4889 lines
1.2 MiB
4889 lines
1.2 MiB
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var K$=Object.defineProperty;var Ur=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var ty=(e,t)=>{for(var n in t)K$(e,n,{get:t[n],enumerable:!0})};var Oe={};ty(Oe,{Abs:()=>xl,Acos:()=>vl,Acosh:()=>wl,AdadeltaOptimizer:()=>rf,AdagradOptimizer:()=>sf,AdamOptimizer:()=>of,AdamaxOptimizer:()=>lf,Add:()=>ps,AddN:()=>mi,All:()=>kl,Any:()=>Il,ArgMax:()=>fi,ArgMin:()=>ac,Asin:()=>Sl,Asinh:()=>Tl,Atan:()=>Nl,Atan2:()=>_l,Atanh:()=>Cl,AvgPool:()=>gi,AvgPool3D:()=>rc,AvgPool3DGrad:()=>Xh,AvgPoolGrad:()=>Kh,BackendWasm:()=>hA,BatchMatMul:()=>bi,BatchToSpaceND:()=>El,Bincount:()=>Yh,BroadcastArgs:()=>Zh,BroadcastTo:()=>NI,Callback:()=>GN,CallbackList:()=>KT,Cast:()=>yi,Ceil:()=>xi,ClipByValue:()=>cs,Complex:()=>Jh,ComplexAbs:()=>sc,Concat:()=>Al,Conv2D:()=>vi,Conv2DBackpropFilter:()=>Qh,Conv2DBackpropInput:()=>wi,Conv3D:()=>ic,Conv3DBackpropFilterV2:()=>em,Conv3DBackpropInputV2:()=>tm,Cos:()=>ki,Cosh:()=>Ii,CropAndResize:()=>Fl,Cumprod:()=>$l,Cumsum:()=>Si,CustomCallback:()=>YT,DataStorage:()=>Hh,DenseBincount:()=>nm,DepthToSpace:()=>Dl,DepthwiseConv2dNative:()=>Ti,DepthwiseConv2dNativeBackpropFilter:()=>am,DepthwiseConv2dNativeBackpropInput:()=>rm,Diag:()=>sm,Dilation2D:()=>oc,Dilation2DBackpropFilter:()=>gh,Dilation2DBackpropInput:()=>fh,ENV:()=>wx,EarlyStopping:()=>HN,Einsum:()=>im,Elu:()=>Ci,EluGrad:()=>om,Environment:()=>SI,Equal:()=>Ml,Erf:()=>Rl,Exp:()=>_i,ExpandDims:()=>Pl,Expm1:()=>Ol,FFT:()=>lm,Fill:()=>lc,FlipLeftRight:()=>Ll,Floor:()=>Ei,FloorDiv:()=>Ai,FromPixels:()=>bh,FusedBatchNorm:()=>$i,FusedConv2D:()=>Qs,FusedDepthwiseConv2D:()=>ei,GPGPUContext:()=>ph,GatherNd:()=>Bl,GatherV2:()=>zl,GraphModel:()=>y0,Greater:()=>Wl,GreaterEqual:()=>Fi,History:()=>XT,IFFT:()=>um,Identity:()=>Di,Imag:()=>pm,InputSpec:()=>zt,IsFinite:()=>Vl,IsInf:()=>Ul,IsNan:()=>Gl,KernelBackend:()=>nc,LRN:()=>uc,LRNGrad:()=>dm,LayerVariable:()=>WT,LayersModel:()=>Nr,LeakyRelu:()=>Ri,Less:()=>Hl,LessEqual:()=>jl,LinSpace:()=>cm,Log:()=>Mi,Log1p:()=>ql,LogSoftmax:()=>_I,LogicalAnd:()=>Kl,LogicalNot:()=>Xl,LogicalOr:()=>Yl,LogicalXor:()=>CI,LowerBound:()=>LF,MathBackendWebGL:()=>Ff,Max:()=>Pi,MaxPool:()=>Li,MaxPool3D:()=>pc,MaxPool3DGrad:()=>mm,MaxPoolGrad:()=>hm,MaxPoolWithArgmax:()=>fm,Maximum:()=>Oi,Mean:()=>zi,Min:()=>Bi,Minimum:()=>Wi,MirrorPad:()=>Vi,Mod:()=>Zl,MomentumOptimizer:()=>uf,Multinomial:()=>gm,Multiply:()=>Ui,Neg:()=>Jl,NonMaxSuppressionV3:()=>eu,NonMaxSuppressionV4:()=>tu,NonMaxSuppressionV5:()=>nu,NotEqual:()=>Ql,OP_SCOPE_SUFFIX:()=>Tx,OneHot:()=>Gi,OnesLike:()=>au,Optimizer:()=>Ar,OptimizerConstructors:()=>Gr,Pack:()=>ru,PadV2:()=>Hi,Pool:()=>zF,Pow:()=>ji,Prelu:()=>qi,Prod:()=>Ki,RMSPropOptimizer:()=>pf,RNN:()=>cr,RaggedGather:()=>bm,RaggedTensorToTensor:()=>ym,Range:()=>cc,Rank:()=>xy,Real:()=>xm,RealDiv:()=>Ni,Reciprocal:()=>su,Reduction:()=>xn,Relu:()=>Xi,Relu6:()=>Ji,Reshape:()=>iu,ResizeBilinear:()=>Zi,ResizeBilinearGrad:()=>wm,ResizeNearestNeighbor:()=>Yi,ResizeNearestNeighborGrad:()=>vm,Reverse:()=>Qi,RotateWithOffset:()=>ku,Round:()=>eo,Rsqrt:()=>to,SGDOptimizer:()=>zc,ScatterNd:()=>ou,SearchSorted:()=>km,Select:()=>lu,Selu:()=>uu,Sequential:()=>cl,Sigmoid:()=>ao,Sign:()=>du,Sin:()=>no,Sinh:()=>cu,Slice:()=>pu,Softmax:()=>io,Softplus:()=>hu,SpaceToBatchND:()=>mu,SparseFillEmptyRows:()=>dc,SparseReshape:()=>gu,SparseSegmentMean:()=>hc,SparseSegmentSum:()=>mc,SparseToDense:()=>Im,SplitV:()=>fu,Sqrt:()=>ro,Square:()=>fc,SquaredDifference:()=>oo,Step:()=>hs,StridedSlice:()=>bu,StringNGrams:()=>gc,StringSplit:()=>bc,StringToHashBucketFast:()=>yc,Sub:()=>lo,Sum:()=>so,SymbolicTensor:()=>za,Tan:()=>uo,Tanh:()=>po,Tensor:()=>Te,TensorBuffer:()=>Ht,Tile:()=>ds,TopK:()=>yu,Transform:()=>xu,Transpose:()=>Tr,Unique:()=>Sm,Unpack:()=>vu,UnsortedSegmentSum:()=>xc,UpperBound:()=>BF,Variable:()=>es,ZerosLike:()=>wu,_FusedMatMul:()=>Js,abs:()=>Lt,acos:()=>zx,acosh:()=>Bx,add:()=>Y,addN:()=>xS,all:()=>Em,any:()=>Gp,argMax:()=>ai,argMin:()=>Wx,asin:()=>Vx,asinh:()=>Ux,atan:()=>Gx,atan2:()=>Hx,atanh:()=>jx,avgPool:()=>fa,avgPool3d:()=>Kx,backend:()=>tS,backend_util:()=>N,basicLSTMCell:()=>IS,batchNorm:()=>gs,batchNorm2d:()=>Xx,batchNorm3d:()=>Yx,batchNorm4d:()=>Zx,batchToSpaceND:()=>_c,bincount:()=>Jx,booleanMaskAsync:()=>sT,broadcastArgs:()=>SS,broadcastTo:()=>Ks,broadcast_util:()=>Iu,browser:()=>co,buffer:()=>Pe,callbacks:()=>sH,cast:()=>oe,ceil:()=>Qx,clipByValue:()=>Qt,clone:()=>ar,complex:()=>Cr,concat:()=>Ze,concat1d:()=>ev,concat2d:()=>tv,concat3d:()=>nv,concat4d:()=>av,constraints:()=>GT,conv1d:()=>Am,conv2d:()=>$t,conv2dTranspose:()=>$m,conv3d:()=>sv,conv3dTranspose:()=>iv,copyRegisteredKernels:()=>GF,cos:()=>Ec,cosh:()=>Fm,cosineWindow:()=>Qm,cumprod:()=>Hp,cumsum:()=>Dm,customGrad:()=>ir,data:()=>f2,denseBincount:()=>NS,deprecationWarn:()=>Fx,depthToSpace:()=>ov,depthwiseConv2d:()=>bs,deregisterOp:()=>lH,device_util:()=>Ic,diag:()=>CS,dilation2d:()=>lv,disableDeprecationWarnings:()=>yR,dispose:()=>$e,disposeVariables:()=>xR,div:()=>he,divNoNan:()=>uv,dot:()=>pv,dropout:()=>Ov,einsum:()=>_S,elu:()=>Su,enableDebugMode:()=>bR,enableProdMode:()=>gR,enclosingPowerOfTwo:()=>Lv,engine:()=>Ja,env:()=>H,equal:()=>Jn,erf:()=>cv,euclideanNorm:()=>mv,exp:()=>fn,expandDims:()=>hn,expm1:()=>fv,eye:()=>Rm,fft:()=>Oc,fill:()=>gn,findBackend:()=>NR,findBackendFactory:()=>CR,floor:()=>Nu,floorDiv:()=>_m,forceHalfFloat:()=>D_,fused:()=>ll,gather:()=>Cu,gatherND:()=>uT,gather_util:()=>Dx,getBackend:()=>SR,getGradient:()=>by,getKernel:()=>yh,getKernelsForBackend:()=>xh,getThreadsCount:()=>Yue,gpgpu_util:()=>c_,grad:()=>ZP,grads:()=>JP,greater:()=>Vn,greaterEqual:()=>ys,ifft:()=>ol,imag:()=>Tc,image:()=>Ir,inTopKAsync:()=>pT,initializers:()=>HT,input:()=>pN,io:()=>Ut,irfft:()=>Xm,isFinite:()=>gv,isInf:()=>bv,isNaN:()=>yv,keep:()=>Zt,kernel_impls:()=>pr,layers:()=>jT,leakyRelu:()=>Ac,less:()=>Mm,lessEqual:()=>xs,linalg:()=>Wv,linspace:()=>DS,loadGraphModel:()=>c6,loadGraphModelSync:()=>d6,loadLayersModel:()=>mU,localResponseNormalization:()=>xv,log:()=>Qn,log1p:()=>$c,logSigmoid:()=>vv,logSoftmax:()=>Om,logSumExp:()=>Lm,logicalAnd:()=>_a,logicalNot:()=>Fc,logicalOr:()=>zm,logicalXor:()=>wv,losses:()=>kT,lowerBound:()=>MS,matMul:()=>Ae,math:()=>eS,max:()=>Na,maxPool:()=>Dt,maxPool3d:()=>kv,maxPoolWithArgmax:()=>PS,maximum:()=>ur,mean:()=>Nt,memory:()=>kh,meshgrid:()=>OS,metrics:()=>WN,min:()=>jp,minimum:()=>_u,mirrorPad:()=>Iv,mod:()=>Sv,model:()=>dU,models:()=>VN,moments:()=>Dc,movingAverage:()=>iT,mul:()=>z,multiRNNCell:()=>LS,multinomial:()=>zS,neg:()=>yt,nextFrame:()=>Vv,norm:()=>Tu,notEqual:()=>ii,oneHot:()=>al,ones:()=>Yn,onesLike:()=>ea,op:()=>L,outerProduct:()=>BS,pad:()=>ga,pad1d:()=>WS,pad2d:()=>VS,pad3d:()=>US,pad4d:()=>GS,pool:()=>Tv,pow:()=>_r,prelu:()=>Mc,print:()=>Ex,prod:()=>Nv,profile:()=>vR,raggedGather:()=>HS,raggedTensorToTensor:()=>jS,rand:()=>qS,randomGamma:()=>KS,randomNormal:()=>Wm,randomStandardNormal:()=>XS,randomUniform:()=>Eu,range:()=>sl,ready:()=>IR,real:()=>rl,reciprocal:()=>Ev,registerBackend:()=>Cm,registerCallbackConstructor:()=>fU,registerGradient:()=>EI,registerKernel:()=>vc,registerOp:()=>oH,regularizers:()=>UN,relu:()=>Xe,relu6:()=>Vm,removeBackend:()=>TR,reshape:()=>B,reverse:()=>ma,reverse1d:()=>YS,reverse2d:()=>ZS,reverse3d:()=>JS,reverse4d:()=>QS,rfft:()=>Lc,round:()=>Um,rsqrt:()=>Gm,scalar:()=>ye,scatterND:()=>oT,scatter_util:()=>Rx,searchSorted:()=>Bm,selu:()=>Hm,separableConv2d:()=>vs,sequential:()=>hU,serialization:()=>ne,setBackend:()=>kR,setPlatform:()=>_R,setThreadsCount:()=>Xue,setWasmPath:()=>que,setWasmPaths:()=>Kue,setWebGLContext:()=>MC,setdiff1dAsync:()=>eT,sigmoid:()=>da,sign:()=>Av,signal:()=>wT,sin:()=>jm,sinh:()=>qm,slice:()=>We,slice1d:()=>Pc,slice2d:()=>Km,slice3d:()=>mo,slice4d:()=>il,slice_util:()=>jt,softmax:()=>ja,softplus:()=>ho,spaceToBatchND:()=>Rc,sparse:()=>IT,sparseToDense:()=>lT,spectral:()=>vT,split:()=>Ln,sqrt:()=>on,square:()=>ot,squaredDifference:()=>Ym,squeeze:()=>ws,stack:()=>Ft,step:()=>fo,stridedSlice:()=>$v,string:()=>ST,sub:()=>pe,sum:()=>fe,sumOutType:()=>Nm,tan:()=>Fv,tanh:()=>ri,tensor:()=>On,tensor1d:()=>Ke,tensor2d:()=>Ca,tensor3d:()=>Nc,tensor4d:()=>Aa,tensor5d:()=>tT,tensor6d:()=>nT,tensor_util:()=>Ba,test_util:()=>gS,tidy:()=>P,tile:()=>Pn,time:()=>wR,topk:()=>Dv,train:()=>zs,transpose:()=>Ce,truncatedNormal:()=>Zm,unique:()=>Rv,unregisterGradient:()=>UF,unregisterKernel:()=>VF,unsortedSegmentSum:()=>Jm,unstack:()=>ct,upcastType:()=>ha,upperBound:()=>aT,util:()=>v,valueAndGrad:()=>QP,valueAndGrads:()=>eO,variable:()=>Mv,variableGrads:()=>RS,version:()=>ope,version_converter:()=>m6,version_core:()=>iM,version_layers:()=>pw,version_wasm:()=>Zue,version_webgl:()=>VZ,webgl:()=>UZ,webgl_util:()=>RC,where:()=>mn,whereAsync:()=>Pv,zeros:()=>It,zerosLike:()=>je});var X$=Object.create,gx=Object.defineProperty,Y$=Object.getOwnPropertyDescriptor,Z$=Object.getOwnPropertyNames,J$=Object.getPrototypeOf,Q$=Object.prototype.hasOwnProperty,dI=(e=>typeof Ur!="undefined"?Ur:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof Ur!="undefined"?Ur:t)[n]}):e)(function(e){if(typeof Ur!="undefined")return Ur.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),Wt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),_e=(e,t)=>{for(var n in t)gx(e,n,{get:t[n],enumerable:!0})},eF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Z$(t))!Q$.call(e,r)&&r!==n&&gx(e,r,{get:()=>t[r],enumerable:!(a=Y$(t,r))||a.enumerable});return e},ls=(e,t,n)=>(n=e!=null?X$(J$(e)):{},eF(t||!e||!e.__esModule?gx(n,"default",{value:e,enumerable:!0}):n,e)),tF=Wt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,W){this.low=S|0,this.high=M|0,this.unsigned=!!W}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var W,U,G;return M?(S>>>=0,(G=0<=S&&S<256)&&(U=i[S],U)?U:(W=u(S,(S|0)<0?-1:0,!0),G&&(i[S]=W),W)):(S|=0,(G=-128<=S&&S<128)&&(U=s[S],U)?U:(W=u(S,S<0?-1:0,!1),G&&(s[S]=W),W))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?w:x;if(M){if(S<0)return w;if(S>=g)return A}else{if(S<=-b)return R;if(S+1>=b)return E}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,W){return new a(S,M,W)}a.fromBits=u;var p=Math.pow;function d(S,M,W){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(W=M,M=!1):M=!!M,W=W||10,W<2||36<W)throw RangeError("radix");var U;if((U=S.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(S.substring(1),M,W).neg();for(var G=l(p(W,8)),q=x,K=0;K<S.length;K+=8){var Z=Math.min(8,S.length-K),Q=parseInt(S.substring(K,K+Z),W);if(Z<8){var ee=l(p(W,Z));q=q.mul(ee).add(l(Q))}else q=q.mul(G),q=q.add(l(Q))}return q.unsigned=M,q}a.fromString=d;function c(S,M){return typeof S=="number"?l(S,M):typeof S=="string"?d(S,M):u(S.low,S.high,typeof M=="boolean"?M:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,b=g/2,y=o(m),x=o(0);a.ZERO=x;var w=o(0,!0);a.UZERO=w;var I=o(1);a.ONE=I;var T=o(1,!0);a.UONE=T;var C=o(-1);a.NEG_ONE=C;var E=u(-1,2147483647,!1);a.MAX_VALUE=E;var A=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=A;var R=u(0,-2147483648,!1);a.MIN_VALUE=R;var F=a.prototype;F.toInt=function(){return this.unsigned?this.low>>>0:this.low},F.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},F.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(R)){var M=l(S),W=this.div(M),U=W.mul(M).sub(this);return W.toString(S)+U.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var G=l(p(S,6),this.unsigned),q=this,K="";;){var Z=q.div(G),Q=q.sub(Z.mul(G)).toInt()>>>0,ee=Q.toString(S);if(q=Z,q.isZero())return ee+K;for(;ee.length<6;)ee="0"+ee;K=""+ee+K}},F.getHighBits=function(){return this.high},F.getHighBitsUnsigned=function(){return this.high>>>0},F.getLowBits=function(){return this.low},F.getLowBitsUnsigned=function(){return this.low>>>0},F.getNumBitsAbs=function(){if(this.isNegative())return this.eq(R)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<<M)==0;M--);return this.high!=0?M+33:M+1},F.isZero=function(){return this.high===0&&this.low===0},F.eqz=F.isZero,F.isNegative=function(){return!this.unsigned&&this.high<0},F.isPositive=function(){return this.unsigned||this.high>=0},F.isOdd=function(){return(this.low&1)===1},F.isEven=function(){return(this.low&1)===0},F.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},F.eq=F.equals,F.notEquals=function(S){return!this.eq(S)},F.neq=F.notEquals,F.ne=F.notEquals,F.lessThan=function(S){return this.comp(S)<0},F.lt=F.lessThan,F.lessThanOrEqual=function(S){return this.comp(S)<=0},F.lte=F.lessThanOrEqual,F.le=F.lessThanOrEqual,F.greaterThan=function(S){return this.comp(S)>0},F.gt=F.greaterThan,F.greaterThanOrEqual=function(S){return this.comp(S)>=0},F.gte=F.greaterThanOrEqual,F.ge=F.greaterThanOrEqual,F.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),W=S.isNegative();return M&&!W?-1:!M&&W?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},F.comp=F.compare,F.negate=function(){return!this.unsigned&&this.eq(R)?R:this.not().add(I)},F.neg=F.negate,F.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,W=this.high&65535,U=this.low>>>16,G=this.low&65535,q=S.high>>>16,K=S.high&65535,Z=S.low>>>16,Q=S.low&65535,ee=0,ae=0,te=0,le=0;return le+=G+Q,te+=le>>>16,le&=65535,te+=U+Z,ae+=te>>>16,te&=65535,ae+=W+K,ee+=ae>>>16,ae&=65535,ee+=M+q,ee&=65535,u(te<<16|le,ee<<16|ae,this.unsigned)},F.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},F.sub=F.subtract,F.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(R))return S.isOdd()?R:x;if(S.eq(R))return this.isOdd()?R:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(y)&&S.lt(y))return l(this.toNumber()*S.toNumber(),this.unsigned);var W=this.high>>>16,U=this.high&65535,G=this.low>>>16,q=this.low&65535,K=S.high>>>16,Z=S.high&65535,Q=S.low>>>16,ee=S.low&65535,ae=0,te=0,le=0,ie=0;return ie+=q*ee,le+=ie>>>16,ie&=65535,le+=G*ee,te+=le>>>16,le&=65535,le+=q*Q,te+=le>>>16,le&=65535,te+=U*ee,ae+=te>>>16,te&=65535,te+=G*Q,ae+=te>>>16,te&=65535,te+=q*Z,ae+=te>>>16,te&=65535,ae+=W*ee+U*Q+G*Z+q*K,ae&=65535,u(le<<16|ie,ae<<16|te,this.unsigned)},F.mul=F.multiply,F.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?w:x;var W,U,G;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return w;if(S.gt(this.shru(1)))return T;G=w}else{if(this.eq(R)){if(S.eq(I)||S.eq(C))return R;if(S.eq(R))return I;var q=this.shr(1);return W=q.div(S).shl(1),W.eq(x)?S.isNegative()?I:C:(U=this.sub(S.mul(W)),G=W.add(U.div(S)),G)}else if(S.eq(R))return this.unsigned?w:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();G=x}for(U=this;U.gte(S);){W=Math.max(1,Math.floor(U.toNumber()/S.toNumber()));for(var K=Math.ceil(Math.log(W)/Math.LN2),Z=K<=48?1:p(2,K-48),Q=l(W),ee=Q.mul(S);ee.isNegative()||ee.gt(U);)W-=Z,Q=l(W,this.unsigned),ee=Q.mul(S);Q.isZero()&&(Q=I),G=G.add(Q),U=U.sub(ee)}return G},F.div=F.divide,F.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},F.mod=F.modulo,F.rem=F.modulo,F.not=function(){return u(~this.low,~this.high,this.unsigned)},F.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},F.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},F.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},F.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},F.shl=F.shiftLeft,F.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},F.shr=F.shiftRight,F.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var W=this.low;return u(W>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},F.shru=F.shiftRightUnsigned,F.shr_u=F.shiftRightUnsigned,F.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},F.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},F.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},F.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},F.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,W){return W?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),nF=Wt(()=>{}),aF=Wt(()=>{}),rF=Wt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),iF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),oF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,b,y=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(b=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=m+b,f=h==0?f+1:0);for(f>=128&&(y[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=y[f+34&127],h=y[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,y[f]=m^h;d.w=b,d.X=y,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),uF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),pF=Wt(()=>{}),cF=Wt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var A=y(b(T.entropy?[I,w(a)]:I==null?x():I,3),E),R=new f(E),F=function(){for(var S=R.g(i),M=u,W=0;S<p;)S=(S+W)*s,M*=s,W=R.g(1);for(;S>=d;)S/=2,M/=2,W>>>=1;return(S+W)/M};return F.int32=function(){return R.g(4)|0},F.quick=function(){return R.g(4)/4294967296},F.double=F,y(w(R.S),a),(T.pass||C||function(S,M,W,U){return U&&(U.S&&g(U,R),S.state=function(){return g(R,{})}),W?(r[l]=S,M):S})(F,A,"global"in T?T.global:this==r,T.state)}function f(I){var T,C=I.length,E=this,A=0,R=E.i=E.j=0,F=E.S=[];for(C||(I=[C++]);A<s;)F[A]=A++;for(A=0;A<s;A++)F[A]=F[R=c&R+I[A%C]+(T=F[A])],F[R]=T;(E.g=function(S){for(var M,W=0,U=E.i,G=E.j,q=E.S;S--;)M=q[U=c&U+1],W=W*s+q[c&(q[U]=q[G=c&G+M])+(q[G]=M)];return E.i=U,E.j=G,W})(s)}function g(I,T){return T.i=I.i,T.j=I.j,T.S=I.S.slice(),T}function b(I,T){var C=[],E=typeof I,A;if(T&&E=="object")for(A in I)try{C.push(b(I[A],T-1))}catch(R){}return C.length?C:E=="string"?I:I+"\0"}function y(I,T){for(var C=I+"",E,A=0;A<C.length;)T[c&A]=c&(E^=T[c&A]*19)+C.charCodeAt(A++);return w(T)}function x(){try{var I;return h&&(I=h.randomBytes)?I=I(s):(I=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(I)),w(I)}catch(E){var T=n.navigator,C=T&&T.plugins;return[+new Date,n,C,n.screen,w(a)]}}function w(I){return String.fromCharCode.apply(0,I)}if(y(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=pF()}catch(I){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Gh=Wt((e,t)=>{var n=rF(),a=sF(),r=iF(),s=oF(),i=lF(),o=uF(),l=cF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),hI=Wt(()=>{}),bx=Wt(()=>{}),dh=Wt(()=>{}),dF=Wt(()=>{}),hF=Wt(()=>{}),mF=Wt(()=>{}),fF=Wt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ue.buffer!=ze&&it(ue.buffer),dt}function i(){return ue.buffer!=ze&&it(ue.buffer),Hn}function o(){return ue.buffer!=ze&&it(ue.buffer),Mt}function l(){return ue.buffer!=ze&&it(ue.buffer),rn}function u(){return ue.buffer!=ze&&it(ue.buffer),An}function p(){return ue.buffer!=ze&&it(ue.buffer),sa}function d(){return ue.buffer!=ze&&it(ue.buffer),$n}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(D,j){h=D,m=j});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),b=[],y="./this.program",x=(D,j)=>{throw j},w=typeof window=="object",I=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=c.ENVIRONMENT_IS_PTHREAD||!1,E="";function A(D){return c.locateFile?c.locateFile(D,E):E+D}var R,F,S,M;function W(D){D instanceof Rs||Q("exiting due to exception: "+D)}if(T){I?E=dh().dirname(E)+"/":E=__dirname+"/";var U,G;typeof dI=="function"&&(U=bx(),G=dh()),R=(j,re)=>(j=G.normalize(j),U.readFileSync(j,re?void 0:"utf8")),S=j=>{var re=R(j,!0);return re.buffer||(re=new Uint8Array(re)),re},F=(j,re,ce)=>{j=G.normalize(j),U.readFile(j,function(ke,He){ke?ce(ke):re(He.buffer)})},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),b=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof Rs))throw j}),process.on("unhandledRejection",function(j){throw j}),x=(j,re)=>{if(va())throw process.exitCode=j,re;W(re),process.exit(j)},c.inspect=function(){return"[Emscripten Module object]"};let D;try{D=dF()}catch(j){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),j}global.Worker=D.Worker}else(w||I)&&(I?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof a!="undefined"&&a&&(E=a),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(R=D=>{var j=new XMLHttpRequest;return j.open("GET",D,!1),j.send(null),j.responseText},I&&(S=D=>{var j=new XMLHttpRequest;return j.open("GET",D,!1),j.responseType="arraybuffer",j.send(null),new Uint8Array(j.response)}),F=(D,j,re)=>{var ce=new XMLHttpRequest;ce.open("GET",D,!0),ce.responseType="arraybuffer",ce.onload=()=>{if(ce.status==200||ce.status==0&&ce.response){j(ce.response);return}re()},ce.onerror=re,ce.send(null)}),M=D=>document.title=D);T&&typeof performance=="undefined"&&(global.performance=hF().performance);var q=console.log.bind(console),K=console.warn.bind(console);T&&(q=D=>U.writeSync(1,D+`
|
|
`),K=D=>U.writeSync(2,D+`
|
|
`));var Z=c.print||q,Q=c.printErr||K;Object.assign(c,g),g=null,c.arguments&&(b=c.arguments),c.thisProgram&&(y=c.thisProgram),c.quit&&(x=c.quit);var ee=4,ae=Atomics.load,te=Atomics.store,le=Atomics.compareExchange,ie;c.wasmBinary&&(ie=c.wasmBinary);var be=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Oo("no native wasm support detected");var ue,xe,Ie=!1,Se;function Le(D,j){D||Oo(j)}var Ve=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function tt(D,j,re){for(var ce=j+re,ke=j;D[ke]&&!(ke>=ce);)++ke;if(ke-j>16&&D.buffer&&Ve)return Ve.decode(D.buffer instanceof SharedArrayBuffer?D.slice(j,ke):D.subarray(j,ke));for(var He="";j<ke;){var Ne=D[j++];if(!(Ne&128)){He+=String.fromCharCode(Ne);continue}var Fe=D[j++]&63;if((Ne&224)==192){He+=String.fromCharCode((Ne&31)<<6|Fe);continue}var Ot=D[j++]&63;if((Ne&240)==224?Ne=(Ne&15)<<12|Fe<<6|Ot:Ne=(Ne&7)<<18|Fe<<12|Ot<<6|D[j++]&63,Ne<65536)He+=String.fromCharCode(Ne);else{var oa=Ne-65536;He+=String.fromCharCode(55296|oa>>10,56320|oa&1023)}}return He}function st(D,j){return D?tt(i(),D,j):""}function Je(D,j,re,ce){if(!(ce>0))return 0;for(var ke=re,He=re+ce-1,Ne=0;Ne<D.length;++Ne){var Fe=D.charCodeAt(Ne);if(Fe>=55296&&Fe<=57343){var Ot=D.charCodeAt(++Ne);Fe=65536+((Fe&1023)<<10)|Ot&1023}if(Fe<=127){if(re>=He)break;j[re++]=Fe}else if(Fe<=2047){if(re+1>=He)break;j[re++]=192|Fe>>6,j[re++]=128|Fe&63}else if(Fe<=65535){if(re+2>=He)break;j[re++]=224|Fe>>12,j[re++]=128|Fe>>6&63,j[re++]=128|Fe&63}else{if(re+3>=He)break;j[re++]=240|Fe>>18,j[re++]=128|Fe>>12&63,j[re++]=128|Fe>>6&63,j[re++]=128|Fe&63}}return j[re]=0,re-ke}function nt(D,j,re){return Je(D,i(),j,re)}var ze,dt,Hn,Mt,ra,rn,An,sa,$n;C&&(ze=c.buffer);function it(D){ze=D,c.HEAP8=dt=new Int8Array(D),c.HEAP16=Mt=new Int16Array(D),c.HEAP32=rn=new Int32Array(D),c.HEAPU8=Hn=new Uint8Array(D),c.HEAPU16=ra=new Uint16Array(D),c.HEAPU32=An=new Uint32Array(D),c.HEAPF32=sa=new Float32Array(D),c.HEAPF64=$n=new Float64Array(D)}var Fn=c.INITIAL_MEMORY||16777216;if(C)ue=c.wasmMemory,ze=c.buffer;else if(c.wasmMemory)ue=c.wasmMemory;else if(ue=new WebAssembly.Memory({initial:Fn/65536,maximum:32768,shared:!0}),!(ue.buffer instanceof SharedArrayBuffer))throw Q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ue&&(ze=ue.buffer),Fn=ze.byteLength,it(ze);var jn,fr=[],Ro=[],Ya=[],dp=!1;function va(){return be}function Mo(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)gg(c.preRun.shift());gp(fr)}function Xt(){dp=!0,!C&&gp(Ro)}function bd(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)x1(c.postRun.shift());gp(Ya)}}function gg(D){fr.unshift(D)}function bg(D){Ro.unshift(D)}function x1(D){Ya.unshift(D)}var Br=0,Po=null,gr=null;function v1(D){Br++,c.monitorRunDependencies&&c.monitorRunDependencies(Br)}function w1(D){if(Br--,c.monitorRunDependencies&&c.monitorRunDependencies(Br),Br==0&&(Po!==null&&(clearInterval(Po),Po=null),gr)){var j=gr;gr=null,j()}}function Oo(D){C?postMessage({cmd:"onAbort",arg:D}):c.onAbort&&c.onAbort(D),D="Aborted("+D+")",Q(D),Ie=!0,Se=1,D+=". Build with -sASSERTIONS for more info.";var j=new WebAssembly.RuntimeError(D);throw m(j),j}var yg="data:application/octet-stream;base64,";function yd(D){return D.startsWith(yg)}function hp(D){return D.startsWith("file://")}var bn;bn="tfjs-backend-wasm-threaded-simd.wasm",yd(bn)||(bn=A(bn));function xd(D){try{if(D==bn&&ie)return new Uint8Array(ie);if(S)return S(D);throw"both async and sync fetching of the wasm failed"}catch(j){Oo(j)}}function xg(){if(!ie&&(w||I)){if(typeof fetch=="function"&&!hp(bn))return fetch(bn,{credentials:"same-origin"}).then(function(D){if(!D.ok)throw"failed to load wasm binary file at '"+bn+"'";return D.arrayBuffer()}).catch(function(){return xd(bn)});if(F)return new Promise(function(D,j){F(bn,function(re){D(new Uint8Array(re))},j)})}return Promise.resolve().then(function(){return xd(bn)})}function vg(){var D={env:$d,wasi_snapshot_preview1:$d};function j(Ne,Fe){var Ot=Ne.exports;if(c.asm=Ot,Ag(c.asm._emscripten_tls_init),jn=c.asm.__indirect_function_table,bg(c.asm.__wasm_call_ctors),xe=Fe,!C){var oa=Ee.unusedWorkers.length;Ee.unusedWorkers.forEach(function(yr){Ee.loadWasmModuleToWorker(yr,function(){--oa||w1("wasm-instantiate")})})}}C||v1("wasm-instantiate");function re(Ne){j(Ne.instance,Ne.module)}function ce(Ne){return xg().then(function(Fe){return WebAssembly.instantiate(Fe,D)}).then(function(Fe){return Fe}).then(Ne,function(Fe){Q("failed to asynchronously prepare wasm: "+Fe),Oo(Fe)})}function ke(){return!ie&&typeof WebAssembly.instantiateStreaming=="function"&&!yd(bn)&&!hp(bn)&&!T&&typeof fetch=="function"?fetch(bn,{credentials:"same-origin"}).then(function(Ne){var Fe=WebAssembly.instantiateStreaming(Ne,D);return Fe.then(re,function(Ot){return Q("wasm streaming compile failed: "+Ot),Q("falling back to ArrayBuffer instantiation"),ce(re)})}):ce(re)}if(c.instantiateWasm)try{var He=c.instantiateWasm(D,j);return He}catch(Ne){Q("Module.instantiateWasm callback failed with error: "+Ne),m(Ne)}return ke().catch(m),{}}var wg,k1,kg={};function Rs(D){this.name="ExitStatus",this.message="Program terminated with exit("+D+")",this.status=D}function Ig(D){var j=Ee.pthreads[D];delete Ee.pthreads[D],j.terminate(),Jb(D),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(j),1),j.pthread_ptr=0}function Sg(D){var j=Ee.pthreads[D];j.postMessage({cmd:"cancel"})}function mp(D){var j=Ee.pthreads[D];Le(j),Ee.returnWorkerToPool(j)}function vd(D){var j=Ee.getNewWorker();if(!j)return 6;Ee.runningWorkers.push(j),Ee.pthreads[D.pthread_ptr]=j,j.pthread_ptr=D.pthread_ptr;var re={cmd:"run",start_routine:D.startRoutine,arg:D.arg,pthread_ptr:D.pthread_ptr};return j.runPthread=()=>{re.time=performance.now(),j.postMessage(re,D.transferList)},j.loaded&&(j.runPthread(),delete j.runPthread),0}var wd={varargs:void 0,get:function(){wd.varargs+=4;var D=l()[wd.varargs-4>>2];return D},getStr:function(D){var j=st(D);return j}};function fp(D){if(C)return Wr(1,1,D);Se=D,va()||(Ee.terminateAllThreads(),c.onExit&&c.onExit(D),Ie=!0),x(D,new Rs(D))}function I1(D,j){if(Se=D,!j&&C)throw Id(D),"unwind";fp(D)}var kd=I1;function Tg(D){if(D instanceof Rs||D=="unwind")return Se;x(1,D)}var Ee={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){C?Ee.initWorker():Ee.initMainThread()},initMainThread:function(){for(var D=8;D--;)Ee.allocateUnusedWorker()},initWorker:function(){be=!1},setExitStatus:function(D){Se=D},terminateAllThreads:function(){for(var D of Object.values(Ee.pthreads))Ee.returnWorkerToPool(D);for(var D of Ee.unusedWorkers)D.terminate();Ee.unusedWorkers=[]},returnWorkerToPool:function(D){var j=D.pthread_ptr;delete Ee.pthreads[j],Ee.unusedWorkers.push(D),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(D),1),D.pthread_ptr=0,Jb(j)},receiveObjectTransfer:function(D){},threadInitTLS:function(){Ee.tlsInitFunctions.forEach(D=>D())},loadWasmModuleToWorker:function(D,j){D.onmessage=re=>{var ce=re.data,ke=ce.cmd;if(D.pthread_ptr&&(Ee.currentProxiedOperationCallerThread=D.pthread_ptr),ce.targetThread&&ce.targetThread!=Od()){var He=Ee.pthreads[ce.targetThread];He?He.postMessage(ce,ce.transferList):Q('Internal error! Worker sent a message "'+ke+'" to target pthread '+ce.targetThread+", but that thread no longer exists!"),Ee.currentProxiedOperationCallerThread=void 0;return}ke==="processProxyingQueue"?bp(ce.queue):ke==="spawnThread"?vd(ce):ke==="cleanupThread"?mp(ce.thread):ke==="killThread"?Ig(ce.thread):ke==="cancelThread"?Sg(ce.thread):ke==="loaded"?(D.loaded=!0,j&&j(D),D.runPthread&&(D.runPthread(),delete D.runPthread)):ke==="print"?Z("Thread "+ce.threadId+": "+ce.text):ke==="printErr"?Q("Thread "+ce.threadId+": "+ce.text):ke==="alert"?alert("Thread "+ce.threadId+": "+ce.text):ce.target==="setimmediate"?D.postMessage(ce):ke==="onAbort"?c.onAbort&&c.onAbort(ce.arg):ke&&Q("worker sent an unknown command "+ke),Ee.currentProxiedOperationCallerThread=void 0},D.onerror=re=>{var ce="worker sent an error!";throw Q(ce+" "+re.filename+":"+re.lineno+": "+re.message),re},T&&(D.on("message",function(re){D.onmessage({data:re})}),D.on("error",function(re){D.onerror(re)}),D.on("detachedExit",function(){})),D.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:ue,wasmModule:xe})},allocateUnusedWorker:function(){var D=A("tfjs-backend-wasm-threaded-simd.worker.js");Ee.unusedWorkers.push(new Worker(D))},getNewWorker:function(){return Ee.unusedWorkers.length==0&&(Ee.allocateUnusedWorker(),Ee.loadWasmModuleToWorker(Ee.unusedWorkers[0])),Ee.unusedWorkers.pop()}};c.PThread=Ee;function gp(D){for(;D.length>0;)D.shift()(c)}function Ng(D){var j=Qb(),re=D();return Ld(j),re}function S1(D){return D}function T1(D){var j=/\b_Z[\w\d_]+/g;return D.replace(j,function(re){var ce=re;return re===ce?re:ce+" ["+re+"]"})}function Cg(){var D=Od(),j=l()[D+44>>2],re=l()[D+48>>2],ce=j-re;F1(j,ce),Ld(j)}c.establishStackSpace=Cg;function Id(D){if(C)return Wr(2,0,D);try{kd(D)}catch(j){Tg(j)}}var Lo=[];function _g(D){var j=Lo[D];return j||(D>=Lo.length&&(Lo.length=D+1),Lo[D]=j=jn.get(D)),j}function Eg(D,j){var re=_g(D)(j);va()?Ee.setExitStatus(re):$1(re)}c.invokeEntryPoint=Eg;function N1(){var D=new Error;if(!D.stack){try{throw new Error}catch(j){D=j}if(!D.stack)return"(no stack trace available)"}return D.stack.toString()}function Ag(D){Ee.tlsInitFunctions.push(D)}function $g(D,j){s().set(D,j)}function Fg(D){_1(D,!I,1,!w),Ee.threadInitTLS()}function Dg(D){C?postMessage({cmd:"cleanupThread",thread:D}):mp(D)}function Sd(D,j,re,ce){return C?Wr(3,1,D,j,re,ce):Td(D,j,re,ce)}function Td(D,j,re,ce){if(typeof SharedArrayBuffer=="undefined")return Q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ke=[],He=0;if(C&&(ke.length===0||He))return Sd(D,j,re,ce);if(He)return He;var Ne={startRoutine:re,pthread_ptr:D,arg:ce,transferList:ke};return C?(Ne.cmd="spawnThread",postMessage(Ne,ke),0):vd(Ne)}function Rg(){return 2097152}var Mg=!0;function Pg(){return Mg}function bp(D){Atomics.store(l(),D>>2,1),Od()&&A1(D),Atomics.compareExchange(l(),D>>2,1,0)}c.executeNotifiedProxyingQueue=bp;function Og(D,j,re,ce){if(D==j)setTimeout(()=>bp(ce));else if(C)postMessage({targetThread:D,cmd:"processProxyingQueue",queue:ce});else{var ke=Ee.pthreads[D];if(!ke)return;ke.postMessage({cmd:"processProxyingQueue",queue:ce})}return 1}function Lg(D,j,re){return-1}function zg(){Oo("")}function Ms(D){Ms.shown||(Ms.shown={}),Ms.shown[D]||(Ms.shown[D]=1,T&&(D="warning: "+D),Q(D))}function Bg(){T||I||Ms("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Wg(){return Date.now()}function Nd(){return 2147483648}function Vg(){return Nd()}var zo;T?zo=()=>{var D=process.hrtime();return D[0]*1e3+D[1]/1e6}:C?zo=()=>performance.now()-c.__performance_now_clock_drift:zo=()=>performance.now();function Ug(D,j,re){i().copyWithin(D,j,j+re)}function Gg(){return T?mF().cpus().length:navigator.hardwareConcurrency}function Wr(D,j){var re=arguments.length-2,ce=arguments;return Ng(()=>{for(var ke=re,He=zd(ke*8),Ne=He>>3,Fe=0;Fe<re;Fe++){var Ot=ce[2+Fe];d()[Ne+Fe]=Ot}return E1(D,ke,He,j)})}var yp=[];function Hg(D,j,re){yp.length=j;for(var ce=re>>3,ke=0;ke<j;ke++)yp[ke]=d()[ce+ke];var He=D<0,Ne=He?kg[-D-1]:Qg[D];return Ne.apply(null,yp)}function jg(D){try{return ue.grow(D-ze.byteLength+65535>>>16),it(ue.buffer),1}catch(j){}}function qg(D){var j=i().length;if(D=D>>>0,D<=j)return!1;var re=Nd();if(D>re)return!1;let ce=(Ot,oa)=>Ot+(oa-Ot%oa)%oa;for(var ke=1;ke<=4;ke*=2){var He=j*(1+.2/ke);He=Math.min(He,D+100663296);var Ne=Math.min(re,ce(Math.max(D,He),65536)),Fe=jg(Ne);if(Fe)return!0}return!1}function Kg(){throw"unwind"}function Cd(D){return C?Wr(4,1,D):52}function _d(D,j,re,ce,ke){return C?Wr(5,1,D,j,re,ce,ke):70}var Xg=[null,[],[]];function Yg(D,j){var re=Xg[D];j===0||j===10?((D===1?Z:Q)(tt(re,0)),re.length=0):re.push(j)}function Ed(D,j,re,ce){if(C)return Wr(6,1,D,j,re,ce);for(var ke=0,He=0;He<re;He++){var Ne=u()[j>>2],Fe=u()[j+4>>2];j+=8;for(var Ot=0;Ot<Fe;Ot++)Yg(D,i()[Ne+Ot]);ke+=Fe}return u()[ce>>2]=ke,0}function Ad(D){var j=c["_"+D];return j}function Zg(D,j,re,ce,ke){var He={string:la=>{var Uo=0;if(la!=null&&la!==0){var M1=(la.length<<2)+1;Uo=zd(M1),nt(la,Uo,M1)}return Uo},array:la=>{var Uo=zd(la.length);return $g(la,Uo),Uo}};function Ne(la){return j==="string"?st(la):j==="boolean"?Boolean(la):la}var Fe=Ad(D),Ot=[],oa=0;if(ce)for(var yr=0;yr<ce.length;yr++){var R1=He[re[yr]];R1?(oa===0&&(oa=Qb()),Ot[yr]=R1(ce[yr])):Ot[yr]=ce[yr]}var ey=Fe.apply(null,Ot);function q$(la){return oa!==0&&Ld(oa),Ne(la)}return ey=q$(ey),ey}function Jg(D,j,re,ce){re=re||[];var ke=re.every(Ne=>Ne==="number"||Ne==="boolean"),He=j!=="string";return He&&ke&&!ce?Ad(D):function(){return Zg(D,j,re,arguments,ce)}}Ee.init();var Qg=[null,fp,Id,Sd,Cd,_d,Ed],$d={__emscripten_init_main_thread_js:Fg,__emscripten_thread_cleanup:Dg,__pthread_create_js:Td,_emscripten_default_pthread_stack_size:Rg,_emscripten_get_now_is_monotonic:Pg,_emscripten_notify_task_queue:Og,_emscripten_set_offscreencanvas_size:Lg,abort:zg,emscripten_check_blocking_allowed:Bg,emscripten_date_now:Wg,emscripten_get_heap_max:Vg,emscripten_get_now:zo,emscripten_memcpy_big:Ug,emscripten_num_logical_cores:Gg,emscripten_receive_on_main_thread_js:Hg,emscripten_resize_heap:qg,emscripten_unwind_to_js_event_loop:Kg,exit:kd,fd_close:Cd,fd_seek:_d,fd_write:Ed,memory:ue||c.wasmMemory},C1=vg(),eb=c.___wasm_call_ctors=function(){return(eb=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},tb=c._init=function(){return(tb=c._init=c.asm.init).apply(null,arguments)},nb=c._init_with_threads_count=function(){return(nb=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},ab=c._get_threads_count=function(){return(ab=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},rb=c._register_tensor=function(){return(rb=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},sb=c._dispose_data=function(){return(sb=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},ib=c._dispose=function(){return(ib=c._dispose=c.asm.dispose).apply(null,arguments)},ob=c._Abs=function(){return(ob=c._Abs=c.asm.Abs).apply(null,arguments)},lb=c._Add=function(){return(lb=c._Add=c.asm.Add).apply(null,arguments)},ub=c._AddN=function(){return(ub=c._AddN=c.asm.AddN).apply(null,arguments)},pb=c._All=function(){return(pb=c._All=c.asm.All).apply(null,arguments)},cb=c._Any=function(){return(cb=c._Any=c.asm.Any).apply(null,arguments)},db=c._ArgMax=function(){return(db=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},hb=c._AvgPool=function(){return(hb=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},mb=c._BatchMatMul=function(){return(mb=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},fb=c._Ceil=function(){return(fb=c._Ceil=c.asm.Ceil).apply(null,arguments)},gb=c._ClipByValue=function(){return(gb=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},bb=c._Conv2D=function(){return(bb=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},yb=c._Conv2DBackpropInput=function(){return(yb=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},xb=c._Cos=function(){return(xb=c._Cos=c.asm.Cos).apply(null,arguments)},vb=c._Cosh=function(){return(vb=c._Cosh=c.asm.Cosh).apply(null,arguments)},wb=c._CropAndResize=function(){return(wb=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},kb=c._Cumprod=function(){return(kb=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},Ib=c._Cumsum=function(){return(Ib=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},Sb=c._DepthToSpace=function(){return(Sb=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},Tb=c._DepthwiseConv2dNative=function(){return(Tb=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},Nb=c._Elu=function(){return(Nb=c._Elu=c.asm.Elu).apply(null,arguments)},Cb=c._Equal=function(){return(Cb=c._Equal=c.asm.Equal).apply(null,arguments)},_b=c._Exp=function(){return(_b=c._Exp=c.asm.Exp).apply(null,arguments)},Eb=c._FlipLeftRight=function(){return(Eb=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},Ab=c._Floor=function(){return(Ab=c._Floor=c.asm.Floor).apply(null,arguments)},$b=c._FloorDiv=function(){return($b=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},Fb=c._FusedBatchNorm=function(){return(Fb=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},Db=c._FusedConv2D=function(){return(Db=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},Rb=c._FusedDepthwiseConv2D=function(){return(Rb=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},Mb=c._Gather=function(){return(Mb=c._Gather=c.asm.Gather).apply(null,arguments)},Pb=c._GatherNd=function(){return(Pb=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},Ob=c._Greater=function(){return(Ob=c._Greater=c.asm.Greater).apply(null,arguments)},Lb=c._GreaterEqual=function(){return(Lb=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},zb=c._LeakyRelu=function(){return(zb=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},Bb=c._Less=function(){return(Bb=c._Less=c.asm.Less).apply(null,arguments)},Wb=c._LessEqual=function(){return(Wb=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},Vb=c._Log=function(){return(Vb=c._Log=c.asm.Log).apply(null,arguments)},Ub=c._LogicalAnd=function(){return(Ub=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},Gb=c._LogicalNot=function(){return(Gb=c._LogicalNot=c.asm.LogicalNot).apply(null,arguments)},Hb=c._LogicalOr=function(){return(Hb=c._LogicalOr=c.asm.LogicalOr).apply(null,arguments)},jb=c._LogicalXor=function(){return(jb=c._LogicalXor=c.asm.LogicalXor).apply(null,arguments)},qb=c._Max=function(){return(qb=c._Max=c.asm.Max).apply(null,arguments)},Fd=c._MaxPool=function(){return(Fd=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Dd=c._Maximum=function(){return(Dd=c._Maximum=c.asm.Maximum).apply(null,arguments)},xp=c._Mean=function(){return(xp=c._Mean=c.asm.Mean).apply(null,arguments)},Kb=c._Min=function(){return(Kb=c._Min=c.asm.Min).apply(null,arguments)},Xb=c._Minimum=function(){return(Xb=c._Minimum=c.asm.Minimum).apply(null,arguments)},Bo=c._MirrorPad=function(){return(Bo=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Rd=c._Multiply=function(){return(Rd=c._Multiply=c.asm.Multiply).apply(null,arguments)},Wo=c._Neg=function(){return(Wo=c._Neg=c.asm.Neg).apply(null,arguments)},Vo=c._NonMaxSuppressionV3=function(){return(Vo=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},Yb=c._NonMaxSuppressionV4=function(){return(Yb=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},X=c._NonMaxSuppressionV5=function(){return(X=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},se=c._NotEqual=function(){return(se=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},we=c._OneHot=function(){return(we=c._OneHot=c.asm.OneHot).apply(null,arguments)},Ge=c._PadV2=function(){return(Ge=c._PadV2=c.asm.PadV2).apply(null,arguments)},wt=c._Pow=function(){return(wt=c._Pow=c.asm.Pow).apply(null,arguments)},kt=c._Prelu=function(){return(kt=c._Prelu=c.asm.Prelu).apply(null,arguments)},Ue=c._Prod=function(){return(Ue=c._Prod=c.asm.Prod).apply(null,arguments)},Be=c._RealDiv=function(){return(Be=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},Pt=c._Relu=function(){return(Pt=c._Relu=c.asm.Relu).apply(null,arguments)},ia=c._Relu6=function(){return(ia=c._Relu6=c.asm.Relu6).apply(null,arguments)},br=c._ResizeBilinear=function(){return(br=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},Md=c._ResizeNearestNeighbor=function(){return(Md=c._ResizeNearestNeighbor=c.asm.ResizeNearestNeighbor).apply(null,arguments)},vp=c._Reverse=function(){return(vp=c._Reverse=c.asm.Reverse).apply(null,arguments)},Zb=c._RotateWithOffset=function(){return(Zb=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},Dn=c._Round=function(){return(Dn=c._Round=c.asm.Round).apply(null,arguments)},Vr=c._Rsqrt=function(){return(Vr=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},Pd=c._ScatterNd=function(){return(Pd=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},f$=c._SelectV2=function(){return(f$=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},g$=c._Sigmoid=function(){return(g$=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},b$=c._Sin=function(){return(b$=c._Sin=c.asm.Sin).apply(null,arguments)},y$=c._Softmax=function(){return(y$=c._Softmax=c.asm.Softmax).apply(null,arguments)},x$=c._SparseFillEmptyRows=function(){return(x$=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},v$=c._SparseReshape=function(){return(v$=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},w$=c._SparseSegmentReduction=function(){return(w$=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},k$=c._Sqrt=function(){return(k$=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},I$=c._Square=function(){return(I$=c._Square=c.asm.Square).apply(null,arguments)},S$=c._SquaredDifference=function(){return(S$=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},T$=c._Step=function(){return(T$=c._Step=c.asm.Step).apply(null,arguments)},N$=c._StridedSlice=function(){return(N$=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},C$=c._Sub=function(){return(C$=c._Sub=c.asm.Sub).apply(null,arguments)},_$=c._Sum=function(){return(_$=c._Sum=c.asm.Sum).apply(null,arguments)},E$=c._Tan=function(){return(E$=c._Tan=c.asm.Tan).apply(null,arguments)},A$=c._Tanh=function(){return(A$=c._Tanh=c.asm.Tanh).apply(null,arguments)},$$=c._Tile=function(){return($$=c._Tile=c.asm.Tile).apply(null,arguments)},F$=c._TopK=function(){return(F$=c._TopK=c.asm.TopK).apply(null,arguments)},D$=c._Transform=function(){return(D$=c._Transform=c.asm.Transform).apply(null,arguments)},R$=c._Transpose=function(){return(R$=c._Transpose=c.asm.Transpose).apply(null,arguments)},M$=c.__FusedMatMul=function(){return(M$=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},P$=c._malloc=function(){return(P$=c._malloc=c.asm.malloc).apply(null,arguments)},O$=c._free=function(){return(O$=c._free=c.asm.free).apply(null,arguments)},L$=c.__emscripten_tls_init=function(){return(L$=c.__emscripten_tls_init=c.asm._emscripten_tls_init).apply(null,arguments)},Od=c._pthread_self=function(){return(Od=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},z$=c.___errno_location=function(){return(z$=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},_1=c.__emscripten_thread_init=function(){return(_1=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},B$=c.__emscripten_thread_crashed=function(){return(B$=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},W$=c._emscripten_main_thread_process_queued_calls=function(){return(W$=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},V$=c._emscripten_main_browser_thread_id=function(){return(V$=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},E1=c._emscripten_run_in_main_runtime_thread_js=function(){return(E1=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},U$=c._emscripten_dispatch_to_thread_=function(){return(U$=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},A1=c.__emscripten_proxy_execute_task_queue=function(){return(A1=c.__emscripten_proxy_execute_task_queue=c.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},Jb=c.__emscripten_thread_free_data=function(){return(Jb=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},$1=c.__emscripten_thread_exit=function(){return($1=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},F1=c._emscripten_stack_set_limits=function(){return(F1=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},Qb=c.stackSave=function(){return(Qb=c.stackSave=c.asm.stackSave).apply(null,arguments)},Ld=c.stackRestore=function(){return(Ld=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},zd=c.stackAlloc=function(){return(zd=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},G$=c.dynCall_iijjiiii=function(){return(G$=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},H$=c.dynCall_jiji=function(){return(H$=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)};c.keepRuntimeAlive=va,c.wasmMemory=ue,c.cwrap=Jg,c.ExitStatus=Rs,c.PThread=Ee;var Bd;gr=function D(){Bd||D1(),Bd||(gr=D)};function D1(D){if(D=D||b,Br>0)return;if(C){h(c),Xt(),postMessage({cmd:"loaded"});return}if(Mo(),Br>0)return;function j(){Bd||(Bd=!0,c.calledRun=!0,!Ie&&(Xt(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),bd()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),j()},1)):j()}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();D1();var Wd;f&&(Wd={uncaughtException:process.listeners("uncaughtException").filter(function(D){return!f.uncaughtException.indexOf(D)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(D){return!f.unhandledRejection.indexOf(D)>-1})});var Vd;if(typeof WasmBackendModule!="undefined")Vd=WasmBackendModule;else if(typeof r!="undefined")Vd=r;else throw new Error("Could not find wasm module in post.js");if(Wd){var j$=Vd._dispose;Vd._dispose=function(){j$(),Wd.uncaughtException.forEach(function(D){process.removeListener("uncaughtException",D)}),Wd.unhandledRejection.forEach(function(D){process.removeListener("unhandledRejection",D)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),gF=Wt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`}),bF=Wt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(X,se){i=X,o=se});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(X,se)=>{throw se},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function b(X){return s.locateFile?s.locateFile(X,g):g+X}var y,x,w,I;function T(X){X instanceof Po||R("exiting due to exception: "+X)}if(f){m?g=dh().dirname(g)+"/":g=__dirname+"/";var C,E;typeof dI=="function"&&(C=bx(),E=dh()),y=(X,se)=>(X=E.normalize(X),C.readFileSync(X,se?void 0:"utf8")),w=X=>{var se=y(X,!0);return se.buffer||(se=new Uint8Array(se)),se},x=(X,se,we)=>{X=E.normalize(X),C.readFile(X,function(Ge,wt){Ge?we(Ge):se(wt.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(X){if(!(X instanceof Po))throw X}),process.on("unhandledRejection",function(X){throw X}),c=(X,se)=>{if(Hn())throw process.exitCode=X,se;T(se),process.exit(X)},s.inspect=function(){return"[Emscripten Module object]"}}else(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",y=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.send(null),se.responseText},m&&(w=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),x=(X,se,we)=>{var Ge=new XMLHttpRequest;Ge.open("GET",X,!0),Ge.responseType="arraybuffer",Ge.onload=()=>{if(Ge.status==200||Ge.status==0&&Ge.response){se(Ge.response);return}we()},Ge.onerror=we,Ge.send(null)},I=X=>document.title=X);var A=s.print||console.log.bind(console),R=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var F=4,S;s.wasmBinary&&(S=s.wasmBinary);var M=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ya("no native wasm support detected");var W,U=!1,G;function q(X,se){X||Ya(se)}var K=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Z(X,se,we){for(var Ge=se+we,wt=se;X[wt]&&!(wt>=Ge);)++wt;if(wt-se>16&&X.buffer&&K)return K.decode(X.subarray(se,wt));for(var kt="";se<wt;){var Ue=X[se++];if(!(Ue&128)){kt+=String.fromCharCode(Ue);continue}var Be=X[se++]&63;if((Ue&224)==192){kt+=String.fromCharCode((Ue&31)<<6|Be);continue}var Pt=X[se++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|Be<<6|Pt:Ue=(Ue&7)<<18|Be<<12|Pt<<6|X[se++]&63,Ue<65536)kt+=String.fromCharCode(Ue);else{var ia=Ue-65536;kt+=String.fromCharCode(55296|ia>>10,56320|ia&1023)}}return kt}function Q(X,se){return X?Z(ie,X,se):""}function ee(X,se,we,Ge){if(!(Ge>0))return 0;for(var wt=we,kt=we+Ge-1,Ue=0;Ue<X.length;++Ue){var Be=X.charCodeAt(Ue);if(Be>=55296&&Be<=57343){var Pt=X.charCodeAt(++Ue);Be=65536+((Be&1023)<<10)|Pt&1023}if(Be<=127){if(we>=kt)break;se[we++]=Be}else if(Be<=2047){if(we+1>=kt)break;se[we++]=192|Be>>6,se[we++]=128|Be&63}else if(Be<=65535){if(we+2>=kt)break;se[we++]=224|Be>>12,se[we++]=128|Be>>6&63,se[we++]=128|Be&63}else{if(we+3>=kt)break;se[we++]=240|Be>>18,se[we++]=128|Be>>12&63,se[we++]=128|Be>>6&63,se[we++]=128|Be&63}}return se[we]=0,we-wt}function ae(X,se,we){return ee(X,ie,se,we)}var te,le,ie,be,ue,xe,Ie,Se,Le;function Ve(X){te=X,s.HEAP8=le=new Int8Array(X),s.HEAP16=be=new Int16Array(X),s.HEAP32=xe=new Int32Array(X),s.HEAPU8=ie=new Uint8Array(X),s.HEAPU16=ue=new Uint16Array(X),s.HEAPU32=Ie=new Uint32Array(X),s.HEAPF32=Se=new Float32Array(X),s.HEAPF64=Le=new Float64Array(X)}var tt=s.INITIAL_MEMORY||16777216,st,Je=[],nt=[],ze=[],dt=!1;function Hn(){return M}function Mt(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)An(s.preRun.shift());gr(Je)}function ra(){dt=!0,gr(nt)}function rn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)$n(s.postRun.shift());gr(ze)}function An(X){Je.unshift(X)}function sa(X){nt.unshift(X)}function $n(X){ze.unshift(X)}var it=0,Fn=null,jn=null;function fr(X){it++,s.monitorRunDependencies&&s.monitorRunDependencies(it)}function Ro(X){if(it--,s.monitorRunDependencies&&s.monitorRunDependencies(it),it==0&&(Fn!==null&&(clearInterval(Fn),Fn=null),jn)){var se=jn;jn=null,se()}}function Ya(X){s.onAbort&&s.onAbort(X),X="Aborted("+X+")",R(X),U=!0,G=1,X+=". Build with -sASSERTIONS for more info.";var se=new WebAssembly.RuntimeError(X);throw o(se),se}var dp="data:application/octet-stream;base64,";function va(X){return X.startsWith(dp)}function Mo(X){return X.startsWith("file://")}var Xt;Xt="tfjs-backend-wasm.wasm",va(Xt)||(Xt=b(Xt));function bd(X){try{if(X==Xt&&S)return new Uint8Array(S);if(w)return w(X);throw"both async and sync fetching of the wasm failed"}catch(se){Ya(se)}}function gg(){if(!S&&(h||m)){if(typeof fetch=="function"&&!Mo(Xt))return fetch(Xt,{credentials:"same-origin"}).then(function(X){if(!X.ok)throw"failed to load wasm binary file at '"+Xt+"'";return X.arrayBuffer()}).catch(function(){return bd(Xt)});if(x)return new Promise(function(X,se){x(Xt,function(we){X(new Uint8Array(we))},se)})}return Promise.resolve().then(function(){return bd(Xt)})}function bg(){var X={env:fp,wasi_snapshot_preview1:fp};function se(Ue,Be){var Pt=Ue.exports;s.asm=Pt,W=s.asm.memory,Ve(W.buffer),st=s.asm.__indirect_function_table,sa(s.asm.__wasm_call_ctors),Ro("wasm-instantiate")}fr("wasm-instantiate");function we(Ue){se(Ue.instance)}function Ge(Ue){return gg().then(function(Be){return WebAssembly.instantiate(Be,X)}).then(function(Be){return Be}).then(Ue,function(Be){R("failed to asynchronously prepare wasm: "+Be),Ya(Be)})}function wt(){return!S&&typeof WebAssembly.instantiateStreaming=="function"&&!va(Xt)&&!Mo(Xt)&&!f&&typeof fetch=="function"?fetch(Xt,{credentials:"same-origin"}).then(function(Ue){var Be=WebAssembly.instantiateStreaming(Ue,X);return Be.then(we,function(Pt){return R("wasm streaming compile failed: "+Pt),R("falling back to ArrayBuffer instantiation"),Ge(we)})}):Ge(we)}if(s.instantiateWasm)try{var kt=s.instantiateWasm(X,se);return kt}catch(Ue){R("Module.instantiateWasm callback failed with error: "+Ue),o(Ue)}return wt().catch(o),{}}var x1,Br;function Po(X){this.name="ExitStatus",this.message="Program terminated with exit("+X+")",this.status=X}function gr(X){for(;X.length>0;)X.shift()(s)}function v1(X){return X}function w1(X){var se=/\b_Z[\w\d_]+/g;return X.replace(se,function(we){var Ge=we;return we===Ge?we:Ge+" ["+we+"]"})}function Oo(){var X=new Error;if(!X.stack){try{throw new Error}catch(se){X=se}if(!X.stack)return"(no stack trace available)"}return X.stack.toString()}function yg(X,se){le.set(X,se)}function yd(){Ya("")}function hp(){return 2147483648}function bn(){return hp()}function xd(X,se,we){ie.copyWithin(X,se,se+we)}function xg(X){try{return W.grow(X-te.byteLength+65535>>>16),Ve(W.buffer),1}catch(se){}}function vg(X){var se=ie.length;X=X>>>0;var we=hp();if(X>we)return!1;let Ge=(Pt,ia)=>Pt+(ia-Pt%ia)%ia;for(var wt=1;wt<=4;wt*=2){var kt=se*(1+.2/wt);kt=Math.min(kt,X+100663296);var Ue=Math.min(we,Ge(Math.max(X,kt),65536)),Be=xg(Ue);if(Be)return!0}return!1}var wg={varargs:void 0,get:function(){wg.varargs+=4;var X=xe[wg.varargs-4>>2];return X},getStr:function(X){var se=Q(X);return se}};function k1(X){return 52}function kg(X,se,we,Ge,wt){return 70}var Rs=[null,[],[]];function Ig(X,se){var we=Rs[X];se===0||se===10?((X===1?A:R)(Z(we,0)),we.length=0):we.push(se)}function Sg(X,se,we,Ge){for(var wt=0,kt=0;kt<we;kt++){var Ue=Ie[se>>2],Be=Ie[se+4>>2];se+=8;for(var Pt=0;Pt<Be;Pt++)Ig(X,ie[Ue+Pt]);wt+=Be}return Ie[Ge>>2]=wt,0}function mp(X){var se=s["_"+X];return se}function vd(X,se,we,Ge,wt){var kt={string:Dn=>{var Vr=0;if(Dn!=null&&Dn!==0){var Pd=(Dn.length<<2)+1;Vr=xp(Pd),ae(Dn,Vr,Pd)}return Vr},array:Dn=>{var Vr=xp(Dn.length);return yg(Dn,Vr),Vr}};function Ue(Dn){return se==="string"?Q(Dn):se==="boolean"?Boolean(Dn):Dn}var Be=mp(X),Pt=[],ia=0;if(Ge)for(var br=0;br<Ge.length;br++){var Md=kt[we[br]];Md?(ia===0&&(ia=Fd()),Pt[br]=Md(Ge[br])):Pt[br]=Ge[br]}var vp=Be.apply(null,Pt);function Zb(Dn){return ia!==0&&Dd(ia),Ue(Dn)}return vp=Zb(vp),vp}function wd(X,se,we,Ge){we=we||[];var wt=we.every(Ue=>Ue==="number"||Ue==="boolean"),kt=se!=="string";return kt&&wt&&!Ge?mp(X):function(){return vd(X,se,we,arguments,Ge)}}var fp={abort:yd,emscripten_get_heap_max:bn,emscripten_memcpy_big:xd,emscripten_resize_heap:vg,fd_close:k1,fd_seek:kg,fd_write:Sg},I1=bg(),kd=s.___wasm_call_ctors=function(){return(kd=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},Tg=s._init=function(){return(Tg=s._init=s.asm.init).apply(null,arguments)},Ee=s._init_with_threads_count=function(){return(Ee=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},gp=s._get_threads_count=function(){return(gp=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},Ng=s._register_tensor=function(){return(Ng=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},S1=s._dispose_data=function(){return(S1=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},T1=s._dispose=function(){return(T1=s._dispose=s.asm.dispose).apply(null,arguments)},Cg=s._Abs=function(){return(Cg=s._Abs=s.asm.Abs).apply(null,arguments)},Id=s._Add=function(){return(Id=s._Add=s.asm.Add).apply(null,arguments)},Lo=s._AddN=function(){return(Lo=s._AddN=s.asm.AddN).apply(null,arguments)},_g=s._All=function(){return(_g=s._All=s.asm.All).apply(null,arguments)},Eg=s._Any=function(){return(Eg=s._Any=s.asm.Any).apply(null,arguments)},N1=s._ArgMax=function(){return(N1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},Ag=s._AvgPool=function(){return(Ag=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},$g=s._BatchMatMul=function(){return($g=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Fg=s._Ceil=function(){return(Fg=s._Ceil=s.asm.Ceil).apply(null,arguments)},Dg=s._ClipByValue=function(){return(Dg=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Sd=s._Conv2D=function(){return(Sd=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Td=s._Conv2DBackpropInput=function(){return(Td=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Rg=s._Cos=function(){return(Rg=s._Cos=s.asm.Cos).apply(null,arguments)},Mg=s._Cosh=function(){return(Mg=s._Cosh=s.asm.Cosh).apply(null,arguments)},Pg=s._CropAndResize=function(){return(Pg=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},bp=s._Cumprod=function(){return(bp=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},Og=s._Cumsum=function(){return(Og=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Lg=s._DepthToSpace=function(){return(Lg=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},zg=s._DepthwiseConv2dNative=function(){return(zg=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},Ms=s._Elu=function(){return(Ms=s._Elu=s.asm.Elu).apply(null,arguments)},Bg=s._Equal=function(){return(Bg=s._Equal=s.asm.Equal).apply(null,arguments)},Wg=s._Exp=function(){return(Wg=s._Exp=s.asm.Exp).apply(null,arguments)},Nd=s._FlipLeftRight=function(){return(Nd=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},Vg=s._Floor=function(){return(Vg=s._Floor=s.asm.Floor).apply(null,arguments)},zo=s._FloorDiv=function(){return(zo=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},Ug=s._FusedBatchNorm=function(){return(Ug=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},Gg=s._FusedConv2D=function(){return(Gg=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Wr=s._FusedDepthwiseConv2D=function(){return(Wr=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},yp=s._Gather=function(){return(yp=s._Gather=s.asm.Gather).apply(null,arguments)},Hg=s._GatherNd=function(){return(Hg=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},jg=s._Greater=function(){return(jg=s._Greater=s.asm.Greater).apply(null,arguments)},qg=s._GreaterEqual=function(){return(qg=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},Kg=s._LeakyRelu=function(){return(Kg=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},Cd=s._Less=function(){return(Cd=s._Less=s.asm.Less).apply(null,arguments)},_d=s._LessEqual=function(){return(_d=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Xg=s._Log=function(){return(Xg=s._Log=s.asm.Log).apply(null,arguments)},Yg=s._LogicalAnd=function(){return(Yg=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Ed=s._LogicalNot=function(){return(Ed=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},Ad=s._LogicalOr=function(){return(Ad=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},Zg=s._LogicalXor=function(){return(Zg=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},Jg=s._Max=function(){return(Jg=s._Max=s.asm.Max).apply(null,arguments)},Qg=s._MaxPool=function(){return(Qg=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},$d=s._Maximum=function(){return($d=s._Maximum=s.asm.Maximum).apply(null,arguments)},C1=s._Mean=function(){return(C1=s._Mean=s.asm.Mean).apply(null,arguments)},eb=s._Min=function(){return(eb=s._Min=s.asm.Min).apply(null,arguments)},tb=s._Minimum=function(){return(tb=s._Minimum=s.asm.Minimum).apply(null,arguments)},nb=s._MirrorPad=function(){return(nb=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},ab=s._Multiply=function(){return(ab=s._Multiply=s.asm.Multiply).apply(null,arguments)},rb=s._Neg=function(){return(rb=s._Neg=s.asm.Neg).apply(null,arguments)},sb=s._NonMaxSuppressionV3=function(){return(sb=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},ib=s._NonMaxSuppressionV4=function(){return(ib=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},ob=s._NonMaxSuppressionV5=function(){return(ob=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},lb=s._NotEqual=function(){return(lb=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},ub=s._OneHot=function(){return(ub=s._OneHot=s.asm.OneHot).apply(null,arguments)},pb=s._PadV2=function(){return(pb=s._PadV2=s.asm.PadV2).apply(null,arguments)},cb=s._Pow=function(){return(cb=s._Pow=s.asm.Pow).apply(null,arguments)},db=s._Prelu=function(){return(db=s._Prelu=s.asm.Prelu).apply(null,arguments)},hb=s._Prod=function(){return(hb=s._Prod=s.asm.Prod).apply(null,arguments)},mb=s._RealDiv=function(){return(mb=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},fb=s._Relu=function(){return(fb=s._Relu=s.asm.Relu).apply(null,arguments)},gb=s._Relu6=function(){return(gb=s._Relu6=s.asm.Relu6).apply(null,arguments)},bb=s._ResizeBilinear=function(){return(bb=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},yb=s._ResizeNearestNeighbor=function(){return(yb=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},xb=s._Reverse=function(){return(xb=s._Reverse=s.asm.Reverse).apply(null,arguments)},vb=s._RotateWithOffset=function(){return(vb=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},wb=s._Round=function(){return(wb=s._Round=s.asm.Round).apply(null,arguments)},kb=s._Rsqrt=function(){return(kb=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Ib=s._ScatterNd=function(){return(Ib=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Sb=s._SelectV2=function(){return(Sb=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Tb=s._Sigmoid=function(){return(Tb=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Nb=s._Sin=function(){return(Nb=s._Sin=s.asm.Sin).apply(null,arguments)},Cb=s._Softmax=function(){return(Cb=s._Softmax=s.asm.Softmax).apply(null,arguments)},_b=s._SparseFillEmptyRows=function(){return(_b=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},Eb=s._SparseReshape=function(){return(Eb=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},Ab=s._SparseSegmentReduction=function(){return(Ab=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},$b=s._Sqrt=function(){return($b=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Fb=s._Square=function(){return(Fb=s._Square=s.asm.Square).apply(null,arguments)},Db=s._SquaredDifference=function(){return(Db=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Rb=s._Step=function(){return(Rb=s._Step=s.asm.Step).apply(null,arguments)},Mb=s._StridedSlice=function(){return(Mb=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Pb=s._Sub=function(){return(Pb=s._Sub=s.asm.Sub).apply(null,arguments)},Ob=s._Sum=function(){return(Ob=s._Sum=s.asm.Sum).apply(null,arguments)},Lb=s._Tan=function(){return(Lb=s._Tan=s.asm.Tan).apply(null,arguments)},zb=s._Tanh=function(){return(zb=s._Tanh=s.asm.Tanh).apply(null,arguments)},Bb=s._Tile=function(){return(Bb=s._Tile=s.asm.Tile).apply(null,arguments)},Wb=s._TopK=function(){return(Wb=s._TopK=s.asm.TopK).apply(null,arguments)},Vb=s._Transform=function(){return(Vb=s._Transform=s.asm.Transform).apply(null,arguments)},Ub=s._Transpose=function(){return(Ub=s._Transpose=s.asm.Transpose).apply(null,arguments)},Gb=s.__FusedMatMul=function(){return(Gb=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Hb=s._malloc=function(){return(Hb=s._malloc=s.asm.malloc).apply(null,arguments)},jb=s._free=function(){return(jb=s._free=s.asm.free).apply(null,arguments)},qb=s.___errno_location=function(){return(qb=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},Fd=s.stackSave=function(){return(Fd=s.stackSave=s.asm.stackSave).apply(null,arguments)},Dd=s.stackRestore=function(){return(Dd=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},xp=s.stackAlloc=function(){return(xp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},Kb=s.dynCall_iijjiiii=function(){return(Kb=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},Xb=s.dynCall_jiji=function(){return(Xb=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=wd;var Bo;jn=function X(){Bo||Rd(),Bo||(jn=X)};function Rd(X){if(X=X||p,it>0||(Mt(),it>0))return;function se(){Bo||(Bo=!0,s.calledRun=!0,!U&&(ra(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),rn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),se()},1)):se()}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Rd();var Wo;l&&(Wo={uncaughtException:process.listeners("uncaughtException").filter(function(X){return!l.uncaughtException.indexOf(X)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(X){return!l.unhandledRejection.indexOf(X)>-1})});var Vo;if(typeof r!="undefined")Vo=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Vo=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Wo){var Yb=Vo._dispose;Vo._dispose=function(){Yb(),Wo.uncaughtException.forEach(function(X){process.removeListener("uncaughtException",X)}),Wo.unhandledRejection.forEach(function(X){process.removeListener("unhandledRejection",X)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Hh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},nc=class{refCount(e){return ua("refCount")}incRef(e){return ua("incRef")}timerAvailable(){return!0}time(e){return ua("time")}read(e){return ua("read")}readSync(e){return ua("readSync")}readToGPU(e,t){return ua("readToGPU")}numDataIds(){return ua("numDataIds")}disposeData(e,t){return ua("disposeData")}write(e,t,n){return ua("write")}move(e,t,n,a,r){return ua("move")}memory(){return ua("memory")}floatPrecision(){return ua("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return ua("dispose")}};function ua(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function mI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,hh(e,t,n)}function yF(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,hh(e,n,a),hh(t,n,a)}function zp(e,t,n){return Math.max(e,Math.min(t,n))}function xF(e){return e%2===0?e:e+1}function hh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function vF(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function wF(e,t){let n=Math.random();return t*n+(1-n)*e}function kF(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function $(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function In(e,t,n=""){$(us(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function hi(e){$(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Zs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||dn(e)&&!n)for(let a=0;a<e.length;++a)Zs(e[a],t,n);else t.push(e);return t}function mt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function IF(e){return e.length===0}function us(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function el(e){return e%1===0}function SF(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function TF(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function NF(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return mI(t),t}function Mp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function CF(e,t=r=>0,n,a=setTimeout){return new Promise((r,s)=>{let i=0,o=()=>{if(e()){r();return}i++;let l=t(i);if(n!=null&&i>=n){s();return}a(o,l)};o()})}function _F(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Ea(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),$(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),$(e.every(a=>el(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function fI(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Ea(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function gI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function bI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function yI(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function xI(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function EF(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function dn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function gy(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function vI(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function qr(e){return typeof e=="string"||e instanceof String}function wI(e){return typeof e=="boolean"}function kI(e){return typeof e=="number"}function jh(e){return Array.isArray(e)?jh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":kI(e)?"float32":qr(e)?"string":wI(e)?"bool":"float32"}function Qr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function mh(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function yl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function II(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=II(e+l*o,i,n,a)}return r}function Yo(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return II(0,e,t,n)}function yx(e,t){let n=qh(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function qh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function AF(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return Yo(e,new Float32Array(n));if(t==="int32")return Yo(e,new Int32Array(n));if(t==="bool")return Yo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function xx(e){e.forEach(t=>{$(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function $F(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function FF(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function vx(e){return e&&e.then&&typeof e.then=="function"}var P1="tfjsflags",SI=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=DF,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(vx(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);P1 in e&&e[P1].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=MF(n,a)})}};function DF(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(RF(t,a[0],a[1]),a.join("="))),t}function RF(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function MF(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function H(){return wx}var wx=null;function PF(e){wx=e}var ny;function TI(){if(ny==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");ny=e}return ny}function OF(){let e=TI();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function kx(e,t){let n=OF();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var xl="Abs",vl="Acos",wl="Acosh",ps="Add",mi="AddN",kl="All",Il="Any",fi="ArgMax",ac="ArgMin",Sl="Asin",Tl="Asinh",Nl="Atan",Cl="Atanh",_l="Atan2",gi="AvgPool",Kh="AvgPoolGrad",rc="AvgPool3D",Xh="AvgPool3DGrad",bi="BatchMatMul",El="BatchToSpaceND",Yh="Bincount",NI="BroadcastTo",Zh="BroadcastArgs",yi="Cast",xi="Ceil",cs="ClipByValue",Jh="Complex",sc="ComplexAbs",Al="Concat",vi="Conv2D",Qh="Conv2DBackpropFilter",wi="Conv2DBackpropInput",ic="Conv3D",em="Conv3DBackpropFilterV2",tm="Conv3DBackpropInputV2",ki="Cos",Ii="Cosh",$l="Cumprod",Si="Cumsum",Fl="CropAndResize",nm="DenseBincount",Dl="DepthToSpace",Ti="DepthwiseConv2dNative",am="DepthwiseConv2dNativeBackpropFilter",rm="DepthwiseConv2dNativeBackpropInput",sm="Diag",oc="Dilation2D",fh="Dilation2DBackpropInput",gh="Dilation2DBackpropFilter",Ni="RealDiv",im="Einsum",Ci="Elu",om="EluGrad",Rl="Erf",Ml="Equal",_i="Exp",Pl="ExpandDims",Ol="Expm1",lm="FFT",lc="Fill",Ll="FlipLeftRight",Ei="Floor",Ai="FloorDiv",$i="FusedBatchNorm",zl="GatherV2",Bl="GatherNd",Wl="Greater",Fi="GreaterEqual",Di="Identity",um="IFFT",pm="Imag",Vl="IsFinite",Ul="IsInf",Gl="IsNan",Ri="LeakyRelu",Hl="Less",jl="LessEqual",cm="LinSpace",Mi="Log",ql="Log1p",Kl="LogicalAnd",Xl="LogicalNot",Yl="LogicalOr",CI="LogicalXor",_I="LogSoftmax",LF="LowerBound",uc="LRN",dm="LRNGrad",Pi="Max",Oi="Maximum",Li="MaxPool",hm="MaxPoolGrad",pc="MaxPool3D",mm="MaxPool3DGrad",fm="MaxPoolWithArgmax",zi="Mean",Bi="Min",Wi="Minimum",Vi="MirrorPad",Zl="Mod",gm="Multinomial",Ui="Multiply",Jl="Neg",Ql="NotEqual",eu="NonMaxSuppressionV3",tu="NonMaxSuppressionV4",nu="NonMaxSuppressionV5",au="OnesLike",Gi="OneHot",ru="Pack",Hi="PadV2",zF="Pool",ji="Pow",qi="Prelu",Ki="Prod",bm="RaggedGather",ym="RaggedTensorToTensor",cc="Range",xm="Real",su="Reciprocal",Xi="Relu",iu="Reshape",Yi="ResizeNearestNeighbor",vm="ResizeNearestNeighborGrad",Zi="ResizeBilinear",wm="ResizeBilinearGrad",Ji="Relu6",Qi="Reverse",eo="Round",to="Rsqrt",ou="ScatterNd",km="SearchSorted",lu="Select",uu="Selu",pu="Slice",no="Sin",cu="Sinh",du="Sign",ao="Sigmoid",hu="Softplus",ro="Sqrt",so="Sum",mu="SpaceToBatchND",fu="SplitV",io="Softmax",dc="SparseFillEmptyRows",gu="SparseReshape",hc="SparseSegmentMean",mc="SparseSegmentSum",Im="SparseToDense",oo="SquaredDifference",fc="Square",bu="StridedSlice",gc="StringNGrams",bc="StringSplit",yc="StringToHashBucketFast",lo="Sub",uo="Tan",po="Tanh",ds="Tile",yu="TopK",xu="Transform",Tr="Transpose",Sm="Unique",vu="Unpack",xc="UnsortedSegmentSum",BF="UpperBound",wu="ZerosLike",hs="Step",bh="FromPixels",ku="RotateWithOffset",Js="_FusedMatMul",Qs="FusedConv2D",ei="FusedDepthwiseConv2D";function jr(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(...e)}function WF(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.log(...e)}var tl=kx("kernelRegistry",()=>new Map),Bp=kx("gradRegistry",()=>new Map);function yh(e,t){let n=Ix(e,t);return tl.get(n)}function by(e){return Bp.get(e)}function xh(e){let t=tl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function vc(e){let{kernelName:t,backendName:n}=e,a=Ix(t,n);tl.has(a)&&jr(`The kernel '${t}' for backend '${n}' is already registered`),tl.set(a,e)}function EI(e){let{kernelName:t}=e;Bp.has(t)&&H().getBool("DEBUG")&&jr(`Overriding the gradient for '${t}'`),Bp.set(t,e)}function VF(e,t){let n=Ix(e,t);if(!tl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);tl.delete(n)}function UF(e){if(!Bp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Bp.delete(e)}function GF(e,t){xh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});vc(a)})}function Ix(e,t){return`${t}_${e}`}var v={};_e(v,{arraysEqual:()=>us,assert:()=>$,assertNonNegativeIntegerDimensions:()=>xx,assertNonNull:()=>hi,assertShapesMatch:()=>In,bytesFromStringArray:()=>vI,bytesPerElement:()=>gy,checkConversionForErrors:()=>yI,clamp:()=>zp,computeStrides:()=>yl,createScalarValue:()=>YF,createShuffledIndices:()=>NF,decodeString:()=>vh,distSquared:()=>kF,encodeString:()=>kc,fetch:()=>JF,fingerPrint64:()=>XF,flatten:()=>Zs,getArrayFromDType:()=>bI,getTypedArrayFromDType:()=>gI,hasEncodingLoss:()=>EF,hexToLong:()=>wc,indexToLoc:()=>FF,inferDtype:()=>jh,inferFromImplicitShape:()=>_F,isBoolean:()=>wI,isFunction:()=>Qr,isInt:()=>el,isNumber:()=>kI,isPromise:()=>vx,isScalarShape:()=>IF,isString:()=>qr,isTypedArray:()=>dn,isValidDtype:()=>xI,locToIndex:()=>$F,makeOnesTypedArray:()=>yx,makeZerosNestedTypedArray:()=>AF,makeZerosTypedArray:()=>qh,nearestDivisor:()=>mh,nearestLargerEven:()=>xF,now:()=>Wp,parseAxisParam:()=>Ea,randUniform:()=>wF,repeatedTry:()=>CF,rightPad:()=>Mp,shuffle:()=>mI,shuffleCombo:()=>yF,sizeFromShape:()=>mt,sizeToSquarishShape:()=>TF,squeezeShape:()=>fI,sum:()=>vF,swap:()=>hh,tanh:()=>SF,toNestedArray:()=>Yo,toTypedArray:()=>Tm});var O1=ls(tF()),Bs=O1.default||O1;function wc(e){return Bs.fromString(e,!0,16)}var AI=wc("c3a5c85c97cb3127"),Ls=wc("b492b66fbe98f273"),yn=wc("9ae16a3b2f90404f");function yy(e){return e.xor(e.shru(47))}function $I(e,t,n){let a=e.slice(t,t+n);return Bs.fromBytes(Array.from(a),!0,!0)}function ht(e,t){return $I(e,t,8)}function L1(e,t){return $I(e,t,4)}function Yt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Yr(e,t,n=wc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function HF(e,t,n,a,r,s){r=r.add(e),s=Yt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Yt(r,44)),[r.add(a),s.add(i)]}function Ud(e,t,n,a){return HF(ht(e,t),ht(e,t+8),ht(e,t+16),ht(e,t+24),n,a)}function jF(e,t=e.length){if(t>=8){let n=yn.add(t*2),a=ht(e,0).add(yn),r=ht(e,t-8),s=Yt(r,37).mul(n).add(a),i=Yt(a,25).add(r).mul(n);return Yr(s,i,n)}if(t>=4){let n=yn.add(t*2),a=L1(e,0);return Yr(a.shl(3).add(t),L1(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return yy(yn.mul(s).xor(AI.mul(i))).mul(yn)}return yn}function qF(e,t=e.length){let n=yn.add(t*2),a=ht(e,0).mul(Ls),r=ht(e,8),s=ht(e,t-8).mul(n),i=ht(e,t-16).mul(yn);return Yr(Yt(a.add(r),43).add(Yt(s,30)).add(i),a.add(Yt(r.add(yn),18)).add(s),n)}function KF(e,t=e.length){let n=yn.add(t*2),a=ht(e,0).mul(yn),r=ht(e,8),s=ht(e,t-8).mul(n),i=ht(e,t-16).mul(yn),o=Yt(a.add(r),43).add(Yt(s,30)).add(i),l=Yr(o,a.add(Yt(r.add(yn),18)).add(s),n),u=ht(e,16).mul(n),p=ht(e,24),d=o.add(ht(e,t-32)).mul(n),c=l.add(ht(e,t-24)).mul(n);return Yr(Yt(u.add(p),43).add(Yt(d,30)).add(c),u.add(Yt(p.add(a),18)).add(d),n)}function XF(e,t=e.length){let n=Bs.fromNumber(81,!0);if(t<=32)return t<=16?jF(e,t):qF(e,t);if(t<=64)return KF(e,t);let a=n,r=n.mul(Ls).add(113),s=yy(r.mul(yn).add(113)).mul(yn),i=[Bs.UZERO,Bs.UZERO],o=[Bs.UZERO,Bs.UZERO];a=a.mul(yn).add(ht(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Yt(a.add(r).add(i[0]).add(ht(e,l+8)),37).mul(Ls),r=Yt(r.add(i[1]).add(ht(e,l+48)),42).mul(Ls),a=a.xor(o[1]),r=r.add(i[0]).add(ht(e,l+40)),s=Yt(s.add(o[0]),33).mul(Ls),i=Ud(e,l,i[1].mul(Ls),a.add(o[0])),o=Ud(e,l+32,s.add(o[1]),r.add(ht(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=Ls.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Yt(a.add(r).add(i[0]).add(ht(e,l+8)),37).mul(d),r=Yt(r.add(i[1]).add(ht(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(ht(e,l+40))),s=Yt(s.add(o[0]),33).mul(d),i=Ud(e,l,i[1].mul(d),a.add(o[0])),o=Ud(e,l+32,s.add(o[1]),r.add(ht(e,l+16))),[s,a]=[a,s],Yr(Yr(i[0],o[0],d).add(yy(r).mul(AI)).add(s),Yr(i[1],o[1],d).add(a),d)}function YF(e,t){return t==="string"?kc(e):Tm([e],t)}function ZF(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Tm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Zs(e)),H().getBool("DEBUG")&&yI(e,t),ZF(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Wp(){return H().platform.now()}function JF(e,t){return H().platform.fetch(e,t)}function kc(e,t="utf-8"){return t=t||"utf-8",H().platform.encode(e,t)}function vh(e,t="utf-8"){return t=t||"utf-8",H().platform.decode(e,t)}var QF=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new tD)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Wp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Wp()-i})}if(H().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{eD(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function eD(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var tD=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Mp(`${a}ms`,9):a.error,o=Mp(e,25),l=t.rank,u=t.size,p=Mp(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function nD(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function aD(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!us(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var z1=20,wp=3,ay=7;function rD(e,t,n,a){let r=yl(t),s=sD(e,t,n,r),i=t.length,o=nh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function sD(e,t,n,a){let r=mt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Np(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],Tp(l[p+d],0,n).length)}return i}function Tp(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(ay))} + ${parseFloat(e[1].toFixed(ay))}j`:qr(e)?a=`'${e}'`:n==="bool"?a=FI(e):a=parseFloat(e.toFixed(ay)).toString(),Mp(a,t)}function FI(e){return e===0?"false":"true"}function nh(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Np(e);return[Tp(f[0],0,n)]}return n==="bool"?[FI(e[0])]:[e[0].toString()]}if(l===1){if(o>z1){let g=wp*i,b=Array.from(e.slice(0,g)),y=Array.from(e.slice((o-wp)*i,o*i));return n==="complex64"&&(b=Np(b),y=Np(y)),["["+b.map((x,w)=>Tp(x,r[w],n)).join(", ")+", ..., "+y.map((x,w)=>Tp(x,r[o-wp+w],n)).join(", ")+"]"]}let f=n==="complex64"?Np(e):Array.from(e);return["["+f.map((g,b)=>Tp(g,r[b],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>z1){for(let f=0;f<wp;f++){let g=f*d,b=g+d;c.push(...nh(e.slice(g,b),u,n,p,r,!1))}c.push("...");for(let f=o-wp;f<o;f++){let g=f*d,b=g+d;c.push(...nh(e.slice(g,b),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,b=g+d;c.push(...nh(e.slice(g,b),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function Np(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ht=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=mt(e),n!=null){let a=n.length;$(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||bI(t,this.size),this.strides=yl(e)}set(e,...t){t.length===0&&(t=[0]),$(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Pa().makeTensor(this.values,this.shape,this.dtype)}},Pa=null,qo=null,iD=null;function oD(e){Pa=e}function lD(e){qo=e}function uD(e){iD=e}var Te=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=mt(e),this.strides=yl(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return qo.buffer(this.shape,this.dtype,e)}bufferSync(){return qo.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Yo(this.shape,e,this.dtype==="complex64")}arraySync(){return Yo(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Pa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>vh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Pa().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Pa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>vh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Pa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Pa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return qo.print(this,e)}clone(){return this.throwIfDisposed(),qo.clone(this)}toString(e=!1){let t=this.dataSync();return rD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),qo.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Pa().makeVariable(this,e,t,n)}};Object.defineProperty(Te,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function J(){return kx("Tensor",()=>Te)}J();var es=class extends Te{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!us(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Pa().disposeTensor(this),this.dataId=e.dataId,Pa().incRef(this,null)}dispose(){Pa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(es,Symbol.hasInstance,{value:e=>e instanceof Te&&e.assign!=null&&e.assign instanceof Function});var Ba={};_e(Ba,{assertTypesMatch:()=>DI,getTensorsInContainer:()=>Sx,isTensorInList:()=>cD,makeTypesMatch:()=>_t});var xy;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(xy||(xy={}));var vy;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(vy||(vy={}));var wy;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(wy||(wy={}));var ky;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(ky||(ky={}));var Iy;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Iy||(Iy={}));var pD={float32:ky,int32:vy,bool:wy,complex64:Iy};function ha(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return pD[e][t]}function Nm(e){return ha(e,"int32")}function _t(e,t){if(e.dtype===t.dtype)return[e,t];let n=ha(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function DI(e,t){$(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function cD(e,t){return t.some(n=>n.id===e.id)}function Sx(e){let t=[];return RI(e,t,new Set),t}function RI(e,t,n){if(e==null)return;if(e instanceof Te){t.push(e);return}if(!dD(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),RI(s,t,n))}}function dD(e){return Array.isArray(e)||typeof e=="object"}function ry(e){return e.kernelName!=null}var B1=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Vp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new B1}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(jr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new QF(this.backendInstance),!0}setupRegisteredKernels(){xh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){xh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof nc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,jr(`Initialization of backend ${e} failed`),jr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return jr(`Initialization of backend ${e} failed`),jr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Vp.nextTensorId++}nextVariableId(){return Vp.nextVariableId++}clone(e){let t=O.runKernel(Di,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return O.runKernel(yi,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,yh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=ry(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(ry(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=yh(h,this.backendName);$(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let x=y.map(w=>w.rank!=null?w:this.makeTensorFromTensorInfo(w));if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=ry(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=by(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?($(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&qr(e[0])&&(r=e.map(o=>kc(o)));let s=a.write(r,t,n),i=new Te(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=vI(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,a)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new Te(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new es(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*gy(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof es||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*gy(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=by(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=qh(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Sx(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if($(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));$(r instanceof Te,()=>"The result y returned by f() must be a tensor.");let s=nD(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?hD(r.shape):n,aD(i,s,l=>this.tidy(l),mD);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return $(Qr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{$(t.every(i=>i instanceof Te),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),$(n.value instanceof Te,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),$(Qr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];$(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),$(u.every(d=>d instanceof Te),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Wp(),n=await this.backend.time(e);return n.wallMs=Wp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new B1;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Vp.nextTensorId=0;Vp.nextVariableId=0;function hD(e){let t=yx(mt(e),"float32");return O.makeTensor(t,e,"float32")}function MI(){let e=TI();if(e._tfengine==null){let t=new SI(e);e._tfengine=new Vp(t)}return PF(e._tfengine.ENV),oD(()=>e._tfengine),e._tfengine}var O=MI();function mD(e,t){let n={a:e,b:t};return O.runKernel(ps,n)}var Ic={};_e(Ic,{isBrowser:()=>PI,isMobile:()=>bD,mockIsMobile:()=>gD});function fD(){return typeof navigator!="undefined"&&navigator!=null}var Sy;function gD(e){Sy=e}function bD(e){if(Sy!==void 0)return Sy;if(e||fD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function PI(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Zn=H();Zn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Zn.registerFlag("IS_BROWSER",()=>PI());Zn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Zn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Zn.registerFlag("PROD",()=>!1);Zn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Zn.getBool("DEBUG"));Zn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Zn.registerFlag("IS_TEST",()=>!1);Zn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Zn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Zn.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);Zn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);Zn.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function sr(e,t){let n=e;if(dn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||dn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&H().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&OI(e,a,[]),a}function OI(e,t,n){if(n=n||[],!Array.isArray(e)&&!dn(e)){$(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}$(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),$(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)OI(e[r],a,n.concat(r))}function W1(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,a="numeric"){if(e instanceof Te)return W1(a,e.dtype,t,n),e;let r=jh(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),W1(a,r,t,n),e==null||!dn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=sr(e,r);!dn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Tm(e,r):Zs(e,[],!0);return O.makeTensor(i,s,r)}function Up(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>_(r,`${t}[${s}]`,n,a))}var Tx="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Tx;let r=(...s)=>{O.startScope(n);try{let i=a(...s);return vx(i)&&console.error("Cannot return a Promise inside of tidy."),O.endScope(i),i}catch(i){throw O.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function yD(e,t){let n=_(e,"real","complex"),a=_(t,"imag","complex");In(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return O.runKernel(Jh,r)}var Cr=L({complex_:yD});function ms(e,t,n,a){if(a==null&&(a=jh(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!dn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){xx(t);let r=mt(t),s=mt(n);$(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==mt(t.slice(i)):!0;$(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!dn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Tm(e,a):Zs(e,[],!0),O.makeTensor(e,t,a)}function On(e,t,n){let a=sr(e,n);return ms(e,t,a,n)}var Ty={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},wh=4;async function xD(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,b)=>g+b.length,0)+wh*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let b=c[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);m.set(y,f),f+=wh,m.set(b,f),f+=b.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:vD(s),specs:n}}function LI(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=mt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Ty[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=ND()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=mt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+wh))[0];r+=wh;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=Ty[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let b=0;b<h.length;b++)h[b]=p[b*2],m[b]=p[b*2+1];let f=On(h,l,"float32"),g=On(m,l,"float32");n[i]=Cr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=On(p,l,o))}return n}function vD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Nx=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function V1(e){return Nx?Buffer.byteLength(e):new Blob([e]).size}function wD(e){if(Nx)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function kD(e){if(Nx){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Cx(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function U1(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function zI(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}function BI(e,t,n){let a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(a.trainingConfig=e.trainingConfig),e.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!n)throw new Error("modelJSON has weightsManifest but weightData is null");a.weightSpecs=t,a.weightData=n}return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),a}async function _x(e,t){let n,a;return e.weightsManifest!=null&&([n,a]=await t(e.weightsManifest)),BI(e,n,a)}function Sc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:V1(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:V1(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function WI(e){let t=[];for(let n of e)t.push(...n.weights);return t}function ID(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)===0;)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function SD(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function TD(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function ND(){let e=ID(),t=SD(),n=TD();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var At=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return At.instance==null&&(At.instance=new At),At.instance}static registerSaveRouter(e){At.getInstance().saveRouters.push(e)}static registerLoadRouter(e){At.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return At.getHandlers(e,"save")}static getLoadHandlers(e,t){return At.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?At.getInstance().loadRouters:At.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},CD=e=>At.registerSaveRouter(e),_D=e=>At.registerLoadRouter(e),ED=e=>At.getSaveHandlers(e),AD=(e,t)=>At.getLoadHandlers(e,t),Ny="tensorflowjs",Cy=1,Gs="models_store",Kr="model_info_store";function VI(){if(!H().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function _y(e){let t=e.result;t.createObjectStore(Gs,{keyPath:"modelPath"}),t.createObjectStore(Kr,{keyPath:"modelPath"})}var ti=class{constructor(e){if(this.indexedDB=VI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Ny,Cy);r.onupgradeneeded=()=>_y(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Gs,"readonly"),o=i.objectStore(Gs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Sc(t),o=s.transaction(Kr,"readwrite"),l=o.objectStore(Kr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(Gs,"readwrite");let d=p.objectStore(Gs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=c=>{l=o.objectStore(Kr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(d.error)),h.onerror=m=>(s.close(),a(d.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};ti.URL_SCHEME="indexeddb://";var UI=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ti.URL_SCHEME)?$D(e.slice(ti.URL_SCHEME.length)):null;At.registerSaveRouter(UI);At.registerLoadRouter(UI);function $D(e){return new ti(e)}function FD(e){return e.startsWith(ti.URL_SCHEME)?e.slice(ti.URL_SCHEME.length):e}var DD=class{constructor(){this.indexedDB=VI()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Ny,Cy);n.onupgradeneeded=()=>_y(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Kr,"readonly"),s=r.objectStore(Kr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=FD(e),new Promise((t,n)=>{let a=this.indexedDB.open(Ny,Cy);a.onupgradeneeded=()=>_y(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Kr,"readwrite"),i=s.objectStore(Kr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Gs,"readwrite");let d=l.objectStore(Gs).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},kr="/",Ko="tensorflowjs_models",GI="info",RD="model_topology",MD="weight_specs",PD="weight_data",OD="model_metadata";function HI(e){return{info:[Ko,e,GI].join(kr),topology:[Ko,e,RD].join(kr),weightSpecs:[Ko,e,MD].join(kr),weightData:[Ko,e,PD].join(kr),modelMetadata:[Ko,e,OD].join(kr)}}function jI(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function LD(e){let t=e.split(kr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(kr)}function zD(e){return e.startsWith(ni.URL_SCHEME)?e.slice(ni.URL_SCHEME.length):e}var ni=class{constructor(e){if(!H().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=HI(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Sc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,wD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw jI(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=kD(s),t}};ni.URL_SCHEME="localstorage://";var qI=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ni.URL_SCHEME)?BD(e.slice(ni.URL_SCHEME.length)):null;At.registerSaveRouter(qI);At.registerLoadRouter(qI);function BD(e){return new ni(e)}var WD=class{constructor(){$(H().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),$(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ko+kr,n=kr+GI;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=LD(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=zD(e);let t=HI(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return jI(t),n}},Zo="://",Rn=class{constructor(){this.managers={}}static getInstance(){return Rn.instance==null&&(Rn.instance=new Rn),Rn.instance}static registerManager(e,t){$(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Zo)&&(e=e.slice(0,e.indexOf(Zo))),$(e.length>0,()=>"scheme must not be an empty string.");let n=Rn.getInstance();$(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=Rn.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(Rn.getInstance().managers)}};function ah(e){if(e.indexOf(Zo)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Rn.getSchemes().join(",")}`);return{scheme:e.split(Zo)[0],path:e.split(Zo)[1]}}async function KI(e,t,n=!1){$(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=At.getLoadHandlers(e);$(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),$(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=At.getSaveHandlers(t);$(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),$(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=ah(e).scheme,l=ah(e).path,u=o===ah(e).scheme,p=await r.load();n&&u&&await Rn.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await Rn.getManager(o).removeModel(l),d.modelArtifactsInfo}async function VD(){let e=Rn.getSchemes(),t={};for(let n of e){let a=await Rn.getManager(n).listModels();for(let r in a){let s=n+Zo+r;t[s]=a[r]}}return t}async function UD(e){let t=ah(e);return Rn.getManager(t.scheme).removeModel(t.path)}async function GD(e,t){return KI(e,t,!1)}async function HD(e,t){return KI(e,t,!0)}var jD=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}setTimeoutCustom(e,t){if(!window||!H().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(e,t);return}this.functionRefs.push(e),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},t),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let a=this.functionRefs[n.data.index];a(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}};if(H().get("IS_BROWSER")){H().setPlatform("browser",new jD);try{Rn.registerManager(ni.URL_SCHEME,new WD)}catch(e){}try{Rn.registerManager(ti.URL_SCHEME,new DD)}catch(e){}}var qD={importFetch:()=>nF()},sy,KD=class{constructor(){this.util=aF(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return H().global.fetch!=null?H().global.fetch(e,t):(sy==null&&(sy=qD.importFetch()),sy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};H().get("IS_NODE")&&!H().get("IS_BROWSER")&&H().setPlatform("node",new KD);function Pe(e,t="float32",n){return t=t||"float32",xx(e),new Ht(e,t,n)}function XD(e,t){let n=_(e,"x","cast");if(!xI(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return O.runKernel(yi,a,r)}var oe=L({cast_:XD});function YD(e){let t={x:_(e,"x","clone","string_or_numeric")};return O.runKernel(Di,t)}var ar=L({clone_:YD});function Ex(e,t=!1){console.log(e.toString(t))}MI();var ZD={buffer:Pe,cast:oe,clone:ar,print:Ex};lD(ZD);var Ut={};_e(Ut,{browserFiles:()=>rR,browserHTTPRequest:()=>uR,concatenateArrayBuffers:()=>Cx,copyModel:()=>GD,decodeWeights:()=>LI,encodeWeights:()=>xD,fromMemory:()=>cR,fromMemorySync:()=>QI,getLoadHandlers:()=>AD,getModelArtifactsForJSON:()=>_x,getModelArtifactsForJSONSync:()=>BI,getModelArtifactsInfoForJSON:()=>Sc,getSaveHandlers:()=>ED,getWeightSpecs:()=>WI,http:()=>$x,isHTTPScheme:()=>Ey,listModels:()=>VD,loadWeights:()=>sR,moveModel:()=>HD,registerLoadRouter:()=>_D,registerSaveRouter:()=>CD,removeModel:()=>UD,weightsLoaderFactory:()=>YI,withSaveHandler:()=>dR,withSaveHandlerSync:()=>hR});var JD="model",QD=".json",eR=".weights.bin";function G1(e){return new Promise(t=>setTimeout(t)).then(e)}var nl=class{constructor(e){if(!H().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(nl.URL_SCHEME)&&(e=e.slice(nl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=JD),this.modelJsonFileName=e+QD,this.weightDataFileName=e+eR}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=zI(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await G1(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await G1(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Sc(e)}}}};nl.URL_SCHEME="downloads://";var tR=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=_x(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Cx(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>U1(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=U1(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},nR=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(nl.URL_SCHEME)?aR(e.slice(nl.URL_SCHEME.length)):null;At.registerSaveRouter(nR);function aR(e="model"){return new nl(e)}function rR(e){return new tR(e)}function H1(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){$(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){$(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),$(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),$(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function XI(e,t){t==null&&(t={});let n=t.fetchFunc==null?H().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await H1(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await H1(i,t.onProgress,o,l)}async function sR(e,t="",n,a){return YI(r=>XI(r,{requestInit:a}))(e,t,n)}function YI(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=Ty[b]*mt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:y})};a!=null?a.forEach((w,I)=>{w===g.name&&(x(),i[I]=!0)}):x(),o.push(g.name),f+=y})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=p[c+x].byteLength;let g=new ArrayBuffer(f),b=new Uint8Array(g),y=0;for(let x=0;x<m;x++){let w=new Uint8Array(p[c+x]);b.set(w,y),y+=w.byteLength}s[h].forEach(x=>{let w=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),I=LI(w,[x.manifestEntry]);for(let T in I)d[T]=I[T]}),c+=m}),d}}var iR="application/octet-stream",oR="application/json",Ax=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?($(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=H().platform.fetch,$(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&$(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=zI(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:oR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:iR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Sc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return _x(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=lR(t),r=this.weightPathPrefix||n,s=WI(e),i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await XI(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Cx(l)]}};Ax.URL_SCHEME_REGEX=/^https?:\/\//;function lR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Ey(e){return e.match(Ax.URL_SCHEME_REGEX)!=null}var ZI=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Ey(a)):n=Ey(e),n)return $x(e,t)}return null};At.registerSaveRouter(ZI);At.registerLoadRouter(ZI);function $x(e,t){return new Ax(e,t)}function uR(e,t){return $x(e,t)}var iy=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},JI=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},pR=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function cR(e,t,n,a){let r=arguments;return new pR(QI(...r))}function QI(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new iy(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new iy({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new iy({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function dR(e){return new JI(e)}function hR(e){return new JI(e)}var eS={};_e(eS,{confusionMatrix:()=>RR});function mR(e,t,n=!1,a=!1){let r=_(e,"a","matMul"),s=_(t,"b","matMul");[r,s]=_t(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return O.runKernel(bi,i,o)}var Ae=L({matMul_:mR});function fR(e,t,n=1,a=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:_(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:a};return O.runKernel(Gi,s,i)}var al=L({oneHot_:fR});function gR(){H().set("PROD",!0)}function bR(){H().set("DEBUG",!0)}function yR(){H().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Fx(e){H().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}uD(Fx);function xR(){O.disposeVariables()}function Ja(){return O}function kh(){return O.memory()}function vR(e){return O.profile(e)}function P(e,t){return O.tidy(e,t)}function $e(e){Sx(e).forEach(t=>t.dispose())}function Zt(e){return O.keep(e)}function wR(e){return O.time(e)}function kR(e){return O.setBackend(e)}function IR(){return O.ready()}function SR(){return O.backendName}function TR(e){O.removeBackend(e)}function NR(e){return O.findBackend(e)}function CR(e){return O.findBackendFactory(e)}function Cm(e,t,n=1){return O.registerBackend(e,t,n)}function tS(){return O.backend}function _R(e,t){H().setPlatform(e,t)}function ER(e){let t={input:_(e,"input","imag")};return O.runKernel(pm,t)}var Tc=L({imag_:ER});function AR(e){let t={x:_(e,"x","neg")};return O.runKernel(Jl,t)}var yt=L({neg_:AR});function $R(e){let t={input:_(e,"input","real")};return O.runKernel(xm,t)}var rl=L({real_:$R});function FR(e,t,n){let a=_(e,"x","transpose");if(t==null&&(t=a.shape.map((i,o)=>o).reverse()),$(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of perm ${t}.`),t.forEach(i=>{$(i>=0&&i<a.rank,()=>`All entries in 'perm' must be between 0 and ${a.rank-1} but got ${t}`)}),a.rank<=1)return a.clone();let r={x:a},s={perm:t};return a.dtype==="complex64"?P(()=>{let i=rl(a),o=Tc(a);return i=O.runKernel(Tr,{x:i},s),o=O.runKernel(Tr,{x:o},s),n&&(o=yt(o)),Cr(i,o)}):O.runKernel(Tr,r,s)}var Ce=L({transpose_:FR});function DR(e,t,n){let a=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");$(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),$(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),$(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),$(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),$(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=al(oe(a,"int32"),n),i=al(oe(r,"int32"),n),o=Ce(s),l=Ae(o,i);return oe(l,"int32")}var RR=L({confusionMatrix_:DR}),Iu={};_e(Iu,{assertAndGetBroadcastShape:()=>lt,getBroadcastDims:()=>nS,getReductionAxes:()=>Bt});function nS(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Bt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function lt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}var co={};_e(co,{fromPixels:()=>WR,fromPixelsAsync:()=>zR,toPixels:()=>BR});function Nc(e,t,n){if(hi(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=sr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ms(e,t,a,n)}var Ps;function aS(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(yh(bh,O.backendName)!=null){let c={pixels:e},h={numChannels:t};return O.runKernel(bh,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Ps==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ps=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ps=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Ps.canvas.width=l,Ps.canvas.height=u,Ps.drawImage(e,0,0,l,u),p=Ps.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return Nc(d,[u,l,t],"int32")}function MR(e){return e!=null&&e.data instanceof Uint8Array}function PR(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function OR(e){return e!=null&&e.width!==0&&e.height!==0}function LR(e){return PR()&&!(e instanceof ImageBitmap)&&OR(e)&&!MR(e)}async function zR(e,t=3){let n=null;if(H().getBool("WRAP_TO_IMAGEBITMAP")&&LR(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return aS(n,t)}async function BR(e,t){let n=_(e,"img","toPixels");if(!(e instanceof Te)){let u=n;n=oe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var WR=L({fromPixels_:aS}),Dx={};_e(Dx,{prepareAndValidate:()=>rS});function rS(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...yl(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var Rx={};_e(Rx,{calculateShapes:()=>sS,validateInput:()=>Px,validateUpdateShape:()=>Mx});function Mx(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Px(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Mx(n,t,e)}function sS(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=mt(t.shape)/o,u=[...yl(n.slice(0,r)),1],p=mt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}var jt={};_e(jt,{assertParamsValid:()=>UR,computeFlatOffset:()=>KR,computeOutShape:()=>HR,getNormalizedAxes:()=>jR,isSliceContinous:()=>qR,maskToAxes:()=>GR,parseSliceParams:()=>mS,sliceInfo:()=>XR,startForAxis:()=>dS,startIndicesWithElidedDims:()=>uS,stopForAxis:()=>hS,stopIndicesWithElidedDims:()=>pS,stridesForAxis:()=>cS,stridesWithElidedDims:()=>iS});var Ay=-2,VR=-1;function UR(e,t,n){let a=e.shape.length;$(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),$(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)$(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function GR(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function HR(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function iS(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function oS(e,t,n){return n<=e?n:n-(t-1)}function lS(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function jR(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=uS(i,h,m,a,e),d=pS(o,h,m,r,e),c=iS(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=dS(i,a,s,e,h,l),d[h]=hS(o,r,s,e,h,l),c[h]=cS(s,h,l);return{begin:p,end:d,strides:c}}function uS(e,t,n,a,r){let s=[...r],i=lS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=oS(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function pS(e,t,n,a,r){let s=[...r],i=lS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=oS(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=zp(0,s[o],r[o])}return s}function cS(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function dS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=zp(0,i,l-1),i}function hS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=zp(0,i,l):i=zp(-1,i,l-1),i}function qR(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function KR(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function mS(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{$(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:($(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function XR(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)p&&(1<<y&o)!==0&&d.numAddAxisAfterEllipsis++,1<<y&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};YR(d,c);let h=!0,m=!0,f=!0,g=[],b=[];for(let y=0;y<e.length;++y){if(c.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<y),w=e[y];if(w===-1){g.push(x?1:-1);continue}let I=[c.beginMask&1<<y,c.endMask&1<<y],T=[c.strides[y]>0?0:-1,c.strides[y]>0?w:w-1];if(x&&c.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[y]===1;let C=!!(c.beginMask&1<<y&&c.endMask&1<<y);if(c.beginValid&&c.endValid){if(x){let F=c.begin[y]<0?w+c.begin[y]:c.begin[y];if(c.begin[y]=F,c.end[y]=c.begin[y]+1,F<0||F>=w)throw Error(`slice index ${c.begin[y]} of dimension ${y} out of bounds.`)}else c.begin[y]=j1(c.begin[y],0,c.strides[y],w,I,T),c.end[y]=j1(c.end[y],1,c.strides[y],w,I,T);let R=c.strides[y]===1&&c.begin[y]===0&&c.end[y]===w;h=h&&R,m=m&&(y===0&&c.strides[y]===1||R)}else h=h&&c.strides[y]===1&&C,m=m&&(y===0&&c.strides[y]===1||C);let E,A=!1;if(c.beginValid&&c.endValid?(E=c.end[y]-c.begin[y],A=!0):x?(E=1,A=!0):C&&w>=0&&(c.strides[y]<0?E=-w:E=w,A=!0),A){let R;E===0||E<0!=c.strides[y]<0?R=0:R=Math.trunc(E/c.strides[y])+(E%c.strides[y]!==0?1:0),g.push(R)}else g.push(-1)}for(let y=0;y<c.finalShapeGatherIndices.length;++y){let x=c.finalShapeGatherIndices[y];x>=0?b.push(g[x]):x===Ay&&b.push(1)}return{finalShapeSparse:b.filter((y,x)=>c.finalShapeGatherIndices[x]!==Ay),finalShape:b,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function YR(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(Ay),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(VR),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function j1(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var ne={};_e(ne,{Serializable:()=>fS,SerializationMap:()=>Ws,registerClass:()=>fs});var fS=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ws=class{constructor(){this.classNameMap={}}static getMap(){return Ws.instance==null&&(Ws.instance=new Ws),Ws.instance}static register(e){Ws.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function fs(e){$(e.className!=null,()=>"Class being registered does not have the static className property defined."),$(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),$(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ws.register(e)}var gS={};_e(gS,{TEST_EPSILON_FLOAT16:()=>bS,createVideoElement:()=>rM,encodeStrings:()=>yS,expectArrayBuffersEqual:()=>aM,expectArraysClose:()=>JR,expectArraysEqual:()=>eM,expectNumbersClose:()=>tM,expectPromiseToFail:()=>QR,expectValuesInRange:()=>nM,play:()=>sM,testEpsilon:()=>Ox});var ZR=.001,bS=.1;function JR(e,t,n){return n==null&&(n=Ox()),$y(e,t,(a,r)=>Lx(a,r,n))}function Ox(){return O.backend.floatPrecision()===32?ZR:bS}function $y(e,t,n){let a=!0;if((dn(e)||dn(t))&&(a=!1),dn(e)&&dn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=sr(e),o=sr(t);if(!us(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=dn(e)?e:Zs(e),s=dn(t)?t:Zs(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function QR(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function eM(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return qr(e)||qr(e[0])||qr(t)||qr(t[0])?$y(e,n,(a,r)=>a==r):$y(e,t,(a,r)=>Lx(a,r,0))}function tM(e,t,n){if(n==null&&(n=Ox()),!Lx(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function Lx(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function nM(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function aM(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function yS(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?yS(n):e[t]=kc(n)}return e}function rM(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(n=>{t.addEventListener("loadeddata",a=>n(t)),t.load()})}async function sM(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var iM="3.21.0";function oM(e,t){let n=_(e,"a","add"),a=_(t,"b","add");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(ps,r)}var Y=L({add_:oM});function lM(e,t){let n=_(e,"a","floorDiv"),a=_(t,"b","floorDiv");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(Ai,r)}var _m=L({floorDiv_:lM});function uM(e,t){let n=_(e,"a","div"),a=_(t,"b","div");if([n,a]=_t(n,a),n.dtype==="int32"&&a.dtype==="int32")return _m(n,a);let r={a:n,b:a},s={};return O.runKernel(Ni,r,s)}var he=L({div_:uM});function pM(e,t){let n=_(e,"a","mul"),a=_(t,"b","mul");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(Ui,r)}var z=L({mul_:pM});function cM(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return O.runKernel(sc,n)}else{let n={x:t};return O.runKernel(xl,n)}}var Lt=L({abs_:cM});function dM(e){let t={x:_(e,"x","acos")};return O.runKernel(vl,t)}var zx=L({acos_:dM});function hM(e){let t={x:_(e,"x","acosh")};return O.runKernel(wl,t)}var Bx=L({acosh_:hM});function mM(e){$(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),$(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>_(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!us(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return O.runKernel(mi,a)}var xS=L({addN_:mM});function fM(e,t=null,n=!1){let a={x:_(e,"x","all","bool")},r={axis:t,keepDims:n};return O.runKernel(kl,a,r)}var Em=L({all_:fM});function gM(e,t=null,n=!1){let a={x:_(e,"x","any","bool")},r={axis:t,keepDims:n};return O.runKernel(Il,a,r)}var Gp=L({any_:gM});function bM(e,t=0){let n={x:_(e,"x","argMax")},a={axis:t};return O.runKernel(fi,n,a)}var ai=L({argMax_:bM});function yM(e,t=0){let n={x:_(e,"x","argMin")},a={axis:t};return O.runKernel(ac,n,a)}var Wx=L({argMin_:yM});function xM(e){let t={x:_(e,"x","asin")};return O.runKernel(Sl,t)}var Vx=L({asin_:xM});function vM(e){let t={x:_(e,"x","asinh")};return O.runKernel(Tl,t)}var Ux=L({asinh_:vM});function wM(e){let t={x:_(e,"x","atan")};return O.runKernel(Nl,t)}var Gx=L({atan_:wM});function kM(e,t){let n=_(e,"a","atan2"),a=_(t,"b","atan2");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(_l,r)}var Hx=L({atan2_:kM});function IM(e){let t={x:_(e,"x","atanh")};return O.runKernel(Cl,t)}var jx=L({atanh_:IM});function SM(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=kS(r);return Cc(e,o,n,s,a,null,null,l)}function vS(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Ih(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Cc(e,u,n,a,r,s,!1,i)}function TM(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Fy(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return wS(e,p,n,a,r,!1,d,s)}function Cc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=Ih(n),[b,y]=Ih(a),x=Jo(c,b),w=Jo(h,y),{padInfo:I,outHeight:T,outWidth:C}=_M(r,u,p,f,g,x,w,s,o),E=i?m*d:m,A;return o==="channelsFirst"?A=[l,E,T,C]:o==="channelsLast"&&(A=[l,T,C,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:C,outChannels:E,padInfo:I,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:b,dilationWidth:y,inShape:e,outShape:A,filterShape:t}}function wS(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[b,y,x]=Fy(n),[w,I,T]=Fy(a),C=Jo(h,w),E=Jo(m,I),A=Jo(f,T),{padInfo:R,outDepth:F,outHeight:S,outWidth:M}=EM(r,u,p,d,b,y,x,C,E,A,o),W=s?g*c:g,U;return i==="channelsFirst"?U=[l,W,F,S,M]:i==="channelsLast"&&(U=[l,F,S,M,W]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:F,outHeight:S,outWidth:M,outChannels:W,padInfo:R,strideDepth:b,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:A,dilationDepth:w,dilationHeight:I,dilationWidth:T,inShape:e,outShape:U,filterShape:t}}function NM(e,t,n,a,r){a==null&&(a=qx(e,t,n));let s=e[0],i=e[1],o=qs((s-t+2*a)/n+1,r),l=qs((i-t+2*a)/n+1,r);return[o,l]}function CM(e,t,n,a,r,s){r==null&&(r=qx(e,t,a));let i=e[0],o=e[1],l=e[2],u=qs((i-t+2*r)/a+1,s),p=qs((o-t+2*r)/a+1,s),d=qs((l-t+2*r)/a+1,s);return[u,p,d,n]}function qx(e,t,n,a=1){let r=Jo(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Ih(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Fy(e){return typeof e=="number"?[e,e,e]:e}function Jo(e,t){return t<=1?e:e+(e-1)*(t-1)}function _M(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=NM([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),b=h-g;u={top:m,bottom:f,left:g,right:b,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=qs((t-s+c+h)/a+1,o),d=qs((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function EM(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=CM([t,n,a,1],o,1,r,e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,b=(m-1)*i+u-a,y=Math.floor(f/2),x=f-y,w=Math.floor(g/2),I=g-w,T=Math.floor(b/2),C=b-T;d={top:w,bottom:I,left:T,right:C,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function qs(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ts(e){let[t,n,a]=Ih(e);return t===1&&n===1&&a===1}function lr(e,t){return ts(e)||ts(t)}function kS(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Sn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")$(el(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{$(el(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function AM(e,t){let n={x:_(e,"x","reshape","string_or_numeric")},a={shape:t};return O.runKernel(iu,n,a)}var B=L({reshape_:AM});function $M(e,t,n,a,r){let s=_(e,"x","avgPool","float32"),i=1;$(lr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=B(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Sn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(gi,u,p);return d=oe(d,s.dtype),l?B(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var fa=L({avgPool_:$M});function FM(e,t,n,a,r,s="NDHWC"){let i=_(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Sn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(rc,u,p);return d=oe(d,o.dtype),l?B(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Kx=L({avgPool3d_:FM});function DM(e,t=0){$(e.length>=1,()=>"Pass at least one tensor to concat");let n=Up(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return ar(n[0]);let a=n,r={axis:t};return O.runKernel(Al,a,r)}var Ze=L({concat_:DM});function RM(e){let t={x:_(e,"x","sigmoid","float32")};return O.runKernel(ao,t)}var da=L({sigmoid_:RM});function MM(e,t,n){let a=_(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return O.runKernel(pu,r,s)}var We=L({slice_:MM});function PM(e){let t={x:_(e,"x","tanh","float32")};return O.runKernel(po,t)}var ri=L({tanh_:PM});function OM(e,t,n,a,r,s){let i=_(e,"forgetBias","basicLSTMCell"),o=_(t,"lstmKernel","basicLSTMCell"),l=_(n,"lstmBias","basicLSTMCell"),u=_(a,"data","basicLSTMCell"),p=_(r,"c","basicLSTMCell"),d=_(s,"h","basicLSTMCell"),c=Ze([u,d],1),h=Ae(c,o),m=Y(h,l),f=m.shape[0],g=m.shape[1]/4,b=[f,g],y=We(m,[0,0],b),x=We(m,[0,g],b),w=We(m,[0,g*2],b),I=We(m,[0,g*3],b),T=Y(z(da(y),ri(x)),z(p,da(Y(i,w)))),C=z(ri(T),da(I));return[T,C]}var IS=L({basicLSTMCell_:OM});function LM(e,t,n){let a=_(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);$(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),$(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),$(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return O.runKernel(El,s,i)}var _c=L({batchToSpaceND_:LM});function zM(e){let t;return e.rank===0||e.rank===1?t=B(e,[1,1,1,e.size]):e.rank===2?t=B(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=B(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function BM(e,t,n,a,r,s){s==null&&(s=.001);let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;a!=null&&(p=_(a,"offset","batchNorm")),$(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),$(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),$(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:zM(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=O.runKernel($i,d,c);return B(h,i.shape)}var gs=L({batchNorm_:BM});function WM(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),$(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),$(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),$(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&$(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&$(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),gs(i,o,l,p,u,s)}var Xx=L({batchNorm2d_:WM});function VM(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),$(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),$(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),$(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&$(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&$(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),gs(i,o,l,p,u,s)}var Yx=L({batchNorm3d_:VM});function UM(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),$(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),$(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),$(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&$(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&$(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),gs(i,o,l,p,u,s)}var Zx=L({batchNorm4d_:UM});function GM(e,t,n){let a=_(e,"x","bincount"),r=_(t,"weights","bincount");$(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return O.runKernel(Yh,s,i)}var Jx=L({bincount_:GM});function HM(e,t){let n=_(e,"s0","broadcastArgs","int32"),a=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return O.runKernel(Zh,r)}var SS=L({broadcastArgs_:HM});function jM(e,t){let n=_(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=B(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return ar(n);let i={x:n},o={reps:s};return O.runKernel(ds,i,o)}var Ks=L({broadcastTo_:jM});function qM(e){let t={x:_(e,"x","ceil","float32")};return O.runKernel(xi,t)}var Qx=L({ceil_:qM});function gn(e,t,n){let a={shape:e,value:t,dtype:n};return O.runKernel(lc,{},a)}function KM(e,t,n){let a=_(e,"x","clipByValue");if($(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`),t===n)return gn(a.shape,t,a.dtype);let r={x:a},s={clipValueMin:t,clipValueMax:n};return O.runKernel(cs,r,s)}var Qt=L({clipByValue_:KM});function XM(e){return Ze(e,0)}var ev=L({concat1d_:XM});function YM(e,t){return Ze(e,t)}var tv=L({concat2d_:YM});function ZM(e,t){return Ze(e,t)}var nv=L({concat3d_:ZM});function JM(e,t){return Ze(e,t)}var av=L({concat4d_:JM});function QM(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","conv2d","float32"),l=_(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),$(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Sn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];$(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),$(lr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(vi,c,h);return p?B(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var $t=L({conv2d_:QM});function eP(e,t,n,a,r="NWC",s=1,i){let o=_(e,"x","conv1d"),l=_(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=B(o,[1,o.shape[0],o.shape[1]])),$(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),$(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Sn("conv1d",a,i),$(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),$(lr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),$(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=B(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=B(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=$t(c,d,[1,n],a,"NHWC",[1,s],i);return p?B(h,[h.shape[2],h.shape[3]]):B(h,[h.shape[0],h.shape[2],h.shape[3]])}var Am=L({conv1d_:eP});function tP(e,t,n,a,r,s="NHWC",i){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=B(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),$(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),$(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),$(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];$(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),$(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Sn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=O.runKernel(wi,c,h);return u?B(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var rv=L({conv2DBackpropInput_:tP});function nP(e,t,n,a,r,s){let i=_(e,"x","conv2dTranspose"),o=_(t,"filter","conv2dTranspose");return rv(n,i,o,a,r,"NHWC",s)}var $m=L({conv2dTranspose_:nP});function aP(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=_(e,"x","conv3d"),o=_(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),$(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),$(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),$(lr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),$(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=O.runKernel(ic,p,d);return u?B(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var sv=L({conv3d_:aP});function rP(e,t,n,a,r){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=B(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];$(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),$(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),$(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),$(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),$(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=O.runKernel(tm,p,d);return o?B(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var TS=L({conv3DBackpropInput_:rP});function sP(e,t,n,a,r){let s=_(e,"x","conv3dTranspose"),i=_(t,"filter","conv3dTranspose");return TS(n,s,i,a,r)}var iv=L({conv3dTranspose_:sP});function iP(e){let t={x:_(e,"x","cos","float32")};return O.runKernel(ki,t)}var Ec=L({cos_:iP});function oP(e){let t={x:_(e,"x","cosh","float32")};return O.runKernel(Ii,t)}var Fm=L({cosh_:oP});function lP(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return O.runKernel($l,r,s)}var Hp=L({cumprod_:lP});function uP(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(Si,r,s)}var Dm=L({cumsum_:uP});function pP(e,t,n,a=!1){let r=_(e,"x","denseBincount"),s=_(t,"weights","denseBincount");$(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),$(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return O.runKernel(nm,i,o)}var NS=L({denseBincount_:pP});function cP(e,t,n="NHWC"){let a=_(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];$(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),$(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),$(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),$(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return O.runKernel(Dl,o,l)}var ov=L({depthToSpace_:cP});function dP(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","depthwiseConv2d","float32"),l=_(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),$(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];$(d===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d}) must match the inChannels dimension in filter ${l.shape[2]}.`),Sn("depthwiseConv2d",a,i);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(Ti,c,h);return p?B(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var bs=L({depthwiseConv2d_:dP});function hP(e){let t={x:_(e,"x","diag")};return O.runKernel(sm,t)}var CS=L({diag_:hP});function mP(e,t,n,a,r=[1,1],s="NHWC"){let i=_(e,"x","dilation2d"),o=_(t,"filter","dilation2d");$(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),$(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),$(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=B(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=O.runKernel(oc,p,d);return u?B(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var lv=L({dilation2d_:mP});function fP(e,t){let n=_(e,"a","equal","string_or_numeric"),a=_(t,"b","equal","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Ml,r)}var Jn=L({equal_:fP});function gP(e,t,n){let a=_(t,"a","where"),r=_(n,"b","where"),s=_(e,"condition","where","bool"),i=lt(lt(s.shape,a.shape),r.shape),o=Ks(s,i),l=Ks(a,i),u=Ks(r,i),p={condition:o,t:l,e:u};return O.runKernel(lu,p)}var mn=L({where_:gP});function bP(e){let t={x:_(e,"x","zerosLike")};return O.runKernel(wu,t)}var je=L({zerosLike_:bP});function yP(e,t){let n=_(e,"a","div"),a=_(t,"b","div");[n,a]=_t(n,a);let r=he(n,a),s=je(r),i=Jn(a,s);return mn(i,s,r)}var uv=L({divNoNan_:yP});function xP(e,t){let n=_(e,"t1","dot"),a=_(t,"t2","dot");$((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if($(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=B(n,[1,-1]),o=B(a,[-1,1]),l=Ae(i,o);return B(l,[])}else if(n.rank===1&&a.rank===2){let i=B(n,[1,-1]),o=B(a,[a.shape[0],a.shape[1]]),l=Ae(i,o);return B(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=B(a,[-1,1]),o=Ae(n,i);return B(o,[o.size])}else{let i=B(a,[a.shape[0],a.shape[1]]);return Ae(n,i)}}var pv=L({dot_:xP});function vP(e,...t){let n=t.map((r,s)=>_(r,`tensors${s}`,"einsum")),a={equation:e};return O.runKernel(im,n,a)}var _S=L({einsum_:vP});function wP(e){let t={x:_(e,"x","elu","float32")};return O.runKernel(Ci,t)}var Su=L({elu_:wP});function kP(e){let t=_(e,"x","erf");$(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=oe(t,"float32"));let n={x:t};return O.runKernel(Rl,n)}var cv=L({erf_:kP});function dv(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function ES(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function AS(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function si(e,t){let n=t.map(a=>1);return ES(e,n,t)}function IP(e,t,n){$(dv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function $S(e,t){if(dv(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function hv(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function SP(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function TP(e,t=null,n=!1){let a={x:_(e,"x","max")},r={reductionIndices:t,keepDims:n};return O.runKernel(Pi,a,r)}var Na=L({max_:TP});function NP(e,t=null,n=!1){let a={x:_(e,"x","min")},r={axis:t,keepDims:n};return O.runKernel(Bi,a,r)}var jp=L({min_:NP});function CP(e,t){let n=_(e,"base","pow"),a=_(t,"exp","pow");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(ji,r)}var _r=L({pow_:CP});function ye(e,t){if((dn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&dn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ms(e,[],[],t)}function _P(e){let t={x:_(e,"x","sqrt","float32")};return O.runKernel(ro,t)}var on=L({sqrt_:_P});function EP(e){let t=_(e,"x","square"),n={};return O.runKernel("Square",{x:t},n)}var ot=L({square_:EP});function AP(e,t=null,n=!1){let a=_(e,"x","sum");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(so,r,s)}var fe=L({sum_:AP});function $P(e,t="euclidean",n=null,a=!1){e=_(e,"x","norm");let r=FS(e,t,n),s=r.shape;if(a){let i=Ea(n,e.shape);s=si(r.shape,i)}return B(r,s)}function FS(e,t,n=null){if(e.rank===0)return Lt(e);if(e.rank!==1&&n===null)return FS(B(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return fe(Lt(e),n);if(t===1/0)return Na(Lt(e),n);if(t===-1/0)return jp(Lt(e),n);if(t==="euclidean"||t===2)return on(fe(_r(Lt(e),ye(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Na(fe(Lt(e),n[0]),n[1]-1);if(t===1/0)return Na(fe(Lt(e),n[1]),n[0]);if(t===-1/0)return jp(fe(Lt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return on(fe(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Tu=L({norm_:$P});function FP(e,t=null,n=!1){return Tu(e,"euclidean",t,n)}var mv=L({euclideanNorm_:FP});function DP(e){let t={x:_(e,"x","exp")};return O.runKernel(_i,t)}var fn=L({exp_:DP});function RP(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");$(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return O.runKernel(Pl,a,r)}var hn=L({expandDims_:RP});function MP(e){let t={x:_(e,"x","expm1")};return O.runKernel(Ol,t)}var fv=L({expm1_:MP});function PP(e,t){let n=_(e,"x","tile","string_or_numeric");$(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return O.runKernel(ds,a,r)}var Pn=L({tile_:PP});function OP(e,t,n,a="float32"){t==null&&(t=e);let r=Pe([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=B(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Pn(hn(i,0),[n[0],1,1]);if(n.length===2)return Pn(hn(hn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Pn(hn(hn(hn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Rm=L({eye_:OP});function LP(e){let t={x:_(e,"x","floor","float32")};return O.runKernel(Ei,t)}var Nu=L({floor_:LP});function zP(e,t,n=0,a=0){let r=_(e,"x","gather"),s=_(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return O.runKernel(zl,i,o)}var Cu=L({gather_:zP});function BP(e,t){let n=_(e,"a","greater","string_or_numeric"),a=_(t,"b","greater","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Wl,r)}var Vn=L({greater_:BP});function WP(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),a=_(t,"b","greaterEqual","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Fi,r)}var ys=L({greaterEqual_:WP});function VP(e){let t={x:_(e,"x","isFinite")};return O.runKernel(Vl,t)}var gv=L({isFinite_:VP});function UP(e){let t={x:_(e,"x","isInf")};return O.runKernel(Ul,t)}var bv=L({isInf_:UP});function GP(e){let t={x:_(e,"x","isNaN")};return O.runKernel(Gl,t)}var yv=L({isNaN_:GP});function HP(e,t=.2){let n={x:_(e,"x","leakyRelu")},a={alpha:t};return O.runKernel(Ri,n,a)}var Ac=L({leakyRelu_:HP});function jP(e,t){let n=_(e,"a","less","string_or_numeric"),a=_(t,"b","less","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Hl,r)}var Mm=L({less_:jP});function qP(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),a=_(t,"b","lessEqual","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(jl,r)}var xs=L({lessEqual_:qP});function DS(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return O.runKernel(cm,{},a)}function KP(e,t=5,n=1,a=1,r=.5){let s=_(e,"x","localResponseNormalization");$(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),$(el(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=B(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=O.runKernel(uc,l,u);return o?B(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var xv=L({localResponseNormalization_:KP});function XP(e){let t={x:_(e,"x","log","float32")};return O.runKernel(Mi,t)}var Qn=L({log_:XP});function YP(e){let t={x:_(e,"x","log1p")};return O.runKernel(ql,t)}var $c=L({log1p_:YP});function ZP(e){return $(Qr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(a),[a],r);return r!=null&&In(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Pm(i),i[0]})}}function JP(e){return $(Qr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{$(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=Up(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(...a),a,r);return r!=null&&In(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Pm(i),i})}}function QP(e){return $(Qr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{$(t instanceof Te,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),$(n==null||n instanceof Te,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=O.gradients(()=>e(t),[t],n);return Pm(a),{grad:a[0],value:r}}}function eO(e){return $(Qr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{$(Array.isArray(t)&&t.every(r=>r instanceof Te),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),$(n==null||n instanceof Te,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=O.gradients(()=>e(...t),t,n);return n!=null&&In(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Pm(a.grads),a}}function RS(e,t){$(Qr(e),()=>"The f passed in variableGrads(f) must be a function"),$(t==null||Array.isArray(t)&&t.every(u=>u instanceof es),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in O.registeredVariables)t.push(O.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),$(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=O.gradients(e,t,null,s);$(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),$(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function ir(e){return O.customGrad(e)}function Pm(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function tO(e){let t={x:_(e,"x","softplus")};return O.runKernel(hu,t)}var ho=L({softplus_:tO});function nO(e){let t=_(e,"x","logSigmoid");return ir(n=>({value:yt(ho(yt(n))),gradFunc:a=>z(a,da(yt(n)))}))(t)}var vv=L({logSigmoid_:nO});function aO(e,t){let n=_(e,"a","sub"),a=_(t,"b","sub");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(lo,r)}var pe=L({sub_:aO});function rO(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ir((a,r)=>{let s=Na(a,t,!0),i=pe(a,s),o=pe(oe(i,"float32"),Qn(fe(fn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=fn(p);return pe(l,z(fe(l,t,d),c))}}})(n)}var Om=L({logSoftmax_:rO});function sO(e,t=null,n=!1){let a=_(e,"x","logSumExp"),r=Ea(t,a.shape),s=Na(a,r,!0),i=pe(a,s),o=fn(i),l=fe(o,r),u=Qn(l),p=Y(B(s,u.shape),u);if(n){let d=si(p.shape,r);return B(p,d)}return p}var Lm=L({logSumExp_:sO});function iO(e,t){let n=_(e,"a","logicalAnd","bool"),a=_(t,"b","logicalAnd","bool");lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Kl,r)}var _a=L({logicalAnd_:iO});function oO(e){let t={x:_(e,"x","logicalNot","bool")};return O.runKernel(Xl,t)}var Fc=L({logicalNot_:oO});function lO(e,t){let n=_(e,"a","logicalOr","bool"),a=_(t,"b","logicalOr","bool");lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Yl,r)}var zm=L({logicalOr_:lO});function uO(e,t){let n=_(e,"a","logicalXor","bool"),a=_(t,"b","logicalXor","bool");return lt(n.shape,a.shape),_a(zm(e,t),Fc(_a(e,t)))}var wv=L({logicalXor_:uO}),Gd=2147483648;function pO(e,t,n="left"){let a=_(e,"sortedSequence","searchSorted"),r=_(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=B(a,[-1,s]),l=B(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(mt(l.shape)>=Gd)throw new Error(`values tensor size must less than ${Gd}`);if(o.shape[1]>=Gd)throw new Error(`trailing dim_size must less than ${Gd} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return O.runKernel(km,u,p)}var Bm=L({searchSorted_:pO});function MS(e,t){return Bm(e,t,"left")}function cO(e,t,n,a,r){let s=_(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=B(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),$(lr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Sn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(Li,u,p);return l?B(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Dt=L({maxPool_:cO});function dO(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=_(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Sn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(pc,u,p);return l?B(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var kv=L({maxPool3d_:dO});function hO(e,t,n,a,r=!1){let s={x:_(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=O.runKernel(fm,s,i);return{result:o[0],indexes:o[1]}}var PS=L({maxPoolWithArgmax_:hO});function mO(e,t){let n=_(e,"a","maximum"),a=_(t,"b","maximum");[n,a]=_t(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Oi,r)}var ur=L({maximum_:mO});function fO(e,t=null,n=!1){let a={x:_(e,"x","mean")},r={axis:t,keepDims:n};return O.runKernel(zi,a,r)}var Nt=L({mean_:fO});function It(e,t="float32"){if(t==="complex64"){let a=It(e,"float32"),r=It(e,"float32");return Cr(a,r)}let n=qh(mt(e),t);return O.makeTensor(n,e,t)}function Yn(e,t="float32"){if(t==="complex64"){let a=Yn(e,"float32"),r=It(e,"float32");return Cr(a,r)}let n=yx(mt(e),t);return O.makeTensor(n,e,t)}function OS(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=_(e,"x","meshgrid",e instanceof Te?e.dtype:"float32");if(t===void 0)return[a];let r=_(t,"y","meshgrid",t instanceof Te?t.dtype:"float32"),s=mt(a.shape),i=mt(r.shape);return n==="xy"?(a=B(a,[1,-1]),r=B(r,[-1,1]),[Ae(Yn([i,1],a.dtype),a),Ae(r,Yn([1,s],r.dtype))]):(a=B(a,[-1,1]),r=B(r,[1,-1]),[Ae(a,Yn([1,i],a.dtype)),Ae(Yn([s,1],r.dtype),r)])}function gO(e,t){let n=_(e,"a","minimum"),a=_(t,"b","minimum");[n,a]=_t(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Wi,r)}var _u=L({minimum_:gO});function bO(e,t,n){$(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=_(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");$(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)$(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),$(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return O.runKernel(Vi,i,s)}var Iv=L({mirrorPad_:bO});function yO(e,t){let n=_(e,"a","mod"),a=_(t,"b","mod");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(Zl,r)}var Sv=L({mod_:yO});function xO(e,t=null,n=!1){e=_(e,"x","moments");let a=Ea(t,e.shape),r=Nt(e,a,n),s=r.shape;n||(s=si(r.shape,a));let i=ot(pe(oe(e,"float32"),B(r,s))),o=Nt(i,a,n);return{mean:r,variance:o}}var Dc=L({moments_:xO});function vO(e,t,n,a){let r=_(t,"data","multiRNNCell"),s=Up(n,"c","multiRNNCell"),i=Up(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var LS=L({multiRNNCell_:vO});function wO(e,t,n,a=!1){let r=_(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?B(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=O.runKernel(gm,o,l);return i===1?B(u,[u.size]):u}var zS=L({multinomial_:wO});function kO(e,t){let n=_(e,"a","notEqual","string_or_numeric"),a=_(t,"b","notEqual","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Ql,r)}var ii=L({notEqual_:kO});function IO(e){let t={x:_(e,"x","onesLike")};return O.runKernel(au,t)}var ea=L({onesLike_:IO});function SO(e,t){let n=_(e,"v1","outerProduct"),a=_(t,"v2","outerProduct");$(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=B(n,[-1,1]),s=B(a,[1,-1]);return Ae(r,s)}var BS=L({outerProduct_:SO});function TO(e,t,n=0){let a=_(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return O.runKernel(Hi,s,r)}var ga=L({pad_:TO});function NO(e,t,n=0){return $(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ga(e,[t],n)}var WS=L({pad1d_:NO});function CO(e,t,n=0){return $(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ga(e,t,n)}var VS=L({pad2d_:CO});function _O(e,t,n=0){return $(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ga(e,t,n)}var US=L({pad3d_:_O});function EO(e,t,n=0){return $(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ga(e,t,n)}var GS=L({pad4d_:EO});function AO(e,t,n){let a=_(e,"x","spaceToBatchND");$(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),$(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),$(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return O.runKernel(mu,r,s)}var Rc=L({spaceToBatchND_:AO});function $O(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=_(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(lr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=vS(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=DO([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=FO([p.inHeight,p.inWidth],d,c),g=h?a:"valid",b=h?l:Rc(l,d,m),y=(n==="avg"?()=>fa(b,t,s,g,i):()=>Dt(b,t,s,g,i))(),x=h?y:_c(y,d,f);return u?B(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function FO(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function DO(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var Tv=L({pool_:$O});function RO(e,t){let n=_(e,"x","prelu"),a=_(t,"alpha","prelu"),r={x:n,alpha:a};return O.runKernel(qi,r)}var Mc=L({prelu_:RO});function MO(e,t=null,n=!1){let a=_(e,"x","prod");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(Ki,r,s)}var Nv=L({prod_:MO});function PO(e,t,n,a){let r=e.map((p,d)=>_(p,`tensors${d}`,"raggedGather","int32")),s=_(t,"paramsDenseValues","raggedGather"),i=_(n,"indices","raggedGather","int32"),o={paramsNestedSplits:r,paramsDenseValues:s,indices:i},l={outputRaggedRank:a},u=O.runKernel(bm,o,l);return{outputNestedSplits:u.slice(0,u.length-1),outputDenseValues:u[u.length-1]}}var HS=L({raggedGather_:PO});function OO(e,t,n,a,r){let s=_(e,"shape","raggedTensorToTensor","int32"),i=_(t,"values","raggedTensorToTensor"),o=_(n,"defaultValue","raggedTensorToTensor",i.dtype),l=a.map((d,c)=>_(d,`tensors${c}`,"raggedTensorToTensor","int32")),u={shape:s,values:i,defaultValue:o,rowPartitionTensors:l},p={rowPartitionTypes:r};return O.runKernel(ym,u,p)}var jS=L({raggedTensorToTensor_:OO});function LO(e,t,n){let a=mt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return O.makeTensor(r,e,n)}var qS=L({rand_:LO}),Cv=ls(Gh()),_v=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=Cv.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},zO=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=Cv.alea(r.toString()),this.randn=new _v(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},BO=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Cv.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function WO(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new zO(t,n,a,r),i=Pe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var KS=L({randomGamma_:WO});function VO(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new _v(t,n,a,!1,r),i=Pe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Wm=L({randomNormal_:VO});function UO(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return Wm(e,0,1,t,n)}var XS=L({randomStandardNormal_:UO});function GO(e,t=0,n=1,a="float32",r){let s=Pe(e,a),i=new BO(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Eu=L({randomUniform_:GO});function sl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return O.runKernel(cc,{},r)}function HO(e){let t={x:_(e,"x","reciprocal")};return O.runKernel(su,t)}var Ev=L({reciprocal_:HO});function jO(e){let t={x:_(e,"x","relu")};return O.runKernel(Xi,t)}var Xe=L({relu_:jO});function qO(e){let t={x:_(e,"x","relu6")};return O.runKernel(Ji,t)}var Vm=L({relu6_:qO});function KO(e,t){let n={x:_(e,"x","reverse")},a={dims:t};return O.runKernel(Qi,n,a)}var ma=L({reverse_:KO});function XO(e){let t=_(e,"x","reverse");return $(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ma(t,0)}var YS=L({reverse1d_:XO});function YO(e,t){let n=_(e,"x","reverse");return $(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ma(n,t)}var ZS=L({reverse2d_:YO});function ZO(e,t){let n=_(e,"x","reverse");return $(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ma(n,t)}var JS=L({reverse3d_:ZO});function JO(e,t){let n=_(e,"x","reverse");return $(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ma(n,t)}var QS=L({reverse4d_:JO});function QO(e){let t={x:_(e,"x","round")};return O.runKernel(eo,t)}var Um=L({round_:QO});function e3(e){let t={x:_(e,"x","rsqrt","float32")};return O.runKernel(to,t)}var Gm=L({rsqrt_:e3});function t3(e){let t={x:_(e,"x","selu")};return O.runKernel(uu,t)}var Hm=L({selu_:t3});function n3(e,t,n,a,r,s=[1,1],i="NHWC"){let o=_(e,"x","separableConv2d"),l=_(t,"depthwiseFilter","separableConv2d"),u=_(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=B(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");$(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),$(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),$(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),$(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),$(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];$(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=bs(p,l,a,r,i,s),f=$t(m,u,1,"valid",i);return d?B(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var vs=L({separableConv2d_:n3});async function a3(e,t){let n=_(e,"x","setdiff1d"),a=_(t,"y","setdiff1d");$(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),$(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),$(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new Ht([o],n.dtype),u=new Ht([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var eT=a3;function r3(e){let t={x:_(e,"x","sign")};return O.runKernel(du,t)}var Av=L({sign_:r3});function s3(e){let t={x:_(e,"x","sin","float32")};return O.runKernel(no,t)}var jm=L({sin_:s3});function i3(e){let t={x:_(e,"x","sinh")};return O.runKernel(cu,t)}var qm=L({sinh_:i3});function o3(e,t,n){let a=_(e,"x","slice1d");return $(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),We(a,[t],[n])}var Pc=L({slice1d_:o3});function l3(e,t,n){let a=_(e,"x","slice2d");return $(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var Km=L({slice2d_:l3});function u3(e,t,n){let a=_(e,"x","slice3d");return $(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var mo=L({slice3d_:u3});function p3(e,t,n){let a=_(e,"x","slice4d");return $(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var il=L({slice4d_:p3});function c3(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return O.runKernel(io,a,r)}var ja=L({softmax_:c3});function d3(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(lm,t)}var Oc=L({fft_:d3});function h3(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(um,t)}var ol=L({ifft_:h3});function m3(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=B(e,[n,t]);a=ol(r)}else{let r=[n,2*(t-1)],s=B(rl(e),[n,t]),i=B(Tc(e),[n,t]),o=ma(We(s,[0,1],[n,t-2]),1),l=z(ma(We(i,[0,1],[n,t-2]),1),ye(-1)),u=Ze([s,o],1),p=Ze([i,l],1),d=B(Cr(u,p),[r[0],r[1]]);a=ol(d)}if(a=rl(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=B(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Xm=L({irfft_:m3});function f3(e,t,n=0){let a={x:_(e,"x","split")},r={numOrSizeSplits:t,axis:n};return O.runKernel(fu,a,r)}var Ln=L({split_:f3});function g3(e,t){$(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=We(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Ze([e,It(m)],e.shape.length-1),n=t}else r=e;let s=je(r),i=B(Cr(r,s),[a,n]),o=Oc(i),l=Math.floor(n/2)+1,u=rl(o),p=Tc(o),d=Ln(u,[l,n-l],u.shape.length-1),c=Ln(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,B(Cr(d[0],c[0]),h)}var Lc=L({rfft_:g3});function b3(e,t){let n=_(e,"a","squaredDifference"),a=_(t,"b","squaredDifference");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a},s={};return O.runKernel(oo,r,s)}var Ym=L({squaredDifference_:b3});function y3(e,t){let n=_(e,"x","squeeze","string_or_numeric");return B(n,fI(n.shape,t).newShape)}var ws=L({squeeze_:y3});function x3(e,t=0){let n=Up(e,"tensors","stack","string_or_numeric");$(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&$(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return O.runKernel(ru,a,r)}var Ft=L({stack_:x3});function v3(e,t=0){let n={x:_(e,"x","step")},a={alpha:t};return O.runKernel(hs,n,a)}var fo=L({step_:v3});function w3(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:_(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return O.runKernel(bu,u,p)}var $v=L({stridedSlice_:w3});function k3(e){let t={x:_(e,"x","tan","float32")};return O.runKernel(uo,t)}var Fv=L({tan_:k3});function Ke(e,t){hi(e);let n=sr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ms(e,null,n,t)}function Ca(e,t,n){if(hi(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=sr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ms(e,t,a,n)}function Aa(e,t,n){if(hi(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=sr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ms(e,t,a,n)}function tT(e,t,n){if(hi(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=sr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ms(e,t,a,n)}function nT(e,t,n){if(hi(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=sr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,ms(e,t,a,n)}function I3(e,t=1,n=!0){let a=_(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=O.runKernel(yu,s,i);return{values:o,indices:l}}var Dv=L({topk_:I3});function S3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new _v(t,n,a,!0,r),i=Pe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Zm=L({truncatedNormal_:S3});function T3(e,t=0){let n=_(e,"x","unique","string_or_numeric");$(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=O.runKernel(Sm,a,r);return{values:s,indices:i}}var Rv=L({unique_:T3});function N3(e,t,n){let a=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");$(el(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return O.runKernel(xc,s,i)}var Jm=L({unsortedSegmentSum_:N3});function C3(e,t=0){let n=_(e,"x","unstack","string_or_numeric");$(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return O.runKernel(vu,a,r)}var ct=L({unstack_:C3});function aT(e,t){return Bm(e,t,"right")}function Mv(e,t=!0,n,a){return O.makeVariable(e,t,n,a)}function rT(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Pe(e,"int32"),r=Pe([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function _3(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),a=rT(t.shape,n);return e!==t&&t.dispose(),a}var Pv=_3;async function E3(e,t,n){let a=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;$(i>0,()=>"mask cannot be scalar"),In(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=B(a,u),d=B(r,[-1]),c=await Pv(d),h=ws(c,[1]),m=Cu(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var sT=E3;function A3(e,t,n,a,r=!0){let s=_(e,"v","movingAverage"),i=_(t,"x","movingAverage"),o=_(n,"decay","movingAverage");DI(s,i),$(us(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ye(1),u=pe(l,o),p=z(pe(i,s),u);if(r){$(a!=null,()=>"When using zeroDebias: true, step is required.");let d=_(a,"step","movingAverage");p=he(p,pe(l,_r(o,d)))}return Y(s,p)}var iT=L({movingAverage_:A3});function $3(e,t,n){let a=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");Px(r,a,n);let s={indices:a,updates:r},i={shape:n};return O.runKernel(ou,s,i)}var oT=L({scatterND_:$3});function F3(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function D3(e,t,n,a=0){let r=_(e,"sparseIndices","sparseToDense","int32"),s=_(t,"sparseValues","sparseToDense","string_or_numeric"),i=_(a,"defaultValue","sparseToDense",s.dtype);F3(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return O.runKernel(Im,o,l)}var lT=L({sparseToDense_:D3});function R3(e,t){let n=_(t,"indices","gatherND","int32"),a={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return O.runKernel(Bl,a)}var uT=L({gatherND_:R3});function M3(e,t){if(t==null)return e.shape.slice();if(us(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function P3(e,t,n,a){let r=_(e,"x","dropout");if($(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),$(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Te?r.clone():r;let s=M3(r,n),i=1-t,o=he(Nu(Y(Eu(s,0,1,"float32",a),i)),i);return z(r,o)}var Ov=L({dropout_:P3});function Lv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Qm(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Ke(r,"float32")}async function O3(e,t,n=1){let a=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");$(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),$(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),In(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];$(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=gI("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),On(p,r.shape,"bool")}var pT=O3,ll={};_e(ll,{conv2d:()=>B3,depthwiseConv2d:()=>G3,matMul:()=>j3});function L3(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=B(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=B(t,[1,t.shape[0],t.shape[1],t.shape[2]])),$(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),$(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),$(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];$(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),$(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Sn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return O.runKernel(Qh,d,c)}var zv=L({conv2DBackpropFilter_:L3});function ef(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,fo(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function tf(e,t){let n=t,a=Bt(e.shape,t.shape);return a.length>0&&(n=fe(n,a)),B(n,e.shape)}function nf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Xe(e);if(t==="elu")return Su(e);if(t==="relu6")return Vm(e);if(t==="prelu")return Mc(e,n);if(t==="leakyrelu")return Ac(e,a);if(t==="sigmoid")return da(e);throw new Error(`Unknown fused activation ${t}.`)}var af=(e,t)=>!(e>0)||t==="linear";function z3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",af(O.state.gradientDepth,l)===!1){$(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let T=$t(e,t,n,a,r,s,i);return o!=null&&(T=Y(T,o)),nf(T,l,u,p)}let d=_(e,"x","conv2d","float32"),c=_(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=B(d,[1,d.shape[0],d.shape[1],d.shape[2]])),$(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),$(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Sn("fused conv2d",a,i);let f=r==="NHWC"?h.shape[3]:h.shape[1];$(c.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${c.shape[2]}.`),$(lr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let g=Cc(h.shape,c.shape,n,s,a,i),b;o!=null&&(b=_(o,"bias","fused conv2d"),[b]=_t(b,d),r==="NHWC"?lt(g.outShape,b.shape):($(b.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${b.shape.length}.`),$(b.shape.length===0||b.shape[0]===g.outChannels||b.shape[0]===1,()=>`Error in fused conv2d: bias shape (${b.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let y;if(u!=null){let T=u.shape;if($(T.length<=1||T.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${T.length}.`),T.length===1)$(T[0]===1||T[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the number of output channels (${g.outChannels}).`);else if(T.length===3)try{lt(T,g.outShape)}catch(C){let E=`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}y=_(u,"prelu weights","fused conv2d")}let x=(T,C)=>{$(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,A,R,F]=C,S=ef(T,R,l);$(ts(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let M=rv(A.shape,S,E,n,a),W=zv(A,S,E.shape,n,a),U=[M,W];if(F!=null){let G=tf(F,S);U.push(G)}return U},w={x:h,filter:c,bias:b,preluActivationWeights:y},I={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ir((T,C,E)=>{let A=O.runKernel(Qs,w,I);return E([C,T,A]),m&&(A=B(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:x}})(h,c):ir((T,C,E,A)=>{let R=O.runKernel(Qs,w,I);return A([C,T,R,E]),m&&(R=B(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,c,b)}var B3=L({fusedConv2d_:z3});function W3(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=B(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=B(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return O.runKernel(am,u,p)}var cT=L({depthwiseConv2dNativeBackpropFilter_:W3});function V3(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=B(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=O.runKernel(rm,u,p);return l?B(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var dT=L({depthwiseConv2dNativeBackpropInput_:V3});function U3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(af(O.state.gradientDepth,l)===!1){let I=bs(e,t,n,a,r,s,i);return o!=null&&(I=Y(I,o)),nf(I,l,u,p)}let d=_(e,"x","depthwiseConv2d","float32"),c=_(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=B(d,[1,d.shape[0],d.shape[1],d.shape[2]])),$(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),$(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),$(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),$(lr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Sn("fused depthwiseConv2d",a,i);let f=Cc(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=_t(g,d),lt(f.outShape,g.shape));let b;u!=null&&(b=_(u,"prelu weights","fused depthwiseConv2d"));let y=(I,T)=>{$(ts(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,E,A,R]=T,F=ef(I,A,l),S=dT(E.shape,F,C,n,a,s,i),M=cT(E,F,C.shape,n,a,s,i);if(R!=null){let W=tf(g,F);return[S,M,W]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:b},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ir((I,T,C)=>{let E=O.runKernel(ei,x,w);return C([T,I,E]),m&&(E=B(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(h,c):ir((I,T,C,E)=>{let A=O.runKernel(ei,x,w);return E([T,I,A,C]),m&&(A=B(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:y}})(h,c,g)}var G3=L({fusedDepthwiseConv2d_:U3});function H3({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(af(O.state.gradientDepth,s)===!1){let R=Ae(e,t,n,a);return r!=null&&(R=Y(R,r)),nf(R,s,i,o)}let l=_(e,"a","fused matMul"),u=_(t,"b","fused matMul");[l,u]=_t(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=mt(m),b=mt(f);$(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let y=lt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?B(l,[g,p,c]):B(l,[g,c,p]),w=a?B(u,[b,h,d]):B(u,[b,d,h]),I;r!=null&&(I=_(r,"bias","fused matMul"),[I]=_t(I,l),lt(y,I.shape));let T;i!=null&&(T=_(i,"prelu weights","fused matMul"));let C=(R,F)=>{let[S,M,W,U]=F,G=ef(B(R,W.shape),W,s),q,K;if(!n&&!a?(q=Ae(G,M,!1,!0),K=Ae(S,G,!0,!1)):!n&&a?(q=Ae(G,M,!1,!1),K=Ae(G,S,!0,!1)):n&&!a?(q=Ae(M,G,!1,!0),K=Ae(S,G,!1,!1)):(q=Ae(M,G,!0,!0),K=Ae(G,S,!0,!0)),r!=null){let Z=tf(U,G);return[q,K,Z]}else return[q,K]},E={a:x,b:w,bias:I,preluActivationWeights:T},A={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ir((R,F,S)=>{let M=O.runKernel(Js,E,A);return S([R,F,M]),{value:B(M,y),gradFunc:C}})(x,w):ir((R,F,S,M)=>{let W=O.runKernel(Js,E,A);return M([R,F,W,S]),{value:B(W,y),gradFunc:C}})(x,w,I)}var j3=L({fusedMatMul_:H3});function q3(e){return Qm(e,.54,.46)}var K3=L({hammingWindow_:q3});function X3(e){return Qm(e,.5,.5)}var hT=L({hannWindow_:X3});function Y3(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(We(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Ze([We(e,s,t-o),gn([o],r)]);i.push(l),s+=n}return i.length===0?Ca([],[0,t]):B(Ze(i),[i.length,t])}var mT=L({frame_:Y3});function Z3(e,t,n,a,r=hT){a==null&&(a=Lv(t));let s=mT(e,t,n),i=z(s,r(t));return Lc(i,a)}var J3=L({stft_:Z3});function Q3(e,t,n,a,r="bilinear",s=0){let i=_(e,"image","cropAndResize"),o=_(t,"boxes","cropAndResize","float32"),l=_(n,"boxInd","cropAndResize","int32"),u=o.shape[0];$(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),$(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),$(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),$(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),$(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return O.runKernel(Fl,p,d)}var eL=L({cropAndResize_:Q3});function tL(e){let t=_(e,"image","flipLeftRight","float32");$(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return O.runKernel(Ll,n,{})}var nL=L({flipLeftRight_:tL});function aL(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];$(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),$(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Pn(t,r)}var rL=L({grayscaleToRGB_:aL});function sL(e,t,n=0,a=.5){let r=_(e,"image","rotateWithOffset","float32");$(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return O.runKernel(ku,s,i)}var iL=L({rotateWithOffset_:sL});function Au(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),$(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),$(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),$(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),$(t.rank===1,()=>"scores must be a 1D tensor"),$(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),$(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function oL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppression","float32"),i=_(t,"scores","nonMaxSuppression","float32"),o=Au(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return O.runKernel(eu,{boxes:s,scores:i},l)}var lL=L({nonMaxSuppression_:oL});function uL(e,t,n){let a=pL(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function pL(e,t,n){return dL(e,t,n||cL)}function cL(e,t){return e>t?1:e<t?-1:0}function dL(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function fT(e,t,n,a,r){return Bv(e,t,n,a,r,0)}function gT(e,t,n,a,r,s){return Bv(e,t,n,a,r,0,!1,s,!0)}function bT(e,t,n,a,r,s){return Bv(e,t,n,a,r,s,!0)}function Bv(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(q1);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:b,boxIndex:y,suppressBeginIndex:x}=g;if(b<r)break;let w=!1;for(let I=d.length-1;I>=x;--I){let T=hL(e,y,d[I]);if(T>=a){w=!0;break}if(g.score=g.score*mL(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,w||(g.score===b?(d.push(y),c.push(g.score)):g.score>r&&uL(u,g,q1))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function hL(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),b=Math.min(o,d),y=Math.min(l,c),x=Math.max(b-f,0)*Math.max(y-g,0);return x/(h+m-x)}function mL(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function q1(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function fL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),o=Au(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=fT(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ke(d,"int32")}var gL=fL;function bL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=Au(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=O.runKernel(nu,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var yL=L({nonMaxSuppressionWithScore_:bL});async function xL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=Au(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=bT(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(c,"int32"),selectedScores:Ke(h)}}var vL=xL;function wL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=Au(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=O.runKernel(tu,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var kL=L({nonMaxSuppressionPadded_:wL});async function IL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=Au(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=gT(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(m,"int32"),validOutputs:ye(f,"int32")}}var SL=IL;function TL(e,t,n=!1,a=!1){let r=_(e,"images","resizeBilinear");$(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),$(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=B(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(Zi,o,l);return i?B(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var yT=L({resizeBilinear_:TL});function NL(e,t,n=!1,a=!1){let r=_(e,"images","resizeNearestNeighbor");$(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),$(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),$(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=B(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(Yi,o,l);return i?B(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var xT=L({resizeNearestNeighbor_:NL});function CL(e,t="binary",n=!1,a=.5){let r=_(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=z(Ke([a]),255),p,d,c,h;if($(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),$(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),$(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),$(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=Ln(r,[1,1,1],-1);let f=z(p,s),g=z(d,i),b=z(c,o);h=Y(Y(f,g),b)}else h=e;if(t==="otsu"){let f=Jx(oe(Um(h),"int32"),On([]),256);u=_L(f,l)}let m=n?xs(h,u):Vn(h,u);return oe(z(m,255),"int32")}function _L(e,t){let n=Ke([-1]),a=Ke([0]),r=Ke([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=We(e,0,d+1),i=We(e,d+1),u=he(fe(s),t),p=he(fe(i),t);let c=fe(z(s,sl(0,s.size)));o=he(c,fe(s));let h=gn(i.shape,s.size),m=Y(sl(0,i.size),h),f=z(i,m);l=he(fe(f),fe(i));let g=pe(o,l),b=pe(o,l),y=z(u,p);r=z(z(y,g),b);let x=Vn(r,a);a=mn(x,r,a),n=mn(x,Ke([d]),n)}return n}var EL=L({threshold_:CL});function AL(e,t,n="nearest",a="constant",r=0,s){let i=_(e,"image","transform","float32"),o=_(t,"transforms","transform","float32");$(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),$(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return O.runKernel(xu,l,u)}var $L=L({transform_:AL});function FL(e,t,n){$(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),$(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=_(e,"a","bandPart");$(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=B(sl(0,s,1,"int32"),[-1,1]),l=sl(0,i,1,"int32"),u=pe(o,l),p=_a(xs(u,ye(+t,"int32")),ys(u,ye(-n,"int32"))),d=It([s,i],a.dtype);return B(Ft(ct(B(a,[-1,s,i])).map(c=>mn(p,c,d))),r)}var DL=L({bandPart_:FL});function RL(e){let t;if(Array.isArray(e)){t=!1,$(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)$(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=Ln(e,e.shape[0],0).map(r=>ws(r,[0]));$(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(O.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=z(fe(z(n[i],s)),n[i]);s=pe(s,o)}return he(s,Tu(s,"euclidean"))}));return t?Ft(n,0):n}var ML=L({gramSchmidt_:RL});function PL(e,t=!1){if($(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return K1(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ct(B(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=K1(l,t);r.push(u),s.push(p)});let i=B(Ft(r,0),e.shape),o=B(Ft(s,0),e.shape);return[i,o]}}function K1(e,t=!1){return O.tidy(()=>{$(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=Rm(n),s=ar(e),i=Ca([[1]],[1,1]),o=ar(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=O.tidy(()=>{let h=We(s,[u,u],[n-u,1]),m=Tu(h),f=We(s,[u,u],[1,1]),g=mn(Vn(f,0),Ca([[-1]]),Ca([[1]])),b=pe(f,z(g,m)),y=he(h,b);y.shape[0]===1?o=ar(i):o=Ze([i,We(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=yt(he(Ae(g,b),m)),w=We(s,[u,0],[n-u,a]),I=z(x,o),T=Ce(o);if(u===0)s=pe(w,Ae(I,Ae(T,w)));else{let A=pe(w,Ae(I,Ae(T,w)));s=Ze([We(s,[0,0],[u,a]),A],0)}let C=Ce(I),E=We(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=pe(E,Ae(Ae(E,o),C));else{let A=pe(E,Ae(Ae(E,o),C));r=Ze([We(r,[0,0],[n,u]),A],1)}return[o,s,r]}),$e([p,d,c])}return!t&&n>a&&(r=We(r,[0,0],[n,a]),s=We(s,[0,0],[a,a])),[r,s]})}var OL=L({qr_:PL}),xn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(xn||(xn={}));function LL(e,t,n=xn.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let s=r==null?a:z(a,r);if(n===xn.NONE)return s;if(n===xn.SUM)return fe(s);if(n===xn.MEAN){if(r==null)return Nt(s);{let i=a.size/r.size,o=he(fe(s),fe(r));return i>1?he(o,ye(i)):o}}if(n===xn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(fe(s),ye(a.size));{let i=z(r,Yn(a.shape)),o=oe(fe(ii(i,ye(0))),"float32");return he(fe(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Er=L({computeWeightedLoss_:LL});function zL(e,t,n,a=xn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","absoluteDifference"),s=_(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=_(n,"weights","absoluteDifference")),In(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(pe(r,s));return Er(o,i,a)}var BL=L({absoluteDifference_:zL});function WL(e,t,n,a,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","cosineDistance"),i=_(t,"predictions","cosineDistance"),o=null;a!=null&&(o=_(a,"weights","cosineDistance")),In(s.shape,i.shape,"Error in cosineDistance: ");let l=ye(1),u=pe(l,fe(z(s,i),n,!0));return Er(u,o,r)}var VL=L({cosineDistance_:WL});function UL(e,t,n,a=xn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","hingeLoss"),s=_(t,"predictions","hingeLoss"),i=null;n!=null&&(i=_(n,"weights","hingeLoss")),In(r.shape,s.shape,"Error in hingeLoss: ");let o=ye(1);r=pe(z(ye(2),r),o);let l=Xe(pe(o,z(r,s)));return Er(l,i,a)}var GL=L({hingeLoss_:UL});function HL(e,t,n,a=1,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","huberLoss"),i=_(t,"predictions","huberLoss"),o=null;n!=null&&(o=_(n,"weights","huberLoss")),In(s.shape,i.shape,"Error in huberLoss: ");let l=ye(a),u=Lt(pe(i,s)),p=_u(u,l),d=pe(u,p),c=Y(z(ye(.5),ot(p)),z(l,d));return Er(c,o,r)}var jL=L({huberLoss_:HL});function qL(e,t,n,a=1e-7,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","logLoss"),i=_(t,"predictions","logLoss"),o=null;n!=null&&(o=_(n,"weights","logLoss")),In(s.shape,i.shape,"Error in logLoss: ");let l=ye(1),u=ye(a),p=yt(z(s,Qn(Y(i,u)))),d=z(pe(l,s),Qn(Y(pe(l,i),u))),c=pe(p,d);return Er(c,o,r)}var KL=L({logLoss_:qL});function XL(e,t,n,a=xn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","meanSquaredError"),s=_(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=_(n,"weights","meanSquaredError")),In(r.shape,s.shape,"Error in meanSquaredError: ");let o=Ym(r,s);return Er(o,i,a)}var YL=L({meanSquaredError_:XL});function ZL(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),a=_(t,"logits","sigmoidCrossEntropyWithLogits");In(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xe(a),s=z(a,n),i=$c(fn(yt(Lt(a))));return Y(pe(r,s),i)}function JL(e,t,n,a=0,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"multiClassLabels","sigmoidCrossEntropy"),i=_(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","sigmoidCrossEntropy")),In(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ye(a),p=ye(1),d=ye(.5);s=Y(z(s,pe(p,u)),z(d,u))}let l=ZL(s,i);return Er(l,o,r)}var QL=L({sigmoidCrossEntropy_:JL});function ez(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ir((a,r,s)=>{let i=Lm(r,[n],!0),o=pe(oe(r,"float32"),i);s([a,o]);let l=yt(z(o,a));return{value:fe(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=si(u.shape,[n]);return[z(B(u,h),pe(oe(d,"float32"),fn(c))),z(B(u,h),pe(fn(c),oe(d,"float32")))]}}})(e,t)}function tz(e,t,n,a=0,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"onehotLabels","softmaxCrossEntropy"),i=_(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","softmaxCrossEntropy")),In(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ye(a),p=ye(1),d=ye(s.shape[1]);s=Y(z(s,pe(p,u)),he(u,d))}let l=ez(s,i);return Er(l,o,r)}var nz=L({softmaxCrossEntropy_:tz});function az(e,t,n,a){let r=_(e,"indices","sparseFillEmptyRows","int32"),s=_(t,"values","sparseFillEmptyRows"),i=_(n,"denseShape","sparseFillEmptyRows","int32"),o=_(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=O.runKernel(dc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var rz=L({sparseFillEmptyRows_:az});function sz(e,t,n){let a=_(e,"inputIndices","sparseReshape","int32"),r=_(t,"inputShape","sparseReshape","int32"),s=_(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=O.runKernel(gu,i);return{outputIndices:o[0],outputShape:o[1]}}var iz=L({sparseReshape_:sz});function oz(e,t,n){let a=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean","int32"),s=_(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(hc,i)}var lz=L({sparseSegmentMean_:oz});function uz(e,t,n){let a=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum","int32"),s=_(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(mc,i)}var pz=L({sparseSegmentSum_:uz});function cz(e,t,n,a,r,s,i,o){let l=_(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=_(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=O.runKernel(gc,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var dz=L({stringNGrams_:cz});function hz(e,t,n=!0){let a=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=O.runKernel(bc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var mz=L({stringSplit_:hz});function fz(e,t){let n=_(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return O.runKernel(yc,r,a)}var gz=L({stringToHashBucketFast_:fz}),vT={fft:Oc,ifft:ol,rfft:Lc,irfft:Xm},wT={hammingWindow:K3,hannWindow:hT,frame:mT,stft:J3},Ir={flipLeftRight:nL,grayscaleToRGB:rL,resizeNearestNeighbor:xT,resizeBilinear:yT,rotateWithOffset:iL,cropAndResize:eL,nonMaxSuppression:lL,nonMaxSuppressionAsync:gL,nonMaxSuppressionWithScore:yL,nonMaxSuppressionWithScoreAsync:vL,nonMaxSuppressionPadded:kL,nonMaxSuppressionPaddedAsync:SL,threshold:EL,transform:$L},Wv={bandPart:DL,gramSchmidt:ML,qr:OL},kT={absoluteDifference:BL,computeWeightedLoss:Er,cosineDistance:VL,hingeLoss:GL,huberLoss:jL,logLoss:KL,meanSquaredError:YL,sigmoidCrossEntropy:QL,softmaxCrossEntropy:nz},IT={sparseFillEmptyRows:rz,sparseReshape:iz,sparseSegmentMean:lz,sparseSegmentSum:pz},ST={stringNGrams:dz,stringSplit:mz,stringToHashBucketFast:gz},Ar=class extends fS{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return $e(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return RS(e,t)}dispose(){this.iterations_!=null&&$e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ye(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ar,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var rf=class extends Ar{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>je(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>je(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=Y(z(i,this.rho),z(ot(s),1-this.rho)),u=z(he(on(Y(o,this.epsilon)),on(Y(i,this.epsilon))),s),p=Y(z(o,this.rho),z(ot(u),1-this.rho));i.assign(l),o.assign(p);let d=Y(z(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&($e(this.accumulatedGrads.map(e=>e.variable)),$e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};rf.className="Adadelta";fs(rf);var sf=class extends Ar{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>gn(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=Y(s,ot(r));s.assign(i);let o=Y(z(he(r,on(Y(i,O.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&$e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};sf.className="Adagrad";fs(sf);var of=class extends Ar{constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=ye(t).variable(),this.accBeta2=ye(n).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=pe(1,this.accBeta2);t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:P(()=>je(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:P(()=>je(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=Y(z(u,this.beta1),z(l,1-this.beta1)),c=Y(z(p,this.beta2),z(ot(l),1-this.beta2)),h=he(d,n),m=he(c,a);u.assign(d),p.assign(c);let f=Y(z(he(h,Y(on(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&$e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&$e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign(_r(this.beta1,this.iterations_+1)),this.accBeta2.assign(_r(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};of.className="Adam";fs(of);var lf=class extends Ar{constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=ye(0).variable(),this.accBeta1=ye(t).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=he(-this.learningRate,Y(z(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:je(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:je(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=Y(z(u,this.beta1),z(l,1-this.beta1)),c=z(p,this.beta2),h=Lt(l),m=ur(c,h);u.assign(d),p.assign(m);let f=Y(z(he(a,n),he(d,Y(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(Y(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&$e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&$e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};lf.className="Adamax";fs(lf);var zc=class extends Ar{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=O.registeredVariables[t];P(()=>{let s=Y(z(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Zt(ye(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};zc.className="SGD";fs(zc);var uf=class extends zc{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ye(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>je(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=Y(z(this.m,r),s);this.useNesterov?i=Y(z(this.c,Y(s,z(o,this.m))),a):i=Y(z(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&$e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};uf.className="Momentum";fs(uf);var pf=class extends Ar{constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=O.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>je(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>je(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>je(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=Y(z(i,this.decay),z(ot(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=Y(z(u,this.decay),z(s,1-this.decay)),d=he(z(s,this.learningRate),on(pe(l,Y(ot(p),this.epsilon)))),c=Y(z(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=pe(a,c);a.assign(h)}else{let u=Y(z(i,this.decay),z(ot(s),1-this.decay)),p=Y(z(o,this.momentum),he(z(s,this.learningRate),on(Y(u,this.epsilon))));i.assign(u),o.assign(p);let d=pe(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&$e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&$e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&$e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};pf.className="RMSProp";fs(pf);var Gr=class{static sgd(e){return new zc(e)}static momentum(e,t,n=!1){return new uf(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new pf(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new of(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new rf(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new lf(e,t,n,a,r)}static adagrad(e,t=.1){return new sf(e,t)}},zs={sgd:Gr.sgd,momentum:Gr.momentum,adadelta:Gr.adadelta,adagrad:Gr.adagrad,rmsprop:Gr.rmsprop,adamax:Gr.adamax,adam:Gr.adam},bz=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Vv(){return new Promise(e=>bz(()=>e()))}var N={};_e(N,{ERF_A1:()=>Fz,ERF_A2:()=>Dz,ERF_A3:()=>Rz,ERF_A4:()=>Mz,ERF_A5:()=>Pz,ERF_P:()=>$z,PARALLELIZE_THRESHOLD:()=>Uv,RowPartitionType:()=>Qa,SELU_SCALE:()=>NT,SELU_SCALEALPHA:()=>TT,applyActivation:()=>nf,assertAndGetBroadcastShape:()=>lt,assertAxesAreInnerMostDims:()=>IP,assertParamsConsistent:()=>yz,assignToTypedArray:()=>Vz,axesAreInnerMostDims:()=>dv,calculateShapes:()=>sS,checkEinsumDimSizes:()=>Kz,checkPadOnDimRoundingMode:()=>Sn,combineLocations:()=>ES,combineRaggedTensorToTensorShapes:()=>vz,complexWithEvenIndex:()=>zz,complexWithOddIndex:()=>Bz,computeConv2DInfo:()=>Cc,computeConv3DInfo:()=>wS,computeDefaultPad:()=>qx,computeDilation2DInfo:()=>SM,computeOptimalWindowSize:()=>Sz,computeOutAndReduceShapes:()=>AS,computeOutShape:()=>xz,computePool2DInfo:()=>vS,computePool3DInfo:()=>TM,convertConv2DDataFormat:()=>kS,decodeEinsumEquation:()=>jz,eitherStridesOrDilationsAreOne:()=>lr,expandShapeToKeepDim:()=>si,exponent:()=>Gz,exponents:()=>Uz,fromStringArrayToUint8:()=>fB,fromUint8ToStringArray:()=>mB,getAxesPermutation:()=>$S,getBroadcastDims:()=>nS,getComplexWithIndex:()=>Wz,getEinsumComputePath:()=>Xz,getEinsumPermutation:()=>qz,getFusedBiasGradient:()=>tf,getFusedDyActivation:()=>ef,getImageCenter:()=>Tz,getInnerMostAxes:()=>SP,getPermuted:()=>Cz,getRaggedRank:()=>kz,getReductionAxes:()=>Bt,getReshaped:()=>Nz,getReshapedPermuted:()=>_z,getRowPartitionTypesHelper:()=>wz,getSliceBeginCoords:()=>Ez,getSliceSize:()=>Az,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>Qz,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>eB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>tB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>rB,getSparseReshapeInputOutputMismatchErrorMessage:()=>iB,getSparseReshapeInputOutputMultipleErrorMessage:()=>sB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>nB,getSparseReshapeNegativeOutputDimErrorMessage:()=>aB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>pB,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>oB,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>lB,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>uB,getUndoAxesPermutation:()=>hv,isIdentityPermutation:()=>Yz,log:()=>WF,mergeRealAndImagArrays:()=>Oz,prepareAndValidate:()=>rS,prepareSplitSize:()=>Jz,segment_util:()=>CT,shouldFuse:()=>af,slice_util:()=>jt,splitRealAndImagArrays:()=>Lz,tupleValuesAreOne:()=>ts,upcastType:()=>ha,validateDefaultValueShape:()=>Iz,validateInput:()=>Px,validateUpdateShape:()=>Mx,warn:()=>jr});function yz(e,t){let n=e[0].length;e.forEach((r,s)=>{$(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),$(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)$(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function xz(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var Qa;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(Qa||(Qa={}));function vz(e,t,n){let a=new Array;if(n==null&&t==null)return a;if(t==null)for(;a.length<e+n.length;)a.push(-1);else a=t.slice();if(n==null)return a;if(e+n.length!==a.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+n.length}, but shape.rank = ${a.length}`);for(let r=1;r<n.length;++r){let s=n[r],i=a[a.length-n.length+r],o=a[i];if(s>=0)if(o>=0){if(o!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${s} but shape[${r+e}] = ${o}`)}else a[i]=s}return a}function wz(e){let t={FIRST_DIM_SIZE:Qa.FIRST_DIM_SIZE,VALUE_ROWIDS:Qa.VALUE_ROWIDS,ROW_LENGTHS:Qa.ROW_LENGTHS,ROW_SPLITS:Qa.ROW_SPLITS,ROW_LIMITS:Qa.ROW_LIMITS,ROW_STARTS:Qa.ROW_STARTS},n=[];for(let a of e)if(a in t)n.push(t[a]);else break;return n}function kz(e){return e.length===0?0:e[0]===Qa.FIRST_DIM_SIZE?e.length-1:e.length}function Iz(e,t){if(e==null||t==null)return;let n=e.length,a=t.length;if(n>=a)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${a})`);for(let r=0;r<Math.min(n,a-1);++r){let s=e[r],i=t[r+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${s} but ragged tensor input.flatValues.shape[${r-e.length}] = ${i}`)}}var Uv=30;function Sz(e){return e<=Uv?e:mh(e,Math.floor(Math.sqrt(e)))}function Tz(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function Nz(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function Cz(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function _z(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function Ez(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function Az(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var TT=1.7580993408473768,NT=1.0507009873554805,$z=.3275911,Fz=.254829592,Dz=-.284496736,Rz=1.421413741,Mz=-1.453152027,Pz=1.061405429;function Oz(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function Lz(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function zz(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function Bz(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function Wz(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function Vz(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function Uz(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function Gz(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var oy="->",Hz=/->/g,X1=",",Y1="...";function jz(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(Hz,"").length)/oy.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${oy}").`);let[a,r]=e.split(oy);$(a.indexOf(Y1)===-1,()=>`The ellipsis notation ("${Y1}") is not supported yet.`);let s=a.split(X1),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==X1&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function qz(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function Kz(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:$(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function Xz(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=Zz(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function Yz(e){return e.every((t,n)=>t===n)}function Zz(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function Jz(e,t,n=0){let a=[];if(typeof t=="number")$(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);$(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}$(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function Qz(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function eB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function tB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function nB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function aB(e,t){return`size ${e} must be non-negative, not ${t}`}function rB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function sB(e,t){let n=mt(e),a=mt(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function iB(e,t){let n=mt(e),a=mt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function oB(){return"segment ids must be >= 0"}function lB(){return"segment ids are not increasing"}function uB(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function pB(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var CT={};_e(CT,{collectGatherOpShapeInfo:()=>hB,computeOutShape:()=>dB,segOpComputeOptimalWindowSize:()=>cB});function cB(e,t){let n=!1,a;for(e<=Uv?(a=e,n=!0):a=mh(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=mh(e,a+1);return a}function dB(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function hB(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function mB(e){try{return e.map(t=>vh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function fB(e){return e.map(t=>kc(t))}var pr={};_e(pr,{nonMaxSuppressionV3Impl:()=>fT,nonMaxSuppressionV4Impl:()=>gT,nonMaxSuppressionV5Impl:()=>bT,whereImpl:()=>rT});var _T={kernelName:xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,fo(oe(n,"float32"),-1))}}},gB={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ot(oe(n,"float32")),r=on(pe(ye(1),a));return yt(he(e,r))}}}},bB={kernelName:wl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=on(pe(ot(oe(n,"float32")),1));return he(e,a)}}}},yB={kernelName:ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=e,i=Bt(n.shape,r);return i.length>0&&(s=fe(s,i)),B(s,n.shape)},b:()=>{let s=e,i=Bt(a.shape,r);return i.length>0&&(s=fe(s,i)),B(s,a.shape)}}}},xB={kernelName:mi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},vB={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},wB={kernelName:ac,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},kB={kernelName:Sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,on(pe(ye(1),ot(oe(n,"float32")))))}}},IB={kernelName:Tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=on(Y(ye(1),ot(oe(n,"float32"))));return he(e,a)}}}},SB={kernelName:_l,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=Y(ot(n),ot(a)),i=z(e,he(a,s)),o=Bt(n.shape,r);return o.length>0&&(i=fe(i,o)),B(i,n.shape)},b:()=>{let s=Y(ot(n),ot(a)),i=yt(z(e,he(n,s))),o=Bt(a.shape,r);return o.length>0&&(i=fe(i,o)),B(i,a.shape)}}}},TB={kernelName:Nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Y(ot(oe(n,"float32")),1))}}},NB={kernelName:Cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,pe(ye(1),ot(oe(n,"float32"))))}}};function CB(e,t,n,a,r,s){let i=_(e,"dy","avgPool3dGrad"),o=_(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=B(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=B(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),$(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),$(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Sn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=O.runKernel(Xh,d,c);return p?B(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var _B=L({avgPool3dGrad_:CB}),EB={kernelName:rc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>_B(e,a,r,s,i,o)}}};function AB(e,t,n,a,r){let s=_(e,"dy","avgPoolGrad"),i=_(t,"input","avgPoolGrad");$(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=B(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=B(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),$(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=O.runKernel(Kh,p,d);return u?B(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var $B=L({avgPoolGrad_:AB}),FB={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>$B(e,a,r,s,i)}}},DB={kernelName:bi,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ae(e,r,!1,!0),b:()=>Ae(a,e,!0,!1)}:!s&&i?{a:()=>Ae(e,r,!1,!1),b:()=>Ae(e,a,!0,!1)}:s&&!i?{a:()=>Ae(r,e,!1,!0),b:()=>Ae(a,e,!1,!1)}:{a:()=>Ae(r,e,!0,!0),b:()=>Ae(e,a,!0,!0)}}},RB={kernelName:El,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Rc(e,a,r)}}},MB={kernelName:NI,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>fe(e,o,!0)}}},PB={kernelName:yi,gradFunc:e=>({x:()=>e.clone()})},OB={kernelName:xi,gradFunc:e=>({x:()=>je(e)})},LB={kernelName:cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>mn(_a(ys(a,r),xs(a,s)),e,je(e))}}},zB={kernelName:sc,inputsToSave:["x"],gradFunc:_T.gradFunc},BB={kernelName:Al,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Ea(r,t[0].shape)[0],i=a.map(o=>o[s]);return Ln(e,i,s).map(o=>()=>o)}},WB={kernelName:vi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return $(ts(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>rv(a.shape,e,r,i,o,l),filter:()=>zv(a,e,r.shape,i,o,l)}}},VB={kernelName:wi,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>$t(e,r,s,i,o,1,l),filter:()=>zv(e,a,r.shape,s,i,o,l)}}};function UB(e,t,n,a,r){let s=e;e.rank===4&&(s=B(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=B(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),$(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),$(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),$(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),$(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),$(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return O.runKernel(em,o,l)}var GB=L({conv3DBackpropFilter_:UB}),HB={kernelName:ic,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;$(ts(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>TS(i.shape,e,o,r,s),filter:()=>GB(i,e,o.shape,r,s)}}},jB={kernelName:ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(yt(jm(oe(n,"float32"))),e)}}},qB={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(qm(oe(n,"float32")),e)}}},KB={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=$S([r],a.rank),l=Dm(e,r,s,!i);return o!=null&&(l=Ce(l,o)),l}}}},XB={kernelName:Ti,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;$(ts(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return $(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),$(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),$(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),$(lr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Sn("depthwiseConv2d",s,i),{x:()=>dT(l.shape,e,u,r,s,o,i),filter:()=>cT(l,e,u.shape,r,s,o,i)}}},YB={kernelName:oc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>O.runKernel(fh,s,n),filter:()=>O.runKernel(gh,i,n)}}},ZB={kernelName:Ci,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>O.runKernel(om,a)}}},JB={kernelName:Rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(fn(yt(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,a)}}},QB={kernelName:_i,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},eW={kernelName:Pl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>B(e,n.shape)}}},tW={kernelName:Ol,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,fn(n))}}},nW={kernelName:Ei,gradFunc:e=>({x:()=>je(e)})},aW={kernelName:Ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=he(e,oe(a,"float32")),i=Bt(n.shape,r);return i.length>0?B(fe(s,i),n.shape):s},b:()=>{let s=z(e,oe(n,"float32")),i=Bt(a.shape,r);i.length>0&&(s=B(fe(s,i),a.shape));let o=ot(a);return yt(he(s,oe(o,"float32")))}}}},rW={kernelName:$i,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ye(1):o,u=Bt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=pe(r,s),c=z(e,l),h=Gm(Y(i,ye(a))),m=z(z(z(h,h),h),ye(-.5));return{x:()=>s.rank===1?B(z(z(e,Pn(B(h,[1,1,1,s.shape[0]]),p)),l),r.shape):B(z(z(e,h),l),r.shape),mean:()=>{let f=z(z(h,ye(-1)),c);return s.rank===1&&(f=fe(f,u)),B(f,s.shape)},variance:()=>{let f=z(z(m,d),c);return s.rank===1&&(f=fe(f,u)),B(f,s.shape)},scale:()=>{let f=z(d,h),g=z(e,f);return s.rank===1&&(g=fe(g,u)),B(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=fe(f,u)),B(f,s.shape)}}}},sW={kernelName:zl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Ea(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=Z1(0,p),m=Z1(p+1,p+1+c),f=J1([u,[l],d]),g=B(e,f),b=B(r,[l]),y=J1([[p],h,m]),x=Ce(g,y),w=Jm(x,b,a.shape[i]),I=hv(y);return w=Ce(w,I),w},indices:()=>r}}};function Z1(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function J1(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var iW={kernelName:Fi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>je(n),b:()=>je(a)}}},oW={kernelName:Di,gradFunc:e=>({x:()=>oe(e,"float32")})},lW={kernelName:Vl,gradFunc:e=>({x:()=>je(e)})},uW={kernelName:Ul,gradFunc:e=>({x:()=>je(e)})},pW={kernelName:Gl,gradFunc:e=>({x:()=>je(e)})},cW={kernelName:Ri,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Vn(a,0);return{x:()=>mn(s,e,z(e,r))}}},dW={kernelName:ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Y(n,1))}}},hW={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,oe(n,"float32"))}}},mW={kernelName:_I,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=fn(a);return pe(e,z(fe(e,r,!0),s))}}}};function fW(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return O.runKernel(dm,o,l)}var gW=L({localResponseNormalizationBackprop_:fW}),bW={kernelName:uc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>gW(a,r,e,s,i,o,l)}}};function ET(e,t,n,a){return t.rank<n.rank&&(t=B(t,si(t.shape,a))),e.rank<n.rank&&(e=B(e,si(e.shape,a))),{x:()=>z(e,oe(Jn(n,t),e.dtype))}}var Q1={kernelName:Pi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Ea(r,s.shape),l=ET(e,i,s,o);return{x:()=>l.x()}}},yW={kernelName:Oi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,oe(ys(n,a),"float32")),b:()=>z(e,oe(Mm(n,a),"float32"))}}};function xW(e,t,n,a,r,s,i){let o=_(e,"dy","maxPool3dGrad"),l=_(t,"input","maxPool3dGrad"),u=_(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=B(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=B(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=B(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),$(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),$(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),$(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Sn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=O.runKernel(mm,m,f);return h?B(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var vW=L({maxPool3dGrad_:xW}),wW={kernelName:pc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>vW(e,a,r,s,i,o,l)}}};function kW(e,t,n,a,r,s,i){let o=_(e,"dy","maxPoolGrad"),l=_(t,"input","maxPoolGrad"),u=_(n,"output","maxPoolGrad");$(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),$(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),$(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Sn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return O.runKernel(hm,p,d)}var IW=L({maxPoolGrad_:kW}),SW={kernelName:Li,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>IW(e,a,r,s,i,o)}}},TW={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Ea(r,a.shape),i=AS(a.shape,s)[1],o=mt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=B(e,l);return he(z(u,Yn(a.shape,"float32")),o)}}}},NW={kernelName:Bi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Ea(r,s.shape),l=ET(e,i,s,o);return{x:()=>l.x()}}},CW={kernelName:Wi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,oe(xs(n,a),"float32")),b:()=>z(e,oe(Vn(n,a),"float32"))}}},_W={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>We(e,s,a.shape)}}},EW={kernelName:Zl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=Bt(n.shape,r);return s.length>0?B(fe(e,s),n.shape):e},b:()=>{let s=z(e,yt(Nu(he(n,a)))),i=Bt(a.shape,r);return i.length>0?B(fe(s,i),a.shape):s}}}},AW={kernelName:Ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=z(e,oe(a,"float32")),i=Bt(n.shape,r);return i.length>0?B(fe(s,i),n.shape):s},b:()=>{let s=z(e,oe(n,"float32")),i=Bt(a.shape,r);return i.length>0?B(fe(s,i),a.shape):s}}}},$W={kernelName:Jl,gradFunc:e=>({x:()=>yt(e)})},FW={kernelName:Gi,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>It(n.shape,"float32")}}},DW={kernelName:au,gradFunc:e=>({x:()=>je(e)})},RW={kernelName:ru,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ct(e,a).map(r=>()=>r)}},ek={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>We(e,s,a.shape)}}},MW={kernelName:ji,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=lt(s.shape,i.shape);return{a:()=>{let l=oe(i,"float32"),u=z(e,z(l,_r(s,pe(l,ye(1))))),p=Bt(s.shape,o);return p.length>0&&(u=fe(u,p)),B(u,s.shape)},b:()=>{let l=Vn(s,0),u=mn(l,Qn(s),je(s)),p=z(e,z(r,u)),d=Bt(i.shape,o);return d.length>0&&(p=fe(p,d)),B(p,i.shape)}}}},PW={kernelName:qi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Vn(n,0);return{x:()=>mn(r,e,z(e,a)),alpha:()=>{let s=mn(r,je(e),z(e,n)),i=Bt(a.shape,e.shape);return i.length>0&&(s=fe(s,i)),B(s,a.shape)}}}};function OW(e,t,n){let a=e.shape.slice();a[n]=1;let r=B(t,a),s=Hp(e,n,!0,!1),i=Hp(e,n,!0,!0),o=z(s,i);return z(r,o)}function LW(e,t,n){let a=e.shape.length,r=a-n.length,s=N.getAxesPermutation(n,a),i=e;s!=null&&(i=Ce(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=OW(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=N.getUndoAxesPermutation(s);p=Ce(p,d)}return p}var zW={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>LW(a,e,s)}}},BW={kernelName:Ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=he(e,oe(a,"float32")),i=Bt(n.shape,r);return i.length>0?B(fe(s,i),n.shape):s},b:()=>{let s=z(e,oe(n,"float32")),i=Bt(a.shape,r);i.length>0&&(s=B(fe(s,i),a.shape));let o=ot(a);return yt(he(s,oe(o,"float32")))}}}},WW={kernelName:su,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,yt(ot(n)))}}},VW={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(xs(n,6),fo(n));return{x:()=>z(e,oe(a,"float32"))}}},UW={kernelName:Xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,oe(fo(n),"float32"))}}},GW={kernelName:iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n.shape)}}},HW={kernelName:Zi,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(wm,r,n)}}},jW={kernelName:Yi,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(vm,r,n)}}},qW={kernelName:Qi,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Ea(a,e.shape);return{x:()=>ma(e,r)}}},KW={kernelName:eo,gradFunc:e=>({x:()=>je(e)})},XW={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>yt(he(e,z(_r(n,1.5),2)))}}},YW={kernelName:lu,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>oe(je(n),"float32"),t:()=>z(e,oe(n,e.dtype)),e:()=>z(e,oe(Fc(n),e.dtype))}}},ZW={kernelName:uu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Vn(n,ye(0)),r=ye(TT),s=ye(NT),i=z(e,s),o=z(z(e,r),fn(oe(n,"float32")));return mn(a,i,o)}}}},JW={kernelName:ao,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,pe(ye(1),n)))}}},QW={kernelName:du,gradFunc:e=>({x:()=>je(e)})},e4={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ec(oe(n,"float32")),e)}}},t4={kernelName:cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Fm(oe(n,"float32")),e)}}},n4={kernelName:pu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=mS(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>ga(e,u)}}},a4={kernelName:io,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=z(e,a);return{logits:()=>pe(i,z(fe(i,[r],s),a))}}},r4={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,da(n))}}},tk={kernelName:mu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>_c(e,a,r)}}},nk={kernelName:fu,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Ze(e,a)}}},s4={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,z(on(oe(n,"float32")),2))}}},i4={kernelName:fc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(oe(n,"float32"),2))}}},o4={kernelName:oo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ye(2);return{a:()=>z(e,z(r,pe(n,a))),b:()=>z(e,z(r,pe(a,n)))}}},l4={kernelName:hs,gradFunc:e=>({x:()=>je(e)})},u4={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=e,i=Bt(n.shape,r);return i.length>0&&(s=fe(s,i)),B(s,n.shape)},b:()=>{let s=e,i=Bt(a.shape,r);return i.length>0&&(s=fe(s,i)),B(yt(s),a.shape)}}}},p4={kernelName:so,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Ea(s,a.shape).forEach(l=>{r[l]=1});let i=B(e,r),o=z(i,Yn(a.shape,"float32"));return{x:()=>o}}},c4={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ot(Ec(n)))}}},d4={kernelName:po,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(pe(ye(1),ot(n)),e)}}},h4={kernelName:ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=je(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=Y(s,We(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=Y(s,We(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=Y(s,We(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=Y(s,We(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},m4={kernelName:Tr,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=hv(r);return{x:()=>Ce(e,s)}}},f4={kernelName:vu,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Ft(e,r)}}},g4={kernelName:xc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>b4(e,n)}}};function b4(e,t){let n=ur(t,je(t)),a=Cu(e,n),r=ys(t,ye(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=hn(r,o+1);r=_a(r,Yn(a.shape,"bool"));let i=je(a);return mn(r,a,i)}var y4={kernelName:wu,gradFunc:e=>({x:()=>je(e)})},x4=[_T,gB,bB,yB,xB,vB,wB,kB,IB,SB,TB,NB,EB,FB,DB,RB,MB,PB,OB,LB,zB,BB,VB,WB,HB,jB,qB,KB,XB,YB,BW,ZB,JB,QB,eW,tW,aW,nW,rW,sW,iW,oW,lW,uW,pW,cW,dW,hW,mW,bW,Q1,Q1,yW,wW,SW,TW,NW,CW,_W,EW,AW,$W,FW,DW,RW,ek,ek,MW,PW,zW,WW,VW,UW,GW,HW,jW,qW,KW,XW,YW,ZW,JW,QW,e4,t4,n4,a4,r4,tk,tk,nk,nk,s4,o4,i4,l4,u4,p4,c4,d4,h4,m4,f4,g4,y4];for(let e of x4)EI(e);J().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};J().prototype.acos=function(){return this.throwIfDisposed(),zx(this)};J().prototype.acosh=function(){return this.throwIfDisposed(),Bx(this)};J().prototype.add=function(e){return this.throwIfDisposed(),Y(this,e)};J().prototype.all=function(e,t){return this.throwIfDisposed(),Em(this,e,t)};J().prototype.any=function(e,t){return this.throwIfDisposed(),Gp(this,e,t)};J().prototype.argMax=function(e){return this.throwIfDisposed(),ai(this,e)};J().prototype.argMin=function(e){return this.throwIfDisposed(),Wx(this,e)};J().prototype.asScalar=function(){return this.throwIfDisposed(),$(this.size===1,()=>"The array must have only 1 element."),B(this,[])};J().prototype.asType=function(e){return this.throwIfDisposed(),oe(this,e)};J().prototype.as1D=function(){return this.throwIfDisposed(),B(this,[this.size])};J().prototype.as2D=function(e,t){return this.throwIfDisposed(),B(this,[e,t])};J().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),B(this,[e,t,n])};J().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),B(this,[e,t,n,a])};J().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),B(this,[e,t,n,a,r])};J().prototype.asin=function(){return this.throwIfDisposed(),Vx(this)};J().prototype.asinh=function(){return this.throwIfDisposed(),Ux(this)};J().prototype.atan=function(){return this.throwIfDisposed(),Gx(this)};J().prototype.atan2=function(e){return this.throwIfDisposed(),Hx(this,e)};J().prototype.atanh=function(){return this.throwIfDisposed(),jx(this)};J().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),fa(this,e,t,n,a)};J().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),_c(this,e,t)};J().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),gs(this,e,t,n,a,r)};J().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Ks(this,e)};J().prototype.cast=function(e){return this.throwIfDisposed(),oe(this,e)};J().prototype.ceil=function(){return this.throwIfDisposed(),Qx(this)};J().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Qt(this,e,t)};J().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Te&&(e=[e]),Ze([this,...e],t)};J().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Am(this,e,t,n,a,r,s)};J().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),$m(this,e,t,n,a,r)};J().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),$t(this,e,t,n,a,r,s)};J().prototype.cos=function(){return this.throwIfDisposed(),Ec(this)};J().prototype.cosh=function(){return this.throwIfDisposed(),Fm(this)};J().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),Hp(this,e,t,n)};J().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Dm(this,e,t,n)};J().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),ov(this,e,t)};J().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),bs(this,e,t,n,a,r,s)};J().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),lv(this,e,t,n,a,r)};J().prototype.divNoNan=function(e){return this.throwIfDisposed(),uv(this,e)};J().prototype.div=function(e){return this.throwIfDisposed(),he(this,e)};J().prototype.dot=function(e){return this.throwIfDisposed(),pv(this,e)};J().prototype.elu=function(){return this.throwIfDisposed(),Su(this)};J().prototype.equal=function(e){return this.throwIfDisposed(),Jn(this,e)};J().prototype.erf=function(){return this.throwIfDisposed(),cv(this)};J().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),mv(this,e,t)};J().prototype.exp=function(){return this.throwIfDisposed(),fn(this)};J().prototype.expandDims=function(e){return this.throwIfDisposed(),hn(this,e)};J().prototype.expm1=function(){return this.throwIfDisposed(),fv(this)};J().prototype.fft=function(){return this.throwIfDisposed(),Oc(this)};J().prototype.flatten=function(){return this.throwIfDisposed(),B(this,[this.size])};J().prototype.floor=function(){return this.throwIfDisposed(),Nu(this)};J().prototype.floorDiv=function(e){return this.throwIfDisposed(),_m(this,e)};J().prototype.gather=function(e,t){return this.throwIfDisposed(),Cu(this,e,t)};J().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ys(this,e)};J().prototype.greater=function(e){return this.throwIfDisposed(),Vn(this,e)};J().prototype.ifft=function(){return this.throwIfDisposed(),ol(this)};J().prototype.irfft=function(){return this.throwIfDisposed(),Xm(this)};J().prototype.isFinite=function(){return this.throwIfDisposed(),gv(this)};J().prototype.isInf=function(){return this.throwIfDisposed(),bv(this)};J().prototype.isNaN=function(){return this.throwIfDisposed(),yv(this)};J().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Ac(this,e)};J().prototype.lessEqual=function(e){return this.throwIfDisposed(),xs(this,e)};J().prototype.less=function(e){return this.throwIfDisposed(),Mm(this,e)};J().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),xv(this,e,t,n,a)};J().prototype.logSigmoid=function(){return this.throwIfDisposed(),vv(this)};J().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Om(this,e)};J().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Lm(this,e,t)};J().prototype.log=function(){return this.throwIfDisposed(),Qn(this)};J().prototype.log1p=function(){return this.throwIfDisposed(),$c(this)};J().prototype.logicalAnd=function(e){return this.throwIfDisposed(),_a(this,e)};J().prototype.logicalNot=function(){return this.throwIfDisposed(),Fc(this)};J().prototype.logicalOr=function(e){return this.throwIfDisposed(),zm(this,e)};J().prototype.logicalXor=function(e){return this.throwIfDisposed(),wv(this,e)};J().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ae(this,e,t,n)};J().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Dt(this,e,t,n,a)};J().prototype.max=function(e,t){return this.throwIfDisposed(),Na(this,e,t)};J().prototype.maximum=function(e){return this.throwIfDisposed(),ur(this,e)};J().prototype.mean=function(e,t){return this.throwIfDisposed(),Nt(this,e,t)};J().prototype.min=function(e,t){return this.throwIfDisposed(),jp(this,e,t)};J().prototype.minimum=function(e){return this.throwIfDisposed(),_u(this,e)};J().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Iv(this,e,t)};J().prototype.mod=function(e){return this.throwIfDisposed(),Sv(this,e)};J().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};J().prototype.neg=function(){return this.throwIfDisposed(),yt(this)};J().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Tu(this,e,t,n)};J().prototype.notEqual=function(e){return this.throwIfDisposed(),ii(this,e)};J().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),al(this,e,t,n)};J().prototype.onesLike=function(){return this.throwIfDisposed(),ea(this)};J().prototype.pad=function(e,t){return this.throwIfDisposed(),ga(this,e,t)};J().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),Tv(this,e,t,n,a,r,s)};J().prototype.pow=function(e){return this.throwIfDisposed(),_r(this,e)};J().prototype.prelu=function(e){return this.throwIfDisposed(),Mc(this,e)};J().prototype.prod=function(e,t){return this.throwIfDisposed(),Nv(this,e,t)};J().prototype.reciprocal=function(){return this.throwIfDisposed(),Ev(this)};J().prototype.relu=function(){return this.throwIfDisposed(),Xe(this)};J().prototype.relu6=function(){return this.throwIfDisposed(),Vm(this)};J().prototype.reshapeAs=function(e){return this.throwIfDisposed(),B(this,e.shape)};J().prototype.reshape=function(e){return this.throwIfDisposed(),B(this,e)};J().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),yT(this,e,t,n)};J().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),xT(this,e,t,n)};J().prototype.reverse=function(e){return this.throwIfDisposed(),ma(this,e)};J().prototype.rfft=function(){return this.throwIfDisposed(),Lc(this)};J().prototype.round=function(){return this.throwIfDisposed(),Um(this)};J().prototype.rsqrt=function(){return this.throwIfDisposed(),Gm(this)};J().prototype.selu=function(){return this.throwIfDisposed(),Hm(this)};J().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),vs(this,e,t,n,a,r,s)};J().prototype.sigmoid=function(){return this.throwIfDisposed(),da(this)};J().prototype.sign=function(){return this.throwIfDisposed(),Av(this)};J().prototype.sin=function(){return this.throwIfDisposed(),jm(this)};J().prototype.sinh=function(){return this.throwIfDisposed(),qm(this)};J().prototype.slice=function(e,t){return this.throwIfDisposed(),We(this,e,t)};J().prototype.softmax=function(e){return this.throwIfDisposed(),ja(this,e)};J().prototype.softplus=function(){return this.throwIfDisposed(),ho(this)};J().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Rc(this,e,t)};J().prototype.split=function(e,t){return this.throwIfDisposed(),Ln(this,e,t)};J().prototype.sqrt=function(){return this.throwIfDisposed(),on(this)};J().prototype.square=function(){return this.throwIfDisposed(),ot(this)};J().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Ym(this,e)};J().prototype.squeeze=function(e){return this.throwIfDisposed(),ws(this,e)};J().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Te?[this,e]:[this,...e];return Ft(n,t)};J().prototype.step=function(e){return this.throwIfDisposed(),fo(this,e)};J().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),$v(this,e,t,n,a,r,s,i,o)};J().prototype.sub=function(e){return this.throwIfDisposed(),pe(this,e)};J().prototype.sum=function(e,t){return this.throwIfDisposed(),fe(this,e,t)};J().prototype.tan=function(){return this.throwIfDisposed(),Fv(this)};J().prototype.tanh=function(){return this.throwIfDisposed(),ri(this)};J().prototype.tile=function(e){return this.throwIfDisposed(),Pn(this,e)};J().prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};J().prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};J().prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};J().prototype.topk=function(e,t){return this.throwIfDisposed(),Dv(this,e,t)};J().prototype.transpose=function(e){return this.throwIfDisposed(),Ce(this,e)};J().prototype.unique=function(e){return this.throwIfDisposed(),Rv(this,e)};J().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Jm(this,e,t)};J().prototype.unstack=function(e){return this.throwIfDisposed(),ct(this,e)};J().prototype.where=function(e,t){return this.throwIfDisposed(),mn(e,this,t)};J().prototype.zerosLike=function(){return this.throwIfDisposed(),je(this)};var xr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,xr.prototype)}},La=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,La.prototype)}},V=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,V.prototype)}},De=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,De.prototype)}},AT=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,AT.prototype)}},$T=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function oi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function er(e,t){if(!e)throw new AT(t)}function ak(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Mn(e){return e.length===1?e[0]:e}function bt(e){return Array.isArray(e)?e:[e]}function vr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Vs(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var wa={};function Gv(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Dy(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Dy(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Dy(a))}}}function Bc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in wa)i=wa[s];else if(i=t[s],i==null)throw new V(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in wa?[o,l]=wa.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(wa))u[h]=wa[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},wa);for(let h of Object.keys(n))wa[h]=n[h];Dy(s.config);let c=l(o,s.config,n,r);return wa=Object.assign({},d),c}else{let u=Object.assign({},wa);for(let d of Object.keys(n))wa[d]=n[d];let p=new o(s.config);return wa=Object.assign({},u),p}}}function v4(e,t){return e<t?-1:e>t?1:0}function Hd(e,t){return-1*v4(e,t)}function Zr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function w4(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function go(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Hv(e,t,n=0,a=1/0){return er(n>=0),er(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Jt(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Jt(n,`element ${a+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${FT(e)}.`)}function FT(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>FT(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function k4(e,t,n){let a=n!=null?n():v.now(),r;return(...s)=>{let i=n!=null?n():v.now();return i-a<t||(a=i,r=e(...s)),r}}function DT(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var I4=0;function RT(){return I4++}var jd={};function cf(e=""){return e in jd||(jd[e]=0),jd[e]+=1,e+jd[e].toString()}var S4=["channelsFirst","channelsLast"],T4=["nearest","bilinear"],N4=["valid","same","causal"],C4=["max","avg"],_4=["sum","mul","concat","ave"],Go=new Map;function Rt(e){go(S4,"DataFormat",e)}function E4(e){go(T4,"InterpolationFormat",e)}function ba(e){go(N4,"PaddingMode",e)}function MT(e){go(C4,"PoolMode",e)}var Pp=[],rk="/";function Xs(e,t){Pp.push(e);try{let n=t();return Pp.pop(),n}catch(n){throw Pp.pop(),n}}function A4(){return Pp.length===0?"":Pp.join(rk)+rk}function PT(e){if(!LT(e))throw new Error("Not a valid tensor name: '"+e+"'");return A4()+e}function OT(e){if(!LT(e))throw new Error("Not a valid tensor name: '"+e+"'");Go.has(e)||Go.set(e,0);let t=Go.get(e);if(Go.set(e,Go.get(e)+1),t>0){let n=`${e}_${t}`;return Go.set(n,1),n}else return e}var $4=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function LT(e){return!!e.match($4)}function F4(e){return e===parseInt(e.toString(),10)}function Jr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function ul(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function ns(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function Ua(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var ly;function Gt(){return ly==null&&(ly=tS().epsilon()),ly}function Ga(){return"channelsLast"}function Wc(e,t){return oe(e,t)}function Vc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),B(e,n)}function D4(e,t){return P(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Vc(e,1);return Ry(n,[1,t,1])})}function R4(e){let t=[Jr(e.shape)];return B(e,t)}function M4(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Jr(e.shape,1)];return B(e,t)}function Ys(e,t,n){return P(()=>{switch(e.rank){case 1:return Pc(e,t,n);case 2:return Km(e,[t,0],[n,e.shape[1]]);case 3:return mo(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return il(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return We(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return We(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function uy(e,t,n){return P(()=>{switch(e.rank){case 1:return Pc(e,t,n);case 2:return Km(e,[0,t],[e.shape[0],n]);case 3:return mo(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return il(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function qd(e,t,n,a){return P(()=>{switch(e.rank){case 1:return Pc(e,t,n);case 2:switch(a){case 1:return Ys(e,t,n);case 2:return uy(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Ys(e,t,n);case 2:return mo(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return uy(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Ys(e,t,n);case 2:return il(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return il(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return uy(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function jv(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ze(e,t)}function sk(e,t){switch(e.rank){case 1:return ev([e,t]);case 2:return tv([e,t],0);case 3:return nv([e,t],0);case 4:return av([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Ry(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Pn(e,t)}function df(e,t=0,n=1,a,r){return Wm(e,t,n,a,r)}function rr(e,t,n,a){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return ll.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?My(e.rank,a,Ga()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=B(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=B(Ce(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return B(ll.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?My(e.rank,a,Ga()):null,activation:n}),d)}}function zT(e,t,n){return P(()=>(Array.isArray(t)?t=Ke(t,"int32"):t=oe(t,"int32"),Cu(e,t,n)))}function Uc(e){return z(e,e)}function My(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?B(t,[1,a[0],1,1,1]):B(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?B(t,[1,1,1,1,a[0]]):B(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?B(t,[1,a[0],1,1]):B(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?B(t,[1,1,1,a[0]]):B(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?B(t,[1,a[0],1]):B(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?B(t,[1,1,a[0]]):B(t,[1].concat(a))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function qa(e,t,n){return P(()=>(n==null&&(n=Ga()),Rt(n),Y(e,My(e.rank,t,n))))}function P4(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Su(e)}function O4(e){return P(()=>he(e,Y(Lt(e),1)))}function BT(e,t,n,a){return P(()=>Ov(e,t,n,a))}function L4(e){return P(()=>{let t=Y(.5,z(.2,e));return Qt(t,0,1)})}function Gc(e,t,n=!1){return n?e():t()}var z4=["fanIn","fanOut","fanAvg"],B4=["normal","uniform","truncatedNormal"];function W4(e){go(z4,"FanMode",e)}function V4(e){go(B4,"Distribution",e)}var $a=class extends ne.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},qv=class extends $a{apply(e,t){return It(e,t)}};qv.className="Zeros";ne.registerClass(qv);var hf=class extends $a{apply(e,t){return Yn(e,t)}};hf.className="Ones";ne.registerClass(hf);var Kv=class extends $a{constructor(e){if(super(),typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(ye(this.value),Yn(e,t)))}getConfig(){return{value:this.value}}};Kv.className="Constant";ne.registerClass(Kv);var Xv=class extends $a{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Eu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Xv.className="RandomUniform";ne.registerClass(Xv);var Yv=class extends $a{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return df(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Yv.className="RandomNormal";ne.registerClass(Yv);var Zv=class extends $a{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return Zm(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Zv.className="TruncatedNormal";ne.registerClass(Zv);var Jv=class extends $a{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,Rm(e[0]))})}getConfig(){return{gain:this.gain}}};Jv.className="Identity";ne.registerClass(Jv);function U4(e,t="channelsLast"){let n,a;if(Rt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Jr(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=Jr(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=Jr(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Bn=class extends $a{constructor(e){if(super(),e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,W4(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,V4(this.distribution),this.seed=e.seed}apply(e,t){let n=U4(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return Zm(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Eu(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Bn.className="VarianceScaling";ne.registerClass(Bn);var mf=class extends Bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};mf.className="GlorotUniform";ne.registerClass(mf);var ff=class extends Bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};ff.className="GlorotNormal";ne.registerClass(ff);var gf=class extends Bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};gf.className="HeNormal";ne.registerClass(gf);var bf=class extends Bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};bf.className="HeUniform";ne.registerClass(bf);var yf=class extends Bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};yf.className="LeCunNormal";ne.registerClass(yf);var xf=class extends Bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};xf.className="LeCunNormal";ne.registerClass(xf);var Qv=class extends $a{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return P(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=df(n,0,1,"float32"),r=Wv.gramSchmidt(a);return e[0]>e[1]&&(r=Ce(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Qv.className="Orthogonal";ne.registerClass(Qv);var ik={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function ok(e,t={}){return Bc(e,ne.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return Gv(e)}function St(e){if(typeof e=="string"){let t=e in ik?ik[e]:e;if(t==="GlorotNormal")return new ff;if(t==="GlorotUniform")return new mf;if(t==="HeNormal")return new gf;if(t==="HeUniform")return new bf;if(t==="LeCunNormal")return new yf;if(t==="LeCunUniform")return new xf;{let n={};return n.className=t,n.config={},ok(n)}}else return e instanceof $a?e:ok(e)}function Py(e){return Array.isArray(e)&&Array.isArray(e[0])}function Sh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Re(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function at(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Th(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var lk="Variable",WT=class{constructor(e,t="float32",n=lk,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=RT(),n=n==null?lk:n,this.originalName=PT(n),this.name=OT(this.originalName),this.trainable_=a,this.constraint=r,this.val=Mv(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),G4(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function G4(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Oy(e){return e.map(t=>t.read())}function ew(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},za=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=RT(),s!=null&&(this.originalName=PT(s),this.name=OT(this.originalName)),this.rank=t.length}},H4=0,vf=class{constructor(e,t){this.callArgs=t,this.id=H4++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},j4=0,qe=class extends ne.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=j4++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=vr(n)+"_"+cf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new La(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Mn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Mn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new xr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new xr(`Layer ${this.name} is not connected, no input to return.`);return Mn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new xr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new xr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Mn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=bt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=bt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=bt(e),a=!0;for(let s of n)if(!(s instanceof za)){a=!1;break}let r=!0;for(let s of n)if(s instanceof za){r=!1;break}if(a===r)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return Xs(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of bt(e))s.push(i.shape);this.build(Mn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=bt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Mn(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=q4(e),i=this.computeOutputShape(s),o,l=K4(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new za(l,u,this,bt(e),t,this.name,p)):o=new za(l,i,this,bt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new xr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new xr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new La(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Th(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Oy(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Oy(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!v.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}ew(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():St("zeros"));let l=a.apply(t,n),u=new WT(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=bt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=bt(e);t=bt(t),n=bt(n),a=bt(a),r=Sh(r),s=Sh(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new vf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function q4(e){e=bt(e);let t=[];for(let n of e)t.push(n.shape);return Mn(t)}function K4(e){return"float32"}function VT(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=VT(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var $u=class extends qe{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:cf("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new za(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new vf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};$u.className="InputLayer";ne.registerClass($u);function UT(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new $u({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function X4(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return oe(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Hs=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Hs)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=X4(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof za){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof za){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&$e(this.id2Mask)}},Nh=new $T,Ch=new $T;function Y4(e){Nh!=null&&Nh.setMaxEntries(e),Ch!=null&&Ch.setMaxEntries(e)}function Cp(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=Nh.get(p),c;if(d==null){let m=Z4(i,t);d=m.sorted,c=m.recipientCounts,Nh.put(p,d),Ch.put(p,c)}c={},r||Object.assign(c,Ch.get(p));let h=new Hs(t);for(let m=0;m<d.length;++m){if(a!=null){let A=kh().numTensors;A>a.maxNumTensors&&(a.maxNumTensors=A),A<a.minNumTensors&&(a.minNumTensors=A)}let f=d[m],g=f.sourceLayer;if(g instanceof $u)continue;let b=[],y=[],x=[],w=!1;for(let A of f.inputs){let R=h.getValue(A),F=h.getMask(A);b.push(R),y.push(F),F!=null&&(w=!0),r||(c[A.name]--,c[A.name]===0&&!t.hasKey(A)&&o.indexOf(A.name)===-1&&!R.isDisposed&&A.sourceLayer.stateful!==!0&&x.push(R))}w&&(n=n||{},n.mask=y[0]);let I=bt(g.apply(b,n)),T=null;g.supportsMasking&&(T=g.computeMask(b,y));let C=Q4(f),E=Array.isArray(C)?C:[C];for(let A=0;A<E.length;++A){h.hasKey(E[A])||h.add(E[A],I[A],Array.isArray(T)?T[0]:T);let R=o.indexOf(E[A].name);R!==-1&&(l[R]=I[A])}r||$e(x)}return h.disposeMasks(),s?l:l[0]}function Z4(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=uk(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=uk(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:J4(a)}}function J4(e){let t={};for(let n in e)t[n]=e[n].size;return t}function uk(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function Q4(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var eV=H();eV.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,Y4);var GT={};_e(GT,{maxNorm:()=>tV,minMaxNorm:()=>rV,nonNeg:()=>aV,unitNorm:()=>nV});function tw(e,t){return P(()=>on(fe(z(e,e),t,!0)))}var Hc=class extends ne.Serializable{getConfig(){return{}}},nw=class extends Hc{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=tw(e,this.axis),n=Qt(t,0,this.maxValue);return z(e,he(n,Y(Gt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};nw.className="MaxNorm";ne.registerClass(nw);var aw=class extends Hc{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>he(e,Y(Gt(),tw(e,this.axis))))}getConfig(){return{axis:this.axis}}};aw.className="UnitNorm";ne.registerClass(aw);var rw=class extends Hc{apply(e){return Xe(e)}};rw.className="NonNeg";ne.registerClass(rw);var sw=class extends Hc{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=tw(e,this.axis),n=Y(z(this.rate,Qt(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,he(n,Y(Gt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};sw.className="MinMaxNorm";ne.registerClass(sw);var pk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function qt(e){return Gv(e)}function ck(e,t={}){return Bc(e,ne.SerializationMap.getMap().classNameMap,t,"constraint")}function Kt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in pk?pk[e]:e,config:{}};return ck(t)}else return e instanceof Hc?e:ck(e)}function tV(e){return new nw(e)}function nV(e){return new aw(e)}function aV(){return new rw}function rV(e){return new sw(e)}var HT={};_e(HT,{constant:()=>oV,glorotNormal:()=>mV,glorotUniform:()=>hV,heNormal:()=>fV,heUniform:()=>gV,identity:()=>cV,leCunNormal:()=>bV,leCunUniform:()=>yV,ones:()=>iV,orthogonal:()=>xV,randomNormal:()=>uV,randomUniform:()=>lV,truncatedNormal:()=>pV,varianceScaling:()=>dV,zeros:()=>sV});function sV(){return new qv}function iV(){return new hf}function oV(e){return new Kv(e)}function lV(e){return new Xv(e)}function uV(e){return new Yv(e)}function pV(e){return new Zv(e)}function cV(e){return new Jv(e)}function dV(e){return new Bn(e)}function hV(e){return new mf(e)}function mV(e){return new ff(e)}function fV(e){return new gf(e)}function gV(e){return new bf(e)}function bV(e){return new yf(e)}function yV(e){return new xf(e)}function xV(e){return new Qv(e)}var jT={};_e(jT,{Layer:()=>qe,RNN:()=>cr,RNNCell:()=>Yc,activation:()=>HU,add:()=>eG,alphaDropout:()=>OG,average:()=>tG,averagePooling1d:()=>h0,averagePooling2d:()=>m0,averagePooling3d:()=>f0,avgPool1d:()=>pG,avgPool2d:()=>dG,avgPool3d:()=>mG,avgPooling1d:()=>cG,avgPooling2d:()=>hG,avgPooling3d:()=>fG,batchNormalization:()=>oG,bidirectional:()=>EG,concatenate:()=>nG,conv1d:()=>PU,conv2d:()=>OU,conv2dTranspose:()=>LU,conv3d:()=>zU,conv3dTranspose:()=>BU,convLstm2d:()=>TG,convLstm2dCell:()=>NG,cropping2D:()=>VU,dense:()=>jU,depthwiseConv2d:()=>GU,dot:()=>iG,dropout:()=>qU,elu:()=>AU,embedding:()=>QU,flatten:()=>XU,gaussianDropout:()=>PG,gaussianNoise:()=>MG,globalAveragePooling1d:()=>gG,globalAveragePooling2d:()=>bG,globalMaxPool1d:()=>$G,globalMaxPool2d:()=>FG,globalMaxPooling1d:()=>ON,globalMaxPooling2d:()=>LN,gru:()=>xG,gruCell:()=>vG,input:()=>pN,inputLayer:()=>EU,layerNormalization:()=>lG,leakyReLU:()=>FU,lstm:()=>wG,lstmCell:()=>kG,masking:()=>LG,maxPool1d:()=>DG,maxPool2d:()=>RG,maxPooling1d:()=>zN,maxPooling2d:()=>BN,maxPooling3d:()=>yG,maximum:()=>aG,minimum:()=>rG,multiply:()=>sG,permute:()=>JU,prelu:()=>DU,reLU:()=>$U,repeatVector:()=>YU,rescaling:()=>zG,reshape:()=>ZU,rnn:()=>CG,separableConv2d:()=>WU,simpleRNN:()=>IG,simpleRNNCell:()=>SG,softmax:()=>RU,spatialDropout1d:()=>KU,stackedRNNCells:()=>_G,thresholdedReLU:()=>MU,timeDistributed:()=>AG,upSampling2d:()=>UU,zeroPadding2d:()=>uG});async function Hr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];$e(a)}}function qT(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var dk;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(dk||(dk={}));var vV=125,pl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},KT=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},wV=class extends pl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=P(()=>Y(this.totals[a],z(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let a=z(he(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Zt(t[n])}))}},XT=class extends pl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},YT=class extends pl{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Vv,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=vV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=k4(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Hr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Hr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Hr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Hr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Hr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Hr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Hr(e),await this.trainEnd(e))}};function ZT(e,t){return e==null&&(e={}),e instanceof pl?[e]:Array.isArray(e)&&e[0]instanceof pl?e:bt(e).map(n=>new YT(n,t))}var Sa=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Sa.checkForDuplicate(t),Sa.constructors[e]==null&&(Sa.constructors[e]=[]),Sa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Sa.constructors)Sa.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){Sa.constructors={}}static createCallbacks(e){let t=[];for(let n in Sa.constructors){let a=+n;e>=a&&t.push(...Sa.constructors[a])}return t.map(n=>new n)}};Sa.constructors={};function JT(e,t,n,a,r,s,i,o,l){let u=new XT,p=[new wV,...Sa.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new KT(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function Wa(e,t={},n=!1){return Bc(e,ne.SerializationMap.getMap().classNameMap,t,"layer",n)}function _h(e,t){return P(()=>{e.dtype!=="float32"&&(e=oe(e,"float32"));let n=fe(Uc(e),t,!0),a=gn(n.shape,Gt()),r=on(ur(n,a));return he(e,r)})}function bo(e,t){return P(()=>Nt(Uc(pe(t,e)),-1))}function wf(e,t){return P(()=>Nt(Lt(pe(t,e)),-1))}function Fu(e,t){return P(()=>{let n=pe(e,t),a=Qt(Lt(e),Gt(),Number.MAX_VALUE),r=Lt(he(n,a));return z(100,Nt(r,-1))})}function kV(e,t){return P(()=>{let n=Qt(t,Gt(),Number.MAX_VALUE),a=Qn(Y(1,n)),r=Qt(e,Gt(),Number.MAX_VALUE),s=Qn(Y(1,r));return Nt(Uc(pe(a,s)),-1)})}function IV(e,t){return P(()=>{let n=ur(0,pe(1,z(e,t)));return Nt(Uc(n),-1)})}function SV(e,t){return P(()=>{let n=ur(0,pe(1,z(e,t)));return Nt(n,-1)})}function TV(e,t){return P(()=>{let n=fe(z(e,t),-1),a=Na(z(pe(1,e),t),-1);return ur(0,Y(1,pe(a,n)))})}function NV(e,t){return P(()=>{let n=Math.log(2),a=pe(t,e),r=pe(Y(a,ho(z(-2,a))),n);return Nt(r,-1)})}function qp(e,t,n=!1){return P(()=>{if(n)t=ja(t);else{let a=fe(t,t.shape.length-1,!0);t=he(t,a)}return t=Qt(t,Gt(),1-Gt()),yt(fe(z(oe(e,"float32"),Qn(t)),t.shape.length-1))})}function Eh(e,t,n=!1){return P(()=>{let a=oe(Nu(R4(e)),"int32");t=Qt(t,Gt(),1-Gt());let r=t.shape,s=B(al(a,r[r.length-1]),r);return qp(s,t,n)})}function CV(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=Xe(t),a=yt(Lt(t));return Y(pe(n,z(t,e)),$c(fn(a)))})}function kf(e,t){return P(()=>{let n;return n=Qt(t,Gt(),1-Gt()),n=Qn(he(n,pe(1,n))),Nt(CV(e,n),-1)})}function _V(e,t){return P(()=>{let n=Qt(e,Gt(),1),a=Qt(t,Gt(),1);return fe(z(e,Qn(he(n,a))),-1)})}function EV(e,t){return P(()=>{let n=Qn(Y(Gt(),t));return Nt(pe(t,z(e,n)),-1)})}function iw(e,t){return P(()=>{let n=_h(e,-1),a=_h(t,-1),r=z(n,a);return yt(fe(r,-1))})}var Ah={meanSquaredError:bo,meanAbsoluteError:wf,meanAbsolutePercentageError:Fu,meanSquaredLogarithmicError:kV,squaredHinge:IV,hinge:SV,categoricalHinge:TV,logcosh:NV,categoricalCrossentropy:qp,sparseCategoricalCrossentropy:Eh,binaryCrossentropy:kf,kullbackLeiblerDivergence:_V,poisson:EV,cosineProximity:iw};function py(e){if(typeof e=="string"){if(e in Ah)return Ah[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function ow(e,t){return P(()=>{let n=z(.5,ea(t)),a=Wc(Vn(t,n),e.dtype);return Nt(Jn(e,a),-1)})}function lw(e,t){return P(()=>Wc(Jn(ai(e,-1),ai(t,-1)),"float32"))}function QT(e,t){return P(()=>oe(fe(_a(Jn(e,1),Jn(t,1))),"float32"))}function AV(e,t){return P(()=>oe(fe(_a(Jn(e,1),Jn(t,0))),"float32"))}function $V(e,t){return P(()=>oe(fe(_a(Jn(e,0),Jn(t,1))),"float32"))}function eN(e,t){return P(()=>{let n=QT(e,t),a=$V(e,t),r=Y(n,a);return oe(mn(Vn(r,0),he(n,r),0),"float32")})}function FV(e,t){return P(()=>{let n=QT(e,t),a=AV(e,t),r=Y(n,a);return oe(mn(Vn(r,0),he(n,r),0),"float32")})}function tN(e,t){return kf(e,t)}function nN(e,t){return e.rank===t.rank&&(e=ws(e,[e.rank-1])),t=ai(t,-1),t.dtype!==e.dtype&&(t=oe(t,e.dtype)),oe(Jn(e,t),"float32")}var DV=bo,RV=bo,MV=wf,PV=wf,OV=Fu,LV=Fu,uw=qp,zV=iw,aN=Eh,$h={binaryAccuracy:ow,categoricalAccuracy:lw,precision:eN,categoricalCrossentropy:uw,sparseCategoricalCrossentropy:aN,mse:DV,MSE:RV,mae:MV,MAE:PV,mape:OV,MAPE:LV,cosine:zV};function BV(e){if(typeof e=="string"&&e in $h)return $h[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function Kd(e){if(er(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Ah))if(Ah[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys($h))if($h[n]===e){t=n;break}return t!==void 0?t:e.name}}function WV(e){let t={Adagrad:()=>zs.adagrad(.01),Adadelta:()=>zs.adadelta(1,.95,Gt()),Adam:()=>zs.adam(.001,.9,.999,Gt()),Adamax:()=>zs.adamax(.002,.9,.999,Gt(),0),RMSProp:()=>zs.rmsprop(.001,.9,0,Gt()),SGD:()=>zs.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}function hk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Ly(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function Ly(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Ly(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Ly(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function VV(e,t,n,a=console.log){let r=GV(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),Fh(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?HV(o[p],n,a):jV(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=UV(e),u=Th(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function UV(e){let t;return e.collectedTrainableWeights!=null?t=Th(e.collectedTrainableWeights):t=Th(e.trainableWeights),t}function GV(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Fh(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function HV(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];Fh(o,t,n)}function jV(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];Fh(p,t,a);for(let d=1;d<i.length;++d)Fh(["","","","",i[d]],t,a)}function rN(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Kp(e,t){if(e===null)return null;if(typeof e=="string")return Vs(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];rN(t,r,s)?n.push(s):n.push(Kp(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Vs(a);n[s]=Kp(r,s)}}return n}}function zy(e,t){if(e==null)return null;if(typeof e=="string")return vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];rN(t,r,s)?n.push(s):n.push(zy(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=vr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=zy(r,a)}return n}}var pw="3.21.0",Za=class extends qe{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=cf(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Zr(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);Zr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let b of this.inputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;er(x===0,"input layer has >1 nodes"),er(w===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof $u))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},a={},r={},s={},i=[],o=(b,y,x,w,I,T)=>{(w==null||I==null||T==null)&&(w=b.sourceLayer,I=b.nodeIndex,T=b.tensorIndex);let C=w.inboundNodes[I];if(x.indexOf(C)!==-1)throw new La(`The tensor ${b.name} at layer "${w.name}" is part of a cycle.`);if(y.indexOf(C)!==-1)return;this.containerNodes.add(Za.nodeKey(w,I)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(C)===-1&&x.push(C);let E=C.inboundLayers.length;for(let A=0;A<E;A++){let R=C.inputTensors[A],F=C.inboundLayers[A],S=C.nodeIndices[A],M=C.tensorIndices[A];o(R,y,x,F,S,M)}for(y.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);i.push(C)},l=[],u=[];for(let b of this.outputs)o(b,l,u);let p=i.slice().reverse();for(let b of p){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],x=a[b.outboundLayer.id]==null?0:a[b.outboundLayer.id];y=Math.max(y,x),a[b.outboundLayer.id]=y,r[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let w=0;w<b.inboundLayers.length;w++){let I=b.inboundLayers[w],T=b.nodeIndices[w],C=I.inboundNodes[T],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(y+1,E),n[C.id]=C}}let d={};for(let b in t){let y=t[b];y in d||(d[y]=[]),d[y].push(n[b])}let c={};for(let b in a){let y=a[b];y in c||(c[y]=[]),c[y].push(r[b])}let h=Object.keys(c).map(b=>parseInt(b,10)).sort(Hd);this.layers=[];for(let b of h){let y=c[b];y.sort((x,w)=>{let I=s[x.id],T=s[w.id];return I<T?-1:I>T?1:0});for(let x of y)x instanceof Za&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(b=>parseInt(b,10)).sort(Hd);let m=this.inputs.slice(),f=[];for(let b of h)for(let y of d[b]){let x=y.outboundLayer;if(x!=null){for(let w of y.inputTensors)if(m.indexOf(w)===-1)throw new La(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of y.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(x=>x===b).length;if(y!==1)throw new La(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new vf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${a} weights are not set: ${s}`)}ew(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${pw}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=zy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=bt(e);let n=new Hs;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Cp(this.outputs,n,t)})}computeMask(e,t){return P(()=>{e=bt(e);let n;return t==null?n=oi(null,e.length):n=bt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Sh(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Hd);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],b=l.tensorIndices[m],y=`${f.name}_${g}_${b}`,x=n[y];p.push(x)}let d=u.computeOutputShape(Mn(p)),c=Sh(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];er(o in n),r.push(n[o])}return Mn(r)}runInternalGraph(e,t){t==null&&(t=oi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Hd);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,b,y;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),b=bt(p.call(x,m)),y=bt(p.computeMask(x,w)),f=[x],g=[w]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),b=bt(p.call(f,m)),y=bt(p.computeMask(f,g));if(p.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],I=b[x],T=y[x];n[w.id]=[I,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){er(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof Za?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=Za.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return P(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=Za.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=Za.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],b=d.nodeIndices[f],y=d.tensorIndices[f],x=Za.nodeKey(g,b),w=t[x];w==null&&(w=0),m.push([g.name,w,y,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Za.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Za.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let b=[],y;for(let x of g){let w=x[0],I=x[1],T=x[2];if(y=x[3]==null?{}:x[3],!(w in r)){i(f,g);return}let C=r[w];if(C.inboundNodes.length<=I){i(f,g);return}let E=C.inboundNodes[I];b.push(E.outputTensors[T])}b.length>0&&f.apply(Mn(b),y)}function l(f){let g=f.name,b=Wa(f,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(a),r[g]=b,f.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${y}`);i(b,y)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!w4(s);)for(let f of p){let g=r[f.name];if(g.name in s){let b=s[g.name];delete s[g.name];for(let y of b)o(g,y)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],b=f[1],y=f[2];er(g in r);let x=r[g].inboundNodes[b].outputTensors;d.push(x[y])}let m=t.outputLayers;for(let f of m){let g=f[0],b=f[1],y=f[2];er(g in r);let x=r[g].inboundNodes[b].outputTensors;c.push(x[y])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function qV(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function sN(e,t){return qV(e,t,"classWeight")}async function iN(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=P(()=>{if(e.shape.length===1)return ar(e);if(e.shape.length===2){if(e.shape[1]>1)return ai(e,1);if(e.shape[1]===1)return B(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());$e(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Ke(i,"float32")}else return null}function KV(e,t){return z(e,t)}var XV=32;function oN(e,t){let n,a,r=t;n=r.xs,a=r.ys,v.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=mk("input",e.inputNames,n),i=mk("output",e.outputNames,a),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function mk(e,t,n){if(n instanceof Te)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function YV(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function ZV(e,t,n){let a=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(fk(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=YV(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=ZT(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=JT(p,d,n.epochs,null,null,JV(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let b=0,y=0;for(a||(f=await t.iterator());!a||b<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:I}=oN(e,x.value),T={};T.batch=y,T.size=w[0].shape[0],await c.onBatchBegin(y,T);let C=[];if(n.classWeight!=null){let R=sN(n.classWeight,e.outputNames);for(let F=0;F<R.length;++F)C.push(await iN(I[F],null,R[F]))}let E=w.concat(I).concat(C),A=o(E);$e(E);for(let R=0;R<l.length;++R){let F=l[R],S=A[R];T[F]=S,Zt(S)}await c.onBatchEnd(y,T),qT(T),y++,b++}if(a?b>=n.batchesPerEpoch:x.done){if(r){let w;fk(n.validationData)?w=bt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=bt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?XV:n.validationBatchSize,verbose:0}));for(let I=0;I<e.metricsNames.length;++I)g[`val_${e.metricsNames[I]}`]=w[I]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function JV(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function fk(e){return typeof e.iterator=="function"}function QV(e){return typeof e.next=="function"}async function eU(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new De("Verbose mode is not implemented yet.");v.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=QV(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=P(()=>{if(u.value){let{xs:p,ys:d}=oN(e,u.value),c=p.concat(d),h=P(()=>r(c));if($e(c),l===0)for(let f=0;f<h.length;++f)s.push(ye(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],b=s[f];s[f]=P(()=>Y(s[f],z(m,g))),l>0&&$e(b)}$e(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=he(s[u],o),$e(p)}return Mn(s)}function By(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function _p(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Ys(a,t,n-t)):Ys(e,t,n-t)}function cw(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>cw(n,t)):zT(e,t.dtype==="int32"?t:oe(t,"int32")))}function Wy(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function tU(e,t,n,a,r,s,i,o,l,u,p,d,c,h,m){r==null&&(r=32),s==null&&(s=1),p==null&&(p=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),b;g!=null&&(b=Ua(0,g)),i==null&&(i=1);let{callbackList:y,history:x}=JT(o,i,s,c,g,h,r,f,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let w=c;w<s;++w){await y.onEpochBegin(w);let I={};if(h!=null)throw new De("stepsPerEpoch mode is not implemented yet.");{if(p==="batch")throw new De("batch shuffling is not implemneted yet");p&&v.shuffle(b);let T=Ke(b),C=Wy(g,r);for(let E=0;E<C.length;++E){let A={};if(await y.onBatchBegin(E,A),P(()=>{let R=C[E][0],F=C[E][1],S=Ys(T,R,F-R);A.batch=E,A.size=F-R;let M=cw(n,S),W=t(M);for(let U=0;U<a.length;++U){let G=a[U],q=W[U];A[G]=q,Zt(q)}if(E===C.length-1&&f){let U=e.testLoop(l,u,r);for(let G=0;G<a.length;++G){let q=a[G],K=U[G];Zt(K),I["val_"+q]=K}}}),await y.onBatchEnd(E,A),qT(A),e.stopTraining_)break}T.dispose()}if(await y.onEpochEnd(w,I),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function nU(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,p,d,c;try{let h=a.batchSize==null?32:a.batchSize;By(h);let m=!1,f=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,m,h);r=f[0],s=f[1],c=f[2];let g=!1,b;if(a.validationData!=null&&a.validationData.length>0){if(g=!0,a.validationData.length===2)l=a.validationData[0],u=a.validationData[1];else throw a.validationData.length===3?new De("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let E=!0,A=await e.standardizeUserData(l,u,null,null,E,h);p=A[0],d=A[1],b=p.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){g=!0;let E=Math.floor(r[0].shape[0]*(1-a.validationSplit)),A=r[0].shape[0];p=_p(r,E,A),i=r,r=_p(r,0,E),d=_p(s,E,A),o=s,s=_p(s,0,E),b=p.concat(d)}else a.validationSteps!=null&&(g=!0);let y=r.concat(s).concat(c);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),w=e.getDedupedMetricsNames(),I,T;g?(e.makeTestFunction(),I=e.testFunction,T=w.slice().concat(w.map(E=>"val_"+E))):(I=null,b=[],T=w.slice());let C=ZT(a.callbacks,a.yieldEvery);return await tU(e,x,y,w,h,a.epochs,a.verbose,C,I,b,a.shuffle,T,a.initialEpoch,null,null)}finally{e.isTraining=!1,Oa(r,t),Oa(s,n),Oa(i,t),Oa(o,n),Oa(p,l),Oa(d,u),c!=null&&$e(c)}}function lN(e){let t=[];e instanceof Te&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Vc(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Oa(e,t){if(e==null)return;let n=[];if(t instanceof Te)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Te)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function aU(e){return e instanceof Te}function Vy(e){return Array.isArray(e)}function gk(e){return!aU(e)&&!Vy(e)}function bk(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Vy(e)&&e.length>0)i=!0;else if(gk(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(gk(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Vy(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=lN(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new V(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function rU(e,t,n){let a=Zr(e.map(s=>s.shape[0]));a.sort();let r=Zr(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!v.arraysEqual(a,r))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function sU(e,t,n){let a=[bo,kf,qp];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===qp&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function yk(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new V(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function iU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var oU="layers-model",Nr=class extends Za{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");VV(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=WV(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ar))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(py(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>py(s))}else{let s=py(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Xs("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=iU(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Xs("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===kf?["accuracy","acc"].indexOf(c)!==-1?p=ow:["crossentropy","ce"].indexOf(c)!==-1&&(p=tN):this.lossFunctions[s]===Eh?["accuracy","acc"].indexOf(c)!==-1?p=nN:["crossentropy","ce"].indexOf(c)!==-1&&(p=aN):["accuracy","acc"].indexOf(c)!==-1?p=lw:["crossentropy","ce"].indexOf(c)!==-1&&(p=uw);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=BV(c),u=l+Kd(c);let h;Xs(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;By(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Mn(l)}finally{Oa(s[0],e),Oa(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),eU(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new V(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Hs;if(e instanceof Te&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Cp(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=oi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let a=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let r=Wy(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)P(()=>{let o=r[i][0],l=r[i][1],u=_p(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new Hs(p);return Cp(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return Mn(s.map(i=>Ze(i,0)))})}predict(e,t={}){let n=lN(e);yk(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return By(a),this.predictLoop(n,a)}finally{Oa(n,e)}}predictOnBatch(e){yk(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new La("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Eh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=bk(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=bk(t,this.feedOutputNames,r,!1,"target"),rU(e,t,null),sU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=sN(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await iN(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return P(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new De("Verbose mode is not implemented yet.");if(r!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=Wy(s,n),l=Ke(Ua(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=Ys(l,p,d-p),h=cw(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ye(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=Y(i[f],z(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=he(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;ak(e,a)>1&&(r+=`_${ak(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new Hs(u),d=Cp(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h],f=m(a[h],d[h]);r[h]!=null&&(f=KV(f,r[h]));let g=Nt(f);t.push(g),h===0?c=f:c=Y(c,f)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Nt(f(a[g],d[g]))}Zt(m),s.push(m)}return c=Nt(c),this.calculateLosses().forEach(h=>{c=Y(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Hs(s),o=Cp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=Nt(u(r[l],o[l]));l===0?n=p:n=Y(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=Nt(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){return nU(this,e,t,n)}async fitDataset(e,t){return ZV(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return $e(s),Oa(n[0],e),Oa(n[1],t),Mn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=kh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-kh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=vr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[vr(Kd(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>vr(Kd(e)));{let e={};for(let t in this.metrics)e[t]=vr(Kd(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Kp(e.optimizer_config),n=Wa(t),a;if(typeof e.loss=="string")a=Vs(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Vs(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Vs(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Vs(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Vs(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Ut.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ut.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:oU,generatedBy:`TensorFlow.js tfjs-layers v${pw}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Ut.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Ut.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(hk(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){hk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Nr.className="Model";ne.registerClass(Nr);var uN=class extends Nr{};uN.className="Functional";ne.registerClass(uN);async function lU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Kp(n),r=Wa(a,t);if(e.weightsManifest!=null){let s=await Ut.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),$e(s)}return r}async function uU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ut.getLoadHandlers(e,t);if(n.length===0)n.push(Ut.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return pU(e,void 0,t)}async function pU(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Wa(Kp(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=cU(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),$e(u),$e(p.map(d=>d.tensor))}return o}function cU(e,t){let n=Ut.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var cl=class extends Nr{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:cf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof cl||e instanceof Nr,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=UT({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=VT(this.outputs[0])}this.inboundNodes=[],new vf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:oi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(at(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Nr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new La("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new La("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new La("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new La("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof cl))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Wa(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};cl.className="Sequential";ne.registerClass(cl);function dU(e){return new Nr(e)}function hU(e){return new cl(e)}function mU(e,t){return t==null&&(t={}),uU(e,t)}function pN(e){return UT(e)}function fU(e,t){Sa.registerCallbackConstructor(e,t)}var Un=class extends ne.Serializable{getConfig(){return{}}},cN=class extends Un{apply(e,t=1){return P4(e,t)}};cN.className="elu";ne.registerClass(cN);var dN=class extends Un{apply(e){return Hm(e)}};dN.className="selu";ne.registerClass(dN);var hN=class extends Un{apply(e){return Xe(e)}};hN.className="relu";ne.registerClass(hN);var mN=class extends Un{apply(e){return P(()=>_u(6,Xe(e)))}};mN.className="relu6";ne.registerClass(mN);var fN=class extends Un{apply(e){return e}};fN.className="linear";ne.registerClass(fN);var gN=class extends Un{apply(e){return da(e)}};gN.className="sigmoid";ne.registerClass(gN);var bN=class extends Un{apply(e){return L4(e)}};bN.className="hardSigmoid";ne.registerClass(bN);var yN=class extends Un{apply(e){return ho(e)}};yN.className="softplus";ne.registerClass(yN);var xN=class extends Un{apply(e){return O4(e)}};xN.className="softsign";ne.registerClass(xN);var vN=class extends Un{apply(e){return ri(e)}};vN.className="tanh";ne.registerClass(vN);var dw=class extends Un{apply(e,t=-1){return ja(e,t)}};dw.className="softmax";ne.registerClass(dw);var wN=class extends Un{apply(e,t=-1){return Om(e,t)}};wN.className="logSoftmax";ne.registerClass(wN);var kN=class extends Un{apply(e,t=1){return P(()=>z(da(z(e,t)),e))}};kN.className="swish";ne.registerClass(kN);var IN=class extends Un{apply(e){return P(()=>z(e,ri(ho(e))))}};IN.className="mish";ne.registerClass(IN);function as(e){return e.getClassName()}function cy(e,t={}){return Bc(e,ne.SerializationMap.getMap().classNameMap,t,"activation")}function rs(e){if(e==null){let t={};return t.className="linear",t.config={},cy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},cy(t)}else return e instanceof Un?e:cy(e)}function hw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var SN=class extends ne.Serializable{},jc=class extends SN{constructor(e){super(),hw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=It([1]);return this.hasL1&&(t=Y(t,fe(z(this.l1,Lt(e))))),this.hasL2&&(t=Y(t,fe(z(this.l2,Uc(e))))),B(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};jc.className="L1L2";ne.registerClass(jc);function gU(e){return hw(e),new jc({l1:e!=null?e.l1:null,l2:0})}function bU(e){return hw(e),new jc({l2:e!=null?e.l2:null,l1:0})}var xk={l1l2:"L1L2"};function pt(e){return Gv(e)}function vk(e,t={}){return Bc(e,ne.SerializationMap.getMap().classNameMap,t,"regularizer")}function Tt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in xk?xk[e]:e,config:{}};return vk(t)}else return e instanceof SN?e:vk(e)}var mw=class extends qe{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Re(e);let n=Xe(e);return this.maxValue!=null&&(n=Qt(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};mw.className="ReLU";ne.registerClass(mw);var fw=class extends qe{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Re(e);return Ac(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};fw.className="LeakyReLU";ne.registerClass(fw);var gw=class extends qe{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=St(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Tt(e.alphaRegularizer),this.alphaConstraint=Kt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=at(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Re(e),Mc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ct(this.alphaInitializer),alphaRegularizer:pt(this.alphaRegularizer),alphaConstraint:qt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};gw.className="PReLU";ne.registerClass(gw);var bw=class extends qe{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new De(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Re(e);return Su(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};bw.className="ELU";ne.registerClass(bw);var yw=class extends qe{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Re(e);return z(n,oe(Vn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};yw.className="ThresholdedReLU";ne.registerClass(yw);var xw=class extends qe{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new dw().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Re(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};xw.className="Softmax";ne.registerClass(xw);function Qo(e,t,n){if(typeof e=="number")return oi(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!F4(r))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Va(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function tr(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ns([n-t,0]);else if(a==="same")e=e*t;else throw new V(`Unsupport padding mode: ${a}.`);return e}function vw(e,t){return P(()=>(Rt(t),t==="channelsFirst"?Ce(e,[0,2,3,1]):e))}function TN(e,t){return P(()=>(Rt(t),t==="channelsFirst"?Ce(e,[0,2,3,4,1]):e))}function yU(e,t,n,a=1,r="valid",s,i=1){return P(()=>{if(s==null&&(s=Ga()),Rt(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ce(e,[0,2,1])),r==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Am(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=qa(o,n)),o})}function wk(e,t,n,a=[1,1],r="valid",s,i,o=null){return P(()=>{if(s==null&&(s=Ga()),Rt(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=vw(e,s);if(r==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ll.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ce(l,[0,3,1,2])),l})}function xU(e,t,n,a=[1,1,1],r="valid",s,i){return P(()=>{if(s==null&&(s=Ga()),Rt(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=TN(e,s);if(r==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=sv(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=qa(o,n)),s==="channelsFirst"&&(o=Ce(o,[0,4,1,2,3])),o})}var ww=class extends qe{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ww.verifyArgs(t),this.rank=e,Jt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Qo(t.kernelSize,e,"kernelSize"),this.strides=Qo(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ba(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=rs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=St(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Kt(t.biasConstraint),this.biasRegularizer=Tt(t.biasRegularizer),this.activityRegularizer=Tt(t.activityRegularizer),this.dilationRate=Qo(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(er("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Hv(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:as(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},qc=class extends ww{constructor(e,t){super(e,t),this.kernel=null,qc.verifyArgs(t),this.filters=t.filters,Jt(this.filters,"filters"),this.kernelInitializer=St(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Kt(t.kernelConstraint),this.kernelRegularizer=Tt(t.kernelRegularizer)}build(e){e=at(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=Re(e);let n,a=this.bias==null?null:this.bias.read(),r=DT(this.activation.getClassName());if(r!=null&&this.rank===2)n=wk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=yU(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=wk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=xU(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=at(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Va(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Ct(this.kernelInitializer),kernelRegularizer:pt(this.kernelRegularizer),kernelConstraint:qt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Kc=class extends qc{constructor(e){super(2,e),Kc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Hv(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Kc.className="Conv2D";ne.registerClass(Kc);var Xc=class extends qc{constructor(e){super(3,e),Xc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Xc.className="Conv3D";ne.registerClass(Xc);var kw=class extends Kc{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Re(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=tr(o,d,u,this.padding),m=tr(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ce(n,[0,2,3,1]));let g=$m(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ce(g,[0,3,1,2])),this.bias!=null&&(g=qa(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=at(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=tr(t[a],o,s,this.padding),t[r]=tr(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};kw.className="Conv2DTranspose";ne.registerClass(kw);var Iw=class extends Xc{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==5)throw new V("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Re(e);if(n.shape.length!==5)throw new V(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],b=tr(l,m,d,this.padding),y=tr(u,f,c,this.padding),x=tr(p,g,h,this.padding),w=[r,b,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ce(n,[0,2,3,4,1]));let I=iv(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(I=Ce(I,[0,4,1,2,3])),this.bias!==null&&(I=qa(I,this.bias.read(),this.dataFormat)),this.activation!==null&&(I=this.activation.apply(I)),I})}computeOutputShape(e){e=at(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=tr(t[a],u,i,this.padding),t[r]=tr(t[r],p,o,this.padding),t[s]=tr(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Iw.className="Conv3DTranspose";ne.registerClass(Iw);var NN=class extends qc{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Tt(t.depthwiseRegularizer),this.depthwiseConstraint=Kt(t.depthwiseConstraint),this.pointwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Tt(t.pointwiseRegularizer),this.pointwiseConstraint=Kt(t.pointwiseConstraint)}build(e){if(e=at(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{e=Re(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ce(e,[0,2,3,1])),n=vs(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=qa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ce(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.pointwiseRegularizer=pt(this.pointwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseConstraint),e.pointwiseConstraint=qt(this.pointwiseConstraint),e}};NN.className="SeparableConv";var Sw=class extends NN{constructor(e){super(2,e)}};Sw.className="SeparableConv2D";ne.registerClass(Sw);var If=class extends qc{constructor(e){super(1,e),If.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Hv(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};If.className="Conv1D";ne.registerClass(If);var Tw=class extends qe{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=Re(e),this.dataFormat==="channelsLast"){let n=qd(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return qd(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=qd(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return qd(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Tw.className="Cropping2D";ne.registerClass(Tw);var Nw=class extends qe{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,E4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=Re(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ce(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?Ir.resizeNearestNeighbor(n,[r,s]):Ir.resizeBilinear(n,[r,s]);return Ce(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?Ir.resizeNearestNeighbor(n,[r,s]):Ir.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};Nw.className="UpSampling2D";ne.registerClass(Nw);function vU(e,t,n=[1,1],a="valid",r,s){return P(()=>{r==null&&(r=Ga()),Rt(r);let i=vw(e,r);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=bs(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ce(i,[0,3,1,2])),i})}var Cw=class extends ww{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=St(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Kt(e.depthwiseConstraint),this.depthwiseRegularizer=Tt(e.depthwiseRegularizer)}build(e){if(e=at(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=Re(e);let n=vU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=qa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Va(t,this.kernelSize[0],this.padding,this.strides[0]),s=Va(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseRegularizer),e}};Cw.className="DepthwiseConv2D";ne.registerClass(Cw);function CN(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function _N(e,t,n,a=!1,r,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ua(2,l));if(t=Ce(t,u),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=oe(oe(r,"bool"),"float32"),r.rank===l-1&&(r=hn(r,-1)),r=Ce(r,u)),a&&(t=ma(t,0),r!=null&&(r=ma(r,0)));let p=[],d,c=n,h=t.shape[0],m=ct(t),f;r!=null&&(f=ct(r));for(let b=0;b<h;++b){let y=m[b],x=P(()=>e(y,c));if(r==null)d=x[0],c=x[1];else{let w=P(()=>{let I=f[b],T=pe(ea(I),I),C=Y(z(x[0],I),z(c[0],T)),E=c.map((A,R)=>Y(z(x[1][R],I),z(A,T)));return{output:C,newStates:E}});d=w.output,c=w.newStates}o&&p.push(d)}let g;return o&&(g=Ft(p,1)),[d,g,c]})}var cr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Nf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ua(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Py(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new De("Constants support is not implemented in RNN yet.");Py(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new zt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new zt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new xr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_=[It([n,this.cell.stateSize])];else if(e==null)$e(this.states_),this.keptStates!=null&&($e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_[0]=It([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):$e(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(r.shape,i))throw new V(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Zt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=CN(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof za){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Re(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=_N((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return P(()=>{let t=It(e.shape);return t=fe(t,[1,2]),t=Vc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Ry(t,[1,n]):t):this.cell.stateSize>1?[Ry(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===cr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Wa(a,n);return new e(Object.assign(t,{cell:r}))}};cr.className="RNN";ne.registerClass(cr);var Yc=class extends qe{},Sf=class extends Yc{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Jt(this.units,"units"),this.activation=rs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=ul([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ul([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ss({ones:()=>ea(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ss({ones:()=>ea(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=rr(z(e,s),this.kernel.read()):r=rr(e,this.kernel.read()),this.bias!=null&&(r=qa(r,this.bias.read())),i!=null&&(n=z(n,i));let o=Y(r,rr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:as(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Sf.className="SimpleRNNCell";ne.registerClass(Sf);var _w=class extends cr{constructor(e){e.cell=new Sf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};_w.className="SimpleRNN";ne.registerClass(_w);var Tf=class extends Yc{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Jt(this.units,"units"),this.activation=rs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=rs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=ul([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ul([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ss({ones:()=>ea(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ss({ones:()=>ea(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=rr(e,this.kernel.read());this.useBias&&(u=qa(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=Ln(p,[2*this.units,this.units],p.rank-1),h=rr(a,d),[m,f,g]=Ln(u,3,u.rank-1),[b,y]=Ln(h,2,h.rank-1);i=this.recurrentActivation.apply(Y(m,b)),o=this.recurrentActivation.apply(Y(f,y));let x=rr(z(o,a),c);l=this.activation.apply(Y(g,x));let w=Y(z(i,a),z(Y(1,yt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:as(this.activation),recurrentActivation:as(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Tf.className="GRUCell";ne.registerClass(Tf);var Ew=class extends cr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Tf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Ew.className="GRU";ne.registerClass(Ew);var Zc=class extends Yc{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Jt(this.units,"units"),this.activation=rs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=rs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=ul([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ul([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=at(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends $a{apply(i,o){let l=r.apply([s]),u=new hf().apply([s]),p=r.apply([s*2]);return sk(sk(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ss({ones:()=>ea(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ss({ones:()=>ea(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=z(e,s[0]));let d=rr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,i[0])),d=Y(d,rr(a,this.recurrentKernel.read())),this.useBias&&(d=qa(d,this.bias.read()));let[c,h,m,f]=Ln(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=Y(z(l,r),z(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=z(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:as(this.activation),recurrentActivation:as(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Zc.className="LSTMCell";ne.registerClass(Zc);var Aw=class extends cr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Zc(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Aw.className="LSTM";ne.registerClass(Aw);var Nf=class extends Yc{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Py(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Xs(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Wa(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Oy(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}ew(t)}};Nf.className="StackedRNNCells";ne.registerClass(Nf);function ss(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):BT(t(),n),o=()=>Gc(i,t,a);return!r||r<=1?Zt(o().clone()):Array(r).fill(void 0).map(o).map(l=>Zt(l.clone()))}var wU=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},EN=class extends cr{constructor(e){if(e.unroll)throw new De("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new De("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new zt({ndim:5})]}call(e,t){return P(()=>{if(this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=It(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new xr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_=[It(r)];else if(e==null)$e(this.states_),this.keptStates!=null&&($e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_[0]=It(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):$e(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!v.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Zt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=Va(l,a[0],r,s[0],i[0]),d=Va(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};EN.className="ConvRNN2D";var Cf=class extends Zc{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t})),this.filters=t,Jt(this.filters,"filters"),this.kernelSize=Qo(n,2,"kernelSize"),this.kernelSize.forEach(o=>Jt(o,"kernelSize")),this.strides=Qo(a||1,2,"strides"),this.strides.forEach(o=>Jt(o,"strides")),this.padding=r||"valid",ba(this.padding),this.dataFormat=s||"channelsLast",Rt(this.dataFormat),this.dilationRate=Qo(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Jt(o,"dilationRate"))}build(e){var t;e=at(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends $a{apply(p,d){let c=l.apply([u]),h=Yn([u]),m=l.apply([u*2]);return jv([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ss({ones:()=>ea(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(Z,Q,ee)=>!Q||!Q[ee]?Z:z(Q[ee],Z),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ss({ones:()=>ea(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),b=l(r,h,3),y=3,[x,w,I,T]=Ln(this.kernel.read(),i,y),[C,E,A,R]=this.useBias?Ln(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,C,this.padding),p=this.inputConv(p,w,E,this.padding),d=this.inputConv(d,I,A,this.padding),c=this.inputConv(c,T,R,this.padding);let[F,S,M,W]=Ln(this.recurrentKernel.read(),i,y);m=this.recurrentConv(m,F),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),b=this.recurrentConv(b,W);let U=this.recurrentActivation.apply(Y(u,m)),G=this.recurrentActivation.apply(Y(p,f)),q=Y(z(G,s),z(U,this.activation.apply(Y(d,g)))),K=z(this.recurrentActivation.apply(Y(c,b)),this.activation.apply(q));return[K,K,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=wU(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=$t(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?qa(r,n,this.dataFormat):r}recurrentConv(e,t){return $t(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Cf.className="ConvLSTM2DCell";ne.registerClass(Cf);var $w=class extends EN{constructor(e){let t=new Cf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};$w.className="ConvLSTM2D";ne.registerClass($w);var _f=class extends qe{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Re(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Gc(()=>BT(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};_f.className="Dropout";ne.registerClass(_f);var Fw=class extends _f{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Fw.className="SpatialDropout1D";ne.registerClass(Fw);var Dw=class extends qe{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Jt(this.units,"units"),this.activation=rs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Kt(e.kernelConstraint),this.biasConstraint=Kt(e.biasConstraint),this.kernelRegularizer=Tt(e.kernelRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=at(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=at(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Re(e),a=DT(this.activation.getClassName()),r;return a!=null?r=rr(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=rr(n,this.kernel.read()),this.bias!=null&&(r=qa(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:as(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Dw.className="Dense";ne.registerClass(Dw);var Rw=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=at(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Jr(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Re(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=Ce(n,a)}return M4(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Rw.className="Flatten";ne.registerClass(Rw);var Mw=class extends qe{constructor(e){super(e),this.supportsMasking=!0,this.activation=rs(e.activation)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Re(e);return this.activation.apply(n)})}getConfig(){let e={activation:as(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Mw.className="Activation";ne.registerClass(Mw);var Pw=class extends qe{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=Re(e),D4(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Pw.className="RepeatVector";ne.registerClass(Pw);var Ow=class extends qe{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else r*=l}let i=Jr(e);if(s!==null){if(r===0||i%r!==0)throw new V(n);a[s]=i/r}else if(i!==r)throw new V(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Re(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return B(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Ow.className="Reshape";ne.registerClass(Ow);var Lw=class extends qe{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ua(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=at(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ce(Re(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Lw.className="Permute";ne.registerClass(Lw);var zw=class extends qe{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Re(e),a=-1;return Gp(ii(n,this.maskValue),a)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Re(e),a=-1,r=!0,s=Gp(ii(n,this.maskValue),a,r);return z(n,oe(s,n.dtype))})}};zw.className="Masking";ne.registerClass(zw);var Bw=class extends qe{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(bt(e.inputLength))}this.inputDim=e.inputDim,Jt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Jt(this.outputDim,"outputDim"),this.embeddingsInitializer=St(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Tt(e.embeddingsRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.embeddingsConstraint=Kt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=Re(e),ii(e,je(e))):null)}computeOutputShape(e){if(e=at(e),this.inputLength==null)return[...e,this.outputDim];let t=bt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Re(e);n.dtype!=="int32"&&(n=Wc(n,"int32"));let a=zT(this.embeddings.read(),B(n,[n.size]));return B(a,at(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:pt(this.embeddingsRegularizer),activityRegularizer:pt(this.activityRegularizer),embeddingsConstraint:qt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Bw.className="Embedding";ne.registerClass(Bw);var yo=class extends qe{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[at(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Zr(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&Zr(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ns(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Vc(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=B(o,[p].concat(Jr(u.slice(1))));c=Ce(c,[1,0]),c=B(c,d),n.push(c),r=!0}else if(l>1){let u=Ua(1,l).concat([0]);n.push(Ce(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=B(Ce(B(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(Ua(0,i-1));s=Ce(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=Zr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return P(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:hn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=_a(n,t[a]);return n})}},Ww=class extends yo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Y(t,e[n]);return t})}};Ww.className="Add";ne.registerClass(Ww);var Vw=class extends yo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};Vw.className="Multiply";ne.registerClass(Vw);var Uw=class extends yo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Y(t,e[n]);return z(1/e.length,t)})}};Uw.className="Average";ne.registerClass(Uw);var Gw=class extends yo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=ur(t,e[n]);return t})}};Gw.className="Maximum";ne.registerClass(Gw);var Hw=class extends yo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=_u(t,e[n]);return t})}};Hw.className="Minimum";ne.registerClass(Hw);var jw=class extends yo{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>jv(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(oe(ea(e[s]),"bool")):t[s].rank<e[s].rank?a.push(hn(t[s],-1)):a.push(t[s]);let r=Ze(a,this.axis);return Em(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};jw.className="Concatenate";ne.registerClass(jw);function kp(e,t){for(;e<0;)e+=t;return e}function kU(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return P(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=B(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=B(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=fe(z(e,t),s[0]):o=fe(z(Ce(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Ae(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=ws(o,u)}return o.shape.length===1&&(o=hn(o,1)),o})}var qw=class extends yo{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new V(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>kp(r,e[s].shape.length)):a=[kp(this.axes,t.shape.length),kp(this.axes,n.shape.length)],this.normalize&&(t=_h(t,a[0]),n=_h(n,a[1])),kU(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[kp(this.axes,e.length),kp(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};qw.className="Dot";ne.registerClass(qw);var Kw=class extends qe{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Re(e);return Gc(()=>Y(df(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Kw.className="GaussianNoise";ne.registerClass(Kw);var Xw=class extends qe{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Re(e);return this.rate>0&&this.rate<1?Gc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return z(n,df(n.shape,1,a))},()=>n,t.training||!1):n})}};Xw.className="GaussianDropout";ne.registerClass(Xw);var Yw=class extends qe{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Re(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Gc(()=>{let a=Re(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=ys(Eu(n),this.rate);o=Wc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=Y(z(a,o),z(Y(o,-1),i));return Y(z(p,l),u)},()=>Re(e),t.training||!1)}return e})}};Yw.className="AlphaDropout";ne.registerClass(Yw);function Xp(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=Xx(e,t,n,a,r,s);else if(e.rank===3)i=Yx(e,t,n,a,r,s);else if(e.rank===4)i=Zx(e,t,n,a,r,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function IU(e,t,n,a,r=.001){return P(()=>{let s=Dc(e,a),i=s.mean,o=s.variance;return[Xp(e,i,o,n,t,r),i,o]})}function SU(e,t,n,a,r=.001){return P(()=>{let s=Dc(e,a),i=s.mean,o=s.variance,l=[];for(let h of Ua(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=B(i,l),p=B(o,l),d=t==null?null:B(t,l),c=n==null?null:B(n,l);return[Xp(e,u,p,c,d,r),i,o]})}function TU(e,t,n,a,r=.001){return v.arraysEqual(a.slice().sort(),Ua(0,e.rank-1))?IU(e,t,n,a,r):SU(e,t,n,a,r)}var Zw=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.movingMeanInitializer=St(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=St(e.movingVarianceInitializer||"ones"),this.betaConstraint=Kt(e.betaConstraint),this.gammaConstraint=Kt(e.gammaConstraint),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer)}build(e){e=at(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,a=Re(e),r=a.shape,s=r.length,i=Ua(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=oi(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!v.arraysEqual(u,Ua(0,s).slice(0,s-1)),d=()=>{if(p){let g=B(this.movingMean.read(),l),b=B(this.movingVariance.read(),l),y=this.center?B(this.beta.read(),l):null,x=this.scale?B(this.gamma.read(),l):null;return Xp(a,g,b,y,x,this.epsilon)}else return Xp(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=TU(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,b,y)=>{P(()=>{let x=1-y,w=g.read(),I=z(pe(w,b),x);g.write(pe(w,I))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer),betaConstraint:qt(this.betaConstraint),gammaConstraint:qt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Zw.className="BatchNormalization";ne.registerClass(Zw);var Jw=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=at(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Zr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Re(e),a=n.shape,r=a.length;return P(()=>{let{mean:s,variance:i}=Dc(n,this.axis,!0),o=oi(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?B(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=Pn(s,d),i=Pn(i,d),u!=null&&(u=Pn(u,c)),p!=null&&(p=Pn(p,c)),Xp(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Jw.className="LayerNormalization";ne.registerClass(Jw);function NU(e,t,n){return P(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Ga()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ga(e,a)})}var Qw=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Ga():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=at(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>NU(Re(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Qw.className="ZeroPadding2D";ne.registerClass(Qw);function Ef(e,t,n,a,r,s){return P(()=>{Rt(r),MT(s),ba(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Ga()),s==null&&(s="max"),e=vw(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Dt(e,t,n,o):i=fa(e,t,n,o),r==="channelsFirst"&&(i=Ce(i,[0,3,1,2])),i})}function AN(e,t,n,a,r,s){return P(()=>{Rt(r),MT(s),ba(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Ga()),s==null&&(s="max"),e=TN(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=kv(e,t,n,o):i=Kx(e,t,n,o),r==="channelsFirst"&&(i=Ce(i,[0,4,1,2,3])),i})}var $N=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Jt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ba(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=at(e);let t=Va(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=Vc(Re(e),2);let n=this.poolingFunction(Re(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ws(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},e0=class extends $N{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),Ef(e,t,n,a,r,"max")}};e0.className="MaxPooling1D";ne.registerClass(e0);var t0=class extends $N{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),Ef(e,t,n,a,r,"avg")}};t0.className="AveragePooling1D";ne.registerClass(t0);var FN=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Jt(this.poolSize,"poolSize"),Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),ba(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Va(t,this.poolSize[0],this.padding,this.strides[0]),n=Va(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Re(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},n0=class extends FN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),Ef(e,t,n,a,r,"max")}};n0.className="MaxPooling2D";ne.registerClass(n0);var a0=class extends FN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),Ef(e,t,n,a,r,"avg")}};a0.className="AveragePooling2D";ne.registerClass(a0);var DN=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Jt(this.poolSize,"poolSize"),Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),ba(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Va(t,this.poolSize[0],this.padding,this.strides[0]),n=Va(n,this.poolSize[1],this.padding,this.strides[1]),a=Va(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Re(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},r0=class extends DN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),AN(e,t,n,a,r,"max")}};r0.className="MaxPooling3D";ne.registerClass(r0);var s0=class extends DN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),AN(e,t,n,a,r,"avg")}};s0.className="AveragePooling3D";ne.registerClass(s0);var RN=class extends qe{constructor(e){super(e),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},i0=class extends RN{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Re(e);return Nt(n,1)})}};i0.className="GlobalAveragePooling1D";ne.registerClass(i0);var o0=class extends RN{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Re(e);return Na(n,1)})}};o0.className="GlobalMaxPooling1D";ne.registerClass(o0);var MN=class extends qe{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},l0=class extends MN{call(e,t){return P(()=>{let n=Re(e);return this.dataFormat==="channelsLast"?Nt(n,[1,2]):Nt(n,[2,3])})}};l0.className="GlobalAveragePooling2D";ne.registerClass(l0);var u0=class extends MN{call(e,t){return P(()=>{let n=Re(e);return this.dataFormat==="channelsLast"?Na(n,[1,2]):Na(n,[2,3])})}};u0.className="GlobalMaxPooling2D";ne.registerClass(u0);var PN=class extends qe{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Wa(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},p0=class extends PN{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=at(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=at(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return P(()=>(e=Re(e),_N((n,a)=>[Re(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};p0.className="TimeDistributed";ne.registerClass(p0);function CU(e){go(_4,"BidirectionalMergeMode",e)}var _U="concat",c0=class extends PN{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Wa(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Wa(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?_U:e.mergeMode,CU(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Mn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=CN(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new zt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof za;for(let l of s)if(l instanceof za!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=ma(r,1));let i;return this.mergeMode==="concat"?i=jv([a,r]):this.mergeMode==="sum"?i=Y(a,r):this.mergeMode==="ave"?i=z(.5,Y(a,r)):this.mergeMode==="mul"?i=z(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Xs(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Xs(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Wa(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};c0.className="Bidirectional";ne.registerClass(c0);var d0=class extends qe{constructor(e){super(e),this.scale=e.scale,e.offset?this.offset=e.offset:this.offset=0}getConfig(){let e={scale:this.scale,offset:this.offset},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>(e=Re(e),e.dtype!=="float32"&&(e=Wc(e,"float32")),Y(z(e,this.scale),this.offset)))}};d0.className="Rescaling";ne.registerClass(d0);function EU(e){return new $u(e)}function AU(e){return new bw(e)}function $U(e){return new mw(e)}function FU(e){return new fw(e)}function DU(e){return new gw(e)}function RU(e){return new xw(e)}function MU(e){return new yw(e)}function PU(e){return new If(e)}function OU(e){return new Kc(e)}function LU(e){return new kw(e)}function zU(e){return new Xc(e)}function BU(e){return new Iw(e)}function WU(e){return new Sw(e)}function VU(e){return new Tw(e)}function UU(e){return new Nw(e)}function GU(e){return new Cw(e)}function HU(e){return new Mw(e)}function jU(e){return new Dw(e)}function qU(e){return new _f(e)}function KU(e){return new Fw(e)}function XU(e){return new Rw(e)}function YU(e){return new Pw(e)}function ZU(e){return new Ow(e)}function JU(e){return new Lw(e)}function QU(e){return new Bw(e)}function eG(e){return new Ww(e)}function tG(e){return new Uw(e)}function nG(e){return new jw(e)}function aG(e){return new Gw(e)}function rG(e){return new Hw(e)}function sG(e){return new Vw(e)}function iG(e){return new qw(e)}function oG(e){return new Zw(e)}function lG(e){return new Jw(e)}function uG(e){return new Qw(e)}function h0(e){return new t0(e)}function pG(e){return h0(e)}function cG(e){return h0(e)}function m0(e){return new a0(e)}function dG(e){return m0(e)}function hG(e){return m0(e)}function f0(e){return new s0(e)}function mG(e){return f0(e)}function fG(e){return f0(e)}function gG(e){return new i0(e)}function bG(e){return new l0(e)}function ON(e){return new o0(e)}function LN(e){return new u0(e)}function zN(e){return new e0(e)}function BN(e){return new n0(e)}function yG(e){return new r0(e)}function xG(e){return new Ew(e)}function vG(e){return new Tf(e)}function wG(e){return new Aw(e)}function kG(e){return new Zc(e)}function IG(e){return new _w(e)}function SG(e){return new Sf(e)}function TG(e){return new $w(e)}function NG(e){return new Cf(e)}function CG(e){return new cr(e)}function _G(e){return new Nf(e)}function EG(e){return new c0(e)}function AG(e){return new p0(e)}var $G=ON,FG=LN,DG=zN,RG=BN;function MG(e){return new Kw(e)}function PG(e){return new Xw(e)}function OG(e){return new Yw(e)}function LG(e){return new zw(e)}function zG(e){return new d0(e)}var WN={};_e(WN,{MAPE:()=>YG,MSE:()=>QG,binaryAccuracy:()=>BG,binaryCrossentropy:()=>WG,categoricalAccuracy:()=>UG,categoricalCrossentropy:()=>GG,cosineProximity:()=>qG,mape:()=>ZG,meanAbsoluteError:()=>KG,meanAbsolutePercentageError:()=>XG,meanSquaredError:()=>JG,mse:()=>eH,precision:()=>HG,recall:()=>jG,sparseCategoricalAccuracy:()=>VG});function BG(e,t){return ow(e,t)}function WG(e,t){return tN(e,t)}function VG(e,t){return nN(e,t)}function UG(e,t){return lw(e,t)}function GG(e,t){return uw(e,t)}function HG(e,t){return eN(e,t)}function jG(e,t){return FV(e,t)}function qG(e,t){return iw(e,t)}function KG(e,t){return wf(e,t)}function XG(e,t){return Fu(e,t)}function YG(e,t){return Fu(e,t)}function ZG(e,t){return Fu(e,t)}function JG(e,t){return bo(e,t)}function QG(e,t){return bo(e,t)}function eH(e,t){return bo(e,t)}var VN={};_e(VN,{modelFromJSON:()=>lU});var UN={};_e(UN,{l1:()=>nH,l1l2:()=>tH,l2:()=>aH});function tH(e){return new jc(e)}function nH(e){return gU(e)}function aH(e){return bU(e)}var GN=class extends pl{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Nr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Xd(e,t){return e<t}function kk(e,t){return e>t}var HN=class extends GN{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Xd:this.mode==="max"?this.monitorFunc=kk:this.monitor.indexOf("acc")!==-1?this.monitorFunc=kk:this.monitorFunc=Xd,this.monitorFunc===Xd&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Xd?1/0:-1/0}async onEpochEnd(e,t){await Hr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function rH(e){return new HN(e)}var sH={earlyStopping:rH},iH=H();iH.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Ia;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Ia||(Ia={}));var Ik;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Ik||(Ik={}));var g0={};function oH(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};g0[e]=n}function jN(e){return g0[e]}function lH(e){delete g0[e]}function k(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return vn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(d=>vn(d,n,a,r));let u=vn(t.inputNames.slice(o)[0],n,a,r),p=u.dataSync();return s.type==="number"?p[0]:v.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function vn(e,t,n,a){let[r,s]=Kn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Dh(r,o)]);return i!==void 0?t[Dh(r,i)][s]:void 0}function uH(e,t,n){return t[Dh(e,n.currentContextId)]}function nr(e,t){let[n,a,r]=Kn(e);return[Dh(n,t&&t.currentContextId),a,r]}function Dh(e,t){return t?`${e}-${t}`:e}function Kn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function rh(e,t,n){let a=k("pad",e,t,n);if(a==="explicit"){a=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function wr(e){return e.kept?e:ar(e)}var qN={};_e(qN,{json:()=>pH});var pH=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],KN={};_e(KN,{json:()=>cH});var cH=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],XN={};_e(XN,{json:()=>dH});var dH=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],YN={};_e(YN,{json:()=>hH});var hH=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],ZN={};_e(ZN,{json:()=>mH});var mH=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],JN={};_e(JN,{json:()=>fH});var fH=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],QN={};_e(QN,{json:()=>gH});var gH=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],e2={};_e(e2,{json:()=>bH});var bH=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],t2={};_e(t2,{json:()=>yH});var yH=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],n2={};_e(n2,{json:()=>xH});var xH=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],a2={};_e(a2,{json:()=>vH});var vH=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],r2={};_e(r2,{json:()=>wH});var wH=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],s2={};_e(s2,{json:()=>kH});var kH=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],i2={};_e(i2,{json:()=>IH});var IH=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],o2={};_e(o2,{json:()=>SH});var SH=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],l2={};_e(l2,{json:()=>TH});var TH=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],u2={};_e(u2,{json:()=>NH});var NH=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],p2={};_e(p2,{json:()=>CH});var CH=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],c2={};_e(c2,{json:()=>_H});var _H=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Sk=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[qN,KN,XN,YN,ZN,JN,QN,e2,t2,n2,a2,r2,s2,i2,o2,l2,u2,p2,c2],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,b)=>{let[y,,x]=nr(g),w=i[y];if(w.outputs!=null){let I=w.outputs.indexOf(x);if(I!==-1){let T=`${y}:${I}`;f.inputNames[b]=T}}f.inputs.push(w),w.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=nr(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=nr(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=jN(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Uy(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Uy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Yy(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Yy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Hy(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=Hy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=Xy(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Xy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Gy(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Gy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=Jy(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Jy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=Ky(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Ky(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=Zy(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Zy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=jy(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=jy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=qy(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=qy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=Tk(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Tk(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=nr(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:b0(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=nr(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let b=`${h}:${g}`;p.inputNames[c]=b}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=nr(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function EH(e){let t=H().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function d2(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):EH(e);return t?n:n.toLowerCase()}function Uy(e,t,n,a=!1){let r=e[t];return r!=null?d2(r.s,a):n}function Gy(e,t,n){let a=e[t];return a?a.b:n}function Hy(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function b0(e){switch(typeof e=="string"&&(e=Ia[e]),e){case Ia.DT_FLOAT:case Ia.DT_HALF:return"float32";case Ia.DT_INT32:case Ia.DT_INT64:case Ia.DT_INT8:case Ia.DT_UINT8:return"int32";case Ia.DT_BOOL:return"bool";case Ia.DT_DOUBLE:return"float32";case Ia.DT_STRING:return"string";default:return null}}function Tk(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function jy(e,t,n){let a=e[t];return a&&a.type?b0(a.type):n}function qy(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>b0(r)):n}function h2(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Ky(e,t,n){let a=e[t];return a&&a.shape?h2(a.shape):n}function Xy(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Yy(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>d2(s,a)):n}function Zy(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>h2(r)):n}function Jy(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var AH=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return vn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return vn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Hy(this.node.rawAttrs,e,t);if(n.s!=null)return Uy(this.node.rawAttrs,e,t);if(n.b!=null)return Gy(this.node.rawAttrs,e,t);if(n.shape!=null)return Ky(this.node.rawAttrs,e,t);if(n.type!=null)return jy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Xy(this.node.rawAttrs,e,t);if(n.list.s!=null)return Yy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Zy(this.node.rawAttrs,e,t);if(n.list.b!=null)return Jy(this.node.rawAttrs,e,t);if(n.list.type!=null)return qy(this.node.rawAttrs,e,t)}return t}},ln={};_e(ln,{OP_SCOPE_SUFFIX:()=>Tx,abs:()=>Lt,acos:()=>zx,acosh:()=>Bx,add:()=>Y,addN:()=>xS,all:()=>Em,any:()=>Gp,argMax:()=>ai,argMin:()=>Wx,asin:()=>Vx,asinh:()=>Ux,atan:()=>Gx,atan2:()=>Hx,atanh:()=>jx,avgPool:()=>fa,avgPool3d:()=>Kx,basicLSTMCell:()=>IS,batchNorm:()=>gs,batchNorm2d:()=>Xx,batchNorm3d:()=>Yx,batchNorm4d:()=>Zx,batchToSpaceND:()=>_c,bincount:()=>Jx,booleanMaskAsync:()=>sT,broadcastArgs:()=>SS,broadcastTo:()=>Ks,buffer:()=>Pe,cast:()=>oe,ceil:()=>Qx,clipByValue:()=>Qt,clone:()=>ar,complex:()=>Cr,concat:()=>Ze,concat1d:()=>ev,concat2d:()=>tv,concat3d:()=>nv,concat4d:()=>av,conv1d:()=>Am,conv2d:()=>$t,conv2dTranspose:()=>$m,conv3d:()=>sv,conv3dTranspose:()=>iv,cos:()=>Ec,cosh:()=>Fm,cosineWindow:()=>Qm,cumprod:()=>Hp,cumsum:()=>Dm,denseBincount:()=>NS,depthToSpace:()=>ov,depthwiseConv2d:()=>bs,diag:()=>CS,dilation2d:()=>lv,div:()=>he,divNoNan:()=>uv,dot:()=>pv,dropout:()=>Ov,einsum:()=>_S,elu:()=>Su,enclosingPowerOfTwo:()=>Lv,equal:()=>Jn,erf:()=>cv,euclideanNorm:()=>mv,exp:()=>fn,expandDims:()=>hn,expm1:()=>fv,eye:()=>Rm,fft:()=>Oc,fill:()=>gn,floor:()=>Nu,floorDiv:()=>_m,fused:()=>ll,gather:()=>Cu,gatherND:()=>uT,greater:()=>Vn,greaterEqual:()=>ys,ifft:()=>ol,imag:()=>Tc,image:()=>Ir,inTopKAsync:()=>pT,irfft:()=>Xm,isFinite:()=>gv,isInf:()=>bv,isNaN:()=>yv,leakyRelu:()=>Ac,less:()=>Mm,lessEqual:()=>xs,linalg:()=>Wv,linspace:()=>DS,localResponseNormalization:()=>xv,log:()=>Qn,log1p:()=>$c,logSigmoid:()=>vv,logSoftmax:()=>Om,logSumExp:()=>Lm,logicalAnd:()=>_a,logicalNot:()=>Fc,logicalOr:()=>zm,logicalXor:()=>wv,losses:()=>kT,lowerBound:()=>MS,matMul:()=>Ae,max:()=>Na,maxPool:()=>Dt,maxPool3d:()=>kv,maxPoolWithArgmax:()=>PS,maximum:()=>ur,mean:()=>Nt,meshgrid:()=>OS,min:()=>jp,minimum:()=>_u,mirrorPad:()=>Iv,mod:()=>Sv,moments:()=>Dc,movingAverage:()=>iT,mul:()=>z,multiRNNCell:()=>LS,multinomial:()=>zS,neg:()=>yt,norm:()=>Tu,notEqual:()=>ii,oneHot:()=>al,ones:()=>Yn,onesLike:()=>ea,op:()=>L,outerProduct:()=>BS,pad:()=>ga,pad1d:()=>WS,pad2d:()=>VS,pad3d:()=>US,pad4d:()=>GS,pool:()=>Tv,pow:()=>_r,prelu:()=>Mc,print:()=>Ex,prod:()=>Nv,raggedGather:()=>HS,raggedTensorToTensor:()=>jS,rand:()=>qS,randomGamma:()=>KS,randomNormal:()=>Wm,randomStandardNormal:()=>XS,randomUniform:()=>Eu,range:()=>sl,real:()=>rl,reciprocal:()=>Ev,relu:()=>Xe,relu6:()=>Vm,reshape:()=>B,reverse:()=>ma,reverse1d:()=>YS,reverse2d:()=>ZS,reverse3d:()=>JS,reverse4d:()=>QS,rfft:()=>Lc,round:()=>Um,rsqrt:()=>Gm,scalar:()=>ye,scatterND:()=>oT,searchSorted:()=>Bm,selu:()=>Hm,separableConv2d:()=>vs,setdiff1dAsync:()=>eT,sigmoid:()=>da,sign:()=>Av,signal:()=>wT,sin:()=>jm,sinh:()=>qm,slice:()=>We,slice1d:()=>Pc,slice2d:()=>Km,slice3d:()=>mo,slice4d:()=>il,softmax:()=>ja,softplus:()=>ho,spaceToBatchND:()=>Rc,sparse:()=>IT,sparseToDense:()=>lT,spectral:()=>vT,split:()=>Ln,sqrt:()=>on,square:()=>ot,squaredDifference:()=>Ym,squeeze:()=>ws,stack:()=>Ft,step:()=>fo,stridedSlice:()=>$v,string:()=>ST,sub:()=>pe,sum:()=>fe,tan:()=>Fv,tanh:()=>ri,tensor:()=>On,tensor1d:()=>Ke,tensor2d:()=>Ca,tensor3d:()=>Nc,tensor4d:()=>Aa,tensor5d:()=>tT,tensor6d:()=>nT,tile:()=>Pn,topk:()=>Dv,transpose:()=>Ce,truncatedNormal:()=>Zm,unique:()=>Rv,unsortedSegmentSum:()=>Jm,unstack:()=>ct,upperBound:()=>aT,variable:()=>Mv,where:()=>mn,whereAsync:()=>Pv,zeros:()=>It,zerosLike:()=>je});var $H=(e,t,n,a=ln)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[a.add(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[a.addN(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[a.mod(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[a.mul(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[a.div(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[a.divNoNan(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[a.floorDiv(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[a.sub(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[a.minimum(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[a.maximum(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[a.pow(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[a.squaredDifference(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FH=(e,t,n,a=ln)=>{switch(e.op){case"Abs":case"ComplexAbs":return[a.abs(k("x",e,t,n))];case"Acos":return[a.acos(k("x",e,t,n))];case"Acosh":return[a.acosh(k("x",e,t,n))];case"Asin":return[a.asin(k("x",e,t,n))];case"Asinh":return[a.asinh(k("x",e,t,n))];case"Atan":return[a.atan(k("x",e,t,n))];case"Atan2":return[a.atan2(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[a.atanh(k("x",e,t,n))];case"Ceil":return[a.ceil(k("x",e,t,n))];case"Complex":return[a.complex(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[a.cos(k("x",e,t,n))];case"Cosh":return[a.cosh(k("x",e,t,n))];case"Elu":return[a.elu(k("x",e,t,n))];case"Erf":return[a.erf(k("x",e,t,n))];case"Exp":return[a.exp(k("x",e,t,n))];case"Expm1":return[a.expm1(k("x",e,t,n))];case"Floor":return[a.floor(k("x",e,t,n))];case"Log":return[a.log(k("x",e,t,n))];case"Log1p":return[a.log1p(k("x",e,t,n))];case"Imag":return[a.imag(k("x",e,t,n))];case"Neg":return[a.neg(k("x",e,t,n))];case"Reciprocal":return[a.reciprocal(k("x",e,t,n))];case"Real":return[a.real(k("x",e,t,n))];case"Relu":return[a.relu(k("x",e,t,n))];case"Round":return[a.round(k("x",e,t,n))];case"Selu":return[a.selu(k("x",e,t,n))];case"Sigmoid":return[a.sigmoid(k("x",e,t,n))];case"Sin":return[a.sin(k("x",e,t,n))];case"Sign":return[a.sign(k("x",e,t,n))];case"Sinh":return[a.sinh(k("x",e,t,n))];case"Softplus":return[a.softplus(k("x",e,t,n))];case"Sqrt":return[a.sqrt(k("x",e,t,n))];case"Square":return[a.square(k("x",e,t,n))];case"Tanh":return[a.tanh(k("x",e,t,n))];case"Tan":return[a.tan(k("x",e,t,n))];case"ClipByValue":return[a.clipByValue(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[a.relu6(k("x",e,t,n))];case"Rsqrt":return[a.rsqrt(vn(e.inputNames[0],t,n))];case"Prod":return[a.prod(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[a.leakyRelu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[a.prelu(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[a.isNaN(vn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ta(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];v.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function Nk(e){return!(typeof e=="number"||e.some(t=>t<0))}function Ip(e,t,n){let a=Qy(e,n),r=!Nk(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=Qy(s.shape,a)}),!Nk(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function Qy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var DH=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ye(0),Zt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ta(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Zt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return On([],[0].concat(this.elementShape));let n=this.readMany(e);return Ta(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Ft(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return On([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Ta(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Ze(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ct(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];P(()=>{t=B(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],p=[1,e[o],r];s[o]=B(We(t,u,p),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},dl=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ta(t,r.shape,"TensorList shape mismatch: "),Zt(r)}),this.idTensor=ye(0),this.maxNumElements=a,Zt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new dl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ta(e,this.elementShape,"TensorList shape mismatch: ");let a=Ip(this.elementShape,this.tensors,e);return P(()=>{let r=this.tensors.map(s=>B(s,a));return Ft(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Ip(this.elementShape,this.tensors,e),a=this.tensors.pop();return a.kept=!1,Ta(a.shape,e,"TensorList shape mismatch: "),B(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ta(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Zt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new dl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ta(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Ip(this.elementShape,this.tensors,t);return B(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ta(this.elementShape,t.shape,"TensorList shape mismatch: "),Zt(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ta(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Ip(this.elementShape,this.tensors,n);return e.length===0?On([],[0].concat(a)):P(()=>{let r=e.map(s=>B(this.tensors[s],a));return Ft(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ta(this.elementShape,t,"TensorList shape mismatch: ");let n=Ip(this.elementShape,this.tensors,t);return this.size()===0?On([],[0].concat(n)):P(()=>{let a=this.tensors.map(r=>B(r,n));return Ze(a,0)})}};function RH(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ta(r,t,"TensorList shape mismatch: ");let s=ct(e);return new dl(s,t,a)}function MH(e,t,n,a){return new dl([],e,t,a)}function PH(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new dl([],n,e.dtype,a),i=ct(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function OH(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Qy(s,n),o=a===0?0:e.size/a,l=P(()=>{let p=[];e=B(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=d===0?0:r[d-1],h=[0,c,0],m=[1,t[d],o];p[d]=B(We(e,h,m),i)}return e.dispose(),p}),u=new dl([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var LH=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=k("body",e,t,n),r=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=k("pred",e,t,n);return[wr(a)]}case"Switch":{let a=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=wr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>vn(r,t,n)!==void 0);if(a){let r=vn(a,t,n);return[wr(r)]}return}case"Enter":{let a=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(a),[wr(r)]}case"Exit":{let a=k("tensor",e,t,n);return n.exitFrame(),[wr(a)]}case"NextIteration":{let a=k("tensor",e,t,n);return n.nextIteration(),[wr(a)]}case"TensorArrayV3":{let a=k("size",e,t,n),r=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),p=new DH(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,ye(1)]}case"TensorArrayWriteV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=k("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ye(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=k("indices",e,t,n),r=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=PH(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=k("elementShape",e,t,n),r=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=e.op==="TensorListReserve"?-1:i,l=MH(a,r,i,o);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let a=k("tensorListId",e,t,n),r=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=RH(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=k("tensorListId",e,t,n),r=k("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=OH(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id);return[ye(r.size(),"int32")]}case"TensorListResize":{let a=k("tensorListId",e,t,n),r=k("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ck(e,t,n){let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=k("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=k("strides",e,t,n),d=rh(e,t,n),c=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[m,f]=k("args",e,t,n);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var zH=(e,t,n,a=ln)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[a.conv1d(k("x",e,t,n),k("filter",e,t,n),r,s,i,o)]}case"Conv2D":{let r=k("strides",e,t,n),s=rh(e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv2d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=Ck(e,t,n);return[a.fused.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=Ck(e,t,n);return[a.fused.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),s=k("strides",e,t,n),i=rh(e,t,n);return[a.conv2dTranspose(k("x",e,t,n),k("filter",e,t,n),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),s=rh(e,t,n),i=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[a.depthwiseConv2d(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv3d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:l,indexes:u}=a.maxPoolWithArgmax(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dilations",e,t,n),o=r[1],l=r[2],u=i[1],p=i[2];return[a.dilation2d(k("x",e,t,n),k("filter",e,t,n),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},BH=(e,t,n,a=ln)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),s=k("dtype",e,t,n),i=k("value",e,t,n);return[a.fill(r,i,s)]}case"LinSpace":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("num",e,t,n);return[a.linspace(r,s,i)]}case"Multinomial":{let r=k("logits",e,t,n),s=k("numSamples",e,t,n),i=k("seed",e,t,n);return[a.multinomial(r,s,i)]}case"OneHot":{let r=k("indices",e,t,n),s=k("depth",e,t,n),i=k("onValue",e,t,n),o=k("offValue",e,t,n),l=k("dtype",e,t,n);return[a.oneHot(r,s,i,o,l)]}case"Ones":return[a.ones(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[a.onesLike(k("x",e,t,n))];case"RandomStandardNormal":return[a.randomStandardNormal(k("shape",e,t,n),k("dtype",e,t,n),k("seed",e,t,n))];case"RandomUniform":return[a.randomUniform(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("step",e,t,n);return[a.range(r,s,i,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),s=k("mean",e,t,n),i=k("stdDev",e,t,n),o=k("seed",e,t,n);return[a.truncatedNormal(r,s,i,k("dtype",e,t,n),o)]}case"Zeros":return[a.zeros(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[a.zerosLike(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function dy(e,t,n){let a=k("boxes",e,t,n),r=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var WH=async(e,t,n,a,r=ln)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=dy(e,t,n),d=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=dy(e,t,n),p=k("padToMaxOutputSize",e,t,n),d=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=dy(e,t,n);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(k("condition",e,t,n),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},VH=(e,t,n,a=ln)=>{switch(e.op){case"LowerBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.lowerBound(r,s)]}case"TopKV2":{let r=k("x",e,t,n),s=k("k",e,t,n),i=k("sorted",e,t,n),o=a.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.upperBound(r,s)]}case"Unique":{let r=k("x",e,t,n),s=a.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=k("x",e,t,n),s=k("axis",e,t,n),i=a.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},UH=(e,t,n,a=ln)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[vn(e.name,t,n)||r];case"Placeholder":return[vn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=k("x",e,t,n);return[wr(p)]}case"IdentityN":return k("x",e,t,n).map(p=>wr(p));case"Snapshot":let s=k("x",e,t,n);return[wr(s)];case"Shape":return[a.tensor1d(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(p=>a.tensor1d(p.shape));case"Size":return[a.scalar(k("x",e,t,n).size,"int32")];case"Rank":return[a.scalar(k("x",e,t,n).rank,"int32")];case"NoOp":return[a.scalar(1)];case"Print":let i=k("x",e,t,n),o=k("data",e,t,n),l=k("message",e,t,n),u=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;p<o.length;p++)console.log(Array.prototype.slice.call(o[p].dataSync()).slice(0,u));return[i];default:throw TypeError(`Node type ${e.op} is not implemented`)}},GH=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ye(0),this.tensorMap=new Map,Zt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ye(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),P(()=>{let a=ct(t),r=n.length,s=a.length;v.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Zt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return P(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Ft(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},HH=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=k("keyDType",e,t,n),s=k("valueDType",e,t,n),i=new GH(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},jH=(e,t,n,a=ln)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=k("image",e,t,n),s=k("boxes",e,t,n),i=k("boxInd",e,t,n),o=k("cropSize",e,t,n),l=k("method",e,t,n),u=k("extrapolationValue",e,t,n);return[a.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=k("images",e,t,n),s=k("transforms",e,t,n),i=k("outputShape",e,t,n),o=k("fillValue",e,t,n),l=k("interpolation",e,t,n),u=k("fillMode",e,t,n);return[a.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},qH=(e,t,n,a=ln)=>{switch(e.op){case"Equal":return[a.equal(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[a.notEqual(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[a.greater(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[a.greaterEqual(k("a",e,t,n),k("b",e,t,n))];case"Less":return[a.less(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[a.lessEqual(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[a.logicalAnd(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[a.logicalNot(k("a",e,t,n))];case"LogicalOr":return[a.logicalOr(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[a.where(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},KH=(e,t,n,a=ln)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[a.matMul(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[a.einsum(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[a.transpose(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,s]=k("fusedOps",e,t,n),i=r==="biasadd",o=s==="prelu",l=k("numArgs",e,t,n),u=k("leakyreluAlpha",e,t,n);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,d]=k("args",e,t,n);return[a.fused.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:p,activation:s,preluActivationWeights:d,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},XH=(e,t,n,a=ln)=>{switch(e.op){case"EuclideanNorm":return[a.euclideanNorm(k("x",e,t,n),k("axis",e,t,n),k("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[a.localResponseNormalization(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[a.softmax(k("x",e,t,n))];case"LogSoftmax":return[a.logSoftmax(k("x",e,t,n))];case"SparseToDense":return[a.sparseToDense(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},YH=(e,t,n,a=ln)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.max(k("x",e,t,n),o,l)]}case"Mean":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.mean(k("x",e,t,n),o,l)]}case"Min":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.min(k("x",e,t,n),o,l)]}case"Sum":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.sum(k("x",e,t,n),o,l)]}case"All":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.all(k("x",e,t,n),o,l)]}case"Any":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.any(k("x",e,t,n),o,l)]}case"ArgMax":{let o=k("axis",e,t,n);return[a.argMax(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[a.argMin(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.prod(k("x",e,t,n),o,l)]}case"Cumprod":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumprod(k("x",e,t,n),o,l,u)]}case"Cumsum":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumsum(k("x",e,t,n),o,l,u)]}case"Bincount":let r=k("x",e,t,n),s=k("weights",e,t,n),i=k("size",e,t,n);return[a.bincount(r,s,i)];case"DenseBincount":{let o=k("x",e,t,n),l=k("weights",e,t,n),u=k("size",e,t,n),p=k("binaryOutput",e,t,n);return[a.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ZH=(e,t,n,a=ln)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),s=k("axis",e,t,n),i=k("tensors",e,t,n);return i=i.slice(0,r),[a.concat(i,s)]}case"Gather":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gather(r,a.cast(s,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),s=k("batchDims",e,t,n),i=k("x",e,t,n),o=k("indices",e,t,n);return[a.gather(i,a.cast(o,"int32"),r,s)]}case"Reverse":{let r=k("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let i=k("x",e,t,n);return[a.reverse(i,s)]}case"ReverseV2":{let r=k("axis",e,t,n),s=k("x",e,t,n);return[a.reverse(s,r)]}case"Slice":{let r=k("begin",e,t,n),s=k("size",e,t,n);return[a.slice(k("x",e,t,n),r,s)]}case"StridedSlice":{let r=k("begin",e,t,n),s=k("end",e,t,n),i=k("strides",e,t,n),o=k("beginMask",e,t,n),l=k("endMask",e,t,n),u=k("ellipsisMask",e,t,n),p=k("newAxisMask",e,t,n),d=k("shrinkAxisMask",e,t,n),c=k("x",e,t,n);return[a.stridedSlice(c,r,s,i,o,l,u,p,d)]}case"Pack":return P(()=>{let r=k("axis",e,t,n),s=k("tensors",e,t,n),i=s[0].shape,o=a.squeeze(s[0]).shape,l=s.map(u=>{let p=v.arraysEqual(u.shape,i);if(!p&&!v.arraysEqual(a.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:a.reshape(u,i)});return[a.stack(l,r)]});case"Unpack":{let r=k("axis",e,t,n),s=k("tensor",e,t,n);return a.unstack(s,r)}case"Tile":{let r=k("reps",e,t,n);return[a.tile(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),s=k("numOrSizeSplits",e,t,n),i=k("x",e,t,n);return a.split(i,s,r)}case"ScatterNd":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("shape",e,t,n);return[a.scatterND(r,s,i)]}case"GatherNd":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gatherND(r,s)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),s=k("outputShape",e,t,n),i=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[a.sparseToDense(r,i,s,i.dtype===o.dtype?o:a.cast(o,i.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},JH=(e,t,n,a=ln)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=a.sparse.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=a.sparse.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[a.sparse.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[a.sparse.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},QH=(e,t,n,a=ln)=>{switch(e.op){case"FFT":return[a.fft(k("x",e,t,n))];case"IFFT":return[a.ifft(k("x",e,t,n))];case"RFFT":return[a.rfft(k("x",e,t,n))];case"IRFFT":return[a.irfft(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},e6=(e,t,n,a=ln)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=a.string.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=a.string.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[r,s,i]}case"StringToHashBucketFast":return[a.string.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},t6=(e,t,n,a=ln)=>{switch(e.op){case"Cast":return[a.cast(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[a.expandDims(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[a.squeeze(k("x",e,t,n),r)]}case"Reshape":return[a.reshape(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[a.mirrorPad(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[a.pad(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),s=k("paddings",e,t,n);return[a.spaceToBatchND(k("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),s=k("crops",e,t,n);return[a.batchToSpaceND(k("x",e,t,n),r,s)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),s=k("dataFormat",e,t,n).toUpperCase();return[a.depthToSpace(k("x",e,t,n),r,s)]}case"BroadcastTo":return[a.broadcastTo(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[a.broadcastArgs(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function _k(e,t,n,a,r=P){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>$H(i,o,l));case"basic_math":return r(()=>FH(i,o,l));case"control":return LH(i,o,l);case"convolution":return r(()=>zH(i,o,l));case"creation":return r(()=>BH(i,o,l));case"dynamic":return WH(i,o,l);case"evaluation":return r(()=>VH(i,o,l));case"image":return r(()=>jH(i,o,l));case"graph":return r(()=>UH(i,o,l));case"logical":return r(()=>qH(i,o,l));case"matrices":return r(()=>KH(i,o,l));case"normalization":return r(()=>XH(i,o,l));case"reduction":return r(()=>YH(i,o,l));case"slice_join":return r(()=>ZH(i,o,l));case"sparse":return r(()=>JH(i,o,l));case"spectral":return r(()=>QH(i,o,l));case"string":return r(()=>e6(i,o,l));case"transformation":return r(()=>t6(i,o,l));case"hash_table":return HH(i,o,l,a);case"custom":let u=jN(i.op);if(u&&u.customExecutor)return u.customExecutor(new AH(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var Ek=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Ak(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Kn(c)[0]),p=[];a!=null&&(p=a.map(c=>Kn(c.name)[0]));let d=[...t];for(;d.length>0;){let c=d.pop();if((m2(c)||i6(c)||o6(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&p.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function n6(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(p=>Kn(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{a.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{a.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{a.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(d=>{!l.has(d.name)&&a.has(d.name)&&d.inputs.every(c=>l.has(c.name))&&s.push(d)})}return u}var a6=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],r6=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],s6=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function m2(e){return a6.indexOf(e.op)>=0}function i6(e){return r6.indexOf(e.op)>=0}function o6(e){return s6.indexOf(e.op)>=0}var ex=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new ex(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=Ak(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return n6(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(p=>this.graph.nodes[Kn(p)[0]]),r=t.map(p=>Kn(p)[0]),s=r.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return P(()=>{let p=new Ek(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Kn(m),b=[];b[g]=e[m],d[f]=b});let c=this.getFrozenTensorIds(d),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!d[f.name]){let g=_k(f,d,p,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=g,this.checkTensorForDisposal(f.name,f,d,p,c,r,h)}}return this.parent==null&&p.dispose(c),t.map(m=>vn(m,d,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=uH(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];if(p===1){if(!this.keepTensorForDebug)u.dispose();else{let[d,c]=nr(t.name,a);this.intermediateTensors[d]?this.intermediateTensors[d][c]=u:(this.intermediateTensors[d]=[],this.intermediateTensors[d][c]=u)}delete i[u.id]}else p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=H().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new Ek(this.weightMap,a,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,n);let i=t.map(u=>vn(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(y=>this.graph.nodes[Kn(y)[0]]),i=n.map(y=>Kn(y)[0]),o=i.map(y=>this.graph.nodes[y]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:d}=Ak(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,w]=Kn(y),I=[];I[w]=e[y],h[x]=I});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let y=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(y)}p==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=o.filter(y=>!m2(y)&&!vn(y.name,h,t)).map(y=>y.name);if(b.length>0){let y="";throw p!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&k("isConstant",p.node,a,n)&&([d]=nr(p.node.name,n)),a[p.node.name]==null){let c=_k(p.node,a,n,this._resourceManager);d||([d]=nr(p.node.name,n));let h=n.currentContext;v.isPromise(c)?u.push(c.then(m=>(a[d]=m,n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=nr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!vn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!vn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Kn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Kn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Kn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},l6=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},u6="?tfjs-format=file",p6="model.json",y0=class{constructor(e,t={},n=Ut){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new l6}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new ex(Sk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Sk.Instance.transformGraph(e.modelInitializer);this.initializer=new ex(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let a=n instanceof Te?[n]:n,r={};return a.forEach((s,i)=>r[this.structuredOutputKeys[i]]=s),r}return n}normalizeInputs(e){if(!(e instanceof Te)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function c6(e,t={},n=Ut){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=h6(e));let a=new y0(e,t,n);return await a.load(),a}function d6(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(e instanceof Array){let[a,r]=e;if(!a)throw new Error("modelJSON must be the first element of the array");if(!r||!(r instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in a))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in a))throw new Error("Model JSON is missing 'weightsManifest'");let s=Ut.getWeightSpecs(a.weightsManifest),i=Ut.getModelArtifactsForJSONSync(a,s,r);t=Ut.fromMemorySync(i)}else if("load"in e)t=e;else if("modelTopology"in e&&"weightSpecs"in e&&"weightData"in e)t=Ut.fromMemorySync(e);else throw new Error("Unknown model format");let n=new y0(t);return n.load(),n}function h6(e){return e.endsWith("/")||(e=e+"/"),`${e}${p6}${u6}`}var m6="3.21.0",f2={};_e(f2,{CSVDataset:()=>S2,Dataset:()=>Du,FileDataSource:()=>$2,TextLineDataset:()=>I2,URLDataSource:()=>F2,array:()=>O6,csv:()=>K6,func:()=>X6,generator:()=>Y6,microphone:()=>J6,version_data:()=>Q6,webcam:()=>Z6,zip:()=>L6});var f6=ls(Gh()),g6=ls(Gh());function b6(e,t){return Rh(e,t)}function Rh(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(hl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=Rh(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function y6(e,t=b2){return g2(e,t)}function g2(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(hl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=g2(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function b2(e){return e===null?null:hl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function y2(e,t){let n=new Map;Rh(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(v.isPromise(r)){let s=await r;n.set(a,s)}}return Rh(e,t,n)}function hl(e){let t=!1;if(H().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=hI();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Te)&&!(e instanceof Promise)&&!t)}function x6(e){return e==null||v6(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Te||v.isTypedArray(e)}function v6(e){return e===null||typeof e!="object"&&typeof e!="function"}function w6(e){return b6(e,k6)}function k6(e){return e instanceof Te?{value:e.clone(),recurse:!1}:hl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var x2=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},x0=class extends x2{constructor(){super(x0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};x0.INITIAL_CAPACITY=32;function v2(e){return new T6(e)}function v0(e){return new N6(e)}function I6(e,t){return new w2(e,t)}function S6(e,t=Xr.FAIL){return new M6(e,t)}var en=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new D6(this,e)}filter(e){return new $6(this,e)}map(e){return new F6(this,e)}mapAsync(e){return new $k(this,e)}serialMapAsync(e){return new $k(this,e).serial()}flatmap(e){return new R6(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new A6(this,e,t)}columnMajorBatch(e,t=!0,n=b2){return this.rowMajorBatch(e,t).map(a=>y6(a,n))}concatenate(e,t){return new w2(v2([this,e]),t)}take(e){return e<0||e==null?this:new E6(this,e)}skip(e){return e<0||e==null?this:new _6(this,e)}prefetch(e){return new k2(this,e)}shuffle(e,t){return new P6(this,e,t)}serial(){return new C6(this)}},T6=class extends en{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:w6(e),done:!1}}},N6=class extends en{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},C6=class extends en{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},_6=class extends en{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;$e(e.value)}return this.upstream.next()}},E6=class extends en{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},A6=class extends en{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},$6=class extends en{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;$e(e.value)}}},F6=class extends en{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ba.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ba.getTensorsInContainer(n);for(let r of t)Ba.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},D6=class extends en{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},$k=class extends en{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ba.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ba.getTensorsInContainer(n);for(let r of t)Ba.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},w0=class extends en{constructor(){super(),this.outputQueue=new x0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},R6=class extends w0{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ba.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ba.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ba.isTensorInList(r,a)||r.dispose();return!0}},w2=class extends en{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Xr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Xr||(Xr={}));var M6=class extends en{constructor(e,t=Xr.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof en?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await y2(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Xr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Xr.SHORTEST:return{value:null,done:!0};case Xr.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},k2=class extends en{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new x2(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},P6=class extends k2{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=g6.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Du=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),qn(async()=>(await n.iterator()).columnMajorBatch(e,t,z6),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,qn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,qn(async()=>(await t.iterator()).filter(a=>P(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return qn(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return qn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return qn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,qn(async()=>{let a=v0(async()=>({value:await t.iterator(),done:!1}));return I6(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,qn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=f6.alea(t||v.now().toString());return qn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,qn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Du.MAX_BUFFER_SIZE=1e4;function qn(e,t=null){return new class extends Du{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function O6(e){return qn(async()=>v2(e),e.length)}function L6(e){if(!hl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return qn(async()=>{let n=await y2(e,a=>{if(a instanceof Du)return{value:a.iterator(),recurse:!1};if(hl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return S6(n,Xr.SHORTEST)},t)}function z6(e){if(e===null)return null;let t=e[0];return x6(t)?{value:B6(e),recurse:!1}:{value:null,recurse:!0}}function B6(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Te?Ft(e):On(e)}var I2=class extends Du{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Yd='"',Sp=Symbol("out"),Fk=Symbol("field"),Zd=Symbol("quote"),hy=Symbol("quoteafterquote"),Dk=Symbol("quoteinquote"),S2=class extends Du{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new I2(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Sp;for(let i=0;i<r;i++)switch(s){case Sp:switch(e.charAt(i)){case Yd:a=i+1,s=Zd;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Sp;break;default:s=Fk,a=i;break}break;case Fk:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Sp,a=i+1;break;default:}break;case Zd:switch(e.charAt(i)){case Yd:s=hy;break;default:}break;case hy:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Sp,a=i+1;break;case Yd:s=Zd;break;default:s=Dk;break}break;case Dk:switch(e.charAt(i)){case Yd:s=Zd;break;default:}break;default:}if(s===hy?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},T2=class extends en{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!H().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new T2(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),On(n,t)}},N2=class extends en{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ke([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ca([s,r,o,i],[1,4])}else this.cropBox=Ca([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!H().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new N2(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=co.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=hn(oe(e,"float32"),0),n;n=Ir.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return B(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},C2=class{},_2=class extends en{split(e){return new W6(this,e)}},W6=class extends _2{constructor(e,t){super(),this.upstream=e,this.impl=new V6(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},V6=class extends w0{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},U6=class extends en{decodeUTF8(){return new G6(this)}},G6=class extends _2{constructor(e){super(),this.upstream=e,this.impl=new H6(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},H6=class extends w0{constructor(e){if(super(),this.upstream=e,H().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=hI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return H().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},E2=class extends U6{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(H().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function j6(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=q6(e));let s=await(n||v.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new E2(i,t)}else throw new Error(s.statusText)}var q6=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function A2(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var $2=class extends C2{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(A2(this.input)&&H().get("IS_NODE")){let e=bx();this.input=e.readFileSync(this.input.slice(7))}return new E2(this.input,this.options)}},F2=class extends C2{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return A2(this.url)?new $2(this.url,this.fileOptions).iterator():j6(this.url,this.fileOptions)}};function K6(e,t={}){return new S2(new F2(e),t)}function X6(e){let t=v0(e);return qn(async()=>t)}function Y6(e){return qn(async()=>{let t=await e();return v0(()=>t.next())})}async function Z6(e,t){return N2.create(e,t)}async function J6(e){return T2.create(e)}var Q6="3.21.0";function ge(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var ej=pr.whereImpl,k0=class extends nc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Hh(this,Ja())}nextDataId(){return k0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,H().get("IS_NODE")&&N.warn(`
|
|
============================
|
|
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Pe(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,t)}makeOutput(e,t,n){return Ja().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ge([e],"where");let t=this.readSync(e.dataId);return ej(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};k0.nextDataId=0;var D2={};_e(D2,{addImpl:()=>P2,bincountImpl:()=>S0,bincountReduceImpl:()=>O2,castImpl:()=>M2,ceilImpl:()=>L2,concatImpl:()=>T0,equalImpl:()=>z2,expImpl:()=>W2,expm1Impl:()=>U2,floorImpl:()=>G2,gatherNdImpl:()=>H2,gatherV2Impl:()=>j2,greaterEqualImpl:()=>K2,greaterImpl:()=>q2,lessEqualImpl:()=>Y2,lessImpl:()=>X2,linSpaceImpl:()=>Z2,logImpl:()=>J2,maxImpl:()=>Q2,maximumImpl:()=>eC,minimumImpl:()=>tC,multiplyImpl:()=>N0,negImpl:()=>nC,notEqualImpl:()=>aC,prodImpl:()=>rC,raggedGatherImpl:()=>sC,raggedTensorToTensorImpl:()=>iC,rangeImpl:()=>_0,rsqrtImpl:()=>oC,scatterImpl:()=>Xo,sigmoidImpl:()=>Kj,simpleAbsImpl:()=>R2,sliceImpl:()=>Ph,sparseFillEmptyRowsImpl:()=>uC,sparseReshapeImpl:()=>pC,sparseSegmentReductionImpl:()=>E0,sqrtImpl:()=>Zj,squaredDifferenceImpl:()=>cC,stridedSliceImpl:()=>dC,stringNGramsImpl:()=>A0,stringSplitImpl:()=>$0,stringToHashBucketFastImpl:()=>F0,subImpl:()=>hC,tileImpl:()=>mC,topKImpl:()=>gC,transposeImpl:()=>C0,uniqueImpl:()=>bC});function R2(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var tj=e=>{let{x:t}=e.inputs,n=e.backend;ge(t,"abs");let a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=R2(r),n.makeOutput(a,t.shape,t.dtype)},nj={kernelName:xl,backendName:"cpu",kernelFunc:tj};function Vt(e){return(t,n,a,r,s)=>{let i=N.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),p=v.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=v.computeStrides(t),m=v.computeStrides(n),f=N.getBroadcastDims(t,i),g=N.getBroadcastDims(n,i);if(f.length+g.length===0)for(let b=0;b<p.length;++b)p[b]=e(a[b%a.length],r[b%r.length]);else for(let b=0;b<p.length;++b){let y=v.indexToLoc(b,o,l),x=y.slice(-d);f.forEach(C=>x[C]=0);let w=v.locToIndex(x,d,h),I=y.slice(-c);g.forEach(C=>I[C]=0);let T=v.locToIndex(I,c,m);p[b]=e(a[w],r[T])}return[p,i]}}function Xn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var aj={kernelName:Jh,backendName:"cpu",kernelFunc:Xn};function Mh(e,t,n="float32"){if(n==="complex64"){let r=Mh(e,t,"float32"),s=Mh(e,t,"float32");return Xn({inputs:{real:r,imag:s},backend:e})}let a=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function or(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var rj={kernelName:Di,backendName:"cpu",kernelFunc:or};function li(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var sj={kernelName:xm,backendName:"cpu",kernelFunc:li};function M2(e,t,n,a){if(a==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(a==="bool"){let r=v.toTypedArray([0],n),[s,i]=Vt((o,l)=>o!==l?1:0)(t,[],e,r,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${n} to ${a}`)}function is(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return or({inputs:{x:r},backend:n});let p=Mh(n,r.shape,r.dtype),d=is({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),c=Xn({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),c}if(r.dtype==="complex64"){let p=li({inputs:{input:r},backend:n}),d=is({inputs:{x:p},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(p),d}if(!v.hasEncodingLoss(r.dtype,s)){let p=or({inputs:{x:r},backend:n});return{dataId:p.dataId,shape:p.shape,dtype:s}}let i=n.data.get(r.dataId).values,[o,l,u]=M2(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}var ij={kernelName:yi,backendName:"cpu",kernelFunc:is};function tn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ge([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?N.fromUint8ToStringArray(u):u,c=i.dtype==="string"?N.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=is({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=is({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(b.dataId).values,w=l.data.get(y.dataId).values,[I,T,C]=n(i.shape,o.shape,h,m,x,w),E=l.makeTensorInfo(C,"float32",I),A=l.makeTensorInfo(C,"float32",T),R=Xn({inputs:{real:E,imag:A},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(A),R}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function I0(e){return(t,n,a,r,s,i)=>{let o=N.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,p=v.computeStrides(o),d=v.getTypedArrayFromDType("float32",l),c=v.getTypedArrayFromDType("float32",l),h=N.getBroadcastDims(t,o),m=N.getBroadcastDims(n,o),f=N.mergeRealAndImagArrays(a,r),g=N.mergeRealAndImagArrays(s,i),b=t.length,y=v.computeStrides(t),x=n.length,w=v.computeStrides(n);if(h.length+m.length===0)for(let I=0;I<d.length;I++){let T=I%f.length,C=I%g.length,E=e(f[T*2],f[T*2+1],g[C*2],g[C*2+1]);d[I]=E.real,c[I]=E.imag}else for(let I=0;I<d.length;I++){let T=v.indexToLoc(I,u,p),C=T.slice(-b);h.forEach(S=>C[S]=0);let E=v.locToIndex(C,b,y),A=T.slice(-x);m.forEach(S=>A[S]=0);let R=v.locToIndex(A,x,w),F=e(f[E*2],f[E*2+1],g[R*2],g[R*2+1]);d[I]=F.real,c[I]=F.imag}return[d,c,o]}}var P2=Vt((e,t)=>e+t),oj=I0((e,t,n,a)=>({real:e+n,imag:t+a})),ml=tn(ps,P2,oj),lj={kernelName:ps,backendName:"cpu",kernelFunc:ml};function S0(e,t,n,a,r){let s=v.sizeFromShape(a),i=v.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function O2(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Pe([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function ks(e){return(t,n,a)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function rt(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ge(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),p=n||i.dtype,d=v.getArrayFromDType(p,u);for(let c=0;c<u;++c)d[c]=t(l[c],r);return o.makeTensorInfo(i.shape,p,d)}}function Ru(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ge(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var L2=ks(e=>Math.ceil(e)),uj=Ru(xi,L2),pj={kernelName:xi,backendName:"cpu",kernelFunc:uj};function T0(e,t,n,a){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?N.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var z2=Vt((e,t)=>e===t?1:0),B2=tn(Ml,z2,null,"bool"),cj={kernelName:Ml,backendName:"cpu",kernelFunc:B2},W2=ks(e=>Math.exp(e)),V2=Ru(_i,W2,"float32"),dj={kernelName:_i,backendName:"cpu",kernelFunc:V2},U2=ks(e=>Math.expm1(e)),hj=Ru(Ol,U2),mj={kernelName:Ol,backendName:"cpu",kernelFunc:hj},G2=ks(e=>Math.floor(e)),fj=Ru(Ei,G2),gj={kernelName:Ei,backendName:"cpu",kernelFunc:fj};function H2(e,t,n,a,r,s,i,o,l){let u=Pe([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function j2(e,t,n){let a=Pe(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var q2=Vt((e,t)=>e>t?1:0),bj=tn(Wl,q2,null,"bool"),yj={kernelName:Wl,backendName:"cpu",kernelFunc:bj},K2=Vt((e,t)=>e>=t?1:0),xj=tn(Fi,K2,null,"bool"),vj={kernelName:Fi,backendName:"cpu",kernelFunc:xj},X2=Vt((e,t)=>e<t?1:0),wj=tn(Hl,X2,null,"bool"),kj={kernelName:Hl,backendName:"cpu",kernelFunc:wj},Y2=Vt((e,t)=>e<=t?1:0),Ij=tn(jl,Y2,null,"bool"),Sj={kernelName:jl,backendName:"cpu",kernelFunc:Ij};function Z2(e,t,n){let a=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var J2=ks(e=>Math.log(e)),Tj=Ru(Mi,J2),Nj={kernelName:Mi,backendName:"cpu",kernelFunc:Tj};function Q2(e,t,n,a){let r=v.getTypedArrayFromDType(a,v.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var eC=Vt((e,t)=>Math.max(e,t)),Cj=tn(Oi,eC),_j={kernelName:Oi,backendName:"cpu",kernelFunc:Cj},tC=Vt((e,t)=>Math.min(e,t)),Ej=tn(Wi,tC),Aj={kernelName:Wi,backendName:"cpu",kernelFunc:Ej},N0=Vt((e,t)=>e*t),$j=I0((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Af=tn(Ui,N0,$j),Fj={kernelName:Ui,backendName:"cpu",kernelFunc:Af};function nC(e,t,n){let a=v.createScalarValue(-1,n);return N0([],t,a,e,n)}function Dj(e){let{inputs:t,backend:n}=e,{x:a}=t;ge(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=nC(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var Rj={kernelName:Jl,backendName:"cpu",kernelFunc:Dj},aC=Vt((e,t)=>e!==t?1:0),Mj=tn(Ql,aC,null,"bool"),Pj={kernelName:Ql,backendName:"cpu",kernelFunc:Mj};function C0(e,t,n,a,r){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let p=0;p<i;++p){let d=v.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=v.locToIndex(c,s,l);u[h]=e[p]}return u}function Wn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ge(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=C0(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var Oj={kernelName:Tr,backendName:"cpu",kernelFunc:Wn};function rC(e,t,n,a){let[r,s]=N.computeOutAndReduceShapes(e,a),i=ha(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(r),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function Lj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"prod");let o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=N.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Wn({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=N.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=rC(d.shape,d.dtype,h,p),b=f;return i&&(b=N.expandShapeToKeepDim(f,l)),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,m)}var zj={kernelName:Ki,backendName:"cpu",kernelFunc:Lj};function Bj(e,t,n){e.forEach((a,r)=>{if(a<0||a>=n){let s=v.indexToLoc(r,t.length,v.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${a} is not in [0, ${n})`)}})}function Wj(e,t){for(let n=0;n<e.length;++n){let a=e[n],r=n===e.length-1?t:e[n+1].length;if(a.length===0)throw new Error("Ragged splits may not be empty");if(a[0]<0)throw new Error("Ragged splits must be non-negative");if(a[a.length-1]>r)throw new Error("Ragged splits must not point past values");for(let s=1;s<a.length;++s)if(a[s-1]>a[s])throw new Error("Ragged splits must be sorted in ascending order")}}function Vj(e,t,n,a){let r=[],s=0,i=t.length-1+n.length,o=new Array(i).fill(null).map(()=>[0]);Wj(n,a);let l=1;for(let u=0;u<t.length-1;++u){l*=t[u];let p=t[u+1];for(let d=1;d<l+1;++d)o[u].push(d*p)}for(let u=0;u<e.length;++u){let p=e[u],d=e[u]+1;for(let c=0;c<n.length;++c){let h=n[c],m=c+t.length-1;if(m>=0){let f=o[m],g=f[f.length-1]-h[p];for(let b=p;b<d;++b)o[m].push(h[b+1]+g)}p=h[p],d=h[d]}d!==p&&(r.push([p,d]),s+=d-p)}return{outSplits:o,valueSlices:r,numValues:s}}function Uj(e){let t=[];for(let n=0;n<e.length;++n){let a=e[n].length,r=v.getArrayFromDType("int32",a);t.push(r),e[n].forEach((s,i)=>r[i]=s)}return t}function Rk(e,t){let n=e.slice(0,t);for(;n.length<t;)n.push(1);for(let a=t;a<e.length;a++)n[t-1]*=e[a];return n}function Gj(e,t,n,a,r,s){let i=Rk(t,2)[1],o=Rk(s,2)[1],l=0;for(let u of n)for(let p=u[0];p<u[1];++p){for(let d=0;d<a;++d)r[l*o+d]=e[p*i+d];++l}}function Hj(e,t,n,a,r){let s=t.slice();s[0]=r;let i=v.getArrayFromDType(n,v.sizeFromShape(s)),o=e.length,l=o===0?0:o/t[0];return Gj(e,t,a,l,i,s),[i,s]}function sC(e,t,n,a,r,s,i,o){if(e.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let l=t[0][0]-1;if(Bj(s,i,l),a.length===0)throw new Error("params.rank must be nonzero");let u=a[0],{outSplits:p,valueSlices:d,numValues:c}=Vj(s,i,e,u),h=Uj(p),m=Hj(n,a,r,d,c);return[h,m[0],m[1]]}var ka=N.RowPartitionType,tx=class{constructor(e,t,n,a,r,s,i,o,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=a,this.valuesDType=r,this.defaultValue=s,this.defaultValueShape=i,this.rowPartitionValues=o,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=N.getRowPartitionTypesHelper(u),this.raggedRank=N.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===ka.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===ka.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case ka.VALUE_ROWIDS:return tx.getMaxWidthValueRowID(t);case ka.ROW_SPLITS:return tx.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${ka[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let a=0;a<t-1;++a){let r=e[a+1]-e[a];r>n&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,a=e[0],r=0;for(let s=1;s<t;++s){let i=e[s];i!==a&&(a=i,r=Math.max(s-n,r),n=s)}return Math.max(t-n,r)}tensorShapeFromTensor(e,t,n=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return Pk(e,n)}calculateOutputSize(e){let t=this.valuesShape,n=this.defaultValueShape;N.validateDefaultValueShape(n,t);let a=this.tensorShapeFromTensor(this.shape,this.shapeShape),r=N.combineRaggedTensorToTensorShapes(this.raggedRank,a,t);r[0]<0&&(r[0]=e);for(let s=1;s<=this.raggedRank;++s)r[s]<0&&(r[s]=this.getMaxWidth(s));return r}calculateFirstParentOutputIndex(e,t,n){let a=Math.min(e,n),r=[],s=0;for(let i=0;i<a;++i,s+=t)r.push(s);for(let i=a;i<e;++i)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,a){let r=e.length,s=[];for(let i=0;i<r-1;++i){let o=e[i+1]-e[i],l=Math.min(a,o),u=t[i];u===-1&&(l=0);for(let p=0;p<l;++p)s.push(u),u+=n;for(let p=0;p<o-l;++p)s.push(-1)}if(r>0&&s.length!==e[r-1])throw new Error("Invalid row split size.");return s}calculateOutputIndexValueRowID(e,t,n,a){let r=e.length,s=[];if(r===0)return[];let i=0,o=e[0];if(o>=t.length)throw new Error(`Got currentValueRowId=${o}, which is not less than ${t.length}`);let l=t[o];s.push(l);for(let u=1;u<r;++u){let p=e[u];if(p===o)l>=0&&(++i,i<a?l+=n:l=-1);else{if(i=0,o=p,p>=t.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${t.length}`);l=t[p]}s.push(l)}if(s.length!==e.length)throw new Error("Invalid row ids.");return s}calculateOutputIndex(e,t,n,a){let r=this.getRowPartitionTensor(e),s=this.getRowPartitionTypeByDimension(e);switch(s){case ka.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,a);case ka.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,a);default:throw new Error(`Unsupported partition type: ${ka[s]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case ka.FIRST_DIM_SIZE:return e[0];case ka.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case ka.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${ka[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),t=this.calculateOutputSize(e),n=new Array(this.raggedRank+1);n[n.length-1]=1;for(let s=n.length-2;s>=0;--s)n[s]=n[s+1]*t[s+1];let a=Pk(t,!1),r=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(a));if(n[0]*t[0]>0){let s=this.calculateFirstParentOutputIndex(e,n[0],t[0]);for(let i=1;i<=this.raggedRank;++i)s=this.calculateOutputIndex(i-1,s,n[i],t[i]);this.setOutput(this.raggedRank,s,r,a)}return[a,r]}setOutput(e,t,n,a){if(n.length===0)return;let r=this.values,s=n,i=a.slice();i=i.slice(e+1);let o=v.sizeFromShape(i),l=t.length,u=this.defaultValue;if(u.length!==o&&u.length!==1){let h=this.defaultValueShape;P(()=>{let m=B(u,h);u=Ks(m,i).dataSync()})}let p=0,d=0,c=0;for(let h=0;h<=l;++h){let m=h<l?t[h]:-1;if(m===c){++c;continue}if(d<c){let f=r.subarray(p*o),g=s.subarray(d*o),b=(c-d)*o;Mk(g,f,b)}if(h>=l){let f=n.length;m=Math.floor(f/o)}if(m>c)if(this.defaultValue.length===1)s.subarray(c*o,m*o).fill(this.defaultValue[0]),c=m;else for(;m>c;){let f=s.slice(c*o);Mk(f,u,o),++c}m<0?(p=h+1,d=c):(p=h,d=c,c=d+1)}}};function Mk(e,t,n){for(let a=0;a<n;a++)e[a]=t[a]}function Pk(e,t){let n=[];for(let a of e){if(a<0){if(!t)throw new Error(`Dimension ${a} must be >= 0`);if(a<-1)throw new Error(`Dimension ${a} must be >= -1`);a=-1}n.push(a)}return n}function iC(e,t,n,a,r,s,i,o,l,u){return new tx(e,t,n,a,r,s,i,o,l,u).compute()}function _0(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return v.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var oC=ks(e=>1/Math.sqrt(e)),jj=Ru(to,oC),qj={kernelName:to,backendName:"cpu",kernelFunc:jj};function Xo(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return Pe(n,t.dtype);let h=Pe(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let b=0;b<i;b++){let y=d[m*i+b];f.push(y),g+=y*o[b]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let b=0;b<r;b++)u?h.values[g*r+b]+=c[m*r+b]:h.values[g*r+b]=t.rank===0?c[0]:c[m*r+b]}return h}var Kj=ks(e=>1/(1+Math.exp(-e))),lC=rt(ao,e=>1/(1+Math.exp(-e))),Xj={kernelName:ao,backendName:"cpu",kernelFunc:lC};function Ph(e,t,n,a,r){let s=jt.isSliceContinous(a,t,n),i=v.sizeFromShape(n),o=v.computeStrides(a);if(s){let d=jt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?N.fromUint8ToStringArray(e):e,u=Pe(a,r,l),p=Pe(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?N.fromStringArrayToUint8(p.values):p.values}function ui(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ge(r,"slice");let[o,l]=jt.parseSliceParams(r,s,i);jt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=Ph(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var Yj={kernelName:pu,backendName:"cpu",kernelFunc:ui};function uC(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(n,0),b=v.getArrayFromDType(r,0);return[g,[0,d],b,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let b=e[g*d];if(b<0)throw new Error(N.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=l)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,l));++m[b],c=c&&b>=h,h=b}let f=!0;for(let g=0;g<l;++g){let b=m[g]===0;u[g]=b,f=f&&!b,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,b=a;for(let y=0;y<o;++y)p[y]=y;return[g,[o,d],b,u,p]}else{let g=m[l-1],b=v.getArrayFromDType(n,g*d),y=v.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let w=0;w<o;++w){let I=e[w*d],T=x[I],C=(I===0?0:m[I-1])+T;x[I]++;for(let E=0;E<d;++E)b[C*d+E]=e[w*d+E];y[C]=a[w],p[w]=C}for(let w=0;w<l;++w)if(x[w]===0){let I=w===0?0:m[w-1];b[I*d+0]=w;for(let T=1;T<d;++T)b[I*d+T]=0;y[I]=i}return[b,[g,d],y,u,p]}}function pC(e,t,n,a,r){let s=v.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(N.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(N.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(v.sizeFromShape(l)!==s)throw new Error(N.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=v.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let b=0;b<d;++b)g+=e[f*d+b]*c[b];for(let b=0;b<o;++b)m[f*o+b]=Math.trunc(g/h[b]),g%=h[b]}return[m,[i,o],l]}function E0(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((y,x)=>y*x,1),h=v.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,b=r[m];for(;;){let y=0;if(f<o){if(y=r[f],b===y){++f;continue}if(b>=y)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>g&&h.fill(i,g*u,b*u);for(let x=m;x<f;++x){let w=a[x];if(w<0||w>=l[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let I=0;I<u;I++)h[b*u+I]+=e[w*u+I]}if(s)for(let x=0;x<u;x++)h[b*u+x]/=f-m;if(m=f,++f,g=b+1,b=y,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var Zj=ks(e=>Math.sqrt(e)),Jj=rt(ro,e=>Math.sqrt(e)),Qj={kernelName:ro,backendName:"cpu",kernelFunc:Jj},cC=Vt((e,t)=>{let n=e-t;return n*n}),eq=tn(oo,cC),tq={kernelName:oo,backendName:"cpu",kernelFunc:eq};function dC(e,t,n,a){let r=Pe(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var nq=class{constructor(e,t,n,a,r,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let g=0;g<p;++g)c+=e[d+g].length;c+=u*this.rightPad.length,c+=(l+u+p-1)*this.separator.length,n[a+i]=new Uint8Array(c);let h=n[a+i],m=0,f=g=>g.forEach(b=>h[m++]=b);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<p-1;++g)f(e[d+g]),f(this.separator);if(p>0){f(e[d+p-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=v.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function A0(e,t,n,a,r,s,i,o){return new nq(n,a,r,s,i,o).compute(e,t)}function aq(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function $0(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;aq(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function F0(e,t){let n=v.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=v.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var hC=Vt((e,t)=>e-t),rq=I0((e,t,n,a)=>({real:e-n,imag:t-a})),D0=tn(lo,hC,rq),sq={kernelName:lo,backendName:"cpu",kernelFunc:D0};function mC(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Pe(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var Ep=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function fC(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));fC(e,t,c,h)}let r=e[t],s=n,i=a;for(v.swap(e,n,t),Ep(e[a],r)>0&&v.swap(e,n,a);s<i;){for(v.swap(e,s,i),s++,i--;Ep(e[s],r)<0;)s=s+1;for(;Ep(e[i],r)>0;)i=i-1}Ep(e[n],r)===0?v.swap(e,n,i):(i=i+1,v.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function gC(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*a),u=v.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((y,x)=>m[x]={value:y,index:x}),a<m.length&&(fC(m,a),m=m.slice(0,a)),r&&m.sort(Ep);let f=d*a,g=l.subarray(f,f+a),b=u.subarray(f,f+a);for(let y=0;y<a;y++)g[y]=m[y].value,b[y]=m[y].index}let p=t.slice();return p[p.length-1]=a,[Pe(p,n,l),Pe(p,"int32",u)]}function bC(e,t,n,a){let r=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Ht(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let g=[];for(let b=0;b<s[0];b++)for(let y=0;y<s[2];y++)g.push(l.get(b,m,y));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let d=s.slice();d[1]=Object.keys(i).length;let c=new Ht(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let b=0;b<s[2];b++)c.set(l.get(g,m,b),g,f,b)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}Cm("cpu",()=>new k0,1);var yC=rt(Ci,e=>e>=0?e:Math.exp(e)-1),iq={kernelName:Ci,backendName:"cpu",kernelFunc:yC};function xC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ge([r],"leakyRelu");let i=v.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var oq={kernelName:Ri,backendName:"cpu",kernelFunc:xC},lq=Vt((e,t)=>e<0?t*e:e);function vC(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ge([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=lq(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var uq={kernelName:qi,backendName:"cpu",kernelFunc:vC},wC=rt(Xi,e=>Math.max(0,e)),pq={kernelName:Xi,backendName:"cpu",kernelFunc:wC},kC=rt(Ji,e=>Math.min(Math.max(0,e),6)),cq={kernelName:Ji,backendName:"cpu",kernelFunc:kC};function Oh(e,t,n,a,r){if(n==="linear")return or({inputs:{x:t},backend:e});if(n==="relu")return wC({inputs:{x:t},backend:e});if(n==="elu")return yC({inputs:{x:t},backend:e});if(n==="relu6")return kC({inputs:{x:t},backend:e});if(n==="prelu")return vC({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return xC({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return lC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ft(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=v.sizeFromShape(r.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var dq={kernelName:iu,backendName:"cpu",kernelFunc:ft};function IC(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ge([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=Iu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=ft({inputs:{x:r},backend:n,attrs:{shape:x}}),T=ft({inputs:{x:s},backend:n,attrs:{shape:w}}),C=i?I.shape[1]:I.shape[2],E=i?I.shape[2]:I.shape[1],A=o?T.shape[1]:T.shape[2],R=Math.max(g,b),F=n.data.get(I.dataId).values,S=n.data.get(T.dataId).values,M=v.computeStrides(I.shape),W=v.computeStrides(T.shape),[U,G,q]=i?[M[0],1,M[1]]:[M[0],M[1],1],[K,Z,Q]=o?[1,W[1],W[0]]:[W[1],1,W[0]],ee=E*A,ae=Pe([R,E,A],I.dtype),te=ae.values,le=n.blockSize;for(let ie=0;ie<R;ie++)for(let be=0;be<E;be+=le)for(let ue=0;ue<A;ue+=le)for(let xe=0;xe<C;xe+=le){let Ie=Math.min(be+le,E),Se=Math.min(ue+le,A),Le=Math.min(xe+le,C);for(let Ve=be;Ve<Ie;Ve++)for(let tt=ue;tt<Se;tt++){let st=0;for(let Je=xe;Je<Le;Je++){let nt=Math.min(ie,g-1)*U,ze=Math.min(ie,b-1)*Q,dt=F[nt+Ve*G+Je*q],Hn=S[Je*K+tt*Z+ze];st+=dt*Hn}te[ie*ee+(Ve*A+tt)]+=st}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(y,ae.dtype,ae.values)}var hq={kernelName:bi,backendName:"cpu",kernelFunc:IC};function mq(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=IC({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=ml({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=Oh(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var fq={kernelName:Js,backendName:"cpu",kernelFunc:mq},gq=rt(vl,e=>Math.acos(e)),bq={kernelName:vl,backendName:"cpu",kernelFunc:gq},yq=rt(wl,e=>Math.acosh(e)),xq={kernelName:wl,backendName:"cpu",kernelFunc:yq};function vq(e){let{inputs:t,backend:n}=e,a=t;ge(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Pe(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var wq={kernelName:mi,backendName:"cpu",kernelFunc:vq};function kq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"all");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Wn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x&&I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=ft({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var Iq={kernelName:kl,backendName:"cpu",kernelFunc:kq};function Sq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"any");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Wn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x||I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=ft({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var Tq={kernelName:Il,backendName:"cpu",kernelFunc:Sq};function Nq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMax");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Wn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I>y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Cq={kernelName:fi,backendName:"cpu",kernelFunc:Nq};function _q(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMin");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Wn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I<y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Eq={kernelName:ac,backendName:"cpu",kernelFunc:_q},Aq=rt(Sl,e=>Math.asin(e)),$q={kernelName:Sl,backendName:"cpu",kernelFunc:Aq},Fq=rt(Tl,e=>Math.asinh(e)),Dq={kernelName:Tl,backendName:"cpu",kernelFunc:Fq},Rq=rt(Nl,e=>Math.atan(e)),Mq={kernelName:Nl,backendName:"cpu",kernelFunc:Rq},Pq=Vt((e,t)=>Math.atan2(e,t)),Oq=tn(_l,Pq),Lq={kernelName:_l,backendName:"cpu",kernelFunc:Oq},zq=rt(Cl,e=>Math.atanh(e)),Bq={kernelName:Cl,backendName:"cpu",kernelFunc:zq};function R0(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Pe(r.outShape,n),g=f.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let I=w*b,T=w*a[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let A=E*i-c,R=Math.max(0,A),F=Math.min(r.inHeight,p+A),S=I+E*y;for(let M=0;M<r.outWidth;++M){let W=M*o-h,U=Math.max(0,W),G=Math.min(r.inWidth,d+W),q=m,K=0,Z=0;for(let ee=R;ee<F;ee+=l){let ae=T+ee*a[1];for(let te=U;te<G;te+=u){let le=ae+te*a[2],ie=e[le+C];s==="max"&&ie>q?q=ie:s==="avg"&&(K+=ie,Z++)}if(isNaN(q))break}let Q=S+M*x+C;g[Q]=s==="avg"?K/Z:q}}}return f}function SC(e,t,n,a,r=!1,s=!1){let i=Pe(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Pe(t,n,e);for(let g=0;g<a.batchSize;++g)for(let b=0;b<a.inChannels;++b)for(let y=0;y<a.outHeight;++y){let x=y*o-h,w=x;for(;w<0;)w+=u;let I=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let C=T*l-m,E=C;for(;E<0;)E+=p;let A=Math.min(a.inWidth,c+C),R=Number.NEGATIVE_INFINITY,F=-1;for(let S=w;S<I;S+=u){let M=S-x;for(let W=E;W<A;W+=p){let U=W-C,G=f.get(g,S,W,b);G>R&&(R=G,r?F=s?((g*a.inHeight+S)*a.inWidth+W)*a.inChannels+b:(S*a.inWidth+W)*a.inChannels+b:F=M*c+U)}}i.set(F,g,y,T,b)}}return i}function TC(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,b=r.padInfo.left,y=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Pe(r.outShape,n),w=x.values,I=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let A=0;A<r.batchSize;++A){let R=A*I,F=A*a[0];for(let S=0;S<r.inChannels;++S)for(let M=0;M<r.outDepth;++M){let W=M*i-f,U=W;for(;U<0;)U+=u;let G=Math.min(r.inDepth,c+W),q=R+M*T;for(let K=0;K<r.outHeight;++K){let Z=K*o-g,Q=Z;for(;Q<0;)Q+=p;let ee=Math.min(r.inHeight,h+Z),ae=q+K*C;for(let te=0;te<r.outWidth;++te){let le=te*l-b,ie=le;for(;ie<0;)ie+=d;let be=Math.min(r.inWidth,m+le),ue=ae+te*E,xe=y,Ie=0,Se=0;for(let Ve=U;Ve<G;Ve+=u){let tt=F+Ve*a[1];for(let st=Q;st<ee;st+=p){let Je=tt+st*a[2];for(let nt=ie;nt<be;nt+=d){let ze=Je+nt*a[3],dt=e[ze+S];if(s==="max"&&dt>xe?xe=dt:s==="avg"&&(Ie+=dt,Se++),isNaN(xe))break}if(isNaN(xe))break}if(isNaN(xe))break}let Le=ue+S;w[Le]=s==="avg"?Ie/Se:xe}}}}return x}function Wq(e,t){let n=Pe(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*a-c,x=y;for(;x<0;)x+=i;let w=Math.min(t.inDepth,u+y);for(let I=0;I<t.outHeight;++I){let T=I*r-h,C=T;for(;C<0;)C+=o;let E=Math.min(t.inHeight,p+T);for(let A=0;A<t.outWidth;++A){let R=A*s-m,F=R;for(;F<0;)F+=l;let S=Math.min(t.inWidth,d+R),M=Number.NEGATIVE_INFINITY,W=-1;for(let U=x;U<w;U+=i){let G=U-y;for(let q=C;q<E;q+=o){let K=q-T;for(let Z=F;Z<S;Z+=l){let Q=Z-R,ee=e.get(f,U,q,Z,g);ee>=M&&(M=ee,W=G*p*d+K*p+Q)}}}n.set(W,f,b,I,A,g)}}}return n}function Vq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=or({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=R0(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var Uq={kernelName:gi,backendName:"cpu",kernelFunc:Vq};function Gq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"avgPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=TC(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var Hq={kernelName:rc,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"avgPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,b=p.dilationDepth,y=p.dilationHeight,x=p.dilationWidth,w=p.effectiveFilterDepth,I=p.effectiveFilterHeight,T=p.effectiveFilterWidth,C=w-1-p.padInfo.front,E=T-1-p.padInfo.left,A=I-1-p.padInfo.top,R=Pe(s.shape,"float32"),F=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let W=0;W<p.inChannels;++W)for(let U=0;U<p.inDepth;++U)for(let G=0;G<p.inHeight;++G)for(let q=0;q<p.inWidth;++q){let K=U-C,Z=G-A,Q=q-E,ee=0;for(let ae=0;ae<w;ae+=b){let te=(K+ae)/d;if(!(te<0||te>=p.outDepth||Math.floor(te)!==te))for(let le=0;le<I;le+=y){let ie=(Z+le)/c;if(!(ie<0||ie>=p.outHeight||Math.floor(ie)!==ie))for(let be=0;be<T;be+=x){let ue=(Q+be)/h;ue<0||ue>=p.outWidth||Math.floor(ue)!==ue||(ee+=S.get(M,te,ie,ue,W))}}}R.set(ee*F,M,U,G,q,W)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var qq={kernelName:Xh,backendName:"cpu",kernelFunc:jq};function Kq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ge([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,b=p.effectiveFilterHeight,y=p.effectiveFilterWidth,x=y-1-p.padInfo.left,w=b-1-p.padInfo.top,I=Pe(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,E=Pe(r.shape,"float32",C);for(let A=0;A<p.batchSize;++A)for(let R=0;R<p.inChannels;++R)for(let F=0;F<p.inHeight;++F)for(let S=0;S<p.inWidth;++S){let M=F-w,W=S-x,U=0;for(let G=0;G<b;G+=f){let q=(M+G)/d;if(!(q<0||q>=p.outHeight||Math.floor(q)!==q))for(let K=0;K<y;K+=g){let Z=(W+K)/c;Z<0||Z>=p.outWidth||Math.floor(Z)!==Z||(U+=E.get(A,q,Z,R))}}I.set(U*T,A,F,S,R)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var Xq={kernelName:Kh,backendName:"cpu",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ge([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,b=h.length,y=c.length,x=d.length,w=0,I=0,T=0,C=0;for(let E=0;E<p.length;++E)f[E]=m[w++]+(p[E]-d[I++])*h[T++]/Math.sqrt(c[C++]+u),w>=g&&(w=0),I>=x&&(I=0),T>=b&&(T=0),C>=y&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var Zq={kernelName:$i,backendName:"cpu",kernelFunc:Yq};function Jq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ge([r],"batchToSpaceND");let o=s.reduce((b,y)=>b*y),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=ft({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Wn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:p}}),g=ui({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var Qq={kernelName:El,backendName:"cpu",kernelFunc:Jq};function e5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=S0(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var t5={kernelName:Yh,backendName:"cpu",kernelFunc:e5};function n5(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var a5={kernelName:Zh,backendName:"cpu",kernelFunc:n5},r5=rt(cs,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),s5={kernelName:cs,backendName:"cpu",kernelFunc:r5},i5=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},o5={kernelName:sc,backendName:"cpu",kernelFunc:i5};function fl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var l5={kernelName:pm,backendName:"cpu",kernelFunc:fl};function gl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(f=>f.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(f=>v.sizeFromShape(f.shape)>0);if(l.length===1)return or({inputs:{x:l[0]},backend:n});if(l[0].dtype==="complex64"){let f=l.map(w=>li({inputs:{input:w},backend:n})),g=l.map(w=>fl({inputs:{input:w},backend:n})),b=gl({inputs:f,backend:n,attrs:{axis:s}}),y=gl({inputs:g,backend:n,attrs:{axis:s}}),x=Xn({inputs:{real:b,imag:y},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),x}let u=l.map(f=>{let g=v.sizeFromShape(f.shape.slice(s));return ft({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));o=N.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=T0(p,o,t[0].dtype,d),h=N.computeOutShape(l.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var u5={kernelName:Al,backendName:"cpu",kernelFunc:gl};function NC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;ge([r,s],"conv2d");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,b=c.padInfo.left,y=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new Ht(c.outShape,r.dtype),I=v.computeStrides(r.shape),T=v.computeStrides(s.shape),C=I[0],E=x?I[1]:I[2],A=x?I[2]:1,R=x?1:I[1],F=w.strides[0],S=x?w.strides[1]:w.strides[2],M=x?w.strides[2]:1,W=x?1:w.strides[1],U=n.data.get(r.dataId).values,G=n.data.get(s.dataId).values,q=w.values;for(let K=0;K<c.batchSize;++K){let Z=K*C,Q=K*F;for(let ee=0;ee<c.outHeight;++ee){let ae=Q+ee*S,te=ee*c.strideHeight-y;for(let le=0;le<h;++le){let ie=te+le*f;if(ie<0||ie>=c.inHeight)continue;let be=le*T[0],ue=Z+ie*E;for(let xe=0;xe<c.outWidth;++xe){let Ie=ae+xe*M,Se=xe*c.strideWidth-b;for(let Le=0;Le<m;++Le){let Ve=Se+Le*g;if(Ve<0||Ve>=c.inWidth)continue;let tt=be+Le*T[1],st=ue+Ve*A,Je=tt;for(let nt=0;nt<c.inChannels;++nt){let ze=U[st+nt*R];for(let dt=0;dt<c.outChannels;++dt)q[Ie+dt*W]+=ze*G[Je+dt];Je+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,q)}var p5={kernelName:vi,backendName:"cpu",kernelFunc:NC};function c5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"conv2dBackpropFilter");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,b=c.dataFormat==="channelsLast",y=new Ht(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=new Ht(r.shape,r.dtype,I),E=new Ht(s.shape,s.dtype,T);for(let A=0;A<f;++A){let R=Math.max(0,Math.ceil((w-A)/h)),F=Math.min(c.outHeight,(c.inHeight+w-A)/h);for(let S=0;S<g;++S){let M=Math.max(0,Math.ceil((x-S)/m)),W=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let U=0;U<c.inChannels;++U)for(let G=0;G<c.outChannels;++G){let q=0;for(let K=0;K<c.batchSize;++K)for(let Z=R;Z<F;++Z){let Q=A+Z*h-w;for(let ee=M;ee<W;++ee){let ae=S+ee*m-x;b?q+=C.get(K,Q,ae,U)*E.get(K,Z,ee,G):q+=C.get(K,U,Q,ae)*E.get(K,G,Z,ee)}}y.set(q,A,S,U,G)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var d5={kernelName:Qh,backendName:"cpu",kernelFunc:c5};function h5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;ge([r,s],"conv2dBackpropInput");let d=v.computeStrides(s.shape),c=v.computeStrides(r.shape),h=N.convertConv2DDataFormat(u),m=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new Ht(m.inShape,"float32"),g=f.values,b=n.data.get(r.dataId).values,y=n.data.get(s.dataId).values,[x,w,I]=d,{batchSize:T,filterHeight:C,filterWidth:E,inChannels:A,inHeight:R,inWidth:F,outChannels:S,outHeight:M,outWidth:W,strideHeight:U,strideWidth:G}=m;h=m.dataFormat;let q=C-1-m.padInfo.top,K=E-1-m.padInfo.left,Z=h==="channelsLast",Q=f.strides[0],ee=Z?f.strides[1]:f.strides[2],ae=Z?f.strides[2]:1,te=Z?1:f.strides[1],le=c[0],ie=Z?c[1]:c[2],be=Z?c[2]:1,ue=Z?1:c[1];for(let xe=0;xe<T;++xe)for(let Ie=0;Ie<A;++Ie)for(let Se=0;Se<R;++Se){let Le=Se-q,Ve=Math.max(0,Math.ceil(Le/U)),tt=Math.min(M,(C+Le)/U);for(let st=0;st<F;++st){let Je=st-K,nt=Math.max(0,Math.ceil(Je/G)),ze=Math.min(W,(E+Je)/G),dt=0;for(let Mt=Ve;Mt<tt;++Mt){let ra=Mt*U-Le;for(let rn=nt;rn<ze;++rn){let An=rn*G-Je,sa=le*xe+ie*Mt+be*rn,$n=x*(C-1-ra)+w*(E-1-An)+I*Ie;for(let it=0;it<S;++it){let Fn=b[sa+ue*it],jn=y[$n+it];dt+=Fn*jn}}}let Hn=Q*xe+ee*Se+ae*st+te*Ie;g[Hn]=dt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var m5={kernelName:wi,backendName:"cpu",kernelFunc:h5};function f5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ge([r,s],"conv3d");let u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,b=g.front,y=g.left,x=g.top,w=new Ht(u.outShape,r.dtype),I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=w.values,E=v.computeStrides(r.shape),A=v.computeStrides(s.shape);for(let R=0;R<u.batchSize;++R){let F=R*E[0],S=R*w.strides[0];for(let M=0;M<u.outDepth;++M){let W=S+M*w.strides[1],U=M*u.strideDepth-b;for(let G=0;G<p;++G){let q=U+G*h;if(q<0||q>=u.inDepth)continue;let K=G*A[0],Z=F+q*E[1];for(let Q=0;Q<u.outHeight;++Q){let ee=W+Q*w.strides[2],ae=Q*u.strideHeight-x;for(let te=0;te<d;++te){let le=ae+te*m;if(le<0||le>=u.inHeight)continue;let ie=K+te*A[1],be=Z+le*E[2];for(let ue=0;ue<u.outWidth;++ue){let xe=ee+ue*u.outChannels,Ie=ue*u.strideWidth-y;for(let Se=0;Se<c;++Se){let Le=Ie+Se*f;if(Le<0||Le>=u.inWidth)continue;let Ve=ie+Se*A[2],tt=be+Le*u.inChannels,st=Ve;for(let Je=0;Je<u.inChannels;++Je){let nt=I[tt+Je];for(let ze=0;ze<u.outChannels;++ze)C[xe+ze]+=nt*T[st+ze];st+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var g5={kernelName:ic,backendName:"cpu",kernelFunc:f5};function b5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ge([r,s],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,b=d.filterWidth,y=new Ht(d.filterShape,"float32"),x=y.values,[w,I,T,C]=y.strides,E=n.data.get(s.dataId).values,[A,R,F,S]=p,M=n.data.get(r.dataId).values,[W,U,G,q]=u,K=d.padInfo.front,Z=d.padInfo.left,Q=d.padInfo.top;for(let ee=0;ee<f;++ee){let ae=Math.max(0,Math.ceil((K-ee)/c)),te=Math.min(d.outDepth,(d.inDepth+K-ee)/c),le=ee*w;for(let ie=0;ie<g;++ie){let be=Math.max(0,Math.ceil((Q-ie)/h)),ue=Math.min(d.outHeight,(d.inHeight+Q-ie)/h),xe=ie*I+le;for(let Ie=0;Ie<b;++Ie){let Se=Math.max(0,Math.ceil((Z-Ie)/m)),Le=Math.min(d.outWidth,(d.inWidth+Z-Ie)/m),Ve=Ie*T+xe;for(let tt=0;tt<d.inChannels;++tt){let st=tt*C+Ve;for(let Je=0;Je<d.outChannels;++Je){let nt=0;for(let ze=0;ze<d.batchSize;++ze){let dt=ze*W,Hn=ze*A;for(let Mt=ae;Mt<te;++Mt){let ra=(ee+Mt*c-K)*U+dt,rn=Mt*R+Hn;for(let An=be;An<ue;++An){let sa=(ie+An*h-Q)*G+ra,$n=An*F+rn;for(let it=Se;it<Le;++it){let Fn=(Ie+it*m-Z)*q+sa,jn=it*S+$n;nt+=M[Fn+tt]*E[jn+Je]}}}}x[st+Je]=nt}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var y5={kernelName:em,backendName:"cpu",kernelFunc:b5};function x5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ge([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(l,s.shape,o,1,i),c=new Ht(d.inShape,"float32"),h=c.values,[m,f,g,b]=c.strides,y=n.data.get(r.dataId).values,[x,w,I,T]=u,C=n.data.get(s.dataId).values,[E,A,R,F]=p,{batchSize:S,filterDepth:M,filterHeight:W,filterWidth:U,inChannels:G,inDepth:q,inHeight:K,inWidth:Z,outChannels:Q,outDepth:ee,outHeight:ae,outWidth:te,strideDepth:le,strideHeight:ie,strideWidth:be}=d,ue=M-1-d.padInfo.front,xe=W-1-d.padInfo.top,Ie=U-1-d.padInfo.left;for(let Se=0;Se<S;++Se)for(let Le=0;Le<G;++Le)for(let Ve=0;Ve<q;++Ve){let tt=Ve-ue,st=Math.max(0,Math.ceil(tt/le)),Je=Math.min(ee,(M+tt)/le);for(let nt=0;nt<K;++nt){let ze=nt-xe,dt=Math.max(0,Math.ceil(ze/ie)),Hn=Math.min(ae,(W+ze)/ie);for(let Mt=0;Mt<Z;++Mt){let ra=Mt-Ie,rn=Math.max(0,Math.ceil(ra/be)),An=Math.min(te,(U+ra)/be),sa=0;for(let $n=st;$n<Je;++$n){let it=$n*le-tt;for(let Fn=dt;Fn<Hn;++Fn){let jn=Fn*ie-ze;for(let fr=rn;fr<An;++fr){let Ro=fr*be-ra,Ya=x*Se+w*$n+I*Fn+T*fr,dp=E*(M-1-it)+A*(W-1-jn)+R*(U-1-Ro)+F*Le;for(let va=0;va<Q;++va){let Mo=y[Ya+va],Xt=C[dp+va];sa+=Mo*Xt}}}}h[m*Se+f*Ve+g*nt+b*Mt+Le]=sa}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var v5={kernelName:tm,backendName:"cpu",kernelFunc:x5},w5=rt(ki,e=>Math.cos(e)),k5={kernelName:ki,backendName:"cpu",kernelFunc:w5},I5=rt(Ii,e=>Math.cosh(e)),S5={kernelName:Ii,backendName:"cpu",kernelFunc:I5};function T5(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,b=Pe([m,f,g,h],"float32"),y=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,I=v.computeStrides(r.shape),T=v.computeStrides(b.shape);for(let C=0;C<m;C++){let E=C*4,A=y[E],R=y[E+1],F=y[E+2],S=y[E+3],M=x[C];if(M>=p)continue;let W=f>1?(F-A)*(d-1)/(f-1):0,U=g>1?(S-R)*(c-1)/(g-1):0;for(let G=0;G<f;G++){let q=f>1?A*(d-1)+G*W:.5*(A+F)*(d-1);if(q<0||q>d-1){for(let K=0;K<g;K++)for(let Z=0;Z<h;Z++){let Q=Z+K*T[2]+G*T[1]+C*T[0];b.values[Q]=u}continue}if(l==="bilinear"){let K=Math.floor(q),Z=Math.ceil(q),Q=q-K;for(let ee=0;ee<g;ee++){let ae=g>1?R*(c-1)+ee*U:.5*(R+S)*(c-1);if(ae<0||ae>c-1){for(let be=0;be<h;be++){let ue=be+ee*T[2]+G*T[1]+C*T[0];b.values[ue]=u}continue}let te=Math.floor(ae),le=Math.ceil(ae),ie=ae-te;for(let be=0;be<h;be++){let ue=be+te*I[2]+K*I[1]+M*I[0],xe=w[ue];ue=be+le*I[2]+K*I[1]+M*I[0];let Ie=w[ue];ue=be+te*I[2]+Z*I[1]+M*I[0];let Se=w[ue];ue=be+le*I[2]+Z*I[1]+M*I[0];let Le=w[ue],Ve=xe+(Ie-xe)*ie,tt=Se+(Le-Se)*ie;ue=be+ee*T[2]+G*T[1]+C*T[0],b.values[ue]=Ve+(tt-Ve)*Q}}}else for(let K=0;K<g;++K){let Z=g>1?R*(c-1)+K*U:.5*(R+S)*(c-1);if(Z<0||Z>c-1){for(let ae=0;ae<h;ae++){let te=ae+K*T[2]+G*T[1]+C*T[0];b.values[te]=u}continue}let Q=Math.round(Z),ee=Math.round(q);for(let ae=0;ae<h;ae++){let te=ae+Q*I[2]+ee*I[1]+M*I[0],le=ae+K*T[2]+G*T[1]+C*T[0];b.values[le]=w[te]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var N5={kernelName:Fl,backendName:"cpu",kernelFunc:T5};function C5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumprod");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Wn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ha(u.dtype,"int32"),c=v.makeOnesTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?1:h[x];else{let w=f(b,y-1);c[x]=i?h[w]*c[w]:h[x]*c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=N.getUndoAxesPermutation(l),y=Wn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var _5={kernelName:$l,backendName:"cpu",kernelFunc:C5};function E5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumsum");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Wn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ha(u.dtype,"int32"),c=v.makeZerosTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?0:h[x];else{let w=f(b,y-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=N.getUndoAxesPermutation(l),y=Wn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var A5={kernelName:Si,backendName:"cpu",kernelFunc:E5};function $5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=S0(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=O2(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var F5={kernelName:nm,backendName:"cpu",kernelFunc:$5};function D5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let b=0;b<o;++b)for(let y=0;y<d;++y){let x=Math.floor(y/s),w=y%s;for(let I=0;I<c;++I){let T=Math.floor(I/s),C=I%s,E=(w*s+C)*h;for(let A=0;A<h;++A){let R=A+E+p*(T+u*(x+l*b));f[g++]=m[R]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var R5={kernelName:Dl,backendName:"cpu",kernelFunc:D5};function CC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ge([r,s],"depthwiseConv2DNative");let p=v.computeStrides(r.shape),d=v.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=N.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:b,padInfo:y}=h,x=y.left,w=y.top,I=h.outChannels/h.inChannels,T=new Ht(h.outShape,r.dtype),C=n.data.get(r.dataId).values,E=n.data.get(s.dataId).values,A=T.values;for(let R=0;R<h.batchSize;++R){let F=R*p[0],S=R*T.strides[0];for(let M=0;M<h.outHeight;++M){let W=S+M*T.strides[1],U=M*h.strideHeight-w;for(let G=0;G<m;++G){let q=U+G*g;if(q<0||q>=h.inHeight)continue;let K=G*d[0],Z=F+q*p[1];for(let Q=0;Q<h.outWidth;++Q){let ee=W+Q*T.strides[2],ae=Q*h.strideWidth-x;for(let te=0;te<f;++te){let le=ae+te*b;if(le<0||le>=h.inWidth)continue;let ie=K+te*d[1],be=Z+le*h.inChannels,ue=ee,xe=ie;for(let Ie=0;Ie<h.inChannels;++Ie){let Se=C[be+Ie];for(let Le=0;Le<I;++Le)A[ue+Le]+=Se*E[xe+Le];ue+=I,xe+=I}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var M5={kernelName:Ti,backendName:"cpu",kernelFunc:CC};function P5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"depthwiseConv2dNativeBackpropFilter");let d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new Ht(d.filterShape,"float32"),b=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,w=n.data.get(r.dataId).values,I=new Ht(r.shape,r.dtype,w),T=n.data.get(s.dataId).values,C=new Ht(s.shape,s.dtype,T);for(let E=0;E<m;++E){let A=Math.max(0,Math.ceil((y-E)/c)),R=Math.min(d.outHeight,(d.inHeight+y-E)/c);for(let F=0;F<f;++F){let S=Math.max(0,Math.ceil((b-F)/h)),M=Math.min(d.outWidth,(d.inWidth+b-F)/h);for(let W=0;W<d.outChannels;++W){let U=Math.trunc(W/x),G=W%x,q=0;for(let K=0;K<d.batchSize;++K)for(let Z=A;Z<R;++Z){let Q=E+Z*c-y;for(let ee=S;ee<M;++ee){let ae=F+ee*h-b;q+=I.get(K,Q,ae,U)*C.get(K,Z,ee,W)}}g.set(q,E,F,U,G)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var O5={kernelName:am,backendName:"cpu",kernelFunc:P5};function L5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;ge([r,s],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),c=v.computeStrides(s.shape),h=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new Ht(h.inShape,"float32"),f=m.values,[g,b,y]=m.strides,x=n.data.get(r.dataId).values,[w,I,T]=d,C=n.data.get(s.dataId).values,[E,A,R]=c,{batchSize:F,filterHeight:S,filterWidth:M,inChannels:W,inHeight:U,inWidth:G,outChannels:q,outHeight:K,outWidth:Z,strideHeight:Q,strideWidth:ee}=h,ae=S-1-h.padInfo.top,te=M-1-h.padInfo.left,le=q/W;for(let ie=0;ie<F;++ie)for(let be=0;be<W;++be)for(let ue=0;ue<U;++ue){let xe=ue-ae,Ie=Math.max(0,Math.ceil(xe/Q)),Se=Math.min(K,(S+xe)/Q);for(let Le=0;Le<G;++Le){let Ve=Le-te,tt=Math.max(0,Math.ceil(Ve/ee)),st=Math.min(Z,(M+Ve)/ee),Je=0;for(let nt=Ie;nt<Se;++nt){let ze=nt*Q-xe;for(let dt=tt;dt<st;++dt){let Hn=dt*ee-Ve,Mt=w*ie+I*nt+T*dt,ra=E*(S-1-ze)+A*(M-1-Hn)+R*be;for(let rn=0;rn<le;++rn){let An=be*le+rn,sa=x[Mt+An],$n=C[ra+rn];Je+=sa*$n}}}f[g*ie+b*ue+y*Le+be]=Je}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var z5={kernelName:rm,backendName:"cpu",kernelFunc:L5};function B5(e){let{inputs:t,backend:n}=e,{x:a}=t,r=v.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Pe([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var W5={kernelName:sm,backendName:"cpu",kernelFunc:B5},V5={kernelName:oc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:b,outWidth:y,padInfo:x,strideHeight:w,strideWidth:I,filterHeight:T,filterWidth:C,dilationHeight:E,dilationWidth:A,outShape:R}=N.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),F=v.sizeFromShape(R),S=R.length,M=v.getArrayFromDType(a.dtype,F);for(let W=0;W<h;++W)for(let U=0;U<b;++U){let G=U*w-x.top;for(let q=0;q<y;++q){let K=q*I-x.left;for(let Z=0;Z<g;++Z){let Q=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<T;++ae){let te=G+ae*E;if(te>=0&&te<m)for(let le=0;le<C;++le){let ie=K+le*A;if(ie>=0&&ie<f){let be=v.locToIndex([W,te,ie,Z],p,v.computeStrides(a.shape)),ue=v.locToIndex([ae,le,Z],c,v.computeStrides(r.shape)),xe=u[be]+d[ue];xe>Q&&(Q=xe)}}}let ee=v.locToIndex([W,U,q,Z],S,v.computeStrides(R));M[ee]=Q}}}return{dataId:l.write(v.toTypedArray(M,a.dtype),R,a.dtype),shape:R,dtype:a.dtype}}},U5={kernelName:gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:A}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===A.length,()=>`Error in ${gh}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let R=v.toNestedArray(A,u.data.get(s.dataId).values),F=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let W=M*x-y.top;for(let U=0;U<b;++U){let G=U*w-y.left;for(let q=0;q<f;++q){let K=Number.MIN_SAFE_INTEGER,Z=0,Q=0;for(let ee=0;ee<I;++ee){let ae=W+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let le=G+te*E;if(le>=0&&le<m){let ie=p[S][ae][le][q]+d[ee][te][q];ie>K&&(K=ie,Z=ee,Q=te)}}}F[Z][Q][q]+=R[S][M][U][q]}}}return{dataId:u.write(v.toTypedArray(F,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},G5={kernelName:fh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:A}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===A.length,()=>`Error in ${fh}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let R=v.toNestedArray(A,u.data.get(s.dataId).values),F=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let W=M*x-y.top;for(let U=0;U<b;++U){let G=U*w-y.left;for(let q=0;q<f;++q){let K=Number.MIN_SAFE_INTEGER,Z=W<0?0:W,Q=G<0?0:G;for(let ee=0;ee<I;++ee){let ae=W+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let le=G+te*E;if(le>=0&&le<m){let ie=p[S][ae][le][q]+d[ee][te][q];ie>K&&(K=ie,Z=ae,Q=le)}}}F[S][Z][Q][q]+=R[S][M][U][q]}}}return{dataId:u.write(v.toTypedArray(F,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function Jc(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"sum");let o;r.dtype==="bool"?o=is({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=or({inputs:{x:r},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),p=N.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Wn({inputs:{x:o},backend:n,attrs:{perm:p}}),d=N.getInnerMostAxes(d.length,l)),N.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=N.computeOutAndReduceShapes(c.shape,d),f=N.upcastType(c.dtype,"int32"),g=Mh(n,h,f),b=v.sizeFromShape(m),y=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<y.length;++w){let I=w*b,T=0;for(let C=0;C<b;++C)T+=x[I+C];y[w]=T}if(i){let w=N.expandShapeToKeepDim(g.shape,u),I=g;g=ft({inputs:{x:g},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(I)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var H5={kernelName:so,backendName:"cpu",kernelFunc:Jc};function j5(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(b)?x=s[g]:(x=Wn({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=ft({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=Af({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=Jc({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var q5={kernelName:im,backendName:"cpu",kernelFunc:j5};function K5(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ge([a,r],"eluGrad");let s=new Float32Array(v.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var X5={kernelName:om,backendName:"cpu",kernelFunc:K5},Y5=N.ERF_P,Z5=N.ERF_A1,J5=N.ERF_A2,Q5=N.ERF_A3,e8=N.ERF_A4,t8=N.ERF_A5,n8=rt(Rl,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+Y5*n);return t*(1-((((t8*a+e8)*a+Q5)*a+J5)*a+Z5)*a*Math.exp(-n*n))}),a8={kernelName:Rl,backendName:"cpu",kernelFunc:n8};function Lh(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ft({inputs:{x:r},backend:n,attrs:{shape:o}})}var r8={kernelName:Pl,backendName:"cpu",kernelFunc:Lh},s8=Vt((e,t)=>e/t),M0=tn(Ni,s8),nx={kernelName:Ni,backendName:"cpu",kernelFunc:M0};function _C(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=v.sizeFromShape(u),d=v.getTypedArrayFromDType("float32",p),c=v.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let b=ui({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),y=ui({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Xn({inputs:{real:b,imag:y},backend:n}),{real:w,imag:I}=i8(x,t,n),T=N.mergeRealAndImagArrays(w,I);for(let C=0;C<s;C++){let E=N.getComplexWithIndex(T,C);d[g*s+C]=E.real,c[g*s+C]=E.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Xn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function i8(e,t,n){let a=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(o8(a)){let o=ax(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),c=or({inputs:{x:d},backend:n}),h=nx.kernelFunc({inputs:{a:u,b:d},backend:n}),m=nx.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=N.mergeRealAndImagArrays(s,i),l=l8(o,a,t);return N.splitRealAndImagArrays(l)}}function o8(e){return(e&e-1)===0}function ax(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=N.mergeRealAndImagArrays(e,t),i=n/2,o=N.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Xn({inputs:{real:d,imag:c},backend:r}),m=N.complexWithOddIndex(s),f=m.real,g=m.imag,b=[f.length],y=r.makeTensorInfo(b,"float32",f),x=r.makeTensorInfo(b,"float32",g),w=Xn({inputs:{real:y,imag:x},backend:r}),I=ax(l,u,i,a,r),T=I.real,C=I.imag,E=[T.length],A=r.makeTensorInfo(E,"float32",T),R=r.makeTensorInfo(E,"float32",C),F=Xn({inputs:{real:A,imag:R},backend:r}),S=ax(f,g,i,a,r),M=S.real,W=S.imag,U=[M.length],G=r.makeTensorInfo(U,"float32",M),q=r.makeTensorInfo(U,"float32",W),K=Xn({inputs:{real:G,imag:q},backend:r}),Z=N.exponents(n,a),Q=[Z.real.length],ee=r.makeTensorInfo(Q,"float32",Z.real),ae=r.makeTensorInfo(Q,"float32",Z.imag),te=Xn({inputs:{real:ee,imag:ae},backend:r}),le=Af({inputs:{a:te,b:K},backend:r}),ie=ml({inputs:{a:F,b:le},backend:r}),be=D0({inputs:{a:F,b:le},backend:r}),ue=li({inputs:{input:ie},backend:r}),xe=li({inputs:{input:be},backend:r}),Ie=fl({inputs:{input:ie},backend:r}),Se=fl({inputs:{input:be},backend:r}),Le=gl({inputs:[ue,xe],backend:r,attrs:{axis:0}}),Ve=gl({inputs:[Ie,Se],backend:r,attrs:{axis:0}}),tt=r.data.get(Le.dataId).values,st=r.data.get(Ve.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo(xe),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(Le),r.disposeIntermediateTensorInfo(Ve),{real:tt,imag:st}}function l8(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=N.exponent(r*o,t,n),u=N.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),N.assignToTypedArray(a,s,i,r)}return a}function u8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ft({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=_C(o,!1,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var p8={kernelName:lm,backendName:"cpu",kernelFunc:u8};function P0(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||v.inferDtype(r),o=v.getArrayFromDType(i,v.sizeFromShape(a));return d8(o,r,i),t.makeTensorInfo(a,i,o)}var c8={kernelName:lc,backendName:"cpu",kernelFunc:P0};function d8(e,t,n){e.fill(t)}var h8={kernelName:Ll,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let b=0;b<u;b++){let y=Math.round(l-f-1),x=c+m+g+b,w=p[x];if(y>=0&&y<l){let I=y*u,T=c+m+I+b;w=p[T]}s[x]=w}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},m8=Vt((e,t)=>Math.floor(e/t)),f8=tn(Ai,m8,null,"int32"),g8={kernelName:Ai,backendName:"cpu",kernelFunc:f8};function b8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=NC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let b=ft({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=ml({inputs:{a:f,b},backend:n}),n.disposeIntermediateTensorInfo(b)}else f=ml({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let b=ft({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});f=Oh(n,f,h,b,m),n.disposeIntermediateTensorInfo(b)}else f=Oh(n,f,h,o,m);n.disposeIntermediateTensorInfo(g)}return f}var y8={kernelName:Qs,backendName:"cpu",kernelFunc:b8};function x8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=CC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=ml({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Oh(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var v8={kernelName:ei,backendName:"cpu",kernelFunc:x8};function w8(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=v.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=N.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=H2(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var k8={kernelName:Bl,backendName:"cpu",kernelFunc:w8};function I8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ge([r,s],"gatherV2");let l=v.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let w=0;w<u.length;++w){let I=u[w];v.assert(I<=p-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=v.sizeFromShape(s.shape),h=N.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=ft({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=ft({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],b=n.bufferSync(f),y=n.bufferSync(m),x=j2(y,b,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var S8={kernelName:zl,backendName:"cpu",kernelFunc:I8};function T8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ft({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=_C(o,!0,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var N8={kernelName:um,backendName:"cpu",kernelFunc:T8},C8=rt(Vl,e=>Number.isFinite(e)?1:0,"bool"),_8={kernelName:Vl,backendName:"cpu",kernelFunc:C8},E8=rt(Ul,e=>Math.abs(e)===1/0?1:0,"bool"),A8={kernelName:Ul,backendName:"cpu",kernelFunc:E8},$8=rt(Gl,e=>Number.isNaN(e)?1:0,"bool"),F8={kernelName:Gl,backendName:"cpu",kernelFunc:$8};function D8(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=Z2(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var R8={kernelName:cm,backendName:"cpu",kernelFunc:D8},M8=rt(ql,e=>Math.log1p(e)),P8={kernelName:ql,backendName:"cpu",kernelFunc:M8},O8=Vt((e,t)=>e&&t),L8=tn(Kl,O8,null,"bool"),z8={kernelName:Kl,backendName:"cpu",kernelFunc:L8},B8=rt(Xl,e=>e?0:1,"bool"),W8={kernelName:Xl,backendName:"cpu",kernelFunc:B8},V8=Vt((e,t)=>e||t),U8=tn(Yl,V8,null,"bool"),G8={kernelName:Yl,backendName:"cpu",kernelFunc:U8};function H8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ge(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,b=f-g+Math.max(0,g-s),y=f-g+Math.min(g+s,p),x=0;for(;b<=y;b++){let w=d[b];x+=w*w}return x}for(let f=0;f<c;f++){let g=m(f),b=d[f]*Math.pow(i+o*g,-l);h[f]=b}return n.makeTensorInfo(r.shape,r.dtype,h)}var j8={kernelName:uc,backendName:"cpu",kernelFunc:H8};function q8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;ge(i,"LRNGrad");let d=v.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),b=d;for(let y=0;y<b;y++){let x=y%c,w=y-x+Math.max(0,x-o),I=y-x+Math.min(c,x+o+1),T=0;for(let C=w;C<I;C++)T+=Math.pow(m[C],2);T=u*T+l;for(let C=w;C<I;C++){let E=-2*u*p*m[C]*f[y]/T;y===C&&(E+=Math.pow(T,-p)),E*=h[y],g[C]+=E}}return n.makeTensorInfo(i.shape,r.dtype,g)}var K8={kernelName:dm,backendName:"cpu",kernelFunc:q8};function EC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=v.parseAxisParam(s,l),d=p,c=N.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(u);for(let I=0;I<w.length;I++)w[I]=l[c[I]];h=C0(h,l,r.dtype,c,w),d=N.getInnerMostAxes(d.length,u),l=w}ge(r,"max"),N.assertAxesAreInnerMostDims("max",d,u);let[m,f]=N.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(f),b=Q2(h,g,m,r.dtype),y=o.write(b,m,r.dtype),x=m;return i&&(x=N.expandShapeToKeepDim(m,p)),{dataId:y,shape:x,dtype:r.dtype}}var X8={kernelName:Pi,backendName:"cpu",kernelFunc:EC};function Y8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=or({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=R0(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var Z8={kernelName:Li,backendName:"cpu",kernelFunc:Y8};function J8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"maxPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=TC(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var Q8={kernelName:pc,backendName:"cpu",kernelFunc:J8};function eK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"maxPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=Wq(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,b=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterDepth,w=p.effectiveFilterHeight,I=p.effectiveFilterWidth,T=x-1-p.padInfo.front,C=I-1-p.padInfo.left,E=w-1-p.padInfo.top,A=Pe(s.shape,"float32"),R=n.bufferSync(r);for(let F=0;F<p.batchSize;++F)for(let S=0;S<p.inChannels;++S)for(let M=0;M<p.inDepth;++M)for(let W=0;W<p.inHeight;++W)for(let U=0;U<p.inWidth;++U){let G=M-T,q=W-E,K=U-C,Z=0;for(let Q=0;Q<x;Q+=g){let ee=(G+Q)/h;if(!(ee<0||ee>=p.outDepth||Math.floor(ee)!==ee))for(let ae=0;ae<w;ae+=b){let te=(q+ae)/m;if(!(te<0||te>=p.outHeight||Math.floor(te)!==te))for(let le=0;le<I;le+=y){let ie=(K+le)/f;if(ie<0||ie>=p.outWidth||Math.floor(ie)!==ie)continue;let be=x*w*I-1-c.get(F,ee,te,ie,S),ue=Q*w*I+ae*I+le,xe=be===ue?1:0;xe!==0&&(Z+=R.get(F,ee,te,ie,S)*xe)}}}A.set(Z,F,M,W,U,S)}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var tK={kernelName:mm,backendName:"cpu",kernelFunc:eK};function nK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ge([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=Pe(c.outShape,o.dtype,SC(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,b=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,I=w-1-c.padInfo.left,T=x-1-c.padInfo.top,C=Pe(o.shape,"float32"),E=n.data.get(r.dataId).values,A=Pe(r.shape,"float32",E);for(let R=0;R<c.batchSize;++R)for(let F=0;F<c.inChannels;++F)for(let S=0;S<c.inHeight;++S)for(let M=0;M<c.inWidth;++M){let W=S-T,U=M-I,G=0;for(let q=0;q<x;q+=b){let K=(W+q)/f;if(!(K<0||K>=c.outHeight||Math.floor(K)!==K))for(let Z=0;Z<w;Z+=y){let Q=(U+Z)/g;if(Q<0||Q>=c.outWidth||Math.floor(Q)!==Q)continue;let ee=x*w-1-m.get(R,K,Q,F),ae=q*w+Z,te=ee===ae?1:0;te!==0&&(G+=A.get(R,K,Q,F)*te)}}C.set(G,R,S,M,F)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var aK={kernelName:hm,backendName:"cpu",kernelFunc:nK};function rK(e,t,n,a,r){let s=v.computeStrides(t),i=R0(e,t,n,s,r,"max"),o=SC(e,t,n,r,!0,a);return[i.values,o.values]}var sK={kernelName:fm,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ge(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=N.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=rK(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function iK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=v.parseAxisParam(s,r.shape),l=N.computeOutAndReduceShapes(r.shape,o)[1],u=v.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=is({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=M0({inputs:{a:c,b:d},backend:n});p.push(h);let m=Jc({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var oK={kernelName:zi,backendName:"cpu",kernelFunc:iK};function lK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"min");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Wn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];(Number.isNaN(I)||I<x)&&(x=I)}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=ft({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var uK={kernelName:Bi,backendName:"cpu",kernelFunc:lK};function pK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ge(r,"mirrorPad");let o=s.map((y,x)=>y[0]+r.shape[x]+y[1]),l=s.map(y=>y[0]),u=s.map((y,x)=>y[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=v.computeStrides(r.shape),m=v.sizeFromShape(o),f=o.length,g=v.computeStrides(o),b=v.getTypedArrayFromDType(r.dtype,m);for(let y=0;y<m;y++){let x=v.indexToLoc(y,f,g);for(let I=0;I<f;I++)x[I]<l[I]?x[I]=l[I]*2-x[I]-p:x[I]>=u[I]&&(x[I]=(u[I]-1)*2-x[I]+p);x=x.map((I,T)=>I-l[T]);let w=v.locToIndex(x,c,h);b[y]=d[w]}return{dataId:n.write(b,o,r.dtype),shape:o,dtype:r.dtype}}var cK={kernelName:Vi,backendName:"cpu",kernelFunc:pK},dK=Vt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),hK=tn(Zl,dK),mK={kernelName:Zl,backendName:"cpu",kernelFunc:hK},fK=ls(Gh());function AC(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],r.shape),u=EC({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=N.expandShapeToKeepDim(u.shape,l),d=ft({inputs:{x:u},backend:n,attrs:{shape:p}}),c=D0({inputs:{a:r,b:d},backend:n}),h=V2({inputs:{x:c},backend:n}),m=Jc({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:p}}),g=M0({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var gK={kernelName:io,backendName:"cpu",kernelFunc:AC};function bK(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ge(r,"multinomial");let l=o?r:AC({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=v.makeZerosTypedArray(v.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let b=fK.alea(i.toString()),y=m*s;for(let x=0;x<s;++x){let w=b();h[y+x]=g.length;for(let I=0;I<g.length;I++)if(w<g[I]){h[y+x]=I;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var yK={kernelName:gm,backendName:"cpu",kernelFunc:bK},xK=pr.nonMaxSuppressionV3Impl;function vK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ge(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=xK(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var wK={kernelName:eu,backendName:"cpu",kernelFunc:vK},kK=pr.nonMaxSuppressionV4Impl;function IK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ge(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=kK(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var SK={kernelName:tu,backendName:"cpu",kernelFunc:IK},TK=pr.nonMaxSuppressionV5Impl;function NK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ge(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=TK(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var CK={kernelName:nu,backendName:"cpu",kernelFunc:NK};function _K(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a;ge(r,"oneHot");let u=v.sizeFromShape(r.shape),p=new Float32Array(u*i);p.fill(l);let d=n.data.get(r.dataId).values;for(let c=0;c<u;++c)d[c]>=0&&d[c]<i&&(p[c*i+d[c]]=o);return n.makeTensorInfo([...r.shape,i],s,p)}var EK={kernelName:Gi,backendName:"cpu",kernelFunc:_K};function zh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=li({inputs:{input:a},backend:n}),s=zh({inputs:{x:r},backend:n}),i=fl({inputs:{input:a},backend:n}),o=zh({inputs:{x:i},backend:n}),l=Xn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return P0({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var AK={kernelName:wu,backendName:"cpu",kernelFunc:zh};function $C(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=li({inputs:{input:a},backend:n}),s=$C({inputs:{x:r},backend:n}),i=fl({inputs:{input:a},backend:n}),o=zh({inputs:{x:i},backend:n}),l=Xn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return P0({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var $K={kernelName:au,backendName:"cpu",kernelFunc:$C};function FC(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Lh({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Lh({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=gl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var FK={kernelName:ru,backendName:"cpu",kernelFunc:FC};function DK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ge(r,"pad");let o=s.map((b,y)=>b[0]+r.shape[y]+b[1]),l=s.map(b=>b[0]),u=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),d=r.shape.length,c=v.computeStrides(r.shape),h=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),g=v.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let b=0;b<p;b++){let y=v.indexToLoc(b,d,c).map((w,I)=>w+l[I]),x=v.locToIndex(y,m,f);g[x]=u[b]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var DC={kernelName:Hi,backendName:"cpu",kernelFunc:DK},RK=Vt((e,t)=>Math.pow(e,t)),MK=tn(ji,RK),PK={kernelName:ji,backendName:"cpu",kernelFunc:MK};function OK(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(b=>n.data.get(b.dataId).values),u=r.map(b=>b.shape),p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,[c,h,m]=sC(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(b=>n.makeTensorInfo([b.length],"int32",b)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var LK={kernelName:bm,backendName:"cpu",kernelFunc:OK};function zK(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,c=o.map(g=>n.data.get(g.dataId).values),h=o.map(g=>g.shape),[m,f]=iC(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var BK={kernelName:ym,backendName:"cpu",kernelFunc:zK};function WK(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=_0(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var VK={kernelName:cc,backendName:"cpu",kernelFunc:WK},UK=rt(su,e=>1/e),GK={kernelName:su,backendName:"cpu",kernelFunc:UK};function HK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,u,p,m])),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,w=b[0]/y[0],I=b[1]/y[1];for(let T=0;T<d;T++)for(let C=0;C<u;C++){let E;i?E=w*(C+.5)-.5:E=w*C;let A=Math.max(0,Math.floor(E)),R=E-A,F=Math.min(c-1,Math.ceil(E)),S=T*l[0]+A*l[1],M=T*l[0]+F*l[1];for(let W=0;W<p;W++){let U;i?U=I*(W+.5)-.5:U=I*W;let G=Math.max(0,Math.floor(U)),q=U-G,K=Math.min(h-1,Math.ceil(U)),Z=S+G*l[2],Q=M+G*l[2],ee=S+K*l[2],ae=M+K*l[2];for(let te=0;te<m;te++){let le=f[Z+te],ie=f[Q+te],be=f[ee+te],ue=f[ae+te],xe=le+(be-le)*q,Ie=ie+(ue-ie)*q,Se=xe+(Ie-xe)*R;g[x++]=Se}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var jK={kernelName:Zi,backendName:"cpu",kernelFunc:HK};function qK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeBilinearGrad");let o=v.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],b=f[0]/g[0],y=f[1]/g[1],x=n.data.get(s.dataId).values,w=0;for(let I=0;I<l;I++){let T=I*o[0];for(let C=0;C<c;C++){let E=C*b,A=Math.floor(E),R=Math.min(Math.ceil(E),u-1),F=T+A*o[1],S=T+R*o[1],M=E-A,W=1-M;for(let U=0;U<h;U++){let G=U*y,q=Math.floor(G),K=Math.min(Math.ceil(G),p-1),Z=G-q,Q=1-Z,ee=F+q*o[2],ae=F+K*o[2],te=S+q*o[2],le=S+K*o[2],ie=W*Q,be=W*Z,ue=M*Q,xe=M*Z;for(let Ie=0;Ie<d;Ie++){let Se=x[w++];m[ee+Ie]+=Se*ie,m[ae+Ie]+=Se*be,m[te+Ie]+=Se*ue,m[le+Ie]+=Se*xe}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var KK={kernelName:wm,backendName:"cpu",kernelFunc:qK};function XK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=b[0]/y[0],w=b[1]/y[1],I=0;for(let T=0;T<d;T++){let C=T*l[0];for(let E=0;E<u;E++){let A=i?x*(E+.5):x*E,R=Math.min(c-1,s?Math.round(A):Math.floor(A));i&&(R=Math.max(0,R));let F=C+R*l[1];for(let S=0;S<p;S++){let M=i?w*(S+.5):w*S,W=Math.min(h-1,s?Math.round(M):Math.floor(M));i&&(W=Math.max(0,W));let U=F+W*l[2];for(let G=0;G<m;G++){let q=f[U+G];g[I++]=q}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var YK={kernelName:Yi,backendName:"cpu",kernelFunc:XK};function ZK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeNearestNeighborGrad");let o=v.computeStrides(r.shape),l=v.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,b=[i&&h>1?p-1:p,i&&m>1?d-1:d],y=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=b[0]/y[0],w=b[1]/y[1],I=1/x,T=1/w,C=Math.ceil(I)*2+2,E=Math.ceil(T)*2+2;for(let A=0;A<u;A++){let R=A*o[0];for(let F=0;F<p;F++){let S=R+F*o[1],M=Math.floor(F*I),W=Math.floor(M-C/2);for(let U=0;U<d;U++){let G=S+U*o[2],q=Math.floor(U*T),K=Math.floor(q-E/2);for(let Z=0;Z<c;Z++){let Q=0;for(let ee=0;ee<C;ee++){let ae=ee+W;if(ae<0||ae>=h)continue;let te=R+ae*l[1],le=ae*x,ie=Math.min(p-1,i?Math.round(le):Math.floor(le));if(F===ie)for(let be=0;be<E;be++){let ue=be+K;if(ue<0||ue>=m)continue;let xe=te+ue*l[2],Ie=ue*w,Se=Math.min(d-1,i?Math.round(Ie):Math.floor(Ie));U===Se&&(Q+=g[xe+Z])}}f[G+Z]=Q}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var JK={kernelName:vm,backendName:"cpu",kernelFunc:ZK};function QK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ge(r,"reverse");let i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return or({inputs:{x:r},backend:n});let l=new Ht(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var eX={kernelName:Qi,backendName:"cpu",kernelFunc:QK},tX={kernelName:ku,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=N.getImageCenter(i,p,d),f=255,g=Math.sin(r),b=Math.cos(r),y=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let w=x*d*p*c;for(let I=0;I<p;I++){let T=I*(d*c);for(let C=0;C<d;C++){let E=C*c;for(let A=0;A<c;A++){let R=[u,I,C,A],F=R[2],S=R[1],M=(F-h)*b-(S-m)*g,W=(F-h)*g+(S-m)*b;M=Math.round(M+h),W=Math.round(W+m);let U=s;if(typeof s!="number"&&(A===3?U=f:U=s[A]),M>=0&&M<d&&W>=0&&W<p){let q=W*(d*c),K=M*c,Z=w+q+K+A;U=y[Z]}let G=w+T+E+A;l[G]=U}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},nX=rt(eo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),aX={kernelName:eo,backendName:"cpu",kernelFunc:nX};function rX(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=Xo(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var sX={kernelName:ou,backendName:"cpu",kernelFunc:rX};function iX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<t?n=r+1:a=r;return a}function oX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<=t?n=r+1:a=r;return a}function lX(e,t,n,a,r,s){let i=v.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let l=e.slice(o*a,(o+1)*a),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?iX(l,t[p+u]):oX(l,t[p+u])}return i}function uX(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=lX(o,l,r.shape[0],r.shape[1],s.shape[1],i);return n.makeTensorInfo(s.shape,"int32",u)}var pX={kernelName:km,backendName:"cpu",kernelFunc:uX};function cX(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ge([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=ha(r.dtype,s.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var dX={kernelName:lu,backendName:"cpu",kernelFunc:cX},hX=N.SELU_SCALEALPHA,mX=N.SELU_SCALE,fX=rt(uu,e=>e>=0?mX*e:hX*(Math.exp(e)-1)),gX={kernelName:uu,backendName:"cpu",kernelFunc:fX},bX=rt(du,e=>e<0?-1:e>0?1:0),yX={kernelName:du,backendName:"cpu",kernelFunc:bX},xX=rt(no,e=>Math.sin(e)),vX={kernelName:no,backendName:"cpu",kernelFunc:xX},wX=rt(cu,e=>Math.sinh(e)),kX={kernelName:cu,backendName:"cpu",kernelFunc:wX},IX=11920928955078125e-23,Ok=Math.log(IX)+2,SX=rt(hu,e=>{let t=e>-Ok,n=e<Ok,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),TX={kernelName:hu,backendName:"cpu",kernelFunc:SX};function NX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ge([r],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=DC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=ft({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Wn({inputs:{x:h},backend:n,attrs:{perm:d}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var CX={kernelName:mu,backendName:"cpu",kernelFunc:NX};function _X(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=uC(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var EX={kernelName:dc,backendName:"cpu",kernelFunc:_X};function AX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=pC(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var $X={kernelName:gu,backendName:"cpu",kernelFunc:AX};function FX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=E0(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var DX={kernelName:hc,backendName:"cpu",kernelFunc:FX};function RX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=E0(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var MX={kernelName:mc,backendName:"cpu",kernelFunc:RX};function PX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),b=Boolean(n.data.get(i.dataId).values[0]);f=Xo(m,g,o,c,p,u,l,d,b,h);break}case"float32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=Xo(m,g,o,c,p,u,l,d,b,h);break}case"int32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=Xo(m,g,o,c,p,u,l,d,b,h);break}case"string":{let g=n.bufferSync(s),b=v.decodeString(n.data.get(i.dataId).values[0]);f=Xo(m,g,o,c,p,u,l,d,b,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var OX={kernelName:Im,backendName:"cpu",kernelFunc:PX};function LX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=ui({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var zX={kernelName:fu,backendName:"cpu",kernelFunc:LX},BX={kernelName:fc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ge(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},WX=rt(hs,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),VX={kernelName:hs,backendName:"cpu",kernelFunc:WX};function UX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;ge(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=jt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=ft({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=jt.computeOutShape(y,x,w),C=ui({inputs:{x:r},backend:n,attrs:{begin:y,size:T}});I=ft({inputs:{x:C},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(r),C=dC(h,T,w,y);I=n.makeTensorInfo(m,C.dtype,C.values)}return I}var GX={kernelName:bu,backendName:"cpu",kernelFunc:UX};function HX(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=A0(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var jX={kernelName:gc,backendName:"cpu",kernelFunc:HX};function qX(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=$0(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var KX={kernelName:bc,backendName:"cpu",kernelFunc:qX};function XX(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=F0(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var YX={kernelName:yc,backendName:"cpu",kernelFunc:XX},ZX=rt(uo,e=>Math.tan(e)),JX={kernelName:uo,backendName:"cpu",kernelFunc:ZX},QX=rt(po,e=>Math.tanh(e)),eY={kernelName:po,backendName:"cpu",kernelFunc:QX};function tY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ge(r,"tile");let i=mC(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var nY={kernelName:ds,backendName:"cpu",kernelFunc:tY};function aY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ge(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=gC(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var rY={kernelName:yu,backendName:"cpu",kernelFunc:aY};function sY(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=v.computeStrides(r.shape),y=b[0],x=b[1],w=b[2],I=v.computeStrides(g),T=I[0],C=I[1],E=I[2],A=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));A.fill(l);let R=a.data.get(r.dataId).values,F=a.data.get(s.dataId).values;for(let S=0;S<p;++S){let M=s.shape[0]===1?F:F.subarray(S*8,S*8+8);for(let W=0;W<m;++W)for(let U=0;U<f;++U)for(let G=0;G<h;++G){let q,K=M[6]*U+M[7]*W+1;if(K===0)continue;let Z=(M[0]*U+M[1]*W+M[2])/K,Q=(M[3]*U+M[4]*W+M[5])/K,ee=Lk(Z,c,o),ae=Lk(Q,d,o);switch(i){case"nearest":q=cY(R,d,c,y,x,w,S,ae,ee,G,l);break;case"bilinear":q=dY(R,d,c,y,x,w,S,ae,ee,G,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let te=S*T+W*C+U*E+G;A[te]=q}return a.makeTensorInfo(g,r.dtype,A)}return{dataId:a.write(A,g,r.dtype),shape:r.shape,dtype:r.dtype}}var iY={kernelName:xu,backendName:"cpu",kernelFunc:sY};function Lk(e,t,n){switch(n){case"reflect":return oY(e,t);case"wrap":return lY(e,t);case"nearest":return pY(e,t);case"constant":default:return uY(e,t)}}function oY(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return v.clamp(0,n,t-1)}function lY(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return v.clamp(0,n,t-1)}function uY(e,t){return e}function pY(e,t){return v.clamp(0,e,t-1)}function Ap(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function cY(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return Ap(e,t,n,a,r,s,i,d,c,u,p)}function dY(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*Ap(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*Ap(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*Ap(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*Ap(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function hY(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ge(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=bC(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var mY={kernelName:Sm,backendName:"cpu",kernelFunc:hY};function fY(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=ui({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=ft({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var gY={kernelName:vu,backendName:"cpu",kernelFunc:fY};function bY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ge(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=Lh({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),b=B2({inputs:{a:g,b:c},backend:n}),y=is({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),x=Af({inputs:{a:y,b:r},backend:n}),w=Jc({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),p.push(g),p.push(b),p.push(y),p.push(x),p.push(w)}let h=FC({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var yY={kernelName:xc,backendName:"cpu",kernelFunc:bY},xY=[fq,nj,bq,xq,lj,wq,Iq,Tq,Cq,Eq,$q,Dq,Mq,Lq,Bq,Uq,Hq,qq,Xq,hq,Zq,Qq,t5,a5,ij,pj,s5,aj,o5,u5,p5,d5,m5,g5,y5,v5,k5,S5,N5,_5,A5,F5,R5,M5,O5,z5,W5,V5,U5,G5,q5,iq,X5,cj,a8,dj,r8,mj,p8,c8,h8,gj,g8,y8,v8,k8,S8,yj,vj,rj,N8,l5,_8,A8,F8,oq,kj,Sj,R8,Nj,P8,z8,W8,G8,j8,K8,X8,_j,Z8,Q8,tK,aK,sK,oK,uK,Aj,cK,mK,yK,Fj,Rj,wK,SK,CK,Pj,EK,$K,FK,DC,PK,uq,zj,LK,BK,VK,sj,nx,GK,pq,cq,dq,jK,KK,YK,JK,eX,tX,aX,qj,sX,pX,dX,gX,Xj,yX,vX,kX,Yj,gK,TX,CX,EX,$X,DX,MX,OX,zX,Qj,BX,tq,VX,GX,jX,KX,YX,sq,H5,JX,eY,nY,rY,iY,Oj,mY,gY,yY,AK];for(let e of xY)vc(e);var RC={};_e(RC,{assertNotComplex:()=>Pu,bindCanvasToFramebuffer:()=>AY,bindColorTextureToFramebuffer:()=>ih,bindTextureToProgramUniformSampler:()=>YC,bindTextureUnit:()=>qC,bindVertexBufferToProgramAttribute:()=>rx,callAndCheck:()=>me,canBeRepresented:()=>PC,createFragmentShader:()=>zC,createFramebuffer:()=>jC,createProgram:()=>BC,createStaticIndexBuffer:()=>UC,createStaticVertexBuffer:()=>VC,createTexture:()=>GC,createVertexShader:()=>LC,getBatchDim:()=>pi,getExtensionOrThrow:()=>$p,getFramebufferErrorMessage:()=>ZC,getMaxTexturesInShader:()=>t_,getNumChannels:()=>_Y,getProgramUniformLocation:()=>XC,getProgramUniformLocationOrThrow:()=>KC,getRowsCols:()=>ci,getShapeAs3D:()=>oh,getTextureShapeFromLogicalShape:()=>QC,getWebGLDisjointQueryTimerVersion:()=>n_,getWebGLErrorMessage:()=>OC,getWebGLMaxTextureSize:()=>e_,hasExtension:()=>ca,isCapableOfRenderingToFloatTexture:()=>a_,isDownloadFloatTextureEnabled:()=>r_,isReshapeFree:()=>Zp,isWebGLFenceEnabled:()=>s_,isWebGLVersionEnabled:()=>ix,linkProgram:()=>WC,logShaderSourceAndInfoLog:()=>L0,resetMaxTextureSize:()=>$Y,resetMaxTexturesInShader:()=>FY,unbindColorTextureFromFramebuffer:()=>sx,unbindTextureUnit:()=>EY,validateFramebuffer:()=>Fp,validateProgram:()=>sh,validateTextureSize:()=>HC});var Us={},Jd={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function MC(e,t){Us[e]=t}function Ha(e,t){if(!(e in Us)||t!=null){let a=wY(e,t);if(a!==null)Us[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Us[e];return n==null||n.isContextLost()?(delete Us[e],Ha(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Us[e])}function vY(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function wY(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?vY(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Us[e]},!1),H().getBool("SOFTWARE_WEBGL_ENABLED")&&(Jd.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",Jd)||n.getContext("experimental-webgl",Jd):n.getContext("webgl2",Jd)}var Yp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Yp||(Yp={}));var pa;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(pa||(pa={}));var sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(sn||(sn={}));function Qc(e,t){return[t,e]}function kY(e,t){return e*t}function Qd(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Mu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function IY(e,t){let[n,a]=Mu(e,t);return n*a*4}function O0(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return H().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function me(e,t){let n=t();return H().getBool("DEBUG")&&SY(e),n}function SY(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+OC(e,t))}var TY=596e-10,NY=65504;function PC(e){return!!(H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||TY<Math.abs(e)&&Math.abs(e)<NY)}function OC(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function $p(e,t){return $r(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function LC(e,t){let n=$r(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(me(e,()=>e.shaderSource(n,t)),me(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function zC(e,t){let n=$r(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(me(e,()=>e.shaderSource(n,t)),me(e,()=>e.compileShader(n)),H().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw L0(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var CY=/ERROR: [0-9]+:([0-9]+):/g;function L0(e,t){let n=CY.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((d,c)=>v.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
|
|
`))}function BC(e){return $r(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function WC(e,t){if(me(e,()=>e.linkProgram(t)),!H().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function sh(e,t){if(me(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function VC(e,t){let n=$r(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),me(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function UC(e,t){let n=$r(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return me(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),me(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function _Y(){return H().getNumber("WEBGL_VERSION")===2?1:4}function GC(e){return $r(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function HC(e,t){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function jC(e){return $r(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function rx(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),me(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),me(e,()=>e.enableVertexAttribArray(o)),!0)}function qC(e,t,n){JC(e,n),me(e,()=>e.activeTexture(e.TEXTURE0+n)),me(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function EY(e,t){JC(e,t),me(e,()=>e.activeTexture(e.TEXTURE0+t)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function KC(e,t,n){return $r(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function XC(e,t,n){return e.getUniformLocation(t,n)}function YC(e,t,n,a){me(e,()=>qC(e,t,a)),me(e,()=>e.uniform1i(n,a))}function AY(e){me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),me(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),me(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function ih(e,t,n){me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),me(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function sx(e,t){me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),me(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Fp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+ZC(e,t))}function ZC(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function $r(e,t,n){let a=me(e,()=>t());if(a==null)throw new Error(n);return a}function JC(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function pi(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function ci(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function oh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[pi(e),...ci(e)]),t}function QC(e,t=!1){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE"),a=H().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");a===1/0&&H().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(a=n/2),t&&(n=n*2,a=a*2,e=e.map((o,l)=>l>=e.length-2?v.nearestLargerEven(e[l]):e[l]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e),s=null;e.length<=1&&r<=n?s=[1,r]:e.length===2&&e[0]<=n&&e[1]<=n?s=e:e.length===3&&e[0]*e[1]<=n&&e[2]<=n?s=[e[0]*e[1],e[2]]:e.length===3&&e[0]<=n&&e[1]*e[2]<=n?s=[e[0],e[1]*e[2]]:e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n?s=[e[0]*e[1]*e[2],e[3]]:e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n&&(s=[e[0],e[1]*e[2]*e[3]]);let i=s!=null&&Math.max(...s)>a&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let o=pi(e),l=2,u=2;e.length&&([l,u]=ci(e)),r=o*(l/2)*(u/2),s=v.sizeToSquarishShape(r).map(p=>p*2)}else s=v.sizeToSquarishShape(r);return s}function eh(e){return e%2===0}function Zp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||eh(n)&&eh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&eh(e[0])&&eh(t[0])}var lh,uh;function e_(e){if(lh==null){let t=Ha(e);lh=t.getParameter(t.MAX_TEXTURE_SIZE)}return lh}function $Y(){lh=null}function FY(){uh=null}function t_(e){if(uh==null){let t=Ha(e);uh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,uh)}function n_(e){if(e===0)return 0;let t,n=Ha(e);return ca(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ca(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ca(e,t){return e.getExtension(t)!=null}function ix(e){try{if(Ha(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function a_(e){if(e===0)return!1;let t=Ha(e);if(e===1){if(!ca(t,"OES_texture_float"))return!1}else if(!ca(t,"EXT_color_buffer_float"))return!1;return ox(t)}function r_(e){if(e===0)return!1;let t=Ha(e);if(e===1){if(!ca(t,"OES_texture_float")||!ca(t,"WEBGL_color_buffer_float"))return!1}else{if(ca(t,"EXT_color_buffer_float"))return ox(t);let n="EXT_color_buffer_half_float";if(ca(t,n)){let a=t.getExtension(n);return DY(t,a)}return!1}return ox(t)}function ox(e){let t=O0(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function DY(e,t){let n=O0(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function s_(e){return e!==2?!1:Ha(e).fenceSync!=null}function Pu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var ve=H();ve.registerFlag("HAS_WEBGL",()=>ve.getNumber("WEBGL_VERSION")>0);ve.registerFlag("WEBGL_VERSION",()=>ix(2)?2:ix(1)?1:0);ve.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);ve.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>ve.get("WEBGL_VERSION")===2);ve.registerFlag("WEBGL_CPU_FORWARD",()=>!0);ve.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);ve.registerFlag("WEBGL_PACK",()=>ve.getBool("HAS_WEBGL"));ve.registerFlag("WEBGL_PACK_NORMALIZATION",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_CLIP",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_REDUCE",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_LAZILY_UNPACK",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_CONV_IM2COL",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>e_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>t_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=ve.getNumber("WEBGL_VERSION");return e===0?0:n_(e)});ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>ve.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Ic.isMobile());ve.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>a_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>ve.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:ve.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));ve.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>r_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_FENCE_API_ENABLED",()=>s_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>ve.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);ve.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});ve.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Ic.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});ve.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);ve.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);ve.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);ve.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);ve.registerFlag("WEBGL_EXP_CONV",()=>!1);ve.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>ve.getBool("IS_TEST"));ve.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);ve.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);ve.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);function Tn(){let e,t,n,a,r,s,i,o,l,u;return H().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=H().getBool("WEBGL2_ISNAN_CUSTOM")?`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`:"",l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function xo(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function $f(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function RY(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function MY(e,t,n="index"){let a=e.map((s,i)=>i),r=RY(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function z0(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function B0(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var i_=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:o_}=N;function PY(e,t,n){let a=[];if(e.forEach(c=>{let h=v.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=W0(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
|
|
`),s=e.map(c=>OY(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=Tn(),l=BY(o),u,p,d=UY(o);return t.isPacked?(u=LY(t.logicalShape,i,n.enableShapeUniforms),p=VY(o)):(u=zY(t.logicalShape,i,n.enableShapeUniforms),p=WY(o)),n.packedInputs&&(d+=qY),[d,l,p,r,u,s,n.userCode].join(`
|
|
`)}function Ou(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return s7(e,t);case 1:return o7(e,t);case 2:return u7(e,t);case 3:return c7(e,t);case 4:return h7(e,t);case 5:return m7(e);case 6:return f7(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function l_(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return r7(e);case 1:return i7(e,t);case 2:return l7(e,t);case 3:return p7(e,t);default:return d7(e,t)}}function OY(e,t,n=!1,a){let r="";n?r+=l_(e,a):r+=Ou(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=g7(e,t):r+=b7(e,t)),r}function LY(e,t,n){switch(e.length){case 0:return u_();case 1:return KY(e,t,n);case 2:return n7(e,t,n);case 3:return YY(e,t,n);default:return JY(e,t,n)}}function zY(e,t,n){switch(e.length){case 0:return u_();case 1:return XY(e,t,n);case 2:return a7(e,t,n);case 3:return ZY(e,t,n);case 4:return QY(e,t,n);case 5:return e7(e,t);case 6:return t7(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function BY(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function WY(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function VY(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function UY(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${GY}
|
|
${HY}
|
|
${jY}
|
|
`}var GY=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,HY=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,jY=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,qY=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function u_(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function KY(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${a[1]}.0);
|
|
}
|
|
`:a[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${a[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
|
|
}
|
|
`}function XY(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function YY(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function ZY(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${$f(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let a=xo(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function JY(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
|
|
int b${u} = index / ${i};
|
|
index -= b${u} * ${i};
|
|
`+o,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function QY(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${$f(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let a=xo(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function e7(e,t){let n=xo(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function t7(e,t){let n=xo(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function n7(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function a7(e,t,n){return v.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function vo(e){return`offset${e}`}function r7(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=Tn();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function s7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=vo(n);if(t)return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[o,l]=e.shapeInfo.texShape;return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function i7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=Tn();if(t)return`
|
|
vec4 ${a}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${a}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`}function o7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int index) {
|
|
${Lu(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
|
|
float ${a}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=vo(n);return i===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function l7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=Tn();if(s!=null&&v.arraysEqual(n,s))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`}function u7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(n,s)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let c=s[0],h=s[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=v.squeezeShape(n),l=i;if(l.length<n.length){let c=zu(e,l),h=["row","col"];return`
|
|
${Ou(c,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Bu(h,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${Lu(e)}
|
|
}
|
|
`;let u=s[0],p=s[1],d=vo(a);return p===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${p}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function p7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=zu(e,c),f=["b","row","col"];return`
|
|
${l_(m,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Bu(f,h)});
|
|
}
|
|
`}let o=Tn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${d}, ${p}, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`}function c7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=v.squeezeShape(n),u=o;if(u.length<n.length){let f=zu(e,u),g=["row","col","depth"];return`
|
|
${Ou(f,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Bu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${Lu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${a}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(c===i&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let m=vo(a);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${a}Shape[1] * ${a}Shape[2];
|
|
int stride1 = ${a}Shape[2];
|
|
int index = row * stride0 + col * stride1 + depth + ${m};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${c}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function d7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=Tn();if(t)return`
|
|
vec4 ${a}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${m};
|
|
int texR = index / ${p};
|
|
int texC = index - texR * ${p};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function h7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let y=zu(e,l),x=["row","col","depth","depth2"];return`
|
|
${Ou(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Bu(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, 1)));
|
|
${Lu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${m}
|
|
${f}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(h===s&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let b=vo(a);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${m}
|
|
${f}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${b});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index + ${b});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function m7(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=zu(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Ou(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${Bu(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${Lu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&p==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=vo(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function f7(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=v.squeezeShape(t);if(r.length<t.length){let g=zu(e,r),b=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Ou(g)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${Bu(b,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${p}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Lu(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&d==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=vo(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${p} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Lu(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function g7(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=o_(e.shapeInfo.logicalShape,t.logicalShape),l=gt(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,b)=>`coords.${d[b+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,b=s-1;o.indexOf(g)>-1&&o.indexOf(b)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(b)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${p}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function b7(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=gt(l),p=o_(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function W0(e,t,n){let{newShape:a,keptDims:r}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!v.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function zu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Bu(e,t){return t.map(n=>e[n]).join(", ")}function y7(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=PY(r,i,t),l=zC(e.gl,o),u=e.createProgram(l);return H().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},p_(e,t,u))}function p_(e,t,n){let a={},r={},s={},i=[],o,l,u,p=null,d=null;d=e.getUniformLocation(n,"NAN",!1),H().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(n,"INFINITY",!1));let c=!1;for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h];a[m]=e.getUniformLocation(n,m,c),a[`offset${m}`]=e.getUniformLocation(n,`offset${m}`,c),t.enableShapeUniforms&&(r[`${m}Shape`]=e.getUniformLocation(n,`${m}Shape`,c),s[`${m}TexShape`]=e.getUniformLocation(n,`${m}TexShape`,c))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",c),u=e.getUniformLocation(n,"outShapeStrides",c),l=e.getUniformLocation(n,"outTexShape",c)),t.customUniforms&&t.customUniforms.forEach((h,m)=>{i[m]=e.getUniformLocation(n,h.name,c)}),{uniformLocations:a,customUniformLocations:i,infLoc:p,nanLoc:d,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function zk(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!v.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function x7(e,t,n,a,r){t.program.enableShapeUniforms||(zk(t.inShapeInfos,n),zk([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),H().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let p=t.program.variableNames[u],d=t.uniformLocations[p],c=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],m=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:f}=W0(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,d,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(p,d);else if(l.type==="vec2")e.gl.uniform2fv(p,d);else if(l.type==="vec3")e.gl.uniform3fv(p,d);else if(l.type==="vec4")e.gl.uniform4fv(p,d);else if(l.type==="int")e.gl.uniform1iv(p,d);else if(l.type==="ivec2")e.gl.uniform2iv(p,d);else if(l.type==="ivec3")e.gl.uniform3iv(p,d);else if(l.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function v7(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=W0(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let I=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${I[0]>1}_${I[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let I=v.computeStrides(p);m=`${I[0]===l[1]}_${I[I.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&v.arraysEqual(i.shape,l),b=v.sizeFromShape(i.shape)===1,y=N.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&v.arraysEqual(l,n.texData.texShape),w=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${b}_${y}_${g}_${c}_${h}_${m}_${w}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${H().getNumber("WEBGL_VERSION")}`,s}function Nn(e){return H().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var w7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Yp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Tn();this.outputShape=e,this.enableShapeUniforms=Nn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?$f(["r","c","d"],e):xo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},k7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Yp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Tn();this.outputShape=e,this.enableShapeUniforms=Nn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?$f(["r","c","d"],e):xo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},I7=class{constructor(e){this.variableNames=["A"],this.outTexUsage=pa.DOWNLOAD;let t=Tn();this.outputShape=e,this.userCode=`
|
|
${i_}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},S7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=pa.DOWNLOAD;let t=Tn();this.outputShape=e,this.userCode=`
|
|
${i_}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},T7=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Tn();this.outputShape=e,this.enableShapeUniforms=Nn(this.outputShape.length);let a="result";t&&(a="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?B0():z0(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${a}, 0., 0., 0.);
|
|
}
|
|
`}},N7=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Tn();this.outputShape=e,this.enableShapeUniforms=Nn(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${s};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?B0():z0(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${a}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},c_={};_e(c_,{bindVertexProgramAttributeStreams:()=>v_,createBufferFromOutputTexture:()=>I_,createFloat16MatrixTexture:()=>g_,createFloat16PackedMatrixTexture:()=>x_,createFloat32MatrixTexture:()=>f_,createIndexBuffer:()=>m_,createPackedMatrixTexture:()=>y_,createUnsignedBytesMatrixTexture:()=>b_,createVertexBuffer:()=>h_,createVertexShader:()=>d_,downloadByteEncodedFloatMatrixFromOutputTexture:()=>T_,downloadFloat32MatrixFromBuffer:()=>S_,downloadMatrixFromPackedOutputTexture:()=>C_,downloadPackedMatrixFromBuffer:()=>N_,getInternalFormatForFloat16MatrixTexture:()=>U0,getInternalFormatForFloat16PackedMatrixTexture:()=>j0,getInternalFormatForFloat32MatrixTexture:()=>V0,getInternalFormatForPackedMatrixTexture:()=>H0,getInternalFormatForUnsignedBytesMatrixTexture:()=>G0,uploadDenseMatrixToTexture:()=>w_,uploadPixelDataToTexture:()=>k_});function d_(e){let t=Tn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return LC(e,n)}function h_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return VC(e,t)}function m_(e){let t=new Uint16Array([0,1,2,2,1,3]);return UC(e,t)}function ed(e,t,n,a,r,s){HC(t,n);let i=GC(e),o=e.TEXTURE_2D;return me(e,()=>e.bindTexture(o,i)),me(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),me(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),me(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),me(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),H().getNumber("WEBGL_VERSION")===1?me(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):me(e,()=>e.texStorage2D(o,1,a,t,n)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function V0(e){return e.internalFormatFloat}function f_(e,t,n,a){let[r,s]=Qc(t,n);return ed(e,r,s,V0(a),a.textureFormatFloat,e.FLOAT)}function U0(e){return e.internalFormatHalfFloat}function g_(e,t,n,a){let[r,s]=Qc(t,n);return ed(e,r,s,U0(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function G0(e){return e.downloadTextureFormat}function b_(e,t,n,a){let[r,s]=Qc(t,n);return ed(e,r,s,G0(a),e.RGBA,e.UNSIGNED_BYTE)}function H0(e){return e.internalFormatPackedFloat}function y_(e,t,n,a){let[r,s]=Mu(t,n);return ed(e,r,s,H0(a),e.RGBA,e.FLOAT)}function j0(e){return e.internalFormatPackedHalfFloat}function x_(e,t,n,a){let[r,s]=Mu(t,n);return ed(e,r,s,j0(a),e.RGBA,a.textureTypeHalfFloat)}function v_(e,t,n){return me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),rx(e,t,"clipSpacePos",n,3,20,0)&&rx(e,t,"uv",n,2,20,12)}function w_(e,t,n,a,r,s){me(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),H().getNumber("WEBGL_VERSION")===2?me(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):me(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function k_(e,t,n){me(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?H().getNumber("WEBGL_VERSION")===2?me(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):me(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):H().getNumber("WEBGL_VERSION")===2?me(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):me(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function I_(e,t,n,a){let r=e.createBuffer();me(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return me(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),me(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),me(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function S_(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function T_(e,t,n,a){let[r,s]=Qc(t,n),i=4,o=new Uint8Array(kY(t*n,i));return me(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function N_(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(IY(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function C_(e,t,n){let a=new Float32Array(t*n*4);return me(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var ph=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=H().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,MC(t,e)):this.gl=Ha(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),H().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=$p(this.gl,r),ca(this.gl,s))this.textureHalfFloatExtension=$p(this.gl,s);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ca(this.gl,a))this.colorBufferHalfFloatExtension=$p(this.gl,a);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ca(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ca(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=h_(this.gl),this.indexBuffer=m_(this.gl),this.framebuffer=jC(this.gl),this.textureConfig=O0(this.gl,this.textureHalfFloatExtension)}get debug(){return H().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;me(e,()=>e.finish()),me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),me(e,()=>e.deleteFramebuffer(this.framebuffer)),me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),me(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),me(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),f_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),g_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),b_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),k_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),w_(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),x_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),y_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(sx(this.gl,this.framebuffer),this.outputTexture=null),me(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>T_(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return N_(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return S_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=I_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(H().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>C_(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=d_(t));let n=BC(t);return me(t,()=>t.attachShader(n,this.vertexShader)),me(t,()=>t.attachShader(n,e)),WC(t,n),this.debug&&sh(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=v_(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&me(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&sh(this.gl,this.program),me(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?KC(this.gl,e,t):XC(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),me(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),YC(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Mu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&sh(this.gl,this.program),Fp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),me(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),me(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=$p(this.gl,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=C7(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;let n;"setTimeoutCustom"in H().platform&&(n=H().platform.setTimeoutCustom.bind(H().platform)),v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(e){this.throwIfDisposed(),ih(this.gl,e,this.framebuffer),this.debug&&Fp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(ih(this.gl,this.outputTexture,this.framebuffer),this.debug&&Fp(this.gl)):sx(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;ih(a,e,this.framebuffer),this.debug&&Fp(a),this.outputTexture=e,me(a,()=>a.viewport(0,0,t,n)),me(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),me(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function C7(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:_7,bincountImpl:__,bincountReduceImpl:E7,castImpl:A7,ceilImpl:$7,concatImpl:F7,equalImpl:D7,expImpl:R7,expm1Impl:M7,floorImpl:P7,gatherNdImpl:O7,gatherV2Impl:L7,greaterImpl:z7,greaterEqualImpl:B7,lessImpl:W7,lessEqualImpl:V7,linSpaceImpl:U7,logImpl:G7,maxImpl:H7,maximumImpl:j7,minimumImpl:q7,multiplyImpl:K7,negImpl:X7,notEqualImpl:Y7,prodImpl:Z7,raggedGatherImpl:J7,raggedTensorToTensorImpl:Q7,rangeImpl:eZ,rsqrtImpl:tZ,scatterImpl:nZ,sigmoidImpl:aZ,simpleAbsImpl:E_,sliceImpl:rZ,sparseFillEmptyRowsImpl:sZ,sparseReshapeImpl:iZ,sparseSegmentReductionImpl:A_,sqrtImpl:oZ,stridedSliceImpl:lZ,stringNGramsImpl:uZ,stringSplitImpl:pZ,stringToHashBucketFastImpl:cZ,subImpl:dZ,tileImpl:hZ,topKImpl:mZ,transposeImpl:q0,uniqueImpl:fZ}=D2;function $_(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function wn(e,t){return t===1?[e]:$_(e,t)}function gZ(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var bZ=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=Nn(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=wn("rc",this.rank),n=gt(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${s}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${a};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},F_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Nn(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${yZ(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?B0():z0(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function yZ(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?MY(["r","c","d"],"inputShape"):xo(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var xZ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=Wk(t,n),r=Vk(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=Bk(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===sn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===sn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===sn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===sn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===sn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=Wk(n,a),s=Vk(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Bk(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=H().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function vZ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function Bk(e,t,n,a,r){let s=wZ(t,a),i;if(r){let[l,u]=Mu(e[0],e[1]);i=l*u}else{let[l,u]=Qc(e[0],e[1]);i=l*u}let o=vZ(n,s);return i*o}function wZ(e,t){switch(e){case sn.PACKED_2X2_FLOAT32:return H0(t);case sn.PACKED_2X2_FLOAT16:return j0(t);case sn.UNPACKED_FLOAT32:return V0(t);case sn.UNPACKED_FLOAT16:return U0(t);case sn.PACKED_4X1_UNSIGNED_BYTE:return G0(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function kZ(e){return H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?sn.PACKED_2X2_FLOAT32:sn.UNPACKED_FLOAT32:e?sn.PACKED_2X2_FLOAT16:sn.UNPACKED_FLOAT16}function Wk(e,t){if(e===pa.UPLOAD)return sn.PACKED_2X2_FLOAT32;if(e===pa.RENDER||e==null)return kZ(t);if(e===pa.DOWNLOAD||e===pa.PIXELS)return sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Vk(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Sr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Nn(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Fa="if (isnan(x)) return x;",IZ="return x;",Uk="return abs(x);",SZ="return (x >= 0.0) ? x : (exp(x) - 1.0);",TZ=Fa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,NZ=Fa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Ho="return x;",CZ="return 1.0 / (1.0 + exp(-1.0 * x));",_Z="return x;",EZ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,AZ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,$Z=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,FZ="return 1.0 / (1.0 + exp(-1.0 * x));",js=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Nn(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},DZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=Nn(this.outputShape.length);let t=e.length,n=wn("rc",t),a=gt(t),r=gZ(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},RZ=pr.whereImpl,MZ=1e-7,PZ=1e-4,my={};function OZ(e){return e in my||(my[e]={}),my[e]}var LZ=H().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),zZ=600;function BZ(){return H().global.screen==null?1024:H().global.screen.height*H().global.screen.width*window.devicePixelRatio*zZ/1024/1024}var Ff=class extends nc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!H().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof ph)t=e;else{let n=Ha(H().getNumber("WEBGL_VERSION"),e);t=new ph(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ha(H().getNumber("WEBGL_VERSION"));t=new ph(n),this.binaryCache=OZ(H().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new xZ(this.gpgpu),this.numMBBeforeWarning=BZ(),this.texData=new Hh(this,Ja())}nextDataId(){return Ff.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((H().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||H().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:pa.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(H().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:pa.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new js(i,Ho):d=new Sr(i,Ho);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=N.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new js(a,Ho):h=new Sr(a,Ho);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(H().getBool("DEBUG")&&!H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&H().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&H().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...Qd(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=N.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;me(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ja().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new js(r,Ho):c=new Sr(r,Ho);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=Ja().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Pe(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!PC(n))throw H().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=v.sizeFromShape(t);if(H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...Qd(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=H().getBool("WEBGL_PACK")&&a===!0,i=s?oh(t):t,o=s?new S7(i):new I7(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=LZ){return H().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return RZ(e.shape,t)}packedUnaryOp(e,t,n){let a=new js(e.shape,t),r=this.compileAndRun(a,[e],n);return Ja().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=E_(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(H().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Uk,e.dtype);let t=new Sr(e.shape,Uk),n=this.compileAndRun(t,[e]);return Ja().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return Ja().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new DZ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new bZ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[pi(e.shape),...ci(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[pi(t),...ci(t)],s=new F_(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=v.sizeFromShape(r),c=t[0]*t[1]*4;v.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=oh(r),o;a?o=new k7(i):o=new w7(i);let l=!0,u=[t!=null?t:Qd(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Yp.DENSE){let g=s!=null?s:Qd(e.outputShape);o.texShape=g.map(b=>b*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(g.dataId);if(b.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=H().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!b.isPacked!=!!e.packedInputs)g=b.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),b=this.texData.get(g.dataId);else if(b.isPacked&&!Zp(b.shape,g.shape)){let y=g,x=g.shape;g.shape=b.shape,g=this.packedReshape(g,x),l.push(g),b=this.texData.get(g.dataId),y.shape=x}return{shape:g.shape,texData:b,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=v7(e,u,p),c=this.getAndSaveBinary(d,()=>y7(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),H().get("ENGINE_COMPILE_ONLY")||x7(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=H().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=v.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!H().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(H().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!H().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=H().getBool("DEBUG");H().set("DEBUG",!1);let t=this.abs(ye(1e-8)).dataSync()[0];if(H().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?MZ:PZ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let p=t.texShape;if(p==null&&(p=QC(n,o),t.texShape=p),r!=null){let d=oh(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=Mu(p[0],p[1])),o?c=new N7(d,f):c=new T7(d,f);let g=f?[m,h]:p,b=this.makeTensorInfo(g,a),y=this.texData.get(b.dataId);f?y.usage=pa.PIXELS:y.usage=pa.UPLOAD,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,m,r);let x=[[m,h]],w=!0,I=this.runWebGLProgram(c,[b],a,x,w),T=this.texData.get(I.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,H().get("ENGINE_COMPILE_ONLY")?this.disposeData(I.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(I.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=v.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=WZ(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await Vv(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(L0(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=p_(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};Ff.nextDataId=0;function WZ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var VZ="3.21.0";function D_(){H().set("WEBGL_FORCE_F16_TEXTURES",!0)}Ic.isBrowser()&&Cm("webgl",()=>new Ff,2);var UZ={forceHalfFloat:D_},K0=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,bl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Nn(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},td=`
|
|
result.r = isNaN.r ? NAN : result.r;
|
|
result.g = isNaN.g ? NAN : result.g;
|
|
result.b = isNaN.b ? NAN : result.b;
|
|
result.a = isNaN.a ? NAN : result.a;
|
|
`,nd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Nn(r);let s="";if(a)if(r===0||v.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${gt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?s+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=wn("coords",r);this.enableShapeUniforms?s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function ta(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var GZ={kernelName:Di,backendName:"webgl",kernelFunc:ta};function Is(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=ta({inputs:{x:a},backend:n}),l=ta({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var HZ={kernelName:Jh,backendName:"webgl",kernelFunc:Is},R_="return (a < 0.) ? b * a : a;",M_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function jZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new nd(M_,r.shape,i.shape):new bl(R_,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var qZ={kernelName:Ri,backendName:"webgl",kernelFunc:jZ},P_="return (a < 0.) ? b * a : a;",O_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function KZ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new nd(O_,a.shape,r.shape):new bl(P_,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var XZ={kernelName:qi,backendName:"webgl",kernelFunc:KZ},Wu="if (isnan(x)) return x;";function Ye({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=H().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new js(i.shape,t):p=new Sr(i.shape,e),o.runWebGLProgram(p,[i],l)}}function un({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,b]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,I]=x,T={dataId:w.dataId,dtype:w.dtype,shape:l.shape},C={dataId:I.dataId,dtype:I.dtype,shape:u.shape},E=new bl(e,l.shape,u.shape);return p.runWebGLProgram(E,[T,C],ha(w.dtype,I.dtype))}),y=Is({inputs:{real:g,imag:b},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(b),y}let d=s||ha(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(m):m,b=l.dtype==="string"?N.fromUint8ToStringArray(f):f,[y,x]=r(l.shape,u.shape,g,b,d),w=p.makeTensorInfo(x,d),I=p.texData.get(w.dataId);return I.values=y,w}let c=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new nd(t,l.shape,u.shape,n):h=new bl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function Jp(e,t=!1){if(e==="linear")return t?_Z:IZ;if(e==="relu")return t?AZ:TZ;if(e==="elu")return t?EZ:SZ;if(e==="relu6")return t?$Z:NZ;if(e==="prelu")return t?O_:P_;if(e==="leakyrelu")return t?M_:R_;if(e==="sigmoid")return t?FZ:CZ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var L_=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Nn(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let b=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${p}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${b}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Gk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Hk=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},jk="return a * b;";function X0(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=N.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new Hk(Gk.REAL,a.shape,r.shape),p=new Hk(Gk.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Is({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=K7(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new nd(jk,a.shape,r.shape):i=new bl(jk,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var YZ={kernelName:Ui,backendName:"webgl",kernelFunc:X0};function ZZ(e,t,n){let a=[pi(e.shape),...ci(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[pi(t),...ci(t)],i=new F_(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function de(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!Zp(r.shape,l)&&!(p.texture!==null&&Zp(p.shape,l))?ZZ(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var JZ={kernelName:iu,backendName:"webgl",kernelFunc:de},qk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${v.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},QZ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function eJ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=N.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function wo(e,t,n,a){let r=eJ(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new qk({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new qk({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new QZ({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var tJ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=gt(this.rank),r=nJ(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function nJ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var aJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=gt(this.rank),r=$_("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Df(e,t,n){let a=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new aJ(e.shape,t):new tJ(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function rJ(e,t,n,a){let r=t,s=e.shape.length,i=v.parseAxisParam(r,e.shape),o=i,l=N.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=Df(e,l,a),o=N.getInnerMostAxes(o.length,s)),N.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=N.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=N.expandShapeToKeepDim(d,i));let m=v.sizeFromShape(c),f=v.sizeFromShape(e.shape)/m,g=de({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),b=Nm(e.dtype),y=wo(g,b,"sum",a),x=de({inputs:{x:y},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(y),u&&a.disposeIntermediateTensorInfo(p),x}function Rf(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return rJ(r,s,i,n)}var sJ={kernelName:so,backendName:"webgl",kernelFunc:Rf};function kn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=q0(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=Df(r,s,i);return u}var iJ={kernelName:Tr,backendName:"webgl",kernelFunc:kn},z_=1e3;function Bh({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=v.sizeFromShape(f),y=v.sizeFromShape(g),x=Iu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);v.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let w=n?[b,d,h]:[b,h,d],I=a?[y,m,c]:[y,c,m],T=de({inputs:{x:e},backend:r,attrs:{shape:w}}),C=de({inputs:{x:t},backend:r,attrs:{shape:I}}),E=[T,C],A=Math.max(b,y),R=n?T.shape[1]:T.shape[2],F=s!=null,S=i!=null,M=l==="leakyrelu",W=l!=null?Jp(l,!0):null,U=F||S||M||W!=null,G;if((h===1||m===1)&&R>z_&&U===!1){let K=T,Z=C;n&&(K=kn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),E.push(K)),a&&(Z=kn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(Z));let Q=m!==1,ee=m===1,ae=K;Q&&(ae=de({inputs:{x:K},backend:r,attrs:{shape:[A,R,1]}}),E.push(ae));let te=m===1?2:1,le=Z;ee&&(le=de({inputs:{x:Z},backend:r,attrs:{shape:[A,1,R]}}),E.push(le));let ie=X0({inputs:{a:ae,b:le},backend:r});G=Rf({inputs:{x:ie},backend:r,attrs:{axis:te,keepDims:!0}}),E.push(ie)}else{let K=ha(e.dtype,t.dtype),Z=new L_(w,I,[A,h,m],n,a,F,W,S,M),Q=[T,C];if(s!=null&&Q.push(s),S&&Q.push(i),M){let ee=r.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));Q.push(ee),E.push(ee)}G=r.runWebGLProgram(Z,Q,K)}let q=de({inputs:{x:G},backend:r,attrs:{shape:x}});E.push(G);for(let K of E)r.disposeIntermediateTensorInfo(K);return q}function oJ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return Bh({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var lJ={kernelName:Js,backendName:"webgl",kernelFunc:oJ},Kk="return abs(x);";function uJ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=E_(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new js(a.shape,Kk):r=new Sr(a.shape,Kk),n.runWebGLProgram(r,[a],a.dtype)}var pJ={kernelName:xl,backendName:"webgl",kernelFunc:uJ},cJ=Fa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,dJ=Ye({opSnippet:cJ}),hJ={kernelName:vl,backendName:"webgl",kernelFunc:dJ},mJ=Fa+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,fJ=Ye({opSnippet:mJ}),gJ={kernelName:wl,backendName:"webgl",kernelFunc:fJ},Xk="return a + b;",bJ=un({opSnippet:Xk,packedOpSnippet:Xk,supportsComplex:!0,cpuKernelImpl:_7}),yJ={kernelName:ps,backendName:"webgl",kernelFunc:bJ},xJ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},vJ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function ch(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return ta({inputs:{x:a[0]},backend:n});if(a.length>H().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=ch({inputs:a.slice(0,o),backend:n}),u=ch({inputs:a.slice(o),backend:n});return ch({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ha(o,l)),s=a.map(o=>o.shape),i=H().getBool("WEBGL_PACK")?new vJ(a[0].shape,s):new xJ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var wJ={kernelName:mi,backendName:"webgl",kernelFunc:ch};function kJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=kn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("all",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=de({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=wo(f,f.dtype,"all",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=de({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=de({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var IJ={kernelName:kl,backendName:"webgl",kernelFunc:kJ};function SJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=kn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("any",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=de({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=wo(f,f.dtype,"any",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=de({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=de({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var TJ={kernelName:Il,backendName:"webgl",kernelFunc:SJ},NJ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},CJ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=gt(o),u=wn("coords",o),p,d;if(s===1){d=o+1;let C=gt(d);p=`
|
|
${C} sourceLocR = ${C}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${C} sourceLocG = ${C}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${C} sourceLocA = ${C}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${C} sourceLocB = ${C}(${u.join()}, 0);
|
|
--${u[o-2]};`}else d=o,p=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(C=>"int "+C),f=wn("sourceLocR",d-1).concat("inIdx.r"),g=wn("sourceLocG",d-1).concat("inIdx.g"),b=wn("sourceLocB",d-1).concat("inIdx.b"),y=wn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${b.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,I=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${b.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,T=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${T}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${I};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${w}
|
|
vec4 candidate = ${I};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function B_(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=N.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new NJ(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=B_(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function W_(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=N.computeOptimalWindowSize(s),o=new CJ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=W_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function V_(e,t,n,a){let r=[n];if(N.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!H().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=N.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(p),c=de({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=B_(e,c,a);s.push(h);let m=de({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return W_(e,t,a)}function _J(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=kn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=V_(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var EJ={kernelName:fi,backendName:"webgl",kernelFunc:_J};function AJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=kn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=V_(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var $J={kernelName:ac,backendName:"webgl",kernelFunc:AJ},FJ=Fa+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,DJ=Ye({opSnippet:FJ}),RJ={kernelName:Sl,backendName:"webgl",kernelFunc:DJ},MJ=Fa+"return log(x + sqrt(x * x + 1.0));",PJ=Ye({opSnippet:MJ}),OJ={kernelName:Tl,backendName:"webgl",kernelFunc:PJ},LJ=Fa+`
|
|
return atan(x);
|
|
`,zJ=Ye({opSnippet:LJ}),BJ={kernelName:Nl,backendName:"webgl",kernelFunc:zJ},WJ=K0+`
|
|
return atan(a, b);
|
|
`,VJ=`
|
|
vec4 result = atan(a, b);
|
|
bvec4 isNaNA = isnan(a);
|
|
bvec4 isNaNB = isnan(b);
|
|
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
|
|
`+td+`
|
|
return result;
|
|
`,UJ=un({opSnippet:WJ,packedOpSnippet:VJ}),GJ={kernelName:_l,backendName:"webgl",kernelFunc:UJ},HJ=Fa+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,jJ=Ye({opSnippet:HJ}),qJ={kernelName:Cl,backendName:"webgl",kernelFunc:jJ},Qp=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(m||(b="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,I=s%4,T=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${I===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${I===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${I===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},Y0=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let A=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${A} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",I=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(I="avgValue / count");let T=Math.floor(s/4)*4,C=s%4,E=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${b});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${T}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${T};
|
|
if (${C===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${C===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${C===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${I});
|
|
}
|
|
}
|
|
`}};function KJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Pu(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return ta({inputs:{x:r},backend:n});let d=new Qp(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var XJ={kernelName:gi,backendName:"webgl",kernelFunc:KJ};function YJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new Y0(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var ZJ={kernelName:rc,backendName:"webgl",kernelFunc:YJ},JJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${p});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},QJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function e9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new QJ(c);return n.runWebGLProgram(h,[r],i.dtype)}var t9={kernelName:Xh,backendName:"webgl",kernelFunc:e9};function n9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Pu([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=new JJ(p);return n.runWebGLProgram(d,[r],i.dtype)}var a9={kernelName:Kh,backendName:"webgl",kernelFunc:n9};function r9(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Bh({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var s9={kernelName:bi,backendName:"webgl",kernelFunc:r9},i9=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},o9=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},l9=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;v.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=H().getBool("WEBGL_PACK_NORMALIZATION")?new o9(a.shape,r.shape,s.shape,p,d,l):new i9(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},u9={kernelName:$i,backendName:"webgl",kernelFunc:l9},p9=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=c9(this.rank),a,r=e.map((s,i)=>`sourceLoc.${lx[i]} = start[${i}] + coords.${lx[i]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},lx=["x","y","z","w","u","v"];function c9(e){if(e===1)return"sourceLoc";if(e<=6)return lx.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var d9=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),n=wn("coords",this.rank),a=wn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function h9(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=jt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function Vu(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=jt.parseSliceParams(r,s,i);if(jt.assertParamsValid(r,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=rZ(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=jt.isSliceContinous(r.shape,o,l);if(u||!p){let d=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new d9(l):new p9(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),h9(r,o,l,n)}var m9={kernelName:pu,backendName:"webgl",kernelFunc:Vu},f9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,x)=>y*x),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=[],m=de({inputs:{x:r},backend:n,attrs:{shape:l}}),f=kn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=de({inputs:{x:f},backend:n,attrs:{shape:p}}),b=Vu({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},g9={kernelName:El,backendName:"webgl",kernelFunc:f9};function b9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=__(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var y9={kernelName:Yh,backendName:"webgl",kernelFunc:b9};function x9(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var v9={kernelName:Zh,backendName:"webgl",kernelFunc:x9},w9="return float(a != b);",U_=un({opSnippet:w9,cpuKernelImpl:Y7,dtype:"bool"}),k9={kernelName:Ql,backendName:"webgl",kernelFunc:U_};function ad(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return ta({inputs:{x:r.complexTensorInfos.real},backend:n})}var I9={kernelName:xm,backendName:"webgl",kernelFunc:ad},S9="return float(int(x));";function T9(e,t){let n=new Sr(e.shape,S9),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function ux(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return ta({inputs:{x:r},backend:n});let i=It(r.shape),o=ux({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Is({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=ad({inputs:{input:r},backend:n}),o=ux({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=ta({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(n.shouldExecuteOnCPU([r])){let i=n.texData.get(r.dataId).values,[o,l,u]=A7(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}if(s==="int32")return T9(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=U_({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var N9={kernelName:yi,backendName:"webgl",kernelFunc:ux},Yk="return ceil(x);",C9=Ye({opSnippet:Yk,packedOpSnippet:Yk,cpuKernelImpl:$7}),_9={kernelName:xi,backendName:"webgl",kernelFunc:C9},E9=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},A9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function $9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;H().getBool("WEBGL_PACK_CLIP")?o=new A9(r.shape):o=new E9(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var F9={kernelName:cs,backendName:"webgl",kernelFunc:$9},D9=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Zk(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function R9(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new D9(a.shape),i=[Zk(a,r.complexTensorInfos.real),Zk(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var M9={kernelName:sc,backendName:"webgl",kernelFunc:R9},P9=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},O9=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=gt(a),s=wn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${th(i,l,f)}),
|
|
vec2(${th(u,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];d+=`
|
|
return getChannel(
|
|
getT${c}(${th(i,l,h)}),
|
|
vec2(${th(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function th(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Mf(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return ta({inputs:{x:r.complexTensorInfos.imag},backend:n})}var L9={kernelName:pm,backendName:"webgl",kernelFunc:Mf};function Dp(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(g=>ad({inputs:{input:g},backend:n})),c=e.map(g=>Mf({inputs:{input:g},backend:n})),h=Dp(d,t,n),m=Dp(c,t,n),f=Is({inputs:{real:h,imag:m},backend:n});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(y=>{let x=v.sizeFromShape(y.shape.slice(t));return de({inputs:{x:y},backend:n,attrs:{shape:[-1,x]}})}),c=d.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),h=N.computeOutShape(d.map(y=>y.shape),1),m=d[0].shape[0]===1,f=F7(c,h,a,m),g=N.computeOutShape(e.map(y=>y.shape),t),b=n.makeTensorInfo(g,a,f);return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}let s=H().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>s){let d=[];for(let h=0;h<e.length;h+=s){let m=e.slice(h,h+s);d.push(Dp(m,t,n))}let c=Dp(d,t,n);for(let h of d)n.disposeIntermediateTensorInfo(h);return c}if(H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new O9(e.map(c=>c.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:i,outShape:o}=z9(e,t,n),l=new P9(i.map(d=>d.shape)),u=n.runWebGLProgram(l,i,a);i.forEach(d=>n.disposeIntermediateTensorInfo(d));let p=de({inputs:{x:u},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(u),p}function z9(e,t,n){let a=N.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>de({inputs:{x:r},attrs:{shape:[-1,v.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function G_(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?ta({inputs:{x:l[0]},backend:n}):Dp(l,s,n)}var B9={kernelName:Al,backendName:"webgl",kernelFunc:G_},H_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,b=f?2:3,y=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,w="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${b}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${I}
|
|
${w}
|
|
setOutput(result);
|
|
}
|
|
`}},W9=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},j_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Nn(this.outputShape.length);let s=e.padInfo.left,i=e.strideWidth,o=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,p=u,d=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let f=0;f<u;f++)d+=`
|
|
vec4 xTexelC${f*2};
|
|
int xTexelC${f*2}Ready;
|
|
vec4 xTexelC${f*2+1};
|
|
int xTexelC${f*2+1}Ready;
|
|
vec4 xC${f};`;d+=`
|
|
for (int r = 0; r < ${l}; r++) {
|
|
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
|
|
`;for(let f=0;f<u;f++)d+=`
|
|
xTexelC${f*2} = vec4(0.0);
|
|
xTexelC${f*2}Ready = 0;
|
|
xTexelC${f*2+1} = vec4(0.0);
|
|
xTexelC${f*2+1}Ready = 0;
|
|
xC${f} = vec4(0.0);`;d+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let f=0;f<(p+1)/2;f++){let g=f*2;if(d+=`
|
|
xC = xCCorner + ${g*o};
|
|
`,i===1){if(g<u&&(s%2===1?(d+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
`,o===1&&g>0?d+=`
|
|
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
|
|
`:d+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
|
|
} else {
|
|
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
|
|
}
|
|
`):d+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
xC${g} = xTexelC${g};
|
|
`,g+1<u)){let b=s%2===0?v.nearestLargerEven(o):o;o%2===0&&s%2===1||o%2!==0&&s%2!==1?(d+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
`,o>1?d+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
|
|
} else {
|
|
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
|
|
}
|
|
`:d+=`
|
|
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
|
|
`):b===1?d+=`
|
|
xC${g+1} = xTexelC${g};
|
|
`:d+=`
|
|
xCOffset = xC + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g+1} = xTexelC${g+1};
|
|
`}}else g<u&&(s%2===1?(d+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
|
|
`,g+1<u&&(d+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
|
|
`)):(d+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
|
|
xTexelC${g} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${g}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${g}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
|
|
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${g+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${g+1}Ready = 1;
|
|
}
|
|
|
|
xC${g} = vec4(
|
|
xTexelC${g}.xy, xTexelC${g+1}.xy);
|
|
`,g+1<u&&(d+=`
|
|
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
|
|
`)));g<u&&(d+=`
|
|
wTexel = getW(r, ${g}, d1, d2);
|
|
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
|
|
if(d1 + 1 < ${e.inChannels}) {
|
|
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
|
|
}
|
|
`,g+1<u&&(d+=`
|
|
wTexel = getW(r, ${g+1}, d1, d2);
|
|
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
|
|
if(d1 + 1 < ${e.inChannels}) {
|
|
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
|
|
}
|
|
`))}d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`;let c="",h="";n&&(a?c=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?c=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:c=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,h="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${c}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${d}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},V9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Nn(this.outputShape.length);let{dataFormat:n}=t,a=Tn(),r=n==="channelsLast",s=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
|
|
blockIndex = rc.z + ${p};
|
|
pos = rc.y + ${u};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${s}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(rc.x, d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(rc.x, ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${a.output} = result;
|
|
}
|
|
`}};function Wh(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function q_({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,b=[];if(s!=null){let y=Wh(s.shape,h);y!=null&&(s=de({inputs:{x:s},backend:a,attrs:{shape:y}}),b.push(s))}if(r!=null){let y=Wh(r.shape,h);y!=null&&(r=de({inputs:{x:r},backend:a,attrs:{shape:y}}),b.push(r))}if(!((d===1||c===1)&&p>z_)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let y=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,y,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Zp(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let I=de({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(I);let T=Bh({a:x,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);v.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,C.shape=n.outShape,g=ta({inputs:{x:T},backend:a}),g.shape=n.outShape,b.push(T)}else{let y=n.outHeight*n.outWidth,x=de({inputs:{x:e},backend:a,attrs:{shape:h?[n.batchSize,y,n.inChannels]:[n.batchSize,n.inChannels,y]}}),w=de({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=Bh({a:h?x:w,b:h?w:x,transposeA:!h,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=de({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),b.push(x),b.push(w),b.push(I)}for(let y of b)a.disposeIntermediateTensorInfo(y);return g}function K_({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,b=[n.batchSize,f,g],y=!0,x=!1,w=[];if(s!=null){let K=Wh(s.shape,m);K!=null&&(s=de({inputs:{x:s},backend:a,attrs:{shape:K}}),w.push(s))}if(r!=null){let K=Wh(r.shape,m);K!=null&&(r=de({inputs:{x:r},backend:a,attrs:{shape:K}}),w.push(r))}let I=de({inputs:{x:t},backend:a,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});w.push(I);let T=new V9(b,n),C=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=a.runWebGLProgram(T,[e],"float32",C),A=de({inputs:{x:E},backend:a,attrs:{shape:b}});w.push(E),w.push(A);let R=r!=null,F=s!=null,S=o==="leakyrelu",M=o?Jp(o,!0):null,W=new L_(m?A.shape:I.shape,m?I.shape:A.shape,m?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],y,x,R,M,F,S),U=m?[A,I]:[I,A];if(r&&U.push(r),F&&U.push(s),S){let K=a.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));U.push(K),w.push(K)}let G=a.runWebGLProgram(W,U,"float32"),q=de({inputs:{x:G},backend:a,attrs:{shape:n.outShape}});w.push(G);for(let K of w)a.disposeIntermediateTensorInfo(K);return q}function U9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=q_({x:r,filter:s,convInfo:c,backend:n});else if(c.strideWidth<=2&&d==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let f=new j_(c),g=[[c.padInfo.top,c.padInfo.left],[c.strideHeight,c.strideWidth],[c.dilationHeight,c.dilationWidth],[c.inHeight,c.inWidth]];h=n.runWebGLProgram(f,[r,s],"float32",g)}else if(H().getBool("WEBGL_CONV_IM2COL"))h=K_({x:r,filter:s,convInfo:c,backend:n});else{let f=new H_(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=de({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var G9={kernelName:vi,backendName:"webgl",kernelFunc:U9},H9=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},j9=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},q9=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},K9=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function X9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new H9(c);return n.runWebGLProgram(h,[r,s],"float32")}var Y9={kernelName:Qh,backendName:"webgl",kernelFunc:X9};function Z9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(u),c=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d),h=new j9(c);return n.runWebGLProgram(h,[r,s],"float32")}var J9={kernelName:wi,backendName:"webgl",kernelFunc:Z9};function Q9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new W9(u);return n.runWebGLProgram(p,[r,s],"float32")}var eQ={kernelName:ic,backendName:"webgl",kernelFunc:Q9};function tQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=N.computeConv3DInfo(r.shape,l,i,1,o),p=new q9(u);return n.runWebGLProgram(p,[r,s],"float32")}var nQ={kernelName:em,backendName:"webgl",kernelFunc:tQ};function aQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=N.computeConv3DInfo(l,s.shape,o,1,i),p=new K9(u);return n.runWebGLProgram(p,[r,s],"float32")}var rQ={kernelName:tm,backendName:"webgl",kernelFunc:aQ},sQ=Wu+`
|
|
return cos(x);
|
|
`,iQ=Ye({opSnippet:sQ}),oQ={kernelName:ki,backendName:"webgl",kernelFunc:iQ},lQ=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,uQ=Ye({opSnippet:lQ}),pQ={kernelName:Ii,backendName:"webgl",kernelFunc:uQ},cQ=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,w]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${b};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${w};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},dQ=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new cQ(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},hQ={kernelName:Fl,backendName:"webgl",kernelFunc:dQ},ec;(function(e){e.Prod="*",e.Sum="+"})(ec||(ec={}));var Jk=class{constructor(e,t,n,a){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===ec.Prod?"1.0":"0.0",i=n?s:`getX(${Qk(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(r)} coords = getOutputCoords();
|
|
int end = ${eI(r,"coords",this.op)};
|
|
float val = ${i};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${l}) {
|
|
int idx = ${u};
|
|
${eI(r,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${Qk(r,"coords",this.op)});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Qk(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function eI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function X_(e,t,n,a,r,s){let i=t.shape.length,o=N.getAxesPermutation([a],i),l=t;o!=null&&(l=kn({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=N.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=ta({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new Jk(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new Jk(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=N.getUndoAxesPermutation(o),h=kn({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function mQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return X_(ec.Prod,r,n,s,i,o)}var fQ={kernelName:$l,backendName:"webgl",kernelFunc:mQ};function gQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return X_(ec.Sum,r,n,s,i,o)}var bQ={kernelName:Si,backendName:"webgl",kernelFunc:gQ};function yQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=__(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=E7(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var xQ={kernelName:nm,backendName:"webgl",kernelFunc:yQ},vQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function wQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new vQ(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var kQ={kernelName:Dl,backendName:"webgl",kernelFunc:wQ},Y_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Nn(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${s}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${p}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},Z_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Nn(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;c+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<p;g++)c+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;c+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let b=g*2;if(c+=`
|
|
xC = xCCorner + ${b*l};
|
|
`,o===1){if(b<p&&(i%2===1?(c+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`,l===1&&b>0?c+=`
|
|
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
|
|
`:c+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
|
|
} else {
|
|
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
|
|
}
|
|
`):c+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xC${b} = xTexelC${b};
|
|
`,b+1<p)){let y=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
`,l>1?c+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);
|
|
} else {
|
|
xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);
|
|
}
|
|
`:c+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
|
|
`):y===1?c+=`
|
|
xC${b+1} = xTexelC${b};
|
|
`:c+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b+1} = xTexelC${b+1};
|
|
`}}else b<p&&(i%2===1?(c+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`,b+1<p&&(c+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
|
|
`)):(c+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(
|
|
xTexelC${b}.xy, xTexelC${b+1}.xy);
|
|
`,b+1<p&&(c+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`)));b<p&&(c+=`
|
|
wTexel = getW(r, ${b}, d1, q);
|
|
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
|
|
`,b+1<p&&(c+=`
|
|
wTexel = getW(r, ${b+1}, d1, q);
|
|
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}c+=`
|
|
}
|
|
`,c+=`
|
|
}
|
|
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${c}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${f}
|
|
${m}
|
|
setOutput(result);
|
|
}
|
|
`}};function IQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=N.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;H().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new Z_(d):c=new Y_(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var SQ={kernelName:Ti,backendName:"webgl",kernelFunc:IQ},TQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},NQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function CQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new TQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var _Q={kernelName:am,backendName:"webgl",kernelFunc:CQ};function EQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new NQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var AQ={kernelName:rm,backendName:"webgl",kernelFunc:EQ},$Q=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function FQ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=v.sizeFromShape(a.shape),i=de({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new $Q(s),l=n.runWebGLProgram(o,[i],i.dtype),u=de({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var DQ={kernelName:sm,backendName:"webgl",kernelFunc:FQ},RQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${p}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function MQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new RQ(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=de({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var PQ={kernelName:oc,backendName:"webgl",kernelFunc:MQ};function OQ(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(b)?x=s[g]:(x=kn({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=de({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=X0({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=Rf({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var LQ={kernelName:im,backendName:"webgl",kernelFunc:OQ},zQ="return (x >= 0.0) ? x : (exp(x) - 1.0);",BQ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,WQ=Ye({opSnippet:zQ,packedOpSnippet:BQ}),VQ={kernelName:Ci,backendName:"webgl",kernelFunc:WQ},UQ="return (b >= 1.0) ? a : a * (b + 1.0);",GQ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,HQ=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new nd(GQ,a.shape,r.shape):new bl(UQ,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},jQ={kernelName:om,backendName:"webgl",kernelFunc:HQ},qQ=`
|
|
return vec4(equal(a, b));
|
|
`,KQ="return float(a == b);",XQ=un({opSnippet:KQ,packedOpSnippet:qQ,dtype:"bool",cpuKernelImpl:D7}),YQ={kernelName:Ml,backendName:"webgl",kernelFunc:XQ},ZQ=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${N.ERF_P};
|
|
float a1 = ${N.ERF_A1};
|
|
float a2 = ${N.ERF_A2};
|
|
float a3 = ${N.ERF_A3};
|
|
float a4 = ${N.ERF_A4};
|
|
float a5 = ${N.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,JQ=Ye({opSnippet:ZQ}),QQ={kernelName:Rl,backendName:"webgl",kernelFunc:JQ},eee=Wu+`
|
|
return exp(x);
|
|
`,tee=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,J_=Ye({opSnippet:eee,packedOpSnippet:tee,cpuKernelImpl:R7,dtype:"float32"}),nee={kernelName:_i,backendName:"webgl",kernelFunc:J_};function px(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),de({inputs:{x:s},backend:a,attrs:{shape:o}})}var aee={kernelName:Pl,backendName:"webgl",kernelFunc:px},tI="return exp(x) - 1.0;",ree=Ye({opSnippet:tI,packedOpSnippet:tI,cpuKernelImpl:M7}),see={kernelName:Ol,backendName:"webgl",kernelFunc:ree},nI=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function Q_(e,t,n){let a=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=de({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new nI("real",l,t),p=new nI("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Is({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=de({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function iee(e){let{inputs:t,backend:n}=e,{input:a}=t;return Q_(a,!1,n)}var oee={kernelName:lm,backendName:"webgl",kernelFunc:iee},lee=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function rd(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new lee(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var uee={kernelName:lc,backendName:"webgl",kernelFunc:rd},pee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},cee={kernelName:Ll,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new pee(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},aI="return floor(x);",dee=Ye({opSnippet:aI,packedOpSnippet:aI,cpuKernelImpl:P7}),hee={kernelName:Ei,backendName:"webgl",kernelFunc:dee},mee=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,fee=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,gee=un({opSnippet:mee,packedOpSnippet:fee,dtype:"int32"}),bee={kernelName:Ai,backendName:"webgl",kernelFunc:gee},yee=class{constructor(e){this.variableNames=["A"];let t=Tn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},xee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Tn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},vee={kernelName:bh,backendName:"webgl",kernelFunc:wee},jo,fy=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function wee(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];if(o||i){let f=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(jo==null||f!==fy)&&(fy=f,jo=document.createElement("canvas").getContext("2d",{willReadFrequently:fy})),jo.canvas.width=l,jo.canvas.height=u,jo.drawImage(r,0,0,l,u),r=jo.canvas}let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=pa.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=H().getBool("WEBGL_PACK")?new xee(d):new yee(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function kee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=N.convertConv2DDataFormat(p),g=N.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),b,y=[],x=i!=null,w=o!=null,I=h==="leakyrelu",T=()=>{let E=[r,s],A=(R,F)=>{if(F==="NCHW"&&R.shape.length===1&&R.shape[0]!==1){let S=de({inputs:{x:R},backend:n,attrs:{shape:[R.shape[0],1,1]}});return y.push(S),S}return R};if(x&&E.push(A(i,p)),w&&E.push(A(o,p)),I){let R=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));E.push(R),y.push(R)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=q_({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(g.strideWidth<=2&&f==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let E=h?Jp(h,!0):null,A=new j_(g,x,E,w,I),R=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=T();b=n.runWebGLProgram(A,F,"float32",R)}else if(H().getBool("WEBGL_CONV_IM2COL"))b=K_({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let E=h?Jp(h,!1):null,A=new H_(g,x,E,w,I),R=T();b=n.runWebGLProgram(A,R,"float32")}let C=de({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var Iee={kernelName:Qs,backendName:"webgl",kernelFunc:kee};function See(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=N.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),b=H().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=c?Jp(c,b):null,x=[r,s],w=i!=null,I=o!=null,T=c==="leakyrelu";if(w&&x.push(i),I&&x.push(o),T){let R=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(R),m.push(R)}let C;b?C=new Z_(g,w,y,I,T):C=new Y_(g,w,y,I,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],A=n.runWebGLProgram(C,x,"float32",E);return m.forEach(R=>n.disposeIntermediateTensorInfo(R)),A}var Tee={kernelName:ei,backendName:"webgl",kernelFunc:See},Nee=class{constructor(e,t,n,a){this.sliceDim=e,this.strides=t,this.paramsShape=a,this.variableNames=["x","indices"],this.outputShape=n;let r=gt(n.length),s=`
|
|
int index;`;for(let i=0;i<this.sliceDim;i++)s+=`
|
|
index = round(getIndices(coords[0], ${i}));
|
|
out_of_bounds = out_of_bounds || index < 0;
|
|
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[i]};
|
|
flattenIndex += index * ${this.strides[i]};`;this.userCode=`
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
bool out_of_bounds = false;
|
|
|
|
${s}
|
|
|
|
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Cee(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(a.shape),[l,u,p,d]=N.prepareAndValidate(a,r),c=de({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=de({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let b=n.readSync(r.dataId),y=n.bufferSync(a),x=O7(b,y,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new Nee(i,d,[u,p],a.shape),f=n.runWebGLProgram(m,[h,c],h.dtype),g=de({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var _ee={kernelName:Bl,backendName:"webgl",kernelFunc:Cee},Eee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=gt(this.rank),a=Aee(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${a}));
|
|
}
|
|
`}};function Aee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function eE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0];if(H().get("DEBUG")){let y=n.readSync(s.dataId),x=r.shape[l];for(let w=0;w<y.length;++w){let I=y[w];v.assert(I<=x-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${x-1}]`)}}let u=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),d=[],c=de({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=de({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=n.bufferSync(h),x=n.bufferSync(c),w=L7(x,y,m);return d.forEach(I=>n.disposeIntermediateTensorInfo(I)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new Eee(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let b=de({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var $ee={kernelName:zl,backendName:"webgl",kernelFunc:eE},Fee="return float(a > b);",Dee=`
|
|
return vec4(greaterThan(a, b));
|
|
`,Ree=un({opSnippet:Fee,packedOpSnippet:Dee,cpuKernelImpl:z7,dtype:"bool"}),Mee={kernelName:Wl,backendName:"webgl",kernelFunc:Ree},Pee="return float(a >= b);",Oee=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,Lee=un({opSnippet:Pee,packedOpSnippet:Oee,dtype:"bool",cpuKernelImpl:B7}),zee={kernelName:Fi,backendName:"webgl",kernelFunc:Lee};function Bee(e){let{inputs:t,backend:n}=e,{input:a}=t;return Q_(a,!0,n)}var Wee={kernelName:um,backendName:"webgl",kernelFunc:Bee},Vee="return float(!isnan(x) && !isinf(x));",Uee=Ye({opSnippet:Vee,dtype:"bool"}),Gee={kernelName:Vl,backendName:"webgl",kernelFunc:Uee},Hee="return float(isinf(x));",jee=Ye({opSnippet:Hee,dtype:"bool"}),qee={kernelName:Ul,backendName:"webgl",kernelFunc:jee},Kee="return float(isnan(x));",Xee=Ye({opSnippet:Kee,dtype:"bool"}),Yee={kernelName:Gl,backendName:"webgl",kernelFunc:Xee},Zee="return float(a < b);",Jee=`
|
|
return vec4(lessThan(a, b));
|
|
`,Qee=un({opSnippet:Zee,packedOpSnippet:Jee,cpuKernelImpl:W7,dtype:"bool"}),ete={kernelName:Hl,backendName:"webgl",kernelFunc:Qee},tte="return float(a <= b);",nte=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,ate=un({opSnippet:tte,packedOpSnippet:nte,cpuKernelImpl:V7,dtype:"bool"}),rte={kernelName:jl,backendName:"webgl",kernelFunc:ate};function ste(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=U7(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var ite={kernelName:cm,backendName:"webgl",kernelFunc:ste},ote=Wu+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,lte=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,ute=Ye({opSnippet:ote,packedOpSnippet:lte,cpuKernelImpl:G7}),pte={kernelName:Mi,backendName:"webgl",kernelFunc:ute},cte=Wu+`
|
|
return log(1.0 + x);
|
|
`,dte=Ye({opSnippet:cte}),hte={kernelName:ql,backendName:"webgl",kernelFunc:dte},mte="return float(a >= 1.0 && b >= 1.0);",fte=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,gte=un({opSnippet:mte,packedOpSnippet:fte,dtype:"bool"}),bte={kernelName:Kl,backendName:"webgl",kernelFunc:gte},yte="return float(!(x >= 1.0));",xte=Ye({opSnippet:yte}),vte={kernelName:Xl,backendName:"webgl",kernelFunc:xte},wte="return float(a >= 1.0 || b >= 1.0);",kte=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Ite=un({opSnippet:wte,packedOpSnippet:kte,dtype:"bool"}),Ste={kernelName:Yl,backendName:"webgl",kernelFunc:Ite},Tte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},Nte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},Cte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=H().getBool("WEBGL_PACK_NORMALIZATION")?new Nte(r.shape,s,i,o,l):new Tte(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},_te={kernelName:uc,backendName:"webgl",kernelFunc:Cte},Ete=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Ate=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new Ete(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},$te={kernelName:dm,backendName:"webgl",kernelFunc:Ate};function Fte(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=de({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=wo(i,e.dtype,"max",a),l=de({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function tE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let y=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let w=q0(y,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let I=n.texData.get(h.dataId);I.values=w}else h=Df(r,p,n);u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("max",u,o);let[m,f]=N.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=N.expandShapeToKeepDim(m,l));let b;if(c){let y=n.texData.get(h.dataId).values,x=H7(y,v.sizeFromShape(f),g,r.dtype);b=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(b.dataId);w.values=x}else b=Fte(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),b}var Dte={kernelName:Pi,backendName:"webgl",kernelFunc:tE},Rte=K0+`
|
|
return max(a, b);
|
|
`,Mte=`
|
|
vec4 result = vec4(max(a, b));
|
|
bvec4 isNaNA = isnan(a);
|
|
bvec4 isNaNB = isnan(b);
|
|
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
|
|
`+td+`
|
|
return result;
|
|
`,Pte=un({opSnippet:Rte,packedOpSnippet:Mte,cpuKernelImpl:j7}),Ote={kernelName:Oi,backendName:"webgl",kernelFunc:Pte};function Lte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Pu(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return ta({inputs:{x:r},backend:n});let d=new Qp(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var zte={kernelName:Li,backendName:"webgl",kernelFunc:Lte};function Bte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new Y0(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var Wte={kernelName:pc,backendName:"webgl",kernelFunc:Bte},Vte=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Ute=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${d}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Gte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new Y0(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new Ute(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var Hte={kernelName:mm,backendName:"webgl",kernelFunc:Gte};function jte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Pu([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new Qp(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new Vte(c),b=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),b}var qte={kernelName:hm,backendName:"webgl",kernelFunc:jte};function Kte(e,t,n,a){let r=new Qp(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Qp(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var Xte={kernelName:fm,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=N.computePool2DInfo(a.shape,r,s,u,i),[d,c]=Kte(a,o,p,l);return[d,c]}};function Yte(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=de({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=wo(i,"float32","mean",a),l=de({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var Zte={kernelName:zi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let C=0;C<w.length;C++)w[C]=a.shape[p[C]];let I=q0(x,a.shape,a.dtype,p,w);m=i.makeTensorInfo(w,a.dtype);let T=i.texData.get(m.dataId);T.values=I}else m=Df(a,p,i);h.push(m),u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=N.computeOutAndReduceShapes(m.shape,u),b=f;r&&(b=N.expandShapeToKeepDim(f,l));let y=Yte(m,g,b,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return y}};function Jte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=kn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=de({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=wo(f,f.dtype,"min",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=de({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=de({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var Qte={kernelName:Bi,backendName:"webgl",kernelFunc:Jte},ene=K0+`
|
|
return min(a, b);
|
|
`,tne=`
|
|
vec4 result = vec4(min(a, b));
|
|
bvec4 isNaNA = isnan(a);
|
|
bvec4 isNaNB = isnan(b);
|
|
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
|
|
`+td+`
|
|
return result;
|
|
`,nne=un({opSnippet:ene,packedOpSnippet:tne,cpuKernelImpl:q7}),ane={kernelName:Wi,backendName:"webgl",kernelFunc:nne},rne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=gt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},sne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=gt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=wn("rc",a),l=wn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},ine=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sne(a.shape,r,s):new rne(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},one={kernelName:Vi,backendName:"webgl",kernelFunc:ine},lne=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,une=`
|
|
vec4 result = mod(a, b);
|
|
bvec4 isNaN = equal(b, vec4(0.0));
|
|
`+td+`
|
|
return result;
|
|
`,pne=un({opSnippet:lne,packedOpSnippet:une}),cne={kernelName:Zl,backendName:"webgl",kernelFunc:pne},dne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},hne=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,mne=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,nE=un({opSnippet:hne,packedOpSnippet:mne,checkOutOfBounds:!0}),fne={kernelName:Ni,backendName:"webgl",kernelFunc:nE},rI="return a - b;",aE=un({opSnippet:rI,packedOpSnippet:rI,supportsComplex:!0,cpuKernelImpl:dZ}),gne={kernelName:lo,backendName:"webgl",kernelFunc:aE};function rE(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=v.parseAxisParam([s],r.shape),o=tE({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=de({inputs:{x:o},backend:n,attrs:{shape:l}}),p=aE({inputs:{a:r,b:u},backend:n}),d=J_({inputs:{x:p},backend:n}),c=Rf({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=de({inputs:{x:c},backend:n,attrs:{shape:l}}),m=nE({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var bne={kernelName:io,backendName:"webgl",kernelFunc:rE};function yne(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:rE({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new dne(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var xne={kernelName:gm,backendName:"webgl",kernelFunc:yne},vne=Fa+`
|
|
return -x;
|
|
`,wne=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function kne(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=X7(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new js(a.shape,wne):r=new Sr(a.shape,vne),n.runWebGLProgram(r,[a],a.dtype)}var Ine={kernelName:Jl,backendName:"webgl",kernelFunc:kne},Sne=pr.nonMaxSuppressionV3Impl;function Tne(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=Sne(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Nne={kernelName:eu,backendName:"webgl",kernelFunc:Tne},Cne=pr.nonMaxSuppressionV4Impl;function _ne(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=Cne(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Ene={kernelName:tu,backendName:"webgl",kernelFunc:_ne},Ane=pr.nonMaxSuppressionV5Impl;function $ne(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=Ane(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var Fne={kernelName:nu,backendName:"webgl",kernelFunc:$ne},Dne=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Rne=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=v.sizeFromShape(r.shape),p=new Dne(u,i,o,l),d=de({inputs:{x:r},backend:n,attrs:{shape:[u]}}),c=n.runWebGLProgram(p,[d],s);n.disposeIntermediateTensorInfo(d);let h=[...r.shape,i],m=de({inputs:{x:c},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(c),m},Mne={kernelName:Gi,backendName:"webgl",kernelFunc:Rne};function Vh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=ad({inputs:{input:a},backend:n}),s=Vh({inputs:{x:r},backend:n}),i=Mf({inputs:{input:a},backend:n}),o=Vh({inputs:{x:i},backend:n}),l=Is({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return rd({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var Pne={kernelName:wu,backendName:"webgl",kernelFunc:Vh};function sE(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=ad({inputs:{input:a},backend:n}),s=sE({inputs:{x:r},backend:n}),i=Mf({inputs:{input:a},backend:n}),o=Vh({inputs:{x:i},backend:n}),l=Is({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return rd({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var One={kernelName:au,backendName:"webgl",kernelFunc:sE};function Lne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return px({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=px({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=G_({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var zne={kernelName:ru,backendName:"webgl",kernelFunc:Lne},Bne=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=gt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},Wne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=gt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=wn("rc",a),l=wn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${d[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},iE=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(v.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return rd({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Wne(r.shape,s,i):new Bne(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},Vne={kernelName:Hi,backendName:"webgl",kernelFunc:iE},Une=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Gne=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
bvec4 isNaN1 = lessThan(a, vec4(0.0));
|
|
bvec4 isNaN2 = lessThan(floor(b), b);
|
|
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
|
|
`+td+`
|
|
return result;
|
|
`,Hne=un({opSnippet:Une,packedOpSnippet:Gne}),jne={kernelName:ji,backendName:"webgl",kernelFunc:Hne};function qne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=v.parseAxisParam(s,r.shape),p=u,d=N.getAxesPermutation(p,o),c=r;d!=null&&(c=kn({inputs:{x:r},backend:n,attrs:{perm:d}}),p=N.getInnerMostAxes(p.length,o),l.push(c)),N.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:b}=Z7(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,b,f)}else{let[m,f]=N.computeOutAndReduceShapes(c.shape,p),g=v.sizeFromShape(f),b=de({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),y=Nm(r.dtype),x=wo(b,y,"prod",n);h=de({inputs:{x},backend:n,attrs:{shape:m}}),l.push(b),l.push(x)}if(i){l.push(h);let m=N.expandShapeToKeepDim(h.shape,u);h=de({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var Kne={kernelName:Ki,backendName:"webgl",kernelFunc:qne};function Xne(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(b=>n.readSync(b.dataId)),u=r.map(b=>b.shape),p=n.readSync(s.dataId),d=n.readSync(i.dataId),[c,h,m]=J7(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(b=>n.makeTensorInfo([b.length],"int32",b)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var Yne={kernelName:bm,backendName:"webgl",kernelFunc:Xne};function Zne(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=n.readSync(i.dataId),c=o.map(g=>n.readSync(g.dataId)),h=o.map(g=>g.shape),[m,f]=Q7(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var Jne={kernelName:ym,backendName:"webgl",kernelFunc:Zne},oE=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=eZ(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},Qne={kernelName:cc,backendName:"webgl",kernelFunc:oE},eae="return 1.0 / x;",tae=Ye({opSnippet:eae}),nae={kernelName:su,backendName:"webgl",kernelFunc:tae},aae=Fa+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,rae=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,sae=Ye({opSnippet:aae,packedOpSnippet:rae}),iae={kernelName:Xi,backendName:"webgl",kernelFunc:sae},oae=Fa+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,lae=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,uae=Ye({opSnippet:oae,packedOpSnippet:lae}),pae={kernelName:Ji,backendName:"webgl",kernelFunc:uae},cae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},dae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function hae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new dae(r.shape,l,u,s,i):new cae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var mae={kernelName:Zi,backendName:"webgl",kernelFunc:hae},fae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function gae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new fae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var bae={kernelName:wm,backendName:"webgl",kernelFunc:gae},yae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},xae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function vae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new xae(r.shape,l,u,s,i):new yae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var wae={kernelName:Yi,backendName:"webgl",kernelFunc:vae},kae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Iae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new kae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Sae={kernelName:vm,backendName:"webgl",kernelFunc:Iae},Tae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=gt(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Nae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=wn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=gt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${p(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((b,y)=>c(y,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Cae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return ta({inputs:{x:r},backend:n});let l=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Nae(r.shape,o):new Tae(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var _ae={kernelName:Qi,backendName:"webgl",kernelFunc:Cae},Eae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Aae={kernelName:ku,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Eae(a.shape,s),[u,p]=N.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},$ae=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Fae=Ye({opSnippet:$ae}),Dae={kernelName:eo,backendName:"webgl",kernelFunc:Fae},Rae="return inversesqrt(x);",Mae=Ye({opSnippet:Rae,cpuKernelImpl:tZ}),Pae={kernelName:to,backendName:"webgl",kernelFunc:Mae},lE=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=gt(r.length),l=gt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let p=`getIndices(${u})`,d="";a===1?d="i":a===2&&(d="i, coords[1]");let c=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Oae(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=de({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=de({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new lE(l,o,h.shape.length,m.shape.length,p,c),b=n.runWebGLProgram(g,[m,h,f],m.dtype),y=de({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(f),y}var Lae={kernelName:ou,backendName:"webgl",kernelFunc:Oae},zae=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=H().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=`
|
|
int findBound(int batch, float value) {
|
|
int left = 0;
|
|
int right = numInputs;
|
|
int mid;
|
|
${i}
|
|
mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${o} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int valueIndex = coords[1];
|
|
|
|
float value = getValues(batch, valueIndex);
|
|
|
|
setOutput(float(findBound(batch, value)));
|
|
}
|
|
`}};function Bae(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new zae(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var Wae={kernelName:km,backendName:"webgl",kernelFunc:Bae},Vae=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=gt(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Uae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new Vae(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ha(r.dtype,s.dtype))}var Gae={kernelName:lu,backendName:"webgl",kernelFunc:Uae},Hae=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${N.SELU_SCALEALPHA};
|
|
float scale = ${N.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,jae=Ye({opSnippet:Hae}),qae={kernelName:uu,backendName:"webgl",kernelFunc:jae},Kae=Wu+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,Xae=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Yae=Ye({opSnippet:Kae,packedOpSnippet:Xae,cpuKernelImpl:aZ}),Zae={kernelName:ao,backendName:"webgl",kernelFunc:Yae},Jae=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Qae=Ye({opSnippet:Jae}),ere={kernelName:du,backendName:"webgl",kernelFunc:Qae},tre=Wu+`
|
|
return sin(x);
|
|
`,nre=Ye({opSnippet:tre}),are={kernelName:no,backendName:"webgl",kernelFunc:nre},rre=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,sre=Ye({opSnippet:rre}),ire={kernelName:cu,backendName:"webgl",kernelFunc:sre},ore=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,lre=Ye({opSnippet:ore}),ure={kernelName:hu,backendName:"webgl",kernelFunc:lre},pre=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,y)=>b*y),l=[[0,0]];l.push(...i);for(let b=1+s.length;b<r.shape.length;++b)l.push([0,0]);let u=[],p=iE({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(p.shape,s,o,!1),c=N.getPermuted(d.length,s.length,!1),h=N.getReshapedPermuted(p.shape,s,o,!1),m=de({inputs:{x:p},backend:n,attrs:{shape:d}}),f=kn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=de({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},cre={kernelName:mu,backendName:"webgl",kernelFunc:pre};function dre(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=sZ(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var hre={kernelName:dc,backendName:"webgl",kernelFunc:dre};function mre(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=iZ(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var fre={kernelName:gu,backendName:"webgl",kernelFunc:mre};function gre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=A_(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var bre={kernelName:hc,backendName:"webgl",kernelFunc:gre};function yre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=A_(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var xre={kernelName:mc,backendName:"webgl",kernelFunc:yre};function vre(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let b=n.bufferSync(r),y=n.bufferSync(s),x=v.decodeString(n.readSync(i.dataId)[0]),w=nZ(b,y,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,w.dtype,w.values)}let m=new lE(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=de({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var wre={kernelName:Im,backendName:"webgl",kernelFunc:vre};function kre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=Vu({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var Ire={kernelName:fu,backendName:"webgl",kernelFunc:kre},sI="return sqrt(x);",Sre=Ye({opSnippet:sI,packedOpSnippet:sI,cpuKernelImpl:oZ}),Tre={kernelName:ro,backendName:"webgl",kernelFunc:Sre},Nre="return x * x;",Cre=Ye({opSnippet:Nre}),_re={kernelName:fc,backendName:"webgl",kernelFunc:Cre},iI="return (a - b) * (a - b);",Ere=un({opSnippet:iI,packedOpSnippet:iI}),Are={kernelName:oo,backendName:"webgl",kernelFunc:Ere};function $re({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Fa+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Sr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var Fre={kernelName:hs,backendName:"webgl",kernelFunc:$re},Dre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=gt(n.length),s=gt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function Rre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=jt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=de({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=jt.computeOutShape(y,x,w),E=Vu({inputs:{x:r},backend:n,attrs:{begin:y,size:C}});I=de({inputs:{x:E},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),E=Pe(r.shape,r.dtype,C),A=lZ(h,E,w,y);I=n.makeTensorInfo(m,r.dtype,A.values)}else{let C=new Dre(y,w,h);I=n.runWebGLProgram(C,[r],r.dtype)}let T=de({inputs:{x:I},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(I),T}var Mre={kernelName:bu,backendName:"webgl",kernelFunc:Rre};function Pre(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=uZ(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var Ore={kernelName:gc,backendName:"webgl",kernelFunc:Pre};function Lre(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=pZ(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var zre={kernelName:bc,backendName:"webgl",kernelFunc:Lre};function Bre(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=cZ(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var Wre={kernelName:yc,backendName:"webgl",kernelFunc:Bre},Vre="return tan(x);",Ure=Ye({opSnippet:Vre}),Gre={kernelName:uo,backendName:"webgl",kernelFunc:Ure},Hre=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,jre=Ye({opSnippet:Hre}),qre={kernelName:po,backendName:"webgl",kernelFunc:jre},Kre=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=gt(this.rank),r=Xre(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Xre(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function uE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>v.decodeString(d)):o,u=Pe(r.shape,r.dtype,l),p=hZ(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new Kre(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var Yre={kernelName:ds,backendName:"webgl",kernelFunc:uE},Zre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Jre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Os(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function oI(e){let t=1;for(;t<e;)t*=2;return t}function Qre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=H().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=H().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let A=n.readSync(r.dataId),[R,F]=mZ(A,u,r.dtype,s,i);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,rd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=v.sizeFromShape(u)/p,f=de({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Os(n,h);let g=oI(s),b=oI(p),y=null,x=()=>y===null?[f,f]:[f,y],w=(A,R,F)=>{let S=x(),M=new Zre(F),W=[[p],[y===null?1:0],[Number.NEGATIVE_INFINITY],[A],[R]],U=y;y=n.runWebGLProgram(M,S,"int32",W),Os(n,U)};for(let A=1;A<g;A*=2){let R=A*2;for(let F=A;F>=1;F/=2)w(R,F,[m,b])}for(let A=b;A>g;A/=2){let R=x(),F=new Jre([m,A/2]),S=[[p],[y===null?1:0],[g]],M=y;y=n.runWebGLProgram(F,R,"int32",S),Os(n,M);let W=g/2,U=W*2;for(let G=W;G>=1;G/=2)w(U,G,y.shape)}let I=y;y=Vu({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,s]}}),Os(n,I);let T=eE({inputs:{x:f,indices:y},backend:n,attrs:{axis:1,batchDims:1}});Os(n,f);let C=u.slice(0,-1);C.push(s),I=y,y=de({inputs:{x:y},attrs:{shape:C},backend:n}),Os(n,I);let E=T;return T=de({inputs:{x:T},attrs:{shape:C},backend:n}),Os(n,E),[T,y]}var ese={kernelName:yu,backendName:"webgl",kernelFunc:Qre},tse=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function nse(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new tse(d,c,i,o,l,g);return n.runWebGLProgram(b,[r,s],"float32")}var ase={kernelName:xu,backendName:"webgl",kernelFunc:nse};function rse(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Pu(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=fZ(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var sse={kernelName:Sm,backendName:"webgl",kernelFunc:rse};function ise(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=Vu({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),b=de({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=b,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var ose={kernelName:vu,backendName:"webgl",kernelFunc:ise},lse=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function use(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=N.getAxesPermutation([u],o),d=r;p!=null&&(d=kn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=N.getInnerMostAxes(1,o)[0]);let c=N.segment_util.computeOutShape(d.shape,u,i),h=v.sizeFromShape([d.shape[u]]),m=de({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Nm(r.dtype),g=(w,I,T,C,E)=>{let A=w.shape[0],R=w.shape[1],F=N.segment_util.segOpComputeOptimalWindowSize(R,E),S={windowSize:F,inSize:R,batchSize:A,numSegments:E},M=new lse(S,I),W=n.compileAndRun(M,[w,T],C);if(l.push(W),W.shape[1]===E)return W;let U=oE({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),G=uE({inputs:{x:U},backend:n,attrs:{reps:[R/F]}});return l.push(U),l.push(G),g(W,I,G,C,E)},b=g(m,"unsortedSegmentSum",s,f,i),y=de({inputs:{x:b},backend:n,attrs:{shape:c}}),x=y;if(p!=null){l.push(y);let w=N.getUndoAxesPermutation(p);x=kn({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var pse={kernelName:xc,backendName:"webgl",kernelFunc:use},cse=[lJ,pJ,hJ,gJ,yJ,wJ,IJ,TJ,EJ,$J,RJ,OJ,BJ,GJ,qJ,XJ,ZJ,t9,a9,s9,u9,g9,y9,v9,N9,_9,F9,HZ,M9,B9,G9,Y9,J9,eQ,nQ,rQ,oQ,pQ,hQ,fQ,bQ,xQ,kQ,SQ,_Q,AQ,DQ,PQ,LQ,VQ,jQ,YQ,QQ,nee,aee,see,oee,uee,cee,hee,bee,vee,Iee,Tee,_ee,$ee,Mee,zee,GZ,Wee,L9,Gee,qee,Yee,qZ,ete,rte,ite,pte,hte,bte,vte,Ste,_te,$te,Dte,Ote,zte,Wte,Hte,qte,Xte,Zte,Qte,ane,one,cne,xne,YZ,Ine,Nne,Ene,Fne,k9,Mne,One,zne,Vne,jne,XZ,Kne,Yne,Jne,Qne,I9,fne,nae,iae,pae,JZ,mae,bae,wae,Sae,_ae,Aae,Dae,Pae,Lae,Wae,Gae,qae,Zae,ere,are,ire,m9,bne,ure,cre,hre,fre,bre,xre,wre,Ire,Tre,_re,Are,Fre,Mre,Ore,zre,Wre,gne,sJ,Gre,qre,Yre,ese,ase,iJ,sse,ose,pse,Pne];for(let e of cse)vc(e);var Et;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Et||(Et={}));var tc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(tc||(tc={}));var pE;function dse(e){pE=e.wasm.cwrap(Js,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function hse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=n.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=tc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let b=l?r.shape[2]:r.shape[1],y=u?s.shape[1]:s.shape[2],x=Iu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),w=n.makeOutput([...x,b,y],r.dtype),I=n.dataIdMap.get(w.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return pE(c,T,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,I),w}var mse={kernelName:Js,backendName:"wasm",setupFunc:dse,kernelFunc:hse};function nn(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,Et[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var fse=nn(xl);function pn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=N.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(v.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),b=new Uint8Array(new Int32Array(p.shape).buffer),y=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,b,p.shape.length,Et[u.dtype],y),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var gse=!0,bse=pn(ps,gse),cE;function yse(e){cE=e.wasm.cwrap(mi,null,["array","number","number","number"])}function xse(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return cE(s,r.length,Et[a.dtype],i),a}var vse={kernelName:mi,backendName:"wasm",setupFunc:yse,kernelFunc:xse};function Pf(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var wse={kernelName:Di,backendName:"wasm",kernelFunc:Pf},dE;function kse(e){dE=e.wasm.cwrap(Tr,null,["number","array","number","number","number","array","number"])}function os(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Sse(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Ise(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Pf({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return dE(p,h,l.shape.length,Et[l.dtype],d,c,s.length),u}function Ise(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Sse(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Tse={kernelName:Tr,backendName:"wasm",kernelFunc:os,setupFunc:kse};function Ss(e,t,n){let a=e.shape,r=e.shape.length,s=v.parseAxisParam(t,a),i=s,o=N.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=N.getInnerMostAxes(i.length,r),l=os({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var hE;function Nse(e){hE=e.wasm.cwrap(kl,null,["number, number, number"])}function Cse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ss(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("all",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;hE(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var _se={kernelName:kl,backendName:"wasm",setupFunc:Nse,kernelFunc:Cse},mE;function Ese(e){mE=e.wasm.cwrap(Il,null,["number, number, number"])}function Ase(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ss(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("any",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;mE(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var $se={kernelName:Il,backendName:"wasm",setupFunc:Ese,kernelFunc:Ase},fE;function Fse(e){fE=e.wasm.cwrap(fi,null,["number","number","number","number","number"])}function Dse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:d}=Ss(s,r,t);if(d){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(l=u,o=b)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=v.sizeFromShape(h.shape),g=l.shape[p[0]];return fE(o,Et[l.dtype],f,g,m),d&&t.disposeData(u.dataId),h}var Rse={kernelName:fi,backendName:"wasm",kernelFunc:Dse,setupFunc:Fse},gE;function Mse(e){gE=e.wasm.cwrap(gi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pse(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.strideHeight,y=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let w=a.makeOutput(p.outShape,"float32"),I=a.dataIdMap.get(w.dataId).id;return gE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,I),w}var Ose={kernelName:gi,backendName:"wasm",setupFunc:Mse,kernelFunc:Pse};function zn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=v.sizeFromShape(a.shape),i=v.inferFromImplicitShape(r,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var Lse={kernelName:iu,backendName:"wasm",kernelFunc:zn},bE;function zse(e){bE=e.wasm.cwrap(bi,null,["number","array","number","number","array","number","number","number","number"])}function Bse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=Iu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=zn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=zn({inputs:{x:s},backend:n,attrs:{shape:w}}),C=n.dataIdMap.get(I.dataId).id,E=n.dataIdMap.get(T.dataId).id,A=i?I.shape[2]:I.shape[1],R=o?T.shape[1]:T.shape[2],F=Math.max(g,b),S=n.makeOutput([F,A,R],I.dtype),M=n.dataIdMap.get(S.dataId).id,W=new Uint8Array(new Int32Array(I.shape).buffer),U=new Uint8Array(new Int32Array(T.shape).buffer);return bE(C,W,I.shape.length,E,U,T.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData(T.dataId),S.shape=y,S}var Wse={kernelName:bi,backendName:"wasm",setupFunc:zse,kernelFunc:Bse};function di(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=jt.parseSliceParams(t,n,a),o=jt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=v.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=jt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+v.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=Ph(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Vse(l,p[0],c,s,i);else if(h===3)Use(l,p[0],p[1],c,s,i);else if(h===4)Gse(l,p[0],p[1],p[2],c,s,i);else{let m=Ph(l,s,i,t.shape,t.dtype);c.set(m)}return u}function Vse(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function Use(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Gse(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let b=p;b<h;b++){let y=f*t+g*n+b*a+m;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var Hse={kernelName:pu,backendName:"wasm",kernelFunc:di};function jse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((b,y)=>b*y),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=zn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=os({inputs:{x:h},backend:n,attrs:{perm:u}}),f=zn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=di({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var qse={kernelName:El,backendName:"wasm",kernelFunc:jse};function Uu(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var Kse={kernelName:yi,backendName:"wasm",kernelFunc:Uu},Xse=nn(xi),yE;function Yse(e){yE=e.wasm.cwrap(cs,null,["number","number","number","number"])}function Zse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return yE(o,s,i,u),l}var Jse={kernelName:cs,backendName:"wasm",setupFunc:Yse,kernelFunc:Zse};function xE(e){let{inputs:t,backend:n}=e,a=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);N.assertParamsConsistent(r,a);let s=N.computeOutShape(t.map(h=>h.shape),a),i=t.filter(h=>v.sizeFromShape(h.shape)>0);if(i.length===1)return Pf({inputs:{x:i[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(v.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(x=>{let w=v.sizeFromShape(x.shape.slice(a));return zn({inputs:{x},backend:n,attrs:{shape:[-1,w]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=N.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=T0(m,s,t[0].dtype,f),b=N.computeOutShape(i.map(x=>x.shape),a);o.shape=b;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=N.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=v.sizeFromShape(i[0].shape.slice(0,a)),u=0,p=i.map(h=>{let m=v.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=i.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],b=h*g,y=d[f].subarray(b,b+g);c.set(y,m),m+=g}}return o}var Qse={kernelName:Al,backendName:"wasm",kernelFunc:xE},vE;function eie(e){vE=e.wasm.cwrap(vi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=N.convertConv2DDataFormat(c),m=N.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,b=m.padInfo.top,y=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,I=m.dilationHeight,T=m.dilationWidth,C=m.strideHeight,E=m.strideWidth,A=m.inChannels,R=m.outChannels,F=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),M=a.dataIdMap.get(S.dataId).id;return vE(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,b,y,x,w,F,I,T,C,E,A,R,M),S}var nie={kernelName:vi,backendName:"wasm",setupFunc:eie,kernelFunc:tie},wE;function aie(e){wE=e.wasm.cwrap(wi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rie(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=N.convertConv2DDataFormat(l),h=N.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:b,inHeight:y,inWidth:x,outChannels:w,outHeight:I,outWidth:T,strideHeight:C,strideWidth:E}=h,A=f-1-h.padInfo.top,R=g-1-h.padInfo.left,F=h.dataFormat==="channelsLast",S=v.computeStrides(h.inShape),M=v.computeStrides(r.shape),[W,U,G]=v.computeStrides(s.shape),q=S[0],K=F?S[1]:S[2],Z=F?S[2]:1,Q=F?1:S[1],ee=M[0],ae=F?M[1]:M[2],te=F?M[2]:1,le=F?1:M[1],ie=t.makeOutput(h.inShape,"float32"),be=t.dataIdMap.get(ie.dataId).id,ue=t.dataIdMap.get(r.dataId).id,xe=t.dataIdMap.get(s.dataId).id;return wE(ue,xe,m,f,g,y,x,b,I,T,w,C,E,A,R,W,U,G,q,K,Z,Q,ee,ae,te,le,be),ie}var sie={kernelName:wi,backendName:"wasm",setupFunc:aie,kernelFunc:rie},iie=nn(ki),oie=nn(Ii),cx;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(cx||(cx={}));var kE;function lie(e){kE=e.wasm.cwrap(Fl,null,["number","number","number","number","array","number","number","number","number","number"])}function uie(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Uu({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,b=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,I=new Uint8Array(new Int32Array(o.shape).buffer);return kE(g,b,y,p,I,d,c,cx[r],s,w),f!=null&&t.disposeData(f.dataId),x}var pie={kernelName:Fl,backendName:"wasm",setupFunc:lie,kernelFunc:uie},IE;function cie(e){IE=e.wasm.cwrap($l,null,["number","number","number","number","number","number"])}function die(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=os({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;IE(m,i?1:0,o?1:0,h,f,Et[r.dtype]);let g=c;if(u!==null){let b=N.getUndoAxesPermutation(u);g=os({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var hie={kernelName:$l,backendName:"wasm",setupFunc:cie,kernelFunc:die},SE;function mie(e){SE=e.wasm.cwrap(Si,null,["number","number","number","number","number","number"])}function fie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=os({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;SE(m,i?1:0,o?1:0,h,f,Et[r.dtype]);let g=c;if(u!==null){let b=N.getUndoAxesPermutation(u);g=os({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var gie={kernelName:Si,backendName:"wasm",setupFunc:mie,kernelFunc:fie},TE;function bie(e){TE=e.wasm.cwrap(Dl,null,["number","number","number","array","number","array","array","number","number"])}function yie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return TE(g,s,i==="NHWC"?1:0,b,r.shape.length-1,y,x,m.length,w),f}var xie={kernelName:Dl,backendName:"wasm",setupFunc:bie,kernelFunc:yie},NE;function vie(e){NE=e.wasm.cwrap(Ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=N.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,I=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,E=h.inChannels,A=h.outChannels,R=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let F=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get(F.dataId).id;return NE(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,b,y,x,R,w,I,T,C,E,A,S),F}var kie={kernelName:Ti,backendName:"wasm",setupFunc:vie,kernelFunc:wie},Iie=nn(Ci),Sie=!1,Tie=pn(Ml,Sie,"bool"),Nie=nn(_i,"float32");function dx(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),zn({inputs:{x:r},backend:a,attrs:{shape:o}})}var Cie={kernelName:Pl,backendName:"wasm",kernelFunc:dx};function CE(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var _ie={kernelName:lc,backendName:"wasm",kernelFunc:CE},_E;function Eie(e){_E=e.wasm.cwrap(Ll,null,["number","number","number","number","number","number"])}function Aie(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return _E(s,o,l,u,p,i),r}var $ie={kernelName:Ll,backendName:"wasm",kernelFunc:Aie,setupFunc:Eie},Fie=nn(Ei),Die=!1,Rie=pn(Ai,Die),EE;function Mie(e){EE=e.wasm.cwrap($i,null,["number","number","number","number","number","number","number"])}function Pie(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return EE(p,d,c,h,m,r,g),f}var Oie={kernelName:$i,backendName:"wasm",setupFunc:Mie,kernelFunc:Pie},AE;function Lie(e){AE=e.wasm.cwrap(Qs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=tc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,A=f.padInfo.bottom,R=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,W=f.strideWidth,U=f.inChannels,G=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Q=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(Q.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return AE(b,q,K,Z,y,I,T,w,C,E,A,R,G,F,S,M,W,U,x,g,ae,m||0,ee),Q}var Bie={kernelName:Qs,backendName:"wasm",setupFunc:Lie,kernelFunc:zie},$E;function Wie(e){$E=e.wasm.cwrap(ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Vie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=tc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,A=f.padInfo.bottom,R=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,W=f.strideWidth,U=f.inChannels,G=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Q=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(Q.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return $E(b,q,K,Z,y,I,T,w,C,E,A,R,G,F,S,M,W,U,x,g,ae,m||0,ee),Q}var Uie={kernelName:ei,backendName:"wasm",setupFunc:Wie,kernelFunc:Vie},FE;function Gie(e){FE=e.wasm.cwrap(Bl,null,["number","number","number","number","number","number","array","number"])}function Hie(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Dx.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return FE(c,Et[a.dtype],h,i,d,o,m,f),u}var jie={kernelName:Bl,backendName:"wasm",setupFunc:Gie,kernelFunc:Hie},DE;function qie(e){DE=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Kie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let E=u[C];v.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=zn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),m=zn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let b=c.shape.length-1,y=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,w=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer);return DE(y,Et[r.dtype],I,b,x,d.batchSize,T,w),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var Xie={kernelName:zl,backendName:"wasm",setupFunc:qie,kernelFunc:Kie},Yie=!1,Zie=pn(Wl,Yie,"bool"),Jie=!1,Qie=pn(Fi,Jie,"bool"),RE;function eoe(e){RE=e.wasm.cwrap(Ri,null,["number","number","number","number"])}function toe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;RE(r,Et[t.dtype],n,i)}return s}var noe={kernelName:Ri,backendName:"wasm",setupFunc:eoe,kernelFunc:toe},aoe=!1,roe=pn(Hl,aoe,"bool"),soe=!1,ioe=pn(jl,soe,"bool"),ooe=nn(Mi),loe=!1,uoe=pn(Kl,loe,"bool"),poe=nn(Xl),coe=!1,doe=pn(Yl,coe,"bool"),hoe=!1,moe=pn(CI,hoe,"bool"),ME;function foe(e){ME=e.wasm.cwrap(Pi,null,["number","number","number","number"])}function goe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ss(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("max",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;ME(o,Et[i.dtype],g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var boe={kernelName:Pi,backendName:"wasm",setupFunc:foe,kernelFunc:goe},yoe=!1,xoe=pn(Oi,yoe),PE;function voe(e){PE=e.wasm.cwrap(Li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function woe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.dilationHeight,y=p.dilationWidth,x=p.strideHeight,w=p.strideWidth,I=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),E=a.dataIdMap.get(C.dataId).id;return PE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,w,I,T,E),C}var koe={kernelName:Li,backendName:"wasm",setupFunc:voe,kernelFunc:woe},OE;function Ioe(e){OE=e.wasm.cwrap(zi,null,["number, number, number"])}function Soe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t),m=d;if(h){let w=t.dataIdMap.get(p.dataId).id;w!==o&&(u=p,l=w,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=Uu({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;OE(l,b,w)}if(h&&t.disposeData(p.dataId),s){let w=N.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var Toe={kernelName:zi,backendName:"wasm",setupFunc:Ioe,kernelFunc:Soe},LE;function Noe(e){LE=e.wasm.cwrap(Bi,null,["number","number","number","number"])}function Coe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;N.assertAxesAreInnerMostDims("min",d,m);let[f,g]=N.computeOutAndReduceShapes(u.shape,d),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;LE(l,Et[i.dtype],b,x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var _oe={kernelName:Bi,backendName:"wasm",setupFunc:Noe,kernelFunc:Coe},Eoe=!1,Aoe=pn(Wi,Eoe),hx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(hx||(hx={}));var zE;function $oe(e){zE=e.wasm.cwrap(Vi,null,["number","array","number","number","array","array","number","number"])}function Foe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return zE(i,u,t.shape.length,Et[t.dtype],c,h,hx[r],l),o}var Doe={kernelName:Vi,backendName:"wasm",kernelFunc:Foe,setupFunc:$oe},Roe=!0,Moe=pn(Ui,Roe),Poe=nn(Jl);function Z0(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var BE;function Ooe(e){BE=e.wasm.cwrap(eu,"number",["number","number","number","number","number"])}function Loe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=BE(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=Z0(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var zoe={kernelName:eu,backendName:"wasm",setupFunc:Ooe,kernelFunc:Loe},WE;function Boe(e){WE=e.wasm.cwrap(tu,"number",["number","number","number","number","number","bool"])}function Woe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=WE(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Z0(t,c);t.wasm._free(f);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var Voe={kernelName:tu,backendName:"wasm",setupFunc:Boe,kernelFunc:Woe},VE;function Uoe(e){VE=e.wasm.cwrap(nu,"number",["number","number","number","number","number","number"])}function Goe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=VE(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Z0(t,c);t.wasm._free(g);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([m],"float32",f);return[b,y]}var Hoe={kernelName:nu,backendName:"wasm",setupFunc:Uoe,kernelFunc:Goe},joe=!1,qoe=pn(Ql,joe,"bool"),UE;function Koe(e){UE=e.wasm.cwrap(Gi,null,["number","number","number","number","number"])}function Xoe(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=n.makeOutput([...r.shape,i],s),p=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return UE(d,i,o,l,p),u}var Yoe={kernelName:Gi,backendName:"wasm",setupFunc:Koe,kernelFunc:Xoe};function Zoe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Joe={kernelName:au,backendName:"wasm",kernelFunc:Zoe};function Qoe(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return dx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=dx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=xE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var ele={kernelName:ru,backendName:"wasm",kernelFunc:Qoe},GE;function tle(e){GE=e.wasm.cwrap(Hi,null,["number","array","number","number","array","array","number","number"])}function nle(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(v.sizeFromShape(t.shape)===0)return CE({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return GE(i,u,t.shape.length,Et[t.dtype],c,h,r,l),o}var HE={kernelName:Hi,backendName:"wasm",kernelFunc:nle,setupFunc:tle},ale=!1,rle=pn(ji,ale),jE;function sle(e){jE=e.wasm.cwrap(qi,null,["number","number","number"])}function ile(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=Uu({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return jE(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var ole={kernelName:qi,backendName:"wasm",setupFunc:sle,kernelFunc:ile},qE;function lle(e){qE=e.wasm.cwrap(Ki,null,["number","number","number","number"])}function ule(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;qE(l,b,Et[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var ple={kernelName:Ki,backendName:"wasm",setupFunc:lle,kernelFunc:ule},cle=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=_0(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},dle={kernelName:cc,backendName:"wasm",kernelFunc:cle},hle=!0,mle=pn(Ni,hle),fle=nn(Xi),gle=nn(Ji),KE;function ble(e){KE=e.wasm.cwrap(Zi,null,["number","number","number","number","number","number","number","number","number","number"])}function yle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Uu({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let b=f.id,y=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return KE(b,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),y}var xle={kernelName:Zi,backendName:"wasm",setupFunc:ble,kernelFunc:yle},XE;function vle(e){XE=e.wasm.cwrap(Yi,null,["number","number","number","number","number","number","number","number","number","number"])}function wle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),b;g.dtype!=="float32"&&(b=Uu({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(b.dataId));let y=g.id,x=t.dataIdMap.get(f.dataId).id;return XE(y,p,d,c,h,l,u,s?1:0,i?1:0,x),b!=null&&t.disposeData(b.dataId),f}var kle={kernelName:Yi,backendName:"wasm",setupFunc:vle,kernelFunc:wle},YE;function Ile(e){YE=e.wasm.cwrap(Qi,null,["number","array","number","array","number","number"])}function Sle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=v.parseAxisParam(s,r.shape);if(r.shape.length===0)return Pf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);YE(l,p,i.length,d,r.shape.length,u);let c=zn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var Tle={kernelName:Qi,backendName:"wasm",kernelFunc:Sle,setupFunc:Ile},ZE;function Nle(e){ZE=e.wasm.cwrap(ku,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Cle(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=N.getImageCenter(o,c,h),b=i===0,y=255,x=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],w=new Uint8Array(new Int32Array(x).buffer);return ZE(u,d,c,h,m,s,f,g,w,x.length,p),l}var _le={kernelName:ku,backendName:"wasm",kernelFunc:Cle,setupFunc:Nle},Ele=nn(eo),Ale=nn(to),JE;function $le(e){JE=e.wasm.cwrap(ou,null,["number","number","number","number","number","number","array","number","number"])}function Fle(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=Rx.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return JE(h,m,Et[s.dtype],l,u,p,f,c,g),o}var Dle={kernelName:ou,backendName:"wasm",setupFunc:$le,kernelFunc:Fle},QE;function Rle(e){QE=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Mle(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:v.sizeFromShape(r.shape.slice(1));return QE(i,o,l,h,p),u}var Ple={kernelName:lu,backendName:"wasm",kernelFunc:Mle,setupFunc:Rle},eA;function Ole(e){eA=e.wasm.cwrap(ao,null,["number","number"])}function Lle(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||eA(a,s),r}var zle={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Ole,kernelFunc:Lle},Ble=nn(no),tA;function Wle(e){tA=e.wasm.cwrap(io,null,["number","number","number","number"])}function Vle(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||tA(r,i,o,l),s}var Ule={kernelName:io,backendName:"wasm",setupFunc:Wle,kernelFunc:Vle};function Gle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=HE.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=zn({inputs:{x:u},backend:n,attrs:{shape:p}}),m=os({inputs:{x:h},backend:n,attrs:{perm:d}}),f=zn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var Hle={kernelName:mu,backendName:"wasm",kernelFunc:Gle},nA;function jle(e){nA=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function qle(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([u],"bool"),x=t.dataIdMap.get(y.dataId).id,w=t.makeOutput([o],a.dtype),I=t.dataIdMap.get(w.dataId).id,T=t.makeOutput([4],"int32"),C=t.dataIdMap.get(T.dataId).id,E=nA(d,c,Et[r.dtype],o,u,l,h,f,b,x,I,C),A=t.readSync(T.dataId),R;switch(A[0]){case 1:{R=N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(A[1]);break}case 2:{R=N.getSparseFillEmptyRowsNegativeIndexErrorMessage(A[1],A[2]);break}case 3:R=N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(A[1],A[2],A[3]);break;default:R=""}if(t.disposeData(T.dataId),R)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(w.dataId),new Error(R);let F=m,S=g;return E!==p[0]&&(F=di({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=di({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[F,S,y,w]}var Kle={kernelName:dc,backendName:"wasm",setupFunc:jle,kernelFunc:qle},aA;function Xle(e){aA=e.wasm.cwrap(gu,null,["number","number","number","number","number","number","number"])}function Yle(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=v.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;aA(i,o,l,u,c,m,g);let b=t.readSync(f.dataId),y;switch(b[0]){case 0:{y=N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=N.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMultipleErrorMessage(x,w);break}case 4:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMismatchErrorMessage(x,w);break}default:y=""}if(t.disposeData(f.dataId),y)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(y);return[d,h]}var Zle={kernelName:gu,backendName:"wasm",setupFunc:Xle,kernelFunc:Yle},rA;function sA(e){rA=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function iA(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),b=n.dataIdMap.get(g.dataId).id;rA(d,Et[r.dtype],r.shape[0],c,h,f,b,t,0);let y=n.readSync(g.dataId),x;switch(y[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Jle(e){return iA(e,!0)}var Qle={kernelName:hc,backendName:"wasm",setupFunc:sA,kernelFunc:Jle};function eue(e){return iA(e,!1)}var tue={kernelName:mc,backendName:"wasm",setupFunc:sA,kernelFunc:eue};function nue(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=di({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var aue={kernelName:fu,backendName:"wasm",kernelFunc:nue},rue=nn(ro),sue=nn(fc),iue=!0,oue=pn(oo,iue),oA;function lue(e){oA=e.wasm.cwrap(hs,null,["number","number","number","number"])}function uue(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return oA(i,r,Et[s.dtype],l),o}var pue={kernelName:hs,backendName:"wasm",setupFunc:lue,kernelFunc:uue},lA;function cue(e){lA=e.wasm.cwrap(bu,null,["number","array","number","array","array","array","array","array","number","number"])}function due(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=jt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=zn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=jt.computeOutShape(y,x,w),C=di({inputs:{x:r},backend:t,attrs:{begin:y,size:T}});I=zn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(y).buffer),R=new Uint8Array(new Int32Array(x).buffer),F=new Uint8Array(new Int32Array(w).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),W=t.dataIdMap.get(T.dataId).id;lA(C,E,r.shape.length,A,R,F,S,M,h.length,W),I=zn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return I}var hue={kernelName:bu,backendName:"wasm",setupFunc:cue,kernelFunc:due};function mue(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=A0(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),b=t.dataIdMap.get(g.dataId);b.stringBytes=m;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(f),[g,y]}var fue={kernelName:gc,backendName:"wasm",kernelFunc:mue};function gue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=$0(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var bue={kernelName:bc,backendName:"wasm",kernelFunc:gue};function yue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=F0(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var xue={kernelName:yc,backendName:"wasm",kernelFunc:yue},vue=!0,wue=pn(lo,vue),uA;function kue(e){uA=e.wasm.cwrap(so,null,["number","number","number","number"])}function Iue(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;uA(l,b,Et[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Sue={kernelName:so,backendName:"wasm",setupFunc:kue,kernelFunc:Iue},Tue=nn(uo),Nue=nn(po),pA;function Cue(e){pA=e.wasm.cwrap(ds,null,["number","array","number","array","number","number"])}function _ue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return pA(s,l,r.shape.length,u,o.length,Et[p.dtype],d),p}var Eue={kernelName:ds,backendName:"wasm",setupFunc:Cue,kernelFunc:_ue},cA;function Aue(e){cA=e.wasm.cwrap(yu,null,["number","array","number","number","number","bool","number","number"])}var $ue=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return cA(i,o,a.shape.length,Et[a.dtype],r,s,p,c),[u,d]},Fue={kernelName:yu,backendName:"wasm",setupFunc:Aue,kernelFunc:$ue},dA;function Due(e){dA=e.wasm.cwrap(xu,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function Rue(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),w=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,T=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,E;switch(o){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return dA(I,T,s.shape[0]>1,p,m,f,h,c,d,b,r.shape.length-1,y,g.length-1,C,E,l,w),x}var Mue={kernelName:xu,backendName:"wasm",setupFunc:Due,kernelFunc:Rue};function Pue(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=di({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var Oue={kernelName:vu,backendName:"wasm",kernelFunc:Pue};function Lue(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var zue={kernelName:wu,backendName:"wasm",kernelFunc:Lue},Bue=[mse,fse,bse,vse,_se,$se,Rse,Ose,Wse,qse,Kse,Xse,Jse,Qse,nie,sie,iie,oie,pie,hie,gie,xie,kie,Iie,Tie,Nie,Cie,_ie,$ie,Fie,Rie,Oie,Bie,Uie,jie,Xie,Zie,Qie,wse,noe,roe,ioe,ooe,uoe,poe,doe,moe,boe,xoe,koe,Toe,_oe,Aoe,Doe,Moe,Poe,zoe,Voe,Hoe,qoe,Yoe,Joe,ele,HE,rle,ole,ple,dle,mle,fle,gle,Lse,xle,kle,Tle,_le,Ele,Ale,Dle,Ple,zle,Ble,Hse,Ule,Hle,Kle,Zle,Qle,tue,aue,rue,sue,oue,pue,hue,fue,bue,xue,wue,Sue,Tue,Nue,Eue,Fue,Mue,Tse,Oue,zue];for(let e of Bue)vc(e);var mx=H();mx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});mx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(mx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var lI=ls(fF()),Wue=ls(gF()),uI=ls(bF()),pI=lI.default||lI,Vue=uI.default||uI,hA=class extends nc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(mA),fx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Hh(this,Ja())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||v.sizeFromShape(s);let o=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return Hue(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Uue(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function cI(e,t,n){if(Uh!=null)return Uh;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Op!=null&&Op[a]!=null?Op[a]:n+a}async function Gue(){let[e,t]=await Promise.all([H().getAsync("WASM_HAS_SIMD_SUPPORT"),H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Wue.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?cI(e,t,Rp!=null?Rp:l):l+o},J0&&(r.instantiateWasm=Uue(cI(e,t,Rp!=null?Rp:"")));let s=!1;r.onAbort=()=>{s||Lp||(Lp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Uh==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+pI.toString()],{type:"text/javascript"}),i=pI(r)):i=Vue(r),i.then(o=>{s=!0,Lp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function Hue(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var jue=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Uh=null,Rp=null,Op={},Lp=!1,J0=!1;function que(e,t=!1){if(Fx("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Lp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Uh=e,J0=t}function Kue(e,t=!1){if(Lp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Rp=e;else{Op=e;let n=jue.filter(a=>Op[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}J0=t}var mA=-1,fx=-1;function Xue(e){mA=e}function Yue(){if(fx===-1)throw new Error("WASM backend not initialized.");return fx}var Zue="3.21.0",Jue=2;Cm("wasm",async()=>{let{wasm:e}=await Gue();return new hA(e)},Jue);var Que="3.21.0",epe="3.21.0",tpe="3.21.0",npe="3.21.0",ape="3.21.0",rpe="3.21.0",spe="3.21.0",ipe="3.21.0",ope={tfjs:Que,"tfjs-core":epe,"tfjs-data":tpe,"tfjs-layers":npe,"tfjs-converter":ape,"tfjs-backend-cpu":rpe,"tfjs-backend-webgl":spe,"tfjs-backend-wasm":ipe};var MA={};ty(MA,{AnchorPosition:()=>o1,DrawBox:()=>ld,DrawBoxOptions:()=>Wf,DrawFaceLandmarks:()=>Qf,DrawFaceLandmarksOptions:()=>Jf,DrawTextField:()=>Pr,DrawTextFieldOptions:()=>Yu,drawContour:()=>Fr,drawDetections:()=>mpe,drawFaceExpressions:()=>fpe,drawFaceLandmarks:()=>bpe});function Fr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var fA={};ty(fA,{computeReshapedDimensions:()=>t1,getCenterPoint:()=>So,isDimensions:()=>Lf,isEven:()=>Of,isFloat:()=>e1,isTensor:()=>ko,isTensor1D:()=>lpe,isTensor2D:()=>Q0,isTensor3D:()=>Dr,isTensor4D:()=>ya,isValidNumber:()=>Ka,isValidProbablitiy:()=>Gu,range:()=>dr,round:()=>Io});var Cn=class{constructor(t,n){if(!Ka(t)||!Ka(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new Cn(1/this.width,1/this.height)}};function ko(e,t){return e instanceof Te&&e.shape.length===t}function lpe(e){return ko(e,1)}function Q0(e){return ko(e,2)}function Dr(e){return ko(e,3)}function ya(e){return ko(e,4)}function e1(e){return e%1!==0}function Of(e){return e%2===0}function Io(e,t=2){let n=10**t;return Math.floor(e*n)/n}function Lf(e){return e&&e.width&&e.height}function t1({width:e,height:t},n){let a=n/Math.max(t,e);return new Cn(Math.round(e*a),Math.round(t*a))}function So(e){return e.reduce((t,n)=>t.add(n),new Me(0,0)).div(new Me(e.length,e.length))}function dr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Ka(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function Gu(e){return Ka(e)&&e>=0&&e<=1}var Me=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Me(this.x+t.x,this.y+t.y)}sub(t){return new Me(this.x-t.x,this.y-t.y)}mul(t){return new Me(this.x*t.x,this.y*t.y)}div(t){return new Me(this.x/t.x,this.y/t.y)}abs(){return new Me(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Me(Math.floor(this.x),Math.floor(this.y))}};var ut=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Ka)}static assertIsValidBox(t,n,a=!1){if(!ut.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Ka),s=[a.x,a.y,a.width,a.height].every(Ka);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ut.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Me(this.left,this.top)}get topRight(){return new Me(this.right,this.top)}get bottomLeft(){return new Me(this.left,this.bottom)}get bottomRight(){return new Me(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ut({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ut({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new ut({x:t,y:n,width:a,height:r})}rescale(t){let n=Lf(t)?t.width:t,a=Lf(t)?t.height:t;return new ut({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new ut({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new ut({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new ut({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new ut({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Hu=class extends ut{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Ts=class{constructor(t,n,a,r,s){this._imageDims=new Cn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ut(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ut(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Ts(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var xt=class extends Ts{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new xt(a,r,s)}};function gA(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function bA(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new Hu(a,r,s,i)}function yA(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(gA(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function hr(e,t){return P(()=>{let[n,a,r]=t,s=gn([...e.shape.slice(0,3),1],n,"float32"),i=gn([...e.shape.slice(0,3),1],a,"float32"),o=gn([...e.shape.slice(0,3),1],r,"float32"),l=Ze([s,i,o],3);return pe(e,l)})}function xA(e,t=!1){return P(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,gn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>oe(c,"float32"));return Ze(d,i)})}function obe(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function zf(e){return 1/(1+Math.exp(-e))}function ube(e){return Math.log(e/(1-e))}var ju=class extends ut{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var upe=.5,ppe=.43,cpe=.45,xa=class{constructor(t,n,a=new Me(0,0)){let{width:r,height:s}=n;this._imgDims=new Cn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Me(r,s)).add(a))}get shift(){return new Me(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Me(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Me(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof xt?t.box.floor():new ut(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/cpe),l=So(t),u=Math.floor(Math.max(0,l.x-upe*o)),p=Math.floor(Math.max(0,l.y-ppe*o));return new ju(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=bA(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var vA=class extends xa{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],So([t[3],t[4]])]}};var qu=class extends xa{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(So)}};var sd=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Io(this.distance)})`:""}`}};var id=class extends ut{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(ut.assertIsValidBox(n,a),!Ka(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var Rr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new Rr(t.label,n)}};var wA=class extends id{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(id.assertIsValidLabeledBox(n,a),!Gu(n.score)||!Gu(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function Mr(e){return e.detection instanceof xt}function Ku(e,t){return{...e,...{detection:t}}}function n1(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function od(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function Bf(e){let t="";if(!e&&od())try{e=Ur("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function a1(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=Bf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function r1(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var an;function dpe(){if(!an)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return an}function s1(e){an=e}function i1(){return r1()?s1(n1()):od()?s1(a1()):null}function hpe(e){if(an||i1(),!an)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=an.Canvas,Image:n=an.Image}=e;an.Canvas=t,an.Image=n,an.createCanvasElement=e.createCanvasElement||(()=>new t),an.createImageElement=e.createImageElement||(()=>new n),an.ImageData=e.ImageData||an.ImageData,an.Video=e.Video||an.Video,an.fetch=e.fetch||an.fetch,an.readFile=e.readFile||an.readFile}var Qe={getEnv:dpe,setEnv:s1,initialize:i1,createBrowserEnv:n1,createFileSystem:Bf,createNodejsEnv:a1,monkeyPatch:hpe,isBrowser:r1,isNodejs:od};i1();function Xu(e){return!Qe.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function na(e){let{Canvas:t,CanvasRenderingContext2D:n}=Qe.getEnv();if(e instanceof n)return e;let a=Xu(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var o1=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(o1||{}),Yu=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},Pr=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof Pr?t.text:t,this.anchor=n,this.options=new Yu(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=Xu(t),a=na(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var Wf=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new Yu({...i,...s})}},ld=class{constructor(t,n={}){this.box=new ut(t),this.options=new Wf(n)}draw(t){let n=na(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new Pr([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function mpe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof xt?a.score:Mr(a)?a.detection.score:void 0,s=a instanceof xt?a.box:Mr(a)?a.detection.box:new ut(a),i=r?`${Io(r)}`:void 0;new ld(s,{label:i}).draw(e)})}function Vf(e){let{Image:t,Video:n}=Qe.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function kA(e){return new Promise((t,n)=>{(e instanceof Qe.getEnv().Canvas||Vf(e))&&t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function IA(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=Qe.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Zu(e){let{Image:t,Video:n}=Qe.getEnv();return e instanceof t?new Cn(e.naturalWidth,e.naturalHeight):e instanceof n?new Cn(e.videoWidth,e.videoHeight):new Cn(e.width,e.height)}function Ju({width:e,height:t}){let{createCanvasElement:n}=Qe.getEnv(),a=n();return a.width=e,a.height=t,a}function Uf(e,t){let{ImageData:n}=Qe.getEnv();if(!(e instanceof n)&&!Vf(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Zu(e),s=Ju({width:a,height:r});return e instanceof n?na(s).putImageData(e,0,0):na(s).drawImage(e,0,0,a,r),s}async function SA(e,t){let n=t||Qe.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ya(e)?1:0),i=P(()=>e.as3D(a,r,s).toInt());return await co.toPixels(i,n),i.dispose(),n}function l1(e){let{Image:t,Canvas:n,Video:a}=Qe.getEnv();return e instanceof t||e instanceof n||e instanceof a}function TA(e,t,n=!1){let{Image:a,Canvas:r}=Qe.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Ju({width:1,height:1});let s=Zu(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=Ju({width:t,height:t}),p=e instanceof r?e:Uf(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&na(u).drawImage(p,c,h,o,l),u}var Or=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Dr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ya(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof Qe.getEnv().Canvas?a:Uf(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return dr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return t1({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,P(()=>{let a=dr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Te){let o=ya(i)?i:hn(i);return o=xA(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ir.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof Qe.getEnv().Canvas)return co.fromPixels(TA(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Ft(a.map(s=>oe(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function vt(e){if(e instanceof Or)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Xu);return a.forEach((r,s)=>{if(!l1(r)&&!Dr(r)&&!ya(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ya(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>l1(r)&&kA(r))),new Or(a,Array.isArray(e))}async function ud(e,t){let{Canvas:n}=Qe.getEnv(),a=e;if(!(e instanceof n)){let i=await vt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await SA(o)}let r=na(a);return t.map(i=>i instanceof xt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=Ju({width:l,height:u});return l>0&&u>0&&na(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function pd(e,t){if(!Dr(e)&&!ya(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ya(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return P(()=>{let[n,a,r]=e.shape.slice(ya(e)?1:0);return t.map(o=>o instanceof xt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>mo(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Ns(e,t){let{fetch:n}=Qe.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function Kxe(e){let t=await Ns(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return IA(n)}async function NA(e){return(await Ns(e)).json()}async function Qxe(e){return new Float32Array(await(await Ns(e)).arrayBuffer())}function CA(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=Qe.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function sve(e){let t=await Ns(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return CA(n)}function Gf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function _A(e,t){let{manifestUri:n,modelBaseUri:a}=Gf(e,t),r=await NA(n);return Ut.loadWeights(r,a)}function dve(e,t,n=!1){let{width:a,height:r}=n?Zu(t):t;return e.width=a,e.height=r,{width:a,height:r}}var cn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof es)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof es))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=On(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await _A(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=Qe.getEnv(),{manifestUri:a,modelBaseUri:r}=Gf(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=Ut.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Te))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Gn(e,t,n){return P(()=>{let a=vs(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Y(a,t.bias),a})}function Hf(e,t,n=!1){return P(()=>{let a=Xe(n?Y($t(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Gn(e,t.conv0,[2,2])),r=Gn(a,t.conv1,[1,1]),s=Xe(Y(a,r)),i=Gn(s,t.conv2,[1,1]);return Xe(Y(a,Y(r,i)))})}function cd(e,t,n=!1,a=!0){return P(()=>{let r=Xe(n?Y($t(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Gn(e,t.conv0,a?[2,2]:[1,1])),s=Gn(r,t.conv1,[1,1]),i=Xe(Y(r,s)),o=Gn(i,t.conv2,[1,1]),l=Xe(Y(r,Y(s,o))),u=Gn(l,t.conv3,[1,1]);return Xe(Y(r,Y(s,Y(o,u))))})}function To(e,t,n="same",a=!1){return P(()=>{let r=Y($t(e,t.filters,[1,1],n),t.bias);return a?Xe(r):r})}function _n(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Qu(e,t){return(n,a,r,s)=>{let i=Aa(e(n*a*r*r),[r,r,n,a]),o=Ke(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function jf(e,t){return(n,a,r)=>{let s=Ca(e(n*a),[n,a]),i=Ke(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var dd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function ep(e,t){return(n,a,r)=>{let s=Aa(e(9*n),[3,3,n,1]),i=Aa(e(n*a),[1,1,n,a]),o=Ke(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new dd(s,i,o)}}function tp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new dd(n,a,r)}}function aa(e,t){return(n,a,r)=>{let s=e[n];if(!ko(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function En(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function qf(e,t){let n=Qu(e,t),a=ep(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function EA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=En(e),{extractDenseBlock4Params:r}=qf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Kf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function Xf(e,t){let n=aa(e,t),a=Kf(n),r=tp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function AA(e){let t=[],{extractDenseBlock4Params:n}=Xf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return _n(e,t),{params:a,paramMappings:t}}var np=class extends cn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return P(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=hr(a,[122.782,117.001,104.298]).div(255),i=cd(s,n.dense0,!0);return i=cd(i,n.dense1),i=cd(i,n.dense2),i=cd(i,n.dense3),i=fa(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return AA(t)}extractParams(t){return EA(t)}};function hd(e,t){return P(()=>Y(Ae(e,t.weights),t.bias))}function $A(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=En(e),o=jf(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function FA(e){let t=[],n=aa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return _n(e,t),{params:r,paramMappings:t}}function Yf(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var ap=class extends cn{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof Or?this.faceFeatureExtractor.forwardInput(n):n;return hd(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return $A(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=Yf(n);return this.faceFeatureExtractor.loadFromWeightMap(a),FA(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var DA=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Cs=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);DA.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return DA.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Zf=class extends ap{constructor(t=new np){super("FaceExpressionNet",t)}forwardInput(t){return P(()=>ja(this.runNet(t)))}async forward(t){return this.forwardInput(await vt(t))}async predictExpressions(t){let n=await vt(t),a=await this.forwardInput(n),r=await Promise.all(ct(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Cs(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function RA(e){return e.expressions instanceof Cs}function u1(e,t){return{...e,...{expressions:t}}}function fpe(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Cs?s:RA(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=Mr(s)?s.detection.box.bottomLeft:a||new Me(0,0);new Pr(l.map(d=>`${d.expression} (${Io(d.probability)})`),u).draw(e)})}function rp(e){return Mr(e)&&e.landmarks instanceof xa&&e.unshiftedLandmarks instanceof xa&&e.alignedRect instanceof xt}function gpe(e){let t=(o,l,u,p)=>Math.atan2(p-l,u-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,1/0),i=r.reduce((o,l)=>o>l._y?o:l._y,-1/0);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function md(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new xt(e.detection.score,r.rescale(s.reverse()),s),o=gpe(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var Jf=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},Qf=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new Jf(n)}draw(t){let n=na(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof qu&&(n.strokeStyle=i,n.lineWidth=s,Fr(n,this.faceLandmarks.getJawOutline()),Fr(n,this.faceLandmarks.getLeftEyeBrow()),Fr(n,this.faceLandmarks.getRightEyeBrow()),Fr(n,this.faceLandmarks.getNose()),Fr(n,this.faceLandmarks.getLeftEye(),!0),Fr(n,this.faceLandmarks.getRightEye(),!0),Fr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function bpe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof xa?a:rp(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new Qf(r).draw(e)})}var PA="1.7.4";function vpe(e,t){let n=Qu(e,t),a=ep(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function OA(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=En(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=vpe(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};dr(t,0,1).forEach(b=>{h[`main_block_${b}`]=l(128,`middle_flow/main_block_${b}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function wpe(e,t){let n=aa(e,t),a=Kf(n),r=tp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function LA(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=wpe(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};dr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return _n(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function zA(e,t,n){return Y($t(e,t.filters,n,"same"),t.bias)}function p1(e,t,n=!0){let a=n?Xe(e):e;return a=Gn(a,t.separable_conv0,[1,1]),a=Gn(Xe(a),t.separable_conv1,[1,1]),a=Dt(a,[3,3],[2,2],"same"),a=Y(a,zA(e,t.expansion_conv,[2,2])),a}function kpe(e,t){let n=Gn(Xe(e),t.separable_conv0,[1,1]);return n=Gn(Xe(n),t.separable_conv1,[1,1]),n=Gn(Xe(n),t.separable_conv2,[1,1]),n=Y(n,e),n}var eg=class extends cn{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return P(()=>{let r=oe(n.toBatchTensor(112,!0),"float32"),i=hr(r,[122.782,117.001,104.298]).div(255),o=Xe(zA(i,a.entry_flow.conv_in,[2,2]));return o=p1(o,a.entry_flow.reduction_block_0,!1),o=p1(o,a.entry_flow.reduction_block_1),dr(this._numMainBlocks,0,1).forEach(l=>{o=kpe(o,a.middle_flow[`main_block_${l}`])}),o=p1(o,a.exit_flow.reduction_block),o=Xe(Gn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await vt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return LA(n,this._numMainBlocks)}extractParams(n){return OA(n,this._numMainBlocks)}};function BA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=En(e),r=jf(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function WA(e){let t=[],n=aa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return _n(e,t),{params:r,paramMappings:t}}var c1=(n=>(n.FEMALE="female",n.MALE="male",n))(c1||{});var tg=class extends cn{constructor(n=new eg(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof Or?this.faceFeatureExtractor.forwardInput(n):n,s=fa(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=hd(s,a.fc.age).as1D(),o=hd(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return P(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:ja(r)}})}async forward(n){return this.forwardInput(await vt(n))}async predictAgeAndGender(n){let a=await vt(n),r=await this.forwardInput(a),s=ct(r.age),i=ct(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return BA(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=Yf(n);return this.faceFeatureExtractor.loadFromWeightMap(a),WA(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var sp=class extends ap{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return P(()=>{let i=(d,c)=>Ft([gn([68],d,"float32"),gn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(gn([s,136],n,"float32")).sub(Ft(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Ft(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return P(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await vt(t))}async detectLandmarks(t){let n=await vt(t),a=P(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>Of(d)),u=o.filter((p,d)=>!Of(d));return new qu(Array(68).fill(0).map((p,d)=>new Me(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var ip=class extends sp{constructor(t=new np){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function VA(e){let t=[],{extractDenseBlock3Params:n}=Xf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return _n(e,t),{params:a,paramMappings:t}}function UA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=En(e),{extractDenseBlock3Params:r}=qf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var ng=class extends cn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return P(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=hr(a,[122.782,117.001,104.298]).div(255),i=Hf(s,n.dense0,!0);return i=Hf(i,n.dense1),i=Hf(i,n.dense2),i=fa(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return VA(t)}extractParams(t){return UA(t)}};var ag=class extends sp{constructor(t=new ng){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var GA=class extends ip{};function HA(e,t){return Y(z(e,t.weights),t.biases)}function d1(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=$t(e,s,n,r);return o=Y(o,i),o=HA(o,t.scale),a?Xe(o):o}function jA(e,t){return d1(e,t,[1,1],!0)}function h1(e,t){return d1(e,t,[1,1],!1)}function rg(e,t){return d1(e,t,[2,2],!0,"valid")}function Ipe(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(e1(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return P(()=>Ce(Aa(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=Ke(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=Ke(e(o)),p=Ke(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function qA(e){let{extractWeights:t,getRemainingWeights:n}=En(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Ipe(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),b=s(589824,256,3,"conv256_down",!0),y=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),w=s(589824,256,3,"conv256_down_out"),I=P(()=>Ce(Ca(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:x,conv256_down_out:w,fc:I},paramMappings:a}}function Spe(e,t){let n=aa(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function KA(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Spe(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),b=a("conv256_2"),y=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!Q0(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let w={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:x};return _n(e,t),{params:w,paramMappings:t}}function Xa(e,t){let n=jA(e,t.conv1);return n=h1(n,t.conv2),n=Y(n,e),n=Xe(n),n}function fd(e,t){let n=rg(e,t.conv1);n=h1(n,t.conv2);let a=fa(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=Ze([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=Ze([n,p],2)}return a=s?Ze([a,r],3):a,n=Y(a,n),n=Xe(n),n}var op=class extends cn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return P(()=>{let a=oe(t.toBatchTensor(150,!0),"float32"),s=hr(a,[122.782,117.001,104.298]).div(255),i=rg(s,n.conv32_down);i=Dt(i,3,2,"valid"),i=Xa(i,n.conv32_1),i=Xa(i,n.conv32_2),i=Xa(i,n.conv32_3),i=fd(i,n.conv64_down),i=Xa(i,n.conv64_1),i=Xa(i,n.conv64_2),i=Xa(i,n.conv64_3),i=fd(i,n.conv128_down),i=Xa(i,n.conv128_1),i=Xa(i,n.conv128_2),i=fd(i,n.conv256_down),i=Xa(i,n.conv256_1),i=Xa(i,n.conv256_2),i=fd(i,n.conv256_down_out);let o=i.mean([1,2]);return Ae(o,n.fc)})}async forward(t){return this.forwardInput(await vt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await vt(t),a=P(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return KA(t)}extractParams(t){return qA(t)}};function Lke(e){let t=new op;return t.extractWeights(e),t}function m1(e,t){return{...e,...{descriptor:t}}}function Vke(e){return typeof e.age=="number"}function f1(e,t){return{...e,...{age:t}}}function jke(e){return(e.gender==="male"||e.gender==="female")&&Gu(e.genderProbability)}function g1(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Tpe(e,t){function n(l,u){let p=Aa(e(9*l),[3,3,l,1]),d=Ke(e(l)),c=Ke(e(l)),h=Ke(e(l)),m=Ke(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Aa(e(l*u*p*p),[p,p,l,u]),m=Ke(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),b=s(512,512,"mobilenetv1/conv_9"),y=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),w=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:b,conv_10:y,conv_11:x,conv_12:w,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),w=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),E=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),A=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),R=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),F=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:x},box_predictor_2:{box_encoding_predictor:w,class_predictor:I},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:E,class_predictor:A},box_predictor_5:{box_encoding_predictor:R,class_predictor:F}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function XA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=En(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Tpe(n,t),i=r(),o=s(),u={extra_dim:Nc(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function Npe(e,t){let n=aa(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function YA(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Npe(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Dr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return _n(e,t),{params:s,paramMappings:t}}function Da(e,t,n){return P(()=>{let a=$t(e,t.filters,n,"same");return a=Y(a,t.batch_norm_offset),Qt(a,0,6)})}var Cpe=.0010000000474974513;function _pe(e,t,n){return P(()=>{let a=bs(e,t.filters,n,"same");return a=gs(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Cpe),Qt(a,0,6)})}function Epe(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function ZA(e,t){return P(()=>{let n,a=Da(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Epe(o);a=_pe(a,s.depthwise_conv,l),a=Da(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Ape(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),b=Math.min(o,d),y=Math.max(g-m,0)*Math.max(b-f,0);return y/(c+h-y)}function JA(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=Ape(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function $pe(e){let t=ct(Ce(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[Y(t[0],he(n[0],2)),Y(t[1],he(n[1],2))];return{sizes:n,centers:a}}function Fpe(e,t){let{sizes:n,centers:a}=$pe(e),r=ct(Ce(t,[1,0])),s=he(z(fn(he(r[2],5)),n[0]),2),i=Y(z(he(r[0],10),n[0]),a[0]),o=he(z(fn(he(r[3],5)),n[1]),2),l=Y(z(he(r[1],10),n[1]),a[1]);return Ce(Ft([pe(i,s),pe(l,o),Y(i,s),Y(l,o)]),[1,0])}function QA(e,t,n){return P(()=>{let a=e.shape[0],r=Fpe(B(Pn(n.extra_dim,[a,1,1]),[-1,4]),B(e,[-1,4]));r=B(r,[a,r.shape[0]/a,4]);let s=da(We(t,[0,0,1],[-1,-1,-1])),i=We(s,[0,0,0],[-1,-1,1]);i=B(i,[a,i.shape[1]]);let o=ct(r),l=ct(i);return{boxes:o,scores:l}})}function No(e,t){return P(()=>{let n=e.shape[0],a=B(To(e,t.box_encoding_predictor),[n,-1,1,4]),r=B(To(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function e$(e,t,n){return P(()=>{let a=Da(e,n.conv_0,[1,1]),r=Da(a,n.conv_1,[2,2]),s=Da(r,n.conv_2,[1,1]),i=Da(s,n.conv_3,[2,2]),o=Da(i,n.conv_4,[1,1]),l=Da(o,n.conv_5,[2,2]),u=Da(l,n.conv_6,[1,1]),p=Da(u,n.conv_7,[2,2]),d=No(t,n.box_predictor_0),c=No(e,n.box_predictor_1),h=No(r,n.box_predictor_2),m=No(i,n.box_predictor_3),f=No(l,n.box_predictor_4),g=No(p,n.box_predictor_5),b=Ze([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),y=Ze([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var Ra=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Co=class extends cn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return P(()=>{let a=oe(t.toBatchTensor(512,!1),"float32"),r=pe(he(a,127.5),1),s=ZA(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=e$(s.out,s.conv11,n.prediction_layer);return QA(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await vt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Ra(n),s=await vt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=JA(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,b=l.arraySync(),y=c.map(x=>{let[w,I]=[Math.max(0,b[x][0]),Math.min(1,b[x][2])].map(E=>E*g),[T,C]=[Math.max(0,b[x][1]),Math.min(1,b[x][3])].map(E=>E*f);return new xt(p[x],new ju(T,w,C-T,I-w),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return YA(t)}extractParams(t){return XA(t)}};function Dpe(e){let t=new Co;return t.extractWeights(e),t}function LIe(e){return Dpe(e)}var t$=class extends Co{};var n$=.4,a$=[new Me(.738768,.874946),new Me(2.42204,2.65704),new Me(4.30971,7.04493),new Me(10.246,4.59428),new Me(12.6868,11.8741)],r$=[new Me(1.603231,2.094468),new Me(6.041143,7.080126),new Me(2.882459,3.518061),new Me(4.266906,5.178857),new Me(9.041765,10.66308)],s$=[117.001,114.697,97.404],i$="tiny_yolov2_model",o$="tiny_yolov2_separable_conv_model";var sg=e=>typeof e=="number";function l$(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!sg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>sg(t.x)&&sg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(sg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function lp(e){return P(()=>{let t=z(e,ye(.10000000149011612));return Y(Xe(pe(e,t)),t)})}function Lr(e,t){return P(()=>{let n=ga(e,[[0,0],[1,1],[1,1],[0,0]]);return n=$t(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=Y(n,t.conv.bias),lp(n)})}function zr(e,t){return P(()=>{let n=ga(e,[[0,0],[1,1],[1,1],[0,0]]);return n=vs(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Y(n,t.bias),lp(n)})}function Rpe(e,t){let n=Qu(e,t);function a(i,o){let l=Ke(e(i)),u=Ke(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=ep(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function u$(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=En(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=Rpe(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,b,y,x]=a,w=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),T=u(h,m,"conv2"),C=u(m,f,"conv3"),E=u(f,g,"conv4"),A=u(g,b,"conv5"),R=y?u(b,y,"conv6"):void 0,F=x?u(y,x,"conv7"):void 0,S=o(x||y||b,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:A,conv6:R,conv7:F,conv8:S}}else{let[d,c,h,m,f,g,b,y,x]=a,w=l(d,c,"conv0"),I=l(c,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),E=l(f,g,"conv4"),A=l(g,b,"conv5"),R=l(b,y,"conv6"),F=l(y,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:A,conv6:R,conv7:F,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function Mpe(e,t){let n=aa(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=tp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function p$(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Mpe(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return _n(e,n),{params:i,paramMappings:n}}var mr=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var b1=class extends cn{constructor(n){super("TinyYolov2");l$(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=Lr(n,a.conv0);return r=Dt(r,[2,2],[2,2],"same"),r=Lr(r,a.conv1),r=Dt(r,[2,2],[2,2],"same"),r=Lr(r,a.conv2),r=Dt(r,[2,2],[2,2],"same"),r=Lr(r,a.conv3),r=Dt(r,[2,2],[2,2],"same"),r=Lr(r,a.conv4),r=Dt(r,[2,2],[2,2],"same"),r=Lr(r,a.conv5),r=Dt(r,[2,2],[1,1],"same"),r=Lr(r,a.conv6),r=Lr(r,a.conv7),To(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?lp(To(n,a.conv0,"valid",!1)):zr(n,a.conv0);return r=Dt(r,[2,2],[2,2],"same"),r=zr(r,a.conv1),r=Dt(r,[2,2],[2,2],"same"),r=zr(r,a.conv2),r=Dt(r,[2,2],[2,2],"same"),r=zr(r,a.conv3),r=Dt(r,[2,2],[2,2],"same"),r=zr(r,a.conv4),r=Dt(r,[2,2],[2,2],"same"),r=zr(r,a.conv5),r=Dt(r,[2,2],[1,1],"same"),r=a.conv6?zr(r,a.conv6):r,r=a.conv7?zr(r,a.conv7):r,To(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return P(()=>{let s=oe(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?hr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await vt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new mr(a),i=await vt(n),o=await this.forwardInput(i,r),l=P(()=>ct(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(b=>b.box),c=p.map(b=>b.score),h=p.map(b=>b.classScore),m=p.map(b=>this.config.classes[b.label]);return yA(d.map(b=>b.rescale(r)),c,this.config.iouThreshold,!0).map(b=>new Ts(c[b],h[b],m[b],d[b],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return p$(n,this.config)}extractParams(n){let a=this.config.filterSizes||b1.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return u$(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=P(()=>{let y=n.reshape([p,p,d,this.boxEncodingSize]),x=y.slice([0,0,0,0],[p,p,d,4]),w=y.slice([0,0,0,4],[p,p,d,1]),I=this.withClassScores?ja(y.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):ye(0);return[x,w,I]}),f=[],g=await h.array(),b=await c.array();for(let y=0;y<p;y++)for(let x=0;x<p;x++)for(let w=0;w<d;w++){let I=zf(g[y][x][w][0]);if(!r||I>r){let T=(x+zf(b[y][x][w][0]))/p*l,C=(y+zf(b[y][x][w][1]))/p*u,E=Math.exp(b[y][x][w][2])*this.config.anchors[w].x/p*l,A=Math.exp(b[y][x][w][3])*this.config.anchors[w].y/p*u,R=T-E/2,F=C-A/2,S={row:y,col:x,anchor:w},{classScore:M,label:W}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new Hu(R,F,R+E,F+A),score:I,classScore:I*M,label:W,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},_o=b1;_o.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var up=class extends _o{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:n$,classes:["face"],...t?{anchors:r$,meanRgb:s$}:{anchors:a$,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new xt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?o$:i$}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ESe(e,t=!0){let n=new up(t);return n.extractWeights(e),n}var ig=class extends mr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Ma=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function Eo(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>rp(l)?r(l):l.detection),i=a||(t instanceof Te?await pd(t,s):await ud(t,s)),o=await n(i);return i.forEach(l=>l instanceof Te&&l.dispose()),o}async function pp(e,t,n,a,r){return Eo([e],t,async s=>n(s[0]),a,r)}var c$=.4,d$=[new Me(1.603231,2.094468),new Me(6.041143,7.080126),new Me(2.882459,3.518061),new Me(4.266906,5.178857),new Me(9.041765,10.66308)],h$=[117.001,114.697,97.404];var cp=class extends _o{constructor(){let t={withSeparableConvs:!0,iouThreshold:c$,classes:["face"],anchors:d$,meanRgb:h$,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new xt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var et={ssdMobilenetv1:new Co,tinyFaceDetector:new cp,tinyYolov2:new up,faceLandmark68Net:new ip,faceLandmark68TinyNet:new ag,faceRecognitionNet:new op,faceExpressionNet:new Zf,ageGenderNet:new tg},Ppe=(e,t)=>et.ssdMobilenetv1.locateFaces(e,t),sTe=(e,t)=>et.tinyFaceDetector.locateFaces(e,t),iTe=(e,t)=>et.tinyYolov2.locateFaces(e,t),Ope=e=>et.faceLandmark68Net.detectLandmarks(e),oTe=e=>et.faceLandmark68TinyNet.detectLandmarks(e),lTe=e=>et.faceRecognitionNet.computeFaceDescriptor(e),uTe=e=>et.faceExpressionNet.predictExpressions(e),pTe=e=>et.ageGenderNet.predictAgeAndGender(e),Lpe=e=>et.ssdMobilenetv1.load(e),cTe=e=>et.tinyFaceDetector.load(e),dTe=e=>et.tinyYolov2.load(e),hTe=e=>et.faceLandmark68Net.load(e),mTe=e=>et.faceLandmark68TinyNet.load(e),fTe=e=>et.faceRecognitionNet.load(e),gTe=e=>et.faceExpressionNet.load(e),bTe=e=>et.ageGenderNet.load(e),yTe=Lpe,xTe=Ppe,vTe=Ope;var og=class extends Ma{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Ao=class extends og{async run(){let t=await this.parentTask,n=await Eo(t,this.input,async a=>Promise.all(a.map(r=>et.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>u1(a,n[r]))}withAgeAndGender(){return new Fo(this,this.input)}},$o=class extends og{async run(){let t=await this.parentTask;if(!t)return;let n=await pp(t,this.input,a=>et.faceExpressionNet.predictExpressions(a),this.extractedFaces);return u1(t,n)}withAgeAndGender(){return new Do(this,this.input)}},_s=class extends Ao{withAgeAndGender(){return new As(this,this.input)}withFaceDescriptors(){return new Fs(this,this.input)}},Es=class extends $o{withAgeAndGender(){return new $s(this,this.input)}withFaceDescriptor(){return new Ds(this,this.input)}};var lg=class extends Ma{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Fo=class extends lg{async run(){let t=await this.parentTask,n=await Eo(t,this.input,async a=>Promise.all(a.map(r=>et.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return f1(g1(a,i,o),s)})}withFaceExpressions(){return new Ao(this,this.input)}},Do=class extends lg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await pp(t,this.input,s=>et.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return f1(g1(t,a,r),n)}withFaceExpressions(){return new $o(this,this.input)}},As=class extends Fo{withFaceExpressions(){return new _s(this,this.input)}withFaceDescriptors(){return new Fs(this,this.input)}},$s=class extends Do{withFaceExpressions(){return new Es(this,this.input)}withFaceDescriptor(){return new Ds(this,this.input)}};var ug=class extends Ma{constructor(n,a){super();this.parentTask=n;this.input=a}},Fs=class extends ug{async run(){let t=await this.parentTask;return(await Eo(t,this.input,a=>Promise.all(a.map(r=>et.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>m1(t[r],a))}withFaceExpressions(){return new _s(this,this.input)}withAgeAndGender(){return new As(this,this.input)}},Ds=class extends ug{async run(){let t=await this.parentTask;if(!t)return;let n=await pp(t,this.input,a=>et.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return m1(t,n)}withFaceExpressions(){return new Es(this,this.input)}withAgeAndGender(){return new $s(this,this.input)}};var pg=class extends Ma{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?et.faceLandmark68TinyNet:et.faceLandmark68Net}},cg=class extends pg{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Te?await pd(this.input,n):await ud(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Te&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>md(i,r[o]))}withFaceExpressions(){return new _s(this,this.input)}withAgeAndGender(){return new As(this,this.input)}withFaceDescriptors(){return new Fs(this,this.input)}},dg=class extends pg{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Te?await pd(this.input,[n]):await ud(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Te&&s.dispose()),md(t,r)}withFaceExpressions(){return new Es(this,this.input)}withAgeAndGender(){return new $s(this,this.input)}withFaceDescriptor(){return new Ds(this,this.input)}};var hg=class extends Ma{constructor(n,a=new Ra){super();this.input=n;this.options=a}},gd=class extends hg{async run(){let{input:t,options:n}=this,a;if(n instanceof ig)a=et.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Ra)a=et.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof mr)a=et.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>Ku({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new cg(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Ao(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Fo(this.runAndExtendWithFaceDetections(),this.input)}},mg=class extends hg{async run(){let t=await new gd(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Ku({},n):void 0)})}withFaceLandmarks(t=!1){return new dg(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new $o(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Do(this.runAndExtendWithFaceDetection(),this.input)}};function bNe(e,t=new Ra){return new mg(e,t)}function y1(e,t=new Ra){return new gd(e,t)}async function zpe(e,t){return y1(e,new Ra(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function INe(e,t={}){return y1(e,new mr(t)).withFaceLandmarks().withFaceDescriptors()}var SNe=zpe;function m$(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var fg=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof Rr)return i;if(i instanceof Float32Array)return new Rr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new Rr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>m$(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new sd(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new sd("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>Rr.fromJSON(a));return new fg(n,t.distanceThreshold)}};function VNe(e){let t=new cp;return t.extractWeights(e),t}function Bpe(e,t){let{width:n,height:a}=new Cn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>Bpe(r,{width:n,height:a}));if(rp(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return md(Ku(e,r),s)}return Mr(e)?Ku(e,e.detection.forSize(n,a)):e instanceof xa||e instanceof xt?e.forSize(n,a):e}var QNe=PA;export{tg as AgeGenderNet,Hu as BoundingBox,ut as Box,Ma as ComposableTask,Fs as ComputeAllFaceDescriptorsTask,ug as ComputeFaceDescriptorsTaskBase,Ds as ComputeSingleFaceDescriptorTask,cg as DetectAllFaceLandmarksTask,gd as DetectAllFacesTask,pg as DetectFaceLandmarksTaskBase,hg as DetectFacesTaskBase,dg as DetectSingleFaceLandmarksTask,mg as DetectSingleFaceTask,Cn as Dimensions,DA as FACE_EXPRESSION_LABELS,xt as FaceDetection,t$ as FaceDetectionNet,Zf as FaceExpressionNet,Cs as FaceExpressions,ip as FaceLandmark68Net,ag as FaceLandmark68TinyNet,GA as FaceLandmarkNet,xa as FaceLandmarks,vA as FaceLandmarks5,qu as FaceLandmarks68,sd as FaceMatch,fg as FaceMatcher,op as FaceRecognitionNet,c1 as Gender,id as LabeledBox,Rr as LabeledFaceDescriptors,Or as NetInput,cn as NeuralNetwork,Ts as ObjectDetection,Me as Point,wA as PredictedBox,ju as Rect,Co as SsdMobilenetv1,Ra as SsdMobilenetv1Options,cp as TinyFaceDetector,ig as TinyFaceDetectorOptions,up as TinyYolov2,mr as TinyYolov2Options,SNe as allFaces,zpe as allFacesSsdMobilenetv1,INe as allFacesTinyYolov2,kA as awaitMediaLoaded,IA as bufferToImage,lTe as computeFaceDescriptor,Ju as createCanvas,Uf as createCanvasFromMedia,LIe as createFaceDetectionNet,Lke as createFaceRecognitionNet,Dpe as createSsdMobilenetv1,VNe as createTinyFaceDetector,ESe as createTinyYolov2,y1 as detectAllFaces,Ope as detectFaceLandmarks,oTe as detectFaceLandmarksTiny,vTe as detectLandmarks,bNe as detectSingleFace,MA as draw,Qe as env,m$ as euclideanDistance,f1 as extendWithAge,m1 as extendWithFaceDescriptor,Ku as extendWithFaceDetection,u1 as extendWithFaceExpressions,md as extendWithFaceLandmarks,g1 as extendWithGender,pd as extractFaceTensors,ud as extractFaces,Kxe as fetchImage,NA as fetchJson,Qxe as fetchNetWeights,Ns as fetchOrThrow,sve as fetchVideo,na as getContext2dOrThrow,Zu as getMediaDimensions,SA as imageTensorToCanvas,TA as imageToSquare,ube as inverseSigmoid,gA as iou,l1 as isMediaElement,Vf as isMediaLoaded,Vke as isWithAge,Mr as isWithFaceDetection,RA as isWithFaceExpressions,rp as isWithFaceLandmarks,jke as isWithGender,bTe as loadAgeGenderModel,yTe as loadFaceDetectionModel,gTe as loadFaceExpressionModel,hTe as loadFaceLandmarkModel,mTe as loadFaceLandmarkTinyModel,fTe as loadFaceRecognitionModel,Lpe as loadSsdMobilenetv1Model,cTe as loadTinyFaceDetectorModel,dTe as loadTinyYolov2Model,_A as loadWeightMap,xTe as locateFaces,dve as matchDimensions,bA as minBbox,et as nets,yA as nonMaxSuppression,hr as normalize,xA as padToSquare,pTe as predictAgeAndGender,uTe as recognizeFaceExpressions,Bpe as resizeResults,Xu as resolveInput,obe as shuffleArray,zf as sigmoid,Ppe as ssdMobilenetv1,Oe as tf,sTe as tinyFaceDetector,iTe as tinyYolov2,vt as toNetInput,fA as utils,l$ as validateConfig,QNe as version};
|
|
//# sourceMappingURL=face-api.esm.js.map
|