag,F=[k.length],A=r.makeTensorInfo(F,"float32",k),R=r.makeTensorInfo(F,"float32",S),P=Vn({inputs:{real:A,imag:R},backend:r}),z=rv(f,g,i,a,r),V=z.real,G=z.imag,H=[V.length],K=r.makeTensorInfo(H,"float32",V),j=r.makeTensorInfo(H,"float32",G),te=Vn({inputs:{real:K,imag:j},backend:r}),Q=_.exponents(n,a),se=[Q.real.length],ne=r.makeTensorInfo(se,"float32",Q.real),ie=r.makeTensorInfo(se,"float32",Q.imag),ee=Vn({inputs:{real:ne,imag:ie},backend:r}),pe=Qx({inputs:{a:ee,b:te},backend:r}),oe=Xc({inputs:{a:P,b:pe},backend:r}),fe=Zx({inputs:{a:P,b:pe},backend:r}),me=Oi({inputs:{input:oe},backend:r}),we=Oi({inputs:{input:fe},backend:r}),Te=Kl({inputs:{input:oe},backend:r}),_e=Kl({inputs:{input:fe},backend:r}),De=Xl({inputs:[me,we],backend:r,attrs:{axis:0}}),Fe=Xl({inputs:[Te,_e],backend:r,attrs:{axis:0}}),tt=r.data.get(De.dataId).values,nt=r.data.get(Fe.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(fe),r.disposeIntermediateTensorInfo(me),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(De),r.disposeIntermediateTensorInfo(Fe),{real:tt,imag:nt}}function uH(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=_.exponent(r*o,t,n),c=_.getComplexWithIndex(e,o);s+=c.real*l.real-c.imag*l.imag,i+=c.real*l.imag+c.imag*l.real}n&&(s/=t,i/=t),_.assignToTypedArray(a,s,i,r)}return a}function cH(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=wt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=c2(o,!1,n),c=wt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var pH={kernelName:yd,backendName:"cpu",kernelFunc:cH};function sv(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(a));return dH(o,r,i),t.makeTensorInfo(a,i,o)}var hH={kernelName:Hu,backendName:"cpu",kernelFunc:sv};function dH(e,t,n){e.fill(t)}var mH={kernelName:Po,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[i,o,l,c]=a.shape,u=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let d=p*l*o*c;for(let h=0;h<o;h++){let m=h*(l*c);for(let f=0;f<l;f++){let g=f*c;for(let y=0;y<c;y++){let b=[i,h,f,y][2],x=Math.round(l-b),v=d+m+g+y,T=u[v];if(x>=0&&x<l){let k=x*c,S=d+m+k+y;T=u[S]}s[v]=T}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},fH=Mt((e,t)=>Math.floor(e/t)),gH=Qt(Rs,fH,null,"int32"),yH={kernelName:Rs,backendName:"cpu",kernelFunc:gH};function bH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=o2({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=Xc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=ev(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var xH={kernelName:hi,backendName:"cpu",kernelFunc:bH};function vH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=l2({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=Xc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=ev(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var wH={kernelName:mi,backendName:"cpu",kernelFunc:vH};function kH(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=w.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,c,u,p]=_.prepareAndValidate(a,r);if(c===0)return n.makeTensorInfo(l,a.dtype,[]);let d=Me([c,u],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<c;f++){let g=[],y=0;for(let b=0;b<o;b++){let x=h[f*o+b];y+=x*p[b],g.push(x)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${g} does not index into ${a.shape}`);for(let b=0;b<u;b++)d.values[f*u+b]=m[y*u+b]}return n.makeTensorInfo(l,d.dtype,d.values)}var IH={kernelName:Lo,backendName:"cpu",kernelFunc:kH};function TH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;xe([r,s],"gatherV2");let l=o;o==null&&(l=0);let c=w.sizeFromShape(s.shape),u=w.parseAxisParam(i,r.shape)[0],p=_.segment_util.collectGatherOpShapeInfo(r,s,u,l),d=wt({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=wt({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,c/p.batchSize]}}),m=[p.batchSize,p.outerSize,c/p.batchSize,p.sliceSize],f=n.bufferSync(h),g=n.bufferSync(d),y=$T(g,f,m);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var NH={kernelName:Oo,backendName:"cpu",kernelFunc:TH},SH=Mt((e,t)=>e>=t?1:0),CH=Qt(Ps,SH,null,"bool"),_H={kernelName:Ps,backendName:"cpu",kernelFunc:CH};function EH(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=wt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=c2(o,!0,n),c=wt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var FH={kernelName:bd,backendName:"cpu",kernelFunc:EH},AH=rt(Wo,e=>Number.isFinite(e)?1:0,"bool"),$H={kernelName:Wo,backendName:"cpu",kernelFunc:AH},DH=rt(Bo,e=>Math.abs(e)===Infinity?1:0,"bool"),RH={kernelName:Bo,backendName:"cpu",kernelFunc:DH},MH=rt(Vo,e=>Number.isNaN(e)?1:0,"bool"),PH={kernelName:Vo,backendName:"cpu",kernelFunc:MH},OH=Mt((e,t)=>e<=t?1:0),LH=Qt(Go,OH,null,"bool"),zH={kernelName:Go,backendName:"cpu",kernelFunc:LH};function WH(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=MT(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var BH={kernelName:vd,backendName:"cpu",kernelFunc:WH},VH=rt(Ho,e=>Math.log1p(e)),UH={kernelName:Ho,backendName:"cpu",kernelFunc:VH},GH=Mt((e,t)=>e&&t),HH=Qt(jo,GH,null,"bool"),jH={kernelName:jo,backendName:"cpu",kernelFunc:HH},qH=rt(ju,e=>e?0:1,"bool"),KH={kernelName:ju,backendName:"cpu",kernelFunc:qH},XH=Mt((e,t)=>e||t),YH=Qt(qu,XH,null,"bool"),JH={kernelName:qu,backendName:"cpu",kernelFunc:YH};function QH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;xe(r,"LRN");let c=r.shape[3],u=c-1,p=n.data.get(r.dataId).values,d=w.sizeFromShape(r.shape),h=new Float32Array(d);function m(f){let g=f%c,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,u),x=0;for(;y<=b;y++){let v=p[y];x+=v*v}return x}for(let f=0;f<d;f++){let g=m(f),y=p[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var ZH={kernelName:Ku,backendName:"cpu",kernelFunc:QH};function ej(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a;xe(i,"LRNGrad");let p=w.sizeFromShape(i.shape),d=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let b=0;b<y;b++){let x=b%d,v=b-x+Math.max(0,x-o),T=b-x+Math.min(d,x+o+1),k=0;for(let S=v;S<T;S++)k+=Math.pow(m[S],2);k=c*k+l;for(let S=v;S<T;S++){let F=-2*c*u*m[S]*f[b]/k;b===S&&(F+=Math.pow(k,-u)),F*=h[b],g[S]+=F}}return n.makeTensorInfo(i.shape,r.dtype,g)}var tj={kernelName:wd,backendName:"cpu",kernelFunc:ej};function p2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,c=l.length,u=w.parseAxisParam(s,l),p=u,d=_.getAxesPermutation(p,c),h=o.data.get(r.dataId).values;if(d!=null){let v=new Array(c);for(let T=0;T<v.length;T++)v[T]=l[d[T]];h=Yx(h,l,r.dtype,d,v),p=_.getInnerMostAxes(p.length,c),l=v}xe(r,"max"),_.assertAxesAreInnerMostDims("max",p,c);let[m,f]=_.computeOutAndReduceShapes(l,p),g=w.sizeFromShape(f),y=OT(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=_.expandShapeToKeepDim(m,u)),{dataId:b,shape:x,dtype:r.dtype}}var nj={kernelName:Ws,backendName:"cpu",kernelFunc:p2};function aj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))p=tr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=tv(d,r.shape,r.dtype,h,u,"max");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var rj={kernelName:Vs,backendName:"cpu",kernelFunc:aj};function sj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;xe(r,"maxPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=i2(p,r.shape,r.dtype,w.computeStrides(r.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var ij={kernelName:Xu,backendName:"cpu",kernelFunc:sj};function oj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;xe([r,s],"maxPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=n.bufferSync(s),d=qU(p,u),h=u.strideDepth,m=u.strideHeight,f=u.strideWidth,g=u.dilationDepth,y=u.dilationHeight,b=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,T=u.effectiveFilterWidth,k=x-1-u.padInfo.front,S=T-1-u.padInfo.left,F=v-1-u.padInfo.top,A=Me(s.shape,"float32"),R=n.bufferSync(r);for(let P=0;P<u.batchSize;++P)for(let z=0;z<u.inChannels;++z)for(let V=0;V<u.inDepth;++V)for(let G=0;G<u.inHeight;++G)for(let H=0;H<u.inWidth;++H){let K=V-k,j=G-F,te=H-S,Q=0;for(let se=0;se<x;se+=g){let ne=(K+se)/h;if(!(ne<0||ne>=u.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<v;ie+=y){let ee=(j+ie)/m;if(!(ee<0||ee>=u.outHeight||Math.floor(ee)!==ee))for(let pe=0;pe<T;pe+=b){let oe=(te+pe)/f;if(oe<0||oe>=u.outWidth||Math.floor(oe)!==oe)continue;let fe=x*v*T-1-d.get(P,ne,ee,oe,z),me=se*v*T+ie*T+pe,we=fe===me?1:0;we!==0&&(Q+=R.get(P,ne,ee,oe,z)*we)}}}A.set(Q,P,V,G,H,z)}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var lj={kernelName:Id,backendName:"cpu",kernelFunc:oj};function uj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=n.data.get(o.dataId).values,m=Me(d.outShape,o.dtype,s2(h,o.shape,o.dtype,d).values),f=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,b=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,T=v-1-d.padInfo.left,k=x-1-d.padInfo.top,S=Me(o.shape,"float32"),F=n.data.get(r.dataId).values,A=Me(r.shape,"float32",F);for(let R=0;R<d.batchSize;++R)for(let P=0;P<d.inChannels;++P)for(let z=0;z<d.inHeight;++z)for(let V=0;V<d.inWidth;++V){let G=z-k,H=V-T,K=0;for(let j=0;j<x;j+=y){let te=(G+j)/f;if(!(te<0||te>=d.outHeight||Math.floor(te)!==te))for(let Q=0;Q<v;Q+=b){let se=(H+Q)/g;if(se<0||se>=d.outWidth||Math.floor(se)!==se)continue;let ne=x*v-1-m.get(R,te,se,P),ie=j*v+Q,ee=ne===ie?1:0;ee!==0&&(K+=A.get(R,te,se,P)*ee)}}S.set(K,R,z,V,P)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var cj={kernelName:kd,backendName:"cpu",kernelFunc:uj};function pj(e,t,n,a,r){let s=w.computeStrides(t),i=tv(e,t,n,s,r,"max"),o=s2(e,t,n,r,!0,a);return[i.values,o.values]}var dj={kernelName:Td,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(a,"MaxPoolWithArgmax");let c=l.data.get(a.dataId).values,u=_.computePool2DInfo(a.shape,r,s,[1,1],i),[p,d]=pj(c,a.shape,a.dtype,o,u),h=l.write(p,u.outShape,a.dtype),m=l.write(d,u.outShape,a.dtype);return[{dataId:h,shape:u.outShape,dtype:a.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function gm(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"sum");let o;r.dtype==="bool"?o=ls({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=tr({inputs:{x:r},backend:n});let l=o.shape.length,c=w.parseAxisParam(s,o.shape),u=_.getAxesPermutation(c,l),p=c,d=o;u!=null&&(d=ga({inputs:{x:o},backend:n,attrs:{perm:u}}),p=_.getInnerMostAxes(p.length,l)),_.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,m]=_.computeOutAndReduceShapes(d.shape,p),f=_.upcastType(d.dtype,"int32"),g=mm(n,h,f),y=w.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v<b.length;++v){let T=v*y,k=0;for(let S=0;S<y;++S)k+=x[T+S];b[v]=k}if(i){let v=_.expandShapeToKeepDim(g.shape,c),T=g;g=wt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(T)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(d),g}var hj={kernelName:ii,backendName:"cpu",kernelFunc:gm};function mj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=w.parseAxisParam(s,r.shape),l=_.computeOutAndReduceShapes(r.shape,o)[1],c=w.sizeFromShape(l),u=[],p=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(p);let d=ls({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});u.push(d);let h=nv({inputs:{a:d,b:p},backend:n});u.push(h);let m=gm({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var fj={kernelName:Us,backendName:"cpu",kernelFunc:mj};function gj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"min");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ga({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let T=f[b+v];T<x&&(x=T)}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=wt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var yj={kernelName:Gs,backendName:"cpu",kernelFunc:gj};function bj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;xe(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),c=s.map((b,x)=>b[0]+r.shape[x]),u=i==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=w.computeStrides(r.shape),m=w.sizeFromShape(o),f=o.length,g=w.computeStrides(o),y=w.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=w.indexToLoc(b,f,g);for(let T=0;T<f;T++)x[T]<l[T]?x[T]=l[T]*2-x[T]-u:x[T]>=c[T]&&(x[T]=(c[T]-1)*2-x[T]+u);x=x.map((T,k)=>T-l[k]);let v=w.locToIndex(x,d,h);y[b]=p[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var xj={kernelName:Yu,backendName:"cpu",kernelFunc:bj},vj=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),wj=Qt(qo,vj),kj={kernelName:qo,backendName:"cpu",kernelFunc:wj},Ij=go(Nw());function d2(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=w.parseAxisParam([o],r.shape),c=p2({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=_.expandShapeToKeepDim(c.shape,l),p=wt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=Zx({inputs:{a:r,b:p},backend:n}),h=QT({inputs:{x:d},backend:n}),m=gm({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=wt({inputs:{x:m},backend:n,attrs:{shape:u}}),g=nv({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var Tj={kernelName:oi,backendName:"cpu",kernelFunc:d2};function Nj(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;xe(r,"multinomial");let l=o?r:d2({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],p=n.data.get(l.dataId).values,d=[c,s],h=w.makeZerosTypedArray(w.sizeFromShape(d),"int32");for(let m=0;m<c;++m){let f=m*u,g=new Float32Array(u-1);g[0]=p[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+p[f+x];let y=Ij.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let v=y();h[b+x]=g.length;for(let T=0;T<g.length;T++)if(v<g[T]){h[b+x]=T;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var Sj={kernelName:Nd,backendName:"cpu",kernelFunc:Nj},Cj=Xa.nonMaxSuppressionV3Impl;function _j(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;xe(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:p}=Cj(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Ej={kernelName:Yo,backendName:"cpu",kernelFunc:_j},Fj=Xa.nonMaxSuppressionV4Impl;function Aj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a;xe(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:h}=Fj(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var $j={kernelName:Jo,backendName:"cpu",kernelFunc:Aj},Dj=Xa.nonMaxSuppressionV5Impl;function Rj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a;xe(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=Dj(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Mj={kernelName:Qo,backendName:"cpu",kernelFunc:Rj};function Pj(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;xe(r,"oneHot");let l=w.sizeFromShape(r.shape),c=new Float32Array(l*s);c.fill(o);let u=n.data.get(r.dataId).values;for(let p=0;p<l;++p)u[p]>=0&&u[p]<s&&(c[p*s+u[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",c)}var Oj={kernelName:qs,backendName:"cpu",kernelFunc:Pj};function ym(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Oi({inputs:{input:a},backend:n}),s=ym({inputs:{x:r},backend:n}),i=Kl({inputs:{input:a},backend:n}),o=ym({inputs:{x:i},backend:n}),l=Vn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return sv({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var Lj={kernelName:gl,backendName:"cpu",kernelFunc:ym};function h2(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Oi({inputs:{input:a},backend:n}),s=h2({inputs:{x:r},backend:n}),i=Kl({inputs:{input:a},backend:n}),o=ym({inputs:{x:i},backend:n}),l=Vn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return sv({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var zj={kernelName:Zo,backendName:"cpu",kernelFunc:h2};function m2(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return fm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=fm({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=Xl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var Wj={kernelName:el,backendName:"cpu",kernelFunc:m2};function Bj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;xe(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),c=n.data.get(r.dataId).values,u=w.sizeFromShape(r.shape),p=r.shape.length,d=w.computeStrides(r.shape),h=w.sizeFromShape(o),m=o.length,f=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<u;y++){let b=w.indexToLoc(y,p,d).map((v,T)=>v+l[T]),x=w.locToIndex(b,m,f);g[x]=c[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var f2={kernelName:Ks,backendName:"cpu",kernelFunc:Bj},Vj=Mt((e,t)=>Math.pow(e,t)),Uj=Qt(Xs,Vj),Gj={kernelName:Xs,backendName:"cpu",kernelFunc:Uj};function Hj(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=UT(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var jj={kernelName:Ju,backendName:"cpu",kernelFunc:Hj},qj=rt(nl,e=>1/e),Kj={kernelName:nl,backendName:"cpu",kernelFunc:qj};function Xj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeBilinear");let l=w.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([p,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/b[0],T=y[1]/b[1];for(let k=0;k<p;k++)for(let S=0;S<c;S++){let F;i?F=v*(S+.5)-.5:F=v*S;let A=Math.max(0,Math.floor(F)),R=F-A,P=Math.min(d-1,Math.ceil(F)),z=k*l[0]+A*l[1],V=k*l[0]+P*l[1];for(let G=0;G<u;G++){let H;i?H=T*(G+.5)-.5:H=T*G;let K=Math.max(0,Math.floor(H)),j=H-K,te=Math.min(h-1,Math.ceil(H)),Q=z+K*l[2],se=V+K*l[2],ne=z+te*l[2],ie=V+te*l[2];for(let ee=0;ee<m;ee++){let pe=f[Q+ee],oe=f[se+ee],fe=f[ne+ee],me=f[ie+ee],we=pe+(fe-pe)*j,Te=oe+(me-oe)*j,_e=we+(Te-we)*R;g[x++]=_e}}}return n.makeTensorInfo([p,c,u,m],"float32",g)}var Yj={kernelName:Qs,backendName:"cpu",kernelFunc:Xj};function Jj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[l,c,u,p]=r.shape,[,d,h]=s.shape,m=new Float32Array(l*c*u*p),f=[i&&d>1?c-1:c,i&&h>1?u-1:u],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let T=0;T<l;T++){let k=T*o[0];for(let S=0;S<d;S++){let F=S*y,A=Math.floor(F),R=Math.min(Math.ceil(F),c-1),P=k+A*o[1],z=k+R*o[1],V=F-A,G=1-V;for(let H=0;H<h;H++){let K=H*b,j=Math.floor(K),te=Math.min(Math.ceil(K),u-1),Q=K-j,se=1-Q,ne=P+j*o[2],ie=P+te*o[2],ee=z+j*o[2],pe=z+te*o[2],oe=G*se,fe=G*Q,me=V*se,we=V*Q;for(let Te=0;Te<p;Te++){let _e=x[v++];m[ne+Te]+=_e*oe,m[ie+Te]+=_e*fe,m[ee+Te]+=_e*me,m[pe+Te]+=_e*we}}}}return n.makeTensorInfo([l,u,c,p],"float32",m)}var Qj={kernelName:_d,backendName:"cpu",kernelFunc:Jj};function Zj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(p*c*u*m),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/b[0],v=y[1]/b[1],T=0;for(let k=0;k<p;k++){let S=k*l[0];for(let F=0;F<c;F++){let A=i?x*(F+.5):x*F,R=Math.min(d-1,s?Math.round(A):Math.floor(A));i&&(R=Math.max(0,R));let P=S+R*l[1];for(let z=0;z<u;z++){let V=i?v*(z+.5):v*z,G=Math.min(h-1,s?Math.round(V):Math.floor(V));i&&(G=Math.max(0,G));let H=P+G*l[2];for(let K=0;K<m;K++){let j=f[H+K];g[T++]=j}}}}return n.makeTensorInfo([p,c,u,m],r.dtype,g)}var e6={kernelName:Qu,backendName:"cpu",kernelFunc:Zj};function t6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),l=w.computeStrides(s.shape),[c,u,p,d]=r.shape,[,h,m]=s.shape,f=new Float32Array(c*u*p*d),g=n.data.get(s.dataId).values,y=[i&&h>1?u-1:u,i&&m>1?p-1:p],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],v=y[1]/b[1],T=1/x,k=1/v,S=Math.ceil(T)*2+2,F=Math.ceil(k)*2+2;for(let A=0;A<c;A++){let R=A*o[0];for(let P=0;P<u;P++){let z=R+P*o[1],V=Math.floor(P*T),G=Math.floor(V-S/2);for(let H=0;H<p;H++){let K=z+H*o[2],j=Math.floor(H*k),te=Math.floor(j-F/2);for(let Q=0;Q<d;Q++){let se=0;for(let ne=0;ne<S;ne++){let ie=ne+G;if(ie<0||ie>=h)continue;let ee=R+ie*l[1],pe=ie*x,oe=Math.min(u-1,i?Math.round(pe):Math.floor(pe));if(P===oe)for(let fe=0;fe<F;fe++){let me=fe+te;if(me<0||me>=m)continue;let we=ee+me*l[2],Te=me*v,_e=Math.min(p-1,i?Math.round(Te):Math.floor(Te));H===_e&&(se+=g[we+Q])}}f[K+Q]=se}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var n6={kernelName:Cd,backendName:"cpu",kernelFunc:t6};function a6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;xe(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return tr({inputs:{x:r},backend:n});let l=new Lt(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let p=l.indexToLoc(u),d=p.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(c.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var r6={kernelName:ei,backendName:"cpu",kernelFunc:a6},s6={kernelName:yl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[c,u,p,d]=a.shape,[h,m]=_.getImageCenter(i,u,p),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<c;x++){let v=x*p*u*d;for(let T=0;T<u;T++){let k=T*(p*d);for(let S=0;S<p;S++){let F=S*d;for(let A=0;A<d;A++){let R=[c,T,S,A],P=R[2],z=R[1],V=(P-h)*y-(z-m)*g,G=(P-h)*g+(z-m)*y;V=Math.round(V+h),G=Math.round(G+m);let H=s;if(typeof s!="number"&&(A===3?H=f:H=s[A]),V>=0&&V<p&&G>=0&&G<u){let j=G*(p*d),te=V*d,Q=v+j+te+A;H=b[Q]}let K=v+k+F+A;l[K]=H}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},i6=rt(ti,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),o6={kernelName:ti,backendName:"cpu",kernelFunc:i6};function g2(e,t,n,a,r,s,i,o,l,c){let u=[a/r,r],p=e.values,d=t.values;if(a===0)return Me(n,t.dtype);let h=Me(u,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=p[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)c?h.values[g*r+y]+=d[m*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[m*r+y]}return h}function l6(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=g2(h,m,i,p,c,l,o,u,0,d);return n.makeTensorInfo(i,f.dtype,f.values)}var u6={kernelName:rl,backendName:"cpu",kernelFunc:l6};function c6(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;xe([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=la(r.dtype,s.dtype),p=w.makeZerosTypedArray(w.sizeFromShape(r.shape),u),d=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[d++]=l[m]:p[d++]=c[m];return n.makeTensorInfo(r.shape,u,p)}var p6={kernelName:sl,backendName:"cpu",kernelFunc:c6},d6=_.SELU_SCALEALPHA,h6=_.SELU_SCALE,m6=rt(il,e=>e>=0?h6*e:d6*(Math.exp(e)-1)),f6={kernelName:il,backendName:"cpu",kernelFunc:m6},g6=rt(ri,e=>1/(1+Math.exp(-e))),y6={kernelName:ri,backendName:"cpu",kernelFunc:g6},b6=rt(ul,e=>e<0?-1:e>0?1:0),x6={kernelName:ul,backendName:"cpu",kernelFunc:b6},v6=rt(ai,e=>Math.sin(e)),w6={kernelName:ai,backendName:"cpu",kernelFunc:v6},k6=rt(ll,e=>Math.sinh(e)),I6={kernelName:ll,backendName:"cpu",kernelFunc:k6},T6=11920928955078125e-23,y2=Math.log(T6)+2,N6=rt(cl,e=>{let t=e>-y2,n=e<y2,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),S6={kernelName:cl,backendName:"cpu",kernelFunc:N6};function C6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;xe([r],"spaceToBatchND");let o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let c=f2.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=_.getReshaped(c.shape,s,o,!1),p=_.getPermuted(u.length,s.length,!1),d=_.getReshapedPermuted(c.shape,s,o,!1),h=wt({inputs:{x:c},backend:n,attrs:{shape:u}}),m=ga({inputs:{x:h},backend:n,attrs:{perm:p}}),f=wt({inputs:{x:m},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var _6={kernelName:Zu,backendName:"cpu",kernelFunc:C6};function E6(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=_.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],y=g2(m,f,o,d,u,c,l,p,g,h);return n.makeTensorInfo(o,y.dtype,y.values)}var F6={kernelName:Ed,backendName:"cpu",kernelFunc:E6};function A6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let d=[...u];d[o]=p;let h=Li({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});return c[o]+=p,h})}var $6={kernelName:pl,backendName:"cpu",kernelFunc:A6},D6=rt(si,e=>Math.sqrt(e)),R6={kernelName:si,backendName:"cpu",kernelFunc:D6},M6={kernelName:ec,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;xe(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},P6=rt(Br,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),O6={kernelName:Br,backendName:"cpu",kernelFunc:P6};function L6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a;xe(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=an.sliceInfo(r.shape,s,i,o,l,c,u,p,d),x=wt({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let k=Li({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=wt({inputs:{x:k},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(k)}else if(b.some(k=>k===0))v=n.makeTensorInfo(b,r.dtype,[]);else{let k=n.bufferSync(x),S=qT(b,k,f,m);v=n.makeTensorInfo(S.shape,S.dtype,S.values)}let T=wt({inputs:{x:v},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),T}var z6={kernelName:dl,backendName:"cpu",kernelFunc:L6},W6=rt(hl,e=>Math.tan(e)),B6={kernelName:hl,backendName:"cpu",kernelFunc:W6},V6=rt(ci,e=>Math.tanh(e)),U6={kernelName:ci,backendName:"cpu",kernelFunc:V6};function G6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;xe(r,"tile");let i=XT(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var H6={kernelName:Wr,backendName:"cpu",kernelFunc:G6};function j6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;xe(r,"topk");let o=n.data.get(r.dataId).values,[l,c]=YT(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var q6={kernelName:ml,backendName:"cpu",kernelFunc:j6};function Y6(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,p,d,h]=r.shape,[m,f]=c!=null?c:[p,d],g=[u,m,f,h],y=w.computeStrides(r.shape),b=y[0],x=y[1],v=y[2],T=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));T.fill(l);let k=a.data.get(r.dataId).values,S=a.data.get(s.dataId).values;for(let F=0;F<u;++F){let A=s.shape[0]===1?S:S.subarray(F*8,F*8+8);for(let R=0;R<m;++R)for(let P=0;P<f;++P)for(let z=0;z<h;++z){let V,G=A[6]*P+A[7]*R+1;if(G===0)continue;let H=(A[0]*P+A[1]*R+A[2])/G,K=(A[3]*P+A[4]*R+A[5])/G,j=b2(H,d,o),te=b2(K,p,o);switch(i){case"nearest":V=K6(k,p,d,b,x,v,F,te,j,z,l);break;case"bilinear":V=X6(k,p,d,b,x,v,F,te,j,z,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Q=F*b+R*x+P*v+z;T[Q]=V}return a.makeTensorInfo(g,r.dtype,T)}return{dataId:a.write(T,g,r.dtype),shape:r.shape,dtype:r.dtype}}var J6={kernelName:Fd,backendName:"cpu",kernelFunc:Y6};function b2(e,t,n){switch(n){case"reflect":return Q6(e,t);case"wrap":return Z6(e,t);case"nearest":return tq(e,t);case"constant":default:return eq(e,t)}}function Q6(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return w.clamp(0,n,t-1)}function Z6(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return w.clamp(0,n,t-1)}function eq(e,t){return e}function tq(e,t){return w.clamp(0,e,t-1)}function Yc(e,t,n,a,r,s,i,o,l,c,u){let p=i*a+o*r+l*s+c;return 0<=o&&o<t&&0<=l&&l<n?e[p]:u}function K6(e,t,n,a,r,s,i,o,l,c,u){let p=Math.round(o),d=Math.round(l);return Yc(e,t,n,a,r,s,i,p,d,c,u)}function X6(e,t,n,a,r,s,i,o,l,c,u){let p=Math.floor(o),d=Math.floor(l),h=p+1,m=d+1,f=(m-l)*Yc(e,t,n,a,r,s,i,p,d,c,u)+(l-d)*Yc(e,t,n,a,r,s,i,p,m,c,u),g=(m-l)*Yc(e,t,n,a,r,s,i,h,d,c,u)+(l-d)*Yc(e,t,n,a,r,s,i,h,m,c,u);return(h-o)*f+(o-p)*g}function nq(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;xe(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=JT(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var aq={kernelName:Ad,backendName:"cpu",kernelFunc:nq};function rq(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(l[c++]=r.shape[h]);let u=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let d=new Array(o);for(let h=0;h<d.length;h++){u[s]=h;let m=Li({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});d[h]=wt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return d}var sq={kernelName:fl,backendName:"cpu",kernelFunc:rq};function iq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;xe(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,c=[],u=[],p=o-l,d=s;for(let m=0;m<p;++m){let f=fm({inputs:{input:d},backend:n,attrs:{dim:m+1}});d=f,u.push(f)}for(let m=0;m<i;++m){let f=w.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=u2({inputs:{a:g,b:d},backend:n}),b=ls({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=Qx({inputs:{a:b,b:r},backend:n}),v=gm({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});c.push(v),u.push(g),u.push(y),u.push(b),u.push(x),u.push(v)}let h=m2({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var oq={kernelName:tc,backendName:"cpu",kernelFunc:iq},lq=[wU,NV,IU,NU,AV,CU,EU,AU,DU,MU,OU,zU,BU,GU,jU,XU,JU,ZU,tG,xU,aG,sG,oG,EV,DV,uG,SV,pG,hG,gG,bG,mG,kG,TG,vG,SG,_G,FG,$G,RG,PG,OG,zG,BG,UG,GG,jG,HG,av,dU,KG,YG,rH,RV,sH,PV,pH,hH,mH,LV,yH,xH,wH,IH,NH,WV,_H,CV,FH,dG,$H,RH,PH,hU,VV,zH,BH,GV,UH,jH,KH,JH,ZH,tj,jV,rj,ij,lj,cj,dj,nj,fj,yj,KV,xj,kj,Sj,YV,QV,Ej,$j,Mj,eU,Oj,zj,Wj,f2,Gj,fU,aU,jj,_V,Kj,gU,yU,bU,Yj,Qj,e6,n6,r6,s6,o6,sU,u6,p6,f6,y6,x6,w6,I6,iU,Tj,S6,_6,F6,$6,R6,M6,lU,O6,z6,cU,hj,B6,U6,H6,q6,tU,J6,aq,sq,oq,Lj];for(let e of lq)ac(e);var zi={},iv={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function uq(e,t){zi[e]=t}function nr(e){if(!(e in zi)){let n=cq(e);if(n!==null)zi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=zi[e];return t.isContextLost()?(delete zi[e],nr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),zi[e])}function pq(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function cq(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=pq(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete zi[e]},!1),e===1?t.getContext("webgl",iv)||t.getContext("experimental-webgl",iv):t.getContext("webgl2",iv)}var Jc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Jc||(Jc={}));var na;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(na||(na={}));var sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(sn||(sn={}));function Qc(e,t){return[t,e]}function dq(e,t){return e*t}function Zc(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function Yl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function hq(e,t){let[n,a]=Yl(e,t);return n*a*4}function ov(e,t){let n=e,a,r,s,i,o,l,c,u,p,d;return Z().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,p=n.HALF_FLOAT,d=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ie(e,t){let n=t();return Z().getBool("DEBUG")&&mq(e),n}function mq(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+fq(e,t))}var gq=596e-10,yq=65504;function bq(e){return!!(Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||gq<Math.abs(e)&&Math.abs(e)<yq)}function fq(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function bm(e,t){return kr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function xq(e,t){let n=kr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function wq(e,t){let n=kr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw vq(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var kq=/ERROR: [0-9]+:([0-9]+):/g;function vq(e,t){let n=kq.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((p,d)=>w.rightPad((d+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),c=i.slice(a-1,a),u=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${w.rightPad(c[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function Iq(e){return kr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Tq(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function lv(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Nq(e,t){let n=kr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Sq(e,t){let n=kr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Cq(e){return kr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function _q(e,t){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function Eq(e){return kr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function x2(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),Ie(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),Ie(e,()=>e.enableVertexAttribArray(o)),!0)}function Aq(e,t,n){Fq(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function $q(e,t,n){return kr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function Dq(e,t,n){return e.getUniformLocation(t,n)}function Rq(e,t,n,a){Ie(e,()=>Aq(e,t,a)),Ie(e,()=>e.uniform1i(n,a))}function uv(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function v2(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function xm(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Mq(e,t))}function Mq(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function kr(e,t,n){let a=Ie(e,()=>t());if(a==null)throw new Error(n);return a}function Fq(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Jl(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function Ql(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function cv(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Jl(e),...Ql(e)]),t}function Pq(e,t=!1){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?w.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let a=w.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Jl(e),s=2,i=2;return e.length&&([s,i]=Ql(e)),a=r*(s/2)*(i/2),w.sizeToSquarishShape(a).map(o=>o*2)}return w.sizeToSquarishShape(a)}function vm(e){return e%2==0}function wm(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||vm(n)&&vm(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&vm(e[0])&&vm(t[0])}var pv,dv;function Oq(e){if(pv==null){let t=nr(e);pv=t.getParameter(t.MAX_TEXTURE_SIZE)}return pv}function Lq(e){if(dv==null){let t=nr(e);dv=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,dv)}function zq(e){if(e===0)return 0;let t,n=nr(e);return ya(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ya(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ya(e,t){return e.getExtension(t)!=null}function w2(e){try{if(nr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Wq(e){if(e===0)return!1;let t=nr(e);if(e===1){if(!ya(t,"OES_texture_float"))return!1}else if(!ya(t,"EXT_color_buffer_float"))return!1;return hv(t)}function Vq(e){if(e===0)return!1;let t=nr(e);if(e===1){if(!ya(t,"OES_texture_float")||!ya(t,"WEBGL_color_buffer_float"))return!1}else{if(ya(t,"EXT_color_buffer_float"))return hv(t);let n="EXT_color_buffer_half_float";if(ya(t,n)){let a=t.getExtension(n);return Bq(t,a)}return!1}return hv(t)}function hv(e){let t=ov(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function Bq(e,t){let n=ov(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function Uq(e){return e!==2?!1:nr(e).fenceSync!=null}function ep(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=Z();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>w2(2)?2:w2(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Oq(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Lq(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:zq(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!cc.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Wq(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Vq(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Uq(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>cc.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function fn(){let e,t,n,a,r,s,i,o,l,c;return Z().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Wi(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function mv(e){let t=w.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}var k2=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,Gq=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Jc.DENSE;let t=Zc(e),n=fn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Wi(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}},Hq=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Jc.DENSE;let t=Zc(e),n=fn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Wi(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}},jq=class{constructor(e){this.variableNames=["A"],this.outTexUsage=na.DOWNLOAD;let t=fn();this.outputShape=e,this.userCode=`
${k2}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},qq=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=na.DOWNLOAD;let t=fn();this.outputShape=e,this.userCode=`
${k2}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},Kq=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=fn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${mv(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${s};
int c = imod(flatIndex, ${s});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
vec4 values = ${a.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${a.output} = vec4(${i}, 0., 0., 0.);
}
`}},Xq=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=fn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${s};
c = imod(flatIndex, ${s});
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
values = ${a.texture2D}(A, uv);
if(offset == 0) {
result[${u}] = values[0];
} else if(offset == 1) {
result[${u}] = values[1];
} else if(offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${mv(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${a.output} = ${o};
}
`}};function Yq(e){let t=fn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return xq(e,n)}function Jq(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Nq(e,t)}function Qq(e){let t=new Uint16Array([0,1,2,2,1,3]);return Sq(e,t)}function tp(e,t,n,a,r,s){_q(t,n);let i=Cq(e),o=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(o,i)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function I2(e){return e.internalFormatFloat}function Zq(e,t,n,a){let[r,s]=Qc(t,n);return tp(e,r,s,I2(a),a.textureFormatFloat,e.FLOAT)}function T2(e){return e.internalFormatHalfFloat}function e5(e,t,n,a){let[r,s]=Qc(t,n);return tp(e,r,s,T2(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function N2(e){return e.downloadTextureFormat}function t5(e,t,n,a){let[r,s]=Qc(t,n);return tp(e,r,s,N2(a),e.RGBA,e.UNSIGNED_BYTE)}function S2(e){return e.internalFormatPackedFloat}function n5(e,t,n,a){let[r,s]=Yl(t,n);return tp(e,r,s,S2(a),e.RGBA,e.FLOAT)}function C2(e){return e.internalFormatPackedHalfFloat}function a5(e,t,n,a){let[r,s]=Yl(t,n);return tp(e,r,s,C2(a),e.RGBA,a.textureTypeHalfFloat)}function r5(e,t,n){let a=0,r=3*4,s=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),x2(e,t,"clipSpacePos",n,3,s,a)&&x2(e,t,"uv",n,2,s,r)}function s5(e,t,n,a,r,s){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function i5(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function o5(e,t,n,a){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function l5(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function u5(e,t,n,a){let[r,s]=Qc(t,n),i=4,o=new Uint8Array(dq(t*n,i));return Ie(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function c5(e,t,n,a,r,s,i,o){let l=e,c=new Float32Array(hq(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function p5(e,t,n){let a=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var h5=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Z().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,uq(t,e)):this.gl=nr(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(Z().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=bm(this.gl,r),ya(this.gl,s))this.textureHalfFloatExtension=bm(this.gl,s);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ya(this.gl,a))this.colorBufferHalfFloatExtension=bm(this.gl,a);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ya(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ya(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Jq(this.gl),this.indexBuffer=Qq(this.gl),this.framebuffer=Eq(this.gl),this.textureConfig=ov(this.gl,this.textureHalfFloatExtension)}get debug(){return Z().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Zq(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),e5(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),t5(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),i5(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),s5(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),a5(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),n5(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(v2(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>u5(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return c5(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return l5(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=o5(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Z().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>p5(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=wq(t,e),a=Yq(t),r=Iq(t);return Ie(t,()=>t.attachShader(r,a)),Ie(t,()=>t.attachShader(r,n)),Tq(t,r),this.debug&&lv(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=r5(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&lv(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?$q(this.gl,e,t):Dq(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Rq(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Yl(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&lv(this.gl,this.program),xm(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=bm(this.gl,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=d5(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),uv(this.gl,e,this.framebuffer),this.debug&&xm(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(uv(this.gl,this.outputTexture,this.framebuffer),this.debug&&xm(this.gl)):v2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;uv(a,e,this.framebuffer),this.debug&&xm(a),this.outputTexture=e,Ie(a,()=>a.viewport(0,0,t,n)),Ie(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function d5(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:_2}=_;function k5(e,t,n,a){let r=[];e.forEach(h=>{let m=w.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
`),i=e.map(h=>m5(h,t,a)).join(`
`),o=t.texShape,l=fn(),c=y5(l),u,p,d=v5(l);return t.isPacked?(u=f5(t.logicalShape,o),p=x5(l)):(u=g5(t.logicalShape,o),p=b5(l)),a&&(d+=w5),[d,c,p,s,u,i,n].join(`
`)}function Zl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return I5(e);case 1:return T5(e);case 2:return N5(e);case 3:return S5(e);case 4:return C5(e);case 5:return _5(e);case 6:return E5(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function E2(e){switch(e.shapeInfo.logicalShape.length){case 0:return F5(e);case 1:return A5(e);case 2:return $5(e);case 3:return D5(e);default:return R5(e)}}function m5(e,t,n=!1){let a="";n?a+=E2(e):a+=Zl(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=M5(e,t):a+=P5(e,t)),a}function f5(e,t){switch(e.length){case 0:return F2();case 1:return O5(e,t);case 2:return W5(e,t);case 3:return L5(e,t);default:return z5(e,t)}}function g5(e,t){switch(e.length){case 0:return F2();case 1:return B5(e,t);case 2:return j5(e,t);case 3:return V5(e,t);case 4:return U5(e,t);case 5:return G5(e,t);case 6:return H5(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function y5(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function b5(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function x5(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function v5(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${q5}
${K5}
${X5}
`}var q5=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,K5=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,X5=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,w5=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function F2(){return`
int getOutputCoords() {
return 0;
}
`}function O5(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function B5(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function L5(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${r};
index -= b * ${r};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec3(b, r, c);
}
`}function V5(e,t){let n=Wi(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function z5(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+i,o=`b${l}, `+o;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${i}
int b = index / ${r};
index -= b * ${r};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec${e.length}(${o});
}
`}function U5(e,t){let n=Wi(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function G5(e,t){let n=Wi(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function H5(e,t){let n=Wi(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function W5(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let a=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec2(r, c);
}
`}function j5(e,t){return w.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Bi(e){return`offset${e}`}function F5(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=fn();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function I5(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;let[s,i]=e.shapeInfo.texShape,o=Bi(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
return sampleTexture(${t}, uv);
}
`}function A5(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=fn();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${r[0]}, ${r[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function T5(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${eu(e)}
}
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=Bi(t);return s===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
return sampleTexture(${t}, uv);
}
`:r===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function $5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=fn();if(r!=null&&w.arraysEqual(t,r))return`
vec4 ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
return ${o.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],c=Math.ceil(t[1]/2);return`
vec4 ${a}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function N5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&w.arraysEqual(t,r)){let p=r[0],d=r[1];return`
float ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:s,keptDims:i}=w.squeezeShape(t),o=s;if(o.length<t.length){let p=tu(e,o),d=["row","col"];return`
${Zl(p)}
float ${a}(int row, int col) {
return ${a}(${nu(d,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${eu(e)}
}
`;let l=r[0],c=r[1],u=Bi(n);return c===1?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${u};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${n}, uv);
}
`}function D5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),d=[1,2],h=tu(e,p),m=["b","row","col"];return`
${E2(h)}
vec4 ${a}(int b, int row, int col) {
return ${a}(${nu(m,d)});
}
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),c=l*Math.ceil(t[1]/2),u=fn();return`
vec4 ${a}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${i}, ${o}, ${c}, ${l}, b, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function S5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=w.squeezeShape(t),l=i;if(l.length<t.length){let m=tu(e,l),f=["row","col","depth"];return`
${Zl(m)}
float ${a}(int row, int col, int depth) {
return ${a}(${nu(f,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${r}, ${s}, 1)));
${eu(e)}
}
`;let c=e.shapeInfo.texShape,u=c[0],p=c[1],d=e.shapeInfo.flatOffset;if(p===r&&d==null)return`
float ${a}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;if(p===s&&d==null)return`
float ${a}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;let h=Bi(n);return`
float ${a}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${r} + col * ${s} + depth + ${h};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function R5(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],c=Math.ceil(t[n-1]/2),u=c*Math.ceil(t[n-2]/2),p="int b, int row, int col",d=`b * ${u} + (row / 2) * ${c} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,u*=t[n-m-1],d=`b${m} * ${u} + `+d;let h=fn();return`
vec4 ${r}(${p}) {
int index = ${d};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
return ${h.texture2D}(${a}, uv);
}
`}function C5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=w.squeezeShape(t);if(o.length<t.length){let m=tu(e,o),f=["row","col","depth","depth2"];return`
${Zl(m)}
float ${a}(int row, int col, int depth, int depth2) {
return ${a}(${nu(f,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${s}, ${r}, 1)));
${eu(e)}
}
`;let c=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,p=u[0],d=u[1];if(d===i&&c==null)return`
float ${a}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(d===r&&c==null)return`
float ${a}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let h=Bi(n);return`
float ${a}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${s} +
depth * ${r} + depth2;
vec2 uv = uvFromFlat(${p}, ${d}, index + ${h});
return sampleTexture(${n}, uv);
}
`}function _5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:c}=w.squeezeShape(t);if(l.length<t.length){let f=tu(e,l),g=["row","col","depth","depth2","depth3"];return`
${Zl(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${nu(g,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${eu(e)}
}
`;let u=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===o&&u==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&u==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let m=Bi(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${d}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function E5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=w.squeezeShape(t);if(r.length<t.length){let g=tu(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${Zl(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${nu(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${c}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${eu(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],m=d[1];if(m===u&&p==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&p==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=Bi(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${c} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function eu(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function M5(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=_2(e.shapeInfo.logicalShape,t.logicalShape),l=pt(i),c=i-s,u,p=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(g=>`coords.${p[g+c]} = 0;`).join(`
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((g,y)=>`coords.${p[y+c]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,f=w.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${a}(${d});
${h}
}
`}function P5(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let c=pt(l),u=_2(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,d,h=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${h[f+p]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+p]}`).join(", "),`
float ${r}() {
${c} coords = getOutputCoords();
${d}
return get${a}(${m});
}
`}function pt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function tu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function nu(e,t){return t.map(n=>e[n]).join(", ")}function Y5(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=k5(s,o,r,t.packedInputs),c=e.createProgram(l),u=null,p=e.getUniformLocation(c,"NAN",!1);Z().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;d[m]=e.getUniformLocation(c,m,f),d[`offset${m}`]=e.getUniformLocation(c,`offset${m}`,f)}return{program:t,source:l,webGLProgram:c,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:p}}function A2(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!w.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function J5(e,t,n,a,r){A2(t.inShapeInfos,n),A2([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),Z().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],p=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(w.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function Q5(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:Z5,bincountImpl:$2,bincountReduceImpl:e8,ceilImpl:t8,concatImpl:n8,expImpl:a8,expm1Impl:r8,floorImpl:s8,gatherV2Impl:i8,greaterImpl:o8,lessImpl:l8,linSpaceImpl:u8,logImpl:c8,maxImpl:p8,maximumImpl:d8,minimumImpl:h8,multiplyImpl:m8,negImpl:f8,prodImpl:g8,rangeImpl:y8,rsqrtImpl:b8,simpleAbsImpl:D2,sliceImpl:x8,stridedSliceImpl:v8,subImpl:w8,tileImpl:k8,topKImpl:I8,transposeImpl:fv,uniqueImpl:T8}=IT;function R2(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function gn(e,t){return t===1?[e]:R2(e,t)}function N8(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var E8=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=gn("rc",t),a=pt(t),r=S8(t,e,n),s=C8(t,e[e.length-1],e[e.length-2],n),i=_8(e,n);this.userCode=`
void main() {
${a} rc = getOutputCoords();
if(${r}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}};function F8(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function S8(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function C8(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
int r = ${r[0]};
int c = ${r[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function _8(e,t){let n=e.length,a=F8(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${a[0]}),
cEdge ? 0. : getA(${a[1]}),
rEdge ? 0. : getA(${a[2]}),
rEdge || cEdge ? 0. : getA(${a[3]})`}var M2=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${A8(t)}
${mv(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function A8(e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${Wi(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var $8=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=O2(t,n),r=L2(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=P2(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===sn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===sn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===sn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===sn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===sn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=O2(n,a),s=L2(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=P2(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=Z().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function D8(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function P2(e,t,n,a,r){let s=R8(t,a),i;if(r){let[l,c]=Yl(e[0],e[1]);i=l*c}else{let[l,c]=Qc(e[0],e[1]);i=l*c}let o=D8(n,s);return i*o}function R8(e,t){switch(e){case sn.PACKED_2X2_FLOAT32:return S2(t);case sn.PACKED_2X2_FLOAT16:return C2(t);case sn.UNPACKED_FLOAT32:return I2(t);case sn.UNPACKED_FLOAT16:return T2(t);case sn.PACKED_4X1_UNSIGNED_BYTE:return N2(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function M8(e){return Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?sn.PACKED_2X2_FLOAT32:sn.UNPACKED_FLOAT32:e?sn.PACKED_2X2_FLOAT16:sn.UNPACKED_FLOAT16}function O2(e,t){if(e===na.UPLOAD)return sn.PACKED_2X2_FLOAT32;if(e===na.RENDER||e==null)return M8(t);if(e===na.DOWNLOAD||e===na.PIXELS)return sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function L2(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var us=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Da="if (isnan(x)) return x;",P8="return x;",z2="return abs(x);",O8="return (x >= 0.0) ? x : (exp(x) - 1.0);",L8=Da+`
return (x < 0.0) ? 0.0 : x;
`,z8=Da+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,km="return x;",W8="return x;",B8=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,V8=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,U8=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,au=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},G8=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=gn("rc",t),a=pt(t),r=N8(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},H8=Xa.whereImpl,j8=1e-7,q8=1e-4,gv={};function K8(e){return e in gv||(gv[e]={}),gv[e]}var X8=128,Y8=600;function J8(){return Z().global.screen==null?1024:Z().global.screen.height*Z().global.screen.width*window.devicePixelRatio*Y8/1024/1024}var yv=class extends Pu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!Z().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=nr(Z().getNumber("WEBGL_VERSION"));this.binaryCache=K8(Z().getNumber("WEBGL_VERSION")),this.gpgpu=new h5(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new $8(this.gpgpu),this.numMBBeforeWarning=J8(),this.texData=new Jp(this,Va())}nextDataId(){return yv.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((Z().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Z().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:na.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(Z().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:na.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new au(i,km):p=new us(i,km);let d=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,c;l&&(c=w.now());let u;if(a==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);u=_.mergeRealAndImagArrays(p,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new au(a,km):h=new us(a,km);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Z().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&Z().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Zc(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];u=_.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(a);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}c!=null&&this.disposeIntermediateTensorInfo(c);let p=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Va().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Me(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!bq(n))throw Z().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=w.sizeFromShape(t);if(Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...Zc(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=Z().getBool("WEBGL_PACK")&&a===!0,i=s?cv(t):t,o=s?new qq(i):new jq(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return Z().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Va().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=X8){let n=this.getCPUBackend();return!Z().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(a=>this.texData.get(a.dataId).texture==null&&w.sizeFromShape(a.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return H8(e.shape,t)}packedUnaryOp(e,t,n){let a=new au(e.shape,t),r=this.compileAndRun(a,[e],n);return Va().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=D2(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(Z().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,z2,e.dtype);let t=new us(e.shape,z2),n=this.compileAndRun(t,[e]);return Va().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return Va().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new G8(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new E8(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Jl(e.shape),...Ql(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Jl(t),...Ql(t)],s=new M2(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=cv(a),i;n?i=new Hq(s):i=new Gq(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Jc.DENSE){let f=Zc(e.outputShape);i.texShape=f.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),w.sizeFromShape(s.shape)===0)return i.values=w.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(f.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(f.shape)<=Z().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=f.shape)}else if(!!g.isPacked!=!!e.packedInputs)f=g.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),g=this.texData.get(f.dataId);else if(g.isPacked&&!wm(g.shape,f.shape)){let y=f,b=f.shape;f.shape=g.shape,f=this.packedReshape(f,b),o.push(f),g=this.texData.get(f.dataId),y.shape=b}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:g,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=Q5(e,l,c),p=this.getAndSaveBinary(u,()=>Y5(this.gpgpu,e,l,c)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),J5(this.gpgpu,p,l,c,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=Z().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=w.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!Z().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Z().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=D(()=>{if(!Z().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Z().getBool("DEBUG");Z().set("DEBUG",!1);let t=this.abs(ve(1e-8)).dataSync()[0];if(Z().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?j8:q8}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=w.now());let u=t.texShape;if(u==null&&(u=Pq(n,o),t.texShape=u),r!=null){let p=cv(n),d,h=u[1],m=u[0],f=r instanceof Uint8Array;o?([h,m]=Yl(u[0],u[1]),d=new Xq(p,[m,h],f)):d=new Kq(p,[m,h],f);let g=this.makeTensorInfo([m,h],a);f?this.texData.get(g.dataId).usage=na.PIXELS:this.texData.get(g.dataId).usage=na.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,m,r);let y=!0,b=this.runWebGLProgram(d,[g],a,null,y),x=this.texData.get(b.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(b.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-c)}else{let p=this.acquireTexture(u,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=Q8(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};yv.nextDataId=0;function Q8(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var Z8="3.3.0";cc.isBrowser()&&Gd("webgl",()=>new yv,2);var W2=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,ru=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Im=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,np=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||w.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${pt(r)} coords = getOutputCoords();
`,r===1)s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=gn("coords",r);s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function Un(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var eK={kernelName:Os,backendName:"webgl",kernelFunc:Un};function cs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Un({inputs:{x:a},backend:n}),l=Un({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var tK={kernelName:id,backendName:"webgl",kernelFunc:cs},B2="return (a < 0.) ? b * a : a;",V2=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function nK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),o=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new np(V2,r.shape,i.shape):new ru(B2,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var aK={kernelName:Ls,backendName:"webgl",kernelFunc:nK},U2="return (a < 0.) ? b * a : a;",G2=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function rK(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new np(G2,a.shape,r.shape):new ru(U2,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var sK={kernelName:Ys,backendName:"webgl",kernelFunc:rK},H2="if (isnan(x)) return x;",iK=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,oK=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Ke({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),d=n(p.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new au(i.shape,t):u=new us(i.shape,e),o.runWebGLProgram(u,[i],l)}}function on({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(a&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,T]=x,k={dataId:v.dataId,dtype:v.dtype,shape:l.shape},S={dataId:T.dataId,dtype:T.dtype,shape:c.shape},F=new ru(e,l.shape,c.shape);return u.runWebGLProgram(F,[k,S],la(v.dtype,T.dtype))}),b=cs({inputs:{real:g,imag:y},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(y),b}let p=s||la(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&r!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=r(l.shape,c.shape,m.values,f.values,p),b=u.makeTensorInfo(y,p),x=u.texData.get(b.dataId);return x.values=g,b}let d=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new np(t,l.shape,c.shape,n):h=new ru(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],p)}}function Tm(e,t=!1){if(e==="linear")return t?W8:P8;if(e==="relu")return t?V8:L8;if(e==="elu")return t?B8:O8;if(e==="relu6")return t?U8:z8;if(e==="prelu")return t?G2:U2;if(e==="leakyrelu")return t?V2:B2;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var j2=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=a?e[1]:e[2],u=Math.ceil(c/2),p=a?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${b};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${p});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},q2={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},K2=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},X2="return a * b;";function Y2(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=_.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),c=new K2(q2.REAL,a.shape,r.shape),u=new K2(q2.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=cs({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[c,u]=m8(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(u,s),d=n.texData.get(p.dataId);return d.values=c,p}let i;return Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new np(X2,a.shape,r.shape):i=new ru(X2,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var lK={kernelName:js,backendName:"webgl",kernelFunc:Y2};function uK(e,t,n){let a=[Jl(e.shape),...Ql(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[Jl(t),...Ql(t)],i=new M2(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ge(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(s,o),c=w.sizeFromShape(l);w.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(r.dataId);return u.isPacked&&!wm(r.shape,l)&&!(u.texture!==null&&wm(u.shape,l))?uK(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var cK={kernelName:al,backendName:"webgl",kernelFunc:ge},J2=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${w.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},pK=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,p=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
}
`,d="vec4";t==="all"?(i="1.0",p=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",p=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${p}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${p}
} else if (${u===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${p}
} else if (${u===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${p}
}
setOutput(${l});
}
`}};function dK(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Vi(e,t,n,a){let r=dK(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:c}=r[i],u,p;n==="mean"?u=i===0?new J2({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},o):new J2({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c}):u=new pK({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},n),p=s,s=a.runWebGLProgram(u,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var mK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=pt(this.rank),r=hK(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function hK(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var fK=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=pt(this.rank),r=R2("rc",this.rank),s=new Array(this.rank);for(let c=0;c<t.length;c++)s[t[c]]=r[c];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Nm(e,t,n){let a=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fK(e.shape,t):new mK(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function gK(e,t,n,a){let r=t,s=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,l=_.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=Nm(e,l,a),o=_.getInnerMostAxes(o.length,s)),_.assertAxesAreInnerMostDims("sum",o,s);let[p,d]=_.computeOutAndReduceShapes(u.shape,o),h=p;n&&(h=_.expandShapeToKeepDim(p,i));let m=w.sizeFromShape(d),f=w.sizeFromShape(e.shape)/m,g=ge({inputs:{x:u},attrs:{shape:[f,m]},backend:a}),y=Ld(e.dtype),b=Vi(g,y,"sum",a),x=ge({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),c&&a.disposeIntermediateTensorInfo(u),x}function bv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return gK(r,s,i,n)}var yK={kernelName:ii,backendName:"webgl",kernelFunc:bv};function Fn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=r.shape[s[u]];let c;if(i.shouldExecuteOnCPU([r])){let u=i.texData.get(r.dataId).values,p=fv(u,r.shape,r.dtype,s,l);c=i.makeTensorInfo(l,r.dtype);let d=i.texData.get(c.dataId);d.values=p}else c=Nm(r,s,i);return c}var bK={kernelName:pi,backendName:"webgl",kernelFunc:Fn},Q2=1e3;function Sm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,p=n?e.shape[c-2]:e.shape[c-1],d=a?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],m=a?t.shape[u-2]:t.shape[u-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=w.sizeFromShape(f),b=w.sizeFromShape(g),x=y===b||y===1||b===1;w.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let v=(y>b?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let T=n?[y,p,h]:[y,h,p],k=a?[b,m,d]:[b,d,m],S=ge({inputs:{x:e},backend:r,attrs:{shape:T}}),F=ge({inputs:{x:t},backend:r,attrs:{shape:k}}),A=[S,F],R=Math.max(y,b),P=n?S.shape[1]:S.shape[2],z=s!=null,V=i!=null,G=l==="leakyrelu",H=l!=null?Tm(l,!0):null,K=z||V||G||H!=null,j;if((h===1||m===1)&&P>Q2&&K===!1){let Q=S,se=F;n&&(Q=Fn({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),A.push(Q)),a&&(se=Fn({inputs:{x:F},backend:r,attrs:{perm:[0,2,1]}}),A.push(se));let ne=m!==1,ie=m===1,ee=Q;ne&&(ee=ge({inputs:{x:Q},backend:r,attrs:{shape:[R,P,1]}}),A.push(ee));let pe=m===1?2:1,oe=se;ie&&(oe=ge({inputs:{x:se},backend:r,attrs:{shape:[R,1,P]}}),A.push(oe));let fe=Y2({inputs:{a:ee,b:oe},backend:r});j=bv({inputs:{x:fe},backend:r,attrs:{axis:pe,keepDims:!0}}),A.push(fe)}else{let Q=la(e.dtype,t.dtype),se=new j2(T,k,[R,h,m],n,a,z,H,V,G),ne=[S,F];if(s!=null&&ne.push(s),V&&ne.push(i),G){let ie=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));ne.push(ie),A.push(ie)}j=r.runWebGLProgram(se,ne,Q)}let te=ge({inputs:{x:j},backend:r,attrs:{shape:v}});A.push(j);for(let Q of A)r.disposeIntermediateTensorInfo(Q);return te}function xK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a;return Sm({a:r,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:u})}var vK={kernelName:di,backendName:"webgl",kernelFunc:xK},Z2="return abs(x);";function wK(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=D2(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new au(a.shape,Z2):r=new us(a.shape,Z2),n.runWebGLProgram(r,[a],a.dtype)}var kK={kernelName:xo,backendName:"webgl",kernelFunc:wK},IK=Da+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,TK=Ke({opSnippet:IK}),NK={kernelName:vo,backendName:"webgl",kernelFunc:TK},SK=Da+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,CK=Ke({opSnippet:SK}),_K={kernelName:wo,backendName:"webgl",kernelFunc:CK},eN="return a + b;",EK=on({opSnippet:eN,packedOpSnippet:eN,supportsComplex:!0,cpuKernelImpl:Z5}),FK={kernelName:Lr,backendName:"webgl",kernelFunc:EK},AK=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},$K=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function Cm(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Un({inputs:{x:a[0]},backend:n});if(a.length>Z().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Cm({inputs:a.slice(0,o),backend:n}),c=Cm({inputs:a.slice(o),backend:n});return Cm({inputs:[l,c],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>la(o,l)),s=a.map(o=>o.shape),i=Z().getBool("WEBGL_PACK")?new $K(a[0].shape,s):new AK(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var DK={kernelName:vs,backendName:"webgl",kernelFunc:Cm};function RK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Fn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("all",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Vi(f,f.dtype,"all",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ge({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ge({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var MK={kernelName:td,backendName:"webgl",kernelFunc:RK};function PK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Fn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("any",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Vi(f,f.dtype,"any",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ge({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ge({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var OK={kernelName:nd,backendName:"webgl",kernelFunc:PK},LK=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},zK=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=pt(o),c=gn("coords",o),u,p;if(s===1){p=o+1;let S=pt(p);u=`
${S} sourceLocR = ${S}(${c.join()}, 0);
++${c[o-1]};
${S} sourceLocG = ${S}(${c.join()}, 0);
++${c[o-2]};
${S} sourceLocA = ${S}(${c.join()}, 0);
--${c[o-1]};
${S} sourceLocB = ${S}(${c.join()}, 0);
--${c[o-2]};`}else p=o,u=`
${l} sourceLocR = coords;
++${c[o-1]};
${l} sourceLocG = coords;
++${c[o-2]};
${l} sourceLocA = coords;
--${c[o-1]};
${l} sourceLocB = coords;
--${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],m=d.map(S=>"int "+S),f=gn("sourceLocR",p-1).concat("inIdx.r"),g=gn("sourceLocG",p-1).concat("inIdx.g"),y=gn("sourceLocB",p-1).concat("inIdx.b"),b=gn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${b.join()})));`,T=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,k=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${k}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${c[o-2]} < ${i[o-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${T};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${v}
vec4 candidate = ${T};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function tN(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=_.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new LK(o,n,a==null),c=[t];a!=null&&c.push(a);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let p=tN(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}function nN(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=_.computeOptimalWindowSize(s),o=new zK(r,i,n,a==null),l=a==null?[t]:[t,a],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=nN(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function aN(e,t,n,a){let r=[n];if(_.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!Z().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=_.computeOutAndReduceShapes(t.shape,r),l=w.sizeFromShape(o),c=ge({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=tN(e,c,a);s.push(u);let p=ge({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),p}return nN(e,t,a)}function WK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=Fn({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=aN(n,l,i[0],"max");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var BK={kernelName:ws,backendName:"webgl",kernelFunc:WK};function VK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=Fn({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=aN(n,l,i[0],"min");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var UK={kernelName:zu,backendName:"webgl",kernelFunc:VK},GK=Da+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,HK=Ke({opSnippet:GK}),jK={kernelName:ko,backendName:"webgl",kernelFunc:HK},qK=Da+"return log(x + sqrt(x * x + 1.0));",KK=Ke({opSnippet:qK}),XK={kernelName:Io,backendName:"webgl",kernelFunc:KK},YK=Da+`
return atan(x);
`,JK=Ke({opSnippet:YK}),QK={kernelName:To,backendName:"webgl",kernelFunc:JK},ZK=iK+`
return atan(a, b);
`,eX=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+oK+`
return result;
`,tX=on({opSnippet:ZK,packedOpSnippet:eX}),nX={kernelName:So,backendName:"webgl",kernelFunc:tX},aX=Da+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,rX=Ke({opSnippet:aX}),sX={kernelName:No,backendName:"webgl",kernelFunc:rX},ap=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${S} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${p} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,T=s%4,k=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${v}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${k}
}
int xC = xCCorner + ${v};
if (${T===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${k}
} else if (${T===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${k}
} else if (${T===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${k}
}
}
setOutput(${x});
}
`}},xv=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let A=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${p}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${A} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let v="max",T=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(T="avgValue / count");let k=Math.floor(s/4)*4,S=s%4,F=`
if (${b}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${v}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${p};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
);
${F}
}
int xC = xCCorner + ${k};
if (${S===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${F}
} else if (${S===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
initializationValue,
initializationValue
);
${F}
} else if (${S===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
initializationValue
);
${F}
}
}
setOutput(${T});
}
}
`}};function iX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ep(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return Un({inputs:{x:r},backend:n});let p=new ap(u,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var oX={kernelName:ks,backendName:"webgl",kernelFunc:iX};function lX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,l,c),d=new xv(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var uX={kernelName:Wu,backendName:"webgl",kernelFunc:lX},cX=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${u});
const float avgMultiplier = float(${p});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},pX=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=u-1-e.padInfo.front,m=p-1-e.padInfo.top,f=d-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${p};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function dX(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new pX(d);return n.runWebGLProgram(h,[r],i.dtype)}var hX={kernelName:rd,backendName:"webgl",kernelFunc:dX};function mX(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ep([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=new cX(u);return n.runWebGLProgram(p,[r],i.dtype)}var fX={kernelName:ad,backendName:"webgl",kernelFunc:mX};function gX(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Sm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var yX={kernelName:Is,backendName:"webgl",kernelFunc:gX},bX=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},xX=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},vX=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;w.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[a,r,s],u=null;i!=null&&(u=i.shape,c.push(i));let p=null;o!=null&&(p=o.shape,c.push(o));let d=Z().getBool("WEBGL_PACK_NORMALIZATION")?new xX(a.shape,r.shape,s.shape,u,p,l):new bX(a.shape,r.shape,s.shape,u,p,l);return t.runWebGLProgram(d,c,c[0].dtype)},wX={kernelName:Ms,backendName:"webgl",kernelFunc:vX},IX=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=pt(this.rank),n=`uniform int start[${this.rank}];`,a=kX(this.rank),r,s=e.map((i,o)=>`sourceLoc.${vv[o]} = start[${o}] + coords.${vv[o]};`);r=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
${n}
void main() {
${r}
setOutput(getSource(${a}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},vv=["x","y","z","w","u","v"];function kX(e){if(e===1)return"sourceLoc";if(e<=6)return vv.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var TX=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=pt(this.rank),n=gn("coords",this.rank),a=gn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${a[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function NX(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=an.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function rp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=an.parseSliceParams(r,s,i);if(an.assertParamsValid(r,o,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=x8(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:c}=n.texData.get(r.dataId),u=an.isSliceContinous(r.shape,o,l);if(c||!u){let p=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new TX(l):new IX(l),d=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),NX(r,o,l,n)}var SX={kernelName:ol,backendName:"webgl",kernelFunc:rp},CX=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=[],m=ge({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Fn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=ge({inputs:{x:f},backend:n,attrs:{shape:u}}),y=rp({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},_X={kernelName:Bu,backendName:"webgl",kernelFunc:CX};function EX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),c=$2(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var FX={kernelName:sd,backendName:"webgl",kernelFunc:EX},AX="return float(a != b);",rN=on({opSnippet:AX,dtype:"bool"}),$X={kernelName:Xo,backendName:"webgl",kernelFunc:rN};function sp(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Un({inputs:{x:r.complexTensorInfos.real},backend:n})}var DX={kernelName:Sd,backendName:"webgl",kernelFunc:sp},RX="return float(int(x));";function MX(e,t){let n=new us(e.shape,RX),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function wv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Un({inputs:{x:r},backend:n});let i=bt(r.shape),o=wv({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=cs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=sp({inputs:{input:r},backend:n}),o=wv({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=Un({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return MX(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=rN({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var PX={kernelName:Ts,backendName:"webgl",kernelFunc:wv},sN="return ceil(x);",OX=Ke({opSnippet:sN,packedOpSnippet:sN,cpuKernelImpl:t8}),LX={kernelName:Ns,backendName:"webgl",kernelFunc:OX},zX=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},WX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function BX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;Z().getBool("WEBGL_PACK_CLIP")?o=new WX(r.shape):o=new zX(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var VX={kernelName:zr,backendName:"webgl",kernelFunc:BX},UX=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function iN(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function GX(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new UX(a.shape),i=[iN(a,r.complexTensorInfos.real),iN(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var HX={kernelName:Vu,backendName:"webgl",kernelFunc:GX},jX=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},qX=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=pt(a),s=gn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],c=i.slice(-2),u=i.join(),p=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${u}), vec2(${c.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${_m(i,l,f)}),
vec2(${_m(c,l,f)}));
}`}let d=o.length,h=o[o.length-1];p+=`
return getChannel(
getT${d}(${_m(i,l,h)}),
vec2(${_m(c,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${p}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function _m(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Em(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Un({inputs:{x:r.complexTensorInfos.imag},backend:n})}var KX={kernelName:xd,backendName:"webgl",kernelFunc:Em};function su(e,t,n){let a=e[0].dtype;if(a==="complex64"){let c=e.map(m=>sp({inputs:{input:m},backend:n})),u=e.map(m=>Em({inputs:{input:m},backend:n})),p=su(c,t,n),d=su(u,t,n),h=cs({inputs:{real:p,imag:d},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),u.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(a==="string"){let{tensors2D:c,outShape:u}=oN(e,t,n),p=c.map(g=>({vals:n.readSync(g.dataId),shape:g.shape})),d=c[0].shape[0]===1,h=n8(p,u,a,d),m=_.computeOutShape(e.map(g=>g.shape),t),f=n.makeTensorInfo(m,a,h);return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),f}if(e.length>Z().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=su(e.slice(0,c),t,n),p=su(e.slice(c),t,n),d=su([u,p],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),d}if(Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new qX(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,a)}let{tensors2D:r,outShape:s}=oN(e,t,n),i=new jX(r.map(c=>c.shape)),o=n.runWebGLProgram(i,r,a);r.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=ge({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function oN(e,t,n){let a=_.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>ge({inputs:{x:r},attrs:{shape:[-1,w.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function lN(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(c=>c.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>w.sizeFromShape(c.shape)>0);if(o.length===1)return Un({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return _.assertParamsConsistent(l,s),su(o,s,n)}var XX={kernelName:Co,backendName:"webgl",kernelFunc:lN},uN=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,v="result = activation(result);");let T=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${b}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${T}
${v}
setOutput(result);
}
`}},YX=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},JX=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:p}=n,{left:d,top:h}=o,m=r*a,f=fn(),g=p==="channelsLast",y=g?0:1,b=g?1:2,x="";for(let v=0;v<=1;v++)for(let T=0;T<=1;T++)x+=`
blockIndex = rc.y + ${T};
pos = rc.x + ${v};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
d0 = offsetY + ${u} * (pos / ${m});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${m}.) / ${r}.));
if(d1 < ${t[b]} && d1 >= 0) {
ch = int(mod(float(pos), ${r}.));
if (${g}) {
innerDims = vec2(d1, ch);
result[${v*2+T}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${v*2+T}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${x}
${f.output} = result;
}
`}};function cN({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=a.texData.get(e.dataId),u=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[],b=(p===1||d===1)&&u>Q2,x=l[2]%2!=0&&!!c.isPacked;if(b||!Z().getBool("WEBGL_LAZILY_UNPACK")||!Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],T=ge({inputs:{x:e},backend:a,attrs:{shape:[1,v,n.inChannels]}}),k=ge({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Sm({a:T,b:k,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ge({inputs:{x:S},backend:a,attrs:{shape:n.outShape}}),y.push(T),y.push(k),y.push(S)}else{let v=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),T={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,w.assert(wm(c.shape,T.shape),()=>`packed reshape ${c.shape} to ${T.shape} isn't free`);let S=ge({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let F=Sm({a:T,b:S,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),A=a.texData.get(F.dataId);w.assert(A.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,A.shape=n.outShape,g=Un({inputs:{x:F},backend:a}),g.shape=n.outShape,y.push(F)}for(let v of y)a.disposeIntermediateTensorInfo(v);return g}function pN({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:p,outHeight:d,dataFormat:h}=n,m=h==="channelsLast",f=l*c*u,g=d*p,y=[f,g],b=!0,x=!1,v=[],T=ge({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),k=ge({inputs:{x:t},backend:a,attrs:{shape:[1,f,w.sizeFromShape(t.shape)/f]}});v.push(T),v.push(k);let S=new JX(y,T.shape,n),F=a.runWebGLProgram(S,[T],"float32"),A=ge({inputs:{x:F},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push(F),v.push(A);let R=r!=null,P=s!=null,z=o==="leakyrelu",V=o?Tm(o,!0):null,G=new j2(A.shape,k.shape,[1,g,n.outChannels],b,x,R,V,P,z),H=[A,k];if(r&&H.push(r),P&&H.push(s),z){let Q=a.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));H.push(Q),v.push(Q)}let K=a.runWebGLProgram(G,H,"float32"),j=m?[1,d,p,n.outChannels]:[1,n.outChannels,d,p],te=ge({inputs:{x:K},backend:a,attrs:{shape:j}});v.push(K);for(let Q of v)a.disposeIntermediateTensorInfo(Q);return te}function QX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=cN({x:r,filter:s,convInfo:d,backend:n});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=pN({x:r,filter:s,convInfo:d,backend:n});else{let f=new uN(d);h=n.runWebGLProgram(f,[r,s],"float32")}let m=ge({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),m}var ZX={kernelName:Ss,backendName:"webgl",kernelFunc:QX},eY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},tY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},nY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},aY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function rY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),h=new eY(d);return n.runWebGLProgram(h,[r,s],"float32")}var sY={kernelName:od,backendName:"webgl",kernelFunc:rY};function iY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(c),d=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),h=new tY(d);return n.runWebGLProgram(h,[r,s],"float32")}var oY={kernelName:Cs,backendName:"webgl",kernelFunc:iY};function lY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),u=new YX(c);return n.runWebGLProgram(u,[r,s],"float32")}var uY={kernelName:Uu,backendName:"webgl",kernelFunc:lY};function cY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,c=_.computeConv3DInfo(r.shape,l,i,1,o),u=new nY(c);return n.runWebGLProgram(u,[r,s],"float32")}var pY={kernelName:ld,backendName:"webgl",kernelFunc:cY};function dY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,c=_.computeConv3DInfo(l,s.shape,o,1,i),u=new aY(c);return n.runWebGLProgram(u,[r,s],"float32")}var hY={kernelName:ud,backendName:"webgl",kernelFunc:dY},mY=H2+`
return cos(x);
`,fY=Ke({opSnippet:mY}),gY={kernelName:_s,backendName:"webgl",kernelFunc:fY},yY=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,bY=Ke({opSnippet:yY}),xY={kernelName:_o,backendName:"webgl",kernelFunc:bY},vY=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,p]=n;this.outputShape=[c,u,p,l];let d=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,v]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${b});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${v};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},wY=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,u=new vY(r.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[r,s,i],"float32")},kY={kernelName:Eo,backendName:"webgl",kernelFunc:wY},mN=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${dN(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${pt(a)} coords = getOutputCoords();
int end = ${hN(a,"coords")};
float val = ${r};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${o};
${hN(a,"coords")} = idx;
val += getX(${dN(a,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function dN(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function hN(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function IY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,c=_.getAxesPermutation([s],l),u=r;c!=null&&(u=Fn({inputs:{x:r},backend:n,attrs:{perm:c}}));let p=_.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let d=u.shape[p],h=Un({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new mN(u.shape,!1,o),g=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new mN(u.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=_.getUndoAxesPermutation(c),f=Fn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),f}return h}var TY={kernelName:Es,backendName:"webgl",kernelFunc:IY};function NY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(s.dataId),u=$2(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=e8(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var SY={kernelName:cd,backendName:"webgl",kernelFunc:NY},CY=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function _Y(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=new CY(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var EY={kernelName:Fo,backendName:"webgl",kernelFunc:_Y},fN=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,g="",y="";n&&(a?g=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?g=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:g=`
float activation(float x) {
${n}
}
`,y="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${g}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${f};
int q = d2 - d1 * ${f};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${p};
if (xR < 0 || xR >= ${s}) {
continue;
}
for (int wC = 0; wC < ${m}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${b}
${y}
setOutput(result);
}
`}},gN=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=m,g="int xR; int xC; int xCOffset;";for(let v=0;v<h;v++)for(let T=0;T<m;T++)g+=`
vec4 xTexelR${v}C${T*2} = vec4(0.);
vec4 wR${v}C${T} = vec4(0.);
vec4 xR${v}C${T} = vec4(0.);`;for(let v=0;v<h;v++)for(let T=0;T<f;T++){let k=T*2;if(g+=`
xR = xRCorner + ${v*p};
xC = xCCorner + ${k*d};
`,u===1){if(k<m&&(l%2==1?g+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${v}C${k}.zw = vec2(0.);
}
} else {
xTexelR${v}C${k} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${v}C${k} = vec4(previous.zw, xTexelR${v}C${k}.xy);
} else {
xR${v}C${k} = vec4(0, 0, xTexelR${v}C${k}.xy);
}
`:g+=`
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xC, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
xR${v}C${k} = xTexelR${v}C${k};
`,k+1<m)){let S=l%2==0?w.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(g+=`
xCOffset = xC + ${l%2} + ${S};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xCOffset, d1);
}
`,d>1&&(g+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
`),g+=`
xR${v}C${k+1} = vec4(
xTexelR${v}C${k}.zw, xTexelR${v}C${k+2}.xy);
`):g+=`
xCOffset = xC + ${S};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xCOffset, d1);
}
xR${v}C${k+1} = xTexelR${v}C${k+2};
`}}else k<m&&(g+=`
if(xR >= 0 && xR < ${s}) {
`,l%2==1?(g+=`
xCOffset = xC + 1 - ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${v}C${k+2} = vec4(0.);
}
xR${v}C${k} = vec4(
xTexelR${v}C${k}.zw, xTexelR${v}C${k+2}.zw);
`,k+1<m&&(g+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${v}C${k+1} = vec4(xTexelR${v}C${k+2}.xy, final.xy);
`)):(g+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xC, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
xCOffset = xC + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${v}C${k+2} = vec4(0.);
}
xR${v}C${k} = vec4(
xTexelR${v}C${k}.xy, xTexelR${v}C${k+2}.xy);
`,k+1<m&&(g+=`
xR${v}C${k+1} = vec4(
xTexelR${v}C${k}.zw, xTexelR${v}C${k+2}.zw);
`)),g+="}");k<m&&(g+=`
vec4 wTexelR${v}C${k} = getW(${v}, ${k}, d1, q);
wR${v}C${k} = vec4(wTexelR${v}C${k}.xz, wTexelR${v}C${k}.xz);
`,k+1<m&&(g+=`
vec4 wTexelR${v}C${k+1} = getW(${v}, ${k+1}, d1, q);
wR${v}C${k+1} =
vec4(wTexelR${v}C${k+1}.xz, wTexelR${v}C${k+1}.xz);`))}for(let v=0;v<h;v++)for(let T=0;T<m;T++)g+=`dotProd += xR${v}C${T} * wR${v}C${T};`;let y="",b="";n&&(a?y=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?y=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`vec4 activation(vec4 x) {
${n}
}`,b="result = activation(result);");let x=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${g}
vec4 result = dotProd;
${x}
${b}
setOutput(result);
}
`}};function FY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=a,u=l;u==null&&(u=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computeConv2DInfo(r.shape,s.shape,i,u,o,c,!0),d;return Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?d=new gN(p):d=new fN(p),n.runWebGLProgram(d,[r,s],"float32")}var AY={kernelName:Fs,backendName:"webgl",kernelFunc:FY},$Y=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},DY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function RY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a,p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),d=new $Y(p);return n.runWebGLProgram(d,[r,s],"float32")}var MY={kernelName:pd,backendName:"webgl",kernelFunc:RY};function PY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a,p=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new DY(p);return n.runWebGLProgram(d,[r,s],"float32")}var OY={kernelName:dd,backendName:"webgl",kernelFunc:PY},LY=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function zY(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=w.sizeFromShape(a.shape),i=ge({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new LY(s),l=n.runWebGLProgram(o,[i],i.dtype),c=ge({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var WY={kernelName:hd,backendName:"webgl",kernelFunc:zY},BY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:p}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${u}, ${p});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function VY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),u,p=new BY(c);u=n.runWebGLProgram(p,[r,s],"float32");let d=ge({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var UY={kernelName:Gu,backendName:"webgl",kernelFunc:VY},GY="return (x >= 0.0) ? x : (exp(x) - 1.0);",HY=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,jY=Ke({opSnippet:GY,packedOpSnippet:HY}),qY={kernelName:Ao,backendName:"webgl",kernelFunc:jY},KY="return (b >= 1.0) ? a : a * (b + 1.0);",XY=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,YY=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new np(XY,a.shape,r.shape):new ru(KY,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},JY={kernelName:gd,backendName:"webgl",kernelFunc:YY},QY=`
return vec4(equal(a, b));
`,ZY="return float(a == b);",e7=on({opSnippet:ZY,packedOpSnippet:QY,dtype:"bool"}),t7={kernelName:Do,backendName:"webgl",kernelFunc:e7},n7=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${_.ERF_P};
float a1 = ${_.ERF_A1};
float a2 = ${_.ERF_A2};
float a3 = ${_.ERF_A3};
float a4 = ${_.ERF_A4};
float a5 = ${_.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,a7=Ke({opSnippet:n7}),r7={kernelName:$o,backendName:"webgl",kernelFunc:a7},yN="return exp(x);",bN=Ke({opSnippet:yN,packedOpSnippet:yN,cpuKernelImpl:a8}),s7={kernelName:$s,backendName:"webgl",kernelFunc:bN};function kv(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),ge({inputs:{x:s},backend:a,attrs:{shape:o}})}var i7={kernelName:Ro,backendName:"webgl",kernelFunc:kv},xN="return exp(x) - 1.0;",o7=Ke({opSnippet:xN,packedOpSnippet:xN,cpuKernelImpl:r8}),l7={kernelName:Mo,backendName:"webgl",kernelFunc:o7},vN=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function wN(e,t,n){let a=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=ge({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new vN("real",l,t),u=new vN("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=cs({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let f=ge({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function u7(e){let{inputs:t,backend:n}=e,{input:a}=t;return wN(a,!1,n)}var c7={kernelName:yd,backendName:"webgl",kernelFunc:u7},p7=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Iv(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||w.inferDtype(r),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new p7(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var d7={kernelName:Hu,backendName:"webgl",kernelFunc:Iv},h7=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},m7={kernelName:Po,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new h7(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},kN="return floor(x);",f7=Ke({opSnippet:kN,packedOpSnippet:kN,cpuKernelImpl:s8}),g7={kernelName:Ds,backendName:"webgl",kernelFunc:f7},y7=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,b7=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,x7=on({opSnippet:y7,packedOpSnippet:b7,dtype:"int32"}),v7={kernelName:Rs,backendName:"webgl",kernelFunc:x7},w7=class{constructor(e){this.variableNames=["A"];let t=fn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},k7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=fn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},T7={kernelName:$d,backendName:"webgl",kernelFunc:I7},iu;function I7(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],p=[c,l,s];(o||i)&&(iu==null&&(iu=document.createElement("canvas").getContext("2d")),iu.canvas.width=l,iu.canvas.height=c,iu.drawImage(r,0,0,l,c),r=iu.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=na.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=Z().getBool("WEBGL_PACK")?new k7(p):new w7(p),m=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),m}function N7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=_.convertConv2DDataFormat(u),g=_.computeConv2DInfo(r.shape,s.shape,l,p,c,d,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=cN({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=pN({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,T=o!=null,k=h==="leakyrelu",S=h?Tm(h,!1):null,F=new uN(g,v,S,T,k),A=[r,s];if(i&&A.push(i),o&&A.push(o),k){let R=n.makeTensorInfo([],"float32",w.createScalarValue(m,"float32"));A.push(R),b.push(R)}y=n.runWebGLProgram(F,A,"float32")}let x=ge({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var S7={kernelName:hi,backendName:"webgl",kernelFunc:N7};function C7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=a,m=[],f=u;f==null&&(f=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=_.computeConv2DInfo(r.shape,s.shape,l,f,c,p,!0),y=Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=d?Tm(d,y):null,x=[r,s],v=i!=null,T=o!=null,k=d==="leakyrelu";if(v&&x.push(i),T&&x.push(o),k){let A=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(A),m.push(A)}let S;y?S=new gN(g,v,b,T,k):S=new fN(g,v,b,T,k);let F=n.runWebGLProgram(S,x,"float32");return m.forEach(A=>n.disposeIntermediateTensorInfo(A)),F}var _7={kernelName:mi,backendName:"webgl",kernelFunc:C7},E7=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=pt(t.length),r=pt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${a} strides = ${a}(${this.strides});
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function F7(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,c,u]=_.prepareAndValidate(a,r),p=ge({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),d=ge({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape)/c,c]}}),h=new E7(i,u,[l,c]),m=n.runWebGLProgram(h,[d,p],d.dtype),f=ge({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var A7={kernelName:Lo,backendName:"webgl",kernelFunc:F7},D7=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=pt(this.rank),a=$7(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function $7(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function R7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=w.sizeFromShape(s.shape),p=[],d=ge({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=ge({inputs:{x:s},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});p.push(d),p.push(h);let m=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(d),v=i8(x,b,m);return p.forEach(T=>n.disposeIntermediateTensorInfo(T)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let f=new D7(d.shape,m),g=n.runWebGLProgram(f,[d,h],d.dtype);p.push(g);let y=ge({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var M7={kernelName:Oo,backendName:"webgl",kernelFunc:R7},P7="return float(a > b);",O7=`
return vec4(greaterThan(a, b));
`,L7=on({opSnippet:P7,packedOpSnippet:O7,cpuKernelImpl:o8,dtype:"bool"}),z7={kernelName:zo,backendName:"webgl",kernelFunc:L7},W7="return float(a >= b);",B7=`
return vec4(greaterThanEqual(a, b));
`,V7=on({opSnippet:W7,packedOpSnippet:B7,dtype:"bool"}),U7={kernelName:Ps,backendName:"webgl",kernelFunc:V7};function G7(e){let{inputs:t,backend:n}=e,{input:a}=t;return wN(a,!0,n)}var H7={kernelName:bd,backendName:"webgl",kernelFunc:G7},j7="return float(!isnan(x) && !isinf(x));",q7=Ke({opSnippet:j7,dtype:"bool"}),K7={kernelName:Wo,backendName:"webgl",kernelFunc:q7},X7="return float(isinf(x));",Y7=Ke({opSnippet:X7,dtype:"bool"}),J7={kernelName:Bo,backendName:"webgl",kernelFunc:Y7},Q7="return float(isnan(x));",Z7=Ke({opSnippet:Q7,dtype:"bool"}),e9={kernelName:Vo,backendName:"webgl",kernelFunc:Z7},t9="return float(a < b);",n9=`
return vec4(lessThan(a, b));
`,a9=on({opSnippet:t9,packedOpSnippet:n9,cpuKernelImpl:l8,dtype:"bool"}),r9={kernelName:Uo,backendName:"webgl",kernelFunc:a9},s9="return float(a <= b);",i9=`
return vec4(lessThanEqual(a, b));
`,o9=on({opSnippet:s9,packedOpSnippet:i9,dtype:"bool"}),l9={kernelName:Go,backendName:"webgl",kernelFunc:o9};function u9(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=u8(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var c9={kernelName:vd,backendName:"webgl",kernelFunc:u9},p9=`if (x < 0.0) return NAN;
return log(x);`,d9=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,h9=Ke({opSnippet:p9,packedOpSnippet:d9,cpuKernelImpl:c8}),m9={kernelName:zs,backendName:"webgl",kernelFunc:h9},f9="return log(1.0 + x);",g9=Ke({opSnippet:f9}),y9={kernelName:Ho,backendName:"webgl",kernelFunc:g9},b9="return float(a >= 1.0 && b >= 1.0);",x9=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,v9=on({opSnippet:b9,packedOpSnippet:x9,dtype:"bool"}),w9={kernelName:jo,backendName:"webgl",kernelFunc:v9},k9="return float(!(x >= 1.0));",I9=Ke({opSnippet:k9}),T9={kernelName:ju,backendName:"webgl",kernelFunc:I9},N9="return float(a >= 1.0 || b >= 1.0);",S9=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,C9=on({opSnippet:N9,packedOpSnippet:S9,dtype:"bool"}),_9={kernelName:qu,backendName:"webgl",kernelFunc:C9},E9=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},F9=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},A9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,c=Z().getBool("WEBGL_PACK_NORMALIZATION")?new F9(r.shape,s,i,o,l):new E9(r.shape,s,i,o,l);return n.runWebGLProgram(c,[r],r.dtype)},$9={kernelName:Ku,backendName:"webgl",kernelFunc:A9},D9=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},R9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a,p=new D9(r.shape,o,l,c,u);return n.runWebGLProgram(p,[r,s,i],r.dtype)},M9={kernelName:wd,backendName:"webgl",kernelFunc:R9};function P9(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=ge({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Vi(i,e.dtype,"max",a),l=ge({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function IN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let k=0;k<x.length;k++)x[k]=r.shape[u[k]];let v=fv(b,r.shape,r.dtype,u,x);h=n.makeTensorInfo(x,r.dtype);let T=n.texData.get(h.dataId);T.values=v}else h=Nm(r,u,n);c=_.getInnerMostAxes(c.length,o)}_.assertAxesAreInnerMostDims("max",c,o);let[m,f]=_.computeOutAndReduceShapes(h.shape,c),g=m;i&&(g=_.expandShapeToKeepDim(m,l));let y;if(d){let b=n.texData.get(h.dataId).values,x=p8(b,w.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=P9(h,f,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var O9={kernelName:Ws,backendName:"webgl",kernelFunc:IN},L9=W2+`
return max(a, b);
`,z9=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Im+`
return result;
`,W9=on({opSnippet:L9,packedOpSnippet:z9,cpuKernelImpl:d8}),B9={kernelName:Bs,backendName:"webgl",kernelFunc:W9};function V9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ep(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return Un({inputs:{x:r},backend:n});let p=new ap(u,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var U9={kernelName:Vs,backendName:"webgl",kernelFunc:V9};function G9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,c,l),d=new xv(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var H9={kernelName:Xu,backendName:"webgl",kernelFunc:G9},j9=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},q9=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,p=l-1-e.padInfo.top,d=c-1-e.padInfo.left,h=o*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${p}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function K9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new xv(d,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new q9(d),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var X9={kernelName:Id,backendName:"webgl",kernelFunc:K9};function Y9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ep([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=!0,m=new ap(d,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new j9(d),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var J9={kernelName:kd,backendName:"webgl",kernelFunc:Y9};function Q9(e,t,n,a){let r=new ap(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new ap(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var Z9={kernelName:Td,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;w.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let c=[1,1];w.assert(_.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=_.computePool2DInfo(a.shape,r,s,c,i),[p,d]=Q9(a,o,u,l);return[p,d]}};function eJ(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=ge({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Vi(i,"float32","mean",a),l=ge({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var tJ={kernelName:Us,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let S=0;S<v.length;S++)v[S]=a.shape[u[S]];let T=fv(x,a.shape,a.dtype,u,v);m=i.makeTensorInfo(v,a.dtype);let k=i.texData.get(m.dataId);k.values=T}else m=Nm(a,u,i);h.push(m),c=_.getInnerMostAxes(c.length,o)}_.assertAxesAreInnerMostDims("sum",c,o);let[f,g]=_.computeOutAndReduceShapes(m.shape,c),y=f;r&&(y=_.expandShapeToKeepDim(f,l));let b=eJ(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function nJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Fn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Vi(f,f.dtype,"min",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ge({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ge({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var aJ={kernelName:Gs,backendName:"webgl",kernelFunc:nJ},rJ=W2+`
return min(a, b);
`,sJ=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Im+`
return result;
`,iJ=on({opSnippet:rJ,packedOpSnippet:sJ,cpuKernelImpl:h8}),oJ={kernelName:Hs,backendName:"webgl",kernelFunc:iJ},lJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let a=e.length,r=pt(a),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},uJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=pt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=gn("rc",a),l=gn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${p};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${p};
}
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${p}) +
gte * ((end - 1) * 2 - source + ${p});
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},cJ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uJ(a.shape,r,s):new lJ(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},pJ={kernelName:Yu,backendName:"webgl",kernelFunc:cJ},dJ=`if (b == 0.0) return NAN;
return mod(a, b);`,hJ=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Im+`
return result;
`,mJ=on({opSnippet:dJ,packedOpSnippet:hJ}),fJ={kernelName:qo,backendName:"webgl",kernelFunc:mJ},gJ=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},yJ=`
if (a == b) {
return 1.0;
};
return a / b;`,bJ=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,TN=on({opSnippet:yJ,packedOpSnippet:bJ,checkOutOfBounds:!0}),xJ={kernelName:As,backendName:"webgl",kernelFunc:TN},NN="return a - b;",SN=on({opSnippet:NN,packedOpSnippet:NN,supportsComplex:!0,cpuKernelImpl:w8}),vJ={kernelName:ui,backendName:"webgl",kernelFunc:SN};function CN(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=w.parseAxisParam([s],r.shape),o=IN({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=_.expandShapeToKeepDim(o.shape,i),c=ge({inputs:{x:o},backend:n,attrs:{shape:l}}),u=SN({inputs:{a:r,b:c},backend:n}),p=bN({inputs:{x:u},backend:n}),d=bv({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=ge({inputs:{x:d},backend:n,attrs:{shape:l}}),m=TN({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}var wJ={kernelName:oi,backendName:"webgl",kernelFunc:CN};function kJ(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:CN({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],p=new gJ(c,u,s),d=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),h}var IJ={kernelName:Nd,backendName:"webgl",kernelFunc:kJ},_N="return -x;";function TJ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=f8(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new au(a.shape,_N):r=new us(a.shape,_N),n.runWebGLProgram(r,[a],a.dtype)}var NJ={kernelName:Ko,backendName:"webgl",kernelFunc:TJ},SJ=Xa.nonMaxSuppressionV3Impl;function CJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,c=n.readSync(r.dataId),u=n.readSync(s.dataId),{selectedIndices:p}=SJ(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var _J={kernelName:Yo,backendName:"webgl",kernelFunc:CJ},EJ=Xa.nonMaxSuppressionV4Impl;function FJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d,validOutputs:h}=EJ(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var AJ={kernelName:Jo,backendName:"webgl",kernelFunc:FJ},$J=Xa.nonMaxSuppressionV5Impl;function DJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=$J(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var RJ={kernelName:Qo,backendName:"webgl",kernelFunc:DJ},MJ=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},PJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=w.sizeFromShape(r.shape),c=new MJ(l,s,i,o),u=ge({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let d=[...r.shape,s],h=ge({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},OJ={kernelName:qs,backendName:"webgl",kernelFunc:PJ};function Fm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=sp({inputs:{input:a},backend:n}),s=Fm({inputs:{x:r},backend:n}),i=Em({inputs:{input:a},backend:n}),o=Fm({inputs:{x:i},backend:n}),l=cs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Iv({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var LJ={kernelName:gl,backendName:"webgl",kernelFunc:Fm};function EN(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=sp({inputs:{input:a},backend:n}),s=EN({inputs:{x:r},backend:n}),i=Em({inputs:{input:a},backend:n}),o=Fm({inputs:{x:i},backend:n}),l=cs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Iv({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var zJ={kernelName:Zo,backendName:"webgl",kernelFunc:EN};function WJ(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return kv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=kv({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=lN({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var BJ={kernelName:el,backendName:"webgl",kernelFunc:WJ},VJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let a=e.length,r=pt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
uniform float value;
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
uniform float value;
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},UJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=pt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=gn("rc",a),l=gn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${c}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${c}) {`],d=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${p[m]}
if (${d}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${u});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
uniform float value;
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},FN=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new UJ(r.shape,s,i):new VJ(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},GJ={kernelName:Ks,backendName:"webgl",kernelFunc:FN},HJ=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,jJ=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Im+`
return result;
`,qJ=on({opSnippet:HJ,packedOpSnippet:jJ}),KJ={kernelName:Xs,backendName:"webgl",kernelFunc:qJ};function XJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],c=w.parseAxisParam(s,r.shape),u=c,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=Fn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,o),l.push(d)),_.assertAxesAreInnerMostDims("prod",u,o);let h;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:g,outDtype:y}=g8(d.shape,d.dtype,m,u);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=_.computeOutAndReduceShapes(d.shape,u),g=w.sizeFromShape(f),y=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),b=Ld(r.dtype),x=Vi(y,b,"prod",n);h=ge({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=_.expandShapeToKeepDim(h.shape,c);h=ge({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var YJ={kernelName:tl,backendName:"webgl",kernelFunc:XJ},AN=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=y8(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},JJ={kernelName:Ju,backendName:"webgl",kernelFunc:AN},QJ="return 1.0 / x;",ZJ=Ke({opSnippet:QJ}),eQ={kernelName:nl,backendName:"webgl",kernelFunc:ZJ},tQ=Da+`
return (x < 0.0) ? 0.0 : x;
`,nQ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,aQ=Ke({opSnippet:tQ,packedOpSnippet:nQ}),rQ={kernelName:Js,backendName:"webgl",kernelFunc:aQ},sQ=Da+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,iQ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,oQ=Ke({opSnippet:sQ,packedOpSnippet:iQ}),lQ={kernelName:Zs,backendName:"webgl",kernelFunc:oQ},uQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},cQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function pQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new cQ(r.shape,l,c,s,i):new uQ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],"float32")}var dQ={kernelName:Qs,backendName:"webgl",kernelFunc:pQ},hQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function mQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new hQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var fQ={kernelName:_d,backendName:"webgl",kernelFunc:mQ},gQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function yQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=new gQ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],r.dtype)}var bQ={kernelName:Qu,backendName:"webgl",kernelFunc:yQ},xQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function vQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new xQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var wQ={kernelName:Cd,backendName:"webgl",kernelFunc:vQ},kQ=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=pt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},IQ=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=gn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=pt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${c(a.slice())};
if(${r}) {
result.a = ${u(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,b)=>d(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function d(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function TQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return Un({inputs:{x:r},backend:n});let l=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new IQ(r.shape,o):new kQ(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var NQ={kernelName:ei,backendName:"webgl",kernelFunc:TQ},SQ=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
uniform vec4 params;
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},CQ={kernelName:yl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new SQ(a.shape,s),[c,u]=_.getImageCenter(i,a.shape[1],a.shape[2]),p=l.getCustomSetupFunc(c,u,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,p)}},_Q=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,EQ=Ke({opSnippet:_Q}),FQ={kernelName:ti,backendName:"webgl",kernelFunc:EQ},AQ="return inversesqrt(x);",$Q=Ke({opSnippet:AQ,cpuKernelImpl:b8}),DQ={kernelName:ni,backendName:"webgl",kernelFunc:$Q},$N=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=pt(r.length),l=pt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function RQ(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=[p/c,c];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=ge({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=ge({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new $N(l,o,h.shape.length,m.shape.length,u,d),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=ge({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var MQ={kernelName:rl,backendName:"webgl",kernelFunc:RQ},PQ=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c<t.length;c++)l.push(`${i[c]}`),c<e&&o.push(`${i[c]}`);a=o.join(),r=l.join()}let s=pt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function OQ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new PQ(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],la(r.dtype,s.dtype))}var LQ={kernelName:sl,backendName:"webgl",kernelFunc:OQ},zQ=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${_.SELU_SCALEALPHA};
float scale = ${_.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,WQ=Ke({opSnippet:zQ}),BQ={kernelName:il,backendName:"webgl",kernelFunc:WQ},VQ="return 1.0 / (1.0 + exp(-1.0 * x));",UQ=Ke({opSnippet:VQ}),GQ={kernelName:ri,backendName:"webgl",kernelFunc:UQ},HQ=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,jQ=Ke({opSnippet:HQ}),qQ={kernelName:ul,backendName:"webgl",kernelFunc:jQ},KQ=H2+`
return sin(x);
`,XQ=Ke({opSnippet:KQ}),YQ={kernelName:ai,backendName:"webgl",kernelFunc:XQ},JQ=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,QQ=Ke({opSnippet:JQ}),ZQ={kernelName:ll,backendName:"webgl",kernelFunc:QQ},eZ=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,tZ=Ke({opSnippet:eZ}),nZ={kernelName:cl,backendName:"webgl",kernelFunc:tZ},aZ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let c=[],u=FN({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=_.getReshaped(u.shape,s,o,!1),d=_.getPermuted(p.length,s.length,!1),h=_.getReshapedPermuted(u.shape,s,o,!1),m=ge({inputs:{x:u},backend:n,attrs:{shape:p}}),f=Fn({inputs:{x:m},backend:n,attrs:{perm:d}}),g=ge({inputs:{x:f},backend:n,attrs:{shape:h}});return c.push(u),c.push(m),c.push(f),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},rZ={kernelName:Zu,backendName:"webgl",kernelFunc:aZ};function sZ(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,strides:u,outputSize:p}=_.calculateShapes(s,r,o),d=!1,h=new $N(c,l,r.shape.length,s.shape.length,u,[p,1],d),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=ge({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var iZ={kernelName:Ed,backendName:"webgl",kernelFunc:sZ};function oZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=r.shape.length,u=new Array(c).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[o]=d;let m=rp({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[o]+=d,m})}var lZ={kernelName:pl,backendName:"webgl",kernelFunc:oZ},uZ="return sqrt(x);",cZ=Ke({opSnippet:uZ}),pZ={kernelName:si,backendName:"webgl",kernelFunc:cZ},dZ="return x * x;",hZ=Ke({opSnippet:dZ}),mZ={kernelName:ec,backendName:"webgl",kernelFunc:hZ},DN="return (a - b) * (a - b);",fZ=on({opSnippet:DN,packedOpSnippet:DN}),gZ={kernelName:li,backendName:"webgl",kernelFunc:fZ};function yZ({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Da+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new us(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var bZ={kernelName:Br,backendName:"webgl",kernelFunc:yZ},xZ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=pt(n.length),s=pt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function vZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=an.sliceInfo(r.shape,s,i,o,l,c,u,p,d),x=ge({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let k=rp({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=ge({inputs:{x:k},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(k)}else if(b.some(k=>k===0))v=n.makeTensorInfo(b,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let k=n.texData.get(x.dataId).values,S=Me(x.shape,x.dtype,k),F=v8(b,S,f,m);v=n.makeTensorInfo(b,x.dtype,F.values)}else{let k=new xZ(m,f,b);v=n.runWebGLProgram(k,[x],x.dtype)}let T=ge({inputs:{x:v},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),T}var wZ={kernelName:dl,backendName:"webgl",kernelFunc:vZ},kZ="return tan(x);",IZ=Ke({opSnippet:kZ}),TZ={kernelName:hl,backendName:"webgl",kernelFunc:IZ},NZ=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,SZ=Ke({opSnippet:NZ}),CZ={kernelName:ci,backendName:"webgl",kernelFunc:SZ},EZ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=pt(this.rank),r=_Z(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function _Z(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function RN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"){let o=n.readSync(r.dataId).map(u=>w.decodeString(u)),l=Me(r.shape,r.dtype,o),c=k8(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new EZ(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var FZ={kernelName:Wr,backendName:"webgl",kernelFunc:RN};function AZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,c]=I8(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var $Z={kernelName:ml,backendName:"webgl",kernelFunc:AZ},DZ=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function RZ(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=a,[u,p,d,h]=r.shape,[m,f]=c!=null?c:[p,d],g=[u,m,f,h],y=new DZ(p,d,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var MZ={kernelName:Fd,backendName:"webgl",kernelFunc:RZ};function PZ(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ep(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=T8(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var OZ={kernelName:Ad,backendName:"webgl",kernelFunc:PZ};function LZ(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],c=new Array(o-1),u=0;for(let f=0;f<o;f++)f!==s&&(c[u++]=i.shape[f]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){d[s]=f;let g=rp({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),y=ge({inputs:{x:g},backend:n,attrs:{shape:c}});m[f]=y,p.push(g)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var zZ={kernelName:fl,backendName:"webgl",kernelFunc:LZ},WZ=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,p=`
sumValue += dot(values, segFilter);
`,d="";r%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${p}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${p}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${p}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${p}
}
setOutput(${l});
}
`}};function BZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],c=0,u=_.getAxesPermutation([c],o),p=r;u!=null&&(p=Fn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),c=_.getInnerMostAxes(1,o)[0]);let d=_.segment_util.computeOutShape(p.shape,c,i),h=w.sizeFromShape([p.shape[c]]),m=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Ld(r.dtype),g=(v,T,k,S,F)=>{let A=v.shape[0],R=v.shape[1],P=_.segment_util.segOpComputeOptimalWindowSize(R,F),z={windowSize:P,inSize:R,batchSize:A,numSegments:F},V=new WZ(z,T),G=n.compileAndRun(V,[v,k],S);if(l.push(G),G.shape[1]===F)return G;let H=AN({backend:n,attrs:{start:0,stop:F,step:1,dtype:"float32"}}),K=RN({inputs:{x:H},backend:n,attrs:{reps:[R/P]}});return l.push(H),l.push(K),g(G,T,K,S,F)},y=g(m,"unsortedSegmentSum",s,f,i),b=ge({inputs:{x:y},backend:n,attrs:{shape:d}}),x=b;if(u!=null){l.push(b);let v=_.getUndoAxesPermutation(u);x=Fn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var VZ={kernelName:tc,backendName:"webgl",kernelFunc:BZ},UZ=[$9,M9,vK,kK,NK,_K,FK,DK,MK,OK,BK,UK,jK,XK,nX,QK,sX,uX,oX,hX,fX,yX,wX,_X,FX,PX,LX,VX,HX,tK,XX,sY,oY,ZX,pY,hY,uY,gY,xY,kY,TY,SY,EY,MY,OY,AY,WY,UY,qY,JY,t7,r7,s7,i7,l7,c7,d7,m7,g7,v7,T7,S7,_7,A7,M7,z7,U7,eK,H7,KX,K7,J7,e9,aK,r9,l9,c9,y9,m9,w9,T9,_9,O9,H9,U9,X9,J9,Z9,B9,tJ,aJ,oJ,pJ,fJ,IJ,lK,NJ,_J,AJ,RJ,$X,OJ,zJ,BJ,GJ,KJ,sK,YJ,JJ,DX,xJ,eQ,lQ,rQ,cK,dQ,fQ,bQ,wQ,NQ,CQ,FQ,DQ,MQ,LQ,BQ,GQ,qQ,YQ,ZQ,SX,wJ,nZ,rZ,iZ,lZ,pZ,mZ,gZ,bZ,wZ,vJ,yK,TZ,CZ,FZ,$Z,MZ,bK,OZ,zZ,VZ,LJ];for(let e of UZ)ac(e);var GZ="3.3.0",HZ={"tfjs-core":D0,"tfjs-backend-cpu":pU,"tfjs-backend-webgl":Z8,"tfjs-data":iT,"tfjs-layers":Qh,"tfjs-converter":eT,tfjs:GZ},Gn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Gn||(Gn={}));var ip;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(ip||(ip={}));var MN;function jZ(e){MN=e.wasm.cwrap(di,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function qZ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let F=n.dataIdMap.get(i.dataId);if(F.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${F.shape.length}.`);m=F.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=ip[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=c?s.shape[1]:s.shape[2],x=r.shape[0],v=n.makeOutput([x,y,b],r.dtype),T=n.dataIdMap.get(v.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(s.shape).buffer);return MN(d,k,r.shape.length,h,S,s.shape.length,l,c,g,m,f,p||0,T),v}var KZ={kernelName:di,backendName:"wasm",setupFunc:jZ,kernelFunc:qZ};function An(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var XZ=An(xo);function yn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,p=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,m=_.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),b=o.dataIdMap.get(f.dataId).id,x=()=>a(p,g,c.shape.length,d,y,u.shape.length,Gn[c.dtype],b);if(t&&c.dtype==="float32")return x(),f;let v=_.getBroadcastDims(c.shape,m),T=_.getBroadcastDims(u.shape,m),k=v.every((F,A)=>F===A),S=T.every((F,A)=>F===A);if(k&&S)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var YZ=!0,JZ=yn(Lr,YZ),PN;function QZ(e){PN=e.wasm.cwrap(vs,null,["array","number","number","number"])}function ZZ(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return PN(s,r.length,Gn[a.dtype],i),a}var eee={kernelName:vs,backendName:"wasm",setupFunc:QZ,kernelFunc:ZZ};function Am(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var tee={kernelName:Os,backendName:"wasm",kernelFunc:Am},ON;function nee(e){ON=e.wasm.cwrap(pi,null,["number","array","number","number","number","array","number"])}function $m(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=ree(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=aee(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Am({inputs:t,backend:n});return m.shape=o,m}let c=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(c.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return ON(u,h,l.shape.length,Gn[l.dtype],p,d,s.length),c}function aee(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function ree(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var see={kernelName:pi,backendName:"wasm",kernelFunc:$m,setupFunc:nee};function ou(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,c=!1;if(o!=null){let u=new Array(r);for(let d=0;d<u.length;d++)u[d]=a[o[d]];i=_.getInnerMostAxes(i.length,r),l=$m({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(c=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:c}}var LN;function iee(e){LN=e.wasm.cwrap(ws,null,["number","number","number","number","number"])}function oee(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:c,axes:u,inputWasTransposed:p}=ou(s,r,t);if(p){let y=t.dataIdMap.get(c.dataId).id;y!==i&&(l=c,o=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),m=t.dataIdMap.get(h.dataId).id,f=w.sizeFromShape(h.shape),g=l.shape[u[0]];return LN(o,Gn[l.dtype],f,g,m),p&&t.disposeData(c.dataId),h}var lee={kernelName:ws,backendName:"wasm",kernelFunc:oee,setupFunc:iee},zN;function uee(e){zN=e.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cee(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.strideHeight,b=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let v=a.makeOutput(u.outShape,"float32"),T=a.dataIdMap.get(v.dataId).id;return zN(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,x,T),v}var pee={kernelName:ks,backendName:"wasm",setupFunc:uee,kernelFunc:cee};function Ra(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=w.sizeFromShape(a.shape),i=w.inferFromImplicitShape(r,s);return w.assert(s===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var dee={kernelName:al,backendName:"wasm",kernelFunc:Ra},WN;function hee(e){WN=e.wasm.cwrap(Is,null,["number","array","number","number","array","number","number","number","number"])}function mee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=g===y||g===1||y===1;w.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);w.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,u,d]:[g,d,u],T=o?[y,h,p]:[y,p,h],k=Ra({inputs:{x:r},backend:n,attrs:{shape:v}}),S=Ra({inputs:{x:s},backend:n,attrs:{shape:T}}),F=n.dataIdMap.get(k.dataId).id,A=n.dataIdMap.get(S.dataId).id,R=i?k.shape[2]:k.shape[1],P=o?S.shape[1]:S.shape[2],z=Math.max(g,y),V=n.makeOutput([z,R,P],k.dtype),G=n.dataIdMap.get(V.dataId).id,H=new Uint8Array(new Int32Array(k.shape).buffer),K=new Uint8Array(new Int32Array(S.shape).buffer);return WN(F,H,k.shape.length,A,K,S.shape.length,i,o,G),n.disposeData(k.dataId),n.disposeData(S.dataId),V.shape=x,V}var fee={kernelName:Is,backendName:"wasm",setupFunc:hee,kernelFunc:mee};function Dm(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var gee={kernelName:Ts,backendName:"wasm",kernelFunc:Dm},yee=An(Ns),BN;function bee(e){BN=e.wasm.cwrap(zr,null,["number","number","number","number"])}function xee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return BN(o,s,i,c),l}var vee={kernelName:zr,backendName:"wasm",setupFunc:bee,kernelFunc:xee};function wee(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let p=0;p<i.shape[1];++p)r[u+p]=o[l++]}s+=i.shape[1]})}return r}function kee(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}function VN(e,t,n,a,r){let s=an.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let p=an.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,c=Me(a,r,l),u=Me(n,r);for(let p=0;p<u.size;++p){let d=u.indexToLoc(p),h=d.map((m,f)=>m+t[f]);u.set(c.get(...h),...d)}return r==="string"?_.fromStringArrayToUint8(u.values):u.values}function UN(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>w.sizeFromShape(h.shape)>0);if(s.length===1)return Am({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=w.sizeFromShape(x.shape.slice(a));return Ra({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=_.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=wee(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=w.sizeFromShape(s[0].shape.slice(0,a)),c=0,u=s.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return c+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*c;for(let f=0;f<p.length;f++){let g=u[f],y=h*g,b=p[f].subarray(y,y+g);d.set(b,m),m+=g}}return i}var Iee={kernelName:Co,backendName:"wasm",kernelFunc:UN},GN;function Tee(e){GN=e.wasm.cwrap(Ss,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Nee(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p,dataFormat:d}=n,h=_.convertConv2DDataFormat(d),m=_.computeConv2DInfo(r.shape,s.shape,l,c,u,p,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,T=m.dilationHeight,k=m.dilationWidth,S=m.strideHeight,F=m.strideWidth,A=m.inChannels,R=m.outChannels,P=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let z=a.makeOutput(m.outShape,"float32"),V=a.dataIdMap.get(z.dataId).id;return GN(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,v,P,T,k,S,F,A,R,V),z}var See={kernelName:Ss,backendName:"wasm",setupFunc:Tee,kernelFunc:Nee},HN;function Cee(e){HN=e.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _ee(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,inputShape:u}=a,p=1,d=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(u,s.shape,i,p,o,c,!1,d),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:v,outHeight:T,outWidth:k,strideHeight:S,strideWidth:F}=h,A=f-1-h.padInfo.top,R=g-1-h.padInfo.left,P=h.dataFormat==="channelsLast",z=w.computeStrides(h.inShape),V=w.computeStrides(r.shape),[G,H,K]=w.computeStrides(s.shape),j=z[0],te=P?z[1]:z[2],Q=P?z[2]:1,se=P?1:z[1],ne=V[0],ie=P?V[1]:V[2],ee=P?V[2]:1,pe=P?1:V[1],oe=t.makeOutput(h.inShape,"float32"),fe=t.dataIdMap.get(oe.dataId).id,me=t.dataIdMap.get(r.dataId).id,we=t.dataIdMap.get(s.dataId).id;return HN(me,we,m,f,g,b,x,y,T,k,v,S,F,A,R,G,H,K,j,te,Q,se,ne,ie,ee,pe,fe),oe}var Eee={kernelName:Cs,backendName:"wasm",setupFunc:Cee,kernelFunc:_ee},Fee=An(_s),Tv;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Tv||(Tv={}));var jN;function Aee(e){jN=e.wasm.cwrap(Eo,null,["number","number","number","number","array","number","number","number","number","number"])}function $ee(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:c}=n,u=l.shape[0],[p,d]=i,h=[u,p,d,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Dm({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(c.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(o.shape).buffer);return jN(g,y,b,u,T,p,d,Tv[r],s,v),f!=null&&t.disposeData(f.dataId),x}var Dee={kernelName:Eo,backendName:"wasm",setupFunc:Aee,kernelFunc:$ee},qN;function Ree(e){qN=e.wasm.cwrap(Es,null,["number","number","number","number","number","number"])}function Mee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=_.getAxesPermutation([s],l),u=r;c!==null&&(u=$m({inputs:{x:r},attrs:{perm:c},backend:n}));let p=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;qN(m,i?1:0,o?1:0,h,f,Gn[r.dtype]);let g=d;if(c!==null){let y=_.getUndoAxesPermutation(c);g=$m({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return g}var Pee={kernelName:Es,backendName:"wasm",setupFunc:Ree,kernelFunc:Mee},KN;function Oee(e){KN=e.wasm.cwrap(Fo,null,["number","number","number","array","number","array","array","number","number"])}function Lee(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return KN(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,v),f}var zee={kernelName:Fo,backendName:"wasm",setupFunc:Oee,kernelFunc:Lee},XN;function Wee(e){XN=e.wasm.cwrap(Fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bee(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p}=n,d=c==null?[1,1]:c,h=_.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,T=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,F=h.inChannels,A=h.outChannels,R=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let P=a.makeOutput(h.outShape,"float32"),z=a.dataIdMap.get(P.dataId).id;return XN(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,R,v,T,k,S,F,A,z),P}var Vee={kernelName:Fs,backendName:"wasm",setupFunc:Wee,kernelFunc:Bee},Uee=!1,Gee=yn(Do,Uee,"bool"),Hee=An($s);function Nv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Ra({inputs:{x:r},backend:a,attrs:{shape:o}})}var jee={kernelName:Ro,backendName:"wasm",kernelFunc:Nv};function qee(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Kee={kernelName:Hu,backendName:"wasm",kernelFunc:qee},YN;function Xee(e){YN=e.wasm.cwrap(Po,null,["number","number","number","number","number","number"])}function Yee(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,c,u]=a.shape;return YN(s,o,l,c,u,i),r}var Jee={kernelName:Po,backendName:"wasm",kernelFunc:Yee,setupFunc:Xee},Qee=An(Ds),Zee=!1,ete=yn(Rs,Zee),JN;function tte(e){JN=e.wasm.cwrap(Ms,null,["number","number","number","number","number","number","number"])}function nte(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return JN(u,p,d,h,m,r,g),f}var ate={kernelName:Ms,backendName:"wasm",setupFunc:tte,kernelFunc:nte},QN;function rte(e){QN=e.wasm.cwrap(hi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ste(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d),g=ip[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ee=a.dataIdMap.get(i.dataId);if(ee.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ee.shape.length}.`);if(ee.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ee.shape}) does not match the number of output channels (${x})`);v=ee.id}let T=f.filterHeight,k=f.filterWidth,S=f.padInfo.top,F=f.padInfo.right,A=f.padInfo.bottom,R=f.padInfo.left,P=f.dilationHeight,z=f.dilationWidth,V=f.strideHeight,G=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,j=f.batchSize,te=f.inHeight,Q=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(se.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return QN(y,j,te,Q,b,T,k,v,S,F,A,R,K,P,z,V,G,H,x,g,ie,m||0,ne),se}var ite={kernelName:hi,backendName:"wasm",setupFunc:rte,kernelFunc:ste},ZN;function ote(e){ZN=e.wasm.cwrap(mi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function lte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d,!0),g=ip[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ee=a.dataIdMap.get(i.dataId);if(ee.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ee.shape.length}.`);if(ee.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ee.shape}) does not match the number of output channels (${x})`);v=ee.id}let T=f.filterHeight,k=f.filterWidth,S=f.padInfo.top,F=f.padInfo.right,A=f.padInfo.bottom,R=f.padInfo.left,P=f.dilationHeight,z=f.dilationWidth,V=f.strideHeight,G=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,j=f.batchSize,te=f.inHeight,Q=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(se.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return ZN(y,j,te,Q,b,T,k,v,S,F,A,R,K,P,z,V,G,H,x,g,ie,m||0,ne),se}var ute={kernelName:mi,backendName:"wasm",setupFunc:ote,kernelFunc:lte},eS;function cte(e){eS=e.wasm.cwrap(Lo,null,["number","number","number","number","number","number","array","number"])}function pte(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=qg.prepareAndValidate(a,r),c=t.makeOutput(s,a.dtype);if(i===0)return c;let u=r.shape,p=u[u.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return eS(d,Gn[a.dtype],h,i,p,o,m,f),c}var dte={kernelName:Lo,backendName:"wasm",setupFunc:cte,kernelFunc:pte},tS;function hte(e){tS=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function mte(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=Ra({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),p=w.sizeFromShape(s.shape),d=Ra({inputs:{x:s},attrs:{shape:[c.batchSize,p/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],m=t.makeOutput(h,r.dtype);if(w.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,g=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(w.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer);return tS(g,Gn[r.dtype],x,f,y,c.batchSize,v,b),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var fte={kernelName:Oo,backendName:"wasm",setupFunc:hte,kernelFunc:mte},gte=!1,yte=yn(zo,gte,"bool"),bte=!1,xte=yn(Ps,bte,"bool"),nS;function vte(e){nS=e.wasm.cwrap(Ls,null,["number","number","number"])}function wte(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;nS(r,n,i)}return s}var kte={kernelName:Ls,backendName:"wasm",setupFunc:vte,kernelFunc:wte},Ite=!1,Tte=yn(Uo,Ite,"bool"),Nte=!1,Ste=yn(Go,Nte,"bool"),Cte=An(zs),_te=!1,Ete=yn(jo,_te,"bool"),aS;function Fte(e){aS=e.wasm.cwrap(Ws,null,["number, number, number"])}function Ate(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:p,inputWasTransposed:d}=ou(i,r,t);if(d){let b=t.dataIdMap.get(c.dataId).id;l=c,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",u,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,u),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;aS(o,g,b)}if(d&&t.disposeData(c.dataId),s){let b=_.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var $te={kernelName:Ws,backendName:"wasm",setupFunc:Fte,kernelFunc:Ate},Dte=!1,Rte=yn(Bs,Dte),rS;function Mte(e){rS=e.wasm.cwrap(Vs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pte(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,b=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,T=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(u.outShape,"float32"),F=a.dataIdMap.get(S.dataId).id;return rS(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,x,v,T,k,F),S}var Ote={kernelName:Vs,backendName:"wasm",setupFunc:Mte,kernelFunc:Pte},sS;function Lte(e){sS=e.wasm.cwrap(Us,null,["number, number, number"])}function zte(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=ou(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=c;c.dtype!=="float32"&&(b=Dm({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;sS(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(b.dataId),x}var Wte={kernelName:Us,backendName:"wasm",setupFunc:Lte,kernelFunc:zte},iS;function Bte(e){iS=e.wasm.cwrap(Gs,null,["number, number, number"])}function Vte(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=ou(i,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let m=c.shape.length;_.assertAxesAreInnerMostDims("min",p,m);let[f,g]=_.computeOutAndReduceShapes(c.shape,p),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;iS(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var Ute={kernelName:Gs,backendName:"wasm",setupFunc:Bte,kernelFunc:Vte},Gte=!1,Hte=yn(Hs,Gte),jte=!0,qte=yn(js,jte),Kte=An(Ko);function Sv(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var oS;function Xte(e){oS=e.wasm.cwrap(Yo,"number",["number","number","number","number","number"])}function Yte(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=oS(c,u,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=Sv(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var Jte={kernelName:Yo,backendName:"wasm",setupFunc:Xte,kernelFunc:Yte},lS;function Qte(e){lS=e.wasm.cwrap(Jo,"number",["number","number","number","number","number","bool"])}function Zte(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=lS(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Sv(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var ene={kernelName:Jo,backendName:"wasm",setupFunc:Qte,kernelFunc:Zte},uS;function tne(e){uS=e.wasm.cwrap(Qo,"number",["number","number","number","number","number","number"])}function nne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=uS(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Sv(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var ane={kernelName:Qo,backendName:"wasm",setupFunc:tne,kernelFunc:nne},rne=!1,sne=yn(Xo,rne,"bool"),cS;function ine(e){cS=e.wasm.cwrap(qs,null,["number","number","number","number","number"])}function one(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return cS(u,s,i,o,c),l}var lne={kernelName:qs,backendName:"wasm",setupFunc:ine,kernelFunc:one};function une(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var cne={kernelName:Zo,backendName:"wasm",kernelFunc:une};function pne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Nv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=Nv({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=UN({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeData(u.dataId)),c}var dne={kernelName:el,backendName:"wasm",kernelFunc:pne},pS;function hne(e){pS=e.wasm.cwrap(Ks,null,["number","array","number","number","array","array","number","number"])}function mne(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return pS(i,c,t.shape.length,Gn[t.dtype],d,h,r,l),o}var fne={kernelName:Ks,backendName:"wasm",kernelFunc:mne,setupFunc:hne},gne=!1,yne=yn(Xs,gne),dS;function bne(e){dS=e.wasm.cwrap(Ys,null,["number","number","number"])}function xne(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return dS(s,i,l),o}var vne={kernelName:Ys,backendName:"wasm",setupFunc:bne,kernelFunc:xne},hS;function wne(e){hS=e.wasm.cwrap(tl,null,["number","number","number","number"])}function kne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=ou(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;hS(l,y,Gn[b.dtype],x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var Ine={kernelName:tl,backendName:"wasm",setupFunc:wne,kernelFunc:kne},Tne=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=kee(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Nne={kernelName:Ju,backendName:"wasm",kernelFunc:Tne},Sne=!0,Cne=yn(As,Sne),_ne=An(Js),Ene=An(Zs),mS;function Fne(e){mS=e.wasm.cwrap(Qs,null,["number","number","number","number","number","number","number","number","number","number"])}function Ane(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,[u,p,d,h]=r.shape,m=[u,l,c,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Dm({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return mS(y,u,p,d,h,l,c,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var $ne={kernelName:Qs,backendName:"wasm",setupFunc:Fne,kernelFunc:Ane},fS;function Dne(e){fS=e.wasm.cwrap(ei,null,["number","array","number","array","number","number"])}function Rne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return Am({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);fS(l,u,i.length,p,r.shape.length,c);let d=Ra({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),d}var Mne={kernelName:ei,backendName:"wasm",kernelFunc:Rne,setupFunc:Dne},gS;function Pne(e){gS=e.wasm.cwrap(yl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function One(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=_.getImageCenter(o,d,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(x).buffer);return gS(c,p,d,h,m,s,f,g,v,x.length,u),l}var Lne={kernelName:yl,backendName:"wasm",kernelFunc:One,setupFunc:Pne},zne=An(ti),Wne=An(ni),yS;function Bne(e){yS=e.wasm.cwrap(rl,null,["number","number","number","number","number","number","array","number","number"])}function Vne(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=Kg.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return yS(h,m,Gn[s.dtype],l,c,u,f,d,g),o}var Une={kernelName:rl,backendName:"wasm",setupFunc:Bne,kernelFunc:Vne},bS;function Gne(e){bS=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Hne(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:w.sizeFromShape(r.shape.slice(1));return bS(i,o,l,h,u),c}var jne={kernelName:sl,backendName:"wasm",kernelFunc:Hne,setupFunc:Gne},xS;function qne(e){xS=e.wasm.cwrap(ri,null,["number","number"])}function Kne(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||xS(a,s),r}var Xne={kernelName:"Sigmoid",backendName:"wasm",setupFunc:qne,kernelFunc:Kne},Yne=An(ai);function Rm(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=an.parseSliceParams(t,n,a),o=an.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),c=r.makeOutput(i,t.dtype),u=w.computeStrides(t.shape),p=r.dataIdMap.get(c.dataId);if(o){let m=an.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(c).set(l.subarray(m,m+w.sizeFromShape(i))),c}if(t.dtype==="string"){let m=VN(l,s,i,t.shape,t.dtype);return p.stringBytes=m,c}let d=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Jne(l,u[0],d,s,i);else if(h===3)Qne(l,u[0],u[1],d,s,i);else if(h===4)Zne(l,u[0],u[1],u[2],d,s,i);else{let m=VN(l,s,i,t.shape,t.dtype);d.set(m)}return c}function Jne(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let c=i;c<l;c++){let u=c*t+o;n.set(e.subarray(u,u+r[1]),s),s+=r[1]}}function Qne(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],c=r[2],u=o+s[0],p=l+s[1];for(let d=o;d<u;d++)for(let h=l;h<p;h++){let m=d*t+h*n+c;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Zne(e,t,n,a,r,s,i){let o=0,l=s[0],c=s[1],u=s[2],p=l+i[0],d=c+i[1],h=u+i[2],m=s[3];for(let f=l;f<p;f++)for(let g=c;g<d;g++)for(let y=u;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var eae={kernelName:ol,backendName:"wasm",kernelFunc:Rm},vS;function tae(e){vS=e.wasm.cwrap(oi,null,["number","number","number","number"])}function nae(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||vS(r,i,o,l),s}var aae={kernelName:oi,backendName:"wasm",setupFunc:tae,kernelFunc:nae};function rae(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let d=[...u];d[o]=p;let h=Rm({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return c[o]+=p,h})}var sae={kernelName:pl,backendName:"wasm",kernelFunc:rae},iae=An(si),oae=An(ec),lae=!0,uae=yn(li,lae),wS;function cae(e){wS=e.wasm.cwrap(Br,null,["number","number","number"])}function pae(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return wS(i,r,l),o}var dae={kernelName:Br,backendName:"wasm",setupFunc:cae,kernelFunc:pae},kS;function hae(e){kS=e.wasm.cwrap(dl,null,["number","array","number","array","array","array","array","array","number","number"])}function mae(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,h=_.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=_.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(R=>{s[R]=0,i[R]=1,g.splice(R,0,1)});let y=Ra({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:x,strides:v}=_.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,c,u);s=b,i=x,o=v;let T=_.slice_util.maskToAxes(d);T.forEach(R=>{i[R]=s[R]+1,o[R]=1});let k=_.slice_util.computeOutShape(s,i,o),S=k.filter((R,P)=>T.indexOf(P)===-1);if(o.every(R=>R===1)){let R=Rm({inputs:{x:y},attrs:{begin:s,size:k},backend:t});t.disposeData(y.dataId);let P=Ra({inputs:{x:R},attrs:{shape:S},backend:t});return t.disposeData(R.dataId),P}let F=t.makeOutput(S,"float32");if(!S.some(R=>R===0)){let R=t.dataIdMap.get(y.dataId).id,P=new Uint8Array(new Int32Array(w.computeStrides(y.shape)).buffer),z=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),G=new Uint8Array(new Int32Array(o).buffer),H=new Uint8Array(new Int32Array(S).buffer),K=new Uint8Array(new Int32Array(w.computeStrides(S)).buffer),j=t.dataIdMap.get(F.dataId).id;kS(R,P,y.shape.length,z,V,G,H,K,S.length,j)}t.disposeData(y.dataId);let A=Ra({inputs:{x:F},attrs:{shape:S},backend:t});return t.disposeData(F.dataId),A}var fae={kernelName:dl,backendName:"wasm",setupFunc:hae,kernelFunc:mae},gae=!0,yae=yn(ui,gae),IS;function bae(e){IS=e.wasm.cwrap(ii,null,["number, number, number"])}function xae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=ou(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;IS(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var vae={kernelName:ii,backendName:"wasm",setupFunc:bae,kernelFunc:xae},wae=An(ci),TS;function kae(e){TS=e.wasm.cwrap(Wr,null,["number","array","number","array","number","number"])}function Iae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(u.dataId).id;return TS(s,l,r.shape.length,c,o.length,Gn[u.dtype],p),u}var Tae={kernelName:Wr,backendName:"wasm",setupFunc:kae,kernelFunc:Iae},NS;function Nae(e){NS=e.wasm.cwrap(ml,null,["number","array","number","number","number","bool","number","number"])}var Sae=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(c.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return NS(i,o,a.shape.length,Gn[a.dtype],r,s,u,d),[c,p]},Cae={kernelName:ml,backendName:"wasm",setupFunc:Nae,kernelFunc:Sae};function _ae(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==s&&(l[c++]=r.shape[h]);let u=new Array(i),p=new Array(o).fill(0),d=r.shape.slice();d[s]=1;for(let h=0;h<u.length;h++)p[s]=h,u[h]=Rm({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return u.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var Eae={kernelName:fl,backendName:"wasm",kernelFunc:_ae};function Fae(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Aae={kernelName:gl,backendName:"wasm",kernelFunc:Fae},$ae=[XZ,JZ,eee,lee,pee,fee,gee,yee,vee,Iee,See,Eee,Fee,Dee,Pee,zee,Vee,Gee,Hee,jee,Kee,Jee,Qee,ete,KZ,ate,ite,ute,dte,fte,yte,xte,tee,kte,Tte,Ste,Cte,Ete,$te,Rte,Ote,Wte,Ute,Hte,qte,Kte,Jte,ene,ane,sne,lne,cne,dne,fne,yne,vne,Ine,Nne,Cne,_ne,Ene,dee,$ne,Mne,Lne,Wne,zne,Une,jne,Xne,Yne,eae,aae,sae,iae,oae,uae,dae,fae,yae,vae,wae,Tae,Cae,see,Eae,Aae];for(let e of $ae)ac(e);var Cv=Z();Cv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Cv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Cv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var SS=go(B_()),Dae='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Rae=go(V_()),CS=class extends Pu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Jp(this,Va())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(a)*w.bytesPerElement(n));return Mae(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Pae(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function _S(e,t,n){if(Mm!=null)return Mm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),op!=null&&op[a]!=null?op[a]:n+a}async function Oae(){let[e,t]=await Promise.all([Z().getAsync("WASM_HAS_SIMD_SUPPORT"),Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=Dae,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?_S(e,t,lp!=null?lp:l):l+o},_v&&(r.instantiateWasm=Pae(_S(e,t,lp!=null?lp:"")));let s=!1;r.onAbort=()=>{s||up||(up=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Mm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+SS.default.toString()],{type:"text/javascript"}),i=(0,SS.default)(r)):i=(0,Rae.default)(r),i.then(o=>{s=!0,up=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function Mae(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Lae=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Mm=null,lp=null,op={},up=!1,_v=!1;function zae(e,t=!1){if(ey("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),up)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Mm=e,_v=t}function Wae(e,t=!1){if(up)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")lp=e;else{op=e;let n=Lae.filter(a=>op[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}_v=t}var Bae="3.3.0",Vae=2;Gd("wasm",async()=>{let{wasm:e}=await Oae();return new CS(e)},Vae);var nre={};bg(nre,{AnchorPosition:()=>sr,DrawBox:()=>Vm,DrawBoxOptions:()=>Lv,DrawFaceLandmarks:()=>Uv,DrawFaceLandmarksOptions:()=>Vv,DrawTextField:()=>ds,DrawTextFieldOptions:()=>hp,drawContour:()=>Ir,drawDetections:()=>Qae,drawFaceExpressions:()=>Zae,drawFaceLandmarks:()=>tre});function Ir(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var Uae={};bg(Uae,{computeReshapedDimensions:()=>Av,getCenterPoint:()=>Hi,isDimensions:()=>Om,isEven:()=>Pm,isFloat:()=>Fv,isTensor:()=>Ui,isTensor1D:()=>Gae,isTensor2D:()=>Ev,isTensor3D:()=>Tr,isTensor4D:()=>aa,isValidNumber:()=>Ma,isValidProbablitiy:()=>lu,range:()=>ar,round:()=>Gi});var $n=class{constructor(t,n){if(!Ma(t)||!Ma(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new $n(1/this.width,1/this.height)}};function Ui(e,t){return e instanceof Ee&&e.shape.length===t}function Gae(e){return Ui(e,1)}function Ev(e){return Ui(e,2)}function Tr(e){return Ui(e,3)}function aa(e){return Ui(e,4)}function Fv(e){return e%1!=0}function Pm(e){return e%2==0}function Gi(e,t=2){let n=10**t;return Math.floor(e*n)/n}function Om(e){return e&&e.width&&e.height}function Av({width:e,height:t},n){let a=n/Math.max(t,e);return new $n(Math.round(e*a),Math.round(t*a))}function Hi(e){return e.reduce((t,n)=>t.add(n),new Re(0,0)).div(new Re(e.length,e.length))}function ar(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Ma(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function lu(e){return Ma(e)&&e>=0&&e<=1}var Re=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Re(this.x+t.x,this.y+t.y)}sub(t){return new Re(this.x-t.x,this.y-t.y)}mul(t){return new Re(this.x*t.x,this.y*t.y)}div(t){return new Re(this.x/t.x,this.y/t.y)}abs(){return new Re(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Re(Math.floor(this.x),Math.floor(this.y))}};var dt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Ma)}static assertIsValidBox(t,n,a=!1){if(!dt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Ma),s=[a.x,a.y,a.width,a.height].every(Ma);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,c]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];dt.assertIsValidBox({x:i,y:o,width:l,height:c},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=c}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Re(this.left,this.top)}get topRight(){return new Re(this.right,this.top)}get bottomLeft(){return new Re(this.left,this.bottom)}get bottomRight(){return new Re(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new dt({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new dt({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new dt({x:t,y:n,width:a,height:r})}rescale(t){let n=Om(t)?t.width:t,a=Om(t)?t.height:t;return new dt({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new dt({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),c=s-o,u=i-l,p=Math.min(c,t-o),d=Math.min(u,n-l);return new dt({x:o,y:l,width:p,height:d}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new dt({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,c=this.left,u=this.top,p=this.right,d=this.bottom;return p>n&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),c<1&&(l=2-c,c=1),u<1&&(l=2-u,u=1),{dy:i,edy:l,dx:s,edx:o,y:u,ey:d,x:c,ex:p,w:a,h:r}}calibrate(t){return new dt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var cp=class extends dt{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var ji=class{constructor(t,n,a,r,s){this._imageDims=new $n(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new dt(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new dt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new ji(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var kt=class extends ji{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new kt(a,r,s)}};function ES(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function FS(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,Infinity),r=n.reduce((o,l)=>l<o?l:o,Infinity),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new cp(a,r,s,i)}function AS(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let c=0;c<o.length;c++){let u=o[c],p=e[i],d=e[u];l.push(ES(p,d,a))}r=r.filter((c,u)=>l[u]<=n)}return s}function rr(e,t){return D(()=>{let[n,a,r]=t,s=Sn([...e.shape.slice(0,3),1],n,"float32"),i=Sn([...e.shape.slice(0,3),1],a,"float32"),o=Sn([...e.shape.slice(0,3),1],r,"float32"),l=Je([s,i,o],3);return he(e,l)})}function $S(e,t=!1){return D(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,Sn(h,0,"float32")},l=o(s),c=r-l.shape[i],p=[t&&c?o(c):null,e,l].filter(d=>!!d).map(d=>ue(d,"float32"));return Je(p,i)})}function zce(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Lm(e){return 1/(1+Math.exp(-e))}function qce(e){return Math.log(e/(1-e))}var pp=class extends dt{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Hae=.5,jae=.43,qae=.45,ba=class{constructor(t,n,a=new Re(0,0)){let{width:r,height:s}=n;this._imgDims=new $n(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Re(r,s)).add(a))}get shift(){return new Re(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Re(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Re(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof kt?t.box.floor():new dt(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/qae),l=Hi(t),c=Math.floor(Math.max(0,l.x-Hae*o)),u=Math.floor(Math.max(0,l.y-jae*o));return new pp(c,u,Math.min(o,this.imageWidth+c),Math.min(o,this.imageHeight+u))}alignMinBbox(t){let n=FS(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Kae=class extends ba{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Hi([t[3],t[4]])]}};var dp=class extends ba{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Hi)}};var zm=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Gi(this.distance)})`:""}`}};var Wm=class extends dt{static assertIsValidLabeledBox(t,n){if(dt.assertIsValidBox(t,n),!Ma(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var ps=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new ps(t.label,n)}};var Xae=class extends Wm{static assertIsValidPredictedBox(t,n){if(Wm.assertIsValidLabeledBox(t,n),!lu(t.score)||!lu(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function Nr(e){return e.detection instanceof kt}function uu(e,t){return{...e,...{detection:t}}}function $v(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Bm(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Dv(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=Bm();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function Rv(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}function Mv(){return typeof global=="object"&&!0&&typeof module!="undefined"&&typeof process!="undefined"&&!!process.version}var Zt;function Yae(){if(!Zt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Zt}function Pv(e){Zt=e}function Ov(){return Rv()?Pv($v()):Mv()?Pv(Dv()):null}function Jae(e){if(Zt||Ov(),!Zt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Zt.Canvas,Image:n=Zt.Image}=e;Zt.Canvas=t,Zt.Image=n,Zt.createCanvasElement=e.createCanvasElement||(()=>new t),Zt.createImageElement=e.createImageElement||(()=>new n),Zt.ImageData=e.ImageData||Zt.ImageData,Zt.Video=e.Video||Zt.Video,Zt.fetch=e.fetch||Zt.fetch,Zt.readFile=e.readFile||Zt.readFile}var st={getEnv:Yae,setEnv:Pv,initialize:Ov,createBrowserEnv:$v,createFileSystem:Bm,createNodejsEnv:Dv,monkeyPatch:Jae,isBrowser:Rv,isNodejs:Mv};Ov();function cu(e){return!st.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Hn(e){let{Canvas:t,CanvasRenderingContext2D:n}=st.getEnv();if(e instanceof n)return e;let a=cu(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var sr;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(sr||(sr={}));var hp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||sr.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},ds=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof ds?t.text:t,this.anchor=n,this.options=new hp(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a===sr.BOTTOM_RIGHT||a===sr.TOP_RIGHT,s=a===sr.BOTTOM_LEFT||a===sr.BOTTOM_RIGHT,i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,c=s?this.anchor.y-o:this.anchor.y;if(n){let{width:u,height:p}=n,d=Math.max(Math.min(l,u-i),0),h=Math.max(Math.min(c,p-o),0);return{x:d,y:h}}return{x:l,y:c}}draw(t){let n=cu(t),a=Hn(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let c=this.measureWidth(a),u=this.measureHeight();a.fillStyle=r;let p=this.getUpperLeft(a,n);a.fillRect(p.x,p.y,c,u),a.fillStyle=s,this.text.forEach((d,h)=>{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var Lv=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:sr.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new hp({...i,...s})}},Vm=class{constructor(t,n={}){this.box=new dt(t),this.options=new Lv(n)}draw(t){let n=Hn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:c}=this.options;c&&new ds([c],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Qae(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof kt?a.score:Nr(a)?a.detection.score:void 0,s=a instanceof kt?a.box:Nr(a)?a.detection.box:new dt(a),i=r?`${Gi(r)}`:void 0;new Vm(s,{label:i}).draw(e)})}function Um(e){let{Image:t,Video:n}=st.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function DS(e){return new Promise((t,n)=>{if(e instanceof st.getEnv().Canvas||Um(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function RS(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=st.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function pu(e){let{Image:t,Video:n}=st.getEnv();return e instanceof t?new $n(e.naturalWidth,e.naturalHeight):e instanceof n?new $n(e.videoWidth,e.videoHeight):new $n(e.width,e.height)}function du({width:e,height:t}){let{createCanvasElement:n}=st.getEnv(),a=n();return a.width=e,a.height=t,a}function Gm(e,t){let{ImageData:n}=st.getEnv();if(!(e instanceof n)&&!Um(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||pu(e),s=du({width:a,height:r});return e instanceof n?Hn(s).putImageData(e,0,0):Hn(s).drawImage(e,0,0,a,r),s}async function MS(e,t){let n=t||st.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(aa(e)?1:0),i=D(()=>e.as3D(a,r,s).toInt());return await bi.toPixels(i,n),i.dispose(),n}function zv(e){let{Image:t,Canvas:n,Video:a}=st.getEnv();return e instanceof t||e instanceof n||e instanceof a}function PS(e,t,n=!1){let{Image:a,Canvas:r}=st.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return du({width:1,height:1});let s=pu(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,c=du({width:t,height:t}),u=e instanceof r?e:Gm(e),p=Math.abs(o-l)/2,d=n&&o<l?p:0,h=n&&l<o?p:0;return u.width>0&&u.height>0&&Hn(c).drawImage(u,d,h,o,l),c}var hs=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Tr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(aa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof st.getEnv().Canvas?a:Gm(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ar(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return Av({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,D(()=>{let a=ar(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ee){let o=aa(i)?i:hn(i);return o=$S(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ka.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof st.getEnv().Canvas)return bi.fromPixels(PS(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Dt(a.map(s=>ue(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function ft(e){if(e instanceof hs)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(cu);return a.forEach((r,s)=>{if(!zv(r)&&!Tr(r)&&!aa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(aa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>zv(r)&&DS(r))),new hs(a,Array.isArray(e))}async function mp(e,t){let{Canvas:n}=st.getEnv(),a=e;if(!(e instanceof n)){let i=await ft(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await MS(o)}let r=Hn(a);return t.map(i=>i instanceof kt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:c})=>{let u=du({width:l,height:c});return l>0&&c>0&&Hn(u).putImageData(r.getImageData(i,o,l,c),0,0),u})}async function fp(e,t){if(!Tr(e)&&!aa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(aa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return D(()=>{let[n,a,r]=e.shape.slice(aa(e)?1:0);return t.map(o=>o instanceof kt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:c,height:u})=>Dl(e.as3D(n,a,r),[l,o,0],[u,c,r]))})}async function hu(e,t){let{fetch:n}=st.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function hhe(e){let t=await hu(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return RS(n)}async function OS(e){return(await hu(e)).json()}async function bhe(e){return new Float32Array(await(await hu(e)).arrayBuffer())}function Hm(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function LS(e,t){let{manifestUri:n,modelBaseUri:a}=Hm(e,t),r=await OS(n);return jt.loadWeights(r,a)}function She(e,t,n=!1){let{width:a,height:r}=n?pu(t):t;return e.width=a,e.height=r,{width:a,height:r}}var cn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof Vr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof Vr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Yn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await LS(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=st.getEnv(),{manifestUri:a,modelBaseUri:r}=Hm(t,this.getDefaultModelName()),s=c=>Promise.all(c.map(u=>n(u).then(p=>p.buffer))),i=jt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ee))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Dn(e,t,n){return D(()=>{let a=Ni(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=J(a,t.bias),a})}function jm(e,t,n=!1){return D(()=>{let a=qe(n?J(At(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Dn(e,t.conv0,[2,2])),r=Dn(a,t.conv1,[1,1]),s=qe(J(a,r)),i=Dn(s,t.conv2,[1,1]);return qe(J(a,J(r,i)))})}function gp(e,t,n=!1,a=!0){return D(()=>{let r=qe(n?J(At(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Dn(e,t.conv0,a?[2,2]:[1,1])),s=Dn(r,t.conv1,[1,1]),i=qe(J(r,s)),o=Dn(i,t.conv2,[1,1]),l=qe(J(r,J(s,o))),c=Dn(l,t.conv3,[1,1]);return qe(J(r,J(s,J(o,c))))})}function qi(e,t,n="same",a=!1){return D(()=>{let r=J(At(e,t.filters,[1,1],n),t.bias);return a?qe(r):r})}function bn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function mu(e,t){return(n,a,r,s)=>{let i=Na(e(n*a*r*r),[r,r,n,a]),o=Qe(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function qm(e,t){return(n,a,r)=>{let s=Ta(e(n*a),[n,a]),i=Qe(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Km=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function fu(e,t){return(n,a,r)=>{let s=Na(e(3*3*n),[3,3,n,1]),i=Na(e(n*a),[1,1,n,a]),o=Qe(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Km(s,i,o)}}function gu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Km(n,a,r)}}function jn(e,t){return(n,a,r)=>{let s=e[n];if(!Ui(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function xn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Xm(e,t){let n=mu(e,t),a=fu(e,t);function r(i,o,l,c=!1){let u=c?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:u,conv1:p,conv2:d}}function s(i,o,l,c=!1){let{conv0:u,conv1:p,conv2:d}=r(i,o,l,c),h=a(o,o,`${l}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function zS(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock4Params:r}=Xm(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Ym(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function Jm(e,t){let n=jn(e,t),a=Ym(n),r=gu(n);function s(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:c,conv1:u,conv2:p}}function i(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:c,conv1:u,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function WS(e){let t=[],{extractDenseBlock4Params:n}=Jm(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return bn(e,t),{params:a,paramMappings:t}}var yp=class extends cn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=rr(a,[122.782,117.001,104.298]).div(255),i=gp(s,n.dense0,!0);return i=gp(i,n.dense1),i=gp(i,n.dense2),i=gp(i,n.dense3),i=Qn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await ft(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return WS(t)}extractParams(t){return zS(t)}};function bp(e,t){return D(()=>J(ze(e,t.weights),t.bias))}function BS(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=xn(e),o=qm(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function VS(e){let t=[],n=jn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return bn(e,t),{params:r,paramMappings:t}}function Qm(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var xp=class extends cn{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof hs?this.faceFeatureExtractor.forwardInput(t):t;return bp(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return BS(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Qm(t);return this.faceFeatureExtractor.loadFromWeightMap(n),VS(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var US=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Ki=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);US.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return US.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Wv=class extends xp{constructor(t=new yp){super("FaceExpressionNet",t)}forwardInput(t){return D(()=>Ia(this.runNet(t)))}async forward(t){return this.forwardInput(await ft(t))}async predictExpressions(t){let n=await ft(t),a=await this.forwardInput(n),r=await Promise.all(lt(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Ki(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function GS(e){return e.expressions instanceof Ki}function Bv(e,t){return{...e,...{expressions:t}}}function Zae(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Ki?s:GS(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),c=Nr(s)?s.detection.box.bottomLeft:a||new Re(0,0);new ds(l.map(p=>`${p.expression} (${Gi(p.probability)})`),c).draw(e)})}function yu(e){return Nr(e)&&e.landmarks instanceof ba&&e.unshiftedLandmarks instanceof ba&&e.alignedRect instanceof kt}function ere(e){let t=(o,l,c,u)=>Math.atan2(u-l,c-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,Infinity),i=r.reduce((o,l)=>o>l._y?o:l._y,-Infinity);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function vp(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new kt(e.detection.score,r.rescale(s.reverse()),s),o=ere(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var Vv=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},Uv=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new Vv(n)}draw(t){let n=Hn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof dp&&(n.strokeStyle=i,n.lineWidth=s,Ir(n,this.faceLandmarks.getJawOutline()),Ir(n,this.faceLandmarks.getLeftEyeBrow()),Ir(n,this.faceLandmarks.getRightEyeBrow()),Ir(n,this.faceLandmarks.getNose()),Ir(n,this.faceLandmarks.getLeftEye(),!0),Ir(n,this.faceLandmarks.getRightEye(),!0),Ir(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let c=u=>{n.beginPath(),n.arc(u.x,u.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(c)}}};function tre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ba?a:yu(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new Uv(r).draw(e)})}var HS="1.1.6";function are(e,t){let n=mu(e,t),a=fu(e,t);function r(i,o,l){let c=a(i,o,`${l}/separable_conv0`),u=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),c=a(i,i,`${o}/separable_conv1`),u=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function jS(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=xn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=are(a,n),c=s(3,32,3,"entry_flow/conv_in"),u=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:c,reduction_block_0:u,reduction_block_1:p},h={};ar(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function rre(e,t){let n=jn(e,t),a=Ym(n),r=gu(n);function s(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:u}}function i(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function qS(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=rre(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),c=s("entry_flow/reduction_block_1"),u={conv_in:o,reduction_block_0:l,reduction_block_1:c},p={};ar(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return bn(e,n),{params:{entry_flow:u,middle_flow:p,exit_flow:m},paramMappings:n}}function KS(e,t,n){return J(At(e,t.filters,n,"same"),t.bias)}function Gv(e,t,n=!0){let a=n?qe(e):e;return a=Dn(a,t.separable_conv0,[1,1]),a=Dn(qe(a),t.separable_conv1,[1,1]),a=$t(a,[3,3],[2,2],"same"),a=J(a,KS(e,t.expansion_conv,[2,2])),a}function sre(e,t){let n=Dn(qe(e),t.separable_conv0,[1,1]);return n=Dn(qe(n),t.separable_conv1,[1,1]),n=Dn(qe(n),t.separable_conv2,[1,1]),n=J(n,e),n}var Hv=class extends cn{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=rr(a,[122.782,117.001,104.298]).div(255),i=qe(KS(s,n.entry_flow.conv_in,[2,2]));return i=Gv(i,n.entry_flow.reduction_block_0,!1),i=Gv(i,n.entry_flow.reduction_block_1),ar(this._numMainBlocks,0,1).forEach(o=>{i=sre(i,n.middle_flow[`main_block_${o}`])}),i=Gv(i,n.exit_flow.reduction_block),i=qe(Dn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await ft(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return qS(t,this._numMainBlocks)}extractParams(t){return jS(t,this._numMainBlocks)}};function XS(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),r=qm(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function YS(e){let t=[],n=jn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return bn(e,t),{params:r,paramMappings:t}}var ms;(function(e){e.FEMALE="female",e.MALE="male"})(ms||(ms={}));var jv=class extends cn{constructor(t=new Hv(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof hs?this.faceFeatureExtractor.forwardInput(t):t,r=Qn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=bp(r,n.fc.age).as1D(),i=bp(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return D(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Ia(a)}})}async forward(t){return this.forwardInput(await ft(t))}async predictAgeAndGender(t){let n=await ft(t),a=await this.forwardInput(n),r=lt(a.age),s=lt(a.gender),i=r.map((l,c)=>({ageTensor:l,genderTensor:s[c]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:c})=>{let u=l.dataSync()[0],p=c.dataSync()[0],d=p>.5,h=d?ms.MALE:ms.FEMALE,m=d?p:1-p;return l.dispose(),c.dispose(),{age:u,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return XS(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Qm(t);return this.faceFeatureExtractor.loadFromWeightMap(n),YS(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var wp=class extends xp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return D(()=>{let i=(p,d)=>Dt([Sn([68],p,"float32"),Sn([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>d<h),c=p=>o(p,(d,h)=>h<d);return t.mul(Sn([s,136],n,"float32")).sub(Dt(Array.from(Array(s),(p,d)=>i(l(d),c(d))))).div(Dt(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return D(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await ft(t))}async detectLandmarks(t){let n=await ft(t),a=D(()=>lt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((u,p)=>Pm(p)),c=o.filter((u,p)=>!Pm(p));return new dp(Array(68).fill(0).map((u,p)=>new Re(l[p],c[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var kp=class extends wp{constructor(t=new yp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function JS(e){let t=[],{extractDenseBlock3Params:n}=Jm(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return bn(e,t),{params:a,paramMappings:t}}function QS(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock3Params:r}=Xm(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var qv=class extends cn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=rr(a,[122.782,117.001,104.298]).div(255),i=jm(s,n.dense0,!0);return i=jm(i,n.dense1),i=jm(i,n.dense2),i=Qn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await ft(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return JS(t)}extractParams(t){return QS(t)}};var Kv=class extends wp{constructor(t=new qv){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var ire=class extends kp{};function ZS(e,t){return J(W(e,t.weights),t.biases)}function Xv(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=At(e,s,n,r);return o=J(o,i),o=ZS(o,t.scale),a?qe(o):o}function eC(e,t){return Xv(e,t,[1,1],!0)}function Yv(e,t){return Xv(e,t,[1,1],!1)}function Zm(e,t){return Xv(e,t,[2,2],!0,"valid")}function ore(e,t){function n(o,l,c){let u=e(o),p=u.length/(l*c*c);if(Fv(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${u.length}, numFilters: ${l}, filterSize: ${c}`);return D(()=>Ve(Na(u,[l,p,c,c]),[2,3,1,0]))}function a(o,l,c,u){let p=n(o,l,c),d=Qe(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:p,bias:d}}function r(o,l){let c=Qe(e(o)),u=Qe(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:u}}function s(o,l,c,u){let p=a(o,l,c,`${u}/conv`),d=r(l,`${u}/scale`);return{conv:p,scale:d}}function i(o,l,c,u,p=!1){let d=s((p?.5:1)*o,l,c,`${u}/conv1`),h=s(o,l,c,`${u}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function tC(e){let{extractWeights:t,getRemainingWeights:n}=xn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=ore(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),c=s(9216,32,3,"conv32_3"),u=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),T=D(()=>Ve(Ta(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:c,conv64_down:u,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:v,fc:T},paramMappings:a}}function lre(e,t){let n=jn(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),c=a(i);return{conv:{filters:o,bias:l},scale:c}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function nC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=lre(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),c=a("conv64_1"),u=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!Ev(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:c,conv64_2:u,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return bn(e,t),{params:v,paramMappings:t}}function Pa(e,t){let n=eC(e,t.conv1);return n=Yv(n,t.conv2),n=J(n,e),n=qe(n),n}function Ip(e,t){let n=Zm(e,t.conv1);n=Yv(n,t.conv2);let a=Qn(e,2,2,"valid"),r=bt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=bt(o);n=Je([n,l],1);let c=[...n.shape];c[2]=1;let u=bt(c);n=Je([n,u],2)}return a=s?Je([a,r],3):a,n=J(a,n),n=qe(n),n}var Tp=class extends cn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(150,!0),"float32"),s=rr(a,[122.782,117.001,104.298]).div(255),i=Zm(s,n.conv32_down);i=$t(i,3,2,"valid"),i=Pa(i,n.conv32_1),i=Pa(i,n.conv32_2),i=Pa(i,n.conv32_3),i=Ip(i,n.conv64_down),i=Pa(i,n.conv64_1),i=Pa(i,n.conv64_2),i=Pa(i,n.conv64_3),i=Ip(i,n.conv128_down),i=Pa(i,n.conv128_1),i=Pa(i,n.conv128_2),i=Ip(i,n.conv256_down),i=Pa(i,n.conv256_1),i=Pa(i,n.conv256_2),i=Ip(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await ft(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await ft(t),a=D(()=>lt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return nC(t)}extractParams(t){return tC(t)}};function Mye(e){let t=new Tp;return t.extractWeights(e),t}function Jv(e,t){return{...e,...{descriptor:t}}}function Lye(e){return typeof e.age=="number"}function Qv(e,t){return{...e,...{age:t}}}function Vye(e){return(e.gender===ms.MALE||e.gender===ms.FEMALE)&&lu(e.genderProbability)}function Zv(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function ure(e,t){function n(l,c){let u=Na(e(3*3*l),[3,3,l,1]),p=Qe(e(l)),d=Qe(e(l)),h=Qe(e(l)),m=Qe(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:u,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,c,u,p,d){let h=Na(e(l*c*u*u),[u,u,l,c]),m=Qe(e(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,c,u,p){let{filters:d,bias:h}=a(l,c,u,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,c,u){let p=n(l,`${u}/depthwise_conv`),d=r(l,c,1,`${u}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),c=s(32,64,"mobilenetv1/conv_1"),u=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),T=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:v,conv_13:T}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),c=r(256,512,3,"prediction_layer/conv_1"),u=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),T=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),k=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),S=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),F=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),A=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),R=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),P=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:T},box_predictor_3:{box_encoding_predictor:k,class_predictor:S},box_predictor_4:{box_encoding_predictor:F,class_predictor:A},box_predictor_5:{box_encoding_predictor:R,class_predictor:P}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function aC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=ure(n,t),i=r(),o=s(),c={extra_dim:Bd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:c},paramMappings:t}}function cre(e,t){let n=jn(e,t);function a(c,u,p){let d=n(`${c}/Conv2d_${u}_pointwise/weights`,4,`${p}/filters`),h=n(`${c}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(c){let u=`mobilenetv1/conv_${c}`,p=`MobilenetV1/Conv2d_${c}_depthwise`,d=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",c,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(c,u){let p=n(`${c}/weights`,4,`${u}/filters`),d=n(`${c}/biases`,1,`${u}/bias`);return{filters:p,bias:d}}function o(c){let u=i(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:u,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function rC(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=cre(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Tr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return bn(e,t),{params:s,paramMappings:t}}function xa(e,t,n){return D(()=>{let a=At(e,t.filters,n,"same");return a=J(a,t.batch_norm_offset),Kt(a,0,6)})}var pre=.0010000000474974513;function dre(e,t,n){return D(()=>{let a=Xr(e,t.filters,n,"same");return a=hr(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,pre),Kt(a,0,6)})}function hre(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function sC(e,t){return D(()=>{let n,a=xa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=hre(o);a=dre(a,s.depthwise_conv,l),a=xa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function mre(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),c=Math.min(a[n][1],a[n][3]),u=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(u-l)*(p-c);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,c),g=Math.min(i,u),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function iC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((u,p)=>({score:u,boxIndex:p})).filter(u=>u.score>r).sort((u,p)=>p.score-u.score),l=u=>u<=a?1:0,c=[];return o.forEach(u=>{if(c.length>=i)return;let p=u.score;for(let d=c.length-1;d>=0;--d){let h=mre(e,u.boxIndex,c[d]);if(h!==0&&(u.score*=l(h),u.score<=r))break}p===u.score&&c.push(u.boxIndex)}),c}function fre(e){let t=lt(Ve(e,[1,0])),n=[he(t[2],t[0]),he(t[3],t[1])],a=[J(t[0],ye(n[0],2)),J(t[1],ye(n[1],2))];return{sizes:n,centers:a}}function gre(e,t){let{sizes:n,centers:a}=fre(e),r=lt(Ve(t,[1,0])),s=ye(W(dn(ye(r[2],5)),n[0]),2),i=J(W(ye(r[0],10),n[0]),a[0]),o=ye(W(dn(ye(r[3],5)),n[1]),2),l=J(W(ye(r[1],10),n[1]),a[1]);return Ve(Dt([he(i,s),he(l,o),J(i,s),J(l,o)]),[1,0])}function oC(e,t,n){return D(()=>{let a=e.shape[0],r=gre(U(Ga(n.extra_dim,[a,1,1]),[-1,4]),U(e,[-1,4]));r=U(r,[a,r.shape[0]/a,4]);let s=ua(Be(t,[0,0,1],[-1,-1,-1])),i=Be(s,[0,0,0],[-1,-1,1]);i=U(i,[a,i.shape[1]]);let o=lt(r),l=lt(i);return{boxes:o,scores:l}})}function Xi(e,t){return D(()=>{let n=e.shape[0],a=U(qi(e,t.box_encoding_predictor),[n,-1,1,4]),r=U(qi(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function lC(e,t,n){return D(()=>{let a=xa(e,n.conv_0,[1,1]),r=xa(a,n.conv_1,[2,2]),s=xa(r,n.conv_2,[1,1]),i=xa(s,n.conv_3,[2,2]),o=xa(i,n.conv_4,[1,1]),l=xa(o,n.conv_5,[2,2]),c=xa(l,n.conv_6,[1,1]),u=xa(c,n.conv_7,[2,2]),p=Xi(t,n.box_predictor_0),d=Xi(e,n.box_predictor_1),h=Xi(r,n.box_predictor_2),m=Xi(i,n.box_predictor_3),f=Xi(l,n.box_predictor_4),g=Xi(u,n.box_predictor_5),y=Je([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Je([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var Oa=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var bu=class extends cn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(512,!1),"float32"),r=he(ye(a,127.5),1),s=sC(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=lC(s.out,s.conv11,n.prediction_layer);return oC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await ft(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Oa(n),s=await ft(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],c=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let u=Array.from(c.dataSync()),d=iC(l,u,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=d.map(x=>{let[v,T]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(F=>F*g),[k,S]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(F=>F*f);return new kt(u[x],new pp(k,v,S-k,T-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),c.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return rC(t)}extractParams(t){return aC(t)}};function yre(e){let t=new bu;return t.extractWeights(e),t}function Pbe(e){return yre(e)}var bre=class extends bu{};var uC=.4,cC=[new Re(.738768,.874946),new Re(2.42204,2.65704),new Re(4.30971,7.04493),new Re(10.246,4.59428),new Re(12.6868,11.8741)],pC=[new Re(1.603231,2.094468),new Re(6.041143,7.080126),new Re(2.882459,3.518061),new Re(4.266906,5.178857),new Re(9.041765,10.66308)],dC=[117.001,114.697,97.404],hC="tiny_yolov2_model",mC="tiny_yolov2_separable_conv_model";var ef=e=>typeof e=="number";function fC(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!ef(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>ef(t.x)&&ef(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(ef)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function xu(e){return D(()=>{let t=W(e,ve(.10000000149011612));return J(qe(he(e,t)),t)})}function Sr(e,t){return D(()=>{let n=ea(e,[[0,0],[1,1],[1,1],[0,0]]);return n=At(n,t.conv.filters,[1,1],"valid"),n=he(n,t.bn.sub),n=W(n,t.bn.truediv),n=J(n,t.conv.bias),xu(n)})}function Cr(e,t){return D(()=>{let n=ea(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ni(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=J(n,t.bias),xu(n)})}function xre(e,t){let n=mu(e,t);function a(i,o){let l=Qe(e(i)),c=Qe(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:c}}function r(i,o,l){let c=n(i,o,3,`${l}/conv`),u=a(o,`${l}/bn`);return{conv:c,bn:u}}let s=fu(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function gC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=xn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=xre(r,i),u;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,x]=a,v=t.isFirstLayerConv2d?o(p,d,3,"conv0"):c(p,d,"conv0"),T=c(d,h,"conv1"),k=c(h,m,"conv2"),S=c(m,f,"conv3"),F=c(f,g,"conv4"),A=c(g,y,"conv5"),R=b?c(y,b,"conv6"):void 0,P=x?c(b,x,"conv7"):void 0,z=o(x||b||y,5*n,1,"conv8");u={conv0:v,conv1:T,conv2:k,conv3:S,conv4:F,conv5:A,conv6:R,conv7:P,conv8:z}}else{let[p,d,h,m,f,g,y,b,x]=a,v=l(p,d,"conv0"),T=l(d,h,"conv1"),k=l(h,m,"conv2"),S=l(m,f,"conv3"),F=l(f,g,"conv4"),A=l(g,y,"conv5"),R=l(y,b,"conv6"),P=l(b,x,"conv7"),z=o(x,5*n,1,"conv8");u={conv0:v,conv1:T,conv2:k,conv3:S,conv4:F,conv5:A,conv6:R,conv7:P,conv8:z}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:u,paramMappings:i}}function vre(e,t){let n=jn(e,t);function a(o){let l=n(`${o}/sub`,1),c=n(`${o}/truediv`,1);return{sub:l,truediv:c}}function r(o){let l=n(`${o}/filters`,4),c=n(`${o}/bias`,1);return{filters:l,bias:c}}function s(o){let l=r(`${o}/conv`),c=a(`${o}/bn`);return{conv:l,bn:c}}let i=gu(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function yC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=vre(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return bn(e,n),{params:i,paramMappings:n}}var _r=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var ew=class extends cn{constructor(t){super("TinyYolov2");fC(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Sr(t,n.conv0);return a=$t(a,[2,2],[2,2],"same"),a=Sr(a,n.conv1),a=$t(a,[2,2],[2,2],"same"),a=Sr(a,n.conv2),a=$t(a,[2,2],[2,2],"same"),a=Sr(a,n.conv3),a=$t(a,[2,2],[2,2],"same"),a=Sr(a,n.conv4),a=$t(a,[2,2],[2,2],"same"),a=Sr(a,n.conv5),a=$t(a,[2,2],[1,1],"same"),a=Sr(a,n.conv6),a=Sr(a,n.conv7),qi(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?xu(qi(t,n.conv0,"valid",!1)):Cr(t,n.conv0);return a=$t(a,[2,2],[2,2],"same"),a=Cr(a,n.conv1),a=$t(a,[2,2],[2,2],"same"),a=Cr(a,n.conv2),a=$t(a,[2,2],[2,2],"same"),a=Cr(a,n.conv3),a=$t(a,[2,2],[2,2],"same"),a=Cr(a,n.conv4),a=$t(a,[2,2],[2,2],"same"),a=Cr(a,n.conv5),a=$t(a,[2,2],[1,1],"same"),a=n.conv6?Cr(a,n.conv6):a,a=n.conv7?Cr(a,n.conv7):a,qi(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return D(()=>{let r=ue(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?rr(r,this.config.meanRgb):r,r=r.div(255),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await ft(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new _r(n),s=await ft(t),i=await this.forwardInput(s,a),o=D(()=>lt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},c=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let u=c.map(g=>g.box),p=c.map(g=>g.score),d=c.map(g=>g.classScore),h=c.map(g=>this.config.classes[g.label]);return AS(u.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new ji(p[g],d[g],h[g],u[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return yC(t,this.config)}extractParams(t){let n=this.config.filterSizes||ew.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return gC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,c=t.shape[1],u=this.config.anchors.length,[p,d,h]=D(()=>{let y=t.reshape([c,c,u,this.boxEncodingSize]),b=y.slice([0,0,0,0],[c,c,u,4]),x=y.slice([0,0,0,4],[c,c,u,1]),v=this.withClassScores?Ia(y.slice([0,0,0,5],[c,c,u,this.config.classes.length]),3):ve(0);return[b,x,v]}),m=[],f=await d.array(),g=await p.array();for(let y=0;y<c;y++)for(let b=0;b<c;b++)for(let x=0;x<u;x++){let v=Lm(f[y][b][x][0]);if(!a||v>a){let T=(b+Lm(g[y][b][x][0]))/c*o,k=(y+Lm(g[y][b][x][1]))/c*l,S=Math.exp(g[y][b][x][2])*this.config.anchors[x].x/c*o,F=Math.exp(g[y][b][x][3])*this.config.anchors[x].y/c*l,A=T-S/2,R=k-F/2,P={row:y,col:b,anchor:x},{classScore:z,label:V}=this.withClassScores?await this.extractPredictedClass(h,P):{classScore:1,label:0};m.push({box:new cp(A,R,A+S,R+F),score:v,classScore:v*z,label:V,...P})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},vu=ew;vu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Np=class extends vu{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:uC,classes:["face"],...t?{anchors:pC,meanRgb:dC}:{anchors:cC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new kt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?mC:hC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Dxe(e,t=!0){let n=new Np(t);return n.extractWeights(e),n}var tw=class extends _r{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var La=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function Yi(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>yu(l)?r(l):l.detection),i=a||(t instanceof Ee?await fp(t,s):await mp(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ee&&l.dispose()),o}async function wu(e,t,n,a,r){return Yi([e],t,async s=>n(s[0]),a,r)}var bC=.4,xC=[new Re(1.603231,2.094468),new Re(6.041143,7.080126),new Re(2.882459,3.518061),new Re(4.266906,5.178857),new Re(9.041765,10.66308)],vC=[117.001,114.697,97.404];var Sp=class extends vu{constructor(){let t={withSeparableConvs:!0,iouThreshold:bC,classes:["face"],anchors:xC,meanRgb:vC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new kt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var et={ssdMobilenetv1:new bu,tinyFaceDetector:new Sp,tinyYolov2:new Np,faceLandmark68Net:new kp,faceLandmark68TinyNet:new Kv,faceRecognitionNet:new Tp,faceExpressionNet:new Wv,ageGenderNet:new jv},wre=(e,t)=>et.ssdMobilenetv1.locateFaces(e,t),ove=(e,t)=>et.tinyFaceDetector.locateFaces(e,t),lve=(e,t)=>et.tinyYolov2.locateFaces(e,t),kre=e=>et.faceLandmark68Net.detectLandmarks(e),uve=e=>et.faceLandmark68TinyNet.detectLandmarks(e),cve=e=>et.faceRecognitionNet.computeFaceDescriptor(e),pve=e=>et.faceExpressionNet.predictExpressions(e),dve=e=>et.ageGenderNet.predictAgeAndGender(e),Ire=e=>et.ssdMobilenetv1.load(e),hve=e=>et.tinyFaceDetector.load(e),mve=e=>et.tinyYolov2.load(e),fve=e=>et.faceLandmark68Net.load(e),gve=e=>et.faceLandmark68TinyNet.load(e),yve=e=>et.faceRecognitionNet.load(e),bve=e=>et.faceExpressionNet.load(e),xve=e=>et.ageGenderNet.load(e),vve=Ire,wve=wre,kve=kre;var nw=class extends La{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Tu=class extends nw{async run(){let t=await this.parentTask,n=await Yi(t,this.input,async a=>Promise.all(a.map(r=>et.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>Bv(a,n[r]))}withAgeAndGender(){return new ku(this,this.input)}},Nu=class extends nw{async run(){let t=await this.parentTask;if(!t)return;let n=await wu(t,this.input,a=>et.faceExpressionNet.predictExpressions(a),this.extractedFaces);return Bv(t,n)}withAgeAndGender(){return new Iu(this,this.input)}},to=class extends Tu{withAgeAndGender(){return new Zi(this,this.input)}withFaceDescriptors(){return new Ji(this,this.input)}},no=class extends Nu{withAgeAndGender(){return new eo(this,this.input)}withFaceDescriptor(){return new Qi(this,this.input)}};var aw=class extends La{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},ku=class extends aw{async run(){let t=await this.parentTask,n=await Yi(t,this.input,async a=>Promise.all(a.map(r=>et.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Qv(Zv(a,i,o),s)})}withFaceExpressions(){return new Tu(this,this.input)}},Iu=class extends aw{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await wu(t,this.input,s=>et.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Qv(Zv(t,a,r),n)}withFaceExpressions(){return new Nu(this,this.input)}},Zi=class extends ku{withFaceExpressions(){return new to(this,this.input)}withFaceDescriptors(){return new Ji(this,this.input)}},eo=class extends Iu{withFaceExpressions(){return new no(this,this.input)}withFaceDescriptor(){return new Qi(this,this.input)}};var rw=class extends La{constructor(t,n){super();this.parentTask=t;this.input=n}},Ji=class extends rw{async run(){let t=await this.parentTask;return(await Yi(t,this.input,a=>Promise.all(a.map(r=>et.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Jv(t[r],a))}withFaceExpressions(){return new to(this,this.input)}withAgeAndGender(){return new Zi(this,this.input)}},Qi=class extends rw{async run(){let t=await this.parentTask;if(!t)return;let n=await wu(t,this.input,a=>et.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Jv(t,n)}withFaceExpressions(){return new no(this,this.input)}withAgeAndGender(){return new eo(this,this.input)}};var sw=class extends La{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?et.faceLandmark68TinyNet:et.faceLandmark68Net}},iw=class extends sw{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ee?await fp(this.input,n):await mp(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ee&&s.dispose()),t.map((s,i)=>vp(s,r[i]))}withFaceExpressions(){return new to(this,this.input)}withAgeAndGender(){return new Zi(this,this.input)}withFaceDescriptors(){return new Ji(this,this.input)}},ow=class extends sw{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ee?await fp(this.input,[n]):await mp(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ee&&s.dispose()),vp(t,r)}withFaceExpressions(){return new no(this,this.input)}withAgeAndGender(){return new eo(this,this.input)}withFaceDescriptor(){return new Qi(this,this.input)}};var lw=class extends La{constructor(t,n=new Oa){super();this.input=t;this.options=n}},tf=class extends lw{async run(){let{input:t,options:n}=this,a;if(n instanceof tw)a=et.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Oa)a=et.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof _r)a=et.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>uu({},a)))})}withFaceLandmarks(t=!1){return new iw(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Tu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ku(this.runAndExtendWithFaceDetections(),this.input)}},uw=class extends lw{async run(){let t=await new tf(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?uu({},n):void 0)})}withFaceLandmarks(t=!1){return new ow(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Nu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Iu(this.runAndExtendWithFaceDetection(),this.input)}};function vwe(e,t=new Oa){return new uw(e,t)}function cw(e,t=new Oa){return new tf(e,t)}async function Tre(e,t){return cw(e,new Oa(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Swe(e,t={}){return cw(e,new _r(t)).withFaceLandmarks().withFaceDescriptors()}var Cwe=Tre;function wC(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var pw=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof ps)return i;if(i instanceof Float32Array)return new ps(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new ps(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>wC(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new zm(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this.distanceThreshold?n:new zm("unknown",n.distance)}toJSON(){return{distanceThreshold:this.distanceThreshold,labeledDescriptors:this.labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>ps.fromJSON(a));return new pw(n,t.distanceThreshold)}};function Owe(e){let t=new Sp;return t.extractWeights(e),t}function Nre(e,t){let{width:n,height:a}=new $n(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>Nre(r,{width:n,height:a}));if(yu(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return vp(uu(e,r),s)}return Nr(e)?uu(e,e.detection.forSize(n,a)):e instanceof ba||e instanceof kt?e.forSize(n,a):e}var Sre=typeof process!="undefined",Cre=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",u0e={faceapi:HS,node:Sre,browser:Cre};export{jv as AgeGenderNet,cp as BoundingBox,dt as Box,La as ComposableTask,Ji as ComputeAllFaceDescriptorsTask,rw as ComputeFaceDescriptorsTaskBase,Qi as ComputeSingleFaceDescriptorTask,iw as DetectAllFaceLandmarksTask,tf as DetectAllFacesTask,sw as DetectFaceLandmarksTaskBase,lw as DetectFacesTaskBase,ow as DetectSingleFaceLandmarksTask,uw as DetectSingleFaceTask,$n as Dimensions,US as FACE_EXPRESSION_LABELS,kt as FaceDetection,bre as FaceDetectionNet,Wv as FaceExpressionNet,Ki as FaceExpressions,kp as FaceLandmark68Net,Kv as FaceLandmark68TinyNet,ire as FaceLandmarkNet,ba as FaceLandmarks,Kae as FaceLandmarks5,dp as FaceLandmarks68,zm as FaceMatch,pw as FaceMatcher,Tp as FaceRecognitionNet,ms as Gender,Wm as LabeledBox,ps as LabeledFaceDescriptors,hs as NetInput,cn as NeuralNetwork,ji as ObjectDetection,Re as Point,Xae as PredictedBox,pp as Rect,bu as SsdMobilenetv1,Oa as SsdMobilenetv1Options,Sp as TinyFaceDetector,tw as TinyFaceDetectorOptions,Np as TinyYolov2,_r as TinyYolov2Options,Cwe as allFaces,Tre as allFacesSsdMobilenetv1,Swe as allFacesTinyYolov2,DS as awaitMediaLoaded,RS as bufferToImage,cve as computeFaceDescriptor,du as createCanvas,Gm as createCanvasFromMedia,Pbe as createFaceDetectionNet,Mye as createFaceRecognitionNet,yre as createSsdMobilenetv1,Owe as createTinyFaceDetector,Dxe as createTinyYolov2,cw as detectAllFaces,kre as detectFaceLandmarks,uve as detectFaceLandmarksTiny,kve as detectLandmarks,vwe as detectSingleFace,nre as draw,st as env,wC as euclideanDistance,Qv as extendWithAge,Jv as extendWithFaceDescriptor,uu as extendWithFaceDetection,Bv as extendWithFaceExpressions,vp as extendWithFaceLandmarks,Zv as extendWithGender,fp as extractFaceTensors,mp as extractFaces,hhe as fetchImage,OS as fetchJson,bhe as fetchNetWeights,hu as fetchOrThrow,Hn as getContext2dOrThrow,pu as getMediaDimensions,MS as imageTensorToCanvas,PS as imageToSquare,qce as inverseSigmoid,ES as iou,zv as isMediaElement,Um as isMediaLoaded,Lye as isWithAge,Nr as isWithFaceDetection,GS as isWithFaceExpressions,yu as isWithFaceLandmarks,Vye as isWithGender,xve as loadAgeGenderModel,vve as loadFaceDetectionModel,bve as loadFaceExpressionModel,fve as loadFaceLandmarkModel,gve as loadFaceLandmarkTinyModel,yve as loadFaceRecognitionModel,Ire as loadSsdMobilenetv1Model,hve as loadTinyFaceDetectorModel,mve as loadTinyYolov2Model,LS as loadWeightMap,wve as locateFaces,She as matchDimensions,FS as minBbox,et as nets,AS as nonMaxSuppression,rr as normalize,$S as padToSquare,dve as predictAgeAndGender,pve as recognizeFaceExpressions,Nre as resizeResults,cu as resolveInput,zce as shuffleArray,Lm as sigmoid,wre as ssdMobilenetv1,f_ as tf,ove as tinyFaceDetector,lve as tinyYolov2,ft as toNetInput,Uae as utils,fC as validateConfig,u0e as version};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=face-api.esm.js.map