face-api/dist/tfjs.esm.js

4690 lines
1.1 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var LU=Object.create;var o0=Object.defineProperty;var PU=Object.getOwnPropertyDescriptor;var MU=Object.getOwnPropertyNames;var zU=Object.getPrototypeOf,BU=Object.prototype.hasOwnProperty;var gr=(r,t)=>()=>(t||r((t={exports:{}}).exports,t),t.exports),jt=(r,t)=>{for(var e in t)o0(r,e,{get:t[e],enumerable:!0})},VU=(r,t,e,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let o of MU(t))!BU.call(r,o)&&o!==e&&o0(r,o,{get:()=>t[o],enumerable:!(n=PU(t,o))||n.enumerable});return r};var vl=(r,t,e)=>(e=r!=null?LU(zU(r)):{},VU(t||!r||!r.__esModule?o0(e,"default",{value:r,enumerable:!0}):e,r));var F1=gr((clt,D1)=>{D1.exports=Ke;var co=null;try{co=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(r){}function Ke(r,t,e){this.low=r|0,this.high=t|0,this.unsigned=!!e}Ke.prototype.__isLong__;Object.defineProperty(Ke.prototype,"__isLong__",{value:!0});function On(r){return(r&&r.__isLong__)===!0}Ke.isLong=On;var I1={},S1={};function Wu(r,t){var e,n,o;return t?(r>>>=0,(o=0<=r&&r<256)&&(n=S1[r],n)?n:(e=je(r,(r|0)<0?-1:0,!0),o&&(S1[r]=e),e)):(r|=0,(o=-128<=r&&r<128)&&(n=I1[r],n)?n:(e=je(r,r<0?-1:0,!1),o&&(I1[r]=e),e))}Ke.fromInt=Wu;function po(r,t){if(isNaN(r))return t?Gu:mo;if(t){if(r<0)return Gu;if(r>=_1)return $1}else{if(r<=-k1)return Rn;if(r+1>=k1)return A1}return r<0?po(-r,t).neg():je(r%Zp|0,r/Zp|0,t)}Ke.fromNumber=po;function je(r,t,e){return new Ke(r,t,e)}Ke.fromBits=je;var Yg=Math.pow;function x0(r,t,e){if(r.length===0)throw Error("empty string");if(r==="NaN"||r==="Infinity"||r==="+Infinity"||r==="-Infinity")return mo;if(typeof t=="number"?(e=t,t=!1):t=!!t,e=e||10,e<2||36<e)throw RangeError("radix");var n;if((n=r.indexOf("-"))>0)throw Error("interior hyphen");if(n===0)return x0(r.substring(1),t,e).neg();for(var o=po(Yg(e,8)),s=mo,i=0;i<r.length;i+=8){var a=Math.min(8,r.length-i),u=parseInt(r.substring(i,i+a),e);if(a<8){var l=po(Yg(e,a));s=s.mul(l).add(po(u))}else s=s.mul(o),s=s.add(po(u))}return s.unsigned=t,s}Ke.fromString=x0;function Gs(r,t){return typeof r=="number"?po(r,t):typeof r=="string"?x0(r,t):je(r.low,r.high,typeof t=="boolean"?t:r.unsigned)}Ke.fromValue=Gs;var N1=1<<16,u4=1<<24,Zp=N1*N1,_1=Zp*Zp,k1=_1/2,T1=Wu(u4),mo=Wu(0);Ke.ZERO=mo;var Gu=Wu(0,!0);Ke.UZERO=Gu;var Yp=Wu(1);Ke.ONE=Yp;var E1=Wu(1,!0);Ke.UONE=E1;var g0=Wu(-1);Ke.NEG_ONE=g0;var A1=je(-1,2147483647,!1);Ke.MAX_VALUE=A1;var $1=je(-1,-1,!0);Ke.MAX_UNSIGNED_VALUE=$1;var Rn=je(0,-2147483648,!1);Ke.MIN_VALUE=Rn;var yt=Ke.prototype;yt.toInt=function(){return this.unsigned?this.low>>>0:this.low};yt.toNumber=function(){return this.unsigned?(this.high>>>0)*Zp+(this.low>>>0):this.high*Zp+(this.low>>>0)};yt.toString=function(t){if(t=t||10,t<2||36<t)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(Rn)){var e=po(t),n=this.div(e),o=n.mul(e).sub(this);return n.toString(t)+o.toInt().toString(t)}else return"-"+this.neg().toString(t);for(var s=po(Yg(t,6),this.unsigned),i=this,a="";;){var u=i.div(s),l=i.sub(u.mul(s)).toInt()>>>0,c=l.toString(t);if(i=u,i.isZero())return c+a;for(;c.length<6;)c="0"+c;a=""+c+a}};yt.getHighBits=function(){return this.high};yt.getHighBitsUnsigned=function(){return this.high>>>0};yt.getLowBits=function(){return this.low};yt.getLowBitsUnsigned=function(){return this.low>>>0};yt.getNumBitsAbs=function(){if(this.isNegative())return this.eq(Rn)?64:this.neg().getNumBitsAbs();for(var t=this.high!=0?this.high:this.low,e=31;e>0&&(t&1<<e)==0;e--);return this.high!=0?e+33:e+1};yt.isZero=function(){return this.high===0&&this.low===0};yt.eqz=yt.isZero;yt.isNegative=function(){return!this.unsigned&&this.high<0};yt.isPositive=function(){return this.unsigned||this.high>=0};yt.isOdd=function(){return(this.low&1)===1};yt.isEven=function(){return(this.low&1)===0};yt.equals=function(t){return On(t)||(t=Gs(t)),this.unsigned!==t.unsigned&&this.high>>>31===1&&t.high>>>31===1?!1:this.high===t.high&&this.low===t.low};yt.eq=yt.equals;yt.notEquals=function(t){return!this.eq(t)};yt.neq=yt.notEquals;yt.ne=yt.notEquals;yt.lessThan=function(t){return this.comp(t)<0};yt.lt=yt.lessThan;yt.lessThanOrEqual=function(t){return this.comp(t)<=0};yt.lte=yt.lessThanOrEqual;yt.le=yt.lessThanOrEqual;yt.greaterThan=function(t){return this.comp(t)>0};yt.gt=yt.greaterThan;yt.greaterThanOrEqual=function(t){return this.comp(t)>=0};yt.gte=yt.greaterThanOrEqual;yt.ge=yt.greaterThanOrEqual;yt.compare=function(t){if(On(t)||(t=Gs(t)),this.eq(t))return 0;var e=this.isNegative(),n=t.isNegative();return e&&!n?-1:!e&&n?1:this.unsigned?t.high>>>0>this.high>>>0||t.high===this.high&&t.low>>>0>this.low>>>0?-1:1:this.sub(t).isNegative()?-1:1};yt.comp=yt.compare;yt.negate=function(){return!this.unsigned&&this.eq(Rn)?Rn:this.not().add(Yp)};yt.neg=yt.negate;yt.add=function(t){On(t)||(t=Gs(t));var e=this.high>>>16,n=this.high&65535,o=this.low>>>16,s=this.low&65535,i=t.high>>>16,a=t.high&65535,u=t.low>>>16,l=t.low&65535,c=0,p=0,m=0,f=0;return f+=s+l,m+=f>>>16,f&=65535,m+=o+u,p+=m>>>16,m&=65535,p+=n+a,c+=p>>>16,p&=65535,c+=e+i,c&=65535,je(m<<16|f,c<<16|p,this.unsigned)};yt.subtract=function(t){return On(t)||(t=Gs(t)),this.add(t.neg())};yt.sub=yt.subtract;yt.multiply=function(t){if(this.isZero())return mo;if(On(t)||(t=Gs(t)),co){var e=co.mul(this.low,this.high,t.low,t.high);return je(e,co.get_high(),this.unsigned)}if(t.isZero())return mo;if(this.eq(Rn))return t.isOdd()?Rn:mo;if(t.eq(Rn))return this.isOdd()?Rn:mo;if(this.isNegative())return t.isNegative()?this.neg().mul(t.neg()):this.neg().mul(t).neg();if(t.isNegative())return this.mul(t.neg()).neg();if(this.lt(T1)&&t.lt(T1))return po(this.toNumber()*t.toNumber(),this.unsigned);var n=this.high>>>16,o=this.high&65535,s=this.low>>>16,i=this.low&65535,a=t.high>>>16,u=t.high&65535,l=t.low>>>16,c=t.low&65535,p=0,m=0,f=0,d=0;return d+=i*c,f+=d>>>16,d&=65535,f+=s*c,m+=f>>>16,f&=65535,f+=i*l,m+=f>>>16,f&=65535,m+=o*c,p+=m>>>16,m&=65535,m+=s*l,p+=m>>>16,m&=65535,m+=i*u,p+=m>>>16,m&=65535,p+=n*c+o*l+s*u+i*a,p&=65535,je(f<<16|d,p<<16|m,this.unsigned)};yt.mul=yt.multiply;yt.divide=function(t){if(On(t)||(t=Gs(t)),t.isZero())throw Error("division by zero");if(co){if(!this.unsigned&&this.high===-2147483648&&t.low===-1&&t.high===-1)return this;var e=(this.unsigned?co.div_u:co.div_s)(this.low,this.high,t.low,t.high);return je(e,co.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?Gu:mo;var n,o,s;if(this.unsigned){if(t.unsigned||(t=t.toUnsigned()),t.gt(this))return Gu;if(t.gt(this.shru(1)))return E1;s=Gu}else{if(this.eq(Rn)){if(t.eq(Yp)||t.eq(g0))return Rn;if(t.eq(Rn))return Yp;var i=this.shr(1);return n=i.div(t).shl(1),n.eq(mo)?t.isNegative()?Yp:g0:(o=this.sub(t.mul(n)),s=n.add(o.div(t)),s)}else if(t.eq(Rn))return this.unsigned?Gu:mo;if(this.isNegative())return t.isNegative()?this.neg().div(t.neg()):this.neg().div(t).neg();if(t.isNegative())return this.div(t.neg()).neg();s=mo}for(o=this;o.gte(t);){n=Math.max(1,Math.floor(o.toNumber()/t.toNumber()));for(var a=Math.ceil(Math.log(n)/Math.LN2),u=a<=48?1:Yg(2,a-48),l=po(n),c=l.mul(t);c.isNegative()||c.gt(o);)n-=u,l=po(n,this.unsigned),c=l.mul(t);l.isZero()&&(l=Yp),s=s.add(l),o=o.sub(c)}return s};yt.div=yt.divide;yt.modulo=function(t){if(On(t)||(t=Gs(t)),co){var e=(this.unsigned?co.rem_u:co.rem_s)(this.low,this.high,t.low,t.high);return je(e,co.get_high(),this.unsigned)}return this.sub(this.div(t).mul(t))};yt.mod=yt.modulo;yt.rem=yt.modulo;yt.not=function(){return je(~this.low,~this.high,this.unsigned)};yt.and=function(t){return On(t)||(t=Gs(t)),je(this.low&t.low,this.high&t.high,this.unsigned)};yt.or=function(t){return On(t)||(t=Gs(t)),je(this.low|t.low,this.high|t.high,this.unsigned)};yt.xor=function(t){return On(t)||(t=Gs(t)),je(this.low^t.low,this.high^t.high,this.unsigned)};yt.shiftLeft=function(t){return On(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?je(this.low<<t,this.high<<t|this.low>>>32-t,this.unsigned):je(0,this.low<<t-32,this.unsigned)};yt.shl=yt.shiftLeft;yt.shiftRight=function(t){return On(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?je(this.low>>>t|this.high<<32-t,this.high>>t,this.unsigned):je(this.high>>t-32,this.high>=0?0:-1,this.unsigned)};yt.shr=yt.shiftRight;yt.shiftRightUnsigned=function(t){if(On(t)&&(t=t.toInt()),t&=63,t===0)return this;var e=this.high;if(t<32){var n=this.low;return je(n>>>t|e<<32-t,e>>>t,this.unsigned)}else return t===32?je(e,0,this.unsigned):je(e>>>t-32,0,this.unsigned)};yt.shru=yt.shiftRightUnsigned;yt.shr_u=yt.shiftRightUnsigned;yt.toSigned=function(){return this.unsigned?je(this.low,this.high,!1):this};yt.toUnsigned=function(){return this.unsigned?this:je(this.low,this.high,!0)};yt.toBytes=function(t){return t?this.toBytesLE():this.toBytesBE()};yt.toBytesLE=function(){var t=this.high,e=this.low;return[e&255,e>>>8&255,e>>>16&255,e>>>24,t&255,t>>>8&255,t>>>16&255,t>>>24]};yt.toBytesBE=function(){var t=this.high,e=this.low;return[t>>>24,t>>>16&255,t>>>8&255,t&255,e>>>24,e>>>16&255,e>>>8&255,e&255]};Ke.fromBytes=function(t,e,n){return n?Ke.fromBytesLE(t,e):Ke.fromBytesBE(t,e)};Ke.fromBytesLE=function(t,e){return new Ke(t[0]|t[1]<<8|t[2]<<16|t[3]<<24,t[4]|t[5]<<8|t[6]<<16|t[7]<<24,e)};Ke.fromBytesBE=function(t,e){return new Ke(t[4]<<24|t[5]<<16|t[6]<<8|t[7],t[0]<<24|t[1]<<16|t[2]<<8|t[3],e)}});var f_=gr(()=>{});var d_=gr(()=>{});var dE=gr((fE,iS)=>{(function(r,t,e){function n(a){var u=this,l=i();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=l(" "),u.s1=l(" "),u.s2=l(" "),u.s0-=l(a),u.s0<0&&(u.s0+=1),u.s1-=l(a),u.s1<0&&(u.s1+=1),u.s2-=l(a),u.s2<0&&(u.s2+=1),l=null}function o(a,u){return u.c=a.c,u.s0=a.s0,u.s1=a.s1,u.s2=a.s2,u}function s(a,u){var l=new n(a),c=u&&u.state,p=l.next;return p.int32=function(){return l.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,l),p.state=function(){return o(l,{})}),p}function i(){var a=4022871197,u=function(l){l=String(l);for(var c=0;c<l.length;c++){a+=l.charCodeAt(c);var p=.02519603282416938*a;a=p>>>0,p-=a,p*=a,a=p>>>0,p-=a,a+=p*4294967296}return(a>>>0)*23283064365386963e-26};return u}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.alea=s})(fE,typeof iS=="object"&&iS,typeof define=="function"&&define)});var gE=gr((hE,aS)=>{(function(r,t,e){function n(i){var a=this,u="";a.x=0,a.y=0,a.z=0,a.w=0,a.next=function(){var c=a.x^a.x<<11;return a.x=a.y,a.y=a.z,a.z=a.w,a.w^=a.w>>>19^c^c>>>8},i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor128=s})(hE,typeof aS=="object"&&aS,typeof define=="function"&&define)});var yE=gr((xE,lS)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.x^a.x>>>2;return a.x=a.y,a.y=a.z,a.z=a.w,a.w=a.v,(a.d=a.d+362437|0)+(a.v=a.v^a.v<<4^(c^c<<1))|0},a.x=0,a.y=0,a.z=0,a.w=0,a.v=0,i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,l==u.length&&(a.d=a.x<<10^a.x>>>4),a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a.v=i.v,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorwow=s})(xE,typeof lS=="object"&&lS,typeof define=="function"&&define)});var wE=gr((bE,uS)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.x,c=a.i,p,m,f;return p=l[c],p^=p>>>7,m=p^p<<24,p=l[c+1&7],m^=p^p>>>10,p=l[c+3&7],m^=p^p>>>3,p=l[c+4&7],m^=p^p<<7,p=l[c+7&7],p=p^p<<13,m^=p^p<<9,l[c]=m,a.i=c+1&7,m};function u(l,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],l.x=f,l.i=0,p=256;p>0;--p)l.next()}u(a,i)}function o(i,a){return a.x=i.x.slice(),a.i=i.i,a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.x&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorshift7=s})(bE,typeof uS=="object"&&uS,typeof define=="function"&&define)});var CE=gr((vE,cS)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.w,c=a.X,p=a.i,m,f;return a.w=l=l+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,a.i=p,f+(l^l>>>16)|0};function u(l,c){var p,m,f,d,h,g=[],y=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,y=Math.max(y,c.length)),f=0,d=-32;d<y;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;l.w=h,l.X=g,l.i=f}u(a,i)}function o(i,a){return a.i=i.i,a.w=i.w,a.X=i.X.slice(),a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.X&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor4096=s})(vE,typeof cS=="object"&&cS,typeof define=="function"&&define)});var SE=gr((IE,pS)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.b,p=a.c,m=a.d,f=a.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,a.b=c=c<<20^c>>>12^p,a.c=p=p-m|0,a.d=m<<16^p>>>16^f,a.a=f-c|0},a.a=0,a.b=0,a.c=-1640531527,a.d=1367130551,i===Math.floor(i)?(a.a=i/4294967296|0,a.b=i|0):u+=i;for(var l=0;l<u.length+20;l++)a.b^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.a=i.a,a.b=i.b,a.c=i.c,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.tychei=s})(IE,typeof pS=="object"&&pS,typeof define=="function"&&define)});var NE=gr(()=>{});var TE=gr((kE,sy)=>{(function(r,t,e){var n=256,o=6,s=52,i="random",a=e.pow(n,o),u=e.pow(2,s),l=u*2,c=n-1,p;function m(w,v,N){var E=[];v=v==!0?{entropy:!0}:v||{};var $=g(h(v.entropy?[w,b(t)]:w==null?y():w,3),E),D=new f(E),L=function(){for(var M=D.g(o),G=a,H=0;M<u;)M=(M+H)*n,G*=n,H=D.g(1);for(;M>=l;)M/=2,G/=2,H>>>=1;return(M+H)/G};return L.int32=function(){return D.g(4)|0},L.quick=function(){return D.g(4)/4294967296},L.double=L,g(b(D.S),t),(v.pass||N||function(M,G,H,q){return q&&(q.S&&d(q,D),M.state=function(){return d(D,{})}),H?(e[i]=M,G):M})(L,$,"global"in v?v.global:this==e,v.state)}function f(w){var v,N=w.length,E=this,$=0,D=E.i=E.j=0,L=E.S=[];for(N||(w=[N++]);$<n;)L[$]=$++;for($=0;$<n;$++)L[$]=L[D=c&D+w[$%N]+(v=L[$])],L[D]=v;(E.g=function(M){for(var G,H=0,q=E.i,X=E.j,j=E.S;M--;)G=j[q=c&q+1],H=H*n+j[c&(j[q]=j[X=c&X+G])+(j[X]=G)];return E.i=q,E.j=X,H})(n)}function d(w,v){return v.i=w.i,v.j=w.j,v.S=w.S.slice(),v}function h(w,v){var N=[],E=typeof w,$;if(v&&E=="object")for($ in w)try{N.push(h(w[$],v-1))}catch(D){}return N.length?N:E=="string"?w:w+"\0"}function g(w,v){for(var N=w+"",E,$=0;$<N.length;)v[c&$]=c&(E^=v[c&$]*19)+N.charCodeAt($++);return b(v)}function y(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var v=r.navigator,N=v&&v.plugins;return[+new Date,r,N,r.screen,b(t)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),t),typeof sy=="object"&&sy.exports){sy.exports=m;try{p=NE()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):e["seed"+i]=m})(typeof self!="undefined"?self:kE,[],Math)});var xh=gr((FSt,_E)=>{var aj=dE(),lj=gE(),uj=yE(),cj=wE(),pj=CE(),mj=SE(),nc=TE();nc.alea=aj;nc.xor128=lj;nc.xorwow=uj;nc.xorshift7=cj;nc.xor4096=pj;nc.tychei=mj;_E.exports=nc});var wN=gr(()=>{});var iw=gr(()=>{});var cg=gr(()=>{});var $W=gr(()=>{});var DW=gr(()=>{});var FW=gr(()=>{});var RW=gr((wC,MT)=>{var PT=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(t){t=t||{};function e(){return Rt.buffer!=dr&&Mo(Rt.buffer),rp}function n(){return Rt.buffer!=dr&&Mo(Rt.buffer),np}function o(){return Rt.buffer!=dr&&Mo(Rt.buffer),Ld}function s(){return Rt.buffer!=dr&&Mo(Rt.buffer),hg}function i(){return Rt.buffer!=dr&&Mo(Rt.buffer),gg}function a(){return Rt.buffer!=dr&&Mo(Rt.buffer),xg}function u(){return Rt.buffer!=dr&&Mo(Rt.buffer),yg}var l=typeof t!="undefined"?t:{},c,p;l.ready=new Promise(function(T,F){c=T,p=F});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var f=Object.assign({},l),d=[],h="./this.program",g=(T,F)=>{throw F},y=typeof window=="object",b=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=l.ENVIRONMENT_IS_PTHREAD||!1,N="";function E(T){return l.locateFile?l.locateFile(T,N):N+T}var $,D,L,M;function G(T){if(T instanceof qd)return;K("exiting due to exception: "+T)}var H,q,X;if(w){b?N=cg().dirname(N)+"/":N=__dirname+"/",X=()=>{q||(H=iw(),q=cg())},$=function(V,Y){return X(),V=q.normalize(V),H.readFileSync(V,Y?void 0:"utf8")},L=F=>{var V=$(F,!0);return V.buffer||(V=new Uint8Array(V)),V},D=(F,V,Y)=>{X(),F=q.normalize(F),H.readFile(F,function(ht,wt){ht?Y(ht):V(wt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(F){if(!(F instanceof qd))throw F}),process.on("unhandledRejection",function(F){throw F}),g=(F,V)=>{if(Ru())throw process.exitCode=F,V;G(V),process.exit(F)},l.inspect=function(){return"[Emscripten Module object]"};let T;try{T=$W()}catch(F){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),F}global.Worker=T.Worker}else(y||b)&&(b?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.replace(/[?#].*/,"").lastIndexOf("/")+1):N="",w||($=T=>{var F=new XMLHttpRequest;return F.open("GET",T,!1),F.send(null),F.responseText},b&&(L=T=>{var F=new XMLHttpRequest;return F.open("GET",T,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),D=(T,F,V)=>{var Y=new XMLHttpRequest;Y.open("GET",T,!0),Y.responseType="arraybuffer",Y.onload=()=>{if(Y.status==200||Y.status==0&&Y.response){F(Y.response);return}V()},Y.onerror=V,Y.send(null)}),M=T=>document.title=T);w&&typeof performance=="undefined"&&(global.performance=DW().performance);var j=console.log.bind(console),J=console.warn.bind(console);w&&(X(),j=T=>H.writeSync(1,T+`
`),J=T=>H.writeSync(2,T+`
`));var nt=l.print||j,K=l.printErr||J;Object.assign(l,f),f=null,l.arguments&&(d=l.arguments),l.thisProgram&&(h=l.thisProgram),l.quit&&(g=l.quit);var ot=4;function st(T){st.shown||(st.shown={}),st.shown[T]||(st.shown[T]=1,K(T))}function it(T,F){if(typeof WebAssembly.Function=="function"){for(var V={i:"i32",j:"i64",f:"f32",d:"f64"},Y={parameters:[],results:F[0]=="v"?[]:[V[F[0]]]},ht=1;ht<F.length;++ht)Y.parameters.push(V[F[ht]]);return new WebAssembly.Function(Y,T)}var wt=[1,0,1,96],Tt=F.slice(0,1),Vt=F.slice(1),nr={i:127,j:126,f:125,d:124};wt.push(Vt.length);for(var ht=0;ht<Vt.length;++ht)wt.push(nr[Vt[ht]]);Tt=="v"?wt.push(0):wt=wt.concat([1,nr[Tt]]),wt[1]=wt.length-2;var Go=new Uint8Array([0,97,115,109,1,0,0,0].concat(wt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Wo=new WebAssembly.Module(Go),qg=new WebAssembly.Instance(Wo,{e:{f:T}}),Kd=qg.exports.f;return Kd}var ft=[],lt;function xt(){if(ft.length)return ft.pop();try{Hn.grow(1)}catch(T){throw T instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":T}return Hn.length-1}function dt(T,F){for(var V=T;V<T+F;V++){var Y=lp(V);Y&&lt.set(Y,V)}}var bt=0,Nt=T=>{bt=T},At=Atomics.load,Dt=Atomics.store,qt=Atomics.compareExchange,Kt;l.wasmBinary&&(Kt=l.wasmBinary);var me=l.noExitRuntime||!0;typeof WebAssembly!="object"&&sp("no native wasm support detected");var Rt,Ee,Ce=!1,le;function qe(T,F){T||sp(F)}function Fe(T){var F=l["_"+T];return F}function Jr(T,F,V,Y,ht){var wt={string:function(Dn){var hp=0;if(Dn!=null&&Dn!==0){var p1=(Dn.length<<2)+1;hp=dp(p1),$n(Dn,hp,p1)}return hp},array:function(Dn){var hp=dp(Dn.length);return xl(Dn,hp),hp}};function Tt(Dn){return F==="string"?qr(Dn):F==="boolean"?Boolean(Dn):Dn}var Vt=Fe(T),nr=[],Go=0;if(Y)for(var Wo=0;Wo<Y.length;Wo++){var qg=wt[V[Wo]];qg?(Go===0&&(Go=r0()),nr[Wo]=qg(Y[Wo])):nr[Wo]=Y[Wo]}var Kd=Vt.apply(null,nr);function OU(Dn){return Go!==0&&Gg(Go),Tt(Dn)}return Kd=OU(Kd),Kd}function Me(T,F,V,Y){V=V||[];var ht=V.every(function(Tt){return Tt==="number"}),wt=F!=="string";return wt&&ht&&!Y?Fe(T):function(){return Jr(T,F,V,arguments,Y)}}var Lo=1;function Or(T){var F=new TextDecoder(T);this.decode=V=>(V.buffer instanceof SharedArrayBuffer&&(V=new Uint8Array(V)),F.decode.call(F,V))}var Qr=typeof TextDecoder!="undefined"?new Or("utf8"):void 0;function tn(T,F,V){for(var Y=F+V,ht=F;T[ht]&&!(ht>=Y);)++ht;if(ht-F>16&&T.subarray&&Qr)return Qr.decode(T.subarray(F,ht));for(var wt="";F<ht;){var Tt=T[F++];if(!(Tt&128)){wt+=String.fromCharCode(Tt);continue}var Vt=T[F++]&63;if((Tt&224)==192){wt+=String.fromCharCode((Tt&31)<<6|Vt);continue}var nr=T[F++]&63;if((Tt&240)==224?Tt=(Tt&15)<<12|Vt<<6|nr:Tt=(Tt&7)<<18|Vt<<12|nr<<6|T[F++]&63,Tt<65536)wt+=String.fromCharCode(Tt);else{var Go=Tt-65536;wt+=String.fromCharCode(55296|Go>>10,56320|Go&1023)}}return wt}function qr(T,F){return T?tn(n(),T,F):""}function oo(T,F,V,Y){if(!(Y>0))return 0;for(var ht=V,wt=V+Y-1,Tt=0;Tt<T.length;++Tt){var Vt=T.charCodeAt(Tt);if(Vt>=55296&&Vt<=57343){var nr=T.charCodeAt(++Tt);Vt=65536+((Vt&1023)<<10)|nr&1023}if(Vt<=127){if(V>=wt)break;F[V++]=Vt}else if(Vt<=2047){if(V+1>=wt)break;F[V++]=192|Vt>>6,F[V++]=128|Vt&63}else if(Vt<=65535){if(V+2>=wt)break;F[V++]=224|Vt>>12,F[V++]=128|Vt>>6&63,F[V++]=128|Vt&63}else{if(V+3>=wt)break;F[V++]=240|Vt>>18,F[V++]=128|Vt>>12&63,F[V++]=128|Vt>>6&63,F[V++]=128|Vt&63}}return F[V]=0,V-ht}function $n(T,F,V){return oo(T,n(),F,V)}function Po(T){for(var F=0,V=0;V<T.length;++V){var Y=T.charCodeAt(V);Y>=55296&&Y<=57343&&(Y=65536+((Y&1023)<<10)|T.charCodeAt(++V)&1023),Y<=127?++F:Y<=2047?F+=2:Y<=65535?F+=3:F+=4}return F}var so=typeof TextDecoder!="undefined"?new Or("utf-16le"):void 0;function xl(T,F){e().set(T,F)}function Du(T,F,V){for(var Y=0;Y<T.length;++Y)e()[F++>>0]=T.charCodeAt(Y);V||(e()[F>>0]=0)}function ep(T,F){return T%F>0&&(T+=F-T%F),T}var dr,rp,np,Ld,hg,gg,HT,xg,yg;v&&(dr=l.buffer);function Mo(T){dr=T,l.HEAP8=rp=new Int8Array(T),l.HEAP16=Ld=new Int16Array(T),l.HEAP32=gg=new Int32Array(T),l.HEAPU8=np=new Uint8Array(T),l.HEAPU16=hg=new Uint16Array(T),l.HEAPU32=HT=new Uint32Array(T),l.HEAPF32=xg=new Float32Array(T),l.HEAPF64=yg=new Float64Array(T)}var bg=l.INITIAL_MEMORY||16777216;if(v)Rt=l.wasmMemory,dr=l.buffer;else if(l.wasmMemory)Rt=l.wasmMemory;else if(Rt=new WebAssembly.Memory({initial:bg/65536,maximum:32768,shared:!0}),!(Rt.buffer instanceof SharedArrayBuffer))throw K("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Rt&&(dr=Rt.buffer),bg=dr.byteLength,Mo(dr);var Hn,op=[],yl=[],IC=[],wg=[],Fu=!1,SC=!1,vg=0;function Ru(){return me||vg>0}function en(){if(l.preRun)for(typeof l.preRun=="function"&&(l.preRun=[l.preRun]);l.preRun.length;)qT(l.preRun.shift());Ng(op)}function Pd(){Fu=!0,!v&&Ng(yl)}function NC(){v||(Ut.terminateAllThreads(),SC=!0)}function kC(){if(!v){if(l.postRun)for(typeof l.postRun=="function"&&(l.postRun=[l.postRun]);l.postRun.length;)Md(l.postRun.shift());Ng(wg)}}function qT(T){op.unshift(T)}function KT(T){yl.unshift(T)}function Md(T){wg.unshift(T)}var bl=0,Cg=null,zo=null;function zd(T){bl++,l.monitorRunDependencies&&l.monitorRunDependencies(bl)}function jT(T){if(bl--,l.monitorRunDependencies&&l.monitorRunDependencies(bl),bl==0&&(Cg!==null&&(clearInterval(Cg),Cg=null),zo)){var F=zo;zo=null,F()}}l.preloadedImages={},l.preloadedAudios={};function sp(T){v?postMessage({cmd:"onAbort",arg:T}):l.onAbort&&l.onAbort(T),T="Aborted("+T+")",K(T),Ce=!0,le=1,T+=". Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(T);throw p(F),F}var TC="data:application/octet-stream;base64,";function Bd(T){return T.startsWith(TC)}function Ig(T){return T.startsWith("file://")}var rn;rn="tfjs-backend-wasm-threaded-simd.wasm",Bd(rn)||(rn=E(rn));function Sg(T){try{if(T==rn&&Kt)return new Uint8Array(Kt);if(L)return L(T);throw"both async and sync fetching of the wasm failed"}catch(F){sp(F)}}function ip(){if(!Kt&&(y||b)){if(typeof fetch=="function"&&!Ig(rn))return fetch(rn,{credentials:"same-origin"}).then(function(T){if(!T.ok)throw"failed to load wasm binary file at '"+rn+"'";return T.arrayBuffer()}).catch(function(){return Sg(rn)});if(D)return new Promise(function(T,F){D(rn,function(V){T(new Uint8Array(V))},F)})}return Promise.resolve().then(function(){return Sg(rn)})}function _C(){var T={env:Pg,wasi_snapshot_preview1:Pg};function F(Tt,Vt){var nr=Tt.exports;if(l.asm=nr,OC(l.asm.emscripten_tls_init),Hn=l.asm.__indirect_function_table,KT(l.asm.__wasm_call_ctors),Ee=Vt,!v){var Go=Ut.unusedWorkers.length;Ut.unusedWorkers.forEach(function(Wo){Ut.loadWasmModuleToWorker(Wo,function(){--Go||jT("wasm-instantiate")})})}}v||zd("wasm-instantiate");function V(Tt){F(Tt.instance,Tt.module)}function Y(Tt){return ip().then(function(Vt){return WebAssembly.instantiate(Vt,T)}).then(function(Vt){return Vt}).then(Tt,function(Vt){K("failed to asynchronously prepare wasm: "+Vt),sp(Vt)})}function ht(){return!Kt&&typeof WebAssembly.instantiateStreaming=="function"&&!Bd(rn)&&!Ig(rn)&&typeof fetch=="function"?fetch(rn,{credentials:"same-origin"}).then(function(Tt){var Vt=WebAssembly.instantiateStreaming(Tt,T);return Vt.then(V,function(nr){return K("wasm streaming compile failed: "+nr),K("falling back to ArrayBuffer instantiation"),Y(V)})}):Y(V)}if(l.instantiateWasm)try{var wt=l.instantiateWasm(T,F);return wt}catch(Tt){return K("Module.instantiateWasm callback failed with error: "+Tt),!1}return ht().catch(p),{}}var XT,YT,EC={};function Ng(T){for(;T.length>0;){var F=T.shift();if(typeof F=="function"){F(l);continue}var V=F.func;typeof V=="number"?F.arg===void 0?lp(V)():lp(V)(F.arg):V(F.arg===void 0?null:F.arg)}}function ap(T){var F=r0(),V=T();return Gg(F),V}function WW(T){return T}function ZT(T){var F=/\b_Z[\w\d_]+/g;return T.replace(F,function(V){var Y=V;return V===Y?V:Y+" ["+V+"]"})}function AC(T){i()[T>>2]=0;var F=Ut.pthreads[T];delete Ut.pthreads[T],F.worker.terminate(),e0(T),Ut.runningWorkers.splice(Ut.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function $C(T){var F=Ut.pthreads[T];F.worker.postMessage({cmd:"cancel"})}function kg(T){var F=Ut.pthreads[T];if(F){i()[T>>2]=0;var V=F.worker;Ut.returnWorkerToPool(V)}}function Tg(T){DU(T)}function DC(T){if(T instanceof qd||T=="unwind")return le;g(1,T)}var Ut={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){v?Ut.initWorker():Ut.initMainThread()},initMainThread:function(){for(var T=8,F=0;F<T;++F)Ut.allocateUnusedWorker()},initWorker:function(){me=!1},pthreads:{},setExitStatus:function(T){le=T},terminateAllThreads:function(){for(var T in Ut.pthreads){var F=Ut.pthreads[T];F&&F.worker&&Ut.returnWorkerToPool(F.worker)}for(var V=0;V<Ut.unusedWorkers.length;++V){var Y=Ut.unusedWorkers[V];Y.terminate()}Ut.unusedWorkers=[]},returnWorkerToPool:function(T){Ut.runWithoutMainThreadQueuedCalls(function(){delete Ut.pthreads[T.pthread.threadInfoStruct],Ut.unusedWorkers.push(T),Ut.runningWorkers.splice(Ut.runningWorkers.indexOf(T),1),e0(T.pthread.threadInfoStruct),T.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(T){i()[c1>>2]=0;try{T()}finally{i()[c1>>2]=1}},receiveObjectTransfer:function(T){},threadInit:function(){for(var T in Ut.tlsInitFunctions)Ut.tlsInitFunctions[T]()},loadWasmModuleToWorker:function(T,F){T.onmessage=V=>{var Y=V.data,ht=Y.cmd;if(T.pthread&&(Ut.currentProxiedOperationCallerThread=T.pthread.threadInfoStruct),Y.targetThread&&Y.targetThread!=Vg()){var wt=Ut.pthreads[Y.targetThread];wt?wt.worker.postMessage(Y,Y.transferList):K('Internal error! Worker sent a message "'+ht+'" to target pthread '+Y.targetThread+", but that thread no longer exists!"),Ut.currentProxiedOperationCallerThread=void 0;return}ht==="processQueuedMainThreadWork"?s1():ht==="spawnThread"?Eg(Y):ht==="cleanupThread"?kg(Y.thread):ht==="killThread"?AC(Y.thread):ht==="cancelThread"?$C(Y.thread):ht==="loaded"?(T.loaded=!0,F&&F(T),T.runPthread&&(T.runPthread(),delete T.runPthread)):ht==="print"?nt("Thread "+Y.threadId+": "+Y.text):ht==="printErr"?K("Thread "+Y.threadId+": "+Y.text):ht==="alert"?alert("Thread "+Y.threadId+": "+Y.text):Y.target==="setimmediate"?T.postMessage(Y):ht==="onAbort"?l.onAbort&&l.onAbort(Y.arg):K("worker sent an unknown command "+ht),Ut.currentProxiedOperationCallerThread=void 0},T.onerror=V=>{var Y="worker sent an error!";throw K(Y+" "+V.filename+":"+V.lineno+": "+V.message),V},w&&(T.on("message",function(V){T.onmessage({data:V})}),T.on("error",function(V){T.onerror(V)}),T.on("detachedExit",function(){})),T.postMessage({cmd:"load",urlOrBlob:l.mainScriptUrlOrBlob||r,wasmMemory:Rt,wasmModule:Ee})},allocateUnusedWorker:function(){var T=E("tfjs-backend-wasm-threaded-simd.worker.js");Ut.unusedWorkers.push(new Worker(T))},getNewWorker:function(){return Ut.unusedWorkers.length==0&&(Ut.allocateUnusedWorker(),Ut.loadWasmModuleToWorker(Ut.unusedWorkers[0])),Ut.unusedWorkers.pop()}};function FC(){var T=Vg(),F=i()[T+44>>2],V=i()[T+48>>2],Y=F-V;u1(F,Y),Gg(F)}l.establishStackSpace=FC;function _g(T){if(v)return Pu(1,0,T);try{Tg(T)}catch(F){DC(F)}}var Ou=[];function lp(T){var F=Ou[T];return F||(T>=Ou.length&&(Ou.length=T+1),Ou[T]=F=Hn.get(T)),F}function RC(T,F){return lp(T)(F)}l.invokeEntryPoint=RC;function JT(){var T=new Error;if(!T.stack){try{throw new Error}catch(F){T=F}if(!T.stack)return"(no stack trace available)"}return T.stack.toString()}function OC(T,F,V){Ut.tlsInitFunctions.push(T)}function QT(T,F){Hn.set(T,F),Ou[T]=F}var Lu;w?Lu=()=>{var T=process.hrtime();return T[0]*1e3+T[1]/1e6}:v?Lu=()=>performance.now()-l.__performance_now_clock_drift:Lu=()=>performance.now();var LC=!0;function PC(T){return i()[o1()>>2]=T,T}function MC(T,F){var V;if(T===0)V=Date.now();else if((T===1||T===4)&&LC)V=Lu();else return PC(28),-1;return i()[F>>2]=V/1e3|0,i()[F+4>>2]=V%1e3*1e3*1e3|0,0}function zC(T,F){return MC(T,F)}function BC(T){i1(T,!b,1,!y),Ut.threadInit()}function VC(T){v?postMessage({cmd:"cleanupThread",thread:T}):kg(T)}function Eg(T){var F=Ut.getNewWorker();if(!F)return 6;Ut.runningWorkers.push(F);var V=Ut.pthreads[T.pthread_ptr]={worker:F,threadInfoStruct:T.pthread_ptr};F.pthread=V;var Y={cmd:"run",start_routine:T.startRoutine,arg:T.arg,threadInfoStruct:T.pthread_ptr};return F.runPthread=()=>{Y.time=performance.now(),F.postMessage(Y,T.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread),0}function GC(T,F,V,Y){if(typeof SharedArrayBuffer=="undefined")return K("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ht=[],wt=0;if(v&&(ht.length===0||wt))return a1(687865856,T,F,V,Y);if(wt)return wt;var Tt={startRoutine:V,pthread_ptr:T,arg:Y,transferList:ht};return v?(Tt.cmd="spawnThread",postMessage(Tt,ht),0):Eg(Tt)}function WC(){return 2097152}function UC(T,F){if(T==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(v)postMessage({targetThread:T,cmd:"processThreadQueue"});else{var V=Ut.pthreads[T],Y=V&&V.worker;if(!Y)return;Y.postMessage({cmd:"processThreadQueue"})}return 1}function HC(){sp("")}function qC(){w||b||st("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Ag(){return 2147483648}function KC(T,F,V){n().copyWithin(T,F,F+V)}function jC(){return w?FW().cpus().length:navigator.hardwareConcurrency}function Pu(T,F){var V=arguments.length-2,Y=arguments;return ap(function(){for(var ht=V,wt=dp(ht*8),Tt=wt>>3,Vt=0;Vt<V;Vt++){var nr=Y[2+Vt];u()[Tt+Vt]=nr}return l1(T,ht,wt,F)})}var Vd=[];function XC(T,F,V){Vd.length=F;for(var Y=V>>3,ht=0;ht<F;ht++)Vd[ht]=u()[Y+ht];var wt=T<0,Tt=wt?EC[-T-1]:dI[T];return Tt.apply(null,Vd)}function YC(T){try{return Rt.grow(T-dr.byteLength+65535>>>16),Mo(Rt.buffer),1}catch(F){}}function ZC(T){var F=n().length;if(T=T>>>0,T<=F)return!1;var V=Ag();if(T>V)return!1;for(var Y=1;Y<=4;Y*=2){var ht=F*(1+.2/Y);ht=Math.min(ht,T+100663296);var wt=Math.min(V,ep(Math.max(T,ht),65536)),Tt=YC(wt);if(Tt)return!0}return!1}var ne={inEventHandler:0,removeAllEventListeners:function(){for(var T=ne.eventHandlers.length-1;T>=0;--T)ne._removeHandler(T);ne.eventHandlers=[],ne.deferredCalls=[]},registerRemoveEventListeners:function(){ne.removeEventListenersRegistered||(IC.push(ne.removeAllEventListeners),ne.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(T,F,V){function Y(Tt,Vt){if(Tt.length!=Vt.length)return!1;for(var nr in Tt)if(Tt[nr]!=Vt[nr])return!1;return!0}for(var ht in ne.deferredCalls){var wt=ne.deferredCalls[ht];if(wt.targetFunction==T&&Y(wt.argsList,V))return}ne.deferredCalls.push({targetFunction:T,precedence:F,argsList:V}),ne.deferredCalls.sort(function(Tt,Vt){return Tt.precedence<Vt.precedence})},removeDeferredCalls:function(T){for(var F=0;F<ne.deferredCalls.length;++F)ne.deferredCalls[F].targetFunction==T&&(ne.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return ne.inEventHandler&&ne.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!ne.canPerformEventHandlerRequests())for(var T=0;T<ne.deferredCalls.length;++T){var F=ne.deferredCalls[T];ne.deferredCalls.splice(T,1),--T,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(T,F){for(var V=0;V<ne.eventHandlers.length;++V)ne.eventHandlers[V].target==T&&(!F||F==ne.eventHandlers[V].eventTypeString)&&ne._removeHandler(V--)},_removeHandler:function(T){var F=ne.eventHandlers[T];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),ne.eventHandlers.splice(T,1)},registerOrRemoveHandler:function(T){var F=function(ht){++ne.inEventHandler,ne.currentEventHandler=T,ne.runDeferredCalls(),T.handlerFunc(ht),ne.runDeferredCalls(),--ne.inEventHandler};if(T.callbackfunc)T.eventListenerFunc=F,T.target.addEventListener(T.eventTypeString,F,T.useCapture),ne.eventHandlers.push(T),ne.registerRemoveEventListeners();else for(var V=0;V<ne.eventHandlers.length;++V)ne.eventHandlers[V].target==T.target&&ne.eventHandlers[V].eventTypeString==T.eventTypeString&&ne._removeHandler(V--)},queueEventHandlerOnThread_iiii:function(T,F,V,Y,ht){ap(function(){var wt=dp(12);i()[wt>>2]=V,i()[wt+4>>2]=Y,i()[wt+8>>2]=ht,t0(T,637534208,F,Y,wt)})},getTargetThreadForEventCallback:function(T){switch(T){case 1:return 0;case 2:return Ut.currentProxiedOperationCallerThread;default:return T}},getNodeNameForTarget:function(T){return T?T==window?"#window":T==screen?"#screen":T&&T.nodeName?T.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function JC(T){var F=Po(T)+1,V=QI(F);return $n(T,V,F),V}function QC(T,F,V,Y){ap(function(){var ht=dp(12),wt=0;F&&(wt=JC(F)),i()[ht>>2]=wt,i()[ht+4>>2]=V,i()[ht+8>>2]=Y,t0(T,657457152,0,wt,ht)})}function tI(T,F,V,Y){F=F?qr(F):"",QC(T,F,V,Y)}function eI(T){return T>2?qr(T):T}var rI=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function nI(T){T=eI(T);var F=rI[T]||(typeof document!="undefined"?document.querySelector(T):void 0);return F}function Gd(T){return nI(T)}function $g(T,F,V){var Y=Gd(T);if(!Y)return-4;if(Y.canvasSharedPtr&&(i()[Y.canvasSharedPtr>>2]=F,i()[Y.canvasSharedPtr+4>>2]=V),Y.offscreenCanvas||!Y.controlTransferredOffscreen){Y.offscreenCanvas&&(Y=Y.offscreenCanvas);var ht=!1;if(Y.GLctxObject&&Y.GLctxObject.GLctx){var wt=Y.GLctxObject.GLctx.getParameter(2978);ht=wt[0]===0&&wt[1]===0&&wt[2]===Y.width&&wt[3]===Y.height}Y.width=F,Y.height=V,ht&&Y.GLctxObject.GLctx.viewport(0,0,F,V)}else if(Y.canvasSharedPtr){var Tt=i()[Y.canvasSharedPtr+8>>2];return tI(Tt,T,F,V),1}else return-4;return 0}function Dg(T,F,V){return v?Pu(2,1,T,F,V):$g(T,F,V)}function oI(T,F,V){var Y=Gd(T);return Y?$g(T,F,V):Dg(T,F,V)}function sI(){throw"unwind"}function iI(T){var F=T.getExtension("ANGLE_instanced_arrays");if(F)return T.vertexAttribDivisor=function(V,Y){F.vertexAttribDivisorANGLE(V,Y)},T.drawArraysInstanced=function(V,Y,ht,wt){F.drawArraysInstancedANGLE(V,Y,ht,wt)},T.drawElementsInstanced=function(V,Y,ht,wt,Tt){F.drawElementsInstancedANGLE(V,Y,ht,wt,Tt)},1}function aI(T){var F=T.getExtension("OES_vertex_array_object");if(F)return T.createVertexArray=function(){return F.createVertexArrayOES()},T.deleteVertexArray=function(V){F.deleteVertexArrayOES(V)},T.bindVertexArray=function(V){F.bindVertexArrayOES(V)},T.isVertexArray=function(V){return F.isVertexArrayOES(V)},1}function lI(T){var F=T.getExtension("WEBGL_draw_buffers");if(F)return T.drawBuffers=function(V,Y){F.drawBuffersWEBGL(V,Y)},1}function uI(T){return!!(T.multiDrawWebgl=T.getExtension("WEBGL_multi_draw"))}var rr={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(F){rr.lastError||(rr.lastError=F)},getNewId:function(T){for(var F=rr.counter++,V=T.length;V<F;V++)T[V]=null;return F},getSource:function(T,F,V,Y){for(var ht="",wt=0;wt<F;++wt){var Tt=Y?i()[Y+wt*4>>2]:-1;ht+=qr(i()[V+wt*4>>2],Tt<0?void 0:Tt)}return ht},createContext:function(T,F){T.getContextSafariWebGL2Fixed||(T.getContextSafariWebGL2Fixed=T.getContext,T.getContext=function(ht,wt){var Tt=T.getContextSafariWebGL2Fixed(ht,wt);return ht=="webgl"==Tt instanceof WebGLRenderingContext?Tt:null});var V=T.getContext("webgl",F);if(!V)return 0;var Y=rr.registerContext(V,F);return Y},registerContext:function(T,F){var V=QI(8);i()[V+4>>2]=Vg();var Y={handle:V,attributes:F,version:F.majorVersion,GLctx:T};return T.canvas&&(T.canvas.GLctxObject=Y),rr.contexts[V]=Y,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&rr.initExtensions(Y),V},makeContextCurrent:function(T){return rr.currentContext=rr.contexts[T],l.ctx=Lg=rr.currentContext&&rr.currentContext.GLctx,!(T&&!Lg)},getContext:function(T){return rr.contexts[T]},deleteContext:function(T){rr.currentContext===rr.contexts[T]&&(rr.currentContext=null),typeof ne=="object"&&ne.removeAllHandlersOnTarget(rr.contexts[T].GLctx.canvas),rr.contexts[T]&&rr.contexts[T].GLctx.canvas&&(rr.contexts[T].GLctx.canvas.GLctxObject=void 0),n1(rr.contexts[T].handle),rr.contexts[T]=null},initExtensions:function(T){if(T||(T=rr.currentContext),!T.initExtensionsDone){T.initExtensionsDone=!0;var F=T.GLctx;iI(F),aI(F),lI(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),uI(F);var V=F.getSupportedExtensions()||[];V.forEach(function(Y){!Y.includes("lose_context")&&!Y.includes("debug")&&F.getExtension(Y)})}}},cI=["default","low-power","high-performance"];function pI(T,F){var V=F>>2,Y=i()[V+6],ht={alpha:!!i()[V+0],depth:!!i()[V+1],stencil:!!i()[V+2],antialias:!!i()[V+3],premultipliedAlpha:!!i()[V+4],preserveDrawingBuffer:!!i()[V+5],powerPreference:cI[Y],failIfMajorPerformanceCaveat:!!i()[V+7],majorVersion:i()[V+8],minorVersion:i()[V+9],enableExtensionsByDefault:i()[V+10],explicitSwapControl:i()[V+11],proxyContextToMainThread:i()[V+12],renderViaOffscreenBackBuffer:i()[V+13]},wt=Gd(T);if(!wt||ht.explicitSwapControl)return 0;var Tt=rr.createContext(wt,ht);return Tt}function mI(T,F){return pI(T,F)}var up={mappings:{},buffers:[null,[],[]],printChar:function(T,F){var V=up.buffers[T];F===0||F===10?((T===1?nt:K)(tn(V,0)),V.length=0):V.push(F)},varargs:void 0,get:function(){up.varargs+=4;var T=i()[up.varargs-4>>2];return T},getStr:function(T){var F=qr(T);return F},get64:function(T,F){return T}};function Fg(T){return v?Pu(3,1,T):0}function Rg(T,F,V,Y,ht){if(v)return Pu(4,1,T,F,V,Y,ht)}function Og(T,F,V,Y){if(v)return Pu(5,1,T,F,V,Y);for(var ht=0,wt=0;wt<V;wt++){var Tt=i()[F>>2],Vt=i()[F+4>>2];F+=8;for(var nr=0;nr<Vt;nr++)up.printChar(T,n()[Tt+nr]);ht+=Vt}return i()[Y>>2]=ht,0}function fI(T){Nt(T)}Ut.init();var Lg,dI=[null,_g,Dg,Fg,Rg,Og],t1=!1,Pg={__clock_gettime:zC,__emscripten_init_main_thread_js:BC,__emscripten_thread_cleanup:VC,__pthread_create_js:GC,_emscripten_default_pthread_stack_size:WC,_emscripten_notify_thread_queue:UC,abort:HC,emscripten_check_blocking_allowed:qC,emscripten_get_heap_max:Ag,emscripten_get_now:Lu,emscripten_memcpy_big:KC,emscripten_num_logical_cores:jC,emscripten_receive_on_main_thread_js:XC,emscripten_resize_heap:ZC,emscripten_set_canvas_element_size:oI,emscripten_unwind_to_js_event_loop:sI,emscripten_webgl_create_context:mI,exit:Tg,fd_close:Fg,fd_seek:Rg,fd_write:Og,memory:Rt||l.wasmMemory,setTempRet0:fI},e1=_C(),hI=l.___wasm_call_ctors=function(){return(hI=l.___wasm_call_ctors=l.asm.__wasm_call_ctors).apply(null,arguments)},gI=l._init=function(){return(gI=l._init=l.asm.init).apply(null,arguments)},xI=l._init_with_threads_count=function(){return(xI=l._init_with_threads_count=l.asm.init_with_threads_count).apply(null,arguments)},yI=l._get_threads_count=function(){return(yI=l._get_threads_count=l.asm.get_threads_count).apply(null,arguments)},bI=l._register_tensor=function(){return(bI=l._register_tensor=l.asm.register_tensor).apply(null,arguments)},wI=l._dispose_data=function(){return(wI=l._dispose_data=l.asm.dispose_data).apply(null,arguments)},vI=l._dispose=function(){return(vI=l._dispose=l.asm.dispose).apply(null,arguments)},CI=l._Abs=function(){return(CI=l._Abs=l.asm.Abs).apply(null,arguments)},II=l._Add=function(){return(II=l._Add=l.asm.Add).apply(null,arguments)},SI=l._AddN=function(){return(SI=l._AddN=l.asm.AddN).apply(null,arguments)},NI=l._All=function(){return(NI=l._All=l.asm.All).apply(null,arguments)},kI=l._Any=function(){return(kI=l._Any=l.asm.Any).apply(null,arguments)},TI=l._ArgMax=function(){return(TI=l._ArgMax=l.asm.ArgMax).apply(null,arguments)},_I=l._AvgPool=function(){return(_I=l._AvgPool=l.asm.AvgPool).apply(null,arguments)},EI=l._BatchMatMul=function(){return(EI=l._BatchMatMul=l.asm.BatchMatMul).apply(null,arguments)},AI=l._Ceil=function(){return(AI=l._Ceil=l.asm.Ceil).apply(null,arguments)},$I=l._ClipByValue=function(){return($I=l._ClipByValue=l.asm.ClipByValue).apply(null,arguments)},DI=l._Conv2D=function(){return(DI=l._Conv2D=l.asm.Conv2D).apply(null,arguments)},FI=l._Conv2DBackpropInput=function(){return(FI=l._Conv2DBackpropInput=l.asm.Conv2DBackpropInput).apply(null,arguments)},RI=l._Cos=function(){return(RI=l._Cos=l.asm.Cos).apply(null,arguments)},OI=l._Cosh=function(){return(OI=l._Cosh=l.asm.Cosh).apply(null,arguments)},LI=l._CropAndResize=function(){return(LI=l._CropAndResize=l.asm.CropAndResize).apply(null,arguments)},PI=l._Cumprod=function(){return(PI=l._Cumprod=l.asm.Cumprod).apply(null,arguments)},MI=l._Cumsum=function(){return(MI=l._Cumsum=l.asm.Cumsum).apply(null,arguments)},zI=l._DepthToSpace=function(){return(zI=l._DepthToSpace=l.asm.DepthToSpace).apply(null,arguments)},BI=l._DepthwiseConv2dNative=function(){return(BI=l._DepthwiseConv2dNative=l.asm.DepthwiseConv2dNative).apply(null,arguments)},VI=l._Elu=function(){return(VI=l._Elu=l.asm.Elu).apply(null,arguments)},GI=l._Equal=function(){return(GI=l._Equal=l.asm.Equal).apply(null,arguments)},WI=l._Exp=function(){return(WI=l._Exp=l.asm.Exp).apply(null,arguments)},UI=l._FlipLeftRight=function(){return(UI=l._FlipLeftRight=l.asm.FlipLeftRight).apply(null,arguments)},HI=l._Floor=function(){return(HI=l._Floor=l.asm.Floor).apply(null,arguments)},qI=l._FloorDiv=function(){return(qI=l._FloorDiv=l.asm.FloorDiv).apply(null,arguments)},KI=l._FusedBatchNorm=function(){return(KI=l._FusedBatchNorm=l.asm.FusedBatchNorm).apply(null,arguments)},jI=l._FusedConv2D=function(){return(jI=l._FusedConv2D=l.asm.FusedConv2D).apply(null,arguments)},Mg=l._FusedDepthwiseConv2D=function(){return(Mg=l._FusedDepthwiseConv2D=l.asm.FusedDepthwiseConv2D).apply(null,arguments)},zg=l._Gather=function(){return(zg=l._Gather=l.asm.Gather).apply(null,arguments)},Wd=l._GatherNd=function(){return(Wd=l._GatherNd=l.asm.GatherNd).apply(null,arguments)},XI=l._Greater=function(){return(XI=l._Greater=l.asm.Greater).apply(null,arguments)},YI=l._GreaterEqual=function(){return(YI=l._GreaterEqual=l.asm.GreaterEqual).apply(null,arguments)},cp=l._LeakyRelu=function(){return(cp=l._LeakyRelu=l.asm.LeakyRelu).apply(null,arguments)},Ud=l._Less=function(){return(Ud=l._Less=l.asm.Less).apply(null,arguments)},Hd=l._LessEqual=function(){return(Hd=l._LessEqual=l.asm.LessEqual).apply(null,arguments)},r1=l._Log=function(){return(r1=l._Log=l.asm.Log).apply(null,arguments)},pp=l._LogicalAnd=function(){return(pp=l._LogicalAnd=l.asm.LogicalAnd).apply(null,arguments)},mp=l._LogicalNot=function(){return(mp=l._LogicalNot=l.asm.LogicalNot).apply(null,arguments)},ZI=l._LogicalOr=function(){return(ZI=l._LogicalOr=l.asm.LogicalOr).apply(null,arguments)},U=l._LogicalXor=function(){return(U=l._LogicalXor=l.asm.LogicalXor).apply(null,arguments)},Q=l._Max=function(){return(Q=l._Max=l.asm.Max).apply(null,arguments)},gt=l._MaxPool=function(){return(gt=l._MaxPool=l.asm.MaxPool).apply(null,arguments)},$t=l._Maximum=function(){return($t=l._Maximum=l.asm.Maximum).apply(null,arguments)},he=l._Mean=function(){return(he=l._Mean=l.asm.Mean).apply(null,arguments)},xe=l._Min=function(){return(xe=l._Min=l.asm.Min).apply(null,arguments)},oe=l._Minimum=function(){return(oe=l._Minimum=l.asm.Minimum).apply(null,arguments)},ee=l._MirrorPad=function(){return(ee=l._MirrorPad=l.asm.MirrorPad).apply(null,arguments)},hr=l._Multiply=function(){return(hr=l._Multiply=l.asm.Multiply).apply(null,arguments)},Bo=l._Neg=function(){return(Bo=l._Neg=l.asm.Neg).apply(null,arguments)},Vo=l._NonMaxSuppressionV3=function(){return(Vo=l._NonMaxSuppressionV3=l.asm.NonMaxSuppressionV3).apply(null,arguments)},fp=l._NonMaxSuppressionV4=function(){return(fp=l._NonMaxSuppressionV4=l.asm.NonMaxSuppressionV4).apply(null,arguments)},Mu=l._NonMaxSuppressionV5=function(){return(Mu=l._NonMaxSuppressionV5=l.asm.NonMaxSuppressionV5).apply(null,arguments)},JI=l._NotEqual=function(){return(JI=l._NotEqual=l.asm.NotEqual).apply(null,arguments)},nn=l._OneHot=function(){return(nn=l._OneHot=l.asm.OneHot).apply(null,arguments)},wl=l._PadV2=function(){return(wl=l._PadV2=l.asm.PadV2).apply(null,arguments)},Bg=l._Pow=function(){return(Bg=l._Pow=l.asm.Pow).apply(null,arguments)},UW=l._Prelu=function(){return(UW=l._Prelu=l.asm.Prelu).apply(null,arguments)},HW=l._Prod=function(){return(HW=l._Prod=l.asm.Prod).apply(null,arguments)},qW=l._RealDiv=function(){return(qW=l._RealDiv=l.asm.RealDiv).apply(null,arguments)},KW=l._Relu=function(){return(KW=l._Relu=l.asm.Relu).apply(null,arguments)},jW=l._Relu6=function(){return(jW=l._Relu6=l.asm.Relu6).apply(null,arguments)},XW=l._ResizeBilinear=function(){return(XW=l._ResizeBilinear=l.asm.ResizeBilinear).apply(null,arguments)},YW=l._ResizeNearestNeighbor=function(){return(YW=l._ResizeNearestNeighbor=l.asm.ResizeNearestNeighbor).apply(null,arguments)},ZW=l._Reverse=function(){return(ZW=l._Reverse=l.asm.Reverse).apply(null,arguments)},JW=l._RotateWithOffset=function(){return(JW=l._RotateWithOffset=l.asm.RotateWithOffset).apply(null,arguments)},QW=l._Round=function(){return(QW=l._Round=l.asm.Round).apply(null,arguments)},tU=l._Rsqrt=function(){return(tU=l._Rsqrt=l.asm.Rsqrt).apply(null,arguments)},eU=l._ScatterNd=function(){return(eU=l._ScatterNd=l.asm.ScatterNd).apply(null,arguments)},rU=l._SelectV2=function(){return(rU=l._SelectV2=l.asm.SelectV2).apply(null,arguments)},nU=l._Sigmoid=function(){return(nU=l._Sigmoid=l.asm.Sigmoid).apply(null,arguments)},oU=l._Sin=function(){return(oU=l._Sin=l.asm.Sin).apply(null,arguments)},sU=l._Softmax=function(){return(sU=l._Softmax=l.asm.Softmax).apply(null,arguments)},iU=l._SparseFillEmptyRows=function(){return(iU=l._SparseFillEmptyRows=l.asm.SparseFillEmptyRows).apply(null,arguments)},aU=l._SparseReshape=function(){return(aU=l._SparseReshape=l.asm.SparseReshape).apply(null,arguments)},lU=l._SparseSegmentReduction=function(){return(lU=l._SparseSegmentReduction=l.asm.SparseSegmentReduction).apply(null,arguments)},uU=l._Sqrt=function(){return(uU=l._Sqrt=l.asm.Sqrt).apply(null,arguments)},cU=l._Square=function(){return(cU=l._Square=l.asm.Square).apply(null,arguments)},pU=l._SquaredDifference=function(){return(pU=l._SquaredDifference=l.asm.SquaredDifference).apply(null,arguments)},mU=l._Step=function(){return(mU=l._Step=l.asm.Step).apply(null,arguments)},fU=l._StridedSlice=function(){return(fU=l._StridedSlice=l.asm.StridedSlice).apply(null,arguments)},dU=l._Sub=function(){return(dU=l._Sub=l.asm.Sub).apply(null,arguments)},hU=l._Sum=function(){return(hU=l._Sum=l.asm.Sum).apply(null,arguments)},gU=l._Tan=function(){return(gU=l._Tan=l.asm.Tan).apply(null,arguments)},xU=l._Tanh=function(){return(xU=l._Tanh=l.asm.Tanh).apply(null,arguments)},yU=l._Tile=function(){return(yU=l._Tile=l.asm.Tile).apply(null,arguments)},bU=l._TopK=function(){return(bU=l._TopK=l.asm.TopK).apply(null,arguments)},wU=l._Transform=function(){return(wU=l._Transform=l.asm.Transform).apply(null,arguments)},vU=l._Transpose=function(){return(vU=l._Transpose=l.asm.Transpose).apply(null,arguments)},CU=l.__FusedMatMul=function(){return(CU=l.__FusedMatMul=l.asm._FusedMatMul).apply(null,arguments)},QI=l._malloc=function(){return(QI=l._malloc=l.asm.malloc).apply(null,arguments)},n1=l._free=function(){return(n1=l._free=l.asm.free).apply(null,arguments)},IU=l._emscripten_tls_init=function(){return(IU=l._emscripten_tls_init=l.asm.emscripten_tls_init).apply(null,arguments)},o1=l.___errno_location=function(){return(o1=l.___errno_location=l.asm.__errno_location).apply(null,arguments)},Vg=l._pthread_self=function(){return(Vg=l._pthread_self=l.asm.pthread_self).apply(null,arguments)},s1=l._emscripten_main_thread_process_queued_calls=function(){return(s1=l._emscripten_main_thread_process_queued_calls=l.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},SU=l.__emscripten_thread_crashed=function(){return(SU=l.__emscripten_thread_crashed=l.asm._emscripten_thread_crashed).apply(null,arguments)},i1=l.__emscripten_thread_init=function(){return(i1=l.__emscripten_thread_init=l.asm._emscripten_thread_init).apply(null,arguments)},NU=l._emscripten_current_thread_process_queued_calls=function(){return(NU=l._emscripten_current_thread_process_queued_calls=l.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},kU=l._emscripten_main_browser_thread_id=function(){return(kU=l._emscripten_main_browser_thread_id=l.asm.emscripten_main_browser_thread_id).apply(null,arguments)},TU=l._emscripten_sync_run_in_main_thread_2=function(){return(TU=l._emscripten_sync_run_in_main_thread_2=l.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},a1=l._emscripten_sync_run_in_main_thread_4=function(){return(a1=l._emscripten_sync_run_in_main_thread_4=l.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},l1=l._emscripten_run_in_main_runtime_thread_js=function(){return(l1=l._emscripten_run_in_main_runtime_thread_js=l.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},t0=l._emscripten_dispatch_to_thread_=function(){return(t0=l._emscripten_dispatch_to_thread_=l.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},e0=l.__emscripten_thread_free_data=function(){return(e0=l.__emscripten_thread_free_data=l.asm._emscripten_thread_free_data).apply(null,arguments)},_U=l.__emscripten_thread_exit=function(){return(_U=l.__emscripten_thread_exit=l.asm._emscripten_thread_exit).apply(null,arguments)},EU=l._memalign=function(){return(EU=l._memalign=l.asm.memalign).apply(null,arguments)},u1=l._emscripten_stack_set_limits=function(){return(u1=l._emscripten_stack_set_limits=l.asm.emscripten_stack_set_limits).apply(null,arguments)},r0=l.stackSave=function(){return(r0=l.stackSave=l.asm.stackSave).apply(null,arguments)},Gg=l.stackRestore=function(){return(Gg=l.stackRestore=l.asm.stackRestore).apply(null,arguments)},dp=l.stackAlloc=function(){return(dp=l.stackAlloc=l.asm.stackAlloc).apply(null,arguments)},AU=l.dynCall_iijjiiii=function(){return(AU=l.dynCall_iijjiiii=l.asm.dynCall_iijjiiii).apply(null,arguments)},$U=l.dynCall_jiji=function(){return($U=l.dynCall_jiji=l.asm.dynCall_jiji).apply(null,arguments)},c1=l.__emscripten_allow_main_runtime_queued_calls=21672;l.cwrap=Me,l.keepRuntimeAlive=Ru,l.PThread=Ut,l.PThread=Ut,l.wasmMemory=Rt,l.ExitStatus=qd;var Wg;function qd(T){this.name="ExitStatus",this.message="Program terminated with exit("+T+")",this.status=T}zo=function T(){Wg||n0(),Wg||(zo=T)};function n0(T){if(T=T||d,bl>0)return;if(v){c(l),Pd(),postMessage({cmd:"loaded"});return}if(en(),bl>0)return;function F(){Wg||(Wg=!0,l.calledRun=!0,!Ce&&(Pd(),c(l),l.onRuntimeInitialized&&l.onRuntimeInitialized(),kC()))}l.setStatus?(l.setStatus("Running..."),setTimeout(function(){setTimeout(function(){l.setStatus("")},1),F()},1)):F()}l.run=n0;function DU(T,F){if(le=T,!F&&v)throw _g(T),"unwind";Ru()||NC(),FU(T)}function FU(T){le=T,Ru()||(Ut.terminateAllThreads(),l.onExit&&l.onExit(T),Ce=!0),g(T,new qd(T))}if(l.preInit)for(typeof l.preInit=="function"&&(l.preInit=[l.preInit]);l.preInit.length>0;)l.preInit.pop()();n0();var Ug;m&&(Ug={uncaughtException:process.listeners("uncaughtException").filter(function(T){return!m.uncaughtException.indexOf(T)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(T){return!m.unhandledRejection.indexOf(T)>-1})});var Hg;if(typeof WasmBackendModule!="undefined")Hg=WasmBackendModule;else if(typeof t!="undefined")Hg=t;else throw new Error("Could not find wasm module in post.js");if(Ug){var RU=Hg._dispose;Hg._dispose=function(){RU(),Ug.uncaughtException.forEach(function(T){process.removeListener("uncaughtException",T)}),Ug.unhandledRejection.forEach(function(T){process.removeListener("unhandledRejection",T)})}}return t.ready}})();typeof wC=="object"&&typeof MT=="object"?MT.exports=PT:typeof define=="function"&&define.amd?define([],function(){return PT}):typeof wC=="object"&&(wC.WasmBackendModuleThreadedSimd=PT)});var LW=gr((W6e,OW)=>{OW.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`});var PW=gr((vC,BT)=>{var zT=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(t){t=t||{};var e=typeof t!="undefined"?t:{},n,o;e.ready=new Promise(function(U,Q){n=U,o=Q});var s;typeof process!="undefined"&&process.listeners&&(s={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var i=Object.assign({},e),a=[],u="./this.program",l=(U,Q)=>{throw Q},c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f="";function d(U){return e.locateFile?e.locateFile(U,f):f+U}var h,g,y,b;function w(U){if(U instanceof Ud)return;D("exiting due to exception: "+U)}var v,N,E;m?(p?f=cg().dirname(f)+"/":f=__dirname+"/",E=()=>{N||(v=iw(),N=cg())},h=function(Q,gt){return E(),Q=N.normalize(Q),v.readFileSync(Q,gt?void 0:"utf8")},y=U=>{var Q=h(U,!0);return Q.buffer||(Q=new Uint8Array(Q)),Q},g=(U,Q,gt)=>{E(),U=N.normalize(U),v.readFile(U,function($t,he){$t?gt($t):Q(he.buffer)})},process.argv.length>1&&(u=process.argv[1].replace(/\\/g,"/")),a=process.argv.slice(2),process.on("uncaughtException",function(U){if(!(U instanceof Ud))throw U}),process.on("unhandledRejection",function(U){throw U}),l=(U,Q)=>{if(Ld())throw process.exitCode=U,Q;w(Q),process.exit(U)},e.inspect=function(){return"[Emscripten Module object]"}):(c||p)&&(p?f=self.location.href:typeof document!="undefined"&&document.currentScript&&(f=document.currentScript.src),r&&(f=r),f.indexOf("blob:")!==0?f=f.substr(0,f.replace(/[?#].*/,"").lastIndexOf("/")+1):f="",h=U=>{var Q=new XMLHttpRequest;return Q.open("GET",U,!1),Q.send(null),Q.responseText},p&&(y=U=>{var Q=new XMLHttpRequest;return Q.open("GET",U,!1),Q.responseType="arraybuffer",Q.send(null),new Uint8Array(Q.response)}),g=(U,Q,gt)=>{var $t=new XMLHttpRequest;$t.open("GET",U,!0),$t.responseType="arraybuffer",$t.onload=()=>{if($t.status==200||$t.status==0&&$t.response){Q($t.response);return}gt()},$t.onerror=gt,$t.send(null)},b=U=>document.title=U);var $=e.print||console.log.bind(console),D=e.printErr||console.warn.bind(console);Object.assign(e,i),i=null,e.arguments&&(a=e.arguments),e.thisProgram&&(u=e.thisProgram),e.quit&&(l=e.quit);var L=4;function M(U){M.shown||(M.shown={}),M.shown[U]||(M.shown[U]=1,D(U))}function G(U,Q){if(typeof WebAssembly.Function=="function"){for(var gt={i:"i32",j:"i64",f:"f32",d:"f64"},$t={parameters:[],results:Q[0]=="v"?[]:[gt[Q[0]]]},he=1;he<Q.length;++he)$t.parameters.push(gt[Q[he]]);return new WebAssembly.Function($t,U)}var xe=[1,0,1,96],oe=Q.slice(0,1),ee=Q.slice(1),hr={i:127,j:126,f:125,d:124};xe.push(ee.length);for(var he=0;he<ee.length;++he)xe.push(hr[ee[he]]);oe=="v"?xe.push(0):xe=xe.concat([1,hr[oe]]),xe[1]=xe.length-2;var Bo=new Uint8Array([0,97,115,109,1,0,0,0].concat(xe,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Vo=new WebAssembly.Module(Bo),fp=new WebAssembly.Instance(Vo,{e:{f:U}}),Mu=fp.exports.f;return Mu}var H=[],q;function X(){if(H.length)return H.pop();try{so.grow(1)}catch(U){throw U instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":U}return so.length-1}function j(U,Q){for(var gt=U;gt<U+Q;gt++){var $t=zd(gt);$t&&q.set($t,gt)}}var J=0,nt=U=>{J=U},K;e.wasmBinary&&(K=e.wasmBinary);var ot=e.noExitRuntime||!0;typeof WebAssembly!="object"&&Fu("no native wasm support detected");var st,it=!1,ft;function lt(U,Q){U||Fu(Q)}function xt(U){var Q=e["_"+U];return Q}function dt(U,Q,gt,$t,he){var xe={string:function(nn){var wl=0;if(nn!=null&&nn!==0){var Bg=(nn.length<<2)+1;wl=Wd(Bg),me(nn,wl,Bg)}return wl},array:function(nn){var wl=Wd(nn.length);return Ce(nn,wl),wl}};function oe(nn){return Q==="string"?qt(nn):Q==="boolean"?Boolean(nn):nn}var ee=xt(U),hr=[],Bo=0;if($t)for(var Vo=0;Vo<$t.length;Vo++){var fp=xe[gt[Vo]];fp?(Bo===0&&(Bo=Mg()),hr[Vo]=fp($t[Vo])):hr[Vo]=$t[Vo]}var Mu=ee.apply(null,hr);function JI(nn){return Bo!==0&&zg(Bo),oe(nn)}return Mu=JI(Mu),Mu}function bt(U,Q,gt,$t){gt=gt||[];var he=gt.every(function(oe){return oe==="number"}),xe=Q!=="string";return xe&&he&&!$t?xt(U):function(){return dt(U,Q,gt,arguments,$t)}}var Nt=1,At=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Dt(U,Q,gt){for(var $t=Q+gt,he=Q;U[he]&&!(he>=$t);)++he;if(he-Q>16&&U.subarray&&At)return At.decode(U.subarray(Q,he));for(var xe="";Q<he;){var oe=U[Q++];if(!(oe&128)){xe+=String.fromCharCode(oe);continue}var ee=U[Q++]&63;if((oe&224)==192){xe+=String.fromCharCode((oe&31)<<6|ee);continue}var hr=U[Q++]&63;if((oe&240)==224?oe=(oe&15)<<12|ee<<6|hr:oe=(oe&7)<<18|ee<<12|hr<<6|U[Q++]&63,oe<65536)xe+=String.fromCharCode(oe);else{var Bo=oe-65536;xe+=String.fromCharCode(55296|Bo>>10,56320|Bo&1023)}}return xe}function qt(U,Q){return U?Dt(Me,U,Q):""}function Kt(U,Q,gt,$t){if(!($t>0))return 0;for(var he=gt,xe=gt+$t-1,oe=0;oe<U.length;++oe){var ee=U.charCodeAt(oe);if(ee>=55296&&ee<=57343){var hr=U.charCodeAt(++oe);ee=65536+((ee&1023)<<10)|hr&1023}if(ee<=127){if(gt>=xe)break;Q[gt++]=ee}else if(ee<=2047){if(gt+1>=xe)break;Q[gt++]=192|ee>>6,Q[gt++]=128|ee&63}else if(ee<=65535){if(gt+2>=xe)break;Q[gt++]=224|ee>>12,Q[gt++]=128|ee>>6&63,Q[gt++]=128|ee&63}else{if(gt+3>=xe)break;Q[gt++]=240|ee>>18,Q[gt++]=128|ee>>12&63,Q[gt++]=128|ee>>6&63,Q[gt++]=128|ee&63}}return Q[gt]=0,gt-he}function me(U,Q,gt){return Kt(U,Me,Q,gt)}function Rt(U){for(var Q=0,gt=0;gt<U.length;++gt){var $t=U.charCodeAt(gt);$t>=55296&&$t<=57343&&($t=65536+(($t&1023)<<10)|U.charCodeAt(++gt)&1023),$t<=127?++Q:$t<=2047?Q+=2:$t<=65535?Q+=3:Q+=4}return Q}var Ee=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function Ce(U,Q){Jr.set(U,Q)}function le(U,Q,gt){for(var $t=0;$t<U.length;++$t)Jr[Q++>>0]=U.charCodeAt($t);gt||(Jr[Q>>0]=0)}function qe(U,Q){return U%Q>0&&(U+=Q-U%Q),U}var Fe,Jr,Me,Lo,Or,Qr,tn,qr,oo;function $n(U){Fe=U,e.HEAP8=Jr=new Int8Array(U),e.HEAP16=Lo=new Int16Array(U),e.HEAP32=Qr=new Int32Array(U),e.HEAPU8=Me=new Uint8Array(U),e.HEAPU16=Or=new Uint16Array(U),e.HEAPU32=tn=new Uint32Array(U),e.HEAPF32=qr=new Float32Array(U),e.HEAPF64=oo=new Float64Array(U)}var Po=e.INITIAL_MEMORY||16777216,so,xl=[],Du=[],ep=[],dr=!1,rp=!1,np=0;function Ld(){return ot||np>0}function hg(){if(e.preRun)for(typeof e.preRun=="function"&&(e.preRun=[e.preRun]);e.preRun.length;)yg(e.preRun.shift());Md(xl)}function gg(){dr=!0,Md(Du)}function HT(){rp=!0}function xg(){if(e.postRun)for(typeof e.postRun=="function"&&(e.postRun=[e.postRun]);e.postRun.length;)bg(e.postRun.shift());Md(ep)}function yg(U){xl.unshift(U)}function Mo(U){Du.unshift(U)}function bg(U){ep.unshift(U)}var Hn=0,op=null,yl=null;function IC(U){Hn++,e.monitorRunDependencies&&e.monitorRunDependencies(Hn)}function wg(U){if(Hn--,e.monitorRunDependencies&&e.monitorRunDependencies(Hn),Hn==0&&(op!==null&&(clearInterval(op),op=null),yl)){var Q=yl;yl=null,Q()}}e.preloadedImages={},e.preloadedAudios={};function Fu(U){e.onAbort&&e.onAbort(U),U="Aborted("+U+")",D(U),it=!0,ft=1,U+=". Build with -s ASSERTIONS=1 for more info.";var Q=new WebAssembly.RuntimeError(U);throw o(Q),Q}var SC="data:application/octet-stream;base64,";function vg(U){return U.startsWith(SC)}function Ru(U){return U.startsWith("file://")}var en;en="tfjs-backend-wasm.wasm",vg(en)||(en=d(en));function Pd(U){try{if(U==en&&K)return new Uint8Array(K);if(y)return y(U);throw"both async and sync fetching of the wasm failed"}catch(Q){Fu(Q)}}function NC(){if(!K&&(c||p)){if(typeof fetch=="function"&&!Ru(en))return fetch(en,{credentials:"same-origin"}).then(function(U){if(!U.ok)throw"failed to load wasm binary file at '"+en+"'";return U.arrayBuffer()}).catch(function(){return Pd(en)});if(g)return new Promise(function(U,Q){g(en,function(gt){U(new Uint8Array(gt))},Q)})}return Promise.resolve().then(function(){return Pd(en)})}function kC(){var U={env:ap,wasi_snapshot_preview1:ap};function Q(oe,ee){var hr=oe.exports;e.asm=hr,st=e.asm.memory,$n(st.buffer),so=e.asm.__indirect_function_table,Mo(e.asm.__wasm_call_ctors),wg("wasm-instantiate")}IC("wasm-instantiate");function gt(oe){Q(oe.instance)}function $t(oe){return NC().then(function(ee){return WebAssembly.instantiate(ee,U)}).then(function(ee){return ee}).then(oe,function(ee){D("failed to asynchronously prepare wasm: "+ee),Fu(ee)})}function he(){return!K&&typeof WebAssembly.instantiateStreaming=="function"&&!vg(en)&&!Ru(en)&&typeof fetch=="function"?fetch(en,{credentials:"same-origin"}).then(function(oe){var ee=WebAssembly.instantiateStreaming(oe,U);return ee.then(gt,function(hr){return D("wasm streaming compile failed: "+hr),D("falling back to ArrayBuffer instantiation"),$t(gt)})}):$t(gt)}if(e.instantiateWasm)try{var xe=e.instantiateWasm(U,Q);return xe}catch(oe){return D("Module.instantiateWasm callback failed with error: "+oe),!1}return he().catch(o),{}}var qT,KT;function Md(U){for(;U.length>0;){var Q=U.shift();if(typeof Q=="function"){Q(e);continue}var gt=Q.func;typeof gt=="number"?Q.arg===void 0?zd(gt)():zd(gt)(Q.arg):gt(Q.arg===void 0?null:Q.arg)}}function bl(U){return U}function Cg(U){var Q=/\b_Z[\w\d_]+/g;return U.replace(Q,function(gt){var $t=gt;return gt===$t?gt:$t+" ["+gt+"]"})}var zo=[];function zd(U){var Q=zo[U];return Q||(U>=zo.length&&(zo.length=U+1),zo[U]=Q=so.get(U)),Q}function jT(){var U=new Error;if(!U.stack){try{throw new Error}catch(Q){U=Q}if(!U.stack)return"(no stack trace available)"}return U.stack.toString()}function sp(U,Q){so.set(U,Q),zo[U]=Q}function TC(){Fu("")}function Bd(){return 2147483648}function Ig(U,Q,gt){Me.copyWithin(U,Q,Q+gt)}function rn(U){try{return st.grow(U-Fe.byteLength+65535>>>16),$n(st.buffer),1}catch(Q){}}function Sg(U){var Q=Me.length;U=U>>>0;var gt=Bd();if(U>gt)return!1;for(var $t=1;$t<=4;$t*=2){var he=Q*(1+.2/$t);he=Math.min(he,U+100663296);var xe=Math.min(gt,qe(Math.max(U,he),65536)),oe=rn(xe);if(oe)return!0}return!1}var ip={mappings:{},buffers:[null,[],[]],printChar:function(U,Q){var gt=ip.buffers[U];Q===0||Q===10?((U===1?$:D)(Dt(gt,0)),gt.length=0):gt.push(Q)},varargs:void 0,get:function(){ip.varargs+=4;var U=Qr[ip.varargs-4>>2];return U},getStr:function(U){var Q=qt(U);return Q},get64:function(U,Q){return U}};function _C(U){return 0}function XT(U,Q,gt,$t,he){}function YT(U,Q,gt,$t){for(var he=0,xe=0;xe<gt;xe++){var oe=Qr[Q>>2],ee=Qr[Q+4>>2];Q+=8;for(var hr=0;hr<ee;hr++)ip.printChar(U,Me[oe+hr]);he+=ee}return Qr[$t>>2]=he,0}function EC(U){nt(U)}var Ng=!1,ap={abort:TC,emscripten_get_heap_max:Bd,emscripten_memcpy_big:Ig,emscripten_resize_heap:Sg,fd_close:_C,fd_seek:XT,fd_write:YT,setTempRet0:EC},WW=kC(),ZT=e.___wasm_call_ctors=function(){return(ZT=e.___wasm_call_ctors=e.asm.__wasm_call_ctors).apply(null,arguments)},AC=e._init=function(){return(AC=e._init=e.asm.init).apply(null,arguments)},$C=e._init_with_threads_count=function(){return($C=e._init_with_threads_count=e.asm.init_with_threads_count).apply(null,arguments)},kg=e._get_threads_count=function(){return(kg=e._get_threads_count=e.asm.get_threads_count).apply(null,arguments)},Tg=e._register_tensor=function(){return(Tg=e._register_tensor=e.asm.register_tensor).apply(null,arguments)},DC=e._dispose_data=function(){return(DC=e._dispose_data=e.asm.dispose_data).apply(null,arguments)},Ut=e._dispose=function(){return(Ut=e._dispose=e.asm.dispose).apply(null,arguments)},FC=e._Abs=function(){return(FC=e._Abs=e.asm.Abs).apply(null,arguments)},_g=e._Add=function(){return(_g=e._Add=e.asm.Add).apply(null,arguments)},Ou=e._AddN=function(){return(Ou=e._AddN=e.asm.AddN).apply(null,arguments)},lp=e._All=function(){return(lp=e._All=e.asm.All).apply(null,arguments)},RC=e._Any=function(){return(RC=e._Any=e.asm.Any).apply(null,arguments)},JT=e._ArgMax=function(){return(JT=e._ArgMax=e.asm.ArgMax).apply(null,arguments)},OC=e._AvgPool=function(){return(OC=e._AvgPool=e.asm.AvgPool).apply(null,arguments)},QT=e._BatchMatMul=function(){return(QT=e._BatchMatMul=e.asm.BatchMatMul).apply(null,arguments)},Lu=e._Ceil=function(){return(Lu=e._Ceil=e.asm.Ceil).apply(null,arguments)},LC=e._ClipByValue=function(){return(LC=e._ClipByValue=e.asm.ClipByValue).apply(null,arguments)},PC=e._Conv2D=function(){return(PC=e._Conv2D=e.asm.Conv2D).apply(null,arguments)},MC=e._Conv2DBackpropInput=function(){return(MC=e._Conv2DBackpropInput=e.asm.Conv2DBackpropInput).apply(null,arguments)},zC=e._Cos=function(){return(zC=e._Cos=e.asm.Cos).apply(null,arguments)},BC=e._Cosh=function(){return(BC=e._Cosh=e.asm.Cosh).apply(null,arguments)},VC=e._CropAndResize=function(){return(VC=e._CropAndResize=e.asm.CropAndResize).apply(null,arguments)},Eg=e._Cumprod=function(){return(Eg=e._Cumprod=e.asm.Cumprod).apply(null,arguments)},GC=e._Cumsum=function(){return(GC=e._Cumsum=e.asm.Cumsum).apply(null,arguments)},WC=e._DepthToSpace=function(){return(WC=e._DepthToSpace=e.asm.DepthToSpace).apply(null,arguments)},UC=e._DepthwiseConv2dNative=function(){return(UC=e._DepthwiseConv2dNative=e.asm.DepthwiseConv2dNative).apply(null,arguments)},HC=e._Elu=function(){return(HC=e._Elu=e.asm.Elu).apply(null,arguments)},qC=e._Equal=function(){return(qC=e._Equal=e.asm.Equal).apply(null,arguments)},Ag=e._Exp=function(){return(Ag=e._Exp=e.asm.Exp).apply(null,arguments)},KC=e._FlipLeftRight=function(){return(KC=e._FlipLeftRight=e.asm.FlipLeftRight).apply(null,arguments)},jC=e._Floor=function(){return(jC=e._Floor=e.asm.Floor).apply(null,arguments)},Pu=e._FloorDiv=function(){return(Pu=e._FloorDiv=e.asm.FloorDiv).apply(null,arguments)},Vd=e._FusedBatchNorm=function(){return(Vd=e._FusedBatchNorm=e.asm.FusedBatchNorm).apply(null,arguments)},XC=e._FusedConv2D=function(){return(XC=e._FusedConv2D=e.asm.FusedConv2D).apply(null,arguments)},YC=e._FusedDepthwiseConv2D=function(){return(YC=e._FusedDepthwiseConv2D=e.asm.FusedDepthwiseConv2D).apply(null,arguments)},ZC=e._Gather=function(){return(ZC=e._Gather=e.asm.Gather).apply(null,arguments)},ne=e._GatherNd=function(){return(ne=e._GatherNd=e.asm.GatherNd).apply(null,arguments)},JC=e._Greater=function(){return(JC=e._Greater=e.asm.Greater).apply(null,arguments)},QC=e._GreaterEqual=function(){return(QC=e._GreaterEqual=e.asm.GreaterEqual).apply(null,arguments)},tI=e._LeakyRelu=function(){return(tI=e._LeakyRelu=e.asm.LeakyRelu).apply(null,arguments)},eI=e._Less=function(){return(eI=e._Less=e.asm.Less).apply(null,arguments)},rI=e._LessEqual=function(){return(rI=e._LessEqual=e.asm.LessEqual).apply(null,arguments)},nI=e._Log=function(){return(nI=e._Log=e.asm.Log).apply(null,arguments)},Gd=e._LogicalAnd=function(){return(Gd=e._LogicalAnd=e.asm.LogicalAnd).apply(null,arguments)},$g=e._LogicalNot=function(){return($g=e._LogicalNot=e.asm.LogicalNot).apply(null,arguments)},Dg=e._LogicalOr=function(){return(Dg=e._LogicalOr=e.asm.LogicalOr).apply(null,arguments)},oI=e._LogicalXor=function(){return(oI=e._LogicalXor=e.asm.LogicalXor).apply(null,arguments)},sI=e._Max=function(){return(sI=e._Max=e.asm.Max).apply(null,arguments)},iI=e._MaxPool=function(){return(iI=e._MaxPool=e.asm.MaxPool).apply(null,arguments)},aI=e._Maximum=function(){return(aI=e._Maximum=e.asm.Maximum).apply(null,arguments)},lI=e._Mean=function(){return(lI=e._Mean=e.asm.Mean).apply(null,arguments)},uI=e._Min=function(){return(uI=e._Min=e.asm.Min).apply(null,arguments)},rr=e._Minimum=function(){return(rr=e._Minimum=e.asm.Minimum).apply(null,arguments)},cI=e._MirrorPad=function(){return(cI=e._MirrorPad=e.asm.MirrorPad).apply(null,arguments)},pI=e._Multiply=function(){return(pI=e._Multiply=e.asm.Multiply).apply(null,arguments)},mI=e._Neg=function(){return(mI=e._Neg=e.asm.Neg).apply(null,arguments)},up=e._NonMaxSuppressionV3=function(){return(up=e._NonMaxSuppressionV3=e.asm.NonMaxSuppressionV3).apply(null,arguments)},Fg=e._NonMaxSuppressionV4=function(){return(Fg=e._NonMaxSuppressionV4=e.asm.NonMaxSuppressionV4).apply(null,arguments)},Rg=e._NonMaxSuppressionV5=function(){return(Rg=e._NonMaxSuppressionV5=e.asm.NonMaxSuppressionV5).apply(null,arguments)},Og=e._NotEqual=function(){return(Og=e._NotEqual=e.asm.NotEqual).apply(null,arguments)},fI=e._OneHot=function(){return(fI=e._OneHot=e.asm.OneHot).apply(null,arguments)},Lg=e._PadV2=function(){return(Lg=e._PadV2=e.asm.PadV2).apply(null,arguments)},dI=e._Pow=function(){return(dI=e._Pow=e.asm.Pow).apply(null,arguments)},t1=e._Prelu=function(){return(t1=e._Prelu=e.asm.Prelu).apply(null,arguments)},Pg=e._Prod=function(){return(Pg=e._Prod=e.asm.Prod).apply(null,arguments)},e1=e._RealDiv=function(){return(e1=e._RealDiv=e.asm.RealDiv).apply(null,arguments)},hI=e._Relu=function(){return(hI=e._Relu=e.asm.Relu).apply(null,arguments)},gI=e._Relu6=function(){return(gI=e._Relu6=e.asm.Relu6).apply(null,arguments)},xI=e._ResizeBilinear=function(){return(xI=e._ResizeBilinear=e.asm.ResizeBilinear).apply(null,arguments)},yI=e._ResizeNearestNeighbor=function(){return(yI=e._ResizeNearestNeighbor=e.asm.ResizeNearestNeighbor).apply(null,arguments)},bI=e._Reverse=function(){return(bI=e._Reverse=e.asm.Reverse).apply(null,arguments)},wI=e._RotateWithOffset=function(){return(wI=e._RotateWithOffset=e.asm.RotateWithOffset).apply(null,arguments)},vI=e._Round=function(){return(vI=e._Round=e.asm.Round).apply(null,arguments)},CI=e._Rsqrt=function(){return(CI=e._Rsqrt=e.asm.Rsqrt).apply(null,arguments)},II=e._ScatterNd=function(){return(II=e._ScatterNd=e.asm.ScatterNd).apply(null,arguments)},SI=e._SelectV2=function(){return(SI=e._SelectV2=e.asm.SelectV2).apply(null,arguments)},NI=e._Sigmoid=function(){return(NI=e._Sigmoid=e.asm.Sigmoid).apply(null,arguments)},kI=e._Sin=function(){return(kI=e._Sin=e.asm.Sin).apply(null,arguments)},TI=e._Softmax=function(){return(TI=e._Softmax=e.asm.Softmax).apply(null,arguments)},_I=e._SparseFillEmptyRows=function(){return(_I=e._SparseFillEmptyRows=e.asm.SparseFillEmptyRows).apply(null,arguments)},EI=e._SparseReshape=function(){return(EI=e._SparseReshape=e.asm.SparseReshape).apply(null,arguments)},AI=e._SparseSegmentReduction=function(){return(AI=e._SparseSegmentReduction=e.asm.SparseSegmentReduction).apply(null,arguments)},$I=e._Sqrt=function(){return($I=e._Sqrt=e.asm.Sqrt).apply(null,arguments)},DI=e._Square=function(){return(DI=e._Square=e.asm.Square).apply(null,arguments)},FI=e._SquaredDifference=function(){return(FI=e._SquaredDifference=e.asm.SquaredDifference).apply(null,arguments)},RI=e._Step=function(){return(RI=e._Step=e.asm.Step).apply(null,arguments)},OI=e._StridedSlice=function(){return(OI=e._StridedSlice=e.asm.StridedSlice).apply(null,arguments)},LI=e._Sub=function(){return(LI=e._Sub=e.asm.Sub).apply(null,arguments)},PI=e._Sum=function(){return(PI=e._Sum=e.asm.Sum).apply(null,arguments)},MI=e._Tan=function(){return(MI=e._Tan=e.asm.Tan).apply(null,arguments)},zI=e._Tanh=function(){return(zI=e._Tanh=e.asm.Tanh).apply(null,arguments)},BI=e._Tile=function(){return(BI=e._Tile=e.asm.Tile).apply(null,arguments)},VI=e._TopK=function(){return(VI=e._TopK=e.asm.TopK).apply(null,arguments)},GI=e._Transform=function(){return(GI=e._Transform=e.asm.Transform).apply(null,arguments)},WI=e._Transpose=function(){return(WI=e._Transpose=e.asm.Transpose).apply(null,arguments)},UI=e.__FusedMatMul=function(){return(UI=e.__FusedMatMul=e.asm._FusedMatMul).apply(null,arguments)},HI=e._malloc=function(){return(HI=e._malloc=e.asm.malloc).apply(null,arguments)},qI=e._free=function(){return(qI=e._free=e.asm.free).apply(null,arguments)},KI=e.___errno_location=function(){return(KI=e.___errno_location=e.asm.__errno_location).apply(null,arguments)},jI=e._emscripten_main_thread_process_queued_calls=function(){return(jI=e._emscripten_main_thread_process_queued_calls=e.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Mg=e.stackSave=function(){return(Mg=e.stackSave=e.asm.stackSave).apply(null,arguments)},zg=e.stackRestore=function(){return(zg=e.stackRestore=e.asm.stackRestore).apply(null,arguments)},Wd=e.stackAlloc=function(){return(Wd=e.stackAlloc=e.asm.stackAlloc).apply(null,arguments)},XI=e.dynCall_iijjiiii=function(){return(XI=e.dynCall_iijjiiii=e.asm.dynCall_iijjiiii).apply(null,arguments)},YI=e.dynCall_jiji=function(){return(YI=e.dynCall_jiji=e.asm.dynCall_jiji).apply(null,arguments)};e.cwrap=bt;var cp;function Ud(U){this.name="ExitStatus",this.message="Program terminated with exit("+U+")",this.status=U}yl=function U(){cp||Hd(),cp||(yl=U)};function Hd(U){if(U=U||a,Hn>0||(hg(),Hn>0))return;function Q(){cp||(cp=!0,e.calledRun=!0,!it&&(gg(),n(e),e.onRuntimeInitialized&&e.onRuntimeInitialized(),xg()))}e.setStatus?(e.setStatus("Running..."),setTimeout(function(){setTimeout(function(){e.setStatus("")},1),Q()},1)):Q()}e.run=Hd;function r1(U){ft=U,Ld()||(e.onExit&&e.onExit(U),it=!0),l(U,new Ud(U))}if(e.preInit)for(typeof e.preInit=="function"&&(e.preInit=[e.preInit]);e.preInit.length>0;)e.preInit.pop()();Hd();var pp;s&&(pp={uncaughtException:process.listeners("uncaughtException").filter(function(U){return!s.uncaughtException.indexOf(U)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(U){return!s.unhandledRejection.indexOf(U)>-1})});var mp;if(typeof t!="undefined")mp=t;else if(typeof WasmBackendModuleThreadedSimd!="undefined")mp=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(pp){var ZI=mp._dispose;mp._dispose=function(){ZI(),pp.uncaughtException.forEach(function(U){process.removeListener("uncaughtException",U)}),pp.unhandledRejection.forEach(function(U){process.removeListener("unhandledRejection",U)})}}return t.ready}})();typeof vC=="object"&&typeof BT=="object"?BT.exports=zT:typeof define=="function"&&define.amd?define([],function(){return zT}):typeof vC=="object"&&(vC.WasmBackendModule=zT)});var Qi=class{constructor(t,e){this.backend=t,this.dataMover=e,this.data=new WeakMap,this.dataIdsCount=0}get(t){return this.data.has(t)||this.dataMover.moveData(this.backend,t),this.data.get(t)}set(t,e){this.dataIdsCount++,this.data.set(t,e)}has(t){return this.data.has(t)}delete(t){return this.dataIdsCount--,this.data.delete(t)}numDataIds(){return this.dataIdsCount}},Uo=class{refCount(t){return qn("refCount")}incRef(t){return qn("incRef")}timerAvailable(){return!0}time(t){return qn("time")}read(t){return qn("read")}readSync(t){return qn("readSync")}readToGPU(t,e){return qn("readToGPU")}numDataIds(){return qn("numDataIds")}disposeData(t,e){return qn("disposeData")}write(t,e,n){return qn("write")}move(t,e,n,o,s){return qn("move")}memory(){return qn("memory")}floatPrecision(){return qn("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return qn("dispose")}};function qn(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function m1(r){let t=r.length,e=0;for(;t>0;)e=Math.random()*t|0,t--,Kg(r,t,e)}function GU(r,t){if(r.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${t.length}`);let e=r.length,n=0;for(;e>0;)n=Math.random()*e|0,e--,Kg(r,e,n),Kg(t,e,n)}function gp(r,t,e){return Math.max(r,Math.min(t,e))}function WU(r){return r%2===0?r:r+1}function Kg(r,t,e){let n=r[t];r[t]=r[e],r[e]=n}function UU(r){let t=0;for(let e=0;e<r.length;e++)t+=r[e];return t}function HU(r,t){let e=Math.random();return t*e+(1-e)*r}function qU(r,t){let e=0;for(let n=0;n<r.length;n++){let o=Number(r[n])-Number(t[n]);e+=o*o}return e}function A(r,t){if(!r)throw new Error(typeof t=="string"?t:t())}function Re(r,t,e=""){A(Fn(r,t),()=>e+` Shapes ${r} and ${t} must match`)}function Kn(r){A(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ho(r,t=[],e=!1){if(t==null&&(t=[]),Array.isArray(r)||xr(r)&&!e)for(let n=0;n<r.length;++n)Ho(r[n],t,e);else t.push(r);return t}function Qt(r){if(r.length===0)return 1;let t=r[0];for(let e=1;e<r.length;e++)t*=r[e];return t}function KU(r){return r.length===0}function Fn(r,t){if(r===t)return!0;if(r==null||t==null||r.length!==t.length)return!1;for(let e=0;e<r.length;e++)if(r[e]!==t[e])return!1;return!0}function ta(r){return r%1===0}function jU(r){if(Math.tanh!=null)return Math.tanh(r);if(r===1/0)return 1;if(r===-1/0)return-1;{let t=Math.exp(2*r);return(t-1)/(t+1)}}function XU(r){let t=Math.ceil(Math.sqrt(r));return[t,Math.ceil(r/t)]}function YU(r){let t=new Uint32Array(r);for(let e=0;e<r;++e)t[e]=e;return m1(t),t}function Bu(r,t){return t<=r.length?r:r+" ".repeat(t-r.length)}function ZU(r,t=n=>0,e){return new Promise((n,o)=>{let s=0,i=()=>{if(r()){n();return}s++;let a=t(s);if(e!=null&&s>=e){o();return}setTimeout(i,a)};i()})}function JU(r,t){let e=1,n=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)e*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==e)throw Error(`Size(${t}) must match the product of shape ${r}`);return r}if(e===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(t%e!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${e}`);let o=r.slice();return o[n]=t/e,o}function ur(r,t){let e=t.length;return r=r==null?t.map((n,o)=>o):[].concat(r),A(r.every(n=>n>=-e&&n<e),()=>`All values in axis param must be in range [-${e}, ${e}) but got axis ${r}`),A(r.every(n=>ta(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?e+n:n)}function s0(r,t){let e=[],n=[],o=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||o?null:ur(t,r).sort(),i=0;for(let a=0;a<r.length;++a){if(s!=null){if(s[i]===a&&r[a]!==1)throw new Error(`Can't squeeze axis ${a} since its dim '${r[a]}' is not 1`);(s[i]==null||s[i]>a)&&r[a]===1&&(e.push(r[a]),n.push(a)),s[i]<=a&&i++}r[a]!==1&&(e.push(r[a]),n.push(a))}return{newShape:e,keptDims:n}}function i0(r,t){let e=null;if(r==null||r==="float32")e=new Float32Array(t);else if(r==="int32")e=new Int32Array(t);else if(r==="bool")e=new Uint8Array(t);else throw new Error(`Unknown data type ${r}`);return e}function a0(r,t){let e=null;if(r==null||r==="float32")e=new Float32Array(t);else if(r==="int32")e=new Int32Array(t);else if(r==="bool")e=new Uint8Array(t);else if(r==="string")e=new Array(t);else throw new Error(`Unknown data type ${r}`);return e}function l0(r,t){for(let e=0;e<r.length;e++){let n=r[e];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function u0(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function QU(r,t){return!(t==="complex64"||t==="float32"&&r!=="complex64"||t==="int32"&&r!=="float32"&&r!=="complex64"||t==="bool"&&r==="bool")}function xr(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray}function jg(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function c0(r){if(r==null)return 0;let t=0;return r.forEach(e=>t+=e.length),t}function qo(r){return typeof r=="string"||r instanceof String}function f1(r){return typeof r=="boolean"}function d1(r){return typeof r=="number"}function xp(r){return Array.isArray(r)?xp(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray?"int32":d1(r)?"float32":qo(r)?"string":f1(r)?"bool":"float32"}function li(r){return!!(r&&r.constructor&&r.call&&r.apply)}function yp(r,t){for(let e=t;e<r;++e)if(r%e===0)return e;return r}function ui(r){let t=r.length;if(t<2)return[];let e=new Array(t-1);e[t-2]=r[t-1];for(let n=t-3;n>=0;--n)e[n]=e[n+1]*r[n+1];return e}function h1(r,t,e,n=!1){let o=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)o[i]=e[r+i]}else{let s=t[0],i=t.slice(1),a=i.reduce((u,l)=>u*l)*(n?2:1);for(let u=0;u<s;u++)o[u]=h1(r+u*a,i,e,n)}return o}function zu(r,t,e=!1){if(r.length===0)return t[0];let n=r.reduce((o,s)=>o*s)*(e?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${r}] does not match the input size ${t.length}${e?" for a complex tensor":""}.`);return h1(0,r,t,e)}function jd(r,t){let e=bp(r,t);for(let n=0;n<e.length;n++)e[n]=1;return e}function bp(r,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(r);if(t==="int32")return new Int32Array(r);if(t==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${t}`)}function t4(r,t){let e=r.reduce((n,o)=>n*o,1);if(t==null||t==="float32")return zu(r,new Float32Array(e));if(t==="int32")return zu(r,new Int32Array(e));if(t==="bool")return zu(r,new Uint8Array(e));throw new Error(`Unknown data type ${t}`)}function Xd(r){r.forEach(t=>{A(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function e4(r,t,e){if(t===0)return 0;if(t===1)return r[0];let n=r[r.length-1];for(let o=0;o<r.length-1;++o)n+=e[o]*r[o];return n}function r4(r,t,e){if(t===0)return[];if(t===1)return[r];let n=new Array(t);for(let o=0;o<n.length-1;++o)n[o]=Math.floor(r/e[o]),r-=n[o]*e[o];return n[n.length-1]=r,n}function Yd(r){return r&&r.then&&typeof r.then=="function"}var g1="tfjsflags",Zd=class{constructor(t){this.global=t,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=o4,this.populateURLFlags()}setPlatform(t,e){this.platform!=null&&(B().getBool("IS_TEST")||B().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=t,this.platform=e}registerFlag(t,e,n){if(this.flagRegistry[t]={evaluationFn:e,setHook:n},this.urlFlags[t]!=null){let o=this.urlFlags[t];B().getBool("IS_TEST")||B().getBool("PROD")||console.warn(`Setting feature override from URL ${t}: ${o}.`),this.set(t,o)}}async getAsync(t){return t in this.flags?this.flags[t]:(this.flags[t]=await this.evaluateFlag(t),this.flags[t])}get(t){if(t in this.flags)return this.flags[t];let e=this.evaluateFlag(t);if(Yd(e))throw new Error(`Flag ${t} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[t]=e,this.flags[t]}getNumber(t){return this.get(t)}getBool(t){return this.get(t)}getFlags(){return this.flags}get features(){return this.flags}set(t,e){if(this.flagRegistry[t]==null)throw new Error(`Cannot set flag ${t} as it has not been registered.`);this.flags[t]=e,this.flagRegistry[t].setHook!=null&&this.flagRegistry[t].setHook(e)}evaluateFlag(t){if(this.flagRegistry[t]==null)throw new Error(`Cannot evaluate flag '${t}': no evaluation function found.`);return this.flagRegistry[t].evaluationFn()}setFlags(t){this.flags=Object.assign({},t)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let t=this.getQueryParams(this.global.location.search);g1 in t&&t[g1].split(",").forEach(n=>{let[o,s]=n.split(":");this.urlFlags[o]=i4(o,s)})}};function o4(r){let t={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(e,...n)=>(s4(t,n[0],n[1]),n.join("="))),t}function s4(r,t,e){r[decodeURIComponent(t)]=decodeURIComponent(e||"")}function i4(r,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${r}.`)}function B(){return p0}var p0=null;function x1(r){p0=r}var m0;function f0(){if(m0==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");m0=r}return m0}function a4(){let r=f0();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function Jd(r,t){let e=a4();if(e.has(r))return e.get(r);{let n=t();return e.set(r,n),e.get(r)}}var ci="Abs",ea="Acos",ra="Acosh",jn="Add",Ko="AddN",na="All",oa="Any",jo="ArgMax",Cl="ArgMin",sa="Asin",ia="Asinh",aa="Atan",la="Atanh",ua="Atan2",Xo="AvgPool",wp="AvgPoolGrad",Il="AvgPool3D",vp="AvgPool3DGrad",Yo="BatchMatMul",pi="BatchToSpaceND",Cp="Bincount",y1="BroadcastTo",Ip="BroadcastArgs",io="Cast",Zo="Ceil",ao="ClipByValue",Sp="Complex",Sl="ComplexAbs",mi="Concat",Jo="Conv2D",Np="Conv2DBackpropFilter",Qo="Conv2DBackpropInput",Nl="Conv3D",kp="Conv3DBackpropFilterV2",Tp="Conv3DBackpropInputV2",ts="Cos",es="Cosh",ca="Cumprod",rs="Cumsum",pa="CropAndResize",_p="DenseBincount",ma="DepthToSpace",ns="DepthwiseConv2dNative",Ep="DepthwiseConv2dNativeBackpropFilter",Ap="DepthwiseConv2dNativeBackpropInput",$p="Diag",kl="Dilation2D",Qd="Dilation2DBackpropInput",th="Dilation2DBackpropFilter",os="RealDiv",Dp="Einsum",ss="Elu",Fp="EluGrad",fa="Erf",da="Equal",is="Exp",fi="ExpandDims",ha="Expm1",Rp="FFT",Tl="Fill",ga="FlipLeftRight",as="Floor",ls="FloorDiv",us="FusedBatchNorm",di="GatherV2",xa="GatherNd",ya="Greater",cs="GreaterEqual",lo="Identity",Op="IFFT",Lp="Imag",ba="IsFinite",wa="IsInf",va="IsNan",ps="LeakyRelu",Ca="Less",Ia="LessEqual",Pp="LinSpace",ms="Log",Sa="Log1p",Na="LogicalAnd",ka="LogicalNot",Ta="LogicalOr",b1="LogicalXor",w1="LogSoftmax",Qat="LowerBound",_l="LRN",Mp="LRNGrad",fs="Max",ds="Maximum",hs="MaxPool",zp="MaxPoolGrad",El="MaxPool3D",Bp="MaxPool3DGrad",Vp="MaxPoolWithArgmax",gs="Mean",xs="Min",ys="Minimum",bs="MirrorPad",_a="Mod",Gp="Multinomial",ws="Multiply",hi="Neg",Ea="NotEqual",Aa="NonMaxSuppressionV3",$a="NonMaxSuppressionV4",Da="NonMaxSuppressionV5",gi="OnesLike",vs="OneHot",xi="Pack",Cs="PadV2",tlt="Pool",Is="Pow",Ss="Prelu",Ns="Prod",Al="Range",Wp="Real",Fa="Reciprocal",ks="Relu",yi="Reshape",Ts="ResizeNearestNeighbor",Up="ResizeNearestNeighborGrad",_s="ResizeBilinear",Hp="ResizeBilinearGrad",Es="Relu6",As="Reverse",$s="Round",Ds="Rsqrt",Ra="ScatterNd",qp="SearchSorted",bi="Select",Oa="Selu",wi="Slice",Fs="Sin",La="Sinh",Pa="Sign",Rs="Sigmoid",Ma="Softplus",Os="Sqrt",Ls="Sum",vi="SpaceToBatchND",Ci="SplitV",Ps="Softmax",$l="SparseFillEmptyRows",za="SparseReshape",Dl="SparseSegmentMean",Fl="SparseSegmentSum",Kp="SparseToDense",Ms="SquaredDifference",Rl="Square",Ba="StridedSlice",Ol="StringNGrams",Ll="StringSplit",Pl="StringToHashBucketFast",zs="Sub",Bs="Tan",Vs="Tanh",Xn="Tile",Va="TopK",Ga="Transform",Yn="Transpose",jp="Unique",Ii="Unpack",Ml="UnsortedSegmentSum",elt="UpperBound",Si="ZerosLike",uo="Step",eh="FromPixels",Wa="RotateWithOffset",Ni="_FusedMatMul",ki="FusedConv2D",Ti="FusedDepthwiseConv2D";function _i(...r){B().getBool("IS_TEST")||B().getBool("PROD")||console.warn(...r)}function l4(...r){B().getBool("IS_TEST")||B().getBool("PROD")||console.log(...r)}var Xp=Jd("kernelRegistry",()=>new Map),rh=Jd("gradRegistry",()=>new Map);function nh(r,t){let e=h0(r,t);return Xp.get(e)}function d0(r){return rh.get(r)}function Xg(r){let t=Xp.entries(),e=[];for(;;){let{done:n,value:o}=t.next();if(n)break;let[s,i]=o,[a]=s.split("_");a===r&&e.push(i)}return e}function Vu(r){let{kernelName:t,backendName:e}=r,n=h0(t,e);Xp.has(n)&&_i(`The kernel '${t}' for backend '${e}' is already registered`),Xp.set(n,r)}function C1(r){let{kernelName:t}=r;rh.has(t)&&B().getBool("DEBUG")&&_i(`Overriding the gradient for '${t}'`),rh.set(t,r)}function ilt(r,t){let e=h0(r,t);if(!Xp.has(e))throw new Error(`The kernel '${r}' for backend '${t}' is not registered`);Xp.delete(e)}function alt(r){if(!rh.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);rh.delete(r)}function llt(r,t){Xg(r).forEach(n=>{let o=Object.assign({},n,{backendName:t});Vu(o)})}function h0(r,t){return`${t}_${r}`}var x={};jt(x,{arraysEqual:()=>Fn,assert:()=>A,assertNonNegativeIntegerDimensions:()=>Xd,assertNonNull:()=>Kn,assertShapesMatch:()=>Re,bytesFromStringArray:()=>c0,bytesPerElement:()=>jg,checkConversionForErrors:()=>l0,clamp:()=>gp,computeStrides:()=>ui,createScalarValue:()=>h4,createShuffledIndices:()=>YU,decodeString:()=>Qp,distSquared:()=>qU,encodeString:()=>Bl,fetch:()=>x4,fingerPrint64:()=>d4,flatten:()=>Ho,getArrayFromDType:()=>a0,getTypedArrayFromDType:()=>i0,hasEncodingLoss:()=>QU,hexToLong:()=>oh,indexToLoc:()=>r4,inferDtype:()=>xp,inferFromImplicitShape:()=>JU,isBoolean:()=>f1,isFunction:()=>li,isInt:()=>ta,isNumber:()=>d1,isPromise:()=>Yd,isScalarShape:()=>KU,isString:()=>qo,isTypedArray:()=>xr,isValidDtype:()=>u0,locToIndex:()=>e4,makeOnesTypedArray:()=>jd,makeZerosNestedTypedArray:()=>t4,makeZerosTypedArray:()=>bp,nearestDivisor:()=>yp,nearestLargerEven:()=>WU,now:()=>qu,parseAxisParam:()=>ur,randUniform:()=>HU,repeatedTry:()=>ZU,rightPad:()=>Bu,shuffle:()=>m1,shuffleCombo:()=>GU,sizeFromShape:()=>Qt,sizeToSquarishShape:()=>XU,squeezeShape:()=>s0,sum:()=>UU,swap:()=>Kg,tanh:()=>jU,toNestedArray:()=>zu,toTypedArray:()=>Jp});var b0=vl(F1());var Hu=b0.default||b0;function oh(r){return Hu.fromString(r,!0,16)}var O1=oh("c3a5c85c97cb3127"),Uu=oh("b492b66fbe98f273"),on=oh("9ae16a3b2f90404f");function y0(r){return r.xor(r.shru(47))}function L1(r,t,e){let n=r.slice(t,t+e);return Hu.fromBytes(Array.from(n),!0,!0)}function ze(r,t){return L1(r,t,8)}function R1(r,t){return L1(r,t,4)}function Tr(r,t){return t===0?r:r.shru(t).or(r.shl(64-t))}function zl(r,t,e=oh("9ddfea08eb382d69")){let n=r.xor(t).mul(e);n=n.xor(n.shru(47));let o=t.xor(n).mul(e);return o=o.xor(o.shru(47)),o=o.mul(e),o}function c4(r,t,e,n,o,s){o=o.add(r),s=Tr(s.add(o).add(n),21);let i=o;return o=o.add(t),o=o.add(e),s=s.add(Tr(o,44)),[o.add(n),s.add(i)]}function Zg(r,t,e,n){return c4(ze(r,t),ze(r,t+8),ze(r,t+16),ze(r,t+24),e,n)}function p4(r,t=r.length){if(t>=8){let e=on.add(t*2),n=ze(r,0).add(on),o=ze(r,t-8),s=Tr(o,37).mul(e).add(n),i=Tr(n,25).add(o).mul(e);return zl(s,i,e)}if(t>=4){let e=on.add(t*2),n=R1(r,0);return zl(n.shl(3).add(t),R1(r,t-4),e)}if(t>0){let e=r[0],n=r[t>>1],o=r[t-1],s=e+(n<<8),i=t+(o<<2);return y0(on.mul(s).xor(O1.mul(i))).mul(on)}return on}function m4(r,t=r.length){let e=on.add(t*2),n=ze(r,0).mul(Uu),o=ze(r,8),s=ze(r,t-8).mul(e),i=ze(r,t-16).mul(on);return zl(Tr(n.add(o),43).add(Tr(s,30)).add(i),n.add(Tr(o.add(on),18)).add(s),e)}function f4(r,t=r.length){let e=on.add(t*2),n=ze(r,0).mul(on),o=ze(r,8),s=ze(r,t-8).mul(e),i=ze(r,t-16).mul(on),a=Tr(n.add(o),43).add(Tr(s,30)).add(i),u=zl(a,n.add(Tr(o.add(on),18)).add(s),e),l=ze(r,16).mul(e),c=ze(r,24),p=a.add(ze(r,t-32)).mul(e),m=u.add(ze(r,t-24)).mul(e);return zl(Tr(l.add(c),43).add(Tr(p,30)).add(m),l.add(Tr(c.add(n),18)).add(p),e)}function d4(r,t=r.length){let e=Hu.fromNumber(81,!0);if(t<=32)return t<=16?p4(r,t):m4(r,t);if(t<=64)return f4(r,t);let n=e,o=e.mul(Uu).add(113),s=y0(o.mul(on).add(113)).mul(on),i=[Hu.UZERO,Hu.UZERO],a=[Hu.UZERO,Hu.UZERO];n=n.mul(on).add(ze(r,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do n=Tr(n.add(o).add(i[0]).add(ze(r,u+8)),37).mul(Uu),o=Tr(o.add(i[1]).add(ze(r,u+48)),42).mul(Uu),n=n.xor(a[1]),o=o.add(i[0]).add(ze(r,u+40)),s=Tr(s.add(a[0]),33).mul(Uu),i=Zg(r,u,i[1].mul(Uu),n.add(a[0])),a=Zg(r,u+32,s.add(a[1]),o.add(ze(r,u+16))),[s,n]=[n,s],u+=64;while(u!==l);let p=Uu.add(s.and(255).shl(1));return u=c,a[0]=a[0].add(t-1&63),i[0]=i[0].add(a[0]),a[0]=a[0].add(i[0]),n=Tr(n.add(o).add(i[0]).add(ze(r,u+8)),37).mul(p),o=Tr(o.add(i[1]).add(ze(r,u+48)),42).mul(p),n=n.xor(a[1].mul(9)),o=o.add(i[0].mul(9).add(ze(r,u+40))),s=Tr(s.add(a[0]),33).mul(p),i=Zg(r,u,i[1].mul(p),n.add(a[0])),a=Zg(r,u+32,s.add(a[1]),o.add(ze(r,u+16))),[s,n]=[n,s],zl(zl(i[0],a[0],p).add(y0(o).mul(O1)).add(s),zl(i[1],a[1],p).add(n),p)}function h4(r,t){return t==="string"?Bl(r):Jp([r],t)}function g4(r,t){return r instanceof Float32Array&&t==="float32"||r instanceof Int32Array&&t==="int32"||r instanceof Uint8Array&&t==="bool"}function Jp(r,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=Ho(r)),B().getBool("DEBUG")&&l0(r,t),g4(r,t))return r;if(t==null||t==="float32"||t==="complex64")return new Float32Array(r);if(t==="int32")return new Int32Array(r);if(t==="bool"){let e=new Uint8Array(r.length);for(let n=0;n<e.length;++n)Math.round(r[n])!==0&&(e[n]=1);return e}else throw new Error(`Unknown data type ${t}`)}function qu(){return B().platform.now()}function x4(r,t){return B().platform.fetch(r,t)}function Bl(r,t="utf-8"){return t=t||"utf-8",B().platform.encode(r,t)}function Qp(r,t="utf-8"){return t=t||"utf-8",B().platform.decode(r,t)}var Jg=class{constructor(t,e){this.backendTimer=t,this.logger=e,e==null&&(this.logger=new w0)}profileKernel(t,e,n){let o,s=()=>{o=n()},i,a=qu();if(this.backendTimer.timerAvailable())i=this.backendTimer.time(s);else{s();for(let l of o)l.dataSync();i=Promise.resolve({kernelMs:qu()-a})}if(B().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<o.length;l++){let c=o[l];c.data().then(p=>{y4(p,c.dtype,t)})}return{kernelName:t,outputs:o,inputs:e,timeMs:i.then(l=>l.kernelMs),extraInfo:i.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(t){let{kernelName:e,outputs:n,timeMs:o,inputs:s,extraInfo:i}=t;n.forEach(a=>{Promise.all([a.data(),o,i]).then(u=>{this.logger.logKernelProfile(e,a,u[0],u[1],s,u[2])})})}};function y4(r,t,e){if(t!=="float32")return!1;for(let n=0;n<r.length;n++){let o=r[n];if(isNaN(o)||!isFinite(o))return console.warn(`Found ${o} in the result of '${e}'`),!0}return!1}var w0=class{logKernelProfile(t,e,n,o,s,i){let a=typeof o=="number"?Bu(`${o}ms`,9):o.error,u=Bu(t,25),l=e.rank,c=e.size,p=Bu(e.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||e.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${u} %c${a} %c${l}D ${p} %c${c} %c${m} %c${i}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function P1(r,t,e){let n={},o={};for(let u=0;u<t.length;u++)n[t[u].id]=!0;for(let u=0;u<r.length;u++){let l=r[u],c=l.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<t.length;d++)if(n[m.id]){l.outputs.forEach(h=>n[h.id]=!0),f=!0,o[l.id]=!0;break}if(f)break}}let s={};s[e.id]=!0;let i={};for(let u=r.length-1;u>=0;u--){let l=r[u],c=l.inputs;for(let p=0;p<l.outputs.length;p++)if(s[l.outputs[p].id]){for(let m in c)s[c[m].id]=!0,i[l.id]=!0;break}}let a=[];for(let u=0;u<r.length;u++){let l=r[u];if(o[l.id]&&i[l.id]){let c={};for(let m in l.inputs){let f=l.inputs[m];n[f.id]&&(c[m]=f)}let p=Object.assign({},l);p.inputs=c,p.outputs=l.outputs,a.push(p)}}return a}function M1(r,t,e,n){for(let o=t.length-1;o>=0;o--){let s=t[o],i=[];if(s.outputs.forEach(u=>{let l=r[u.id];l!=null?i.push(l):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let a=s.gradient(i);for(let u in s.inputs){if(!(u in a))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(a)}.`);let l=e(()=>a[u]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=s.inputs[u];if(!Fn(l.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=l;else{let p=r[c.id];r[c.id]=n(p,l),p.dispose()}}}}var z1=20,sh=3,v0=7;function B1(r,t,e,n){let o=ui(t),s=b4(r,t,e,o),i=t.length,a=Qg(r,t,e,o,s),u=["Tensor"];return n&&(u.push(` dtype: ${e}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(" values:")),u.push(a.map(l=>" "+l).join(`
`)),u.join(`
`)}function b4(r,t,e,n){let o=Qt(t),s=n[n.length-1],i=new Array(s).fill(0),a=t.length,u=e==="complex64"?ah(r):r;if(a>1)for(let l=0;l<o/s;l++){let c=l*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],ih(u[c+p],0,e).length)}return i}function ih(r,t,e){let n;return Array.isArray(r)?n=`${parseFloat(r[0].toFixed(v0))} + ${parseFloat(r[1].toFixed(v0))}j`:qo(r)?n=`'${r}'`:e==="bool"?n=V1(r):n=parseFloat(r.toFixed(v0)).toString(),Bu(n,t)}function V1(r){return r===0?"false":"true"}function Qg(r,t,e,n,o,s=!0){let i=e==="complex64"?2:1,a=t[0],u=t.length;if(u===0){if(e==="complex64"){let h=ah(r);return[ih(h[0],0,e)]}return e==="bool"?[V1(r[0])]:[r[0].toString()]}if(u===1){if(a>z1){let g=sh*i,y=Array.from(r.slice(0,g)),b=Array.from(r.slice((a-sh)*i,a*i));return e==="complex64"&&(y=ah(y),b=ah(b)),["["+y.map((w,v)=>ih(w,o[v],e)).join(", ")+", ..., "+b.map((w,v)=>ih(w,o[a-sh+v],e)).join(", ")+"]"]}let h=e==="complex64"?ah(r):Array.from(r);return["["+h.map((g,y)=>ih(g,o[y],e)).join(", ")+"]"]}let l=t.slice(1),c=n.slice(1),p=n[0]*i,m=[];if(a>z1){for(let h=0;h<sh;h++){let g=h*p,y=g+p;m.push(...Qg(r.slice(g,y),l,e,c,o,!1))}m.push("...");for(let h=a-sh;h<a;h++){let g=h*p,y=g+p;m.push(...Qg(r.slice(g,y),l,e,c,o,h===a-1))}}else for(let h=0;h<a;h++){let g=h*p,y=g+p;m.push(...Qg(r.slice(g,y),l,e,c,o,h===a-1))}let f=u===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
`;for(let h=2;h<u;h++)d+=`
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function ah(r){let t=[];for(let e=0;e<r.length;e+=2)t.push([r[e],r[e+1]]);return t}var fe=class{constructor(t,e,n){if(this.dtype=e,this.shape=t.slice(),this.size=Qt(t),n!=null){let o=n.length;A(o===this.size,()=>`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(e==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||a0(e,this.size),this.strides=ui(t)}set(t,...e){e.length===0&&(e=[0]),A(e.length===this.rank,()=>`The number of provided coordinates (${e.length}) must match the rank (${this.rank})`);let n=this.locToIndex(e);this.values[n]=t}get(...t){t.length===0&&(t=[0]);let e=0;for(let o of t){if(o<0||o>=this.shape[e]){let s=`Requested out of range element at ${t}. Buffer shape=${this.shape}`;throw new Error(s)}e++}let n=t[t.length-1];for(let o=0;o<t.length-1;++o)n+=this.strides[o]*t[o];return this.values[n]}locToIndex(t){if(this.rank===0)return 0;if(this.rank===1)return t[0];let e=t[t.length-1];for(let n=0;n<t.length-1;++n)e+=this.strides[n]*t[n];return e}indexToLoc(t){if(this.rank===0)return[];if(this.rank===1)return[t];let e=new Array(this.shape.length);for(let n=0;n<e.length-1;++n)e[n]=Math.floor(t/this.strides[n]),t-=e[n]*this.strides[n];return e[e.length-1]=t,e}get rank(){return this.shape.length}toTensor(){return Ws().makeTensor(this.values,this.shape,this.dtype)}},Ws=null,tm=null,w4=null;function G1(r){Ws=r}function W1(r){tm=r}function U1(r){w4=r}var Pt=class{constructor(t,e,n,o){this.kept=!1,this.isDisposedInternal=!1,this.shape=t.slice(),this.dtype=e||"float32",this.size=Qt(t),this.strides=ui(t),this.dataId=n,this.id=o,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let t=await this.data();return tm.buffer(this.shape,this.dtype,t)}bufferSync(){return tm.buffer(this.shape,this.dtype,this.dataSync())}async array(){let t=await this.data();return zu(this.shape,t,this.dtype==="complex64")}arraySync(){return zu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let t=Ws().read(this.dataId);if(this.dtype==="string"){let e=await t;try{return e.map(n=>Qp(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return t}dataToGPU(t){return this.throwIfDisposed(),Ws().readToGPU(this.dataId,t)}dataSync(){this.throwIfDisposed();let t=Ws().readSync(this.dataId);if(this.dtype==="string")try{return t.map(e=>Qp(e))}catch(e){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return t}async bytes(){this.throwIfDisposed();let t=await Ws().read(this.dataId);return this.dtype==="string"?t:new Uint8Array(t.buffer)}dispose(){this.isDisposed||(Ws().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(t=!1){return tm.print(this,t)}clone(){return this.throwIfDisposed(),tm.clone(this)}toString(t=!1){let e=this.dataSync();return B1(e,this.shape,this.dtype,t)}cast(t){return this.throwIfDisposed(),tm.cast(this,t)}variable(t=!0,e,n){return this.throwIfDisposed(),Ws().makeVariable(this,t,e,n)}};Object.defineProperty(Pt,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function P(){return Jd("Tensor",()=>Pt)}P();var Ua=class extends Pt{constructor(t,e,n,o){super(t.shape,t.dtype,t.dataId,o),this.trainable=e,this.name=n}assign(t){if(t.dtype!==this.dtype)throw new Error(`dtype of the new value (${t.dtype}) and previous value (${this.dtype}) must match`);if(!Fn(t.shape,this.shape))throw new Error(`shape of the new value (${t.shape}) and previous value (${this.shape}) must match`);Ws().disposeTensor(this),this.dataId=t.dataId,Ws().incRef(this,null)}dispose(){Ws().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Ua,Symbol.hasInstance,{value:r=>r instanceof Pt&&r.assign!=null&&r.assign instanceof Function});var fo={};jt(fo,{assertTypesMatch:()=>T0,getTensorsInContainer:()=>lh,isTensorInList:()=>C4,makeTypesMatch:()=>Xt});var C0;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(C0||(C0={}));var I0;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(I0||(I0={}));var S0;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(S0||(S0={}));var N0;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(N0||(N0={}));var k0;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(k0||(k0={}));var v4={float32:N0,int32:I0,bool:S0,complex64:k0};function ir(r,t){if(r==="string"||t==="string"){if(r==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${r} with ${t}`)}return v4[r][t]}function Ku(r){return ir(r,"int32")}function Xt(r,t){if(r.dtype===t.dtype)return[r,t];let e=ir(r.dtype,t.dtype);return[r.cast(e),t.cast(e)]}function T0(r,t){A(r.dtype===t.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${t.dtype}) input must match`)}function C4(r,t){return t.some(e=>e.id===r.id)}function lh(r){let t=[];return H1(r,t,new Set),t}function H1(r,t,e){if(r==null)return;if(r instanceof Pt){t.push(r);return}if(!I4(r))return;let n=r;for(let o in n){let s=n[o];e.has(s)||(e.add(s),H1(s,t,e))}}function I4(r){return Array.isArray(r)||typeof r=="object"}function _0(r){return r.kernelName!=null}var tx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(t=>t.name)))}}}dispose(){for(let t in this.registeredVariables)this.registeredVariables[t].dispose()}},Vl=class{constructor(t){this.ENV=t,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new tx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let t=this.getSortedBackends();for(let e=0;e<t.length;e++){let n=t[e];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:t,asyncInit:e}=this.initializeBackendsAndReturnBest();if(e)throw new Error(`The highest priority backend '${t}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(t)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(t){if(!(t in this.registry))if(t in this.registryFactory){let{asyncInit:e}=this.initializeBackend(t);if(e)return null}else return null;return this.registry[t]}findBackendFactory(t){return t in this.registryFactory?this.registryFactory[t].factory:null}registerBackend(t,e,n=1){return t in this.registryFactory?(_i(`${t} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[t]={factory:e,priority:n},!0)}async setBackend(t){if(this.registryFactory[t]==null)throw new Error(`Backend name '${t}' not found in registry`);if(this.backendName=t,this.registry[t]==null){this.backendInstance=null;let{success:e,asyncInit:n}=this.initializeBackend(t);if(!(n?await e:e))return!1}return this.backendInstance=this.registry[t],this.setupRegisteredKernels(),this.profiler=new Jg(this.backendInstance),!0}setupRegisteredKernels(){Xg(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(t){Xg(t).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[t])})}initializeBackend(t){let e=this.registryFactory[t];if(e==null)throw new Error(`Cannot initialize backend ${t}, no registration found.`);try{let n=e.factory();if(n&&!(n instanceof Uo)&&typeof n.then=="function"){let o=++this.pendingBackendInitId,s=n.then(i=>o<this.pendingBackendInitId?!1:(this.registry[t]=i,this.pendingBackendInit=null,!0)).catch(i=>(o<this.pendingBackendInitId||(this.pendingBackendInit=null,_i(`Initialization of backend ${t} failed`),_i(i.stack||i.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[t]=n,{success:!0,asyncInit:!1}}catch(n){return _i(`Initialization of backend ${t} failed`),_i(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(t){if(!(t in this.registryFactory))throw new Error(`${t} backend not found in registry`);this.backendName===t&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,t in this.registry&&(this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t]),delete this.registryFactory[t],this.backendName===t&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((t,e)=>this.registryFactory[e].priority-this.registryFactory[t].priority)}initializeBackendsAndReturnBest(){let t=this.getSortedBackends();for(let e=0;e<t.length;e++){let n=t[e],{success:o,asyncInit:s}=this.initializeBackend(n);if(s||o)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(t,e){let n=this.state.tensorInfo.get(e),o=n.backend,s=this.readSync(e),i=o.refCount(e);o.disposeData(e,!0),n.backend=t,t.move(e,s,n.shape,n.dtype,i),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(t,e){let n=null;if(e==null){if(typeof t!="function")throw new Error("Please provide a function to tidy()");e=t}else{if(typeof t!="string"&&!(t instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof e!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=t}let o;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(o),()=>(o=e(),o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),o))}scopedRun(t,e,n){t();try{let o=n();return e(),o}catch(o){throw e(),o}}nextTensorId(){return Vl.nextTensorId++}nextVariableId(){return Vl.nextVariableId++}clone(t){let e=_.runKernel(lo,{x:t}),n={x:t},o=i=>({x:()=>{let a="float32",u={x:i},l={dtype:a};return _.runKernel(io,u,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[e],o,s,{}),e}runKernel(t,e,n){if(this.backendName==null&&this.backend,!(nh(t,this.backendName)!=null))throw new Error(`Kernel '${t}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:t,inputs:e,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(t,e,n){let o=this.backend.numDataIds(),s=0;n.forEach(u=>{s+=u.dtype==="complex64"?3:1});let i=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],a=o-e-s-i;if(a>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${a} data ids) after running '${t}'`)}runKernelFunc(t){let e,n=[],o=this.isTapeOn(),s=this.state.numBytes,i=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let a;this.backendName==null&&this.backend;let u,l=_0(t)?t.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(_0(t)){let{kernelName:d,inputs:h,attrs:g}=t;this.backendName==null&&this.backend;let y=nh(d,this.backendName);A(y!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),a=()=>{let b=this.backend.numDataIds();u=y.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(u)?u:[u];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let v=w.map(N=>N.rank!=null?N:this.makeTensorFromTensorInfo(N));if(o){let N=this.getTensorsForGradient(d,h,v);n=this.saveTensorsForBackwardMode(N)}return v}}else{let{forwardFunc:d}=t,h=g=>{!o||(n=g.map(y=>this.keep(this.clone(y))))};a=()=>{let g=this.backend.numDataIds();u=this.tidy(()=>d(this.backend,h));let y=Array.isArray(u)?u:[u];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,g,y),y}}let{inputs:c,attrs:p}=t,m=_0(t)?null:t.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?e=a():(f=this.profiler.profileKernel(l,c,()=>a()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),e=f.outputs)}),o&&this.addTapeNode(l,c,e,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-i,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:e.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(u)?e:e[0]}saveTensorsForBackwardMode(t){return t.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(t,e,n){let o=d0(t);if(o!=null){let s=o.inputsToSave||[],i=o.outputsToSave||[],a;o.saveAllInputs?(A(Array.isArray(e),()=>"saveAllInputs is true, expected inputs to be an array."),a=Object.keys(e).map(l=>e[l])):a=s.map(l=>e[l]);let u=n.filter((l,c)=>i[c]);return a.concat(u)}return[]}makeTensor(t,e,n,o){if(t==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",o=o||this.backend;let s=t;n==="string"&&qo(t[0])&&(s=t.map(u=>Bl(u)));let i=o.write(s,e,n),a=new Pt(e,n,i,this.nextTensorId());if(this.trackTensor(a,o),n==="string"){let u=this.state.tensorInfo.get(i),l=c0(s);this.state.numBytes+=l-u.bytes,u.bytes=l}return a}makeTensorFromDataId(t,e,n,o){n=n||"float32";let s={dataId:t,shape:e,dtype:n};return this.makeTensorFromTensorInfo(s,o)}makeTensorFromTensorInfo(t,e){let{dataId:n,shape:o,dtype:s}=t,i=new Pt(o,s,n,this.nextTensorId());return this.trackTensor(i,e),i}makeVariable(t,e=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==t.dtype&&(t=t.cast(o));let s=new Ua(t,e,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(t,e){this.state.numTensors++,t.dtype==="string"&&this.state.numStringTensors++;let n=0;t.dtype!=="complex64"&&t.dtype!=="string"&&(n=t.size*jg(t.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(t.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(t.dataId,{backend:e||this.backend,dtype:t.dtype,shape:t.shape,bytes:n})),t instanceof Ua||this.track(t)}incRef(t,e){this.trackTensor(t,e),this.backend.incRef(t.dataId)}removeDataId(t,e){this.state.tensorInfo.has(t)&&this.state.tensorInfo.get(t).backend===e&&(this.state.tensorInfo.delete(t),this.state.numDataBuffers--)}disposeTensor(t){if(!this.state.tensorInfo.has(t.dataId))return;let e=this.state.tensorInfo.get(t.dataId);if(this.state.numTensors--,t.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=e.bytes),t.dtype!=="complex64"&&t.dtype!=="string"){let n=t.size*jg(t.dtype);this.state.numBytes-=n}e.backend.disposeData(t.dataId)&&this.removeDataId(t.dataId,e.backend)}disposeVariables(){for(let t in this.state.registeredVariables){let e=this.state.registeredVariables[t];this.disposeVariable(e)}}disposeVariable(t){this.disposeTensor(t),this.state.registeredVariables[t.name]!=null&&delete this.state.registeredVariables[t.name]}memory(){let t=this.backend.memory();return t.numTensors=this.state.numTensors,t.numDataBuffers=this.state.numDataBuffers,t.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(t.unreliable=!0,t.reasons==null&&(t.reasons=[]),t.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),t}async profile(t){this.state.profiling=!0;let e=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await t(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-e,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(t,e,n,o,s,i){let a={id:this.state.nextTapeNodeId++,kernelName:t,inputs:e,outputs:n,saved:s},u=d0(t);u!=null&&(o=u.gradFunc),o!=null&&(a.gradient=l=>(l=l.map((c,p)=>{if(c==null){let m=n[p],f=bp(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(l.length>1?l:l[0],s,i))),this.state.activeTape.push(a)}keep(t){return t.kept=!0,t}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(t){let e={track:[],name:"unnamed scope",id:this.state.nextScopeId++};t&&(e.name=t),this.state.scopeStack.push(e),this.state.activeScope=e}endScope(t){let e=lh(t),n=new Set(e.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let i=this.state.activeScope.track[s];!i.kept&&!n.has(i.id)&&i.dispose()}let o=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],e.forEach(s=>{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(t,e,n,o=!1){if(A(e.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",t));A(s instanceof Pt,()=>"The result y returned by f() must be a tensor.");let i=P1(this.state.activeTape,e,s);if(!o&&i.length===0&&e.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let a={};a[s.id]=n==null?S4(s.shape):n,M1(a,i,l=>this.tidy(l),N4);let u=e.map(l=>a[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:u}})}customGrad(t){return A(li(t),()=>"The f passed in customGrad(f) must be a function."),(...e)=>{A(e.every(a=>a instanceof Pt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,o={};e.forEach((a,u)=>{o[u]=a});let s=(a,u)=>(n=t(...e,u),A(n.value instanceof Pt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(li(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),i=(a,u)=>{let l=n.gradFunc(a,u),c=Array.isArray(l)?l:[l];A(c.length===e.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(c.every(m=>m instanceof Pt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:i,inputs:o})}}readSync(t){return this.state.tensorInfo.get(t).backend.readSync(t)}read(t){return this.state.tensorInfo.get(t).backend.read(t)}readToGPU(t,e){return this.state.tensorInfo.get(t).backend.readToGPU(t,e)}async time(t){let e=qu(),n=await this.backend.time(t);return n.wallMs=qu()-e,n}track(t){return this.state.activeScope!=null&&(t.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(t)),t}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new tx;for(let t in this.registry)this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Vl.nextTensorId=0;Vl.nextVariableId=0;function S4(r){let t=jd(Qt(r),"float32");return _.makeTensor(t,r,"float32")}function E0(){let r=f0();if(r._tfengine==null){let t=new Zd(r);r._tfengine=new Vl(t)}return x1(r._tfengine.ENV),G1(()=>r._tfengine),r._tfengine}var _=E0();function N4(r,t){let e={a:r,b:t};return _.runKernel(jn,e)}var Gl={};jt(Gl,{isBrowser:()=>$0,isMobile:()=>_4,mockIsMobile:()=>T4});function k4(){return typeof navigator!="undefined"&&navigator!=null}var A0;function T4(r){A0=r}function _4(r){if(A0!==void 0)return A0;if(r||k4()){if(r||(r=navigator),r.product==="ReactNative")return!0;let t=r.userAgent||r.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let e=r;return e.userAgentData&&e.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function $0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ho=B();ho.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ho.registerFlag("IS_BROWSER",()=>$0());ho.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ho.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ho.registerFlag("PROD",()=>!1);ho.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ho.getBool("DEBUG"));ho.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ho.registerFlag("IS_TEST",()=>!1);ho.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ho.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);ho.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Lr(r,t){let e=r;if(xr(r))return t==="string"?[]:[r.length];if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(e)||xr(e)&&t!=="string";)n.push(e.length),e=e[0];return Array.isArray(r)&&B().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&K1(r,n,[]),n}function K1(r,t,e){if(e=e||[],!Array.isArray(r)&&!xr(r)){A(t.length===0,()=>`Element arr[${e.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}A(t.length>0,()=>`Element arr[${e.join("][")}] should be a primitive, but is an array of ${r.length} elements`),A(r.length===t[0],()=>`Element arr[${e.join("][")}] should have ${t[0]} elements, but has ${r.length} elements`);let n=t.slice(1);for(let o=0;o<r.length;++o)K1(r[o],n,e.concat(o))}function q1(r,t,e,n){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==t||r==="numeric"&&t==="string")throw new Error(`Argument '${e}' passed to '${n}' must be ${r} tensor, but got ${t} tensor`)}}function I(r,t,e,n="numeric"){if(r instanceof Pt)return q1(n,r.dtype,t,e),r;let o=xp(r);if(o!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(o=n),q1(n,o,t,e),r==null||!xr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let u=r==null?"null":r.constructor.name;throw new Error(`Argument '${t}' passed to '${e}' must be a Tensor or TensorLike, but got '${u}'`)}let s=Lr(r,o);!xr(r)&&!Array.isArray(r)&&(r=[r]);let a=o!=="string"?Jp(r,o):Ho(r,[],!0);return _.makeTensor(a,s,o)}function Ha(r,t,e,n="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${t} passed to ${e} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,i)=>I(s,`${t}[${i}]`,e,n))}var D0="__op";function k(r){let t=Object.keys(r);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let e=t[0],n=r[e];e.endsWith("_")&&(e=e.substring(0,e.length-1)),e=e+D0;let o=(...s)=>{_.startScope(e);try{let i=n(...s);return Yd(i)&&console.error("Cannot return a Promise inside of tidy."),_.endScope(i),i}catch(i){throw _.endScope(null),i}};return Object.defineProperty(o,"name",{value:e,configurable:!0}),o}function E4(r,t){let e=I(r,"real","complex"),n=I(t,"imag","complex");Re(e.shape,n.shape,`real and imag shapes, ${e.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:e,imag:n};return _.runKernel(Sp,o)}var vn=k({complex_:E4});function sn(r,t,e,n){if(n==null&&(n=xp(r)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!xr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Xd(t);let o=Qt(t),s=Qt(e);A(o===s,()=>`Based on the provided shape, [${t}], the tensor should have ${o} values but has ${s}`);for(let i=0;i<e.length;++i){let a=e[i],u=i===e.length-1?a!==Qt(t.slice(i)):!0;A(e[i]===t[i]||!u,()=>`Error creating a new Tensor. Inferred shape (${e}) does not match the provided shape (${t}). `)}}return!xr(r)&&!Array.isArray(r)&&(r=[r]),t=t||e,r=n!=="string"?Jp(r,n):Ho(r,[],!0),_.makeTensor(r,t,n)}function Cr(r,t,e){let n=Lr(r,e);return sn(r,t,n,e)}var uh={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var ex=4;async function X1(r,t){let e=[],n=[],o=Array.isArray(r)?r.map(i=>i.name):Object.keys(r);for(let i=0;i<o.length;++i){let a=o[i],u=Array.isArray(r)?r[i].tensor:r[a];if(u.dtype!=="float32"&&u.dtype!=="int32"&&u.dtype!=="bool"&&u.dtype!=="string"&&u.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${a}': ${u.dtype}`);let l={name:a,shape:u.shape,dtype:u.dtype};if(u.dtype==="string"){let c=new Promise(async p=>{let m=await u.bytes(),f=m.reduce((g,y)=>g+y.length,0)+ex*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let y=m[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);d.set(b,h),h+=ex,d.set(y,h),h+=y.length}p(d)});n.push(c)}else n.push(u.data());t!=null&&(l.group=t),e.push(l)}let s=await Promise.all(n);return{data:A4(s),specs:e}}function rx(r,t){let e={},n,o=0;for(let s of t){let i=s.name,a=s.dtype,u=s.shape,l=Qt(u),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(a!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${a}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=uh[p.dtype],f=r.slice(o,o+l*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(a==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")n===void 0&&(n=R4()),c=n(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(a==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${a}`);o+=l*m}else if(a==="string"){let p=Qt(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(o,o+ex))[0];o+=ex;let d=new Uint8Array(r.slice(o,o+f));c.push(d),o+=f}}else{let p=uh[a],m=r.slice(o,o+l*p);if(a==="float32")c=new Float32Array(m);else if(a==="int32")c=new Int32Array(m);else if(a==="bool")c=new Uint8Array(m);else if(a==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let y=0;y<f.length;y++)f[y]=c[y*2],d[y]=c[y*2+1];let h=Cr(f,u,"float32"),g=Cr(d,u,"float32");e[i]=vn(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${a}`);o+=l*p}a!=="complex64"&&(e[i]=Cr(c,u,a))}return e}function A4(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let t=0,e=[];r.forEach(s=>{if(t+=s.byteLength,e.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),o=0;return e.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var F0=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function j1(r){return F0?Buffer.byteLength(r):new Blob([r]).size}function Y1(r){if(F0)return Buffer.from(r).toString("base64");let t=new Uint8Array(r),e="";for(let n=0,o=t.length;n<o;n++)e+=String.fromCharCode(t[n]);return btoa(e)}function Z1(r){if(F0){let n=Buffer.from(r,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(r),e=new Uint8Array(t.length);for(let n=0;n<t.length;++n)e.set([t.charCodeAt(n)],n);return e.buffer}function em(r){if(r.length===1)return r[0];let t=0;r.forEach(o=>{t+=o.byteLength});let e=new Uint8Array(t),n=0;return r.forEach(o=>{e.set(new Uint8Array(o),n),n+=o.byteLength}),e.buffer}function R0(r){let t="/";for(r=r.trim();r.endsWith(t);)r=r.slice(0,r.length-1);let e=r.split(t);return e[e.length-1]}function nx(r,t){let e={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy,weightsManifest:t};return r.signature!=null&&(e.signature=r.signature),r.userDefinedMetadata!=null&&(e.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(e.modelInitializer=r.modelInitializer),r.trainingConfig!=null&&(e.trainingConfig=r.trainingConfig),e}async function rm(r,t){let e={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy};if(r.trainingConfig!=null&&(e.trainingConfig=r.trainingConfig),r.weightsManifest!=null){let[n,o]=await t(r.weightsManifest);e.weightSpecs=n,e.weightData=o}return r.signature!=null&&(e.signature=r.signature),r.userDefinedMetadata!=null&&(e.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(e.modelInitializer=r.modelInitializer),e}function Ei(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:j1(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:j1(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function $4(){let r=e=>{let n=e<<13,o=0;for(;(n&8388608)===0;)o-=8388608,n<<=1;return n&=-8388609,o+=947912704,n|o},t=new Uint32Array(2048);t[0]=0;for(let e=1;e<1024;e++)t[e]=r(e);for(let e=1024;e<2048;e++)t[e]=939524096+(e-1024<<13);return t}function D4(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let t=1;t<31;t++)r[t]=t<<23;for(let t=33;t<63;t++)r[t]=2147483648+(t-32<<23);return r}function F4(){let r=new Uint32Array(64);for(let t=0;t<64;t++)r[t]=1024;return r[0]=r[32]=0,r}function R4(){let r=$4(),t=D4(),e=F4();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let i=0;i<n.length;i++){let a=n[i],u=r[e[a>>10]+(a&1023)]+t[a>>10];s[i]=u}return new Float32Array(o)}}var Ie=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ie.instance==null&&(Ie.instance=new Ie),Ie.instance}static registerSaveRouter(t){Ie.getInstance().saveRouters.push(t)}static registerLoadRouter(t){Ie.getInstance().loadRouters.push(t)}static getSaveHandlers(t){return Ie.getHandlers(t,"save")}static getLoadHandlers(t,e){return Ie.getHandlers(t,"load",e)}static getHandlers(t,e,n){let o=[];return(e==="load"?Ie.getInstance().loadRouters:Ie.getInstance().saveRouters).forEach(i=>{let a=i(t,n);a!==null&&o.push(a)}),o}},J1=r=>Ie.registerSaveRouter(r),Q1=r=>Ie.registerLoadRouter(r),t_=r=>Ie.getSaveHandlers(r),e_=(r,t)=>Ie.getLoadHandlers(r,t);var O0="tensorflowjs",L0=1,ju="models_store",Wl="model_info_store";function r_(){if(!B().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,t=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function P0(r){let t=r.result;t.createObjectStore(ju,{keyPath:"modelPath"}),t.createObjectStore(Wl,{keyPath:"modelPath"})}var Ai=class{constructor(t){if(this.indexedDB=r_(),t==null||!t)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=t}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,t)}async load(){return this.databaseAction(this.modelPath)}databaseAction(t,e){return new Promise((n,o)=>{let s=this.indexedDB.open(O0,L0);s.onupgradeneeded=()=>P0(s),s.onsuccess=()=>{let i=s.result;if(e==null){let a=i.transaction(ju,"readonly"),l=a.objectStore(ju).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return i.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(i.close(),o(l.error)),a.oncomplete=()=>i.close()}else{let a=Ei(e),u=i.transaction(Wl,"readwrite"),l=u.objectStore(Wl),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:a}),p;c.onsuccess=()=>{p=i.transaction(ju,"readwrite");let f=p.objectStore(ju).put({modelPath:this.modelPath,modelArtifacts:e,modelArtifactsInfo:a});f.onsuccess=()=>n({modelArtifactsInfo:a}),f.onerror=d=>{l=u.objectStore(Wl);let h=l.delete(this.modelPath);h.onsuccess=()=>(i.close(),o(f.error)),h.onerror=g=>(i.close(),o(f.error))}},c.onerror=m=>(i.close(),o(c.error)),u.oncomplete=()=>{p==null?i.close():p.oncomplete=()=>i.close()}}},s.onerror=i=>o(s.error)})}};Ai.URL_SCHEME="indexeddb://";var n_=r=>B().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Ai.URL_SCHEME)?O4(r.slice(Ai.URL_SCHEME.length)):null;Ie.registerSaveRouter(n_);Ie.registerLoadRouter(n_);function O4(r){return new Ai(r)}function L4(r){return r.startsWith(Ai.URL_SCHEME)?r.slice(Ai.URL_SCHEME.length):r}var ox=class{constructor(){this.indexedDB=r_()}async listModels(){return new Promise((t,e)=>{let n=this.indexedDB.open(O0,L0);n.onupgradeneeded=()=>P0(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(Wl,"readonly"),a=s.objectStore(Wl).getAll();a.onsuccess=()=>{let u={};for(let l of a.result)u[l.modelPath]=l.modelArtifactsInfo;t(u)},a.onerror=u=>(o.close(),e(a.error)),s.oncomplete=()=>o.close()},n.onerror=o=>e(n.error)})}async removeModel(t){return t=L4(t),new Promise((e,n)=>{let o=this.indexedDB.open(O0,L0);o.onupgradeneeded=()=>P0(o),o.onsuccess=()=>{let s=o.result,i=s.transaction(Wl,"readwrite"),a=i.objectStore(Wl),u=a.get(t),l;u.onsuccess=()=>{if(u.result==null)return s.close(),n(new Error(`Cannot find model with path '${t}' in IndexedDB.`));{let c=a.delete(t),p=()=>{l=s.transaction(ju,"readwrite");let f=l.objectStore(ju).delete(t);f.onsuccess=()=>e(u.result.modelArtifactsInfo),f.onerror=d=>n(u.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(u.error))}},u.onerror=c=>(s.close(),n(u.error)),i.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var qa="/",nm="tensorflowjs_models",o_="info",P4="model_topology",M4="weight_specs",z4="weight_data",B4="model_metadata";function s_(r){return{info:[nm,r,o_].join(qa),topology:[nm,r,P4].join(qa),weightSpecs:[nm,r,M4].join(qa),weightData:[nm,r,z4].join(qa),modelMetadata:[nm,r,B4].join(qa)}}function i_(r){for(let t of Object.values(r))window.localStorage.removeItem(t)}function V4(r){let t=r.split(qa);if(t.length<3)throw new Error(`Invalid key format: ${r}`);return t.slice(1,t.length-1).join(qa)}function G4(r){return r.startsWith($i.URL_SCHEME)?r.slice($i.URL_SCHEME.length):r}var $i=class{constructor(t){if(!B().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,t==null||!t)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=t,this.keys=s_(this.modelPath)}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let e=JSON.stringify(t.modelTopology),n=JSON.stringify(t.weightSpecs),o=Ei(t);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,e),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,Y1(t.weightData));let s={format:t.format,generatedBy:t.generatedBy,convertedBy:t.convertedBy,signature:t.signature!=null?t.signature:void 0,userDefinedMetadata:t.userDefinedMetadata!=null?t.userDefinedMetadata:void 0,modelInitializer:t.modelInitializer!=null?t.modelInitializer:void 0,trainingConfig:t.trainingConfig!=null?t.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:o}}catch(s){throw i_(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let t=JSON.parse(this.LS.getItem(this.keys.info));if(t==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(t.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let e={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);e.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);e.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let a=JSON.parse(s);e.format=a.format,e.generatedBy=a.generatedBy,e.convertedBy=a.convertedBy,a.signature!=null&&(e.signature=a.signature),a.userDefinedMetadata!=null&&(e.userDefinedMetadata=a.userDefinedMetadata),a.modelInitializer!=null&&(e.modelInitializer=a.modelInitializer),a.trainingConfig!=null&&(e.trainingConfig=a.trainingConfig)}let i=this.LS.getItem(this.keys.weightData);if(i==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return e.weightData=Z1(i),e}};$i.URL_SCHEME="localstorage://";var a_=r=>B().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith($i.URL_SCHEME)?W4(r.slice($i.URL_SCHEME.length)):null;Ie.registerSaveRouter(a_);Ie.registerLoadRouter(a_);function W4(r){return new $i(r)}var sx=class{constructor(){A(B().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let t={},e=nm+qa,n=qa+o_;for(let o=0;o<this.LS.length;++o){let s=this.LS.key(o);if(s.startsWith(e)&&s.endsWith(n)){let i=V4(s);t[i]=JSON.parse(this.LS.getItem(s))}}return t}async removeModel(t){t=G4(t);let e=s_(t);if(this.LS.getItem(e.info)==null)throw new Error(`Cannot find model at path '${t}'`);let n=JSON.parse(this.LS.getItem(e.info));return i_(e),n}};var om="://",_r=class{constructor(){this.managers={}}static getInstance(){return _r.instance==null&&(_r.instance=new _r),_r.instance}static registerManager(t,e){A(t!=null,()=>"scheme must not be undefined or null."),t.endsWith(om)&&(t=t.slice(0,t.indexOf(om))),A(t.length>0,()=>"scheme must not be an empty string.");let n=_r.getInstance();A(n.managers[t]==null,()=>`A model store manager is already registered for scheme '${t}'.`),n.managers[t]=e}static getManager(t){let e=_r.getInstance().managers[t];if(e==null)throw new Error(`Cannot find model manager for scheme '${t}'`);return e}static getSchemes(){return Object.keys(_r.getInstance().managers)}};function ix(r){if(r.indexOf(om)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${_r.getSchemes().join(",")}`);return{scheme:r.split(om)[0],path:r.split(om)[1]}}async function l_(r,t,e=!1){A(r!==t,()=>`Old path and new path are the same: '${r}'`);let n=Ie.getLoadHandlers(r);A(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),A(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=Ie.getSaveHandlers(t);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),A(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],a=ix(r).scheme,u=ix(r).path,l=a===ix(r).scheme,c=await o.load();e&&l&&await _r.getManager(a).removeModel(u);let p=await i.save(c);return e&&!l&&await _r.getManager(a).removeModel(u),p.modelArtifactsInfo}async function u_(){let r=_r.getSchemes(),t={};for(let e of r){let n=await _r.getManager(e).listModels();for(let o in n){let s=e+om+o;t[s]=n[o]}}return t}async function c_(r){let t=ix(r);return _r.getManager(t.scheme).removeModel(t.path)}async function p_(r,t){return l_(r,t,!1)}async function m_(r,t){return l_(r,t,!0)}var M0=class{fetch(t,e){return fetch(t,e)}now(){return performance.now()}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${e}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(t)}decode(t,e){return new TextDecoder(e).decode(t)}};if(B().get("IS_BROWSER")){B().setPlatform("browser",new M0);try{_r.registerManager($i.URL_SCHEME,new sx)}catch(r){}try{_r.registerManager(Ai.URL_SCHEME,new ox)}catch(r){}}var U4={importFetch:()=>f_()},z0;var B0=class{constructor(){this.util=d_(),this.textEncoder=new this.util.TextEncoder}fetch(t,e){return B().global.fetch!=null?B().global.fetch(t,e):(z0==null&&(z0=U4.importFetch()),z0(t,e))}now(){let t=process.hrtime();return t[0]*1e3+t[1]/1e6}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${e}`);return this.textEncoder.encode(t)}decode(t,e){return t.length===0?"":new this.util.TextDecoder(e).decode(t)}};B().get("IS_NODE")&&!B().get("IS_BROWSER")&&B().setPlatform("node",new B0);function Ct(r,t="float32",e){return t=t||"float32",Xd(r),new fe(r,t,e)}function H4(r,t){let e=I(r,"x","cast");if(!u0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&e.dtype!=="string"||t!=="string"&&e.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:e},o={dtype:t};return _.runKernel(io,n,o)}var tt=k({cast_:H4});function q4(r){let e={x:I(r,"x","clone","string_or_numeric")};return _.runKernel(lo,e)}var an=k({clone_:q4});function ax(r,t=!1){console.log(r.toString(t))}E0();var K4={buffer:Ct,cast:tt,clone:an,print:ax};W1(K4);var Cn={};jt(Cn,{browserFiles:()=>g_,browserHTTPRequest:()=>b_,concatenateArrayBuffers:()=>em,copyModel:()=>p_,decodeWeights:()=>rx,encodeWeights:()=>X1,fromMemory:()=>w_,fromMemorySync:()=>q0,getLoadHandlers:()=>e_,getModelArtifactsForJSON:()=>rm,getModelArtifactsInfoForJSON:()=>Ei,getSaveHandlers:()=>t_,http:()=>ux,isHTTPScheme:()=>lx,listModels:()=>u_,loadWeights:()=>x_,moveModel:()=>m_,registerLoadRouter:()=>Q1,registerSaveRouter:()=>J1,removeModel:()=>c_,weightsLoaderFactory:()=>U0,withSaveHandler:()=>v_,withSaveHandlerSync:()=>C_});var j4="model",X4=".json",Y4=".weights.bin";function h_(r){return new Promise(t=>setTimeout(t)).then(r)}var Ka=class{constructor(t){if(!B().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");t.startsWith(Ka.URL_SCHEME)&&(t=t.slice(Ka.URL_SCHEME.length)),(t==null||t.length===0)&&(t=j4),this.modelJsonFileName=t+X4,this.weightDataFileName=t+Y4}async save(t){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let e=window.URL.createObjectURL(new Blob([t.weightData],{type:"application/octet-stream"}));if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:t.weightSpecs}],o=nx(t,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(o)],{type:"application/json"})),i=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(i.download=this.modelJsonFileName,i.href=s,await h_(()=>i.dispatchEvent(new MouseEvent("click"))),t.weightData!=null){let a=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;a.download=this.weightDataFileName,a.href=e,await h_(()=>a.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ei(t)}}}};Ka.URL_SCHEME="downloads://";var V0=class{constructor(t){if(t==null||t.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${t}`);this.jsonFile=t[0],this.weightsFiles=t.slice(1)}async load(){return new Promise((t,e)=>{let n=new FileReader;n.onload=o=>{let s=JSON.parse(o.target.result),i=s.modelTopology;if(i==null){e(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){e(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){t({modelTopology:i});return}let u=rm(s,l=>this.loadWeights(l));t(u)},n.onerror=o=>e(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(t){let e=[],n=[];for(let i of t)e.push(...i.weights),n.push(...i.paths);let o=this.checkManifestAndWeightFiles(t),s=n.map(i=>this.loadWeightsFile(i,o[i]));return Promise.all(s).then(i=>[e,em(i)])}loadWeightsFile(t,e){return new Promise((n,o)=>{let s=new FileReader;s.onload=i=>{let a=i.target.result;n(a)},s.onerror=i=>o(`Failed to weights data from file of path '${t}'.`),s.readAsArrayBuffer(e)})}checkManifestAndWeightFiles(t){let e=[],n=this.weightsFiles.map(s=>R0(s.name)),o={};for(let s of t)s.paths.forEach(i=>{let a=R0(i);if(e.indexOf(a)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${a}'`);if(e.push(a),n.indexOf(a)===-1)throw new Error(`Weight file with basename '${a}' is not provided.`);o[i]=this.weightsFiles[n.indexOf(a)]});if(e.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${e.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return o}},Z4=r=>B().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Ka.URL_SCHEME)?J4(r.slice(Ka.URL_SCHEME.length)):null;Ie.registerSaveRouter(Z4);function J4(r="model"){return new Ka(r)}function g_(r){return new V0(r)}function G0(r,t,e,n){i(r),e=e==null?0:e,n=n==null?1:n,a(e,n);let o=0,s=u=>(u.then(l=>{let c=e+ ++o/r.length*(n-e);return t(c),l}),u);function i(u){A(u!=null&&Array.isArray(u)&&u.length>0,()=>"promises must be a none empty array")}function a(u,l){A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),A(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(r.map(s))}async function W0(r,t){t==null&&(t={});let e=t.fetchFunc==null?B().platform.fetch:t.fetchFunc,n=r.map(p=>e(p,t.requestInit,{isBinary:!0})),o=0,s=.5,a=(t.onProgress==null?await Promise.all(n):await G0(n,t.onProgress,o,s)).map(p=>p.arrayBuffer()),u=.5,l=1;return t.onProgress==null?await Promise.all(a):await G0(a,t.onProgress,u,l)}async function x_(r,t="",e,n){return U0(i=>W0(i,{requestInit:n}))(r,t,e)}function U0(r){return async(t,e="",n)=>{let o=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],a=[];if(t.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=uh[y]*Qt(g.shape),w=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};n!=null?n.forEach((v,N)=>{v===g.name&&(w(),i[N]=!0)}):w(),a.push(g.name),h+=b})}),!i.every(f=>f)){let f=n.filter((d,h)=>!i[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
Manifest JSON has weights with names: ${a.join(", ")}.`)}let u=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),l=[];u.forEach(f=>{t[f].paths.forEach(d=>{let h=e+(e.endsWith("/")?"":"/")+d;l.push(h)})});let c=await r(l),p={},m=0;return u.forEach(f=>{let d=t[f].paths.length,h=0;for(let v=0;v<d;v++)h+=c[m+v].byteLength;let g=new ArrayBuffer(h),y=new Uint8Array(g),b=0;for(let v=0;v<d;v++){let N=new Uint8Array(c[m+v]);y.set(N,b),b+=N.byteLength}s[f].forEach(v=>{let N=g.slice(v.groupOffset,v.groupOffset+v.sizeBytes),E=rx(N,[v.manifestEntry]);for(let $ in E)p[$]=E[$]}),m+=d}),p}}var Q4="application/octet-stream",tH="application/json",ch=class{constructor(t,e){if(this.DEFAULT_METHOD="POST",e==null&&(e={}),this.weightPathPrefix=e.weightPathPrefix,this.onProgress=e.onProgress,this.weightUrlConverter=e.weightUrlConverter,e.fetchFunc!=null?(A(typeof e.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=e.fetchFunc):this.fetch=B().platform.fetch,A(t!=null&&t.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(t)&&A(t.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${t.length}).`),this.path=t,e.requestInit!=null&&e.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=e.requestInit||{}}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let e=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);e.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:t.weightSpecs}],o=nx(t,n);e.body.append("model.json",new Blob([JSON.stringify(o)],{type:tH}),"model.json"),t.weightData!=null&&e.body.append("model.weights.bin",new Blob([t.weightData],{type:Q4}),"model.weights.bin");let s=await this.fetch(this.path,e);if(s.ok)return{modelArtifactsInfo:Ei(t),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let t=await this.fetch(this.path,this.requestInit);if(!t.ok)throw new Error(`Request to ${this.path} failed with status code ${t.status}. Please verify this URL points to the model JSON of the model to load.`);let e;try{e=await t.json()}catch(s){let i=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?i+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":i+=" Please make sure the server is serving valid JSON for this request.",new Error(i)}let n=e.modelTopology,o=e.weightsManifest;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return rm(e,s=>this.loadWeights(s))}async loadWeights(t){let e=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=eH(e),s=this.weightPathPrefix||n,i=[];for(let c of t)i.push(...c.weights);let a=[],u=[];for(let c of t)for(let p of c.paths)this.weightUrlConverter!=null?u.push(this.weightUrlConverter(p)):a.push(s+p+o);this.weightUrlConverter&&a.push(...await Promise.all(u));let l=await W0(a,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[i,em(l)]}};ch.URL_SCHEME_REGEX=/^https?:\/\//;function eH(r){let t=r.lastIndexOf("/"),e=r.lastIndexOf("?"),n=r.substring(0,t),o=e>t?r.substring(e):"";return[n+"/",o]}function lx(r){return r.match(ch.URL_SCHEME_REGEX)!=null}var y_=(r,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let e=!0;if(Array.isArray(r)?e=r.every(n=>lx(n)):e=lx(r),e)return ux(r,t)}return null};Ie.registerSaveRouter(y_);Ie.registerLoadRouter(y_);function ux(r,t){return new ch(r,t)}function b_(r,t){return ux(r,t)}var ph=class{constructor(t){this.modelArtifacts=t}load(){return this.modelArtifacts}},cx=class{constructor(t){this.saveHandler=t}save(t){return this.saveHandler(t)}},H0=class{constructor(t){t.load&&(this.load=()=>Promise.resolve(t.load())),t.save&&(this.save=e=>Promise.resolve(t.save(e)))}};function w_(r,t,e,n){let o=arguments;return new H0(q0(...o))}function q0(r,t,e,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new ph(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ph({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ph({modelTopology:r,weightSpecs:t,weightData:e,trainingConfig:n}))}function v_(r){return new cx(r)}function C_(r){return new cx(r)}var N_={};jt(N_,{confusionMatrix:()=>S_});function rH(r,t,e=!1,n=!1){let o=I(r,"a","matMul"),s=I(t,"b","matMul");[o,s]=Xt(o,s);let i={a:o,b:s},a={transposeA:e,transposeB:n};return _.runKernel(Yo,i,a)}var Gt=k({matMul_:rH});function nH(r,t,e=1,n=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:I(r,"indices","oneHot","int32")},i={depth:t,onValue:e,offValue:n};return _.runKernel(vs,s,i)}var Di=k({oneHot_:nH});function Yct(){B().set("PROD",!0)}function Zct(){B().set("DEBUG",!0)}function Jct(){B().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function K0(r){B().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}U1(K0);function Qct(){_.disposeVariables()}function go(){return _}function mh(){return _.memory()}function tpt(r){return _.profile(r)}function W(r,t){return _.tidy(r,t)}function _t(r){lh(r).forEach(e=>e.dispose())}function Oe(r){return _.keep(r)}function ept(r){return _.time(r)}function oH(r){return _.setBackend(r)}function rpt(){return _.ready()}function npt(){return _.backendName}function opt(r){_.removeBackend(r)}function spt(r){return _.findBackend(r)}function ipt(r){return _.findBackendFactory(r)}function sm(r,t,e=1){return _.registerBackend(r,t,e)}function I_(){return _.backend}function apt(r,t){B().setPlatform(r,t)}function sH(r){let e={input:I(r,"input","imag")};return _.runKernel(Lp,e)}var Ul=k({imag_:sH});function iH(r){let e={x:I(r,"x","neg")};return _.runKernel(hi,e)}var Yt=k({neg_:iH});function aH(r){let e={input:I(r,"input","real")};return _.runKernel(Wp,e)}var ja=k({real_:aH});function lH(r,t,e){let n=I(r,"x","transpose");if(t==null&&(t=n.shape.map((i,a)=>a).reverse()),A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(i=>{A(i>=0&&i<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let o={x:n},s={perm:t};return n.dtype==="complex64"?W(()=>{let i=ja(n),a=Ul(n);return i=_.runKernel(Yn,{x:i},s),a=_.runKernel(Yn,{x:a},s),e&&(a=Yt(a)),vn(i,a)}):_.runKernel(Yn,o,s)}var Mt=k({transpose_:lH});function uH(r,t,e){let n=I(r,"labels","confusionMatrix"),o=I(t,"predictions","confusionMatrix");A(e==null||e>0&&Number.isInteger(e),()=>`If provided, numClasses must be a positive integer, but got ${e}`),A(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),A(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),A(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),A(e>0&&Number.isInteger(e),()=>`numClasses is required to be a positive integer, but got ${e}`);let s=Di(tt(n,"int32"),e),i=Di(tt(o,"int32"),e),a=Mt(s),u=Gt(a,i);return tt(u,"int32")}var S_=k({confusionMatrix_:uH});var Pr={};jt(Pr,{assertAndGetBroadcastShape:()=>zt,getBroadcastDims:()=>k_,getReductionAxes:()=>ye});function k_(r,t){let e=r.length,n=[];for(let o=0;o<e;o++){let s=e-1-o,i=r[s]||1;(t[t.length-1-o]||1)>1&&i===1&&n.unshift(s)}return n}function ye(r,t){let e=[];for(let n=0;n<t.length;n++){let o=r[r.length-n-1],s=t.length-n-1,i=t[s];(o==null||o===1&&i>1)&&e.unshift(s)}return e}function zt(r,t){let e=[],n=Math.max(r.length,t.length);for(let o=0;o<n;o++){let s=r[r.length-o-1];s==null&&(s=1);let i=t[t.length-o-1];if(i==null&&(i=1),s===1)e.unshift(i);else if(i===1)e.unshift(s);else if(s!==i){let a=`Operands could not be broadcast together with shapes ${r} and ${t}.`;throw Error(a)}else e.unshift(s)}return e}var mx={};jt(mx,{fromPixels:()=>gH,fromPixelsAsync:()=>dH,toPixels:()=>hH});function px(r,t,e){if(Kn(r),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Lr(r,e);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return sn(r,t,n,e)}var Xu;function T_(r,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let e=!1,n=!1,o=!1,s=!1,i=!1,a=!1;if(r.data instanceof Uint8Array)e=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)a=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(o&&o&&r.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(nh(eh,_.backendName)!=null){let d={pixels:r},h={numChannels:t};return _.runKernel(eh,d,h)}let[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;if(i)p=r.getContext("2d").getImageData(0,0,l,c).data;else if(n||e)p=r.data;else if(s||o||a){if(Xu==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Xu=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Xu=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Xu.canvas.width=l,Xu.canvas.height=c,Xu.drawImage(r,0,0,l,c),p=Xu.getImageData(0,0,l,c).data}let m;if(t===4)m=new Int32Array(p);else{let d=l*c;m=new Int32Array(d*t);for(let h=0;h<d;h++)for(let g=0;g<t;++g)m[h*t+g]=p[h*4+g]}return px(m,[c,l,t],"int32")}function cH(r){return r!=null&&r.data instanceof Uint8Array}function pH(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function mH(r){return r!=null&&r.width!==0&&r.height!==0}function fH(r){return pH()&&!(r instanceof ImageBitmap)&&mH(r)&&!cH(r)}async function dH(r,t=3){let e=null;if(B().getBool("WRAP_TO_IMAGEBITMAP")&&fH(r)){let n;try{n=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(o){n=null}n!=null&&n.width===r.width&&n.height===r.height?e=n:e=r}else e=r;return T_(e,t)}async function hH(r,t){let e=I(r,"img","toPixels");if(!(r instanceof Pt)){let l=e;e=tt(l,"int32"),l.dispose()}if(e.rank!==2&&e.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${e.rank}.`);let[n,o]=e.shape.slice(0,2),s=e.rank===2?1:e.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(e.dtype!=="float32"&&e.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${e.dtype}. Please use float32 or int32 tensors.`);let i=await e.data(),a=e.dtype==="float32"?255:1,u=new Uint8ClampedArray(o*n*4);for(let l=0;l<n*o;++l){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=i[l*s+m];if(e.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(e.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*a,c[1]=f*a,c[2]=f*a):c[m]=f*a}let p=l*4;u[p+0]=Math.round(c[0]),u[p+1]=Math.round(c[1]),u[p+2]=Math.round(c[2]),u[p+3]=Math.round(c[3])}if(t!=null){t.width=o,t.height=n;let l=t.getContext("2d"),c=new ImageData(u,o,n);l.putImageData(c,0,0)}return e!==r&&e.dispose(),u}var gH=k({fromPixels_:T_});var fx={};jt(fx,{prepareAndValidate:()=>__});function __(r,t){let e=r.shape.length,n=t.shape.length;if(e<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${e}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>e)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${e}`);if(Qt(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=t.shape,s=o[o.length-1],i=1;for(let p=0;p<o.length-1;++p)i*=o[p];let a=r.shape,u=o.slice();u.pop();let l=1;for(let p=s;p<e;++p)l*=a[p],u.push(a[p]);let c=[...ui(r.shape).map(p=>p/l),1].slice(0,s);return[u,i,l,c]}var fh={};jt(fh,{calculateShapes:()=>E_,validateInput:()=>dx,validateUpdateShape:()=>j0});function j0(r,t,e){let n=t.rank>1?t.shape[t.rank-1]:1,o=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${e.shape}, indices.shape: ${t.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(e.rank<o)throw new Error(s+` update.rank < ${o}. `);if(r.length<n+(e.rank-o))throw new Error(s+` Output shape length < ${n+(e.rank-o)}`);if(e.rank!==o+r.length-n)throw new Error(s+` update.rank != ${o+r.length-n}`);for(let i=0;i<o;++i)if(e.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${e.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<e.rank-o;++i)if(e.shape[i+o]!==r[i+n])throw new Error(s+` updates.shape[${i+o}] (${e.shape[i+o]}) != shape[${i+o}] (${r[i+o]})`)}function dx(r,t,e){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(e.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${e}`);if(e.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}j0(e,t,r)}function E_(r,t,e){let n=t.shape.length,o=n>1?t.shape[n-1]:1,s=e.length,i=1;for(let p=o;p<s;++p)i*=e[p];let a=o<1?1:o,u=Qt(t.shape)/a,l=[...ui(e.slice(0,o)),1],c=Qt(e);return{sliceRank:o,numUpdates:u,sliceSize:i,strides:l,outputSize:c}}var Be={};jt(Be,{assertParamsValid:()=>yH,computeFlatOffset:()=>IH,computeOutShape:()=>wH,getNormalizedAxes:()=>vH,isSliceContinous:()=>CH,maskToAxes:()=>bH,parseSliceParams:()=>Y0,sliceInfo:()=>SH,startForAxis:()=>P_,startIndicesWithElidedDims:()=>R_,stopForAxis:()=>M_,stopIndicesWithElidedDims:()=>O_,stridesForAxis:()=>L_,stridesWithElidedDims:()=>$_});var X0=-2,xH=-1;function yH(r,t,e){let n=r.shape.length;A(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),A(n===e.length,()=>`Error in slice${n}D: Length of size ${e} must match the rank of the array (${n}).`);for(let o=0;o<n;++o)A(t[o]+e[o]<=r.shape[o],()=>`Error in slice${n}D: begin[${o}] + size[${o}] (${t[o]+e[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function bH(r){let t=[],e=0;for(;r>0;)r&1&&t.push(e),r/=2,e++;return t}function wH(r,t,e){let n=[];for(let o=0;o<r.length;o++)n[o]=Math.ceil((t[o]-r[o])/e[o]);return n}function $_(r,t,e,n){let o=[...r];for(let s=o.length;s<n.length;s++)o.push(1);for(let s=0;s<e;s++)s===0?o[t]=1:(o.splice(t,0,1),o.pop());return o}function D_(r,t,e){return e<=r?e:e-(t-1)}function F_(r,t){let e=[];for(let n=0;n<r;n++)e.push(t+n);return e}function vH(r,t,e,n,o,s,i,a,u){let l=r.length,c=new Array(l),p=new Array(l),m=new Array(l);if(t.length&&e>0){let f=t[0],d=e+1;c=R_(i,f,d,n,r),p=O_(a,f,d,o,r),m=$_(s,f,d,r)}else for(let f=0;f<l;f++)c[f]=P_(i,n,s,r,f,u),p[f]=M_(a,o,s,r,f,u),m[f]=L_(s,f,u);return{begin:c,end:p,strides:m}}function R_(r,t,e,n,o){let s=[...o],i=F_(e,t);for(let a=0;a<s.length;a++)if(i.indexOf(a)>-1)s[a]=0;else{let u=D_(t,e,a),l=n[u];r&1<<u&&(l=0),s[a]=l}return s}function O_(r,t,e,n,o){let s=[...o],i=F_(e,t);for(let a=0;a<s.length;a++)if(i.indexOf(a)>-1)s[a]=Number.MAX_SAFE_INTEGER;else{let u=D_(t,e,a),l=n[u];r&1<<u&&(l=Number.MAX_SAFE_INTEGER),s[a]=l}for(let a=0;a<s.length;a++){let u=o[a];s[a]<0&&(s[a]+=u),s[a]=gp(0,s[a],o[a])}return s}function L_(r,t,e){let n=r[t];return(e&1<<t||n==null)&&(n=1),n}function P_(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<<o||s&1<<o||i==null)&&(a>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),i=gp(0,i,u-1),i}function M_(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<<o||s&1<<o||i==null)&&(a>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),a>0?i=gp(0,i,u):i=gp(-1,i,u-1),i}function CH(r,t,e){let n=e.length;for(let o=0;o<e.length;o++)if(e[o]>1){n=o;break}for(let o=n+1;o<e.length;o++)if(t[o]>0||e[o]!==r[o])return!1;return!0}function IH(r,t){let e=r.length>0?r[r.length-1]:1;for(let n=0;n<r.length-1;n++)e+=r[n]*t[n];return e}function Y0(r,t,e){let n,o=r.shape.length;typeof t=="number"?n=[t,...new Array(o-1).fill(0)]:t.length<o?n=t.concat(new Array(o-t.length).fill(0)):n=t.slice(),n.forEach(i=>{A(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return e==null?s=new Array(o).fill(-1):typeof e=="number"?s=[e,...new Array(o-1).fill(-1)]:e.length<o?s=e.concat(new Array(o-e.length).fill(-1)):s=e,s=s.map((i,a)=>i>=0?i:(A(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${a}.`),r.shape[a]-n[a])),[n,s]}function SH(r,t,e,n,o,s,i,a,u){let l;if(n==null?(l=new Array(t.length),l.fill(1)):l=n,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:e.slice(),strides:l.slice(),beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};for(let w=0;w<p.dims;w++)c&&(1<<w&a)!==0&&p.numAddAxisAfterEllipsis++,1<<w&i&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let m={dims:r.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};NH(p,m);let f=!0,d=!0,h=!0,g=[],y=[];for(let w=0;w<r.length;++w){if(m.strides[w]===0)throw Error(`strides[${w}] must be non-zero`);let v=!!(m.shrinkAxisMask&1<<w),N=r[w];if(N===-1){g.push(v?1:-1);continue}let E=[m.beginMask&1<<w,m.endMask&1<<w],$=[m.strides[w]>0?0:-1,m.strides[w]>0?N:N-1];if(v&&m.strides[w]<=0)throw Error("only stride 1 allowed on non-range indexing.");h=h&&m.strides[w]===1;let D=!!(m.beginMask&1<<w&&m.endMask&1<<w);if(m.beginValid&&m.endValid){if(v){let H=m.begin[w]<0?N+m.begin[w]:m.begin[w];if(m.begin[w]=H,m.end[w]=m.begin[w]+1,H<0||H>=N)throw Error(`slice index ${m.begin[w]} of dimension ${w} out of bounds.`)}else m.begin[w]=A_(m.begin[w],0,m.strides[w],N,E,$),m.end[w]=A_(m.end[w],1,m.strides[w],N,E,$);let G=m.strides[w]===1&&m.begin[w]===0&&m.end[w]===N;f=f&&G,d=d&&(w===0&&m.strides[w]===1||G)}else f=f&&m.strides[w]===1&&D,d=d&&(w===0&&m.strides[w]===1||D);let L,M=!1;if(m.beginValid&&m.endValid?(L=m.end[w]-m.begin[w],M=!0):v?(L=1,M=!0):D&&N>=0&&(m.strides[w]<0?L=-N:L=N,M=!0),M){let G;L===0||L<0!=m.strides[w]<0?G=0:G=Math.trunc(L/m.strides[w])+(L%m.strides[w]!==0?1:0),g.push(G)}else g.push(-1)}for(let w=0;w<m.finalShapeGatherIndices.length;++w){let v=m.finalShapeGatherIndices[w];v>=0?y.push(g[v]):v===X0&&y.push(1)}return{finalShapeSparse:y.filter((w,v)=>m.finalShapeGatherIndices[v]!==X0),finalShape:y,isIdentity:f,sliceDim0:d,isSimpleSlice:h,begin:m.begin,end:m.end,strides:m.strides}}function NH(r,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let e=0;t.beginValid=r.begin!=null,t.endValid=r.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<r.dims;n++)if(1<<n&r.ellipsisMask){let o=Math.min(t.dims-(r.dims-n)+1+r.numAddAxisAfterEllipsis,t.dims);for(;e<o;e++)t.begin[e]=0,t.end[e]=0,t.strides[e]=1,t.beginMask|=1<<e,t.endMask|=1<<e,t.finalShapeGatherIndices.push(e),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[e]=n}else if(1<<n&r.newAxisMask)t.finalShapeGatherIndices.push(X0),t.finalShapeGatherIndicesSparse.push(-1);else{if(e===t.begin.length)throw Error(`Index out of range using input dim ${e}; input has only ${t.dims} dims, ${t.begin.length}.`);r.begin!=null&&(t.begin[e]=r.begin[n]),r.end!=null&&(t.end[e]=r.end[n]),t.strides[e]=r.strides[n],r.beginMask&1<<n&&(t.beginMask|=1<<e),r.endMask&1<<n&&(t.endMask|=1<<e),r.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(xH),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<e):(t.finalShapeGatherIndices.push(e),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[e]=n,e++}}function A_(r,t,e,n,o,s){if(o[t])return e>0?s[t]:s[t+1&1];{let i=r<0?n+r:r;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var et={};jt(et,{Serializable:()=>dh,SerializationMap:()=>Fi,registerClass:()=>In});var dh=class{getClassName(){return this.constructor.className}static fromConfig(t,e){return new t(e)}},Fi=class{constructor(){this.classNameMap={}}static getMap(){return Fi.instance==null&&(Fi.instance=new Fi),Fi.instance}static register(t){Fi.getMap().classNameMap[t.className]=[t,t.fromConfig]}};function In(r){A(r.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),A(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Fi.register(r)}var G_={};jt(G_,{TEST_EPSILON_FLOAT16:()=>z_,encodeStrings:()=>V_,expectArrayBuffersEqual:()=>$H,expectArraysClose:()=>TH,expectArraysEqual:()=>EH,expectNumbersClose:()=>B_,expectPromiseToFail:()=>_H,expectValuesInRange:()=>AH,testEpsilon:()=>hx});var kH=.001,z_=.1;function TH(r,t,e){return e==null&&(e=hx()),Z0(r,t,(n,o)=>J0(n,o,e))}function hx(){return _.backend.floatPrecision()===32?kH:z_}function Z0(r,t,e){let n=!0;if((xr(r)||xr(t))&&(n=!1),xr(r)&&xr(t)&&(n=!0),n){let i=r.constructor.name,a=t.constructor.name;if(i!==a)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${a}`)}if(Array.isArray(r)&&Array.isArray(t)){let i=Lr(r),a=Lr(t);if(!Fn(i,a))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${a}]`)}let o=xr(r)?r:Ho(r),s=xr(t)?t:Ho(t);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.
Actual: ${o}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let a=o[i],u=s[i];if(!e(a,u))throw new Error(`Arrays differ: actual[${i}] = ${a}, expected[${i}] = ${u}.
Actual: ${o}.
Expected: ${s}.`)}}function _H(r,t){r().then(()=>t.fail(),()=>t())}function EH(r,t){let e=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return qo(r)||qo(r[0])||qo(t)||qo(t[0])?Z0(r,e,(n,o)=>n==o):Z0(r,t,(n,o)=>J0(n,o,0))}function B_(r,t,e){if(e==null&&(e=hx()),!J0(r,t,e))throw new Error(`Numbers differ: actual === ${r}, expected === ${t}`)}function J0(r,t,e){return!isFinite(r)&&!isFinite(t)?!0:!(isNaN(r)||isNaN(t)||Math.abs(r-t)>e)}function AH(r,t,e){for(let n=0;n<r.length;n++)if(r[n]<t||r[n]>e)throw new Error(`Value out of range:${r[n]} low: ${t}, high: ${e}`)}function $H(r,t){let e=new Float32Array(r),n=new Float32Array(t);if(e.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${e.length}`);for(let o=0;o<n.length;o++)if(e[o]!==n[o])throw new Error(`Expected ArrayBuffer value at ${o} to be ${n[o]} but got ${e[o]} instead`)}function V_(r){for(let t=0;t<r.length;t++){let e=r[t];Array.isArray(e)?V_(e):r[t]=Bl(e)}return r}var W_="3.19.0";function DH(r,t){let e=I(r,"a","add"),n=I(t,"b","add");[e,n]=Xt(e,n);let o={a:e,b:n};return _.runKernel(jn,o)}var Z=k({add_:DH});function FH(r,t){let e=I(r,"a","floorDiv"),n=I(t,"b","floorDiv");[e,n]=Xt(e,n);let o={a:e,b:n};return _.runKernel(ls,o)}var im=k({floorDiv_:FH});function RH(r,t){let e=I(r,"a","div"),n=I(t,"b","div");if([e,n]=Xt(e,n),e.dtype==="int32"&&n.dtype==="int32")return im(e,n);let o={a:e,b:n},s={};return _.runKernel(os,o,s)}var ct=k({div_:RH});function OH(r,t){let e=I(r,"a","mul"),n=I(t,"b","mul");[e,n]=Xt(e,n);let o={a:e,b:n};return _.runKernel(ws,o)}var O=k({mul_:OH});function LH(r){let t=I(r,"x","abs");if(t.dtype==="complex64"){let e={x:t};return _.runKernel(Sl,e)}else{let e={x:t};return _.runKernel(ci,e)}}var Ae=k({abs_:LH});function PH(r){let e={x:I(r,"x","acos")};return _.runKernel(ea,e)}var gx=k({acos_:PH});function MH(r){let e={x:I(r,"x","acosh")};return _.runKernel(ra,e)}var xx=k({acosh_:MH});function zH(r){A(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),A(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let t=r.map((o,s)=>I(o,`tensors${s}`,"addN")),e=t[0];t.forEach(o=>{if(o.dtype!==e.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(o=>{if(!Fn(o.shape,e.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return _.runKernel(Ko,n)}var U_=k({addN_:zH});function BH(r,t=null,e=!1){let o={x:I(r,"x","all","bool")},s={axis:t,keepDims:e};return _.runKernel(na,o,s)}var am=k({all_:BH});function VH(r,t=null,e=!1){let o={x:I(r,"x","any","bool")},s={axis:t,keepDims:e};return _.runKernel(oa,o,s)}var Yu=k({any_:VH});function GH(r,t=0){let n={x:I(r,"x","argMax")},o={axis:t};return _.runKernel(jo,n,o)}var Ri=k({argMax_:GH});function WH(r,t=0){let n={x:I(r,"x","argMin")},o={axis:t};return _.runKernel(Cl,n,o)}var yx=k({argMin_:WH});function UH(r){let e={x:I(r,"x","asin")};return _.runKernel(sa,e)}var bx=k({asin_:UH});function HH(r){let e={x:I(r,"x","asinh")};return _.runKernel(ia,e)}var wx=k({asinh_:HH});function qH(r){let e={x:I(r,"x","atan")};return _.runKernel(aa,e)}var vx=k({atan_:qH});function KH(r,t){let e=I(r,"a","atan2"),n=I(t,"b","atan2");[e,n]=Xt(e,n);let o={a:e,b:n};return _.runKernel(ua,o)}var Cx=k({atan2_:KH});function jH(r){let e={x:I(r,"x","atanh")};return _.runKernel(la,e)}var Ix=k({atanh_:jH});function XH(r,t,e,n,o="NHWC",s){let i=r[3],a=[...t,i],u=q_(o);return Ju(r,a,e,s,n,null,null,u)}function tS(r,t,e,n,o,s,i="channelsLast"){let[a,u]=Sx(t),l;if(i==="channelsLast")l=[a,u,r[3],r[3]];else if(i==="channelsFirst")l=[a,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ju(r,l,e,n,o,s,!1,i)}function YH(r,t,e,n,o,s,i="NDHWC"){let[a,u,l]=Q0(t),c,p;if(i==="NDHWC")p="channelsLast",c=[a,u,l,r[4],r[4]];else if(i==="NCDHW")p="channelsFirst",c=[a,u,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return H_(r,c,e,n,o,!1,p,s)}function Ju(r,t,e,n,o,s,i=!1,a="channelsLast"){let[u,l,c,p]=[-1,-1,-1,-1];if(a==="channelsLast")[u,l,c,p]=r;else if(a==="channelsFirst")[u,p,l,c]=r;else throw new Error(`Unknown dataFormat ${a}`);let[m,f,,d]=t,[h,g]=Sx(e),[y,b]=Sx(n),w=lm(m,y),v=lm(f,b),{padInfo:N,outHeight:E,outWidth:$}=QH(o,l,c,h,g,w,v,s,a),D=i?d*p:d,L;return a==="channelsFirst"?L=[u,D,E,$]:a==="channelsLast"&&(L=[u,E,$,D]),{batchSize:u,dataFormat:a,inHeight:l,inWidth:c,inChannels:p,outHeight:E,outWidth:$,outChannels:D,padInfo:N,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:r,outShape:L,filterShape:t}}function H_(r,t,e,n,o,s=!1,i="channelsLast",a){let[u,l,c,p,m]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[u,l,c,p,m]=r;else if(i==="channelsFirst")[u,m,l,c,p]=r;else throw new Error(`Unknown dataFormat ${i}`);let[f,d,h,,g]=t,[y,b,w]=Q0(e),[v,N,E]=Q0(n),$=lm(f,v),D=lm(d,N),L=lm(h,E),{padInfo:M,outDepth:G,outHeight:H,outWidth:q}=tq(o,l,c,p,y,b,w,$,D,L,a),X=s?g*m:g,j;return i==="channelsFirst"?j=[u,X,G,H,q]:i==="channelsLast"&&(j=[u,G,H,q,X]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:c,inWidth:p,inChannels:m,outDepth:G,outHeight:H,outWidth:q,outChannels:X,padInfo:M,strideDepth:y,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:$,effectiveFilterHeight:D,effectiveFilterWidth:L,dilationDepth:v,dilationHeight:N,dilationWidth:E,inShape:r,outShape:j,filterShape:t}}function ZH(r,t,e,n,o){n==null&&(n=eS(r,t,e));let s=r[0],i=r[1],a=Zu((s-t+2*n)/e+1,o),u=Zu((i-t+2*n)/e+1,o);return[a,u]}function JH(r,t,e,n,o,s){o==null&&(o=eS(r,t,n));let i=r[0],a=r[1],u=r[2],l=Zu((i-t+2*o)/n+1,s),c=Zu((a-t+2*o)/n+1,s),p=Zu((u-t+2*o)/n+1,s);return[l,c,p,e]}function eS(r,t,e,n=1){let o=lm(t,n);return Math.floor((r[0]*(e-1)-e+o)/2)}function Sx(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function Q0(r){return typeof r=="number"?[r,r,r]:r}function lm(r,t){return t<=1?r:r+(r-1)*(t-1)}function QH(r,t,e,n,o,s,i,a,u){let l,c,p;if(typeof r=="number"){l={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=ZH([t,e],s,n,r,a);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(t/n),p=Math.ceil(e/o);let m=Math.max(0,(c-1)*n+s-t),f=Math.max(0,(p-1)*o+i-e),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),y=f-g;l={top:d,bottom:h,left:g,right:y,type:"SAME"}}else if(r==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/n),p=Math.ceil((e-i+1)/o);else if(typeof r=="object"){let m=u==="channelsLast"?r[1][0]:r[2][0],f=u==="channelsLast"?r[1][1]:r[2][1],d=u==="channelsLast"?r[2][0]:r[3][0],h=u==="channelsLast"?r[2][1]:r[3][1];l={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=Zu((t-s+m+f)/n+1,a),p=Zu((e-i+d+h)/o+1,a)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:l,outHeight:c,outWidth:p}}function tq(r,t,e,n,o,s,i,a,u,l,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=JH([t,e,n,1],a,1,o,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(t/o),f=Math.ceil(e/s),d=Math.ceil(n/i);let h=(m-1)*o+a-t,g=(f-1)*s+u-e,y=(d-1)*i+l-n,b=Math.floor(h/2),w=h-b,v=Math.floor(g/2),N=g-v,E=Math.floor(y/2),$=y-E;p={top:v,bottom:N,left:E,right:$,front:b,back:w,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((t-a+1)/o),f=Math.ceil((e-u+1)/s),d=Math.ceil((n-l+1)/i);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function Zu(r,t){if(!t)return Math.trunc(r);switch(t){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${t}`)}}function Zn(r){let[t,e,n]=Sx(r);return t===1&&e===1&&n===1}function Er(r,t){return Zn(r)||Zn(t)}function q_(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function Se(r,t,e){if(e!=null){if(typeof t=="string")throw Error(`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);if(typeof t=="number")A(ta(t),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(o=>{A(ta(o),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${o}.`)})});else throw Error(`Error in ${r}: Unknown padding parameter: ${t}`)}}function eq(r,t){let n={x:I(r,"x","reshape","string_or_numeric")},o={shape:t};return _.runKernel(yi,n,o)}var R=k({reshape_:eq});function rq(r,t,e,n,o){let s=I(r,"x","avgPool","float32"),i=1;A(Er(e,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`);let a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(a.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${a.rank}.`),Se("avgPool",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=_.runKernel(Xo,l,c);return p=tt(p,s.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Hl=k({avgPool_:rq});function nq(r,t,e,n,o,s="NDHWC"){let i=I(r,"x","avgPool3d","float32"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(a.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${a.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Se("avgPool3d",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=_.runKernel(Il,l,c);return p=tt(p,a.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Nx=k({avgPool3d_:nq});function oq(r,t=0){A(r.length>=1,()=>"Pass at least one tensor to concat");let e=Ha(r,"tensors","concat","string_or_numeric");if(e[0].dtype==="complex64"&&e.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),e.length===1)return an(e[0]);let n=e,o={axis:t};return _.runKernel(mi,n,o)}var se=k({concat_:oq});function sq(r){let e={x:I(r,"x","sigmoid","float32")};return _.runKernel(Rs,e)}var Kr=k({sigmoid_:sq});function iq(r,t,e){let n=I(r,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let o={x:n},s={begin:t,size:e};return _.runKernel(wi,o,s)}var Ot=k({slice_:iq});function aq(r){let e={x:I(r,"x","tanh","float32")};return _.runKernel(Vs,e)}var Oi=k({tanh_:aq});function lq(r,t,e,n,o,s){let i=I(r,"forgetBias","basicLSTMCell"),a=I(t,"lstmKernel","basicLSTMCell"),u=I(e,"lstmBias","basicLSTMCell"),l=I(n,"data","basicLSTMCell"),c=I(o,"c","basicLSTMCell"),p=I(s,"h","basicLSTMCell"),m=se([l,p],1),f=Gt(m,a),d=Z(f,u),h=d.shape[0],g=d.shape[1]/4,y=[h,g],b=Ot(d,[0,0],y),w=Ot(d,[0,g],y),v=Ot(d,[0,g*2],y),N=Ot(d,[0,g*3],y),E=Z(O(Kr(b),Oi(w)),O(c,Kr(Z(i,v)))),$=O(Oi(E),Kr(N));return[E,$]}var K_=k({basicLSTMCell_:lq});function uq(r,t,e){let n=I(r,"x","batchToSpaceND"),o=t.reduce((a,u)=>a*u);A(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),A(e.length===t.length,()=>`crops.length is ${e.length} but should be equal to blockShape.length ${t.length}`),A(n.shape[0]%o===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${o}`);let s={x:n},i={blockShape:t,crops:e};return _.runKernel(pi,s,i)}var ql=k({batchToSpaceND_:uq});function j_(r){let t;return r.rank===0||r.rank===1?t=R(r,[1,1,1,r.size]):r.rank===2?t=R(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?t=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]):t=r,t}function cq(r,t,e,n,o,s){s==null&&(s=.001);let i=I(r,"x","batchNorm"),a=I(t,"mean","batchNorm"),u=I(e,"variance","batchNorm"),l;o!=null&&(l=I(o,"scale","batchNorm"));let c;n!=null&&(c=I(n,"offset","batchNorm")),A(a.rank===u.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(c==null||a.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(l==null||a.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:j_(i),scale:l,offset:c,mean:a,variance:u},f={varianceEpsilon:s},d=_.runKernel(us,m,f);return R(d,i.shape)}var Li=k({batchNorm_:cq});function pq(r,t,e,n,o,s){let i=I(r,"x","batchNorm"),a=I(t,"mean","batchNorm"),u=I(e,"variance","batchNorm"),l;o!=null&&(l=I(o,"scale","batchNorm"));let c;return n!=null&&(c=I(n,"offset","batchNorm")),A(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),A(a.rank===2||a.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${a.rank}.`),A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Li(i,a,u,c,l,s)}var kx=k({batchNorm2d_:pq});function mq(r,t,e,n,o,s){let i=I(r,"x","batchNorm"),a=I(t,"mean","batchNorm"),u=I(e,"variance","batchNorm"),l;o!=null&&(l=I(o,"scale","batchNorm"));let c;return n!=null&&(c=I(n,"offset","batchNorm")),A(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),A(a.rank===3||a.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${a.rank}.`),A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Li(i,a,u,c,l,s)}var Tx=k({batchNorm3d_:mq});function fq(r,t,e,n,o,s){let i=I(r,"x","batchNorm"),a=I(t,"mean","batchNorm"),u=I(e,"variance","batchNorm"),l;o!=null&&(l=I(o,"scale","batchNorm"));let c;return n!=null&&(c=I(n,"offset","batchNorm")),A(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),A(a.rank===4||a.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${a.rank}.`),A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Li(i,a,u,c,l,s)}var _x=k({batchNorm4d_:fq});function dq(r,t,e){let n=I(r,"x","bincount"),o=I(t,"weights","bincount");A(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),A(e>=0,()=>`size must be non-negative, but got ${e}.`),A(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},i={size:e};return _.runKernel(Cp,s,i)}var Ex=k({bincount_:dq});function hq(r,t){let e=I(r,"s0","broadcastArgs","int32"),n=I(t,"s1","broadcastArgs","int32");if(e.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${e.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let o={s0:e,s1:n};return _.runKernel(Ip,o)}var X_=k({broadcastArgs_:hq});function gq(r,t){let e=I(r,"broadcastTo","x"),n=e.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<e.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${e.rank}.`);if(t.length>e.rank){let l=e.shape.slice();for(;l.length<t.length;)l.unshift(1);e=R(e,l)}let o=e.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(o[l]===t[l])s[l]=1;else if(e.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return an(e);let a={x:e},u={reps:s};return _.runKernel(Xn,a,u)}var Kl=k({broadcastTo_:gq});function xq(r){let e={x:I(r,"x","ceil","float32")};return _.runKernel(Zo,e)}var Ax=k({ceil_:xq});function yq(r,t,e){let n=I(r,"x","clipByValue");A(t<=e,()=>`Error in clip: min (${t}) must be less than or equal to max (${e}).`);let o={x:n},s={clipValueMin:t,clipValueMax:e};return _.runKernel(ao,o,s)}var Ir=k({clipByValue_:yq});function bq(r){return se(r,0)}var $x=k({concat1d_:bq});function wq(r,t){return se(r,t)}var Dx=k({concat2d_:wq});function vq(r,t){return se(r,t)}var Fx=k({concat3d_:vq});function Cq(r,t){return se(r,t)}var Rx=k({concat4d_:Cq});function Iq(r,t,e,n,o="NHWC",s=[1,1],i){let a=I(r,"x","conv2d","float32"),u=I(t,"filter","conv2d","float32"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),Se("conv2d",n,i);let p=o==="NHWC"?l.shape[3]:l.shape[1];A(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),A(Er(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=_.runKernel(Jo,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Sn=k({conv2d_:Iq});function Sq(r,t,e,n,o="NWC",s=1,i){let a=I(r,"x","conv1d"),u=I(t,"filter","conv1d"),l=a,c=!1;a.rank===2&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1]])),A(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),A(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),Se("conv1d",n,i),A(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),A(Er(e,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${e} and dilation '${s}'`),A(o==="NWC",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=R(u,[1,u.shape[0],u.shape[1],u.shape[2]]),m=R(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=Sn(m,p,[1,e],n,"NHWC",[1,s],i);return c?R(g,[g.shape[2],g.shape[3]]):R(g,[g.shape[0],g.shape[2],g.shape[3]])}var um=k({conv1d_:Sq});function Nq(r,t,e,n,o,s="NHWC",i){A(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let a=r,u=t,l=!1;t.rank===3&&(l=!0,u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]),a=[1,r[0],r[1],r[2]]),A(a.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${a.length}.`),A(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),A(e.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${e.rank}`);let c=s==="NHWC"?a[3]:a[1],p=s==="NHWC"?u.shape[3]:u.shape[1];A(c===e.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${e.shape[2]}.`),A(p===e.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${e.shape[3]}.`),Se("conv2dDerInput",o,i);let m={dy:u,filter:e},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,inputShape:a},d=_.runKernel(Qo,m,f);return l?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var cm=k({conv2DBackpropInput_:Nq});function kq(r,t,e,n,o,s){let i=I(r,"x","conv2dTranspose"),a=I(t,"filter","conv2dTranspose");return cm(e,i,a,n,o,"NHWC",s)}var pm=k({conv2dTranspose_:kq});function Tq(r,t,e,n,o="NDHWC",s=[1,1,1]){let i=I(r,"x","conv3d"),a=I(t,"filter","conv3d"),u=i,l=!1;i.rank===4&&(l=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),A(a.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${a.rank}.`),A(u.shape[4]===a.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${a.shape[3]}.`),A(Er(e,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),A(o==="NDHWC",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`);let c={x:u,filter:a},p={strides:e,pad:n,dataFormat:o,dilations:s},m=_.runKernel(Nl,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Ox=k({conv3d_:Tq});function _q(r,t,e,n,o){A(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let s=r,i=t,a=!1;t.rank===4&&(a=!0,i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let u=s[4],l=i.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),A(e.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${e.rank}`),A(u===e.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${e.shape[3]}.`),A(l===e.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${e.shape[4]}.`);let c={dy:i,filter:e},p={pad:o,strides:n,inputShape:s},m=_.runKernel(Tp,c,p);return a?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Lx=k({conv3DBackpropInput_:_q});function Eq(r,t,e,n,o){let s=I(r,"x","conv3dTranspose"),i=I(t,"filter","conv3dTranspose");return Lx(e,s,i,n,o)}var Px=k({conv3dTranspose_:Eq});function Aq(r){let e={x:I(r,"x","cos","float32")};return _.runKernel(ts,e)}var jl=k({cos_:Aq});function $q(r){let e={x:I(r,"x","cosh","float32")};return _.runKernel(es,e)}var mm=k({cosh_:$q});function Dq(r,t=0,e=!1,n=!1){let s={x:I(r,"x","cumprod")},i={axis:t,exclusive:e,reverse:n};return _.runKernel(ca,s,i)}var Qu=k({cumprod_:Dq});function Fq(r,t=0,e=!1,n=!1){let s={x:I(r,"x","cumsum")},i={axis:t,exclusive:e,reverse:n};return _.runKernel(rs,s,i)}var fm=k({cumsum_:Fq});function Rq(r,t,e,n=!1){let o=I(r,"x","denseBincount"),s=I(t,"weights","denseBincount");A(o.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),A(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),A(e>=0,()=>`size must be non-negative, but got ${e}.`),A(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let i={x:o,weights:s},a={size:e,binaryOutput:n};return _.runKernel(_p,i,a)}var Y_=k({denseBincount_:Rq});function Oq(r,t,e="NHWC"){let n=I(r,"x","depthToSpace","float32"),o=e==="NHWC"?n.shape[1]:n.shape[2],s=e==="NHWC"?n.shape[2]:n.shape[3],i=e==="NHWC"?n.shape[3]:n.shape[1];A(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),A(o*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${o} and ${t} for depthToSpace with input shape
${n.shape}`),A(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${n.shape}`),A(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let a={x:n},u={blockSize:t,dataFormat:e};return _.runKernel(ma,a,u)}var Mx=k({depthToSpace_:Oq});function Lq(r,t,e,n,o="NHWC",s=[1,1],i){let a=I(r,"x","depthwiseConv2d","float32"),u=I(t,"filter","depthwiseConv2d","float32"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`);let p=o==="NHWC"?l.shape[3]:l.shape[1];A(p===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${u.shape[2]}.`),Se("depthwiseConv2d",n,i);let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=_.runKernel(ns,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Pi=k({depthwiseConv2d_:Lq});function Pq(r){let e={x:I(r,"x","diag")};return _.runKernel($p,e)}var Z_=k({diag_:Pq});function Mq(r,t,e,n,o=[1,1],s="NHWC"){let i=I(r,"x","dilation2d"),a=I(t,"filter","dilation2d");A(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),A(a.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${a.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let u=i,l=!1;i.rank===3&&(u=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0);let c={x:u,filter:a},p={strides:e,pad:n,dilations:o},m=_.runKernel(kl,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var zx=k({dilation2d_:Mq});function zq(r,t){let e=I(r,"a","equal","string_or_numeric"),n=I(t,"b","equal","string_or_numeric");[e,n]=Xt(e,n),zt(e.shape,n.shape);let o={a:e,b:n};return _.runKernel(da,o)}var Ar=k({equal_:zq});function Bq(r,t,e){let n=I(t,"a","where"),o=I(e,"b","where"),s=I(r,"condition","where","bool"),i=zt(zt(s.shape,n.shape),o.shape),a=Kl(s,i),u=Kl(n,i),l=Kl(o,i),c={condition:a,t:u,e:l};return _.runKernel(bi,c)}var $e=k({where_:Bq});function Vq(r){let e={x:I(r,"x","zerosLike")};return _.runKernel(Si,e)}var St=k({zerosLike_:Vq});function Gq(r,t){let e=I(r,"a","div"),n=I(t,"b","div");[e,n]=Xt(e,n);let o=ct(e,n),s=St(o),i=Ar(n,s);return $e(i,s,o)}var Bx=k({divNoNan_:Gq});function Wq(r,t){let e=I(r,"t1","dot"),n=I(t,"t2","dot");A((e.rank===1||e.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${e.rank} and ${n.rank}.`);let o=e.rank===1?e.size:e.shape[1],s=n.rank===1?n.size:n.shape[0];if(A(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),e.rank===1&&n.rank===1){let i=R(e,[1,-1]),a=R(n,[-1,1]),u=Gt(i,a);return R(u,[])}else if(e.rank===1&&n.rank===2){let i=R(e,[1,-1]),a=R(n,[n.shape[0],n.shape[1]]),u=Gt(i,a);return R(u,[u.size])}else if(e.rank===2&&n.rank===1){let i=R(n,[-1,1]),a=Gt(e,i);return R(a,[a.size])}else{let i=R(n,[n.shape[0],n.shape[1]]);return Gt(e,i)}}var Vx=k({dot_:Wq});function Uq(r,...t){let e=t.map((o,s)=>I(o,`tensors${s}`,"einsum")),n={equation:r};return _.runKernel(Dp,e,n)}var J_=k({einsum_:Uq});function Hq(r){let e={x:I(r,"x","elu","float32")};return _.runKernel(ss,e)}var Mi=k({elu_:Hq});function qq(r){let t=I(r,"x","erf");A(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=tt(t,"float32"));let e={x:t};return _.runKernel(fa,e)}var Gx=k({erf_:qq});function rS(r,t){for(let e=0;e<r.length;++e)if(r[r.length-e-1]!==t-1-e)return!1;return!0}function Q_(r,t,e){let n=r.length+t.length,o=[],s=0,i=0;for(let a=0;a<n;a++)e.indexOf(a)===-1?o.push(r[s++]):o.push(t[i++]);return o}function nS(r,t){let e=[],n=r.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&e.push(r[s]);let o=t.map(s=>r[s]);return[e,o]}function xo(r,t){let e=t.map(n=>1);return Q_(r,e,t)}function Kq(r,t,e){A(rS(t,e),()=>`${r} supports only inner-most axes for now. Got axes ${t} and rank-${e} input.`)}function oS(r,t){if(rS(r,t))return null;let e=[];for(let n=0;n<t;++n)r.indexOf(n)===-1&&e.push(n);return r.forEach(n=>e.push(n)),e}function hh(r){return r.map((t,e)=>[e,t]).sort((t,e)=>t[1]-e[1]).map(t=>t[0])}function jq(r,t){let e=[];for(let n=t-r;n<t;++n)e.push(n);return e}function Xq(r,t=null,e=!1){let o={x:I(r,"x","max")},s={reductionIndices:t,keepDims:e};return _.runKernel(fs,o,s)}var Mr=k({max_:Xq});function Yq(r,t=null,e=!1){let o={x:I(r,"x","min")},s={axis:t,keepDims:e};return _.runKernel(xs,o,s)}var tc=k({min_:Yq});function Zq(r,t){let e=I(r,"base","pow"),n=I(t,"exp","pow");[e,n]=Xt(e,n);let o={a:e,b:n};return _.runKernel(Is,o)}var ln=k({pow_:Zq});function pt(r,t){if((xr(r)&&t!=="string"||Array.isArray(r))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&xr(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return sn(r,[],[],t)}function Jq(r){let e={x:I(r,"x","sqrt","float32")};return _.runKernel(Os,e)}var Ne=k({sqrt_:Jq});function Qq(r){let t=I(r,"x","square"),e={};return _.runKernel("Square",{x:t},e)}var Ht=k({square_:Qq});function tK(r,t=null,e=!1){let n=I(r,"x","sum");n.dtype==="bool"&&(n=tt(n,"int32"));let o={x:n},s={axis:t,keepDims:e};return _.runKernel(Ls,o,s)}var mt=k({sum_:tK});function eK(r,t="euclidean",e=null,n=!1){r=I(r,"x","norm");let o=tE(r,t,e),s=o.shape;if(n){let i=ur(e,r.shape);s=xo(o.shape,i)}return R(o,s)}function tE(r,t,e=null){if(r.rank===0)return Ae(r);if(r.rank!==1&&e===null)return tE(R(r,[-1]),t,e);if(r.rank===1||typeof e=="number"||Array.isArray(e)&&e.length===1){if(t===1)return mt(Ae(r),e);if(t===1/0)return Mr(Ae(r),e);if(t===-1/0)return tc(Ae(r),e);if(t==="euclidean"||t===2)return Ne(mt(ln(Ae(r),pt(2,"int32")),e));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(e)&&e.length===2){if(t===1)return Mr(mt(Ae(r),e[0]),e[1]-1);if(t===1/0)return Mr(mt(Ae(r),e[1]),e[0]);if(t===-1/0)return tc(mt(Ae(r),e[1]),e[0]);if(t==="fro"||t==="euclidean")return Ne(mt(Ht(r),e));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${e}`)}var Xa=k({norm_:eK});function rK(r,t=null,e=!1){return Xa(r,"euclidean",t,e)}var Wx=k({euclideanNorm_:rK});function nK(r){let e={x:I(r,"x","exp")};return _.runKernel(is,e)}var or=k({exp_:nK});function oK(r,t=0){let e=I(r,"x","expandDims","string_or_numeric");A(t<=e.rank,()=>"Axis must be <= rank of the tensor");let n={input:e},o={dim:t};return _.runKernel(fi,n,o)}var yr=k({expandDims_:oK});function sK(r){let e={x:I(r,"x","expm1")};return _.runKernel(ha,e)}var Ux=k({expm1_:sK});function iK(r,t){let e=I(r,"x","tile","string_or_numeric");A(e.rank===t.length,()=>`Error in transpose: rank of input ${e.rank} must match length of reps ${t}.`);let n={x:e},o={reps:t};return _.runKernel(Xn,n,o)}var $r=k({tile_:iK});function aK(r,t,e,n="float32"){t==null&&(t=r);let o=Ct([r,t],n),s=r<=t?r:t;for(let a=0;a<s;++a)o.set(1,a,a);let i=R(o.toTensor(),[r,t]);if(e==null)return i;if(e.length===1)return $r(yr(i,0),[e[0],1,1]);if(e.length===2)return $r(yr(yr(i,0),0),[e[0],e[1],1,1]);if(e.length===3)return $r(yr(yr(yr(i,0),0),0),[e[0],e[1],e[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${e.length}D.`)}var ec=k({eye_:aK});function zi(r,t,e){let n={shape:r,value:t,dtype:e};return _.runKernel(Tl,{},n)}function lK(r){let e={x:I(r,"x","floor","float32")};return _.runKernel(as,e)}var Bi=k({floor_:lK});function uK(r,t,e=0,n=0){let o=I(r,"x","gather"),s=I(t,"indices","gather","int32"),i={x:o,indices:s},a={axis:e,batchDims:n};return _.runKernel(di,i,a)}var Vi=k({gather_:uK});function cK(r,t){let e=I(r,"a","greater","string_or_numeric"),n=I(t,"b","greater","string_or_numeric");[e,n]=Xt(e,n),zt(e.shape,n.shape);let o={a:e,b:n};return _.runKernel(ya,o)}var Xe=k({greater_:cK});function pK(r,t){let e=I(r,"a","greaterEqual","string_or_numeric"),n=I(t,"b","greaterEqual","string_or_numeric");[e,n]=Xt(e,n),zt(e.shape,n.shape);let o={a:e,b:n};return _.runKernel(cs,o)}var Ln=k({greaterEqual_:pK});function mK(r){let e={x:I(r,"x","isFinite")};return _.runKernel(ba,e)}var Hx=k({isFinite_:mK});function fK(r){let e={x:I(r,"x","isInf")};return _.runKernel(wa,e)}var qx=k({isInf_:fK});function dK(r){let e={x:I(r,"x","isNaN")};return _.runKernel(va,e)}var Kx=k({isNaN_:dK});function hK(r,t=.2){let n={x:I(r,"x","leakyRelu")},o={alpha:t};return _.runKernel(ps,n,o)}var Xl=k({leakyRelu_:hK});function gK(r,t){let e=I(r,"a","less","string_or_numeric"),n=I(t,"b","less","string_or_numeric");[e,n]=Xt(e,n),zt(e.shape,n.shape);let o={a:e,b:n};return _.runKernel(Ca,o)}var dm=k({less_:gK});function xK(r,t){let e=I(r,"a","lessEqual","string_or_numeric"),n=I(t,"b","lessEqual","string_or_numeric");[e,n]=Xt(e,n),zt(e.shape,n.shape);let o={a:e,b:n};return _.runKernel(Ia,o)}var Pn=k({lessEqual_:xK});function eE(r,t,e){if(e<=0)throw new Error("The number of values should be positive.");let n={start:r,stop:t,num:e};return _.runKernel(Pp,{},n)}function yK(r,t=5,e=1,n=1,o=.5){let s=I(r,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),A(ta(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,a=!1;s.rank===3&&(a=!0,i=R(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let u={x:i},l={depthRadius:t,bias:e,alpha:n,beta:o},c=_.runKernel(_l,u,l);return a?R(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var jx=k({localResponseNormalization_:yK});function bK(r){let e={x:I(r,"x","log","float32")};return _.runKernel(ms,e)}var Sr=k({log_:bK});function wK(r){let e={x:I(r,"x","log1p")};return _.runKernel(Sa,e)}var Yl=k({log1p_:wK});function vK(r){return A(li(r),()=>"The f passed in grad(f) must be a function"),(t,e)=>{let n=I(t,"x","tf.grad","string_or_numeric"),o=e!=null?I(e,"dy","tf.grad"):null;return _.tidy(()=>{let{value:s,grads:i}=_.gradients(()=>r(n),[n],o);return o!=null&&Re(s.shape,o.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Yx(i),i[0]})}}function CK(r){return A(li(r),()=>"The f passed in grads(f) must be a function"),(t,e)=>{A(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=Ha(t,"args","tf.grads","string_or_numeric"),o=e!=null?I(e,"dy","tf.grads"):null;return _.tidy(()=>{let{value:s,grads:i}=_.gradients(()=>r(...n),n,o);return o!=null&&Re(s.shape,o.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Yx(i),i})}}function IK(r){return A(li(r),()=>"The f passed in valueAndGrad(f) must be a function"),(t,e)=>{A(t instanceof Pt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(e==null||e instanceof Pt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:o}=_.gradients(()=>r(t),[t],e);return Yx(n),{grad:n[0],value:o}}}function SK(r){return A(li(r),()=>"The f passed in valueAndGrads(f) must be a function"),(t,e)=>{A(Array.isArray(t)&&t.every(o=>o instanceof Pt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(e==null||e instanceof Pt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=_.gradients(()=>r(...t),t,e);return e!=null&&Re(n.value.shape,e.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Yx(n.grads),n}}function Xx(r,t){A(li(r),()=>"The f passed in variableGrads(f) must be a function"),A(t==null||Array.isArray(t)&&t.every(l=>l instanceof Ua),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let e=t!=null;if(!e){t=[];for(let l in _.registeredVariables)t.push(_.registeredVariables[l])}let n=e?t.filter(l=>!l.trainable):null,o=t.length;t=t.filter(l=>l.trainable),A(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:i,grads:a}=_.gradients(r,t,null,s);A(a.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,c)=>{a[c]!=null&&(u[l.name]=a[c])}),n!=null&&n.forEach(l=>u[l.name]=null),{value:i,grads:u}}function un(r){return _.customGrad(r)}function Yx(r){if(r.filter(e=>e==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function NK(r){let e={x:I(r,"x","softplus")};return _.runKernel(Ma,e)}var Us=k({softplus_:NK});function kK(r){let t=I(r,"x","logSigmoid");return un(n=>({value:Yt(Us(Yt(n))),gradFunc:i=>O(i,Kr(Yt(n)))}))(t)}var Zx=k({logSigmoid_:kK});function TK(r,t){let e=I(r,"a","sub"),n=I(t,"b","sub");[e,n]=Xt(e,n);let o={a:e,b:n};return _.runKernel(zs,o)}var ut=k({sub_:TK});function _K(r,t=-1){let e=I(r,"logits","logSoftmax");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and axis was ${t}`);return un((o,s)=>{let a=Mr(o,t,!0),u=ut(o,a),l=ut(tt(u,"float32"),Sr(mt(or(u),t,!0)));return s([l]),{value:l,gradFunc:(p,m)=>{let[f]=m,d=!0,h=or(f);return ut(p,O(mt(p,t,d),h))}}})(e)}var hm=k({logSoftmax_:_K});function EK(r,t=null,e=!1){let n=I(r,"x","logSumExp"),o=ur(t,n.shape),s=Mr(n,o,!0),i=ut(n,s),a=or(i),u=mt(a,o),l=Sr(u),c=Z(R(s,l.shape),l);if(e){let p=xo(c.shape,o);return R(c,p)}return c}var gm=k({logSumExp_:EK});function AK(r,t){let e=I(r,"a","logicalAnd","bool"),n=I(t,"b","logicalAnd","bool");zt(e.shape,n.shape);let o={a:e,b:n};return _.runKernel(Na,o)}var Dr=k({logicalAnd_:AK});function $K(r){let e={x:I(r,"x","logicalNot","bool")};return _.runKernel(ka,e)}var Zl=k({logicalNot_:$K});function DK(r,t){let e=I(r,"a","logicalOr","bool"),n=I(t,"b","logicalOr","bool");zt(e.shape,n.shape);let o={a:e,b:n};return _.runKernel(Ta,o)}var xm=k({logicalOr_:DK});function FK(r,t){let e=I(r,"a","logicalXor","bool"),n=I(t,"b","logicalXor","bool");return zt(e.shape,n.shape),Dr(xm(r,t),Zl(Dr(r,t)))}var Jx=k({logicalXor_:FK});var Qx=2147483648;function RK(r,t,e="left"){let n=I(r,"sortedSequence","searchSorted"),o=I(t,"values","searchSorted"),s=n.shape[n.shape.length-1],i=o.shape[o.shape.length-1],a=R(n,[-1,s]),u=R(o,[-1,i]);if(a.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(a.shape[0]!==u.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Qt(u.shape)>=Qx)throw new Error(`values tensor size must less than ${Qx}`);if(a.shape[1]>=Qx)throw new Error(`trailing dim_size must less than ${Qx} for int32 output type, was ${a.shape[1]}`);let l={sortedSequence:a,values:u},c={side:e};return _.runKernel(qp,l,c)}var gh=k({searchSorted_:RK});function rE(r,t){return gh(r,t,"left")}function OK(r,t,e,n,o){let s=I(r,"x","maxPool"),i=1,a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(a.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.rank}.`),A(Er(e,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`),Se("maxPool",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=_.runKernel(hs,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Jl=k({maxPool_:OK});function LK(r,t=[1,1,1],e,n,o,s="NDHWC"){let i=I(r,"x","maxPool3d"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(a.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${a.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Se("maxPool3d",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=_.runKernel(El,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var ty=k({maxPool3d_:LK});function PK(r,t,e,n,o=!1){let i={x:I(r,"x","maxPoolWithArgmax")},a={filterSize:t,strides:e,pad:n,includeBatchInIndex:o},u=_.runKernel(Vp,i,a);return{result:u[0],indexes:u[1]}}var nE=k({maxPoolWithArgmax_:PK});function MK(r,t){let e=I(r,"a","maximum"),n=I(t,"b","maximum");[e,n]=Xt(e,n),e.dtype==="bool"&&(e=tt(e,"int32"),n=tt(n,"int32")),zt(e.shape,n.shape);let o={a:e,b:n};return _.runKernel(ds,o)}var Nn=k({maximum_:MK});function zK(r,t=null,e=!1){let o={x:I(r,"x","mean")},s={axis:t,keepDims:e};return _.runKernel(gs,o,s)}var ke=k({mean_:zK});function Te(r,t="float32"){if(t==="complex64"){let n=Te(r,"float32"),o=Te(r,"float32");return vn(n,o)}let e=bp(Qt(r),t);return _.makeTensor(e,r,t)}function cr(r,t="float32"){if(t==="complex64"){let n=cr(r,"float32"),o=Te(r,"float32");return vn(n,o)}let e=jd(Qt(r),t);return _.makeTensor(e,r,t)}function oE(r,t,{indexing:e="xy"}={}){if(e!=="xy"&&e!=="ij")throw new TypeError(`${e} is not a valid third argument to meshgrid`);if(r===void 0)return[];let n=I(r,"x","meshgrid",r instanceof Pt?r.dtype:"float32");if(t===void 0)return[n];let o=I(t,"y","meshgrid",t instanceof Pt?t.dtype:"float32"),s=Qt(n.shape),i=Qt(o.shape);return e==="xy"?(n=R(n,[1,-1]),o=R(o,[-1,1]),[Gt(cr([i,1],n.dtype),n),Gt(o,cr([1,s],o.dtype))]):(n=R(n,[-1,1]),o=R(o,[1,-1]),[Gt(n,cr([1,i],n.dtype)),Gt(cr([s,1],o.dtype),o)])}function BK(r,t){let e=I(r,"a","minimum"),n=I(t,"b","minimum");[e,n]=Xt(e,n),e.dtype==="bool"&&(e=tt(e,"int32"),n=tt(n,"int32")),zt(e.shape,n.shape);let o={a:e,b:n};return _.runKernel(ys,o)}var Gi=k({minimum_:BK});function VK(r,t,e){A(e==="reflect"||e==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${e}.`);let n=I(r,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let o=e==="reflect"?1:0;for(let a=0;a<n.rank;a++)A(t[a].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(t[a][0]>=0&&t[a][0]<=n.shape[a]-o&&t[a][1]>=0&&t[a][1]<=n.shape[a]-o,()=>`Padding in dimension ${a} cannot be greater than or equal to ${n.shape[a]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:e},i={x:n};return _.runKernel(bs,i,s)}var ey=k({mirrorPad_:VK});function GK(r,t){let e=I(r,"a","mod"),n=I(t,"b","mod");[e,n]=Xt(e,n);let o={a:e,b:n};return _.runKernel(_a,o)}var ry=k({mod_:GK});function WK(r,t=null,e=!1){r=I(r,"x","moments");let n=ur(t,r.shape),o=ke(r,n,e),s=o.shape;e||(s=xo(o.shape,n));let i=Ht(ut(tt(r,"float32"),R(o,s))),a=ke(i,n,e);return{mean:o,variance:a}}var rc=k({moments_:WK});function UK(r,t,e,n){let o=I(t,"data","multiRNNCell"),s=Ha(e,"c","multiRNNCell"),i=Ha(n,"h","multiRNNCell"),a=o,u=[];for(let p=0;p<r.length;p++){let m=r[p](a,s[p],i[p]);u.push(m[0]),u.push(m[1]),a=m[1]}let l=[],c=[];for(let p=0;p<u.length;p+=2)l.push(u[p]),c.push(u[p+1]);return[l,c]}var sE=k({multiRNNCell_:UK});function HK(r,t,e,n=!1){let o=I(r,"logits","multinomial"),s=o.size,i=o.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);e=e||Math.random();let u={logits:i===1?R(o,[1,-1]):o},l={numSamples:t,seed:e,normalized:n},c=_.runKernel(Gp,u,l);return i===1?R(c,[c.size]):c}var iE=k({multinomial_:HK});function qK(r,t){let e=I(r,"a","notEqual","string_or_numeric"),n=I(t,"b","notEqual","string_or_numeric");[e,n]=Xt(e,n),zt(e.shape,n.shape);let o={a:e,b:n};return _.runKernel(Ea,o)}var Hs=k({notEqual_:qK});function KK(r){let e={x:I(r,"x","onesLike")};return _.runKernel(gi,e)}var br=k({onesLike_:KK});function jK(r,t){let e=I(r,"v1","outerProduct"),n=I(t,"v2","outerProduct");A(e.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${e.rank} and ${n.rank}.`);let o=R(e,[-1,1]),s=R(n,[1,-1]);return Gt(o,s)}var aE=k({outerProduct_:jK});function XK(r,t,e=0){let n=I(r,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let o={paddings:t,constantValue:e},s={x:n};return _.runKernel(Cs,s,o)}var cn=k({pad_:XK});function YK(r,t,e=0){return A(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),cn(r,[t],e)}var lE=k({pad1d_:YK});function ZK(r,t,e=0){return A(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cn(r,t,e)}var uE=k({pad2d_:ZK});function JK(r,t,e=0){return A(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cn(r,t,e)}var cE=k({pad3d_:JK});function QK(r,t,e=0){return A(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cn(r,t,e)}var pE=k({pad4d_:QK});function tj(r,t,e){let n=I(r,"x","spaceToBatchND");A(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),A(e.length===t.length,()=>`paddings.shape[0] ${e.length} must be equal to [blockShape] ${t.length}`),A(n.shape.reduce((i,a,u)=>u>0&&u<=t.length?i&&(a+e[u-1][0]+e[u-1][1])%t[u-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${e.toString()} must be divisible by blockShapes ${t.toString()}`);let o={x:n},s={blockShape:t,paddings:e};return _.runKernel(vi,o,s)}var Ql=k({spaceToBatchND_:tj});function ej(r,t,e,n,o,s,i){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n="valid");let a=I(r,"x","maxPool"),u=a,l=!1;a.rank===3&&(l=!0,u=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A(Er(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let c=tS(u.shape,t,s,o,n),p=[c.dilationHeight,c.dilationWidth],m;n==="same"?m=nj([c.filterHeight,c.filterWidth],p):m=[[0,0],[0,0]];let f=p[0]===1&&p[1]===1,[d,h]=rj([c.inHeight,c.inWidth],p,m),g=f?n:"valid",y=f?u:Ql(u,p,d),w=(e==="avg"?()=>Hl(y,t,s,g,i):()=>Jl(y,t,s,g,i))(),v=f?w:ql(w,p,h);return l?R(v,[v.shape[1],v.shape[2],v.shape[3]]):v}function rj(r,t,e){let n=e.map(c=>c[0]),o=e.map(c=>c[1]),s=r.concat(n,o),i=t.map((c,p)=>(c-s[p]%c)%c),a=o.map((c,p)=>c+i[p]),u=t.map((c,p)=>[n[p],a[p]]),l=t.map((c,p)=>[0,i[p]]);return[u,l]}function nj(r,t){let n=r.map((i,a)=>i+(i-1)*(t[a]-1)).map(i=>i-1),o=n.map(i=>Math.floor(i/2)),s=n.map((i,a)=>i-o[a]);return n.map((i,a)=>[o[a],s[a]])}var ny=k({pool_:ej});function oj(r,t){let e=I(r,"x","prelu"),n=I(t,"alpha","prelu"),o={x:e,alpha:n};return _.runKernel(Ss,o)}var tu=k({prelu_:oj});function sj(r,t=null,e=!1){let n=I(r,"x","prod");n.dtype==="bool"&&(n=tt(n,"int32"));let o={x:n},s={axis:t,keepDims:e};return _.runKernel(Ns,o,s)}var oy=k({prod_:sj});function ij(r,t,e){let n=Qt(r),o=null;if(e==null||e==="float32")o=new Float32Array(n);else if(e==="int32")o=new Int32Array(n);else if(e==="bool")o=new Uint8Array(n);else throw new Error(`Unknown data type ${e}`);for(let s=0;s<n;s++)o[s]=t();return _.makeTensor(o,r,e)}var mE=k({rand_:ij});var ly=vl(xh());var oc=class{constructor(t,e,n,o,s){this.mean=t,this.stdDev=e,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let i=s||Math.random();this.random=ly.alea(i.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let t,e,n=!1;for(;!n;){let o,s,i;do o=2*this.random()-1,s=2*this.random()-1,i=o*o+s*s;while(i>=1||i===0);let a=Math.sqrt(-2*Math.log(i)/i);t=this.mean+this.stdDev*o*a,e=this.mean+this.stdDev*s*a,(!this.truncated||this.isValidTruncated(t))&&(n=!0)}return(!this.truncated||this.isValidTruncated(e))&&(this.nextVal=this.convertValue(e)),this.convertValue(t)}convertValue(t){return this.dtype==null||this.dtype==="float32"?t:Math.round(t)}isValidTruncated(t){return t<=this.upper&&t>=this.lower}},iy=class{constructor(t,e,n,o){this.alpha=t,this.beta=1/e,this.dtype=n;let s=o||Math.random();this.randu=ly.alea(s.toString()),this.randn=new oc(0,1,n,!1,this.randu()),t<1?this.d=t+2/3:this.d=t-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let t,e,n,o,s,i;for(;;){do o=this.randn.nextValue(),i=1+this.c*o;while(i<=0);if(i*=i*i,t=o*o,e=1-.331*t*t,n=.5*t+this.d*(1-i+Math.log(i)),s=this.randu(),s<e||Math.log(s)<n)break}return i=1/this.beta*this.d*i,this.alpha<1&&(i*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(i)}convertValue(t){return this.dtype==="float32"?t:Math.round(t)}},ay=class{constructor(t=0,e=1,n,o){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=t,this.range=e-t,this.dtype=n,o==null&&(o=Math.random()),typeof o=="number"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${t} - ${e} <= 1 and dtype is not float`);this.random=ly.alea(o)}convertValue(t){return this.canReturnFloat()?t:Math.round(t)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function fj(r,t,e=1,n="float32",o){if(e==null&&(e=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new iy(t,e,n,o),i=Ct(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var EE=k({randomGamma_:fj});function dj(r,t=0,e=1,n,o){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new oc(t,e,n,!1,o),i=Ct(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var sc=k({randomNormal_:dj});function hj(r,t,e){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return sc(r,0,1,t,e)}var AE=k({randomStandardNormal_:hj});function gj(r,t=0,e=1,n="float32",o){let s=Ct(r,n),i=new ay(t,e,null,o);for(let a=0;a<s.values.length;a++)s.values[a]=i.nextValue();return s.toTensor()}var Wi=k({randomUniform_:gj});function eu(r,t,e=1,n="float32"){if(e===0)throw new Error("Cannot have a step of zero");let o={start:r,stop:t,step:e,dtype:n};return _.runKernel(Al,{},o)}function xj(r){let e={x:I(r,"x","reciprocal")};return _.runKernel(Fa,e)}var uy=k({reciprocal_:xj});function yj(r){let e={x:I(r,"x","relu")};return _.runKernel(ks,e)}var Fr=k({relu_:yj});function bj(r){let e={x:I(r,"x","relu6")};return _.runKernel(Es,e)}var ym=k({relu6_:bj});function wj(r,t){let n={x:I(r,"x","reverse")},o={dims:t};return _.runKernel(As,n,o)}var pr=k({reverse_:wj});function vj(r){let t=I(r,"x","reverse");return A(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),pr(t,0)}var $E=k({reverse1d_:vj});function Cj(r,t){let e=I(r,"x","reverse");return A(e.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${e.rank}.`),pr(e,t)}var DE=k({reverse2d_:Cj});function Ij(r,t){let e=I(r,"x","reverse");return A(e.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${e.rank}.`),pr(e,t)}var FE=k({reverse3d_:Ij});function Sj(r,t){let e=I(r,"x","reverse");return A(e.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${e.rank}.`),pr(e,t)}var RE=k({reverse4d_:Sj});function Nj(r){let e={x:I(r,"x","round")};return _.runKernel($s,e)}var bm=k({round_:Nj});function kj(r){let e={x:I(r,"x","rsqrt","float32")};return _.runKernel(Ds,e)}var wm=k({rsqrt_:kj});function Tj(r){let e={x:I(r,"x","selu")};return _.runKernel(Oa,e)}var vm=k({selu_:Tj});function _j(r,t,e,n,o,s=[1,1],i="NHWC"){let a=I(r,"x","separableConv2d"),u=I(t,"depthwiseFilter","separableConv2d"),l=I(e,"pointwiseFilter","separableConv2d"),c=a,p=!1;if(a.rank===3&&(p=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),A(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let m=u.shape[2],f=u.shape[3];A(l.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${l.shape[2]}.`);let d=Pi(c,u,n,o,i,s),g=Sn(d,l,1,"valid",i);return p?R(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Cm=k({separableConv2d_:_j});async function Ej(r,t){let e=I(r,"x","setdiff1d"),n=I(t,"y","setdiff1d");A(e.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${e.dtype}) and y (${n.dtype}).`),A(e.rank===1,()=>`x should be 1D tensor, but got x (${e.shape}).`),A(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await e.data(),s=await n.data(),i=new Set(s),a=0;for(let c=0;c<o.length;c++)i.has(o[c])||a++;let u=new fe([a],e.dtype),l=new fe([a],"int32");for(let c=0,p=0;c<o.length;c++)i.has(o[c])||(u.values[p]=o[c],l.values[p]=c,p++);return[u.toTensor(),l.toTensor()]}var OE=Ej;function Aj(r){let e={x:I(r,"x","sign")};return _.runKernel(Pa,e)}var cy=k({sign_:Aj});function $j(r){let e={x:I(r,"x","sin","float32")};return _.runKernel(Fs,e)}var Im=k({sin_:$j});function Dj(r){let e={x:I(r,"x","sinh")};return _.runKernel(La,e)}var Sm=k({sinh_:Dj});function Fj(r,t,e){let n=I(r,"x","slice1d");return A(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Ot(n,[t],[e])}var Nm=k({slice1d_:Fj});function Rj(r,t,e){let n=I(r,"x","slice2d");return A(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var yh=k({slice2d_:Rj});function Oj(r,t,e){let n=I(r,"x","slice3d");return A(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var km=k({slice3d_:Oj});function Lj(r,t,e){let n=I(r,"x","slice4d");return A(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var ic=k({slice4d_:Lj});function Pj(r,t=-1){let e=I(r,"logits","softmax","float32");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and dim was ${t}`);let n={logits:e},o={dim:t};return _.runKernel(Ps,n,o)}var ru=k({softmax_:Pj});function Mj(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let t={input:r};return _.runKernel(Rp,t)}var nu=k({fft_:Mj});function zj(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let t={input:r};return _.runKernel(Op,t)}var Ya=k({ifft_:zj});function Bj(r){let t=r.shape[r.shape.length-1],e=r.size/t,n;if(t<=2){let o=R(r,[e,t]);n=Ya(o)}else{let o=[e,2*(t-1)],s=R(ja(r),[e,t]),i=R(Ul(r),[e,t]),a=pr(Ot(s,[0,1],[e,t-2]),1),u=O(pr(Ot(i,[0,1],[e,t-2]),1),pt(-1)),l=se([s,a],1),c=se([i,u],1),p=R(vn(l,c),[o[0],o[1]]);n=Ya(p)}if(n=ja(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=R(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var Tm=k({irfft_:Bj});function Vj(r,t,e=0){let o={x:I(r,"x","split")},s={numOrSizeSplits:t,axis:e};return _.runKernel(Ci,o,s)}var mr=k({split_:Vj});function Gj(r,t){A(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let e=r.shape[r.shape.length-1],n=r.size/e,o;if(t!=null&&t<e){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=t,o=Ot(r,d,h),e=t}else if(t!=null&&t>e){let d=r.shape.map(h=>h);d[r.shape.length-1]=t-e,o=se([r,Te(d)],r.shape.length-1),e=t}else o=r;let s=St(o),i=R(vn(o,s),[n,e]),a=nu(i),u=Math.floor(e/2)+1,l=ja(a),c=Ul(a),p=mr(l,[u,e-u],l.shape.length-1),m=mr(c,[u,e-u],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=u,R(vn(p[0],m[0]),f)}var ou=k({rfft_:Gj});function Wj(r,t){let e=I(r,"a","squaredDifference"),n=I(t,"b","squaredDifference");[e,n]=Xt(e,n),zt(e.shape,n.shape);let o={a:e,b:n},s={};return _.runKernel(Ms,o,s)}var _m=k({squaredDifference_:Wj});function Uj(r,t){let e=I(r,"x","squeeze","string_or_numeric");return R(e,s0(e.shape,t).newShape)}var Mn=k({squeeze_:Uj});function Hj(r,t=0){let e=Ha(r,"tensors","stack","string_or_numeric");A(e.length>=1,()=>"Pass at least one tensor to tf.stack"),e.length>0&&A(t<=e[0].rank,()=>"Axis must be <= rank of the tensor");let n=e,o={axis:t};return _.runKernel(xi,n,o)}var sr=k({stack_:Hj});function qj(r,t=0){let n={x:I(r,"x","step")},o={alpha:t};return _.runKernel(uo,n,o)}var yo=k({step_:qj});function Kj(r,t,e,n,o=0,s=0,i=0,a=0,u=0){let c={x:I(r,"x","stridedSlice","string_or_numeric")},p={begin:t,end:e,strides:n,beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};return _.runKernel(Ba,c,p)}var py=k({stridedSlice_:Kj});function jj(r){let e={x:I(r,"x","tan","float32")};return _.runKernel(Bs,e)}var my=k({tan_:jj});function Ve(r,t){Kn(r);let e=Lr(r,t);if(e.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return sn(r,null,e,t)}function qs(r,t,e){if(Kn(r),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Lr(r,e);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return sn(r,t,n,e)}function LE(r,t,e){if(Kn(r),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Lr(r,e);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return sn(r,t,n,e)}function PE(r,t,e){if(Kn(r),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Lr(r,e);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return sn(r,t,n,e)}function ME(r,t,e){if(Kn(r),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Lr(r,e);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,sn(r,t,n,e)}function Xj(r,t=1,e=!0){let n=I(r,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let o=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${t}`);let s={x:n},i={k:t,sorted:e},[a,u]=_.runKernel(Va,s,i);return{values:a,indices:u}}var fy=k({topk_:Xj});function Yj(r,t=0,e=1,n,o){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new oc(t,e,n,!0,o),i=Ct(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var Em=k({truncatedNormal_:Yj});function Zj(r,t=0){let e=I(r,"x","unique","string_or_numeric");A(e.rank>0,()=>"The input tensor must be at least 1D");let n={x:e},o={axis:t},[s,i]=_.runKernel(jp,n,o);return{values:s,indices:i}}var dy=k({unique_:Zj});function Jj(r,t,e){let n=I(r,"x","unsortedSegmentSum"),o=I(t,"segmentIds","unsortedSegmentSum","int32");A(ta(e),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:o},i={numSegments:e};return _.runKernel(Ml,s,i)}var Am=k({unsortedSegmentSum_:Jj});function Qj(r,t=0){let e=I(r,"x","unstack","string_or_numeric");A(t>=-e.shape.length&&t<e.shape.length,()=>`Axis = ${t} is not in [-${e.shape.length}, ${e.shape.length})`);let n={value:e},o={axis:t};return _.runKernel(Ii,n,o)}var Nr=k({unstack_:Qj});function zE(r,t){return gh(r,t,"right")}function hy(r,t=!0,e,n){return _.makeVariable(r,t,e,n)}function gy(r,t){let e=[];for(let s=0;s<t.length;s++)t[s]&&e.push(s);let n=Ct(r,"int32"),o=Ct([e.length,r.length],"int32");for(let s=0;s<e.length;s++){let i=n.indexToLoc(e[s]),a=s*r.length;o.values.set(i,a)}return o.toTensor()}async function t6(r){let t=I(r,"condition","whereAsync","bool"),e=await t.data(),n=gy(t.shape,e);return r!==t&&t.dispose(),n}var xy=t6;async function e6(r,t,e){let n=I(r,"tensor","boolMask"),o=I(t,"mask","boolMask","bool"),s=e==null?0:e,i=o.rank,a=n.shape;A(i>0,()=>"mask cannot be scalar"),Re(a.slice(s,s+i),o.shape,"mask's shape must match the first K dimensions of tensor's shape,");let u=1;for(let h=s;h<s+i;h++)u*=a[h];let l=a.slice(0,s).concat([u],a.slice(s+i)),c=R(n,l),p=R(o,[-1]),m=await xy(p),f=Mn(m,[1]),d=Vi(c,f,s);return r!==n&&n.dispose(),t!==o&&o.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var r6=e6;function n6(r,t,e,n,o=!0){let s=I(r,"v","movingAverage"),i=I(t,"x","movingAverage"),a=I(e,"decay","movingAverage");T0(s,i),A(Fn(s.shape,i.shape),()=>"Shape mismatch in v and x");let u=pt(1),l=ut(u,a),c=O(ut(i,s),l);if(o){A(n!=null,()=>"When using zeroDebias: true, step is required.");let p=I(n,"step","movingAverage");c=ct(c,ut(u,ln(a,p)))}return Z(s,c)}var o6=k({movingAverage_:n6});function s6(r,t,e){let n=I(r,"indices","scatterND","int32"),o=I(t,"updates","scatterND");dx(o,n,e);let s={indices:n,updates:o},i={shape:e};return _.runKernel(Ra,s,i)}var i6=k({scatterND_:s6});function BE(r,t,e,n){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(e.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${e.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===o))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${o}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function l6(r,t,e,n=0){let o=I(r,"sparseIndices","sparseToDense","int32"),s=I(t,"sparseValues","sparseToDense","string_or_numeric"),i=I(n,"defaultValue","sparseToDense",s.dtype);BE(o,s,e,i);let a={sparseIndices:o,sparseValues:s,defaultValue:i},u={outputShape:e};return _.runKernel(Kp,a,u)}var u6=k({sparseToDense_:l6});function c6(r,t){let e=I(t,"indices","gatherND","int32"),o={params:I(r,"x","gatherND","string_or_numeric"),indices:e};return _.runKernel(xa,o)}var p6=k({gatherND_:c6});function VE(r,t){if(t==null)return r.shape.slice();if(Fn(r.shape,t))return t;if(r.shape.length===t.length){let e=[];for(let n=0;n<r.shape.length;n++)t[n]==null&&r.shape[n]!=null?e.push(r.shape[n]):e.push(t[n]);return e}return t}function m6(r,t,e,n){let o=I(r,"x","dropout");if(A(o.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),A(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return r instanceof Pt?o.clone():o;let s=VE(o,e),i=1-t,a=ct(Bi(Z(Wi(s,0,1,"float32",n),i)),i);return O(o,a)}var mS=k({dropout_:m6});function fS(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function bh(r,t,e){let n=1-r%2,o=new Float32Array(r);for(let s=0;s<r;++s){let i=2*Math.PI*s/(r+n-1);o[s]=t-e*Math.cos(i)}return Ve(o,"float32")}async function f6(r,t,e=1){let n=I(r,"predictions","inTopK"),o=I(t,"targets","inTopK");A(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),A(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),Re(n.shape.slice(0,n.shape.length-1),o.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];A(e>0&&e<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${e}`);let i=await n.data(),a=await o.data(),[u,l]=[i.length/s,s],c=i0("bool",u);for(let p=0;p<u;p++){let m=p*l,f=i.subarray(m,m+l),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<e;h++)if(d[h].index===a[p]){c[p]=1;break}}return r!==n&&n.dispose(),t!==o&&o.dispose(),Cr(c,o.shape,"bool")}var d6=f6;var su={};jt(su,{conv2d:()=>GE,depthwiseConv2d:()=>WE,matMul:()=>UE});function h6(r,t,e,n,o,s="NHWC",i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]])),A(a.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${a.shape}.`),A(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),A(e.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${e}.`);let l=s==="NHWC"?a.shape[3]:a.shape[1],c=s==="NHWC"?u.shape[3]:u.shape[1];A(l===e[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${e[2]}.`),A(c===e[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${e[3]}).`),Se("conv2dDerFilter",o,i);let p={x:a,dy:u},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,filterShape:e};return _.runKernel(Np,p,m)}var $m=k({conv2DBackpropFilter_:h6});function ac(r,t,e){if(e==null||e==="linear")return r;if(e==="relu")return O(r,yo(t));throw new Error(`Cannot compute gradient for fused activation ${e}.`)}function lc(r,t){let e=t,n=ye(r.shape,t.shape);return n.length>0&&(e=mt(e,n)),R(e,r.shape)}function uc(r,t,e,n){if(t==="linear")return r;if(t==="relu")return Fr(r);if(t==="elu")return Mi(r);if(t==="relu6")return ym(r);if(t==="prelu")return tu(r,e);if(t==="leakyrelu")return Xl(r,n);if(t==="sigmoid")return Kr(r);throw new Error(`Unknown fused activation ${t}.`)}var cc=(r,t)=>!(r>0)||t==="linear";function g6({x:r,filter:t,strides:e,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||"linear",cc(_.state.gradientDepth,u)===!1){A(o==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${o} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let E=Sn(r,t,e,n,o,s,i);return a!=null&&(E=Z(E,a)),uc(E,u,l,c)}let p=I(r,"x","conv2d","float32"),m=I(t,"filter","conv2d","float32"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),Se("fused conv2d",n,i);let h=o==="NHWC"?f.shape[3]:f.shape[1];A(m.shape[2]===h,()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${m.shape[2]}.`),A(Er(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let g=Ju(f.shape,m.shape,e,s,n,i),y;a!=null&&(y=I(a,"bias","fused conv2d"),[y]=Xt(y,p),o==="NHWC"?zt(g.outShape,y.shape):(A(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),A(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(l!=null){let E=l.shape;if(A(E.length<=1||E.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${E.length}.`),E.length===1)A(E[0]===1||E[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${E}) is not compatible with the number of output channels (${g.outChannels}).`);else if(E.length===3)try{zt(E,g.outShape)}catch($){let D=`Error in fused conv2d: PReLU activation weights (${E}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(D)}b=I(l,"prelu weights","fused conv2d")}let w=(E,$)=>{A(o==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${o} but only NHWC is currently supported.`);let[D,L,M,G]=$,H=ac(E,M,u);A(Zn(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let q=cm(L.shape,H,D,e,n),X=$m(L,H,D.shape,e,n),j=[q,X];if(G!=null){let J=lc(G,H);j.push(J)}return j},v={x:f,filter:m,bias:y,preluActivationWeights:b},N={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?un(($,D,L)=>{let M=_.runKernel(ki,v,N);return L([D,$,M]),d&&(M=R(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:w}})(f,m):un(($,D,L,M)=>{let G=_.runKernel(ki,v,N);return M([D,$,G,L]),d&&(G=R(G,[G.shape[1],G.shape[2],G.shape[3]])),{value:G,gradFunc:w}})(f,m,y)}var GE=k({fusedConv2d_:g6});function x6(r,t,e,n,o,s=[1,1],i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:a,dy:u},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,filterShape:e};return _.runKernel(Ep,l,c)}var yy=k({depthwiseConv2dNativeBackpropFilter_:x6});function y6(r,t,e,n,o,s=[1,1],i){let a=t,u=!1;t.rank===3&&(u=!0,a=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:a,filter:e},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,inputShape:r},p=_.runKernel(Ap,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var by=k({depthwiseConv2dNativeBackpropInput_:y6});function b6({x:r,filter:t,strides:e,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(cc(_.state.gradientDepth,u)===!1){let N=Pi(r,t,e,n,o,s,i);return a!=null&&(N=Z(N,a)),uc(N,u,l,c)}let p=I(r,"x","depthwiseConv2d","float32"),m=I(t,"filter","depthwiseConv2d","float32"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),A(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),A(Er(e,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),Se("fused depthwiseConv2d",n,i);let h=Ju(f.shape,m.shape,e,s,n,i,!0),g;a!=null&&(g=I(a,"bias","fused conv2d"),[g]=Xt(g,p),zt(h.outShape,g.shape));let y;l!=null&&(y=I(l,"prelu weights","fused depthwiseConv2d"));let b=(N,E)=>{A(Zn(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[$,D,L,M]=E,G=ac(N,L,u),H=by(D.shape,G,$,e,n,s,i),q=yy(D,G,$.shape,e,n,s,i);if(M!=null){let X=lc(g,G);return[H,q,X]}return[H,q]},w={x:f,filter:m,bias:g,preluActivationWeights:y},v={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?un((E,$,D)=>{let L=_.runKernel(Ti,w,v);return D([$,E,L]),d&&(L=R(L,[L.shape[1],L.shape[2],L.shape[3]])),{value:L,gradFunc:b}})(f,m):un((E,$,D,L)=>{let M=_.runKernel(Ti,w,v);return L([$,E,M,D]),d&&(M=R(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var WE=k({fusedDepthwiseConv2d_:b6});function w6({a:r,b:t,transposeA:e=!1,transposeB:n=!1,bias:o,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:a=.2}){if(cc(_.state.gradientDepth,s)===!1){let G=Gt(r,t,e,n);return o!=null&&(G=Z(G,o)),uc(G,s,i,a)}let u=I(r,"a","fused matMul"),l=I(t,"b","fused matMul");[u,l]=Xt(u,l);let c=e?u.shape[u.rank-2]:u.shape[u.rank-1],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],m=e?u.shape[u.rank-1]:u.shape[u.rank-2],f=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=u.shape.slice(0,-2),h=l.shape.slice(0,-2),g=Qt(d),y=Qt(h);A(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${e} and transposeB=${n} must match.`);let w=zt(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([m,f]),v=e?R(u,[g,c,m]):R(u,[g,m,c]),N=n?R(l,[y,f,p]):R(l,[y,p,f]),E;o!=null&&(E=I(o,"bias","fused matMul"),[E]=Xt(E,u),zt(w,E.shape));let $;i!=null&&($=I(i,"prelu weights","fused matMul"));let D=(G,H)=>{let[q,X,j,J]=H,nt=ac(R(G,j.shape),j,s),K,ot;if(!e&&!n?(K=Gt(nt,X,!1,!0),ot=Gt(q,nt,!0,!1)):!e&&n?(K=Gt(nt,X,!1,!1),ot=Gt(nt,q,!0,!1)):e&&!n?(K=Gt(X,nt,!1,!0),ot=Gt(q,nt,!1,!1)):(K=Gt(X,nt,!0,!0),ot=Gt(nt,q,!0,!0)),o!=null){let st=lc(J,nt);return[K,ot,st]}else return[K,ot]},L={a:v,b:N,bias:E,preluActivationWeights:$},M={transposeA:e,transposeB:n,activation:s,leakyreluAlpha:a};return o==null?un((H,q,X)=>{let j=_.runKernel(Ni,L,M);return X([H,q,j]),{value:R(j,w),gradFunc:D}})(v,N):un((H,q,X,j)=>{let J=_.runKernel(Ni,L,M);return j([H,q,J,X]),{value:R(J,w),gradFunc:D}})(v,N,E)}var UE=k({fusedMatMul_:w6});function v6(r){return bh(r,.54,.46)}var HE=k({hammingWindow_:v6});function C6(r){return bh(r,.5,.5)}var wy=k({hannWindow_:C6});function I6(r,t,e,n=!1,o=0){let s=0,i=[];for(;s+t<=r.size;)i.push(Ot(r,s,t)),s+=e;if(n)for(;s<r.size;){let a=s+t-r.size,u=se([Ot(r,s,t-a),zi([a],o)]);i.push(u),s+=e}return i.length===0?qs([],[0,t]):R(se(i),[i.length,t])}var vy=k({frame_:I6});function S6(r,t,e,n,o=wy){n==null&&(n=fS(t));let s=vy(r,t,e),i=O(s,o(t));return ou(i,n)}var qE=k({stft_:S6});function N6(r,t,e,n,o="bilinear",s=0){let i=I(r,"image","cropAndResize"),a=I(t,"boxes","cropAndResize","float32"),u=I(e,"boxInd","cropAndResize","int32"),l=a.shape[0];A(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),A(a.rank===2&&a.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${a.shape}.`),A(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${a.shape}.`),A(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),A(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),A(o==="bilinear"||o==="nearest",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:i,boxes:a,boxInd:u},p={method:o,extrapolationValue:s,cropSize:n};return _.runKernel(pa,c,p)}var KE=k({cropAndResize_:N6});function k6(r){let t=I(r,"image","flipLeftRight","float32");A(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let e={image:t};return _.runKernel(ga,e,{})}var jE=k({flipLeftRight_:k6});function T6(r){let t=I(r,"image","grayscaleToRGB"),e=t.rank-1,n=t.shape[e];A(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),A(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let o=new Array(t.rank);return o.fill(1,0,e),o[e]=3,$r(t,o)}var XE=k({grayscaleToRGB_:T6});function _6(r,t,e=0,n=.5){let o=I(r,"image","rotateWithOffset","float32");A(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},i={radians:t,fillValue:e,center:n};return _.runKernel(Wa,s,i)}var YE=k({rotateWithOffset_:_6});function bo(r,t,e,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=r.shape[0];return e=Math.min(e,i),A(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),A(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),A(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),A(t.rank===1,()=>"scores must be a 1D tensor"),A(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function E6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=I(r,"boxes","nonMaxSuppression","float32"),i=I(t,"scores","nonMaxSuppression","float32"),a=bo(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u={maxOutputSize:e,iouThreshold:n,scoreThreshold:o};return _.runKernel(Aa,{boxes:s,scores:i},u)}var ZE=k({nonMaxSuppression_:E6});function JE(r,t,e){let n=A6(r,t,e),o=n<0?-(n+1):n;r.splice(o,0,t)}function A6(r,t,e){return D6(r,t,e||$6)}function $6(r,t){return r>t?1:r<t?-1:0}function D6(r,t,e){let n=0,o=r.length,s=0,i=!1;for(;n<o;){s=n+(o-n>>>1);let a=e(t,r[s]);a>0?n=s+1:(o=s,i=!a)}return i?n:-n-1}function Cy(r,t,e,n,o){return dS(r,t,e,n,o,0)}function Iy(r,t,e,n,o,s){return dS(r,t,e,n,o,0,!1,s,!0)}function Sy(r,t,e,n,o,s){return dS(r,t,e,n,o,s,!0)}function dS(r,t,e,n,o,s,i=!1,a=!1,u=!1){let l=[];for(let g=0;g<t.length;g++)t[g]>o&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(QE);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<e&&l.length>0;){let g=l.pop(),{score:y,boxIndex:b,suppressBeginIndex:w}=g;if(y<o)break;let v=!1;for(let N=p.length-1;N>=w;--N){let E=F6(r,b,p[N]);if(E>=n){v=!0;break}if(g.score=g.score*R6(n,c,E),g.score<=o)break}g.suppressBeginIndex=p.length,v||(g.score===y?(p.push(b),m.push(g.score)):g.score>o&&JE(l,g,QE))}let f=p.length,d=e-f;a&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return i&&(h.selectedScores=m),u&&(h.validOutputs=f),h}function F6(r,t,e){let n=r.subarray(t*4,t*4+4),o=r.subarray(e*4,e*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),a=Math.max(n[0],n[2]),u=Math.max(n[1],n[3]),l=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(a-s)*(u-i),d=(p-l)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,l),g=Math.max(i,c),y=Math.min(a,p),b=Math.min(u,m),w=Math.max(y-h,0)*Math.max(b-g,0);return w/(f+d-w)}function R6(r,t,e){let n=Math.exp(t*e*e);return e<=r?n:0}function QE(r,t){return r.score-t.score||r.score===t.score&&t.boxIndex-r.boxIndex}async function O6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=I(r,"boxes","nonMaxSuppressionAsync"),i=I(t,"scores","nonMaxSuppressionAsync"),a=bo(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u=await Promise.all([s.data(),i.data()]),l=u[0],c=u[1],{selectedIndices:p}=Cy(l,c,e,n,o);return s!==r&&s.dispose(),i!==t&&i.dispose(),Ve(p,"int32")}var tA=O6;function L6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=I(r,"boxes","nonMaxSuppression"),a=I(t,"scores","nonMaxSuppression"),u=bo(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l={boxes:i,scores:a},c={maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=_.runKernel(Da,l,c);return{selectedIndices:p[0],selectedScores:p[1]}}var eA=k({nonMaxSuppressionWithScore_:L6});async function P6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=I(r,"boxes","nonMaxSuppressionAsync"),a=I(t,"scores","nonMaxSuppressionAsync"),u=bo(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l=await Promise.all([i.data(),a.data()]),c=l[0],p=l[1],{selectedIndices:m,selectedScores:f}=Sy(c,p,e,n,o,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Ve(m,"int32"),selectedScores:Ve(f)}}var rA=P6;function M6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=I(r,"boxes","nonMaxSuppression"),a=I(t,"scores","nonMaxSuppression"),u=bo(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,m={boxes:i,scores:a},f={maxOutputSize:l,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=_.runKernel($a,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var nA=k({nonMaxSuppressionPadded_:M6});async function z6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=I(r,"boxes","nonMaxSuppressionAsync"),a=I(t,"scores","nonMaxSuppressionAsync"),u=bo(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,[m,f]=await Promise.all([i.data(),a.data()]),{selectedIndices:d,validOutputs:h}=Iy(m,f,l,c,p,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Ve(d,"int32"),validOutputs:pt(h,"int32")}}var oA=z6;function B6(r,t,e=!1,n=!1){let o=I(r,"images","resizeBilinear");A(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),A(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),A(n===!1||e===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=_.runKernel(_s,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var Ny=k({resizeBilinear_:B6});function V6(r,t,e=!1,n=!1){let o=I(r,"images","resizeNearestNeighbor");A(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),A(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),A(o.dtype==="float32"||o.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(n===!1||e===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=_.runKernel(Ts,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var ky=k({resizeNearestNeighbor_:V6});function G6(r,t="binary",e=!1,n=.5){let o=I(r,"image","threshold"),s=.2989,i=.587,a=.114,u=o.shape[0]*o.shape[1],l=O(Ve([n]),255),c,p,m,f;if(A(o.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${o.rank}.`),A(o.shape[2]===3||o.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${o.shape[2]}.`),A(o.dtype==="int32"||o.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${o.dtype}.`),A(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),o.shape[2]===3){[c,p,m]=mr(o,[1,1,1],-1);let g=O(c,s),y=O(p,i),b=O(m,a);f=Z(Z(g,y),b)}else f=r;if(t==="otsu"){let g=Ex(tt(bm(f),"int32"),Cr([]),256);l=W6(g,u)}let d=e?Pn(f,l):Xe(f,l);return tt(O(d,255),"int32")}function W6(r,t){let e=Ve([-1]),n=Ve([0]),o=Ve([0]),s,i,a,u,l,c;for(let p=0;p<r.size-1;p++){s=Ot(r,0,p+1),i=Ot(r,p+1),l=ct(mt(s),t),c=ct(mt(i),t);let m=mt(O(s,eu(0,s.size)));a=ct(m,mt(s));let f=zi(i.shape,s.size),d=Z(eu(0,i.size),f),h=O(i,d);u=ct(mt(h),mt(i));let g=ut(a,u),y=ut(a,u),b=O(l,c);o=O(O(b,g),y);let w=Xe(o,n);n=$e(w,o,n),e=$e(w,Ve([p]),e)}return e}var sA=k({threshold_:G6});function U6(r,t,e="nearest",n="constant",o=0,s){let i=I(r,"image","transform","float32"),a=I(t,"transforms","transform","float32");A(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),A(a.rank===2&&(a.shape[0]===i.shape[0]||a.shape[0]===1)&&a.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),A(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let u={image:i,transforms:a},l={interpolation:e,fillMode:n,fillValue:o,outputShape:s};return _.runKernel(Ga,u,l)}var iA=k({transform_:U6});function H6(r,t,e){A(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),A(e%1===0,()=>`bandPart(): numUpper must be an integer, got ${e}.`);let n=I(r,"a","bandPart");A(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,i]=n.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(e<=i))throw new Error(`bandPart(): numUpper (${e}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),e<0&&(e=i);let a=R(eu(0,s,1,"int32"),[-1,1]),u=eu(0,i,1,"int32"),l=ut(a,u),c=Dr(Pn(l,pt(+t,"int32")),Ln(l,pt(-e,"int32"))),p=Te([s,i],n.dtype);return R(sr(Nr(R(n,[-1,s,i])).map(m=>$e(c,m,p))),o)}var aA=k({bandPart_:H6});function q6(r){let t;if(Array.isArray(r)){t=!1,A(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let o=r[0].shape[0];for(let s=1;s<r.length;++s)A(r[s].shape[0]===o,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else t=!0,r=mr(r,r.shape[0],0).map(o=>Mn(o,[0]));A(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let e=[],n=r;for(let o=0;o<r.length;++o)e.push(_.tidy(()=>{let s=n[o];if(o>0)for(let i=0;i<o;++i){let a=O(mt(O(e[i],s)),e[i]);s=ut(s,a)}return ct(s,Xa(s,"euclidean"))}));return t?sr(e,0):e}var lA=k({gramSchmidt_:q6});function K6(r,t=!1){if(A(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return uA(r,t);{let e=r.shape.slice(0,r.shape.length-2).reduce((u,l)=>u*l),n=Nr(R(r,[e,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(u=>{let[l,c]=uA(u,t);o.push(l),s.push(c)});let i=R(sr(o,0),r.shape),a=R(sr(s,0),r.shape);return[i,a]}}function uA(r,t=!1){return _.tidy(()=>{A(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let e=r.shape[0],n=r.shape[1],o=ec(e),s=an(r),i=qs([[1]],[1,1]),a=an(i),u=e>=n?n:e;for(let l=0;l<u;++l){let c=s,p=a,m=o;[a,s,o]=_.tidy(()=>{let f=Ot(s,[l,l],[e-l,1]),d=Xa(f),h=Ot(s,[l,l],[1,1]),g=$e(Xe(h,0),qs([[-1]]),qs([[1]])),y=ut(h,O(g,d)),b=ct(f,y);b.shape[0]===1?a=an(i):a=se([i,Ot(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=Yt(ct(Gt(g,y),d)),v=Ot(s,[l,0],[e-l,n]),N=O(w,a),E=Mt(a);if(l===0)s=ut(v,Gt(N,Gt(E,v)));else{let L=ut(v,Gt(N,Gt(E,v)));s=se([Ot(s,[0,0],[l,n]),L],0)}let $=Mt(N),D=Ot(o,[0,l],[e,o.shape[1]-l]);if(l===0)o=ut(D,Gt(Gt(D,a),$));else{let L=ut(D,Gt(Gt(D,a),$));o=se([Ot(o,[0,0],[e,l]),L],1)}return[a,s,o]}),_t([c,p,m])}return!t&&e>n&&(o=Ot(o,[0,0],[e,n]),s=Ot(s,[0,0],[n,n])),[o,s]})}var cA=k({qr_:K6});var Ye;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Ye||(Ye={}));function j6(r,t,e=Ye.SUM_BY_NONZERO_WEIGHTS){let n=I(r,"losses","computeWeightedLoss"),o=null;t!=null&&(o=I(t,"weights","computeWeightedLoss"));let s=o==null?n:O(n,o);if(e===Ye.NONE)return s;if(e===Ye.SUM)return mt(s);if(e===Ye.MEAN){if(o==null)return ke(s);{let i=n.size/o.size,a=ct(mt(s),mt(o));return i>1?ct(a,pt(i)):a}}if(e===Ye.SUM_BY_NONZERO_WEIGHTS){if(o==null)return ct(mt(s),pt(n.size));{let i=O(o,cr(n.shape)),a=tt(mt(Hs(i,pt(0))),"float32");return ct(mt(s),a)}}throw Error(`Unknown reduction: ${e}`)}var zr=k({computeWeightedLoss_:j6});function X6(r,t,e,n=Ye.SUM_BY_NONZERO_WEIGHTS){let o=I(r,"labels","absoluteDifference"),s=I(t,"predictions","absoluteDifference"),i=null;e!=null&&(i=I(e,"weights","absoluteDifference")),Re(o.shape,s.shape,"Error in absoluteDifference: ");let a=Ae(ut(o,s));return zr(a,i,n)}var pA=k({absoluteDifference_:X6});function Y6(r,t,e,n,o=Ye.SUM_BY_NONZERO_WEIGHTS){let s=I(r,"labels","cosineDistance"),i=I(t,"predictions","cosineDistance"),a=null;n!=null&&(a=I(n,"weights","cosineDistance")),Re(s.shape,i.shape,"Error in cosineDistance: ");let u=pt(1),l=ut(u,mt(O(s,i),e,!0));return zr(l,a,o)}var mA=k({cosineDistance_:Y6});function Z6(r,t,e,n=Ye.SUM_BY_NONZERO_WEIGHTS){let o=I(r,"labels","hingeLoss"),s=I(t,"predictions","hingeLoss"),i=null;e!=null&&(i=I(e,"weights","hingeLoss")),Re(o.shape,s.shape,"Error in hingeLoss: ");let a=pt(1);o=ut(O(pt(2),o),a);let u=Fr(ut(a,O(o,s)));return zr(u,i,n)}var fA=k({hingeLoss_:Z6});function J6(r,t,e,n=1,o=Ye.SUM_BY_NONZERO_WEIGHTS){let s=I(r,"labels","huberLoss"),i=I(t,"predictions","huberLoss"),a=null;e!=null&&(a=I(e,"weights","huberLoss")),Re(s.shape,i.shape,"Error in huberLoss: ");let u=pt(n),l=Ae(ut(i,s)),c=Gi(l,u),p=ut(l,c),m=Z(O(pt(.5),Ht(c)),O(u,p));return zr(m,a,o)}var dA=k({huberLoss_:J6});function Q6(r,t,e,n=1e-7,o=Ye.SUM_BY_NONZERO_WEIGHTS){let s=I(r,"labels","logLoss"),i=I(t,"predictions","logLoss"),a=null;e!=null&&(a=I(e,"weights","logLoss")),Re(s.shape,i.shape,"Error in logLoss: ");let u=pt(1),l=pt(n),c=Yt(O(s,Sr(Z(i,l)))),p=O(ut(u,s),Sr(Z(ut(u,i),l))),m=ut(c,p);return zr(m,a,o)}var hA=k({logLoss_:Q6});function t5(r,t,e,n=Ye.SUM_BY_NONZERO_WEIGHTS){let o=I(r,"labels","meanSquaredError"),s=I(t,"predictions","meanSquaredError"),i=null;e!=null&&(i=I(e,"weights","meanSquaredError")),Re(o.shape,s.shape,"Error in meanSquaredError: ");let a=_m(o,s);return zr(a,i,n)}var gA=k({meanSquaredError_:t5});function e5(r,t){let e=I(r,"labels","sigmoidCrossEntropyWithLogits"),n=I(t,"logits","sigmoidCrossEntropyWithLogits");Re(e.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let o=Fr(n),s=O(n,e),i=Yl(or(Yt(Ae(n))));return Z(ut(o,s),i)}function r5(r,t,e,n=0,o=Ye.SUM_BY_NONZERO_WEIGHTS){let s=I(r,"multiClassLabels","sigmoidCrossEntropy"),i=I(t,"logits","sigmoidCrossEntropy"),a=null;if(e!=null&&(a=I(e,"weights","sigmoidCrossEntropy")),Re(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let l=pt(n),c=pt(1),p=pt(.5);s=Z(O(s,ut(c,l)),O(p,l))}let u=e5(s,i);return zr(u,a,o)}var xA=k({sigmoidCrossEntropy_:r5});function n5(r,t,e=-1){if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${e}`);return un((o,s,i)=>{let u=gm(s,[e],!0),l=ut(tt(s,"float32"),u);i([o,l]);let c=Yt(O(l,o));return{value:mt(c,[e]),gradFunc:(f,d)=>{let[h,g]=d,y=xo(f.shape,[e]);return[O(R(f,y),ut(tt(h,"float32"),or(g))),O(R(f,y),ut(or(g),tt(h,"float32")))]}}})(r,t)}function o5(r,t,e,n=0,o=Ye.SUM_BY_NONZERO_WEIGHTS){let s=I(r,"onehotLabels","softmaxCrossEntropy"),i=I(t,"logits","softmaxCrossEntropy"),a=null;if(e!=null&&(a=I(e,"weights","softmaxCrossEntropy")),Re(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let l=pt(n),c=pt(1),p=pt(s.shape[1]);s=Z(O(s,ut(c,l)),ct(l,p))}let u=n5(s,i);return zr(u,a,o)}var yA=k({softmaxCrossEntropy_:o5});function s5(r,t,e,n){let o=I(r,"indices","sparseFillEmptyRows","int32"),s=I(t,"values","sparseFillEmptyRows"),i=I(e,"denseShape","sparseFillEmptyRows","int32"),a=I(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(o.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${o.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(a.rank!==0)throw new Error(`Default value should be a scalar but received shape ${a.shape}`);let u={indices:o,values:s,denseShape:i,defaultValue:a},l=_.runKernel($l,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var bA=k({sparseFillEmptyRows_:s5});function i5(r,t,e){let n=I(r,"inputIndices","sparseReshape","int32"),o=I(t,"inputShape","sparseReshape","int32"),s=I(e,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${n.shape}`);if(o.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${o.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:o,newShape:s},a=_.runKernel(za,i);return{outputIndices:a[0],outputShape:a[1]}}var wA=k({sparseReshape_:i5});function a5(r,t,e){let n=I(r,"data","sparseSegmentMean"),o=I(t,"indices","sparseSegmentMean","int32"),s=I(e,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:o,segmentIds:s};return _.runKernel(Dl,i)}var vA=k({sparseSegmentMean_:a5});function l5(r,t,e){let n=I(r,"data","sparseSegmentSum"),o=I(t,"indices","sparseSegmentSum","int32"),s=I(e,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:o,segmentIds:s};return _.runKernel(Fl,i)}var CA=k({sparseSegmentSum_:l5});function u5(r,t,e,n,o,s,i,a){let u=I(r,"data","stringNGrams","string");if(u.dtype!=="string")throw new Error("Data must be of datatype string");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=I(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:e,nGramWidths:n,leftPad:o,rightPad:s,padWidth:i,preserveShortSequences:a},p={data:u,dataSplits:l},m=_.runKernel(Ol,p,c);return{nGrams:m[0],nGramsSplits:m[1]}}var IA=k({stringNGrams_:u5});function c5(r,t,e=!0){let n=I(r,"input","stringSplit","string"),o=I(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(o.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${o.shape}`);let s={skipEmpty:e},i={input:n,delimiter:o},a=_.runKernel(Ll,i,s);return{indices:a[0],values:a[1],shape:a[2]}}var SA=k({stringSplit_:c5});function p5(r,t){let e=I(r,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let o={input:e};return _.runKernel(Pl,o,n)}var NA=k({stringToHashBucketFast_:p5});var m5={fft:nu,ifft:Ya,rfft:ou,irfft:Tm},f5={hammingWindow:HE,hannWindow:wy,frame:vy,stft:qE},iu={flipLeftRight:jE,grayscaleToRGB:XE,resizeNearestNeighbor:ky,resizeBilinear:Ny,rotateWithOffset:YE,cropAndResize:KE,nonMaxSuppression:ZE,nonMaxSuppressionAsync:tA,nonMaxSuppressionWithScore:eA,nonMaxSuppressionWithScoreAsync:rA,nonMaxSuppressionPadded:nA,nonMaxSuppressionPaddedAsync:oA,threshold:sA,transform:iA},hS={bandPart:aA,gramSchmidt:lA,qr:cA},d5={absoluteDifference:pA,computeWeightedLoss:zr,cosineDistance:mA,hingeLoss:fA,huberLoss:dA,logLoss:hA,meanSquaredError:gA,sigmoidCrossEntropy:xA,softmaxCrossEntropy:yA},h5={sparseFillEmptyRows:bA,sparseReshape:wA,sparseSegmentMean:vA,sparseSegmentSum:CA},g5={stringNGrams:IA,stringSplit:SA,stringToHashBucketFast:NA};var Br=class extends dh{minimize(t,e=!1,n){let{value:o,grads:s}=this.computeGradients(t,n);if(n!=null){let i=n.map(a=>({name:a.name,tensor:s[a.name]}));this.applyGradients(i)}else this.applyGradients(s);return _t(s),e?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(t,e){return Xx(t,e)}dispose(){this.iterations_!=null&&_t(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:pt(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(t){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(t){return this.iterations_=(await t[0].tensor.data())[0],t.slice(1)}};Object.defineProperty(Br,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var au=class extends Br{constructor(t,e,n=null){super(),this.learningRate=t,this.rho=e,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=_.backend.epsilon())}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=_.registeredVariables[n],i=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:W(()=>St(s).variable(i))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:W(()=>St(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedGrads[o].variable,l=this.accumulatedUpdates[o].variable;W(()=>{let c=Z(O(u,this.rho),O(Ht(a),1-this.rho)),p=O(ct(Ne(Z(l,this.epsilon)),Ne(Z(u,this.epsilon))),a),m=Z(O(l,this.rho),O(Ht(p),1-this.rho));u.assign(c),l.assign(m);let f=Z(O(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(_t(this.accumulatedGrads.map(t=>t.variable)),_t(this.accumulatedUpdates.map(t=>t.variable)))}async getWeights(){let t=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=t.length/2,n=!1;this.accumulatedGrads=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.rho,e.epsilon)}};au.className="Adadelta";In(au);var lu=class extends Br{constructor(t,e=.1){super(),this.learningRate=t,this.initialAccumulatorValue=e,this.accumulatedGrads=[]}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=_.registeredVariables[n];this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:W(()=>zi(s.shape,this.initialAccumulatorValue).variable(!1))});let i=Array.isArray(t)?t[o].tensor:t[n];if(i==null)return;let a=this.accumulatedGrads[o].variable;W(()=>{let u=Z(a,Ht(i));a.assign(u);let l=Z(O(ct(i,Ne(Z(u,_.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&_t(this.accumulatedGrads.map(t=>t.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulatedGrads=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(t,e){return new t(e.learningRate,e.initialAccumulatorValue)}};lu.className="Adagrad";In(lu);var uu=class extends Br{constructor(t,e,n,o=null){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],W(()=>{this.accBeta1=pt(e).variable(),this.accBeta2=pt(n).variable()}),o==null&&(this.epsilon=_.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);W(()=>{let n=ut(1,this.accBeta1),o=ut(1,this.accBeta2);e.forEach((s,i)=>{let a=_.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:W(()=>St(a).variable(u))}),this.accumulatedSecondMoment[i]==null&&(this.accumulatedSecondMoment[i]={originalName:`${s}/v`,variable:W(()=>St(a).variable(u))});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedSecondMoment[i].variable,m=Z(O(c,this.beta1),O(l,1-this.beta1)),f=Z(O(p,this.beta2),O(Ht(l),1-this.beta2)),d=ct(m,n),h=ct(f,o);c.assign(m),p.assign(f);let g=Z(O(ct(d,Z(Ne(h),this.epsilon)),-this.learningRate),a);a.assign(g)}),this.accBeta1.assign(O(this.accBeta1,this.beta1)),this.accBeta2.assign(O(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&_t(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedSecondMoment!=null&&_t(this.accumulatedSecondMoment.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t),W(()=>{this.accBeta1.assign(ln(this.beta1,this.iterations_+1)),this.accBeta2.assign(ln(this.beta2,this.iterations_+1))});let e=t.length/2,n=!1;this.accumulatedFirstMoment=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon)}};uu.className="Adam";In(uu);var cu=class extends Br{constructor(t,e,n,o=null,s=0){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],W(()=>{this.iteration=pt(0).variable(),this.accBeta1=pt(e).variable()}),o==null&&(this.epsilon=_.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);W(()=>{let n=ut(1,this.accBeta1),o=ct(-this.learningRate,Z(O(this.iteration,this.decay),1));e.forEach((s,i)=>{let a=_.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:St(a).variable(u)}),this.accumulatedWeightedInfNorm[i]==null&&(this.accumulatedWeightedInfNorm[i]={originalName:`${s}/v`,variable:St(a).variable(u)});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedWeightedInfNorm[i].variable,m=Z(O(c,this.beta1),O(l,1-this.beta1)),f=O(p,this.beta2),d=Ae(l),h=Nn(f,d);c.assign(m),p.assign(h);let g=Z(O(ct(o,n),ct(m,Z(h,this.epsilon))),a);a.assign(g)}),this.iteration.assign(Z(this.iteration,1)),this.accBeta1.assign(O(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&_t(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedWeightedInfNorm!=null&&_t(this.accumulatedWeightedInfNorm.map(t=>t.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(t){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon,e.decay)}};cu.className="Adamax";In(cu);var Ui=class extends Br{constructor(t){super(),this.learningRate=t,this.setLearningRate(t)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=Array.isArray(t)?t[o].tensor:t[n];if(s==null)return;let i=_.registeredVariables[n];W(()=>{let a=Z(O(this.c,s),i);i.assign(a)})}),this.incrementIterations()}setLearningRate(t){this.learningRate=t,this.c!=null&&this.c.dispose(),this.c=Oe(pt(-t))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(t){if(t=await this.extractIterations(t),t.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(t,e){return new t(e.learningRate)}};Ui.className="SGD";In(Ui);var pu=class extends Ui{constructor(t,e,n=!1){super(t),this.learningRate=t,this.momentum=e,this.useNesterov=n,this.accumulations=[],this.m=pt(this.momentum)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=_.registeredVariables[n];this.accumulations[o]==null&&(this.accumulations[o]={originalName:`${n}/momentum`,variable:W(()=>St(s).variable(!1))});let i=this.accumulations[o].variable,a=Array.isArray(t)?t[o].tensor:t[n];a!=null&&W(()=>{let u,l=Z(O(this.m,i),a);this.useNesterov?u=Z(O(this.c,Z(a,O(l,this.m))),s):u=Z(O(this.c,l),s),i.assign(l),s.assign(u)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&_t(this.accumulations.map(t=>t.variable))}setMomentum(t){this.momentum=t}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulations=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(t,e){return new t(e.learningRate,e.momentum,e.useNesterov)}};pu.className="Momentum";In(pu);var mu=class extends Br{constructor(t,e=.9,n=0,o=null,s=!1){if(super(),this.learningRate=t,this.decay=e,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=_.backend.epsilon()),t==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=_.registeredVariables[n],i=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:W(()=>St(s).variable(i))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:W(()=>St(s).variable(i))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:W(()=>St(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedMeanSquares[o].variable,l=this.accumulatedMoments[o].variable;W(()=>{let c=Z(O(u,this.decay),O(Ht(a),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=Z(O(p,this.decay),O(a,1-this.decay)),f=ct(O(a,this.learningRate),Ne(ut(c,Z(Ht(m),this.epsilon)))),d=Z(O(l,this.momentum),f);u.assign(c),p.assign(m),l.assign(d);let h=ut(s,d);s.assign(h)}else{let p=Z(O(u,this.decay),O(Ht(a),1-this.decay)),m=Z(O(l,this.momentum),ct(O(a,this.learningRate),Ne(Z(p,this.epsilon))));u.assign(p),l.assign(m);let f=ut(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&_t(this.accumulatedMeanSquares.map(t=>t.variable)),this.accumulatedMeanGrads!=null&&this.centered&&_t(this.accumulatedMeanGrads.map(t=>t.variable)),this.accumulatedMoments!=null&&_t(this.accumulatedMoments.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&t.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=this.centered?t.length/3:t.length/2,n=!1;this.accumulatedMeanSquares=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=t.slice(e*2,e*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(t,e){return new t(e.learningRate,e.decay,e.momentum,e.epsilon,e.centered)}};mu.className="RMSProp";In(mu);var Ks=class{static sgd(t){return new Ui(t)}static momentum(t,e,n=!1){return new pu(t,e,n)}static rmsprop(t,e=.9,n=0,o=null,s=!1){return new mu(t,e,n,o,s)}static adam(t=.001,e=.9,n=.999,o=null){return new uu(t,e,n,o)}static adadelta(t=.001,e=.95,n=null){return new au(t,e,n)}static adamax(t=.002,e=.9,n=.999,o=null,s=0){return new cu(t,e,n,o,s)}static adagrad(t,e=.1){return new lu(t,e)}};var pc={sgd:Ks.sgd,momentum:Ks.momentum,adadelta:Ks.adadelta,adagrad:Ks.adagrad,rmsprop:Ks.rmsprop,adamax:Ks.adamax,adam:Ks.adam};var x5=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function wh(){return new Promise(r=>x5(()=>r()))}var S={};jt(S,{ERF_A1:()=>_5,ERF_A2:()=>E5,ERF_A3:()=>A5,ERF_A4:()=>$5,ERF_A5:()=>D5,ERF_P:()=>T5,PARALLELIZE_THRESHOLD:()=>Ty,SELU_SCALE:()=>xS,SELU_SCALEALPHA:()=>gS,applyActivation:()=>uc,assertAndGetBroadcastShape:()=>zt,assertAxesAreInnerMostDims:()=>Kq,assertParamsConsistent:()=>y5,assignToTypedArray:()=>M5,axesAreInnerMostDims:()=>rS,calculateShapes:()=>E_,checkEinsumDimSizes:()=>U5,checkPadOnDimRoundingMode:()=>Se,combineLocations:()=>Q_,complexWithEvenIndex:()=>O5,complexWithOddIndex:()=>L5,computeConv2DInfo:()=>Ju,computeConv3DInfo:()=>H_,computeDefaultPad:()=>eS,computeDilation2DInfo:()=>XH,computeOptimalWindowSize:()=>w5,computeOutAndReduceShapes:()=>nS,computeOutShape:()=>b5,computePool2DInfo:()=>tS,computePool3DInfo:()=>YH,convertConv2DDataFormat:()=>q_,decodeEinsumEquation:()=>G5,eitherStridesOrDilationsAreOne:()=>Er,expandShapeToKeepDim:()=>xo,exponent:()=>B5,exponents:()=>z5,fromStringArrayToUint8:()=>pX,fromUint8ToStringArray:()=>cX,getAxesPermutation:()=>oS,getBroadcastDims:()=>k_,getComplexWithIndex:()=>P5,getEinsumComputePath:()=>H5,getEinsumPermutation:()=>W5,getFusedBiasGradient:()=>lc,getFusedDyActivation:()=>ac,getImageCenter:()=>v5,getInnerMostAxes:()=>jq,getPermuted:()=>I5,getReductionAxes:()=>ye,getReshaped:()=>C5,getReshapedPermuted:()=>S5,getSliceBeginCoords:()=>N5,getSliceSize:()=>k5,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>X5,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>Y5,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>Z5,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>tX,getSparseReshapeInputOutputMismatchErrorMessage:()=>rX,getSparseReshapeInputOutputMultipleErrorMessage:()=>eX,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>J5,getSparseReshapeNegativeOutputDimErrorMessage:()=>Q5,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>iX,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>nX,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>oX,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>sX,getUndoAxesPermutation:()=>hh,isIdentityPermutation:()=>q5,log:()=>l4,mergeRealAndImagArrays:()=>F5,prepareAndValidate:()=>__,prepareSplitSize:()=>j5,segment_util:()=>bS,shouldFuse:()=>cc,slice_util:()=>Be,splitRealAndImagArrays:()=>R5,tupleValuesAreOne:()=>Zn,upcastType:()=>ir,validateInput:()=>dx,validateUpdateShape:()=>j0,warn:()=>_i});function y5(r,t){let e=r[0].length;r.forEach((o,s)=>{A(o.length===e,()=>`Error in concat${e}D: rank of tensors[${s}] must be the same as the rank of the rest (${e})`)}),A(t>=0&&t<e,()=>`Error in concat${e}D: axis must be between 0 and ${e-1}.`);let n=r[0];r.forEach((o,s)=>{for(let i=0;i<e;i++)A(i===t||o[i]===n[i],()=>`Error in concat${e}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function b5(r,t){let e=r[0].slice();for(let n=1;n<r.length;n++)e[t]+=r[n][t];return e}var Ty=30;function w5(r){return r<=Ty?r:yp(r,Math.floor(Math.sqrt(r)))}function v5(r,t,e){let n=e*(typeof r=="number"?r:r[0]),o=t*(typeof r=="number"?r:r[1]);return[n,o]}function C5(r,t,e,n=!0){let o=[];if(n)o=o.concat(t.slice(0)),o.push(r[0]/e),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=t.length;for(let i=0;i<s;++i)o=o.concat([r[i+1]/t[i],t[i]]);o=o.concat(r.slice(s+1))}return o}function I5(r,t,e=!0){let n=[];if(e){n.push(t);for(let o=t+1;o<r;++o)o<=2*t?(n.push(o),n.push(o-(t+1))):n.push(o)}else{let o=[],s=[];for(let i=1;i<r;++i)i>=t*2+1||i%2===1?s.push(i):o.push(i);n.push(...o),n.push(0),n.push(...s)}return n}function S5(r,t,e,n=!0){let o=[];n?o.push(r[0]/e):o.push(r[0]*e);for(let s=1;s<r.length;++s)s<=t.length?n?o.push(t[s-1]*r[s]):o.push(r[s]/t[s-1]):o.push(r[s]);return o}function N5(r,t){let e=[0];for(let n=0;n<t;++n)e.push(r[n][0]);return e}function k5(r,t,e){let n=r.slice(0,1);for(let o=0;o<e;++o)n.push(r[o+1]-t[o][0]-t[o][1]);return n}var gS=1.7580993408473768,xS=1.0507009873554805;var T5=.3275911,_5=.254829592,E5=-.284496736,A5=1.421413741,$5=-1.453152027,D5=1.061405429;function F5(r,t){if(r.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${t.length}.`);let e=new Float32Array(r.length*2);for(let n=0;n<e.length;n+=2)e[n]=r[n/2],e[n+1]=t[n/2];return e}function R5(r){let t=new Float32Array(r.length/2),e=new Float32Array(r.length/2);for(let n=0;n<r.length;n+=2)t[n/2]=r[n],e[n/2]=r[n+1];return{real:t,imag:e}}function O5(r){let t=Math.ceil(r.length/4),e=new Float32Array(t),n=new Float32Array(t);for(let o=0;o<r.length;o+=4)e[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:e,imag:n}}function L5(r){let t=Math.floor(r.length/4),e=new Float32Array(t),n=new Float32Array(t);for(let o=2;o<r.length;o+=4)e[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:e,imag:n}}function P5(r,t){let e=r[t*2],n=r[t*2+1];return{real:e,imag:n}}function M5(r,t,e,n){r[n*2]=t,r[n*2+1]=e}function z5(r,t){let e=new Float32Array(r/2),n=new Float32Array(r/2);for(let o=0;o<Math.ceil(r/2);o++){let s=(t?2:-2)*Math.PI*(o/r);e[o]=Math.cos(s),n[o]=Math.sin(s)}return{real:e,imag:n}}function B5(r,t,e){let n=(e?2:-2)*Math.PI*(r/t),o=Math.cos(n),s=Math.sin(n);return{real:o,imag:s}}var yS="->",V5=/->/g,kA=",",TA="...";function G5(r,t){r=r.replace(/\s/g,"");let e=(r.length-r.replace(V5,"").length)/yS.length;if(e<1)throw new Error("Equations without an arrow are not supported.");if(e>1)throw new Error(`Equation must contain exactly one arrow ("${yS}").`);let[n,o]=r.split(yS);A(n.indexOf(TA)===-1,()=>`The ellipsis notation ("${TA}") is not supported yet.`);let s=n.split(kA),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let a=[];for(let m=0;m<o.length;++m){let f=o[m];if(!s.some(d=>d.indexOf(f)!==-1))throw new Error(`Output subscripts contain the label ${f} not present in the input subscripts.`);a.indexOf(f)===-1&&a.push(f)}for(let m=0;m<n.length;++m){let f=n[m];a.indexOf(f)===-1&&f!==kA&&a.push(f)}let u=new Array(s.length);for(let m=0;m<i;++m){if(new Set(s[m].split("")).size!==s[m].length)throw new Error(`Found duplicate axes in input component ${s[m]}. Support for duplicate axes in input is not implemented yet.`);u[m]=[];for(let f=0;f<s[m].length;++f)u[m].push(a.indexOf(s[m][f]))}let l=a.length,c=o.length,p=[];for(let m=c;m<l;++m)p.push(m);return{allDims:a,summedDims:p,idDims:u}}function W5(r,t){let e=new Array(r);e.fill(-1);for(let o=0;o<t.length;++o)e[t[o]]=o;let n=[];for(let o=0;o<r;++o)e[o]===-1&&n.push(o);return e=e.filter(o=>o!==-1),{permutationIndices:e,expandDims:n}}function U5(r,t,e){let n=new Array(r);for(let o=0;o<e.length;++o){let s=e[o].shape;for(let i=0;i<t[o].length;++i)n[t[o][i]]===void 0?n[t[o][i]]=s[i]:A(n[t[o][i]]===s[i],()=>`Expected dimension ${n[t[o][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function H5(r,t){let e=r,n=[],o=0;r.length===0&&e.push(-1),o=r.length+1;for(let i=0;i<o;++i)n.push([]);let s=[];for(let i=0;i<e.length;++i){let a=e[i],u=K5(t,a);for(let l of u)s.indexOf(l)===-1&&(n[i].push(l),s.push(l))}return{path:e,steps:n}}function q5(r){return r.every((t,e)=>t===e)}function K5(r,t){let e=[];for(let n=0;n<r.length;++n)(r[n].length===0||r[n].indexOf(t)!==-1||t===-1)&&e.push(n);return e}function j5(r,t,e=0){let n=[];if(typeof t=="number")A(r.shape[e]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(r.shape[e]/t);else{let o=t.reduce((i,a)=>(a===-1&&(i+=1),i),0);A(o<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((a,u)=>u>0?a+u:a);t[s]=r.shape[e]-i}A(r.shape[e]===t.reduce((i,a)=>i+a),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function X5(r){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${r}`}function Y5(r,t){return`indices(${r}, 0) is invalid: ${t} < 0`}function Z5(r,t,e){return`indices(${r}, 0) is invalid: ${t} >= ${e}`}function J5(r,t){return`only one output dimension may be -1, not both ${r} and ${t}`}function Q5(r,t){return`size ${r} must be non-negative, not ${t}`}function tX(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function eX(r,t){let e=Qt(r),n=Qt(t);return`Input to reshape is a SparseTensor with ${e}
dense values, but the requested shape requires a multiple of ${n}. inputShape=${r} outputShape= ${t}`}function rX(r,t){let e=Qt(r),n=Qt(t);return`Input to reshape is a tensor with ${e} dense values, but the requested shape has ${n}. inputShape=${r} outputShape=${t}`}function nX(){return"segment ids must be >= 0"}function oX(){return"segment ids are not increasing"}function sX(r,t){return`Segment id ${r} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function iX(r,t,e){return`Bad: indices[${r}] == ${t} out of range [0, ${e})`}var bS={};jt(bS,{collectGatherOpShapeInfo:()=>uX,computeOutShape:()=>lX,segOpComputeOptimalWindowSize:()=>aX});function aX(r,t){let e=!1,n;for(r<=Ty?(n=r,e=!0):n=yp(r,Math.floor(Math.sqrt(r)));!e;)n>t||n===r?e=!0:n=yp(r,n+1);return n}function lX(r,t,e){let n=[],o=r.length;for(let s=0;s<o;s++)s!==t?n.push(r[s]):n.push(e);return n}function uX(r,t,e,n){let o=t.shape.length,s=r.shape.length;if(n!==0&&(n<-o||n>o))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
${s}).`);if(e<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${e}).`);for(let p=0;p<n;++p)if(r.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=r.shape[e],a=[],u=1,l=1,c=1;for(let p=0;p<n;++p)a.push(r.shape[p]),u*=r.shape[p];for(let p=n;p<e;p++)a.push(r.shape[p]),l*=r.shape[p];for(let p=n;p<o;p++)a.push(t.shape[p]);for(let p=e+1;p<s;p++)a.push(r.shape[p]),c*=r.shape[p];return{batchSize:u,sliceSize:c,outerSize:l,dimSize:i,outputShape:a}}function cX(r){try{return r.map(t=>Qp(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function pX(r){return r.map(t=>Bl(t))}var Vr={};jt(Vr,{nonMaxSuppressionV3Impl:()=>Cy,nonMaxSuppressionV4Impl:()=>Iy,nonMaxSuppressionV5Impl:()=>Sy,whereImpl:()=>gy});var _y={kernelName:ci,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(r,yo(tt(e,"float32"),-1))}}};var _A={kernelName:ea,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Ht(tt(e,"float32")),o=Ne(ut(pt(1),n));return Yt(ct(r,o))}}}};var EA={kernelName:ra,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Ne(ut(Ht(tt(e,"float32")),1));return ct(r,n)}}}};var AA={kernelName:jn,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=zt(e.shape,n.shape);return{a:()=>{let a=r,u=ye(e.shape,o);return u.length>0&&(a=mt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=ye(n.shape,o);return u.length>0&&(a=mt(a,u)),R(a,n.shape)}}}};var $A={kernelName:Ko,saveAllInputs:!0,gradFunc:(r,t)=>{let e={};return t.forEach((n,o)=>{e[o]=()=>r.clone()}),e}};var DA={kernelName:jo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>St(e)}}};var FA={kernelName:Cl,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>St(e)}}};var RA={kernelName:sa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Ne(ut(pt(1),Ht(tt(e,"float32")))))}}};var OA={kernelName:ia,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Ne(Z(pt(1),Ht(tt(e,"float32"))));return ct(r,n)}}}};var LA={kernelName:ua,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=zt(e.shape,n.shape);return{a:()=>{let a=Z(Ht(e),Ht(n)),u=O(r,ct(n,a)),l=ye(e.shape,o);return l.length>0&&(u=mt(u,l)),R(u,e.shape)},b:()=>{let a=Z(Ht(e),Ht(n)),u=Yt(O(r,ct(e,a))),l=ye(n.shape,o);return l.length>0&&(u=mt(u,l)),R(u,n.shape)}}}};var PA={kernelName:aa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Z(Ht(tt(e,"float32")),1))}}};var MA={kernelName:la,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,ut(pt(1),Ht(tt(e,"float32"))))}}};function mX(r,t,e,n,o,s){let i=I(r,"dy","avgPool3dGrad"),a=I(t,"input","avgPool3dGrad"),u=i,l=a,c=!1;a.rank===4&&(c=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),A(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),Se("avgPool3dGrad",o,s);let p={dy:u,input:l},m={filterSize:e,strides:n,pad:o,dimRoundingMode:s},f=_.runKernel(vp,p,m);return c?R(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var zA=k({avgPool3dGrad_:mX});var BA={kernelName:Il,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i,dimRoundingMode:a}=e;return{x:()=>zA(r,n,o,s,i,a)}}};function fX(r,t,e,n,o){let s=I(r,"dy","avgPoolGrad"),i=I(t,"input","avgPoolGrad");A(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let a=i,u=s,l=!1;i.rank===3&&(l=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),A(a.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${a.rank}.`);let c={dy:u,input:a},p={filterSize:e,strides:n,pad:o},m=_.runKernel(wp,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var VA=k({avgPoolGrad_:fX});var GA={kernelName:Xo,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i}=e;return{x:()=>VA(r,n,o,s,i)}}};var WA={kernelName:Yo,inputsToSave:["a","b"],gradFunc:(r,t,e)=>{let[n,o]=t,{transposeA:s,transposeB:i}=e;return!s&&!i?{a:()=>Gt(r,o,!1,!0),b:()=>Gt(n,r,!0,!1)}:!s&&i?{a:()=>Gt(r,o,!1,!1),b:()=>Gt(r,n,!0,!1)}:s&&!i?{a:()=>Gt(o,r,!1,!0),b:()=>Gt(n,r,!1,!1)}:{a:()=>Gt(o,r,!0,!0),b:()=>Gt(r,n,!0,!0)}}};var UA={kernelName:pi,gradFunc:(r,t,e)=>{let{blockShape:n,crops:o}=e;return{x:()=>Ql(r,n,o)}}};var HA={kernelName:y1,gradFunc:(r,t,e)=>{let n=e,o=n.inputShape,s=n.shape,i=Array.from(s);for(let u=o.length-1;u>=0;u--)if(o[u]===s[u])i[u]=1;else if(o[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let a=[];for(let u=0;u<i.length;u++)i[u]>1&&a.push(u);return{x:()=>mt(r,a,!0)}}};var qA={kernelName:io,gradFunc:r=>({x:()=>r.clone()})};var KA={kernelName:Zo,gradFunc:r=>({x:()=>St(r)})};var jA={kernelName:ao,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{clipValueMin:o,clipValueMax:s}=e;return{x:()=>$e(Dr(Ln(n,o),Pn(n,s)),r,St(r))}}};var XA={kernelName:Sl,inputsToSave:["x"],gradFunc:_y.gradFunc};var YA={kernelName:mi,saveAllInputs:!0,gradFunc:(r,t,e)=>{let n=t.map(u=>u.shape),{axis:o}=e,s=ur(o,t[0].shape)[0],i=n.map(u=>u[s]);return mr(r,i,s).map(u=>()=>u)}};var ZA={kernelName:Jo,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,{dilations:s,strides:i,pad:a,dataFormat:u}=e;return A(Zn(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>cm(n.shape,r,o,i,a,u),filter:()=>$m(n,r,o.shape,i,a,u)}}};var JA={kernelName:Qo,inputsToSave:["dy","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,{strides:s,pad:i,dataFormat:a,dimRoundingMode:u}=e;return{dy:()=>Sn(r,o,s,i,a,1,u),filter:()=>$m(r,n,o.shape,s,i,a,u)}}};function dX(r,t,e,n,o){let s=r;r.rank===4&&(s=R(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let i=t;i.rank===4&&(i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),A(e.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${e}.`),A(s.shape[4]===e[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${e[3]}.`),A(i.shape[4]===e[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${e[4]}).`);let a={x:s,dy:i},u={strides:n,pad:o,filterShape:e};return _.runKernel(kp,a,u)}var QA=k({conv3DBackpropFilter_:dX});var t2={kernelName:Nl,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s}=e;A(Zn(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,a]=t;return{x:()=>Lx(i.shape,r,a,o,s),filter:()=>QA(i,r,a.shape,o,s)}}};var e2={kernelName:ts,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(Yt(Im(tt(e,"float32"))),r)}}};var r2={kernelName:es,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(Sm(tt(e,"float32")),r)}}};var n2={kernelName:rs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o,exclusive:s,reverse:i}=e;return{x:()=>{let a=oS([o],n.rank),u=fm(r,o,s,!i);return a!=null&&(u=Mt(u,a)),u}}}};var o2={kernelName:ns,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:i}=e,a=n==null?[1,1]:n;A(Zn(a),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[u,l]=t;return A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),A(Er(o,a),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${a}'.`),Se("depthwiseConv2d",s,i),{x:()=>by(u.shape,r,l,o,s,a,i),filter:()=>yy(u,r,l.shape,o,s,a,i)}}};var s2={kernelName:kl,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,s={x:n,filter:o,dy:r},i={x:n,filter:o,dy:r};return{x:()=>_.runKernel(Qd,s,e),filter:()=>_.runKernel(th,i,e)}}};var i2={kernelName:ss,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t,n={dy:r,y:e};return{x:()=>_.runKernel(Fp,n)}}};var a2={kernelName:fa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t,n=O(or(Yt(Ht(e))),2/Math.sqrt(Math.PI));return{x:()=>O(r,n)}}};var l2={kernelName:is,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(r,e)}}};var u2={kernelName:fi,inputsToSave:["input"],gradFunc:(r,t)=>{let[e]=t;return{input:()=>R(r,e.shape)}}};var c2={kernelName:ha,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(r,or(e))}}};var p2={kernelName:as,gradFunc:r=>({x:()=>St(r)})};var m2={kernelName:ls,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=zt(e.shape,n.shape);return{a:()=>{let a=ct(r,tt(n,"float32")),u=ye(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=O(r,tt(e,"float32")),u=ye(n.shape,o);u.length>0&&(a=R(mt(a,u),n.shape));let l=Ht(n);return Yt(ct(a,tt(l,"float32")))}}}};var f2={kernelName:us,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,t,e)=>{let{varianceEpsilon:n}=e,[o,s,i,a]=t,u=a==null?pt(1):a,l=ye(s.shape,o.shape),c=[];if(s.rank===1){for(let v=0;v<o.shape.length-1;++v)c.push(o.shape[v]);c.push(1)}let p=ut(o,s),m=O(r,u),f=wm(Z(i,pt(n))),d=O(O(O(f,f),f),pt(-.5));return{x:()=>s.rank===1?R(O(O(r,$r(R(f,[1,1,1,s.shape[0]]),c)),u),o.shape):R(O(O(r,f),u),o.shape),mean:()=>{let v=O(O(f,pt(-1)),m);return s.rank===1&&(v=mt(v,l)),R(v,s.shape)},variance:()=>{let v=O(O(d,p),m);return s.rank===1&&(v=mt(v,l)),R(v,s.shape)},scale:()=>{let v=O(p,f),N=O(r,v);return s.rank===1&&(N=mt(N,l)),R(N,s.shape)},offset:()=>{let v=r;return s.rank===1&&(v=mt(v,l)),R(v,s.shape)}}}};var g2={kernelName:di,inputsToSave:["x","indices"],gradFunc:(r,t,e)=>{let[n,o]=t,{axis:s}=e,i=ur(s,n.shape)[0];return{x:()=>{let u=n.shape,l=o.size,c=u.slice(0,i),p=c.length,m=u.slice(s,u.length).slice(1),f=m.length,d=d2(0,p),h=d2(p+1,p+1+f),g=h2([c,[l],m]),y=R(r,g),b=R(o,[l]),w=h2([[p],d,h]),v=Mt(y,w),N=Am(v,b,n.shape[i]),E=hh(w);return N=Mt(N,E),N},indices:()=>o}}};function d2(r,t){let e=[];for(let n=r;n<t;++n)e.push(n);return e}function h2(r){let t=[];for(let e=0;e<r.length;++e)for(let n=0;n<r[e].length;++n)t.push(r[e][n]);return t}var x2={kernelName:cs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>St(e),b:()=>St(n)}}};var y2={kernelName:lo,gradFunc:r=>({x:()=>tt(r,"float32")})};var b2={kernelName:ba,gradFunc:r=>({x:()=>St(r)})};var w2={kernelName:wa,gradFunc:r=>({x:()=>St(r)})};var v2={kernelName:va,gradFunc:r=>({x:()=>St(r)})};var C2={kernelName:ps,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{alpha:o}=e,s=Xe(n,0);return{x:()=>$e(s,r,O(r,o))}}};var I2={kernelName:Sa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Z(e,1))}}};var S2={kernelName:ms,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,tt(e,"float32"))}}};var N2={kernelName:w1,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e;return{logits:()=>{let i=or(n);return ut(r,O(mt(r,o,!0),i))}}}};function hX(r,t,e,n=5,o=1,s=1,i=.5){let a={x:r,y:t,dy:e},u={depthRadius:n,bias:o,alpha:s,beta:i};return _.runKernel(Mp,a,u)}var k2=k({localResponseNormalizationBackprop_:hX});var T2={kernelName:_l,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{depthRadius:s,bias:i,alpha:a,beta:u}=e;return{x:()=>k2(n,o,r,s,i,a,u)}}};function Ey(r,t,e,n){return t.rank<e.rank&&(t=R(t,xo(t.shape,n))),r.rank<e.rank&&(r=R(r,xo(r.shape,n))),{x:()=>O(r,tt(Ar(e,t),r.dtype))}}var wS={kernelName:fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{reductionIndices:o}=n,s=t[0],i=t[1],a=ur(o,s.shape),u=Ey(r,i,s,a);return{x:()=>u.x()}}};var _2={kernelName:ds,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>O(r,tt(Ln(e,n),"float32")),b:()=>O(r,tt(dm(e,n),"float32"))}}};function gX(r,t,e,n,o,s,i){let a=I(r,"dy","maxPool3dGrad"),u=I(t,"input","maxPool3dGrad"),l=I(e,"output","maxPool3dGrad"),c=a,p=u,m=l,f=!1;u.rank===4&&(f=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),p=R(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),m=R(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),A(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),A(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),A(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),Se("maxPool3dGrad",s,i);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:i},g=_.runKernel(Bp,d,h);return f?R(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var E2=k({maxPool3dGrad_:gX});var A2={kernelName:El,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=e;return{x:()=>E2(r,n,o,s,i,a,u)}}};function xX(r,t,e,n,o,s,i){let a=I(r,"dy","maxPoolGrad"),u=I(t,"input","maxPoolGrad"),l=I(e,"output","maxPoolGrad");A(u.rank===a.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${a.rank})`),A(a.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${a.rank}.`),A(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),Se("maxPoolGrad",s,i);let c={dy:a,input:u,output:l},p={filterSize:n,strides:o,pad:s,dimRoundingMode:i};return _.runKernel(zp,c,p)}var $2=k({maxPoolGrad_:xX});var D2={kernelName:hs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a}=e;return{x:()=>$2(r,n,o,s,i,a)}}};var F2={kernelName:gs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=ur(o,n.shape),a=nS(n.shape,s)[1],u=Qt(a);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=R(r,c);return ct(O(p,cr(n.shape,"float32")),u)}}}};var R2={kernelName:xs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{axis:o}=n,[s,i]=t,a=ur(o,s.shape),u=Ey(r,i,s,a);return{x:()=>u.x()}}};var O2={kernelName:ys,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>O(r,tt(Pn(e,n),"float32")),b:()=>O(r,tt(Xe(e,n),"float32"))}}};var L2={kernelName:bs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ot(r,s,n.shape)}}};var P2={kernelName:_a,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=zt(e.shape,n.shape);return{a:()=>{let a=ye(e.shape,o);return a.length>0?R(mt(r,a),e.shape):r},b:()=>{let a=O(r,Yt(Bi(ct(e,n)))),u=ye(n.shape,o);return u.length>0?R(mt(a,u),n.shape):a}}}};var M2={kernelName:ws,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=zt(e.shape,n.shape);return{a:()=>{let a=O(r,tt(n,"float32")),u=ye(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=O(r,tt(e,"float32")),u=ye(n.shape,o);return u.length>0?R(mt(a,u),n.shape):a}}}};var z2={kernelName:hi,gradFunc:r=>({x:()=>Yt(r)})};var B2={kernelName:vs,inputsToSave:["indices"],gradFunc:(r,t)=>{let e=t[0];return{indices:()=>Te(e.shape,"float32")}}};var V2={kernelName:gi,gradFunc:r=>({x:()=>St(r)})};var G2={kernelName:xi,saveAllInputs:!0,gradFunc:(r,t,e)=>{let{axis:n}=e;return Nr(r,n).map(s=>()=>s)}};var vS={kernelName:Cs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ot(r,s,n.shape)}}};var W2={kernelName:Is,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,t)=>{let[e,n,o]=t,s=e,i=n,a=zt(s.shape,i.shape);return{a:()=>{let c=tt(i,"float32"),p=O(r,O(c,ln(s,ut(c,pt(1))))),m=ye(s.shape,a);return m.length>0&&(p=mt(p,m)),R(p,s.shape)},b:()=>{let c=Xe(s,0),p=$e(c,Sr(s),St(s)),m=O(r,O(o,p)),f=ye(i.shape,a);return f.length>0&&(m=mt(m,f)),R(m,i.shape)}}}};var U2={kernelName:Ss,inputsToSave:["x","alpha"],gradFunc:(r,t)=>{let[e,n]=t,o=Xe(e,0);return{x:()=>$e(o,r,O(r,n)),alpha:()=>{let s=$e(o,St(r),O(r,e)),i=ye(n.shape,r.shape);return i.length>0&&(s=mt(s,i)),R(s,n.shape)}}}};function yX(r,t,e){let n=r.shape.slice();n[e]=1;let o=R(t,n),s=Qu(r,e,!0,!1),i=Qu(r,e,!0,!0),a=O(s,i);return O(o,a)}function bX(r,t,e){let n=r.shape.length,o=n-e.length,s=S.getAxesPermutation(e,n),i=r;s!=null&&(i=Mt(r,s));let a=i.shape.slice(),l=a.splice(n-e.length,e.length).reduce((m,f)=>m*f,1);a.push(l);let c=i.reshape(a),p=yX(c,t,o);if(p=p.reshape(i.shape),s!=null){let m=S.getUndoAxesPermutation(s);p=Mt(p,m)}return p}var H2={kernelName:Ns,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=[];return o==null?s=n.shape.map((i,a)=>a):typeof o=="number"?s=[o]:s=o,{x:()=>bX(n,r,s)}}};var q2={kernelName:os,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=zt(e.shape,n.shape);return{a:()=>{let a=ct(r,tt(n,"float32")),u=ye(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=O(r,tt(e,"float32")),u=ye(n.shape,o);u.length>0&&(a=R(mt(a,u),n.shape));let l=Ht(n);return Yt(ct(a,tt(l,"float32")))}}}};var K2={kernelName:Fa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Yt(Ht(e)))}}};var j2={kernelName:Es,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t,n=O(Pn(e,6),yo(e));return{x:()=>O(r,tt(n,"float32"))}}};var X2={kernelName:ks,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(r,tt(yo(e),"float32"))}}};var Y2={kernelName:yi,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>R(r,e.shape)}}};var Z2={kernelName:_s,inputsToSave:["images"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>_.runKernel(Hp,o,e)}}};var J2={kernelName:Ts,inputsToSave:["images"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>_.runKernel(Up,o,e)}}};var Q2={kernelName:As,gradFunc:(r,t,e)=>{let{dims:n}=e,o=ur(n,r.shape);return{x:()=>pr(r,o)}}};var t$={kernelName:$s,gradFunc:r=>({x:()=>St(r)})};var e$={kernelName:Ds,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>Yt(ct(r,O(ln(e,1.5),2)))}}};var r$={kernelName:bi,inputsToSave:["condition"],gradFunc:(r,t)=>{let[e]=t;return{condition:()=>tt(St(e),"float32"),t:()=>O(r,tt(e,r.dtype)),e:()=>O(r,tt(Zl(e),r.dtype))}}};var n$={kernelName:Oa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Xe(e,pt(0)),o=pt(gS),s=pt(xS),i=O(r,s),a=O(O(r,o),or(tt(e,"float32")));return $e(n,i,a)}}}};var o$={kernelName:Rs,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(r,O(e,ut(pt(1),e)))}}};var s$={kernelName:Pa,gradFunc:r=>({x:()=>St(r)})};var i$={kernelName:Fs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(jl(tt(e,"float32")),r)}}};var a$={kernelName:La,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(mm(tt(e,"float32")),r)}}};var l$={kernelName:wi,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{begin:o,size:s}=e,i=n.shape,[a,u]=Y0(n,o,s),l=[];for(let c=0;c<r.rank;c++)l.push([a[c],i[c]-a[c]-u[c]]);return{x:()=>cn(r,l)}}};var u$={kernelName:Ps,outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{dim:o}=e,s=!0,i=O(r,n);return{logits:()=>ut(i,O(mt(i,[o],s),n))}}};var c$={kernelName:Ma,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(r,Kr(e))}}};var CS={kernelName:vi,gradFunc:(r,t,e)=>{let{blockShape:n,paddings:o}=e;return{x:()=>ql(r,n,o)}}};var IS={kernelName:Ci,gradFunc:(r,t,e)=>{let{axis:n}=e;return{x:()=>se(r,n)}}};var p$={kernelName:Os,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,O(Ne(tt(e,"float32")),2))}}};var m$={kernelName:Rl,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(r,O(tt(e,"float32"),2))}}};var f$={kernelName:Ms,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=pt(2);return{a:()=>O(r,O(o,ut(e,n))),b:()=>O(r,O(o,ut(n,e)))}}};var d$={kernelName:uo,gradFunc:r=>({x:()=>St(r)})};var h$={kernelName:zs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=zt(e.shape,n.shape);return{a:()=>{let a=r,u=ye(e.shape,o);return u.length>0&&(a=mt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=ye(n.shape,o);return u.length>0&&(a=mt(a,u)),R(Yt(a),n.shape)}}}};var g$={kernelName:Ls,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,o=n.shape.slice(),{axis:s}=e;ur(s,n.shape).forEach(l=>{o[l]=1});let a=R(r,o),u=O(a,cr(n.shape,"float32"));return{x:()=>u}}};var x$={kernelName:Bs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Ht(jl(e)))}}};var y$={kernelName:Vs,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>O(ut(pt(1),Ht(e)),r)}}};var b$={kernelName:Xn,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{reps:o}=e;return{x:()=>{let i=St(n);if(n.rank===1)for(let a=0;a<o[0];++a)i=Z(i,Ot(r,[a*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)i=Z(i,Ot(r,[a*n.shape[0],u*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)for(let l=0;l<o[2];++l)i=Z(i,Ot(r,[a*n.shape[0],u*n.shape[1],l*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)for(let l=0;l<o[2];++l)for(let c=0;c<o[3];++c)i=Z(i,Ot(r,[a*n.shape[0],u*n.shape[1],l*n.shape[2],c*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return i}}}};var w$={kernelName:Yn,gradFunc:(r,t,e)=>{let n=e,{perm:o}=n,s=hh(o);return{x:()=>Mt(r,s)}}};var v$={kernelName:Ii,gradFunc:(r,t,e)=>{let n=e,{axis:o}=n;return{value:()=>sr(r,o)}}};var C$={kernelName:Ml,inputsToSave:["segmentIds"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>wX(r,e)}}};function wX(r,t){let e=Nn(t,St(t)),n=Vi(r,e),o=Ln(t,pt(0,"int32")),s=n.rank-o.rank;for(let a=0;a<s;++a)o=yr(o,a+1);o=Dr(o,cr(n.shape,"bool"));let i=St(n);return $e(o,n,i)}var I$={kernelName:Si,gradFunc:r=>({x:()=>St(r)})};var vX=[_y,_A,EA,AA,$A,DA,FA,RA,OA,LA,PA,MA,BA,GA,WA,UA,HA,qA,KA,jA,XA,YA,JA,ZA,t2,e2,r2,n2,o2,s2,q2,i2,a2,l2,u2,c2,m2,p2,f2,g2,x2,y2,b2,w2,v2,C2,I2,S2,N2,T2,wS,wS,_2,A2,D2,F2,R2,O2,L2,P2,M2,z2,B2,V2,G2,vS,vS,W2,U2,H2,K2,j2,X2,Y2,Z2,J2,Q2,t$,e$,r$,n$,o$,s$,i$,a$,l$,u$,c$,CS,CS,IS,IS,p$,f$,m$,d$,h$,g$,x$,y$,b$,w$,v$,C$,I$];for(let r of vX)C1(r);P().prototype.abs=function(){return this.throwIfDisposed(),Ae(this)};P().prototype.acos=function(){return this.throwIfDisposed(),gx(this)};P().prototype.acosh=function(){return this.throwIfDisposed(),xx(this)};P().prototype.add=function(r){return this.throwIfDisposed(),Z(this,r)};P().prototype.all=function(r,t){return this.throwIfDisposed(),am(this,r,t)};P().prototype.any=function(r,t){return this.throwIfDisposed(),Yu(this,r,t)};P().prototype.argMax=function(r){return this.throwIfDisposed(),Ri(this,r)};P().prototype.argMin=function(r){return this.throwIfDisposed(),yx(this,r)};P().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),R(this,[])};P().prototype.asType=function(r){return this.throwIfDisposed(),tt(this,r)};P().prototype.as1D=function(){return this.throwIfDisposed(),R(this,[this.size])};P().prototype.as2D=function(r,t){return this.throwIfDisposed(),R(this,[r,t])};P().prototype.as3D=function(r,t,e){return this.throwIfDisposed(),R(this,[r,t,e])};P().prototype.as4D=function(r,t,e,n){return this.throwIfDisposed(),R(this,[r,t,e,n])};P().prototype.as5D=function(r,t,e,n,o){return this.throwIfDisposed(),R(this,[r,t,e,n,o])};P().prototype.asin=function(){return this.throwIfDisposed(),bx(this)};P().prototype.asinh=function(){return this.throwIfDisposed(),wx(this)};P().prototype.atan=function(){return this.throwIfDisposed(),vx(this)};P().prototype.atan2=function(r){return this.throwIfDisposed(),Cx(this,r)};P().prototype.atanh=function(){return this.throwIfDisposed(),Ix(this)};P().prototype.avgPool=function(r,t,e,n){return this.throwIfDisposed(),Hl(this,r,t,e,n)};P().prototype.batchToSpaceND=function(r,t){return this.throwIfDisposed(),ql(this,r,t)};P().prototype.batchNorm=function(r,t,e,n,o){return this.throwIfDisposed(),Li(this,r,t,e,n,o)};P().prototype.broadcastTo=function(r){return this.throwIfDisposed(),Kl(this,r)};P().prototype.cast=function(r){return this.throwIfDisposed(),tt(this,r)};P().prototype.ceil=function(){return this.throwIfDisposed(),Ax(this)};P().prototype.clipByValue=function(r,t){return this.throwIfDisposed(),Ir(this,r,t)};P().prototype.concat=function(r,t){return this.throwIfDisposed(),r instanceof Pt&&(r=[r]),se([this,...r],t)};P().prototype.conv1d=function(r,t,e,n,o,s){return this.throwIfDisposed(),um(this,r,t,e,n,o,s)};P().prototype.conv2dTranspose=function(r,t,e,n,o){return this.throwIfDisposed(),pm(this,r,t,e,n,o)};P().prototype.conv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Sn(this,r,t,e,n,o,s)};P().prototype.cos=function(){return this.throwIfDisposed(),jl(this)};P().prototype.cosh=function(){return this.throwIfDisposed(),mm(this)};P().prototype.cumprod=function(r,t,e){return this.throwIfDisposed(),Qu(this,r,t,e)};P().prototype.cumsum=function(r,t,e){return this.throwIfDisposed(),fm(this,r,t,e)};P().prototype.depthToSpace=function(r,t){return this.throwIfDisposed(),Mx(this,r,t)};P().prototype.depthwiseConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Pi(this,r,t,e,n,o,s)};P().prototype.dilation2d=function(r,t,e,n,o){return this.throwIfDisposed(),zx(this,r,t,e,n,o)};P().prototype.divNoNan=function(r){return this.throwIfDisposed(),Bx(this,r)};P().prototype.div=function(r){return this.throwIfDisposed(),ct(this,r)};P().prototype.dot=function(r){return this.throwIfDisposed(),Vx(this,r)};P().prototype.elu=function(){return this.throwIfDisposed(),Mi(this)};P().prototype.equal=function(r){return this.throwIfDisposed(),Ar(this,r)};P().prototype.erf=function(){return this.throwIfDisposed(),Gx(this)};P().prototype.euclideanNorm=function(r,t){return this.throwIfDisposed(),Wx(this,r,t)};P().prototype.exp=function(){return this.throwIfDisposed(),or(this)};P().prototype.expandDims=function(r){return this.throwIfDisposed(),yr(this,r)};P().prototype.expm1=function(){return this.throwIfDisposed(),Ux(this)};P().prototype.fft=function(){return this.throwIfDisposed(),nu(this)};P().prototype.flatten=function(){return this.throwIfDisposed(),R(this,[this.size])};P().prototype.floor=function(){return this.throwIfDisposed(),Bi(this)};P().prototype.floorDiv=function(r){return this.throwIfDisposed(),im(this,r)};P().prototype.gather=function(r,t){return this.throwIfDisposed(),Vi(this,r,t)};P().prototype.greaterEqual=function(r){return this.throwIfDisposed(),Ln(this,r)};P().prototype.greater=function(r){return this.throwIfDisposed(),Xe(this,r)};P().prototype.ifft=function(){return this.throwIfDisposed(),Ya(this)};P().prototype.irfft=function(){return this.throwIfDisposed(),Tm(this)};P().prototype.isFinite=function(){return this.throwIfDisposed(),Hx(this)};P().prototype.isInf=function(){return this.throwIfDisposed(),qx(this)};P().prototype.isNaN=function(){return this.throwIfDisposed(),Kx(this)};P().prototype.leakyRelu=function(r){return this.throwIfDisposed(),Xl(this,r)};P().prototype.lessEqual=function(r){return this.throwIfDisposed(),Pn(this,r)};P().prototype.less=function(r){return this.throwIfDisposed(),dm(this,r)};P().prototype.localResponseNormalization=function(r,t,e,n){return this.throwIfDisposed(),jx(this,r,t,e,n)};P().prototype.logSigmoid=function(){return this.throwIfDisposed(),Zx(this)};P().prototype.logSoftmax=function(r){return this.throwIfDisposed(),hm(this,r)};P().prototype.logSumExp=function(r,t){return this.throwIfDisposed(),gm(this,r,t)};P().prototype.log=function(){return this.throwIfDisposed(),Sr(this)};P().prototype.log1p=function(){return this.throwIfDisposed(),Yl(this)};P().prototype.logicalAnd=function(r){return this.throwIfDisposed(),Dr(this,r)};P().prototype.logicalNot=function(){return this.throwIfDisposed(),Zl(this)};P().prototype.logicalOr=function(r){return this.throwIfDisposed(),xm(this,r)};P().prototype.logicalXor=function(r){return this.throwIfDisposed(),Jx(this,r)};P().prototype.matMul=function(r,t,e){return this.throwIfDisposed(),Gt(this,r,t,e)};P().prototype.maxPool=function(r,t,e,n){return this.throwIfDisposed(),Jl(this,r,t,e,n)};P().prototype.max=function(r,t){return this.throwIfDisposed(),Mr(this,r,t)};P().prototype.maximum=function(r){return this.throwIfDisposed(),Nn(this,r)};P().prototype.mean=function(r,t){return this.throwIfDisposed(),ke(this,r,t)};P().prototype.min=function(r,t){return this.throwIfDisposed(),tc(this,r,t)};P().prototype.minimum=function(r){return this.throwIfDisposed(),Gi(this,r)};P().prototype.mirrorPad=function(r,t){return this.throwIfDisposed(),ey(this,r,t)};P().prototype.mod=function(r){return this.throwIfDisposed(),ry(this,r)};P().prototype.mul=function(r){return this.throwIfDisposed(),O(this,r)};P().prototype.neg=function(){return this.throwIfDisposed(),Yt(this)};P().prototype.norm=function(r,t,e){return this.throwIfDisposed(),Xa(this,r,t,e)};P().prototype.notEqual=function(r){return this.throwIfDisposed(),Hs(this,r)};P().prototype.oneHot=function(r,t=1,e=0){return this.throwIfDisposed(),Di(this,r,t,e)};P().prototype.onesLike=function(){return this.throwIfDisposed(),br(this)};P().prototype.pad=function(r,t){return this.throwIfDisposed(),cn(this,r,t)};P().prototype.pool=function(r,t,e,n,o,s){return this.throwIfDisposed(),ny(this,r,t,e,n,o,s)};P().prototype.pow=function(r){return this.throwIfDisposed(),ln(this,r)};P().prototype.prelu=function(r){return this.throwIfDisposed(),tu(this,r)};P().prototype.prod=function(r,t){return this.throwIfDisposed(),oy(this,r,t)};P().prototype.reciprocal=function(){return this.throwIfDisposed(),uy(this)};P().prototype.relu=function(){return this.throwIfDisposed(),Fr(this)};P().prototype.relu6=function(){return this.throwIfDisposed(),ym(this)};P().prototype.reshapeAs=function(r){return this.throwIfDisposed(),R(this,r.shape)};P().prototype.reshape=function(r){return this.throwIfDisposed(),R(this,r)};P().prototype.resizeBilinear=function(r,t,e){return this.throwIfDisposed(),Ny(this,r,t,e)};P().prototype.resizeNearestNeighbor=function(r,t,e){return this.throwIfDisposed(),ky(this,r,t,e)};P().prototype.reverse=function(r){return this.throwIfDisposed(),pr(this,r)};P().prototype.rfft=function(){return this.throwIfDisposed(),ou(this)};P().prototype.round=function(){return this.throwIfDisposed(),bm(this)};P().prototype.rsqrt=function(){return this.throwIfDisposed(),wm(this)};P().prototype.selu=function(){return this.throwIfDisposed(),vm(this)};P().prototype.separableConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Cm(this,r,t,e,n,o,s)};P().prototype.sigmoid=function(){return this.throwIfDisposed(),Kr(this)};P().prototype.sign=function(){return this.throwIfDisposed(),cy(this)};P().prototype.sin=function(){return this.throwIfDisposed(),Im(this)};P().prototype.sinh=function(){return this.throwIfDisposed(),Sm(this)};P().prototype.slice=function(r,t){return this.throwIfDisposed(),Ot(this,r,t)};P().prototype.softmax=function(r){return this.throwIfDisposed(),ru(this,r)};P().prototype.softplus=function(){return this.throwIfDisposed(),Us(this)};P().prototype.spaceToBatchND=function(r,t){return this.throwIfDisposed(),Ql(this,r,t)};P().prototype.split=function(r,t){return this.throwIfDisposed(),mr(this,r,t)};P().prototype.sqrt=function(){return this.throwIfDisposed(),Ne(this)};P().prototype.square=function(){return this.throwIfDisposed(),Ht(this)};P().prototype.squaredDifference=function(r){return this.throwIfDisposed(),_m(this,r)};P().prototype.squeeze=function(r){return this.throwIfDisposed(),Mn(this,r)};P().prototype.stack=function(r,t){this.throwIfDisposed();let e=r instanceof Pt?[this,r]:[this,...r];return sr(e,t)};P().prototype.step=function(r){return this.throwIfDisposed(),yo(this,r)};P().prototype.stridedSlice=function(r,t,e,n,o,s,i,a){return this.throwIfDisposed(),py(this,r,t,e,n,o,s,i,a)};P().prototype.sub=function(r){return this.throwIfDisposed(),ut(this,r)};P().prototype.sum=function(r,t){return this.throwIfDisposed(),mt(this,r,t)};P().prototype.tan=function(){return this.throwIfDisposed(),my(this)};P().prototype.tanh=function(){return this.throwIfDisposed(),Oi(this)};P().prototype.tile=function(r){return this.throwIfDisposed(),$r(this,r)};P().prototype.toBool=function(){return this.throwIfDisposed(),tt(this,"bool")};P().prototype.toFloat=function(){return this.throwIfDisposed(),tt(this,"float32")};P().prototype.toInt=function(){return this.throwIfDisposed(),tt(this,"int32")};P().prototype.topk=function(r,t){return this.throwIfDisposed(),fy(this,r,t)};P().prototype.transpose=function(r){return this.throwIfDisposed(),Mt(this,r)};P().prototype.unique=function(r){return this.throwIfDisposed(),dy(this,r)};P().prototype.unsortedSegmentSum=function(r,t){return this.throwIfDisposed(),Am(this,r,t)};P().prototype.unstack=function(r){return this.throwIfDisposed(),Nr(this,r)};P().prototype.where=function(r,t){return this.throwIfDisposed(),$e(r,this,t)};P().prototype.zerosLike=function(){return this.throwIfDisposed(),St(this)};var kn=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,kn.prototype)}},Gr=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,Gr.prototype)}},z=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,z.prototype)}},kt=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,kt.prototype)}},Dm=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,Dm.prototype)}};var vh=class{constructor(t){this.maxEntries=t||100,this.cache=new Map}get(t){let e;return this.cache.has(t)&&(e=this.cache.get(t),this.cache.delete(t),this.cache.set(t,e)),e}put(t,e){if(this.cache.has(t))this.cache.delete(t);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(t,e)}getMaxEntries(){return this.maxEntries}setMaxEntries(t){if(t<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${t}.`);if(this.maxEntries>t)for(let e=0;e<this.maxEntries-t;e++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=t}};function vo(r,t){if(Array.isArray(r)){let e=[];for(let n=0;n<t;n++)e=e.concat(r);return e}else{let e=new Array(t);return e.fill(r),e}}function Qn(r,t){if(!r)throw new Dm(t)}function NS(r,t){let e=0;for(let n of r)n===t&&e++;return e}function kr(r){return r.length===1?r[0]:r}function be(r){return Array.isArray(r)?r:[r]}function Co(r){let e=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return e[0]!=="_"?e:"private"+e}function Za(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(t,e)=>e.toUpperCase())}var wo={};function Fm(r){if(r==null)return null;let t={};return t.className=r.getClassName(),t.config=r.getConfig(),t}function SS(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(t=>SS(t));else{let t=Object.keys(r);for(let e of t){let n=r[e];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?r[e]=n.value:SS(n))}}}function Hi(r,t={},e={},n="object",o=!1){if(typeof r=="string"){let s=r,i;if(s in e)i=e[s];else if(s in wo)i=wo[s];else if(i=t[s],i==null)throw new z(`Unknown ${n}: ${r}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=r;if(s.className==null||s.config==null)throw new z(`${n}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,a,u;if(i in e?[a,u]=e[i]:i in wo?[a,u]=wo.className:i in t&&([a,u]=t[i]),a==null)throw new z(`Unknown ${n}: ${i}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let f of Object.keys(wo))l[f]=wo[f];for(let f of Object.keys(e))l[f]=e[f];let c=s.config;c.customObjects=l;let p=Object.assign({},wo);for(let f of Object.keys(e))wo[f]=e[f];SS(s.config);let m=u(a,s.config,e,o);return wo=Object.assign({},p),m}else{let l=Object.assign({},wo);for(let p of Object.keys(e))wo[p]=e[p];let c=new a(s.config);return wo=Object.assign({},l),c}}}function CX(r,t){return r<t?-1:r>t?1:0}function Ch(r,t){return-1*CX(r,t)}function Io(r){if(r==null)return r;let t=[];for(let e of r)t.indexOf(e)===-1&&t.push(e);return t}function S$(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let t in r)if(r.hasOwnProperty(t))return!1;return!0}function qi(r,t,e){if(e!=null&&r.indexOf(e)<0)throw new z(`${e} is not a valid ${t}. Valid values are ${r} or null/undefined.`)}function Ay(r,t,e=0,n=1/0){return Qn(e>=0),Qn(n>=e),Array.isArray(r)&&r.length>=e&&r.length<=n&&r.every(o=>typeof o===t)}function Je(r,t){Array.isArray(r)?(x.assert(r.length>0,()=>`${t} is unexpectedly an empty array.`),r.forEach((e,n)=>Je(e,`element ${n+1} of ${t}`))):x.assert(Number.isInteger(r)&&r>0,()=>`Expected ${t} to be a positive integer, but got ${N$(r)}.`)}function N$(r){return r===null?"null":Array.isArray(r)?"["+r.map(t=>N$(t)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function k$(r,t,e){let n=e!=null?e():x.now(),o;return(...i)=>{let a=e!=null?e():x.now();return a-n<t||(n=a,o=r(...i)),o}}function $y(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}var IX=0;function Fy(){return IX++}var Dy={};function fu(r=""){return r in Dy||(Dy[r]=0),Dy[r]+=1,r+Dy[r].toString()}var T$=["channelsFirst","channelsLast"],_$=["nearest","bilinear"],E$=["valid","same","causal"],A$=["max","avg"],$$=["sum","mul","concat","ave"];var Rm=new Map;function Le(r){qi(T$,"DataFormat",r)}function F$(r){qi(_$,"InterpolationFormat",r)}function pn(r){qi(E$,"PaddingMode",r)}function kS(r){qi(A$,"PoolMode",r)}var Ih=[],D$="/";function Xs(r,t){Ih.push(r);try{let e=t();return Ih.pop(),e}catch(e){throw Ih.pop(),e}}function SX(){return Ih.length===0?"":Ih.join(D$)+D$}function Ry(r){if(!R$(r))throw new Error("Not a valid tensor name: '"+r+"'");return SX()+r}function Oy(r){if(!R$(r))throw new Error("Not a valid tensor name: '"+r+"'");Rm.has(r)||Rm.set(r,0);let t=Rm.get(r);if(Rm.set(r,Rm.get(r)+1),t>0){let e=`${r}_${t}`;return Rm.set(e,1),e}else return r}var NX=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function R$(r){return!!r.match(NX)}function O$(r){return r===parseInt(r.toString(),10)}function So(r,t,e){t==null&&(t=0),e==null&&(e=r.length);let n=1;for(let o=t;o<e;++o)n*=r[o];return n}function mc(r){if(r.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let e=0;e<r.length;e++){let n=r[e];n<t&&(t=n)}return t}function Ys(r){if(r.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let e=0;e<r.length;e++){let n=r[e];n>t&&(t=n)}return t}function jr(r,t){if(t<r)throw new z(`end (${t}) < begin (${r}) is forbidden.`);let e=[];for(let n=r;n<t;++n)e.push(n);return e}var TS;function ar(){return TS==null&&(TS=I_().epsilon()),TS}function mn(){return"channelsLast"}function fc(r,t){return tt(r,t)}function Qa(r,t=-1){let e=r.shape.slice();return t<0&&(t=e.length+t+1),e.splice(t,0,1),R(r,e)}function L$(r,t){return W(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let e=Qa(r,1);return Py(e,[1,t,1])})}function P$(r){let t=[So(r.shape)];return R(r,t)}function M$(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let t=[r.shape[0],So(r.shape,1)];return R(r,t)}function Ja(r,t,e){return W(()=>{switch(r.rank){case 1:return Nm(r,t,e);case 2:return yh(r,[t,0],[e,r.shape[1]]);case 3:return km(r,[t,0,0],[e,r.shape[1],r.shape[2]]);case 4:return ic(r,[t,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Ot(r,[t,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Ot(r,[t,0,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function _S(r,t,e){return W(()=>{switch(r.rank){case 1:return Nm(r,t,e);case 2:return yh(r,[0,t],[r.shape[0],e]);case 3:return km(r,[0,0,t],[r.shape[0],r.shape[1],e]);case 4:return ic(r,[0,0,0,t],[r.shape[0],r.shape[1],r.shape[2],e]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Sh(r,t,e,n){return W(()=>{switch(r.rank){case 1:return Nm(r,t,e);case 2:switch(n){case 1:return Ja(r,t,e);case 2:return _S(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return Ja(r,t,e);case 2:return km(r,[0,t,0],[r.shape[0],e,r.shape[2]]);case 3:return _S(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return Ja(r,t,e);case 2:return ic(r,[0,t,0,0],[r.shape[0],e,r.shape[2],r.shape[3]]);case 3:return ic(r,[0,0,t,0],[r.shape[0],r.shape[1],e,r.shape[3]]);case 4:return _S(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Om(r,t=-1){let e;return t<0&&(e=r[0].rank,e!==0?t=e:t=0),t===r[0].rank&&(t=-1),se(r,t)}function AS(r,t){switch(r.rank){case 1:return $x([r,t]);case 2:return Dx([r,t],0);case 3:return Fx([r,t],0);case 4:return Rx([r,t],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Py(r,t){if(Array.isArray(t)||(t=[t]),r.rank!==t.length)throw new z(`The length of input n (${t.length}) does not match the number of dimensions in input x (${r.rank})`);return $r(r,t)}function Lm(r,t=0,e=1,n,o){return sc(r,t,e,n,o)}function No(r,t,e,n){if(r.rank<2||t.rank<2)throw new kt(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${t.shape}`);if(t.rank>=3){let o=r.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(o!==s)throw new kt(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${t.shape}`)}if(r.rank===2&&t.rank===2)return su.matMul({a:r,b:t,transposeA:!1,transposeB:!1,bias:n?ES(r.rank,n,mn()):null,activation:e});{let o=r.shape.slice(),s=o.pop();r=R(r,[-1,s]);let i=t.shape.slice(),a=i.pop(),u=i.pop(),l=[...i,a],c=Array.from({length:t.rank},(d,h)=>h===0?t.rank-2:h<=t.rank-2?h-1:h);t=R(Mt(t,c),[u,-1]);let p=[...o,...l],m=!1,f=!1;return R(su.matMul({a:r,b:t,transposeA:m,transposeB:f,bias:n?ES(r.rank,n,mn()):null,activation:e}),p)}}function My(r,t,e){return W(()=>(Array.isArray(t)?t=Ve(t,"int32"):t=tt(t,"int32"),Vi(r,t,e)))}function dc(r){return O(r,r)}function ES(r,t,e){let n=t.shape;if(t.rank!==1&&t.rank!==r)throw new z(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${r}`);if(r===5){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1,1,1]):R(t,[1,n[3],n[0],n[1],n[2]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===4){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1,1]):R(t,[1,n[2],n[0],n[1]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===3){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1]):R(t,[1,n[1],n[0]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,n[0]]):R(t,[1].concat(n))}else if(r<3)return t;throw new z(`Unsupported input rank by biasAdd: ${t.rank}`)}function fn(r,t,e){return W(()=>(e==null&&(e=mn()),Le(e),Z(r,ES(r.rank,t,e))))}function z$(r,t=1){if(t!==1)throw new kt(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Mi(r)}function B$(r){return W(()=>ct(r,Z(Ae(r),1)))}function zy(r,t,e,n){return W(()=>mS(r,t,e,n))}function V$(r){return W(()=>{let t=Z(.5,O(.2,r));return Ir(t,0,1)})}function du(r,t,e=!1){return e?r():t()}var G$=["fanIn","fanOut","fanAvg"],W$=["normal","uniform","truncatedNormal"];function kX(r){qi(G$,"FanMode",r)}function TX(r){qi(W$,"Distribution",r)}var hn=class extends et.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Pm=class extends hn{apply(t,e){return Te(t,e)}};Pm.className="Zeros";et.registerClass(Pm);var hu=class extends hn{apply(t,e){return cr(t,e)}};hu.className="Ones";et.registerClass(hu);var Mm=class extends hn{constructor(t){if(super(),typeof t!="object")throw new z(`Expected argument of type ConstantConfig but got ${t}`);if(t.value===void 0)throw new z(`config must have value set but got ${t}`);this.value=t.value}apply(t,e){return W(()=>O(pt(this.value),cr(t,e)))}getConfig(){return{value:this.value}}};Mm.className="Constant";et.registerClass(Mm);var zm=class extends hn{constructor(t){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=t.minval||this.DEFAULT_MINVAL,this.maxval=t.maxval||this.DEFAULT_MAXVAL,this.seed=t.seed}apply(t,e){return Wi(t,this.minval,this.maxval,e)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};zm.className="RandomUniform";et.registerClass(zm);var Bm=class extends hn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new kt(`randomNormal does not support dType ${e}.`);return Lm(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Bm.className="RandomNormal";et.registerClass(Bm);var Vm=class extends hn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new kt(`truncatedNormal does not support dType ${e}.`);return Em(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Vm.className="TruncatedNormal";et.registerClass(Vm);var Gm=class extends hn{constructor(t){super(),this.gain=t.gain!=null?t.gain:1}apply(t,e){return W(()=>{if(t.length!==2||t[0]!==t[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return O(this.gain,ec(t[0]))})}getConfig(){return{gain:this.gain}}};Gm.className="Identity";et.registerClass(Gm);function _X(r,t="channelsLast"){let e,n;if(Le(t),r.length===2)e=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(t==="channelsFirst"){let o=So(r,2);e=r[1]*o,n=r[0]*o}else if(t==="channelsLast"){let o=So(r,0,r.length-2);e=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=So(r);e=Math.sqrt(o),n=Math.sqrt(o)}return[e,n]}var Wr=class extends hn{constructor(t){if(super(),t.scale<0)throw new z(`scale must be a positive float. Got: ${t.scale}`);this.scale=t.scale==null?1:t.scale,this.mode=t.mode==null?"fanIn":t.mode,kX(this.mode),this.distribution=t.distribution==null?"normal":t.distribution,TX(this.distribution),this.seed=t.seed}apply(t,e){let n=_X(t),o=n[0],s=n[1],i=this.scale;if(this.mode==="fanIn"?i/=Math.max(1,o):this.mode==="fanOut"?i/=Math.max(1,s):i/=Math.max(1,(o+s)/2),this.distribution==="normal"){let a=Math.sqrt(i);if(e=e||"float32",e!=="float32"&&e!=="int32")throw new kt(`${this.getClassName()} does not support dType ${e}.`);return Em(t,0,a,e,this.seed)}else{let a=Math.sqrt(3*i);return Wi(t,-a,a,e)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Wr.className="VarianceScaling";et.registerClass(Wr);var hc=class extends Wr{constructor(t){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Wr.className}};hc.className="GlorotUniform";et.registerClass(hc);var gc=class extends Wr{constructor(t){super({scale:1,mode:"fanAvg",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Wr.className}};gc.className="GlorotNormal";et.registerClass(gc);var xc=class extends Wr{constructor(t){super({scale:2,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Wr.className}};xc.className="HeNormal";et.registerClass(xc);var yc=class extends Wr{constructor(t){super({scale:2,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Wr.className}};yc.className="HeUniform";et.registerClass(yc);var bc=class extends Wr{constructor(t){super({scale:1,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Wr.className}};bc.className="LeCunNormal";et.registerClass(bc);var wc=class extends Wr{constructor(t){super({scale:1,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Wr.className}};wc.className="LeCunNormal";et.registerClass(wc);var Wm=class extends hn{constructor(t){if(super(),this.DEFAULT_GAIN=1,this.gain=t.gain==null?this.DEFAULT_GAIN:t.gain,this.seed=t.seed,this.seed!=null)throw new kt("Random seed is not implemented for Orthogonal Initializer yet.")}apply(t,e){return W(()=>{if(t.length<2)throw new kt("Shape must be at least 2D.");t[0]*t[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${t[0]*t[1]}) elements: Slowness may result.`);let n=t[0]>t[1]?[t[1],t[0]]:t,o=Lm(n,0,1,"float32"),s=hS.gramSchmidt(o);return t[0]>t[1]&&(s=Mt(s)),O(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Wm.className="Orthogonal";et.registerClass(Wm);var U$={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function H$(r,t={}){return Hi(r,et.SerializationMap.getMap().classNameMap,t,"initializer")}function _e(r){return Fm(r)}function ge(r){if(typeof r=="string"){let t=r in U$?U$[r]:r;if(t==="GlorotNormal")return new gc;if(t==="GlorotUniform")return new hc;if(t==="HeNormal")return new xc;if(t==="HeUniform")return new yc;if(t==="LeCunNormal")return new bc;if(t==="LeCunUniform")return new wc;{let e={};return e.className=t,e.config={},H$(e)}}else return r instanceof hn?r:H$(r)}function By(r){return Array.isArray(r)&&Array.isArray(r[0])}function Um(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Lt(r){let t;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);t=r[0]}else t=r;return t}function te(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Hm(r){let t=0;for(let e of r)e.shape.length===0?t+=1:t+=e.shape.reduce((n,o)=>n*o);return t}var K$="Variable",Nh=class{constructor(t,e="float32",n=K$,o=!0,s=null){this.dtype=e==null?"float32":e,this.shape=t.shape,this.id=Fy(),n=n==null?K$:n,this.originalName=Ry(n),this.name=Oy(this.originalName),this.trainable_=o,this.constraint=s,this.val=hy(t,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(t){return this.assertNotDisposed(),AX(this.val,t),this.val.id!==t.id&&(this.val.assign(t),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(t){this.trainable_=t,this.val.trainable=t}};function AX(r,t){if(r.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(t.shape))}function kh(r){return r.map(t=>t.read())}function qm(r){r.forEach(t=>{t[0].write(t[1])})}var we=class{constructor(t){this.dtype=t.dtype,this.shape=t.shape,t.shape!=null?this.ndim=t.shape.length:this.ndim=t.ndim,this.maxNDim=t.maxNDim,this.minNDim=t.minNDim,this.axes=t.axes||{}}},Xr=class{constructor(t,e,n,o,s,i,a){this.dtype=t,this.shape=e,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=a,this.id=Fy(),i!=null&&(this.originalName=Ry(i),this.name=Oy(this.originalName)),this.rank=e.length}},$X=0,tl=class{constructor(t,e){this.callArgs=e,this.id=$X++,this.outboundLayer=t.outboundLayer,this.inboundLayers=t.inboundLayers,this.nodeIndices=t.nodeIndices,this.tensorIndices=t.tensorIndices,this.inputTensors=t.inputTensors,this.outputTensors=t.outputTensors,this.inputMasks=t.inputMasks,this.outputMasks=t.outputMasks,this.inputShapes=t.inputShapes,this.outputShapes=t.outputShapes;for(let n of t.inboundLayers)n!=null&&n.outboundNodes.push(this);t.outboundLayer.inboundNodes.push(this)}getConfig(){let t=[];for(let e of this.inboundLayers)e!=null?t.push(e.name):t.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:t,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},DX=0,Bt=class extends et.Serializable{constructor(t={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=DX++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let e=t.name;if(!e){let n=this.getClassName();e=Co(n)+"_"+fu(n)}if(this.name=e,this.trainable_=t.trainable==null?!0:t.trainable,t.inputShape!=null||t.batchInputShape!=null){let n;if(t.batchInputShape!=null)n=t.batchInputShape;else if(t.inputShape!=null){let s=null;t.batchSize!=null&&(s=t.batchSize),n=[s].concat(t.inputShape)}this.batchInputShape=n;let o=t.dtype;o==null&&(o=t.inputDType),o==null&&(o="float32"),this.dtype=o}t.weights!=null?this.initialWeights=t.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(t,e){return t.name+"_ib-"+e.toString()}getNodeAtIndex(t,e){if(this.inboundNodes.length===0)throw new Gr(`The layer has never been called and thus has no defined ${e}.`);if(this.inboundNodes.length<=t)throw new z(`Asked to get ${e} at node ${t}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[t]}getInputAt(t){return kr(this.getNodeAtIndex(t,"input").inputTensors)}getOutputAt(t){return kr(this.getNodeAtIndex(t,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new kn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new kn(`Layer ${this.name} is not connected, no input to return.`);return kr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new kn(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new kn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return kr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(t=>t())}get updates(){return this._updates}get built(){return this._built}set built(t){this._built=t}get trainable(){return this.trainable_}set trainable(t){this._trainableWeights.forEach(e=>e.trainable=t),this.trainable_=t}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(t=>t.trainable):[]}set trainableWeights(t){this._trainableWeights=t}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(t=>!t.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(t){this._nonTrainableWeights=t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(t){if(t=be(t),this.inputSpec==null||this.inputSpec.length===0)return;let e=be(this.inputSpec);if(t.length!==e.length)throw new z(`Layer ${this.name} expects ${e.length} inputs, but it received ${t.length} input tensors. Input received: ${t}`);for(let n=0;n<t.length;n++){let o=t[n],s=e[n];if(s==null)continue;let i=o.rank;if(s.ndim!=null&&i!==s.ndim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${i}`);if(s.maxNDim!=null&&i>s.maxNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${i}`);if(s.minNDim!=null&&i<s.minNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${i}.`);if(s.dtype!=null&&o.dtype!==s.dtype)throw new z(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${o.dtype}.`);if(s.axes){let a=o.shape;for(let u in s.axes){let l=Number(u),c=s.axes[u],p=l>=0?a[l]:a[a.length+l];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${a}.`)}}if(s.shape!=null)for(let a=0;a<s.shape.length;++a){let u=s.shape[a],l=o.shape[a];if(u!=null&&l!=null&&u!==l)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${o.shape}.`)}}}call(t,e){return t}invokeCallHook(t,e){this._callHook!=null&&this._callHook(t,e)}setCallHook(t){this._callHook=t}clearCallHook(){this._callHook=null}apply(t,e){e=e||{},this.assertNotDisposed();let n=be(t),o=!0;for(let i of n)if(!(i instanceof Xr)){o=!1;break}let s=!0;for(let i of n)if(i instanceof Xr){s=!1;break}if(o===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return Xs(this.name,()=>{if(!this.built){this.assertInputCompatibility(t);let i=[];for(let a of be(t))i.push(a.shape);this.build(kr(i)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(t),s){let i=this.call(t,e),a=be(i),u=[];for(let l of a)n.indexOf(l)!==-1&&(l=l.clone()),u.push(l);if(i=kr(u),this.activityRegularizer!=null)throw new kt("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}else{let i=FX(t),a=this.computeOutputShape(i),u,l=RX(t);if(this.warnOnIncompatibleInputShape(Array.isArray(t)?i[0]:i),a!=null&&a.length>0&&Array.isArray(a[0])?u=a.map((c,p)=>new Xr(l,c,this,be(t),e,this.name,p)):u=new Xr(l,a,this,be(t),e,this.name),this.addInboundNode(t,u,null,null,i,a,e),this._refCount++,this.activityRegularizer!=null)throw new kt("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return u}})}warnOnIncompatibleInputShape(t){if(this.batchInputShape!=null)if(t.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(t)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let e=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&t[o]!=null&&t[o]!==n&&(e=!0)}),e&&console.warn(`The shape of the input tensor (${JSON.stringify(t)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new kn(`The layer ${this.name} has never been called and thus has no defined output shape.`);let t=[];for(let e of this.inboundNodes){let n=JSON.stringify(e.outputShapes);t.indexOf(n)===-1&&t.push(n)}if(t.length===1){let e=this.inboundNodes[0].outputShapes;return Array.isArray(e)&&Array.isArray(e[0])&&e.length===1?e[0]:e}else throw new kn(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Gr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Hm(this.weights)}build(t){this.built=!0}getWeights(t=!1){return kh(t?this.trainableWeights:this.weights)}setWeights(t){W(()=>{let e=this.weights;if(e.length!==t.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${t.length}, but the layer was expecting ${e.length} weights. Provided weights: ${t}...`);if(e.length===0)return;let n=[],o=kh(e);for(let s=0;s<o.length;++s){let i=o[s],a=e[s],u=t[s];if(!x.arraysEqual(i.shape,u.shape))throw new z(`Layer weight shape ${i.shape} not compatible with provided weight shape ${u.shape}`);n.push([a,u])}qm(n)})}addWeight(t,e,n,o,s,i,a,u){if(this._addedWeightNames.indexOf(t)!==-1)throw new z(`Duplicate weight name ${t} for layer ${this.name}`);this._addedWeightNames.push(t),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(o=u!=null?u():ge("zeros"));let l=o.apply(e,n),c=new Nh(l,n,t,i,a);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(c.read())),i==null&&(i=!0),i?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(t){this.fastWeightInitDuringBuild=t}addLoss(t){t==null||Array.isArray(t)&&t.length===0||(t=be(t),this._losses!==void 0&&this._losses!==null&&this.losses.push(...t))}computeOutputShape(t){return t}computeMask(t,e){if(!this.supportsMasking){if(e!=null)if(Array.isArray(e))e.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return e}addInboundNode(t,e,n,o,s,i,a=null){let u=be(t);e=be(e),n=be(n),o=be(o),s=Um(s),i=Um(i);let l=[],c=[],p=[];for(let m of u)l.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new tl({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:p,inputTensors:u,outputTensors:e,inputMasks:n,outputMasks:o,inputShapes:s,outputShapes:i},a);for(let m=0;m<e.length;m++)e[m].sourceLayer=this,e[m].nodeIndex=this.inboundNodes.length-1,e[m].tensorIndex=m}getConfig(){let t={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(t.batchInputShape=this.batchInputShape),this.dtype!=null&&(t.dtype=this.dtype),t}disposeWeights(){return this.weights.forEach(t=>t.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let t=0;return--this._refCount===0&&(t=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:t}}};function FX(r){r=be(r);let t=[];for(let e of r)t.push(e.shape);return kr(t)}function RX(r){return"float32"}function $S(r,t,e){if((t==null||e!=null&&e>0)&&(t=r.sourceLayer,e=r.nodeIndex),t.inboundNodes.length===0)return[r];{let n=t.inboundNodes[e];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;s<n.inboundLayers.length;s++){let i=n.inputTensors[s],a=n.inboundLayers[s],u=n.nodeIndices[s],l=$S(i,a,u);for(let c of l)o.indexOf(c)===-1&&o.push(c)}return o}}}var Zs=class extends Bt{constructor(t){if(super({dtype:t.dtype,name:t.name!=null?t.name:fu("input").toString()}),t.batchSize==null&&(t.batchSize=null),t.sparse==null&&(t.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=t.sparse,t.inputShape!=null&&t.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let e=t.batchInputShape;if(e==null){if(t.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");e=[t.batchSize].concat(t.inputShape)}else if(t.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=t.dtype||"float32";this.batchInputShape=e,this.dtype=n,this.inputSpec=[{shape:e}];let o=new Xr(this.dtype,this.batchInputShape,this,[],{},this.name);o.nodeIndex=0,o.tensorIndex=0,new tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[o],outputTensors:[o],inputMasks:[null],outputMasks:[null],inputShapes:[e],outputShapes:[e]})}apply(t,e){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Zs.className="InputLayer";et.registerClass(Zs);function Vy(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=r.batchShape;r.shape!=null&&t==null&&(t=[null].concat(r.shape));let e=r.dtype;return e==null&&(e="float32"),new Zs({batchInputShape:t,name:r.name,dtype:e,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}function OX(r,t){if(r.dtype==null||r.dtype===t.dtype)return t;try{return tt(t,r.dtype)}catch(e){throw new z(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var ko=class{constructor(t){if(this.id2Value={},this.id2Mask={},this.name2Id={},t instanceof ko)for(let e in t.id2Value)this.id2Value[e]=t.id2Value[e],e in t.id2Mask&&(this.id2Mask[e]=t.id2Mask[e]);else{if(t==null)return;for(let e of t)this.add(e.key,e.value)}}add(t,e,n){if(this.id2Value[t.id]==null)this.id2Value[t.id]=OX(t,e),this.name2Id[t.name]=t.id,n!=null&&(this.id2Mask[t.id]=n);else throw new z(`Duplicate key: name=${t.name}, id=${t.id}`);return this}addFeed(t){this.add(t.key,t.value)}hasKey(t){return this.id2Value[t.id]!=null}names(){return Object.keys(this.name2Id)}getValue(t){if(t instanceof Xr){if(this.id2Value[t.id]==null)throw new z(`Nonexistent key: ${t.name}`);return this.id2Value[t.id]}else{let e=this.name2Id[t];if(e==null)throw new z(`Feed dict has no SymbolicTensor name: ${t}`);return this.id2Value[e]}}getMask(t){if(t instanceof Xr){if(this.id2Value[t.id]==null)throw new z(`Nonexistent key: ${t.name}`);return this.id2Mask[t.id]}else{let e=this.name2Id[t];if(e==null)throw new z(`Feed dict has no SymbolicTensor name: ${t}`);return this.id2Mask[e]}}disposeMasks(){this.id2Mask!=null&&_t(this.id2Mask)}},Gy=new vh,Wy=new vh;function X$(r){Gy!=null&&Gy.setMaxEntries(r),Wy!=null&&Wy.setMaxEntries(r)}function vc(r,t,e,n){let o=e==null?!1:e.training,s=Array.isArray(r),i=s?r:[r],a=i.map(d=>d.name),u=[],l=t.names();for(let d of a)l.indexOf(d)!==-1?u.push(t.getValue(d)):u.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let c=a.join(",")+"|"+t.names().sort().join(","),p=Gy.get(c),m;if(p==null){let d=LX(i,t);p=d.sorted,m=d.recipientCounts,Gy.put(c,p),Wy.put(c,m)}m={},o||Object.assign(m,Wy.get(c));let f=new ko(t);for(let d=0;d<p.length;++d){if(n!=null){let L=mh().numTensors;L>n.maxNumTensors&&(n.maxNumTensors=L),L<n.minNumTensors&&(n.minNumTensors=L)}let h=p[d],g=h.sourceLayer;if(g instanceof Zs)continue;let y=[],b=[],w=[],v=!1;for(let L of h.inputs){let M=f.getValue(L),G=f.getMask(L);y.push(M),b.push(G),G!=null&&(v=!0),o||(m[L.name]--,m[L.name]===0&&!t.hasKey(L)&&a.indexOf(L.name)===-1&&!M.isDisposed&&L.sourceLayer.stateful!==!0&&w.push(M))}v&&(e=e||{},e.mask=b[0]);let N=be(g.apply(y,e)),E=null;g.supportsMasking&&(E=g.computeMask(y,b));let $=MX(h),D=Array.isArray($)?$:[$];for(let L=0;L<D.length;++L){f.hasKey(D[L])||f.add(D[L],N[L],Array.isArray(E)?E[0]:E);let M=a.indexOf(D[L].name);M!==-1&&(u[M]=N[L])}o||_t(w)}return f.disposeMasks(),s?u:u[0]}function LX(r,t){x.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let e=[],n={};if(r.length===1){let o=j$(r[0],t);e=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:i,recipientMap:a}=j$(s,t);for(let u of i)o.has(u.name)||(e.push(u),o.add(u.name));for(let u in a)n[u]==null&&(n[u]=new Set),a[u].forEach(l=>n[u].add(l))}}return{sorted:e,recipientCounts:PX(n)}}function PX(r){let t={};for(let e in r)t[e]=r[e].size;return t}function j$(r,t){let e=new Set,n=[],o={};for(let a of t.names())e.add(a);let s=[],i=[];for(s.push(r);s.length>0;){let a=s[s.length-1];if(e.has(a.name)){s.pop();continue}let u=i[i.length-1]===s.length-1;if(a.inputs.length===0||u)s.pop(),n.push(a),e.add(a.name),u&&i.pop();else{i.push(s.length-1);for(let l of a.inputs)o[l.name]==null&&(o[l.name]=new Set),o[l.name].add(a.name),!e.has(l.name)&&s.push(l)}}return{sorted:n,recipientMap:o}}function MX(r){let t;if(r.sourceLayer.inboundNodes.length===1)t=r.sourceLayer.output;else{let e=null;for(let n=0;n<r.sourceLayer.inboundNodes.length;++n)for(let o of r.sourceLayer.inboundNodes[n].outputTensors)if(o.id===r.id){e=n;break}t=r.sourceLayer.getOutputAt(e)}return t}var zX=B();zX.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,X$);var J$={};jt(J$,{maxNorm:()=>BX,minMaxNorm:()=>WX,nonNeg:()=>GX,unitNorm:()=>VX});function DS(r,t){return W(()=>Ne(mt(O(r,r),t,!0)))}var Cc=class extends et.Serializable{getConfig(){return{}}},Km=class extends Cc{constructor(t){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return W(()=>{let e=DS(t,this.axis),n=Ir(e,0,this.maxValue);return O(t,ct(n,Z(ar(),e)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Km.className="MaxNorm";et.registerClass(Km);var jm=class extends Cc{constructor(t){super(),this.defaultAxis=0,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return W(()=>ct(t,Z(ar(),DS(t,this.axis))))}getConfig(){return{axis:this.axis}}};jm.className="UnitNorm";et.registerClass(jm);var Xm=class extends Cc{apply(t){return Fr(t)}};Xm.className="NonNeg";et.registerClass(Xm);var Ym=class extends Cc{constructor(t){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=t.minValue!=null?t.minValue:this.defaultMinValue,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.rate=t.rate!=null?t.rate:this.defaultRate,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return W(()=>{let e=DS(t,this.axis),n=Z(O(this.rate,Ir(e,this.minValue,this.maxValue)),O(1-this.rate,e));return O(t,ct(n,Z(ar(),e)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Ym.className="MinMaxNorm";et.registerClass(Ym);var Y$={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ge(r){return Fm(r)}function Z$(r,t={}){return Hi(r,et.SerializationMap.getMap().classNameMap,t,"constraint")}function We(r){if(r==null)return null;if(typeof r=="string"){let e={className:r in Y$?Y$[r]:r,config:{}};return Z$(e)}else return r instanceof Cc?r:Z$(r)}function BX(r){return new Km(r)}function VX(r){return new jm(r)}function GX(){return new Xm}function WX(r){return new Ym(r)}var Q$={};jt(Q$,{constant:()=>qX,glorotNormal:()=>QX,glorotUniform:()=>JX,heNormal:()=>t8,heUniform:()=>e8,identity:()=>YX,leCunNormal:()=>r8,leCunUniform:()=>n8,ones:()=>HX,orthogonal:()=>o8,randomNormal:()=>jX,randomUniform:()=>KX,truncatedNormal:()=>XX,varianceScaling:()=>ZX,zeros:()=>UX});function UX(){return new Pm}function HX(){return new hu}function qX(r){return new Mm(r)}function KX(r){return new zm(r)}function jX(r){return new Bm(r)}function XX(r){return new Vm(r)}function YX(r){return new Gm(r)}function ZX(r){return new Wr(r)}function JX(r){return new hc(r)}function QX(r){return new gc(r)}function t8(r){return new xc(r)}function e8(r){return new yc(r)}function r8(r){return new bc(r)}function n8(r){return new wc(r)}function o8(r){return new Wm(r)}var $D={};jt($D,{Layer:()=>Bt,RNN:()=>_n,RNNCell:()=>ol,activation:()=>bY,add:()=>_Y,alphaDropout:()=>p7,average:()=>EY,averagePooling1d:()=>qS,averagePooling2d:()=>KS,averagePooling3d:()=>jS,avgPool1d:()=>MY,avgPool2d:()=>BY,avgPool3d:()=>GY,avgPooling1d:()=>zY,avgPooling2d:()=>VY,avgPooling3d:()=>WY,batchNormalization:()=>OY,bidirectional:()=>n7,concatenate:()=>AY,conv1d:()=>cY,conv2d:()=>pY,conv2dTranspose:()=>mY,conv3d:()=>fY,conv3dTranspose:()=>dY,convLstm2d:()=>QY,convLstm2dCell:()=>t7,cropping2D:()=>gY,dense:()=>wY,depthwiseConv2d:()=>yY,dot:()=>RY,dropout:()=>vY,elu:()=>oY,embedding:()=>TY,flatten:()=>IY,gaussianDropout:()=>c7,gaussianNoise:()=>u7,globalAveragePooling1d:()=>UY,globalAveragePooling2d:()=>HY,globalMaxPool1d:()=>s7,globalMaxPool2d:()=>i7,globalMaxPooling1d:()=>TD,globalMaxPooling2d:()=>_D,gru:()=>KY,gruCell:()=>jY,input:()=>BS,inputLayer:()=>nY,layerNormalization:()=>LY,leakyReLU:()=>iY,lstm:()=>XY,lstmCell:()=>YY,masking:()=>m7,maxPool1d:()=>a7,maxPool2d:()=>l7,maxPooling1d:()=>ED,maxPooling2d:()=>AD,maxPooling3d:()=>qY,maximum:()=>$Y,minimum:()=>DY,multiply:()=>FY,permute:()=>kY,prelu:()=>aY,reLU:()=>sY,repeatVector:()=>SY,reshape:()=>NY,rnn:()=>e7,separableConv2d:()=>hY,simpleRNN:()=>ZY,simpleRNNCell:()=>JY,softmax:()=>lY,spatialDropout1d:()=>CY,stackedRNNCells:()=>r7,thresholdedReLU:()=>uY,timeDistributed:()=>o7,upSampling2d:()=>xY,zeroPadding2d:()=>PY});async function Ki(r){if(r==null)return;let t=[],e=[],n=[];for(let o in r){let s=r[o];if(typeof s!="number"){let i=s;t.push(i.data()),e.push(o),n.push(i)}}if(t.length>0){let o=await Promise.all(t);for(let s=0;s<o.length;++s)r[e[s]]=o[s][0];_t(n)}}function Uy(r){if(r!=null)for(let t in r){let e=r[t];typeof e!="number"&&e.dispose()}}var tD;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(tD||(tD={}));var s8=125,el=class{constructor(){this.validationData=null}setParams(t){this.params=t}async onEpochBegin(t,e){}async onEpochEnd(t,e){}async onBatchBegin(t,e){}async onBatchEnd(t,e){}async onTrainBegin(t){}async onTrainEnd(t){}setModel(t){}},Hy=class{constructor(t,e=10){t==null&&(t=[]),this.callbacks=t,this.queueLength=e}append(t){this.callbacks.push(t)}setParams(t){for(let e of this.callbacks)e.setParams(t)}setModel(t){for(let e of this.callbacks)e.setModel(t)}async onEpochBegin(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onEpochBegin(t,e)}async onEpochEnd(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onEpochEnd(t,e)}async onBatchBegin(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onBatchBegin(t,e)}async onBatchEnd(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onBatchEnd(t,e)}async onTrainBegin(t){t==null&&(t={});for(let e of this.callbacks)await e.onTrainBegin(t)}async onTrainEnd(t){t==null&&(t={});for(let e of this.callbacks)await e.onTrainEnd(t)}},FS=class extends el{constructor(){super()}async onEpochBegin(t){this.seen=0,this.totals={}}async onBatchEnd(t,e){e==null&&(e={});let n=e.size==null?0:e.size;this.seen+=n;for(let o in e){let s=e[o];if(typeof s=="number")this.totals.hasOwnProperty(o)||(this.totals[o]=0),this.totals[o]=this.totals[o]+s*n;else{let i;o in this.totals?i=this.totals[o]:this.totals[o]=0;let a=W(()=>Z(this.totals[o],O(s,n)));this.totals[o]=a,i!=null&&i.dispose()}}}async onEpochEnd(t,e){if(e!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?e[n]=this.totals[n]/this.seen:W(()=>{let o=O(ct(1,this.seen),this.totals[n]);e[n]=o,this.totals[n].dispose(),Oe(e[n])}))}},qy=class extends el{async onTrainBegin(t){this.epoch=[],this.history={}}async onEpochEnd(t,e){e==null&&(e={}),this.epoch.push(t);for(let n in e)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(e[n])}async syncData(){let t=[],e=[],n=[];for(let s in this.history){let i=this.history[s];for(let a=0;a<i.length;++a)if(typeof i[a]!="number"){let u=i[a];t.push(u.data()),e.push(s),n.push(a)}}let o=await Promise.all(t);for(let s=0;s<o.length;++s)this.history[e[s]][n[s]].dispose(),this.history[e[s]][n[s]]=o[s][0]}},Ky=class extends el{constructor(t,e){if(super(),this.currentEpoch=0,this.nowFunc=t.nowFunc,this.nextFrameFunc=t.nextFrameFunc||wh,this.yieldEvery=e||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=s8),this.yieldEvery==="never"&&t.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");x.isNumber(this.yieldEvery)&&(this.maybeWait=k$(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=t.onTrainBegin,this.trainEnd=t.onTrainEnd,this.epochBegin=t.onEpochBegin,this.epochEnd=t.onEpochEnd,this.batchBegin=t.onBatchBegin,this.batchEnd=t.onBatchEnd,this.yield=t.onYield}async maybeWait(t,e,n){let o=[];this.yield!=null&&(await Ki(n),o.push(this.yield(t,e,n))),o.push(this.nextFrameFunc()),await Promise.all(o)}async onEpochBegin(t,e){this.currentEpoch=t,this.epochBegin!=null&&(await Ki(e),await this.epochBegin(t,e))}async onEpochEnd(t,e){let n=[];this.epochEnd!=null&&(await Ki(e),n.push(this.epochEnd(t,e))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(t,e){this.batchBegin!=null&&(await Ki(e),await this.batchBegin(t,e))}async onBatchEnd(t,e){let n=[];this.batchEnd!=null&&(await Ki(e),n.push(this.batchEnd(t,e))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):x.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,t,e)),await Promise.all(n)}async onTrainBegin(t){this.trainBegin!=null&&(await Ki(t),await this.trainBegin(t))}async onTrainEnd(t){this.trainEnd!=null&&(await Ki(t),await this.trainEnd(t))}};function jy(r,t){return r==null&&(r={}),r instanceof el?[r]:Array.isArray(r)&&r[0]instanceof el?r:be(r).map(n=>new Ky(n,t))}var gn=class{constructor(){}static registerCallbackConstructor(t,e){x.assert(t>=0&&Number.isInteger(t),()=>`Verbosity level is expected to be an integer >= 0, but got ${t}`),gn.checkForDuplicate(e),gn.constructors[t]==null&&(gn.constructors[t]=[]),gn.constructors[t].push(e)}static checkForDuplicate(t){for(let e in gn.constructors)gn.constructors[+e].forEach(o=>{if(o===t)throw new z("Duplicate callback constructor.")})}static clear(){gn.constructors={}}static createCallbacks(t){let e=[];for(let n in gn.constructors){let o=+n;t>=o&&e.push(...gn.constructors[o])}return e.map(n=>new n)}};gn.constructors={};function Xy(r,t,e,n,o,s,i,a,u){let l=new qy,c=[new FS,...gn.createCallbacks(t)];r!=null&&c.push(...r),c.push(l);let p=new Hy(c);return p.setParams({epochs:e,initialEpoch:n,samples:o,steps:s,batchSize:i,verbose:t,doValidation:a,metrics:u}),{callbackList:p,history:l}}function xn(r,t={},e=!1){return Hi(r,et.SerializationMap.getMap().classNameMap,t,"layer",e)}function Th(r,t){return W(()=>{r.dtype!=="float32"&&(r=tt(r,"float32"));let e=mt(dc(r),t,!0),n=zi(e.shape,ar()),o=Ne(Nn(e,n));return ct(r,o)})}function ji(r,t){return W(()=>ke(dc(ut(t,r)),-1))}function Zm(r,t){return W(()=>ke(Ae(ut(t,r)),-1))}function gu(r,t){return W(()=>{let e=ut(r,t),n=Ir(Ae(r),ar(),Number.MAX_VALUE),o=Ae(ct(e,n));return O(100,ke(o,-1))})}function i8(r,t){return W(()=>{let e=Ir(t,ar(),Number.MAX_VALUE),n=Sr(Z(1,e)),o=Ir(r,ar(),Number.MAX_VALUE),s=Sr(Z(1,o));return ke(dc(ut(n,s)),-1)})}function a8(r,t){return W(()=>{let e=Nn(0,ut(1,O(r,t)));return ke(dc(e),-1)})}function l8(r,t){return W(()=>{let e=Nn(0,ut(1,O(r,t)));return ke(e,-1)})}function u8(r,t){return W(()=>{let e=mt(O(r,t),-1),n=Mr(O(ut(1,r),t),-1);return Nn(0,Z(1,ut(n,e)))})}function c8(r,t){return W(()=>{let e=Math.log(2),n=ut(t,r),o=ut(Z(n,Us(O(-2,n))),e);return ke(o,-1)})}function Ic(r,t,e=!1){return W(()=>{if(e)t=ru(t);else{let n=mt(t,t.shape.length-1,!0);t=ct(t,n)}return t=Ir(t,ar(),1-ar()),Yt(mt(O(tt(r,"float32"),Sr(t)),t.shape.length-1))})}function Jm(r,t,e=!1){return W(()=>{let n=tt(Bi(P$(r)),"int32");t=Ir(t,ar(),1-ar());let o=t.shape,s=R(Di(n,o[o.length-1]),o);return Ic(s,t,e)})}function p8(r,t){if(!x.arraysEqual(r.shape,t.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(t.shape)}`);return W(()=>{let e=Fr(t),n=Yt(Ae(t));return Z(ut(e,O(t,r)),Yl(or(n)))})}function Qm(r,t){return W(()=>{let e;return e=Ir(t,ar(),1-ar()),e=Sr(ct(e,ut(1,e))),ke(p8(r,e),-1)})}function m8(r,t){return W(()=>{let e=Ir(r,ar(),1),n=Ir(t,ar(),1);return mt(O(r,Sr(ct(e,n))),-1)})}function f8(r,t){return W(()=>{let e=Sr(Z(ar(),t));return ke(ut(t,O(r,e)),-1)})}function Eh(r,t){return W(()=>{let e=Th(r,-1),n=Th(t,-1),o=O(e,n);return Yt(mt(o,-1))})}var _h={meanSquaredError:ji,meanAbsoluteError:Zm,meanAbsolutePercentageError:gu,meanSquaredLogarithmicError:i8,squaredHinge:a8,hinge:l8,categoricalHinge:u8,logcosh:c8,categoricalCrossentropy:Ic,sparseCategoricalCrossentropy:Jm,binaryCrossentropy:Qm,kullbackLeiblerDivergence:m8,poisson:f8,cosineProximity:Eh};function Yy(r){if(typeof r=="string"){if(r in _h)return _h[r];let t=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(t)}else return r}function Ah(r,t){return W(()=>{let e=O(.5,br(t)),n=fc(Xe(t,e),r.dtype);return ke(Ar(r,n),-1)})}function $h(r,t){return W(()=>fc(Ar(Ri(r,-1),Ri(t,-1)),"float32"))}function rD(r,t){return W(()=>tt(mt(Dr(Ar(r,1),Ar(t,1))),"float32"))}function d8(r,t){return W(()=>tt(mt(Dr(Ar(r,1),Ar(t,0))),"float32"))}function h8(r,t){return W(()=>tt(mt(Dr(Ar(r,0),Ar(t,1))),"float32"))}function RS(r,t){return W(()=>{let e=rD(r,t),n=h8(r,t),o=Z(e,n);return tt($e(Xe(o,0),ct(e,o),0),"float32")})}function nD(r,t){return W(()=>{let e=rD(r,t),n=d8(r,t),o=Z(e,n);return tt($e(Xe(o,0),ct(e,o),0),"float32")})}function Jy(r,t){return Qm(r,t)}function Qy(r,t){return r.rank===t.rank&&(r=Mn(r,[r.rank-1])),t=Ri(t,-1),t.dtype!==r.dtype&&(t=tt(t,r.dtype)),tt(Ar(r,t),"float32")}var g8=ji,x8=ji,y8=Zm,b8=Zm,w8=gu,v8=gu,Dh=Ic,C8=Eh,OS=Jm,Zy={binaryAccuracy:Ah,categoricalAccuracy:$h,precision:RS,categoricalCrossentropy:Dh,sparseCategoricalCrossentropy:OS,mse:g8,MSE:x8,mae:y8,MAE:b8,mape:w8,MAPE:v8,cosine:C8};function oD(r){if(typeof r=="string"&&r in Zy)return Zy[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function Fh(r){if(Qn(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let t;for(let e of Object.keys(_h))if(_h[e]===r){t=e;break}if(t!==void 0)return t;for(let e of Object.keys(Zy))if(Zy[e]===r){t=e;break}return t!==void 0?t:r.name}}function iD(r){let t={Adagrad:()=>pc.adagrad(.01),Adadelta:()=>pc.adadelta(1,.95,ar()),Adam:()=>pc.adam(.001,.9,.999,ar()),Adamax:()=>pc.adamax(.002,.9,.999,ar(),0),RMSProp:()=>pc.rmsprop(.001,.9,0,ar()),SGD:()=>pc.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,r in t)return t[r]();throw new z(`Unknown Optimizer ${r}`)}function PS(r,t,e=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!LS(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(e){let n=JSON.stringify(r);n.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function LS(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let t=Object.keys(r);for(let e of t)if(typeof e!="string"||!LS(r[e]))return!1;return!0}else if(Array.isArray(r)){for(let t of r)if(!LS(t))return!1;return!0}else return!1;else{let t=typeof r;return t==="string"||t==="number"||t==="boolean"}}function aD(r,t,e,n=console.log){let o=N8(r),s=["Layer (type)","Input Shape","Output shape","Param #"];o?(t=t||90,e=e||[.32,.61,.89,1]):(t=t||115,e=e||[.24,.48,.7,.8,1]),e[e.length-1]<=1&&(e=e.map(c=>Math.floor(t*c)));let i;if(!o){s.push("Receives inputs"),i=[];for(let c in r.nodesByDepth)i.push(...r.nodesByDepth[c])}n("_".repeat(t)),tb(s,e,n),n("=".repeat(t));let a=r.layers;for(let c=0;c<a.length;++c)o?k8(a[c],e,n):T8(a[c],e,i,n),n((c===a.length-1?"=":"_").repeat(t));r.checkTrainableWeightsConsistency();let u=S8(r),l=Hm(r.nonTrainableWeights);n(`Total params: ${u+l}`),n(`Trainable params: ${u}`),n(`Non-trainable params: ${l}`),n("_".repeat(t))}function S8(r){let t;return r.collectedTrainableWeights!=null?t=Hm(r.collectedTrainableWeights):t=Hm(r.trainableWeights),t}function N8(r){let t=!0,e=[],n=[];for(let o in r.nodesByDepth)e.push(r.nodesByDepth[o]);for(let o of e){if(o.length>1||o.length===1&&o[0].inboundLayers.length>1){t=!1;break}n.push(...o)}if(t)for(let o of r.layers){let s=!1;for(let i of o.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function tb(r,t,e=console.log){let n="";for(let o=0;o<r.length;++o)o>0&&(n=n.slice(0,n.length-1)+" "),n+=r[o],n=n.slice(0,t[o]),n+=" ".repeat(t[o]-n.length);e(n)}function k8(r,t,e){let n,o;try{o=r.inboundNodes.map(u=>JSON.stringify(u.inputShapes)).join(",")}catch(u){o="multiple"}try{n=JSON.stringify(r.outputShape)}catch(u){n="multiple"}let s=r.name,i=r.getClassName(),a=[`${s} (${i})`,o,n,r.countParams().toString()];tb(a,t,e)}function T8(r,t,e,n){let o,s;try{s=r.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){s="multiple"}try{o=JSON.stringify(r.outputShape)}catch(p){o="multiple"}let i=[];for(let p of r.inboundNodes)if(!(e!=null&&e.length>0&&e.indexOf(p)===-1))for(let m=0;m<p.inboundLayers.length;++m){let f=p.inboundLayers[m].name,d=p.nodeIndices[m],h=p.tensorIndices[m];i.push(`${f}[${d}][${h}]`)}let a=r.name,u=r.getClassName(),l=i.length===0?"":i[0],c=[`${a} (${u})`,s,o,r.countParams().toString(),l];tb(c,t,n);for(let p=1;p<i.length;++p)tb(["","","","",i[p]],t,n)}function lD(r,t,e){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&t===0&&typeof e=="string"}function Sc(r,t){if(r===null)return null;if(typeof r=="string")return Za(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let e=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];lD(t,o,s)?e.push(s):e.push(Sc(s,t))}return e}else{let e={};for(let n of Object.keys(r)){let o=r[n];if(n==="name"&&typeof o=="string")e[n]=o;else{let s=Za(n);e[s]=Sc(o,s)}}return e}}function eb(r,t){if(r==null)return null;if(typeof r=="string")return Co(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let e=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];lD(t,o,s)?e.push(s):e.push(eb(s,t))}return e}else{let e={};for(let n of Object.keys(r)){let o=r[n],s=Co(n);(n==="name"||n==="className")&&typeof o=="string"?e[s]=o:e[s]=eb(o,n)}return e}}var tf="3.19.0";var zn=class extends Bt{constructor(t){if(super({}),this.containerNodes=new Set,this.name=t.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=fu(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(t.inputs)?this.inputs=t.inputs.slice():this.inputs=[t.inputs],Array.isArray(t.outputs)?this.outputs=t.outputs.slice():this.outputs=[t.outputs],Io(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);Io(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,v=b.nodeIndex,N=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(v),this.outputLayersTensorIndices.push(N)}for(let b of this.inputs){let w=b.sourceLayer,v=b.nodeIndex,N=b.tensorIndex;Qn(v===0,"input layer has >1 nodes"),Qn(N===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(v),this.inputLayersTensorIndices.push(N)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof Zs))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${t.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let e={},n={},o={},s={},i={},a=[],u=(b,w,v,N,E,$)=>{(N==null||E==null||$==null)&&(N=b.sourceLayer,E=b.nodeIndex,$=b.tensorIndex);let D=N.inboundNodes[E];if(v.indexOf(D)!==-1)throw new Gr(`The tensor ${b.name} at layer "${N.name}" is part of a cycle.`);if(w.indexOf(D)!==-1)return;this.containerNodes.add(zn.nodeKey(N,E)),N.id in i||(i[N.id]=Object.keys(i).length),v.indexOf(D)===-1&&v.push(D);let L=D.inboundLayers.length;for(let M=0;M<L;M++){let G=D.inputTensors[M],H=D.inboundLayers[M],q=D.nodeIndices[M],X=D.tensorIndices[M];u(G,w,v,H,q,X)}for(w.push(D);v.indexOf(D)>=0;)v.splice(v.indexOf(D),1);a.push(D)},l=[],c=[];for(let b of this.outputs)u(b,l,c);let p=a.slice().reverse();for(let b of p){n[b.id]=b,b.id in e||(e[b.id]=0);let w=e[b.id],v=o[b.outboundLayer.id]==null?0:o[b.outboundLayer.id];w=Math.max(w,v),o[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,e[b.id]=w;for(let N=0;N<b.inboundLayers.length;N++){let E=b.inboundLayers[N],$=b.nodeIndices[N],D=E.inboundNodes[$],L=e[D.id]==null?0:e[D.id];e[D.id]=Math.max(w+1,L),n[D.id]=D}}let m={};for(let b in e){let w=e[b];w in m||(m[w]=[]),m[w].push(n[b])}let f={};for(let b in o){let w=o[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(Ch);this.layers=[];for(let b of d){let w=f[b];w.sort((v,N)=>{let E=i[v.id],$=i[N.id];return E<$?-1:E>$?1:0});for(let v of w)v instanceof zn&&this.internalContainerRefs.push(v),this.layers.push(v)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(Ch);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let v=w.outboundLayer;if(v!=null){for(let N of w.inputTensors)if(h.indexOf(N)===-1)throw new Gr(`Graph disconnected: cannot obtain value for tensor ${N} at layer "${v.name}". The following previous layers were accessed without issue: ${g}`);for(let N of w.outputTensors)h.push(N);g.push(v.name)}}this.nodesByDepth=m;let y=this.layers.map(b=>b.name);for(let b of y){let w=y.filter(v=>v===b).length;if(w!==1)throw new Gr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(y))}this.outboundNodes=[],this.inboundNodes=[],new tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let t={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let e of this.layers)t.numDisposedVariables+=e.dispose().numDisposedVariables;for(let e of this.internalContainerRefs)t.numDisposedVariables+=e.dispose().numDisposedVariables}return t.refCountAfterDispose=this._refCount,t}get trainable(){return this.trainable_}set trainable(t){this.layers.forEach(e=>{e._trainableWeights.forEach(n=>n.trainable=t)}),this.trainable_=t}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let t=[];for(let e of this.layers)t=t.concat(e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.layers)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.layers)e.push(...n.trainableWeights);return e.concat(t)}return t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(t,e=!0){let n={},o=0;for(let i of this.layers)for(let a of i.weights){if(n[a.originalName]!=null)throw new z(`Duplicate weight name: ${a.originalName}`);n[a.originalName]=a,o++}let s=[];for(let i in t){let a=i;if(n[i]==null){let u=i.split("/");a=u.slice(0,-2).concat([u[u.length-1]]).join("/")}if(n[a]!=null)s.push([n[a],t[i]]);else if(e)throw new z(`Provided weight data has no target variable: ${i}`);delete n[a]}if(e){let i=[];for(let a in n)i.push(a);if(i.length>0)throw new z(`${i.length} of ${o} weights are not set: ${i}`)}qm(s)}updatedConfig(){let t=this.getConfig(),e={};return e.className=this.getClassName(),e.config=t,e.kerasVersion=`tfjs-layers ${tf}`,e.backend="TensorFlow.js",e}toJSON(t,e=!0){let n=eb(this.updatedConfig());return e?JSON.stringify(n):n}call(t,e){return W(()=>{t=be(t);let n=new ko;for(let o=0;o<this.inputs.length;++o)n.add(this.inputs[o],t[o]);return vc(this.outputs,n,e)})}computeMask(t,e){return W(()=>{t=be(t);let n;return e==null?n=vo(null,t.length):n=be(e),this.runInternalGraph(t,n)[1]})}computeOutputShape(t){let e=Um(t);if(e.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${t}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let a=0;a<e.length;a++){let u=this.inputLayers[a],l=e[a],c=u.name+"_0_0";n[c]=l}let o=Object.keys(this.nodesByDepth).map(a=>parseInt(a,10)).sort(Ch);if(o.length>1)for(let a of o){let u=this.nodesByDepth[a];for(let l of u){let c=l.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<l.inboundLayers.length;h++){let g=l.inboundLayers[h],y=l.nodeIndices[h],b=l.tensorIndices[h],w=`${g.name}_${y}_${b}`,v=n[w];p.push(v)}let m=c.computeOutputShape(kr(p)),f=Um(m),d=c.inboundNodes.indexOf(l);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;n[g]=f[h]}}}let s=[],i=[];for(let a=0;a<this.outputLayers.length;a++){let u=this.outputLayers[a],l=this.outputLayersNodeIndices[a],c=this.outputLayersTensorIndices[a],p=`${u.name}_${l}_${c}`;i.push(p)}for(let a=0;a<i.length;a++){let u=i[a];Qn(u in n),s.push(n[u])}return kr(s)}runInternalGraph(t,e){e==null&&(e=vo(null,t.length));let n={};for(let u=0;u<this.inputs.length;++u){let l=this.inputs[u],c=t[u],p=e[u];n[l.id]=[c,p]}let o=Object.keys(this.nodesByDepth).map(u=>parseInt(u,10)).sort(Ch);for(let u of o){let l=this.nodesByDepth[u];for(let c of l){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,y,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[v,N]=d[0];h.mask==null&&(h.mask=N),b=be(p.call(v,h)),w=be(p.computeMask(v,N)),g=[v],y=[N]}else g=d.map(v=>v[0]),y=d.map(v=>v[1]),h.mask==null&&(h.mask=y),b=be(p.call(g,h)),w=be(p.computeMask(g,y));if(p.activityRegularizer)throw new kt("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let v=0;v<f.length;++v){let N=f[v],E=b[v],$=w[v];n[N.id]=[E,$]}}}}let s=[],i=[],a=[];for(let u of this.outputs){Qn(u.id in n,`Could not compute output ${u.name} : ${u.id}`);let[l,c]=n[u.id];a.push(l.shape),s.push(l),i.push(c)}return[s,i,a]}buildNodeConversionMap(t){let e={},n;for(let o of this.layers){n=o instanceof zn?1:0;for(let s=0;s<o.inboundNodes.length;s++){let i=zn.nodeKey(o,s);this.containerNodes.has(i)&&(e[i]=n,n+=1)}}return e}getLayer(t,e){if(e!=null){if(this.layers.length<=e)throw new z(`Was asked to retrieve layer at index ${e}, but model only has ${this.layers.length} layer(s).`);return this.layers[e]}else if(t==null)throw new z("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===t)return n;throw new z(`No such layer: ${t}`)}calculateLosses(){return W(()=>{let t=[];for(let e of this.layers)for(let n=0;n<e.inboundNodes.length;++n){let o=zn.nodeKey(e,n);this.containerNodes.has(o)&&t.push(...e.calculateLosses())}return t})}getConfig(){let t={name:this.name},e=this.buildNodeConversionMap(this.layers),n=[];for(let i of this.layers){let a=i.getClassName(),u=i.getConfig(),l=[];for(let p=0;p<i.inboundNodes.length;p++){let m=i.inboundNodes[p],f=zn.nodeKey(i,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${i.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let y=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],v=zn.nodeKey(y,b),N=e[v];N==null&&(N=0),h.push([y.name,N,w,d])}l.push(h)}}}let c={};c.name=i.name,c.className=a,c.config=u,c.inboundNodes=l,n.push(c)}t.layers=n;let o=[];for(let i=0;i<this.inputLayers.length;i++){let a=this.inputLayers[i],u=this.inputLayersNodeIndices[i],l=zn.nodeKey(a,u);if(!this.containerNodes.has(l))continue;let c=e[l];c==null&&(c=0);let p=this.inputLayersTensorIndices[i];o.push([a.name,c,p])}t.inputLayers=o;let s=[];for(let i=0;i<this.outputLayers.length;i++){let a=this.outputLayers[i],u=this.outputLayersNodeIndices[i],l=zn.nodeKey(a,u);if(!this.containerNodes.has(l))continue;let c=e[l];c==null&&(c=0);let p=this.outputLayersTensorIndices[i];s.push([a.name,c,p])}return t.outputLayers=s,t}static fromConfig(t,e,n={},o=!1){let s={},i={};function a(g,y){g.name in i?i[g.name].push(y):i[g.name]=[y]}function u(g,y){let b=[],w;for(let v of y){let N=v[0],E=v[1],$=v[2];if(w=v[3]==null?{}:v[3],!(N in s)){a(g,y);return}let D=s[N];if(D.inboundNodes.length<=E){a(g,y);return}let L=D.inboundNodes[E];b.push(L.outputTensors[$])}b.length>0&&g.apply(kr(b),w)}function l(g){let y=g.name,b=xn(g,e.customObjects!=null?e.customObjects:{});b.setFastWeightInitDuringBuild(o),s[y]=b,g.inboundNodes.forEach(v=>{if(!(v instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${v}`);a(b,v)})}let c=e.name,p=e.layers;for(let g of p)l(g);for(;!S$(i);)for(let g of p){let y=s[g.name];if(y.name in i){let b=i[y.name];delete i[y.name];for(let w of b)u(y,w)}}let m=[],f=[],d=e.inputLayers;for(let g of d){let y=g[0],b=g[1],w=g[2];Qn(y in s);let N=s[y].inboundNodes[b].outputTensors;m.push(N[w])}let h=e.outputLayers;for(let g of h){let y=g[0],b=g[1],w=g[2];Qn(y in s);let N=s[y].inboundNodes[b].outputTensors;f.push(N[w])}return new t({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let t of this.layers)if(t.stateful)return!0;return!1}resetStates(){W(()=>{this.layers.forEach(t=>{t.stateful&&t.resetStates()})})}};function _8(r,t,e){let n=t.length;if(r==null||Array.isArray(r)&&r.length===0)return t.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&t[0]in r?[r[t[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${e} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let o=[];return t.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${e} must be either an array with ${n} elements or an object with ${t} keys. Provided ${e} not understood: ${JSON.stringify(r)}`)}function rb(r,t){return _8(r,t,"classWeight")}async function nb(r,t,e,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(e!=null){let o=W(()=>{if(r.shape.length===1)return an(r);if(r.shape.length===2){if(r.shape[1]>1)return Ri(r,1);if(r.shape[1]===1)return R(r,[r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());_t(o);let i=[];return s.forEach(a=>{if(e[a]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${a} exists in the data but not in classWeight`);i.push(e[a])}),Ve(i,"float32")}else return null}function uD(r,t){return O(r,t)}var E8=32;function mD(r,t){let e,n,o=t;e=o.xs,n=o.ys,x.assert(e!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=cD("input",r.inputNames,e),i=cD("output",r.outputNames,n),a=s[0].shape[0];x.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),x.assert(i.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let u=0;u<s.length;u++)x.assert(s[u].shape[0]===a,()=>`Batch size mismatch: input ${r.inputNames[u]} has ${s[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);for(let u=0;u<i.length;u++)x.assert(i[u].shape[0]===a,()=>`Batch size mismatch: output ${r.outputNames[u]} has ${i[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);return{xs:s,ys:i}}function cD(r,t,e){if(e instanceof Pt)return[e];if(Array.isArray(e))return x.assert(e.length===t.length,()=>`Received an array of ${e.length} Tensors, but expected ${t.length} to match the ${r} keys ${t}.`),e;{let n=[];for(let o of t){if(e[o]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(e[o])}return n}}function A8(r){if(r.length===3)throw new kt("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function fD(r,t,e){let n=e.batchesPerEpoch!=null;if(x.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),x.assert(e!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),x.assert(e.epochs!=null&&e.epochs>0&&Number.isInteger(e.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${e.epochs}`),x.assert(!n||e.batchesPerEpoch>0&&Number.isInteger(e.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${e.batchesPerEpoch}`),x.assert(e.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let o=e.validationData!=null,s,i;if(o)if(pD(e.validationData))x.assert(e.validationBatches==null||e.validationBatches>0&&Number.isInteger(e.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${e.validationBatches}`);else{let g=A8(e.validationData);s=g.xs,i=g.ys}let a=r.makeTrainFunction(),u=r.getDedupedMetricsNames(),l;o?l=u.slice().concat(u.map(g=>"val_"+g)):l=u.slice();let c=jy(e.callbacks,e.yieldEvery),p=e.verbose==null?1:e.verbose,{callbackList:m,history:f}=Xy(c,p,e.epochs,null,null,$8(t,e),null,o,l);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=e.initialEpoch==null?0:e.initialEpoch,h=await t.iterator();for(;d<e.epochs;){let g={};await m.onEpochBegin(d);let y=0,b=0;for(n||(h=await t.iterator());!n||y<e.batchesPerEpoch;){let w=await h.next();if(n&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${e.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${e.batchesPerEpoch*e.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:v,ys:N}=mD(r,w.value),E={};E.batch=b,E.size=v[0].shape[0],await m.onBatchBegin(b,E);let $=[];if(e.classWeight!=null){let M=rb(e.classWeight,r.outputNames);for(let G=0;G<M.length;++G)$.push(await nb(N[G],null,M[G]))}let D=v.concat(N).concat($),L=a(D);_t(D);for(let M=0;M<u.length;++M){let G=u[M],H=L[M];E[G]=H,Oe(H)}await m.onBatchEnd(b,E),Uy(E),b++,y++}if(n?y>=e.batchesPerEpoch:w.done){if(o){let v;pD(e.validationData)?v=be(await r.evaluateDataset(e.validationData,{batches:e.validationBatches})):v=be(r.evaluate(s,i,{batchSize:e.validationBatchSize==null?E8:e.validationBatchSize,verbose:0}));for(let N=0;N<r.metricsNames.length;++N)g[`val_${r.metricsNames[N]}`]=v[N]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function $8(r,t){let e=null;return t.batchesPerEpoch!=null?e=t.batchesPerEpoch:Number.isFinite(r.size)&&(e=r.size),e}function pD(r){return typeof r.iterator=="function"}function D8(r){return typeof r.next=="function"}async function dD(r,t,e){e=e||{};let n=e.batches!=null,o=r.testFunction,s=[];if(e.verbose>0)throw new kt("Verbose mode is not implemented yet.");x.assert(!n||e.batches>0&&Number.isInteger(e.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(e.batches)}`);let i=D8(t)?t:await t.iterator(),a=0,u=0;for(;!n||u<e.batches;){let l=await i.next();if(s=W(()=>{if(l.value){let{xs:c,ys:p}=mD(r,l.value),m=c.concat(p),f=W(()=>o(m));if(_t(m),u===0)for(let h=0;h<f.length;++h)s.push(pt(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],y=s[h];s[h]=W(()=>Z(s[h],O(d,g))),u>0&&_t(y)}_t(f),a+=d,++u}return s}),l.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${e.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<s.length;++l){let c=s[l];s[l]=ct(s[l],a),_t(c)}return kr(s)}function ob(r){x.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function ef(r,t,e){return r==null?[null]:Array.isArray(r)?r.map(n=>Ja(n,t,e-t)):Ja(r,t,e-t)}function sb(r,t){return W(()=>r==null?null:Array.isArray(r)?r.map(e=>sb(e,t)):My(r,t.dtype==="int32"?t:tt(t,"int32")))}function ib(r,t){let e=[],n=0,o=null;for(;n<r;)o=n+t,o>=r&&(o=r),e.push([n,o]),n=o;return e}async function F8(r,t,e,n,o,s,i,a,u,l,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(u!=null&&l!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(e,o,f,"steps_per_epoch"),y;g!=null&&(y=jr(0,g)),i==null&&(i=1);let{callbackList:b,history:w}=Xy(a,i,s,m,g,f,o,h,p);b.setModel(r),r.history=w,await b.onTrainBegin(),r.stopTraining_=!1;for(let v=m;v<s;++v){await b.onEpochBegin(v);let N={};if(f!=null)throw new kt("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new kt("batch shuffling is not implemneted yet");c&&x.shuffle(y);let E=Ve(y),$=ib(g,o);for(let D=0;D<$.length;++D){let L={};if(await b.onBatchBegin(D,L),W(()=>{let M=$[D][0],G=$[D][1],H=Ja(E,M,G-M);L.batch=D,L.size=G-M;let q=sb(e,H),X=t(q);for(let j=0;j<n.length;++j){let J=n[j],nt=X[j];L[J]=nt,Oe(nt)}if(D===$.length-1&&h){let j=r.testLoop(u,l,o);for(let J=0;J<n.length;++J){let nt=n[J],K=j[J];Oe(K),N["val_"+nt]=K}}}),await b.onBatchEnd(D,L),Uy(L),r.stopTraining_)break}E.dispose()}if(await b.onEpochEnd(v,N),r.stopTraining_)break}return await b.onTrainEnd(),await r.history.syncData(),r.history}async function hD(r,t,e,n={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let o,s,i,a,u,l,c,p,m;try{let f=n.batchSize==null?32:n.batchSize;ob(f);let d=!1,h=await r.standardizeUserData(t,e,n.sampleWeight,n.classWeight,d,f);o=h[0],s=h[1],m=h[2];let g=!1,y;if(n.validationData!=null&&n.validationData.length>0){if(g=!0,n.validationData.length===2)u=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new kt("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let L=!0,M=await r.standardizeUserData(u,l,null,null,L,f);c=M[0],p=M[1],y=c.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let L=Math.floor(o[0].shape[0]*(1-n.validationSplit)),M=o[0].shape[0];c=ef(o,L,M),i=o,o=ef(o,0,L),p=ef(s,L,M),a=s,s=ef(s,0,L),y=c.concat(p)}else n.validationSteps!=null&&(g=!0);let b=o.concat(s).concat(m);r.checkTrainableWeightsConsistency();let w=r.makeTrainFunction(),v=r.getDedupedMetricsNames(),N,E;g?(r.makeTestFunction(),N=r.testFunction,E=v.slice().concat(v.map(L=>"val_"+L))):(N=null,y=[],E=v.slice());let $=jy(n.callbacks,n.yieldEvery);return await F8(r,w,b,v,f,n.epochs,n.verbose,$,N,y,n.shuffle,E,n.initialEpoch,null,null)}finally{r.isTraining=!1,To(o,t),To(s,e),To(i,t),To(a,e),To(c,u),To(p,l),m!=null&&_t(m)}}function MS(r){let t=[];r instanceof Pt&&(r=[r]);for(let e=0;e<r.length;++e){let n=r[e];if(n.rank===1)t.push(Qa(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function To(r,t){if(r==null)return;let e=[];if(t instanceof Pt)e.push(t.id);else if(Array.isArray(t))t.forEach(o=>e.push(o.id));else if(t!=null)for(let o in t){let s=t[o];e.push(s.id)}let n=[];if(r instanceof Pt)e.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{e.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];e.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function R8(r){return r instanceof Pt}function zS(r){return Array.isArray(r)}function gD(r){return!R8(r)&&!zS(r)}function xD(r,t,e,n=!0,o=""){if(t==null||t.length===0){if(r!=null){let i=!1;if(zS(r)&&r.length>0)i=!0;else if(gD(r)){for(let a in r)if(r.hasOwnProperty(a)){i=!0;break}}else i=!0;if(i)throw new z(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return t.map(i=>null);let s;if(gD(r)){r=r,s=[];for(let i of t){if(r[i]==null)throw new z(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(r[i])}}else if(zS(r)){if(r=r,r.length!==t.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,t.length>1)throw new z(`The model ${o} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=MS(s),e!=null)for(let i=0;i<t.length;++i){if(e[i]==null)continue;let a=s[i];if(a.shape.length!==e[i].length)throw new z(`Error when checking ${o}: expected ${t[i]} to have ${e[i].length} dimension(s). but got array with shape ${a.shape}`);for(let u=0;u<e[i].length;++u){if(u===0&&!n)continue;let l=a.shape[u],c=e[i][u];if(c!=null&&c>=0&&l!==c)throw new z(`${o} expected a batch of elements where each example has shape [${e[i].slice(1,e[i].length)}] (i.e.,tensor shape [*,${e[i].slice(1,e[i].length)}]) but the ${o} received an input with ${a.shape[0]} examples, each with shape [${a.shape.slice(1,a.shape.length)}] (tensor shape [${a.shape}])`)}}return s}function O8(r,t,e){let n=Io(r.map(s=>s.shape[0]));n.sort();let o=Io(t.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!x.arraysEqual(n,o))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function L8(r,t,e){let n=[ji,Qm,Ic];for(let o=0;o<r.length;++o){let s=r[o],i=t[o],a=e[o];if(i!=null){if(i===Ic&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(i)!==-1){let u=s.shape.slice(1),l=a.slice(1);for(let c=0;c<u.length;++c){let p=u[c],m=l[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${a}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function yD(r,t,e,n=!0,o=""){let s;if(Array.isArray(r)){if(r.length!==t.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(t.length>1)throw new z(`The model expects ${t.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(e!=null)for(let i=0;i<t.length;++i){if(e[i]==null)continue;let a=s[i];if(a.shape.length!==e[i].length)throw new z(`Error when checking ${o}: expected ${t[i]} to have ${e[i].length} dimension(s), but got array with shape ${JSON.stringify(a.shape)}`);for(let u=0;u<e[i].length;++u){if(u===0&&!n)continue;let l=a.shape[u],c=e[i][u];if(c!=null&&c!==l)throw new z(`Error when checking ${o}: expected ${t[i]} to have shape ${JSON.stringify(e[i])} but got array with shape ${JSON.stringify(a.shape)}.`)}}}function P8(r,t){if(r==null||Array.isArray(r)&&r.length===0)return t.map(n=>[]);let e;if(typeof r=="string"||typeof r=="function")e=[r];else if(Array.isArray(r)||typeof r=="object")e=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(e))return t.map(n=>e);{let n=[];for(let o of t){let s=e.hasOwnProperty(o)?e[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var M8="layers-model",Bn=class extends zn{constructor(t){super(t),this.isTraining=!1}summary(t,e,n=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");aD(this,t,e,n)}compile(t){if(t.loss==null&&(t.loss=[]),this.loss=t.loss,typeof t.optimizer=="string")this.optimizer_=iD(t.optimizer),this.isOptimizerOwned=!0;else{if(!(t.optimizer instanceof Br))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=t.optimizer,this.isOptimizerOwned=!1}let e=[];if(!Array.isArray(t.loss)&&typeof t.loss!="string"&&typeof t.loss!="function"){t.loss=t.loss;for(let i in t.loss)if(this.outputNames.indexOf(i)===-1)throw new z(`Unknown entry in loss dictionary: "${i}". Only expected the following keys: ${this.outputNames}`);for(let i of this.outputNames)t.loss[i]==null&&console.warn(`Output "${i}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${i} during training`),e.push(Yy(t.loss[i]))}else if(Array.isArray(t.loss)){if(t.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${t.loss}.`);e=t.loss.map(a=>Yy(a))}else{let i=Yy(t.loss);this.outputs.forEach(a=>{e.push(i)})}this.lossFunctions=e,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let i=0;i<this.outputs.length;++i){let a=this.internalOutputShapes[i],u=this.outputNames[i];this.feedOutputNames.push(u),this.feedOutputShapes.push(a),this.feedLossFns.push(this.lossFunctions[i])}let n=[];this.metrics=t.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Xs("loss",()=>{for(let i=0;i<this.outputs.length;++i){if(n.indexOf(i)!==-1)continue;let a=this.lossFunctions[i];this.outputs.length>1&&(this.metricsTensors.push([a,i]),this.metricsNames.push(this.outputNames[i]+"_loss"))}});let o=P8(t.metrics,this.outputNames),s=(i,a,u)=>{this.outputNames.length>1&&(a=this.outputNames[i]+"_"+a),this.metricsNames.push(a),this.metricsTensors.push([u,i])};Xs("metric",()=>{for(let i=0;i<this.outputs.length;++i){if(n.indexOf(i)!==-1)continue;let a=o[i];(l=>{let c="",p,m,f;for(let d of l){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[i];g[g.length-1]===1||this.lossFunctions[i]===Qm?["accuracy","acc"].indexOf(d)!==-1?m=Ah:["crossentropy","ce"].indexOf(d)!==-1&&(m=Jy):this.lossFunctions[i]===Jm?["accuracy","acc"].indexOf(d)!==-1?m=Qy:["crossentropy","ce"].indexOf(d)!==-1&&(m=OS):["accuracy","acc"].indexOf(d)!==-1?m=$h:["crossentropy","ce"].indexOf(d)!==-1&&(m=Dh);let y;["accuracy","acc"].indexOf(d)!==-1?y="acc":["crossentropy","ce"].indexOf(d)!==-1&&(y="ce"),f=m,p=c+y}else f=oD(d),p=c+Fh(d);let h;Xs(p,()=>{h=f}),s(i,p,h)}})(a)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(t,e,n={}){let o=n.batchSize==null?32:n.batchSize;ob(o);let s=!0,i=this.standardizeUserDataXY(t,e,s,o);try{let a=i[0].concat(i[1]);this.makeTestFunction();let u=this.testFunction,l=this.testLoop(u,a,o,n.verbose,n.steps);return kr(l)}finally{To(i[0],t),To(i[1],e)}}async evaluateDataset(t,e){return this.makeTestFunction(),dD(this,t,e)}checkNumSamples(t,e,n,o="steps"){let s;if(n!=null){if(s=null,e!=null)throw new z(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${e}`)}else if(t!=null)Array.isArray(t)?s=t[0].shape[0]:s=t.shape[0];else throw new z(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(t,e){if(Array.isArray(e)&&e.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(e),o=n?e:[e],s=this.retrieveSymbolicTensors(o),i=new ko;if(t instanceof Pt&&(t=[t]),Array.isArray(t)){if(t.length!==this.inputs.length)throw new z(`The number of inputs provided (${t.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let u=0;u<this.inputs.length;++u)i.add(this.inputs[u],t[u])}else for(let u of this.inputs){let l=t[u.name];if(l==null)throw new z(`No value is provided for the model's input ${u.name}`);i.add(u,l)}let a=vc(s,i);return n?a:a[0]}retrieveSymbolicTensors(t){let e=vo(null,t.length),n=t.length;for(let o of this.layers){let s=Array.isArray(o.output)?o.output:[o.output],i=s.map(a=>a.name);for(let a=0;a<t.length;++a){let u=i.indexOf(t[a]);if(u!==-1&&(e[a]=s[u],n--),n===0)break}if(n===0)break}if(n>0){let o=[];throw e.forEach((s,i)=>{s==null&&o.push(t[i])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return e}predictLoop(t,e=32,n=!1){return W(()=>{let o=this.checkNumSamples(t);if(n)throw new kt("Verbose predictLoop() is not implemented yet.");let s=ib(o,e),i=this.outputs.map(a=>[]);for(let a=0;a<s.length;++a)W(()=>{let l=s[a][0],c=s[a][1],p=ef(t,l,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new ko(m);return vc(this.outputs,f)}).forEach((l,c)=>i[c].push(l));return kr(i.map(a=>se(a,0)))})}predict(t,e={}){let n=MS(t);yD(n,this.inputNames,this.feedInputShapes,!1);try{let o=e.batchSize==null?32:e.batchSize;return ob(o),this.predictLoop(n,o)}finally{To(n,t)}}predictOnBatch(t){yD(t,this.inputNames,this.feedInputShapes,!0);let e=(Array.isArray(t)?t[0]:t).shape[0];return this.predictLoop(t,e)}standardizeUserDataXY(t,e,n=!0,o){if(this.optimizer_==null)throw new Gr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let i=0;i<this.feedOutputShapes.length;++i){let a=this.feedOutputShapes[i];this.feedLossFns[i]===Jm?s.push(a.slice(0,a.length-1).concat([1])):s.push(a)}if(t=xD(t,this.feedInputNames,this.feedInputShapes,!1,"input"),e=xD(e,this.feedOutputNames,s,!1,"target"),O8(t,e,null),L8(e,this.feedLossFns,this.feedOutputShapes),this.stateful&&o!=null&&o>0&&t[0].shape[0]%o!==0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${t[0].shape[0]} sample(s).`);return[t,e]}async standardizeUserData(t,e,n,o,s=!0,i){let[a,u]=this.standardizeUserDataXY(t,e,s,i);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(o!=null){let c=rb(o,this.outputNames);l=[];for(let p=0;p<c.length;++p)l.push(await nb(u[p],null,c[p]))}return[a,u,l]}testLoop(t,e,n,o=0,s){return W(()=>{let i=this.checkNumSamples(e,n,s,"steps"),a=[];if(o>0)throw new kt("Verbose mode is not implemented yet.");if(s!=null)throw new kt("steps mode in testLoop() is not implemented yet");{let u=ib(i,n),l=Ve(jr(0,i));for(let c=0;c<u.length;++c){let p=u[c][0],m=u[c][1],f=Ja(l,p,m-p),d=sb(e,f),h=t(d);if(c===0)for(let g=0;g<h.length;++g)a.push(pt(0));for(let g=0;g<h.length;++g){let y=h[g];a[g]=Z(a[g],O(m-p,y))}}for(let c=0;c<a.length;++c)a[c]=ct(a[c],i)}return a})}getDedupedMetricsNames(){let t=this.metricsNames,e=[];for(let n=0;n<t.length;++n){let o=t[n],s=o;NS(t,o)>1&&(s+=`_${NS(t.slice(0,n),o)}`),e.push(s)}return e}makeTrainFunction(){return t=>{let e=[],n=t.slice(0,this.inputs.length),o=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=t.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),i=[],a=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:n[h]});let m=new ko(p),f=vc(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let g=this.lossFunctions[h],y=g(o[h],f[h]);s[h]!=null&&(y=uD(y,s[h]));let b=ke(y);e.push(b),h===0?d=y:d=Z(d,y)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=e[h];else{let y=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=ke(y(o[b],f[b]))}Oe(g),i.push(g)}return d=ke(d),this.calculateLosses().forEach(h=>{d=Z(d,h)}),d},u=this.collectedTrainableWeights.map(p=>p.read()),l=!0;return[this.optimizer_.minimize(a,l,u)].concat(i)}}makeTestFunction(){this.testFunction=t=>W(()=>{let e=[],n,o=t.slice(0,this.inputs.length),s=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),i=[];for(let l=0;l<this.inputs.length;++l)i.push({key:this.inputs[l],value:o[l]});let a=new ko(i),u=vc(this.outputs,a);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],p=ke(c(s[l],u[l]));l===0?n=p:n=Z(n,p),e.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],p=this.metricsTensors[l][1],m=ke(c(s[p],u[p]));e.push(m)}return e})}async fit(t,e,n={}){return hD(this,t,e,n)}async fitDataset(t,e){return fD(this,t,e)}async trainOnBatch(t,e){let n=await this.standardizeUserData(t,e),o=n[0],s=n[1],a=this.makeTrainFunction()(o.concat(s)),u=[];for(let l of a){let c=await l.data();u.push(c[0])}return _t(a),To(n[0],t),To(n[1],e),kr(u)}getNamedWeights(t){let e=[],n=t!=null&&t.trainableOnly,o=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let i=0;i<o.length;++i)n&&!o[i].trainable||e.push({name:o[i].originalName,tensor:s[i]});return e}set stopTraining(t){this.stopTraining_=t}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(t){this.optimizer_!==t&&(this.optimizer_=t,this.isOptimizerOwned=!1)}dispose(){let t=super.dispose();if(t.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let e=mh().numTensors;this.optimizer_.dispose(),t.numDisposedVariables+=e-mh().numTensors}return t}getLossIdentifiers(){let t;if(typeof this.loss=="string")t=Co(this.loss);else if(Array.isArray(this.loss)){for(let e of this.loss)if(typeof e!="string")throw new Error("Serialization of non-string loss is not supported.");t=this.loss.map(e=>Co(e))}else{let e=Object.keys(this.loss);t={};let n=this.loss;for(let o of e)if(typeof n[o]=="string")t[o]=Co(n[o]);else throw new Error("Serialization of non-string loss is not supported.")}return t}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Co(Fh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(t=>Co(Fh(t)));{let t={};for(let e in this.metrics)t[e]=Co(Fh(this.metrics[e]));return t}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(t){if(t.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(t.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(t.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let e=Sc(t.optimizer_config),n=xn(e),o;if(typeof t.loss=="string")o=Za(t.loss);else if(Array.isArray(t.loss))o=t.loss.map(i=>Za(i));else if(t.loss!=null){o={};for(let i in t.loss)o[i]=Za(t.loss[i])}let s;if(Array.isArray(t.metrics))s=t.metrics.map(i=>Za(i));else if(t.metrics!=null){s={};for(let i in t.metrics)s[i]=Za(t.metrics[i])}this.compile({loss:o,metrics:s,optimizer:n})}async save(t,e){if(typeof t=="string"){let l=Cn.getSaveHandlers(t);if(l.length===0)throw new z(`Cannot find any save handlers for URL '${t}'`);if(l.length>1)throw new z(`Found more than one (${l.length}) save handlers for URL '${t}'`);t=l[0]}if(t.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Cn.encodeWeights(this.getNamedWeights(e)),o=!1,s=null,a={modelTopology:this.toJSON(s,o),format:M8,generatedBy:`TensorFlow.js tfjs-layers v${tf}`,convertedBy:null};if((e==null?!1:e.includeOptimizer)&&this.optimizer!=null){a.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:p}=await Cn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...p),n.data=Cn.concatenateArrayBuffers([n.data,c])}return this.userDefinedMetadata!=null&&(PS(this.userDefinedMetadata,this.name,!0),a.userDefinedMetadata=this.userDefinedMetadata),a.weightData=n.data,a.weightSpecs=n.specs,t.save(a)}setUserDefinedMetadata(t){PS(t,this.name),this.userDefinedMetadata=t}getUserDefinedMetadata(){return this.userDefinedMetadata}};Bn.className="Model";et.registerClass(Bn);var ab=class extends Bn{};ab.className="Functional";et.registerClass(ab);async function bD(r,t){"modelTopology"in r||(r={modelTopology:r}),r=r;let e=r.modelTopology;e.model_config!=null&&(e=e.model_config);let n=Sc(e),o=xn(n,t);if(r.weightsManifest!=null){let s=await Cn.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(a=>a.originalName)),i={};for(let a of o.weights)i[a.originalName]=s[a.originalName];o.loadWeights(i),_t(s)}return o}async function wD(r,t){if(t==null&&(t={}),typeof r=="string"){let e=Cn.getLoadHandlers(r,t);if(e.length===0)e.push(Cn.browserHTTPRequest(r,t));else if(e.length>1)throw new z(`Found more than one (${e.length}) load handlers for URL '${r}'`);r=e[0]}return z8(r,void 0,t)}async function z8(r,t,e){if(e==null&&(e={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=e.strict==null?!0:e.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,a=xn(Sc(o),t,i),u=n.trainingConfig;if(u!=null&&a.loadTrainingConfig(u),n.userDefinedMetadata!=null&&a.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:c}=B8(n.weightData,n.weightSpecs);a.loadWeights(l,s),a.optimizer!=null&&c.length>0&&await a.optimizer.setWeights(c),_t(l),_t(c.map(p=>p.tensor))}return a}function B8(r,t){let e=Cn.decodeWeights(r,t),n={},o=[];return t.forEach(s=>{s.group==="optimizer"?o.push({name:s.name,tensor:e[s.name]}):n[s.name]=e[s.name]}),{modelWeights:n,optimizerWeights:o}}var Xi=class extends Bn{constructor(t){if(super({inputs:[],outputs:[]}),t=t||{},this.trainable=!0,this.built=!1,this.name=t.name!=null?t.name:fu("sequential_"),t.layers!=null)for(let e of t.layers)this.add(e)}checkShape(t){if(t.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new z(`Negative dimension size caused by adding layer ${t.name} with input shape [${t.inboundNodes[0].inputTensors[0].shape}]`)}add(t){let e=t instanceof Xi||t instanceof Bn,n;if(e){if(n=t,n.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(t.inboundNodes.length===0){if(t.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let o=Vy({batchShape:t.batchInputShape,dtype:t.dtype,name:t.name+"_input"});t.apply(o)}if(e)this.outputs=n.outputs,this.inputs=n.inputs;else{if(t.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${t.name} which has ${t.inboundNodes.length} pre-existing inbound connections.`);if(t.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[t.inboundNodes[0].outputTensors[0]],this.inputs=$S(this.outputs[0])}this.inboundNodes=[],new tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:vo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=t.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(t),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let t=this.layers.length-1;this.layers[t].outboundNodes=[],this.outputs=[this.layers[t].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(t,e){return this.model==null&&this.build(),this.model.call(t,e)}build(t){if(te(t),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Bn({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(t,e,n=console.log){this.built||this.build(),super.summary(t,e,n)}setWeights(t){this.model==null&&this.build(),this.model.setWeights(t)}evaluate(t,e,n={}){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.evaluate(t,e,n)}async evaluateDataset(t,e){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.evaluateDataset(t,e)}predict(t,e={}){return this.model==null&&this.build(),this.model.predict(t,e)}predictOnBatch(t){return this.model==null&&this.build(),this.model.predictOnBatch(t)}compile(t){this.build(),this.model.compile(t),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(t){this.model.optimizer=t}async fit(t,e,n={}){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.fit(t,e,n)}async fitDataset(t,e){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.fitDataset(t,e)}async trainOnBatch(t,e){return this.model.trainOnBatch(t,e)}static fromConfig(t,e,n={},o=!1){let s,i={};if(e instanceof Array){if(e[0].className==null||e[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=e}else x.assert(e.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=e.layers,delete e.layers,i=e;let a=new t(i);if(!(a instanceof Xi))throw new kt(`Sequential.fromConfig called on non-Sequential input: ${a}`);for(let u of s){let c=xn(u,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),a.add(c)}return a}set stopTraining(t){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=t}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let t=[];for(let e of this.layers){let n={};n.className=e.getClassName(),n.config=e.getConfig(),t.push(n)}return{name:this.name,layers:t}}};Xi.className="Sequential";et.registerClass(Xi);function V8(r){return new Bn(r)}function G8(r){return new Xi(r)}function W8(r,t){return t==null&&(t={}),wD(r,t)}function BS(r){return Vy(r)}function U8(r,t){gn.registerCallbackConstructor(r,t)}var Yr=class extends et.Serializable{getConfig(){return{}}},lb=class extends Yr{apply(t,e=1){return z$(t,e)}};lb.className="elu";et.registerClass(lb);var ub=class extends Yr{apply(t){return vm(t)}};ub.className="selu";et.registerClass(ub);var cb=class extends Yr{apply(t){return Fr(t)}};cb.className="relu";et.registerClass(cb);var pb=class extends Yr{apply(t){return W(()=>Gi(6,Fr(t)))}};pb.className="relu6";et.registerClass(pb);var mb=class extends Yr{apply(t){return t}};mb.className="linear";et.registerClass(mb);var fb=class extends Yr{apply(t){return Kr(t)}};fb.className="sigmoid";et.registerClass(fb);var db=class extends Yr{apply(t){return V$(t)}};db.className="hardSigmoid";et.registerClass(db);var hb=class extends Yr{apply(t){return Us(t)}};hb.className="softplus";et.registerClass(hb);var gb=class extends Yr{apply(t){return B$(t)}};gb.className="softsign";et.registerClass(gb);var xb=class extends Yr{apply(t){return Oi(t)}};xb.className="tanh";et.registerClass(xb);var rf=class extends Yr{apply(t,e=-1){return ru(t,e)}};rf.className="softmax";et.registerClass(rf);var yb=class extends Yr{apply(t,e=-1){return hm(t,e)}};yb.className="logSoftmax";et.registerClass(yb);var bb=class extends Yr{apply(t,e=1){return W(()=>O(Kr(O(t,e)),t))}};bb.className="swish";et.registerClass(bb);var wb=class extends Yr{apply(t){return W(()=>O(t,Oi(Us(t))))}};wb.className="mish";et.registerClass(wb);function Js(r){return r.getClassName()}function VS(r,t={}){return Hi(r,et.SerializationMap.getMap().classNameMap,t,"activation")}function Qs(r){if(r==null){let t={};return t.className="linear",t.config={},VS(t)}if(typeof r=="string"){let t={};return t.className=r,t.config={},VS(t)}else return r instanceof Yr?r:VS(r)}function GS(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var vb=class extends et.Serializable{},xu=class extends vb{constructor(t){super(),GS(t),this.l1=t==null||t.l1==null?.01:t.l1,this.l2=t==null||t.l2==null?.01:t.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(t){return W(()=>{let e=Te([1]);return this.hasL1&&(e=Z(e,mt(O(this.l1,Ae(t))))),this.hasL2&&(e=Z(e,mt(O(this.l2,dc(t))))),R(e,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(t,e){return new t({l1:e.l1,l2:e.l2})}};xu.className="L1L2";et.registerClass(xu);function ID(r){return GS(r),new xu({l1:r!=null?r.l1:null,l2:0})}function SD(r){return GS(r),new xu({l2:r!=null?r.l2:null,l1:0})}var vD={l1l2:"L1L2"};function de(r){return Fm(r)}function CD(r,t={}){return Hi(r,et.SerializationMap.getMap().classNameMap,t,"regularizer")}function ve(r){if(r==null)return null;if(typeof r=="string"){let e={className:r in vD?vD[r]:r,config:{}};return CD(e)}else return r instanceof vb?r:CD(r)}var nf=class extends Bt{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null&&(this.maxValue=t.maxValue)}call(t,e){t=Lt(t);let n=Fr(t);return this.maxValue!=null&&(n=Ir(n,0,this.maxValue)),n}computeOutputShape(t){return t}getConfig(){let t={maxValue:this.maxValue},e=super.getConfig();return Object.assign(t,e),t}};nf.className="ReLU";et.registerClass(nf);var of=class extends Bt{constructor(t){super(t==null?{}:t),this.DEFAULT_ALPHA=.3,t==null&&(t={}),this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=Lt(t);return Xl(n,this.alpha)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};of.className="LeakyReLU";et.registerClass(of);var sf=class extends Bt{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA_INITIALIZER="zeros",t==null&&(t={}),this.supportsMasking=!0,this.alphaInitializer=ge(t.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=ve(t.alphaRegularizer),this.alphaConstraint=We(t.alphaConstraint),t.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(t.sharedAxes))this.sharedAxes=t.sharedAxes;else if(typeof t.sharedAxes=="number")this.sharedAxes=[t.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${t.sharedAxes}`)}build(t){t=te(t);let e=t.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)e[o-1]=1;this.alpha=this.addWeight("alpha",e,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o<t.length;++o)n[o]=t[o];this.inputSpec=[new we({ndim:t.length,axes:n})],this.built=!0}call(t,e){return t=Lt(t),tu(t,this.alpha.read())}getConfig(){let t={alphaInitializer:_e(this.alphaInitializer),alphaRegularizer:de(this.alphaRegularizer),alphaConstraint:Ge(this.alphaConstraint),sharedAxes:this.sharedAxes},e=super.getConfig();return Object.assign(t,e),t}};sf.className="PReLU";et.registerClass(sf);var af=class extends Bt{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA=1,t==null&&(t={}),t.alpha!=null&&t.alpha!==this.DEFAULT_ALPHA)throw new kt(`Non-default alpha value (${t.alpha}) is not supported by the ELU layer yet.`);this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=Lt(t);return Mi(n)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};af.className="ELU";et.registerClass(af);var lf=class extends Bt{constructor(t){super(t==null?{}:t),this.DEFAULT_THETA=1,t==null&&(t={}),this.theta=t.theta==null?this.DEFAULT_THETA:t.theta}call(t,e){let n=Lt(t);return O(n,tt(Xe(n,this.theta),"float32"))}computeOutputShape(t){return t}getConfig(){let t={theta:this.theta},e=super.getConfig();return Object.assign(t,e),t}};lf.className="ThresholdedReLU";et.registerClass(lf);var uf=class extends Bt{constructor(t){super(t==null?{}:t),this.DEFAULT_AXIS=1,t==null&&(t={}),this.softmax=new rf().apply,this.axis=t.axis==null?this.DEFAULT_AXIS:t.axis}call(t,e){let n=Lt(t);return this.softmax(n,this.axis)}computeOutputShape(t){return t}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};uf.className="Softmax";et.registerClass(uf);function yu(r,t,e){if(typeof r=="number")return vo(r,t);if(r.length!==t)throw new z(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${r.length} elements.`);for(let n=0;n<t;++n){let o=r[n];if(!O$(o))throw new z(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(r)} including a non-integer number ${o}`)}return r}function Tn(r,t,e,n,o=1){if(r==null)return r;let s=t+(t-1)*(o-1),i;return e==="same"?i=r:i=r-s+1,Math.floor((i+n-1)/n)}function ti(r,t,e,n){if(r==null)return null;if(n==="valid")r=r*t+Ys([e-t,0]);else if(n==="same")r=r*t;else throw new z(`Unsupport padding mode: ${n}.`);return r}function Rh(r,t){return W(()=>(Le(t),t==="channelsFirst"?Mt(r,[0,2,3,1]):r))}function WS(r,t){return W(()=>(Le(t),t==="channelsFirst"?Mt(r,[0,2,3,4,1]):r))}function q8(r,t,e,n=1,o="valid",s,i=1){return W(()=>{if(s==null&&(s=mn()),Le(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(t.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(e!=null&&e.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(r=Mt(r,[0,2,1])),o==="causal")throw new kt("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let a=um(r,t,n,o==="same"?"same":"valid","NWC",i);return e!=null&&(a=fn(a,e)),a})}function ND(r,t,e,n=[1,1],o="valid",s,i,a=null){return W(()=>{if(s==null&&(s=mn()),Le(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(t.rank!==3&&t.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let u=Rh(r,s);if(o==="causal")throw new kt("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return u=su.conv2d({x:u,filter:t,strides:n,pad:o==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:e,activation:a}),s==="channelsFirst"&&(u=Mt(u,[0,3,1,2])),u})}function K8(r,t,e,n=[1,1,1],o="valid",s,i){return W(()=>{if(s==null&&(s=mn()),Le(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(t.rank!==4&&t.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let a=WS(r,s);if(o==="causal")throw new kt("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return a=Ox(a,t,n,o==="same"?"same":"valid","NDHWC",i),e!=null&&(a=fn(a,e)),s==="channelsFirst"&&(a=Mt(a,[0,4,1,2,3])),a})}var Nc=class extends Bt{constructor(t,e){if(super(e),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Nc.verifyArgs(e),this.rank=t,Je(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new kt(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=yu(e.kernelSize,t,"kernelSize"),this.strides=yu(e.strides==null?1:e.strides,t,"strides"),this.padding=e.padding==null?"valid":e.padding,pn(this.padding),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Le(this.dataFormat),this.activation=Qs(e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.biasInitializer=ge(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=We(e.biasConstraint),this.biasRegularizer=ve(e.biasRegularizer),this.activityRegularizer=ve(e.activityRegularizer),this.dilationRate=yu(e.dilationRate==null?1:e.dilationRate,t,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(t){if(Qn("kernelSize"in t,"required key 'kernelSize' not in config"),typeof t.kernelSize!="number"&&!Ay(t.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(t.kernelSize)}.`)}getConfig(){let t={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Js(this.activation),useBias:this.useBias,biasInitializer:_e(this.biasInitializer),biasRegularizer:de(this.biasRegularizer),activityRegularizer:de(this.activityRegularizer),biasConstraint:Ge(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}},bu=class extends Nc{constructor(t,e){super(t,e),this.kernel=null,bu.verifyArgs(e),this.filters=e.filters,Je(this.filters,"filters"),this.kernelInitializer=ge(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=We(e.kernelConstraint),this.kernelRegularizer=ve(e.kernelRegularizer)}build(t){t=te(t);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[e]}`);let n=t[e],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[e]:n}}],this.built=!0}call(t,e){return W(()=>{t=Lt(t);let n,o=this.bias==null?null:this.bias.read(),s=$y(this.activation.getClassName());if(s!=null&&this.rank===2)n=ND(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=q8(t,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=ND(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=K8(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new kt("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(t){t=te(t);let e=[],n=this.dataFormat==="channelsLast"?t.slice(1,t.length-1):t.slice(2);for(let s=0;s<n.length;++s){let i=Tn(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);e.push(i)}let o=[t[0]];return this.dataFormat==="channelsLast"?(o=o.concat(e),o.push(this.filters)):(o.push(this.filters),o=o.concat(e)),o}getConfig(){let t={filters:this.filters,kernelInitializer:_e(this.kernelInitializer),kernelRegularizer:de(this.kernelRegularizer),kernelConstraint:Ge(this.kernelConstraint)},e=super.getConfig();return Object.assign(t,e),t}static verifyArgs(t){if(!("filters"in t)||typeof t.filters!="number"||t.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(t.filters)}`)}},rl=class extends bu{constructor(t){super(2,t),rl.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!Ay(t.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(t.kernelSize)}.`)}};rl.className="Conv2D";et.registerClass(rl);var nl=class extends bu{constructor(t){super(3,t),nl.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!(Array.isArray(t.kernelSize)&&(t.kernelSize.length===1||t.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(t.kernelSize)}.`)}};nl.className="Conv3D";et.registerClass(nl);var cf=class extends rl{constructor(t){if(super(t),this.inputSpec=[new we({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=te(t),t.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new we({ndim:4,axes:{[e]:n}})],this.built=!0}call(t,e){return W(()=>{let n=Lt(t);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a;this.dataFormat==="channelsFirst"?(i=2,a=3):(i=1,a=2);let u=o[i],l=o[a],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=ti(u,m,c,this.padding),h=ti(l,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(n=Mt(n,[0,2,3,1]));let y=pm(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(y=Mt(y,[0,3,1,2])),this.bias!=null&&(y=fn(y,this.bias.read(),this.dataFormat)),this.activation!=null&&(y=this.activation.apply(y)),y})}computeOutputShape(t){t=te(t);let e=t.slice(),n,o,s;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3):(n=3,o=1,s=2);let i=this.kernelSize[0],a=this.kernelSize[1],u=this.strides[0],l=this.strides[1];return e[n]=this.filters,e[o]=ti(e[o],u,i,this.padding),e[s]=ti(e[s],l,a,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};cf.className="Conv2DTranspose";et.registerClass(cf);var pf=class extends nl{constructor(t){if(super(t),this.inputSpec=[new we({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=te(t),t.length!==5)throw new z("Input should have rank 5; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new we({ndim:5,axes:{[e]:n}})],this.built=!0}call(t,e){return W(()=>{let n=Lt(t);if(n.shape.length!==5)throw new z(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a,u;this.dataFormat==="channelsFirst"?(u=2,i=3,a=4):(u=1,i=2,a=3);let l=o[u],c=o[i],p=o[a],m=this.kernelSize[0],f=this.kernelSize[1],d=this.kernelSize[2],h=this.strides[0],g=this.strides[1],y=this.strides[2],b=ti(l,h,m,this.padding),w=ti(c,g,f,this.padding),v=ti(p,y,d,this.padding),N=[s,b,w,v,this.filters];this.dataFormat!=="channelsLast"&&(n=Mt(n,[0,2,3,4,1]));let E=Px(n,this.kernel.read(),N,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(E=Mt(E,[0,4,1,2,3])),this.bias!==null&&(E=fn(E,this.bias.read(),this.dataFormat)),this.activation!==null&&(E=this.activation.apply(E)),E})}computeOutputShape(t){t=te(t);let e=t.slice(),n,o,s,i;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3,i=4):(n=4,o=1,s=2,i=3);let a=this.kernelSize[0],u=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],p=this.strides[1],m=this.strides[2];return e[n]=this.filters,e[o]=ti(e[o],c,a,this.padding),e[s]=ti(e[s],p,u,this.padding),e[i]=ti(e[i],m,l,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};pf.className="Conv3DTranspose";et.registerClass(pf);var Cb=class extends bu{constructor(t,e){if(super(t,e),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,e.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(e.kernelInitializer!=null||e.kernelRegularizer!=null||e.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(e.padding!=null&&e.padding!=="same"&&e.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(e.padding)}`);this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=ge(e.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=ve(e.depthwiseRegularizer),this.depthwiseConstraint=We(e.depthwiseConstraint),this.pointwiseInitializer=ge(e.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=ve(e.pointwiseRegularizer),this.pointwiseConstraint=We(e.pointwiseConstraint)}build(t){if(t=te(t),t.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(t)}`);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null||t[e]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(t[e])}`);let n=t[e],o=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let a=0;a<this.rank;++a)s.push(1);s.push(n*this.depthMultiplier,this.filters);let i=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",o,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,i,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,i,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,i,this.biasConstraint):this.bias=null,this.inputSpec=[new we({ndim:this.rank+2,axes:{[e]:n}})],this.built=!0}call(t,e){return W(()=>{t=Lt(t);let n;if(this.rank===1)throw new kt("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(t=Mt(t,[0,2,3,1])),n=Cm(t,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=fn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Mt(n,[0,3,1,2])),n})}getConfig(){let t=super.getConfig();return delete t.rank,delete t.kernelInitializer,delete t.kernelRegularizer,delete t.kernelConstraint,t.depthwiseInitializer=_e(this.depthwiseInitializer),t.pointwiseInitializer=_e(this.pointwiseInitializer),t.depthwiseRegularizer=de(this.depthwiseRegularizer),t.pointwiseRegularizer=de(this.pointwiseRegularizer),t.depthwiseConstraint=Ge(this.depthwiseConstraint),t.pointwiseConstraint=Ge(this.pointwiseConstraint),t}};Cb.className="SeparableConv";var mf=class extends Cb{constructor(t){super(2,t)}};mf.className="SeparableConv2D";et.registerClass(mf);var wu=class extends bu{constructor(t){super(1,t),wu.verifyArgs(t),this.inputSpec=[{ndim:3}]}getConfig(){let t=super.getConfig();return delete t.rank,delete t.dataFormat,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!Ay(t.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(t.kernelSize)}.`)}};wu.className="Conv1D";et.registerClass(wu);var ff=class extends Bt{constructor(t){super(t),typeof t.cropping=="number"?this.cropping=[[t.cropping,t.cropping],[t.cropping,t.cropping]]:typeof t.cropping[0]=="number"?this.cropping=[[t.cropping[0],t.cropping[0]],[t.cropping[1],t.cropping[1]]]:this.cropping=t.cropping,this.dataFormat=t.dataFormat===void 0?"channelsLast":t.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(t){return this.dataFormat==="channelsFirst"?[t[0],t[1],t[2]-this.cropping[0][0]-this.cropping[0][1],t[3]-this.cropping[1][0]-this.cropping[1][1]]:[t[0],t[1]-this.cropping[0][0]-this.cropping[0][1],t[2]-this.cropping[1][0]-this.cropping[1][1],t[3]]}call(t,e){return W(()=>{if(t=Lt(t),this.dataFormat==="channelsLast"){let n=Sh(t,this.cropping[0][0],t.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Sh(n,this.cropping[1][0],t.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Sh(t,this.cropping[0][0],t.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Sh(n,this.cropping[1][0],t.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let t={cropping:this.cropping,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};ff.className="Cropping2D";et.registerClass(ff);var df=class extends Bt{constructor(t){super(t),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=t.size==null?this.DEFAULT_SIZE:t.size,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Le(this.dataFormat),this.interpolation=t.interpolation==null?"nearest":t.interpolation,F$(this.interpolation)}computeOutputShape(t){if(this.dataFormat==="channelsFirst"){let e=t[2]==null?null:this.size[0]*t[2],n=t[3]==null?null:this.size[1]*t[3];return[t[0],t[1],e,n]}else{let e=t[1]==null?null:this.size[0]*t[1],n=t[2]==null?null:this.size[1]*t[2];return[t[0],e,n,t[3]]}}call(t,e){return W(()=>{let n=Lt(t),o=n.shape;if(this.dataFormat==="channelsFirst"){n=Mt(n,[0,2,3,1]);let s=this.size[0]*o[2],i=this.size[1]*o[3],a=this.interpolation==="nearest"?iu.resizeNearestNeighbor(n,[s,i]):iu.resizeBilinear(n,[s,i]);return Mt(a,[0,3,1,2])}else{let s=this.size[0]*o[1],i=this.size[1]*o[2];return this.interpolation==="nearest"?iu.resizeNearestNeighbor(n,[s,i]):iu.resizeBilinear(n,[s,i])}})}getConfig(){let t={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},e=super.getConfig();return Object.assign(t,e),t}};df.className="UpSampling2D";et.registerClass(df);function j8(r,t,e=[1,1],n="valid",o,s){return W(()=>{o==null&&(o=mn()),Le(o);let i=Rh(r,o);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(t.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Pi(i,t,e,n==="same"?"same":"valid","NHWC",s),o==="channelsFirst"&&(i=Mt(i,[0,3,1,2])),i})}var hf=class extends Nc{constructor(t){super(2,t),this.depthwiseKernel=null,this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=ge(t.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=We(t.depthwiseConstraint),this.depthwiseRegularizer=ve(t.depthwiseRegularizer)}build(t){if(t=te(t),t.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(t)}.`);let e=this.dataFormat==="channelsFirst"?1:3;if(t[e]==null||t[e]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${t[e]}).`);let n=t[e],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return W(()=>{t=Lt(t);let n=j8(t,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=fn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(t){t=te(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[1]*this.depthMultiplier:t[3]*this.depthMultiplier,s=Tn(e,this.kernelSize[0],this.padding,this.strides[0]),i=Tn(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[t[0],o,s,i]:[t[0],s,i,o]}getConfig(){let t=super.getConfig();return t.depthMultiplier=this.depthMultiplier,t.depthwiseInitializer=_e(this.depthwiseInitializer),t.depthwiseRegularizer=de(this.depthwiseRegularizer),t.depthwiseConstraint=Ge(this.depthwiseRegularizer),t}};hf.className="DepthwiseConv2D";et.registerClass(hf);function US(r,t,e,n){if(Array.isArray(r)){if(t!=null||e!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");n!=null&&(e=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(t=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return t=o(t),e=o(e),{inputs:r,initialState:t,constants:e}}function HS(r,t,e,n=!1,o,s,i=!1,a=!1){return W(()=>{let u=t.shape.length;if(u<3)throw new z(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(jr(2,u));if(t=Mt(t,l),s!=null)throw new kt("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),o!=null&&(o=tt(tt(o,"bool"),"float32"),o.rank===u-1&&(o=yr(o,-1)),o=Mt(o,l)),n&&(t=pr(t,0),o!=null&&(o=pr(o,0)));let c=[],p,m=e,f=t.shape[0],d=Nr(t),h;o!=null&&(h=Nr(o));for(let y=0;y<f;++y){let b=d[y],w=W(()=>r(b,m));if(o==null)p=w[0],m=w[1];else{let v=W(()=>{let N=h[y],E=ut(br(N),N),$=Z(O(w[0],N),O(m[0],E)),D=m.map((L,M)=>Z(O(w[1][M],N),O(L,E)));return{output:$,newStates:D}});p=v.output,m=v.newStates}a&&c.push(p)}let g;return a&&(g=sr(c,1)),[p,g,m]})}var _n=class extends Bt{constructor(t){super(t);let e;if(t.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(t.cell)?e=new _c({cells:t.cell}):e=t.cell,e.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=e,this.returnSequences=t.returnSequences==null?!1:t.returnSequences,this.returnState=t.returnState==null?!1:t.returnState,this.goBackwards=t.goBackwards==null?!1:t.goBackwards,this._stateful=t.stateful==null?!1:t.stateful,this.unroll=t.unroll==null?!1:t.unroll,this.supportsMasking=!0,this.inputSpec=[new we({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return jr(0,t).map(e=>null)}else return this.states_}setStates(t){this.states_=t}computeOutputShape(t){By(t)&&(t=t[0]),t=t;let e=this.cell.stateSize;Array.isArray(e)||(e=[e]);let n=e[0],o;if(this.returnSequences?o=[t[0],t[1],n]:o=[t[0],n],this.returnState){let s=[];for(let i of e)s.push([t[0],i]);return[o].concat(s)}else return o}computeMask(t,e){return W(()=>{Array.isArray(e)&&(e=e[0]);let n=this.returnSequences?e:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,e=[];for(let n=0;n<t;++n)e.push(null);return e}else return this.states_}set states(t){this.states_=t}build(t){if(this.numConstants!=null)throw new kt("Constants support is not implemented in RNN yet.");By(t)&&(t=t[0]),t=t;let n=this.stateful?t[0]:null,o=t.slice(2);this.inputSpec[0]=new we({shape:[n,null,...o]});let s=[t[0]].concat(t.slice(2));this.cell.build(s);let i;if(Array.isArray(this.cell.stateSize)?i=this.cell.stateSize:i=[this.cell.stateSize],this.stateSpec!=null){if(!x.arraysEqual(this.stateSpec.map(a=>a.shape[a.shape.length-1]),i))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=i.map(a=>new we({shape:[null,a]}));this.stateful&&this.resetStates()}resetStates(t,e=!1){W(()=>{if(!this.stateful)throw new kn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>Te([n,o])):this.states_=[Te([n,this.cell.stateSize])];else if(t==null)_t(this.states_),this.keptStates!=null&&(_t(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>Te([n,o])):this.states_[0]=Te([n,this.cell.stateSize]);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e===!0?this.keptStates.push(this.states_.slice()):_t(this.states_);for(let o=0;o<this.states_.length;++o){let s=t[o],i=Array.isArray(this.cell.stateSize)?this.cell.stateSize[o]:this.cell.stateSize,a=[n,i];if(!x.arraysEqual(s.shape,a))throw new z(`State ${o} is incompatible with layer ${this.name}: expected shape=${a}, received shape=${s.shape}`);this.states_[o]=s}}this.states_=this.states_.map(o=>Oe(o.clone()))})}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=US(t,n,o,this.numConstants);t=s.inputs,n=s.initialState,o=s.constants;let i=[],a=[];if(n!=null){e.initialState=n,i=i.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new we({shape:l.shape}));a=a.concat(this.stateSpec)}if(o!=null&&(e.constants=o,i=i.concat(o),this.numConstants=o.length),i[0]instanceof Xr){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return W(()=>{let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;t=Lt(t),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(t));let i=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==i)throw new z(`RNN Layer has ${i} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let a={training:o},l=HS((d,h)=>{let g=this.cell.call([d].concat(h),a);return[g[0],g.slice(1)]},t,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],p=l[1],m=l[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(t){return W(()=>{let e=Te(t.shape);return e=mt(e,[1,2]),e=Qa(e),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Py(e,[1,n]):e):this.cell.stateSize>1?[Py(e,[1,this.cell.stateSize])]:[e]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(t)}getConfig(){let t=super.getConfig(),e={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(e.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===_n.className&&(e.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,t,e)}static fromConfig(t,e,n={}){let o=e.cell,s=xn(o,n);return new t(Object.assign(e,{cell:s}))}};_n.className="RNN";et.registerClass(_n);var ol=class extends Bt{},kc=class extends ol{constructor(t){super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,Je(this.units,"units"),this.activation=Qs(t.activation==null?this.DEFAULT_ACTIVATION:t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=ge(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ge(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ge(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=ve(t.kernelRegularizer),this.recurrentRegularizer=ve(t.recurrentRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.kernelConstraint=We(t.kernelConstraint),this.recurrentConstraint=We(t.recurrentConstraint),this.biasConstraint=We(t.biasConstraint),this.dropout=mc([1,Ys([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=mc([1,Ys([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=te(t),this.kernel=this.addWeight("kernel",[t[t.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return W(()=>{if(t=t,t.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${t.length}.`);let n=t[1];t=t[0];let o=e.training==null?!1:e.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=il({ones:()=>br(t),rate:this.dropout,training:o,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=il({ones:()=>br(n),rate:this.recurrentDropout,training:o,dropoutFunc:this.dropoutFunc}));let s,i=this.dropoutMask,a=this.recurrentDropoutMask;i!=null?s=No(O(t,i),this.kernel.read()):s=No(t,this.kernel.read()),this.bias!=null&&(s=fn(s,this.bias.read())),a!=null&&(n=O(n,a));let u=Z(s,No(n,this.recurrentKernel.read()));return this.activation!=null&&(u=this.activation.apply(u)),[u,u]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:Js(this.activation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),recurrentInitializer:_e(this.recurrentInitializer),biasInitializer:_e(this.biasInitializer),kernelRegularizer:de(this.kernelRegularizer),recurrentRegularizer:de(this.recurrentRegularizer),biasRegularizer:de(this.biasRegularizer),activityRegularizer:de(this.activityRegularizer),kernelConstraint:Ge(this.kernelConstraint),recurrentConstraint:Ge(this.recurrentConstraint),biasConstraint:Ge(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},t,e)}};kc.className="SimpleRNNCell";et.registerClass(kc);var gf=class extends _n{constructor(t){t.cell=new kc(t),super(t)}call(t,e){return W(()=>{this.cell.dropoutMask!=null&&(_t(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_t(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return new t(e)}};gf.className="SimpleRNN";et.registerClass(gf);var Tc=class extends ol{constructor(t){if(super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=t.units,Je(this.units,"units"),this.activation=Qs(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=Qs(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=ge(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ge(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ge(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=ve(t.kernelRegularizer),this.recurrentRegularizer=ve(t.recurrentRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.kernelConstraint=We(t.kernelConstraint),this.recurrentConstraint=We(t.recurrentConstraint),this.biasConstraint=We(t.biasConstraint),this.dropout=mc([1,Ys([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=mc([1,Ys([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=te(t);let e=t[t.length-1];this.kernel=this.addWeight("kernel",[e,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return W(()=>{if(t=t,t.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training==null?!1:e.training,o=t[1];t=t[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=il({ones:()=>br(t),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=il({ones:()=>br(o),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,a,u,l;0<this.dropout&&this.dropout<1&&(t=O(t,s[0]));let c=No(t,this.kernel.read());this.useBias&&(c=fn(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(o=O(o,i[0]));let p=this.recurrentKernel.read(),[m,f]=mr(p,[2*this.units,this.units],p.rank-1),d=No(o,m),[h,g,y]=mr(c,3,c.rank-1),[b,w]=mr(d,2,d.rank-1);a=this.recurrentActivation.apply(Z(h,b)),u=this.recurrentActivation.apply(Z(g,w));let v=No(O(u,o),f);l=this.activation.apply(Z(y,v));let N=Z(O(a,o),O(Z(1,Yt(a)),l));return[N,N]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:Js(this.activation),recurrentActivation:Js(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),recurrentInitializer:_e(this.recurrentInitializer),biasInitializer:_e(this.biasInitializer),kernelRegularizer:de(this.kernelRegularizer),recurrentRegularizer:de(this.recurrentRegularizer),biasRegularizer:de(this.biasRegularizer),activityRegularizer:de(this.activityRegularizer),kernelConstraint:Ge(this.kernelConstraint),recurrentConstraint:Ge(this.recurrentConstraint),biasConstraint:Ge(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},t,e)}};Tc.className="GRUCell";et.registerClass(Tc);var xf=class extends _n{constructor(t){t.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),t.cell=new Tc(t),super(t)}call(t,e){return W(()=>{this.cell.dropoutMask!=null&&(_t(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_t(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};xf.className="GRU";et.registerClass(xf);var sl=class extends ol{constructor(t){super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,Je(this.units,"units"),this.activation=Qs(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=Qs(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=ge(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ge(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ge(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=t.unitForgetBias,this.kernelRegularizer=ve(t.kernelRegularizer),this.recurrentRegularizer=ve(t.recurrentRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.kernelConstraint=We(t.kernelConstraint),this.recurrentConstraint=We(t.recurrentConstraint),this.biasConstraint=We(t.biasConstraint),this.dropout=mc([1,Ys([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=mc([1,Ys([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){var e;t=te(t);let n=t[t.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,i=this.units;o=new(e=class extends hn{apply(u,l){let c=s.apply([i]),p=new hu().apply([i]),m=s.apply([i*2]);return AS(AS(c,p),m)}},e.className="CustomInit",e)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(t,e){return W(()=>{let n=e.training==null?!1:e.training;if(t=t,t.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let o=t[1],s=t[2];t=t[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=il({ones:()=>br(t),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=il({ones:()=>br(o),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,a=this.recurrentDropoutMask,u,l,c,p;0<this.dropout&&this.dropout<1&&(t=O(t,i[0]));let m=No(t,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(o=O(o,a[0])),m=Z(m,No(o,this.recurrentKernel.read())),this.useBias&&(m=fn(m,this.bias.read()));let[f,d,h,g]=mr(m,4,m.rank-1);u=this.recurrentActivation.apply(f),l=this.recurrentActivation.apply(d),c=Z(O(l,s),O(u,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let y=O(p,this.activation.apply(c));return[y,y,c]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:Js(this.activation),recurrentActivation:Js(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),recurrentInitializer:_e(this.recurrentInitializer),biasInitializer:_e(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:de(this.kernelRegularizer),recurrentRegularizer:de(this.recurrentRegularizer),biasRegularizer:de(this.biasRegularizer),activityRegularizer:de(this.activityRegularizer),kernelConstraint:Ge(this.kernelConstraint),recurrentConstraint:Ge(this.recurrentConstraint),biasConstraint:Ge(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},t,e)}};sl.className="LSTMCell";et.registerClass(sl);var yf=class extends _n{constructor(t){t.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),t.cell=new sl(t),super(t)}call(t,e){return W(()=>{this.cell.dropoutMask!=null&&(_t(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_t(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};yf.className="LSTM";et.registerClass(yf);var _c=class extends ol{constructor(t){super(t),this.cells=t.cells}get stateSize(){let t=[];for(let e of this.cells.slice().reverse())Array.isArray(e.stateSize)?t.push(...e.stateSize):t.push(e.stateSize);return t}call(t,e){return W(()=>{t=t;let n=t.slice(1),o=[];for(let a of this.cells.slice().reverse())Array.isArray(a.stateSize)?o.push(n.splice(0,a.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],i;for(let a=0;a<this.cells.length;++a){let u=this.cells[a];n=o[a],a===0?i=[t[0]].concat(n):i=[i[0]].concat(n),i=u.call(i,e),s.push(i.slice(1))}n=[];for(let a of s.slice().reverse())n.push(...a);return[i[0]].concat(n)})}build(t){By(t)&&(t=t[0]),t=t;let e;this.cells.forEach((n,o)=>{Xs(`RNNCell_${o}`,()=>{n.build(t),Array.isArray(n.stateSize)?e=n.stateSize[0]:e=n.stateSize,t=[t[0],e]})}),this.built=!0}getConfig(){let t=super.getConfig(),e=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(e)};return Object.assign({},t,o)}static fromConfig(t,e,n={}){let o=[];for(let s of e.cells)o.push(xn(s,n));return new t({cells:o})}get trainableWeights(){if(!this.trainable)return[];let t=[];for(let e of this.cells)t.push(...e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.cells)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.cells)e.push(...n.trainableWeights);return e.concat(t)}return t}getWeights(){let t=[];for(let e of this.cells)t.push(...e.weights);return kh(t)}setWeights(t){let e=[];for(let n of this.cells){let o=n.weights.length,s=t.splice(o);for(let i=0;i<n.weights.length;++i)e.push([n.weights[i],s[i]])}qm(e)}};_c.className="StackedRNNCells";et.registerClass(_c);function il(r){let{ones:t,rate:e,training:n=!1,count:o=1,dropoutFunc:s}=r,i=()=>s!=null?s(t(),e):zy(t(),e),a=()=>du(i,t,n);return!o||o<=1?Oe(a().clone()):Array(o).fill(void 0).map(a).map(l=>Oe(l.clone()))}var X8=function(r,t){var e={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&t.indexOf(n)<0&&(e[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var o=0,n=Object.getOwnPropertySymbols(r);o<n.length;o++)t.indexOf(n[o])<0&&Object.prototype.propertyIsEnumerable.call(r,n[o])&&(e[n[o]]=r[n[o]]);return e};var Ib=class extends _n{constructor(t){if(t.unroll)throw new kt("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(t.cell))throw new kt("It is not possible at the moment to stack convolutional cells.");super(t),this.inputSpec=[new we({ndim:5})]}call(t,e){return W(()=>{if(this.cell.dropoutMask!=null&&(_t(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_t(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),e&&e.constants)throw new z("ConvRNN2D cell does not support constants");let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}computeOutputShape(t){let e=this.computeSingleOutputShape(t);return this.returnSequences||(e=[e[0],...e.slice(2)]),this.returnState&&(e=[e,...Array(2).fill([t[0],...e.slice(-3)])]),e}getInitialState(t){return W(()=>{let{stateSize:e}=this.cell,n=t.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],i=Te(s);return Array.isArray(e)?Array(e.length).fill(i):[i]})}resetStates(t,e=!1){W(()=>{if(!this.stateful)throw new kn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Te(s)):this.states_=[Te(s)];else if(t==null)_t(this.states_),this.keptStates!=null&&(_t(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Te(s)):this.states_[0]=Te(s);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e?this.keptStates.push(this.states_.slice()):_t(this.states_);for(let a=0;a<this.states_.length;++a){let u=t[a],l=s;if(!x.arraysEqual(u.shape,l))throw new z(`State ${a} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${u.shape}`);this.states_[a]=u}}this.states_=this.states_.map(a=>Oe(a.clone()))})}computeSingleOutputShape(t){let{dataFormat:e,filters:n,kernelSize:o,padding:s,strides:i,dilationRate:a}=this.cell,u=e==="channelsFirst",l=t[u?3:2],c=t[u?4:3],p=Tn(l,o[0],s,i[0],a[0]),m=Tn(c,o[1],s,i[1],a[1]);return[...t.slice(0,2),...u?[n,p,m]:[p,m,n]]}};Ib.className="ConvRNN2D";var Ec=class extends sl{constructor(t){let{filters:e,kernelSize:n,strides:o,padding:s,dataFormat:i,dilationRate:a}=t;super(Object.assign({},t,{units:e})),this.filters=e,Je(this.filters,"filters"),this.kernelSize=yu(n,2,"kernelSize"),this.kernelSize.forEach(u=>Je(u,"kernelSize")),this.strides=yu(o||1,2,"strides"),this.strides.forEach(u=>Je(u,"strides")),this.padding=s||"valid",pn(this.padding),this.dataFormat=i||"channelsLast",Le(this.dataFormat),this.dilationRate=yu(a||1,2,"dilationRate"),this.dilationRate.forEach(u=>Je(u,"dilationRate"))}build(t){var e;t=te(t);let n=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[n]}`);let o=t[n],s=4,i=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight("kernel",i,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let a=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",a,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let u;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;u=new(e=class extends hn{apply(m,f){let d=l.apply([c]),h=cr([c]),g=l.apply([c*2]);return Om([d,h,g])}},e.className="CustomInit",e)}else u=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,u,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(t,e){return W(()=>{if(t.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training||!1,o=t[0],s=t[1],i=t[2],a=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=il({ones:()=>br(o),rate:this.dropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let u=this.dropoutMask,l=(st,it,ft)=>!it||!it[ft]?st:O(it[ft],st),c=l(o,u,0),p=l(o,u,1),m=l(o,u,2),f=l(o,u,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=il({ones:()=>br(s),rate:this.recurrentDropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let d=this.recurrentDropoutMask,h=l(s,d,0),g=l(s,d,1),y=l(s,d,2),b=l(s,d,3),w=3,[v,N,E,$]=mr(this.kernel.read(),a,w),[D,L,M,G]=this.useBias?mr(this.bias.read(),a):[null,null,null,null];c=this.inputConv(c,v,D,this.padding),p=this.inputConv(p,N,L,this.padding),m=this.inputConv(m,E,M,this.padding),f=this.inputConv(f,$,G,this.padding);let[H,q,X,j]=mr(this.recurrentKernel.read(),a,w);h=this.recurrentConv(h,H),g=this.recurrentConv(g,q),y=this.recurrentConv(y,X),b=this.recurrentConv(b,j);let J=this.recurrentActivation.apply(Z(c,h)),nt=this.recurrentActivation.apply(Z(p,g)),K=Z(O(nt,i),O(J,this.activation.apply(Z(m,y)))),ot=O(this.recurrentActivation.apply(Z(f,b)),this.activation.apply(K));return[ot,ot,K]})}getConfig(){let t=super.getConfig(),{units:e}=t,n=X8(t,["units"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,o)}inputConv(t,e,n,o){let s=Sn(t,e,this.strides,o||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?fn(s,n,this.dataFormat):s}recurrentConv(t,e){return Sn(t,e,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Ec.className="ConvLSTM2DCell";et.registerClass(Ec);var bf=class extends Ib{constructor(t){let e=new Ec(t);super(Object.assign({},t,{cell:e}))}static fromConfig(t,e){return new t(e)}};bf.className="ConvLSTM2D";et.registerClass(bf);var Ac=class extends Bt{constructor(t){super(t),this.rate=Math.max(Math.min(t.rate,1),0),this.noiseShape=t.noiseShape,this.seed=t.seed,this.supportsMasking=!0}getNoiseShape(t){if(this.noiseShape==null)return this.noiseShape;let e=t.shape,n=[];for(let o=0;o<this.noiseShape.length;++o)n.push(this.noiseShape[o]==null?e[o]:this.noiseShape[o]);return n}call(t,e){return W(()=>{this.invokeCallHook(t,e);let n=Lt(t);if(0<this.rate&&this.rate<1){let o=e.training==null?!1:e.training,s=this.getNoiseShape(n);return du(()=>zy(n,this.rate,s,this.seed),()=>n,o)}return t})}getConfig(){let t={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},e=super.getConfig();return Object.assign(t,e),t}dispose(){return super.dispose()}};Ac.className="Dropout";et.registerClass(Ac);var wf=class extends Ac{constructor(t){super(t),this.inputSpec=[{ndim:3}]}getNoiseShape(t){let e=t.shape;return[e[0],1,e[2]]}};wf.className="SpatialDropout1D";et.registerClass(wf);var vf=class extends Bt{constructor(t){if(super(t),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.batchInputShape==null&&t.inputShape==null&&t.inputDim!=null){let e=null;t.batchSize!=null&&(e=t.batchSize),this.batchInputShape=[e,t.inputDim]}this.units=t.units,Je(this.units,"units"),this.activation=Qs(t.activation),t.useBias!=null&&(this.useBias=t.useBias),this.kernelInitializer=ge(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=ge(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=We(t.kernelConstraint),this.biasConstraint=We(t.biasConstraint),this.kernelRegularizer=ve(t.kernelRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.activityRegularizer=ve(t.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(t){t=te(t);let e=t[t.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[e,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:e}}],this.built=!0}computeOutputShape(t){t=te(t);let e=t.slice();return e[e.length-1]=this.units,e}call(t,e){return W(()=>{this.invokeCallHook(t,e);let n=Lt(t),o=$y(this.activation.getClassName()),s;return o!=null?s=No(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=No(n,this.kernel.read()),this.bias!=null&&(s=fn(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let t={units:this.units,activation:Js(this.activation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),biasInitializer:_e(this.biasInitializer),kernelRegularizer:de(this.kernelRegularizer),biasRegularizer:de(this.biasRegularizer),activityRegularizer:de(this.activityRegularizer),kernelConstraint:Ge(this.kernelConstraint),biasConstraint:Ge(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}};vf.className="Dense";et.registerClass(vf);var Cf=class extends Bt{constructor(t){t=t||{},super(t),this.inputSpec=[{minNDim:3}],this.dataFormat=t.dataFormat}computeOutputShape(t){t=te(t);for(let e of t.slice(1))if(e==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${t.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[t[0],So(t,1)]}call(t,e){return W(()=>{this.invokeCallHook(t,e);let n=Lt(t);if(this.dataFormat==="channelsFirst"&&n.rank>1){let o=[0];for(let s=2;s<n.rank;++s)o.push(s);o.push(1),n=Mt(n,o)}return M$(n)})}getConfig(){let t={};this.dataFormat!=null&&(t.dataFormat=this.dataFormat);let e=super.getConfig();return Object.assign(t,e),t}};Cf.className="Flatten";et.registerClass(Cf);var If=class extends Bt{constructor(t){super(t),this.supportsMasking=!0,this.activation=Qs(t.activation)}call(t,e){return W(()=>{this.invokeCallHook(t,e);let n=Lt(t);return this.activation.apply(n)})}getConfig(){let t={activation:Js(this.activation)},e=super.getConfig();return Object.assign(t,e),t}};If.className="Activation";et.registerClass(If);var Sf=class extends Bt{constructor(t){super(t),this.n=t.n,this.inputSpec=[{ndim:2}]}computeOutputShape(t){return[t[0],this.n,t[1]]}call(t,e){return W(()=>(t=Lt(t),L$(t,this.n)))}getConfig(){let t={n:this.n},e=super.getConfig();return Object.assign(t,e),t}};Sf.className="RepeatVector";et.registerClass(Sf);var Nf=class extends Bt{constructor(t){super(t),this.targetShape=t.targetShape;for(let e=0;e<this.targetShape.length;++e)this.isUnknown(this.targetShape[e])&&(this.targetShape[e]=null)}isUnknown(t){return t<0||t==null}fixUnknownDimension(t,e){let n="Total size of new array must be unchanged.",o=e.slice(),s=1,i=null;for(let u=0;u<o.length;++u){let l=o[u];if(this.isUnknown(l))if(i===null)i=u;else throw new z("Can only specifiy one unknown dimension.");else s*=l}let a=So(t);if(i!==null){if(s===0||a%s!==0)throw new z(n);o[i]=a/s}else if(a!==s)throw new z(n);return o}computeOutputShape(t){let e=!1;for(let n=0;n<t.length;++n)if(this.isUnknown(t[n])){e=!0;break}return e?t.slice(0,1).concat(this.targetShape):t.slice(0,1).concat(this.fixUnknownDimension(t.slice(1),this.targetShape))}call(t,e){return W(()=>{this.invokeCallHook(t,e);let n=Lt(t),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return R(n,s)})}getConfig(){let t={targetShape:this.targetShape},e=super.getConfig();return Object.assign(t,e),t}};Nf.className="Reshape";et.registerClass(Nf);var kf=class extends Bt{constructor(t){if(super(t),t.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(t.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${t.dims} instead.`);let e=jr(1,t.dims.length+1);if(!x.arraysEqual(t.dims.slice().sort(),e))throw new Error("Invalid permutation `dims`: "+JSON.stringify(t.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=t.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new we({ndim:this.dims.length+1})]}computeOutputShape(t){t=te(t);let e=t.slice();return this.dims.forEach((n,o)=>{e[o+1]=t[n]}),e}call(t,e){return Mt(Lt(t),this.dimsIncludingBatch)}getConfig(){let t={dims:this.dims},e=super.getConfig();return Object.assign(t,e),t}};kf.className="Permute";et.registerClass(kf);var Tf=class extends Bt{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null?this.maskValue=t.maskValue==null?0:t.maskValue:this.maskValue=0}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={maskValue:this.maskValue};return Object.assign(e,t),e}computeMask(t,e){let n=Lt(t),o=-1;return Yu(Hs(n,this.maskValue),o)}call(t,e){return W(()=>{this.invokeCallHook(t,e);let n=Lt(t),o=-1,s=!0,i=Yu(Hs(n,this.maskValue),o,s);return O(n,tt(i,n.dtype))})}};Tf.className="Masking";et.registerClass(Tf);var _f=class extends Bt{constructor(t){if(super(t),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",t.batchInputShape==null&&t.inputShape==null){let e=null;t.batchSize!=null&&(e=t.batchSize),t.inputLength==null?this.batchInputShape=[e,null]:this.batchInputShape=[e].concat(be(t.inputLength))}this.inputDim=t.inputDim,Je(this.inputDim,"inputDim"),this.outputDim=t.outputDim,Je(this.outputDim,"outputDim"),this.embeddingsInitializer=ge(t.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=ve(t.embeddingsRegularizer),this.activityRegularizer=ve(t.activityRegularizer),this.embeddingsConstraint=We(t.embeddingsConstraint),this.maskZero=t.maskZero,this.supportsMasking=t.maskZero,this.inputLength=t.inputLength}build(t){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(t){}computeMask(t,e){return W(()=>this.maskZero?(t=Lt(t),Hs(t,St(t))):null)}computeOutputShape(t){if(t=te(t),this.inputLength==null)return[...t,this.outputDim];let e=be(this.inputLength);if(e.length!==t.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);{let n=0;for(let o=0;o<e.length;++o){let s=e[o],i=t[o+1];if(s!=null&&i!=null&&s!==i)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);s==null&&(e[n]=i),n++}}return[t[0],...e,this.outputDim]}call(t,e){return W(()=>{this.invokeCallHook(t,e);let n=Lt(t);n.dtype!=="int32"&&(n=fc(n,"int32"));let o=My(this.embeddings.read(),R(n,[n.size]));return R(o,te(this.computeOutputShape(n.shape)))})}getConfig(){let t={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:_e(this.embeddingsInitializer),embeddingsRegularizer:de(this.embeddingsRegularizer),activityRegularizer:de(this.activityRegularizer),embeddingsConstraint:Ge(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},e=super.getConfig();return Object.assign(t,e),t}};_f.className="Embedding";et.registerClass(_f);var al=class extends Bt{constructor(t){super(t||{}),this.supportsMasking=!0}mergeFunction(t){throw new kt}computeElementwiseOpOutputShape(t,e){if(t==null||e==null)return null;if(t.length<e.length)return this.computeElementwiseOpOutputShape(e,t);if(e.length===0)return t;let n=t.slice(0,t.length-e.length);for(let o=0;o<e.length;++o){let s=t[t.length-e.length+o],i=e[o];if(s==null||i==null||s<0||i<0)n.push(null);else if(s===1)n.push(i);else if(i===1)n.push(s);else{if(s!==i)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(t)+" "+JSON.stringify(e));n.push(s)}}return n}build(t){if(Array.isArray(t)&&!Array.isArray(t[0])&&(t=[te(t)]),t=t,t.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${t.length} input(s).`);let e=[];for(let s of t)s!=null&&s[0]!==null&&e.push(s[0]);if(e=Io(e),e.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(t)}.`);let n=t[0]==null?null:t[0].slice(1);for(let s=1;s<t.length;++s){let i=t[s]==null?null:t[s].slice(1);n=this.computeElementwiseOpOutputShape(n,i)}let o=t.map(s=>s.length);t.indexOf(null)===-1&&Io(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(t,e){return W(()=>{if(t=t,this.reshapeRequired){let n=[],o=t.map(s=>s.rank);if(o.indexOf(null)===-1){let s=Ys(o);for(let i of t){let a=i.rank;for(let u=0;u<s-a;++u)i=Qa(i,1);n.push(i)}return this.mergeFunction(n)}else{let s=!1;for(let u of t){let l=u.rank;if(l==null){let c=u.shape,p=c[0],m=c.slice(1).concat([p]),f=R(u,[p].concat(So(c.slice(1))));f=Mt(f,[1,0]),f=R(f,m),n.push(f),s=!0}else if(l>1){let c=jr(1,l).concat([0]);n.push(Mt(u,c)),s=!0}else n.push(u)}let i=this.mergeFunction(n),a=i.rank;if(s){if(a==null){let u=i.shape,l=u.length,c=u[l-1],p=[c].concat(u.slice(0,u.length-1));i=R(Mt(R(i,[-1,c]),[1,0]),p)}else if(a>1){let u=[a-1].concat(jr(0,a-1));i=Mt(i,u)}}return i}}else return this.mergeFunction(t)})}computeOutputShape(t){t=t;let e;t[0]==null?e=null:e=t[0].slice(1);for(let o=1;o<t.length;++o){let s=t[o]==null?null:t[o].slice(1);e=this.computeElementwiseOpOutputShape(e,s)}let n=[];for(let o of t)o!=null&&o[0]!==null&&n.push(o[0]);return n=Io(n),n.length===1?e=n.concat(e):e=[null].concat(e),e}computeMask(t,e){return W(()=>{if(e==null)return null;if(!Array.isArray(e))throw new z("`mask` should be an Array");if(!Array.isArray(t))throw new z("`inputs` should be an Array");if(e.length!==t.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${t.length} vs ${e.length})`);if(e.every(o=>o==null))return null;e=e.map(o=>o==null?o:yr(o,0));let n=e[0];for(let o=1;o<e.length-1;++o)n=Dr(n,e[o]);return n})}},Ef=class extends al{constructor(t){super(t)}mergeFunction(t){return W(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=Z(e,t[n]);return e})}};Ef.className="Add";et.registerClass(Ef);var Af=class extends al{constructor(t){super(t)}mergeFunction(t){return W(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=O(e,t[n]);return e})}};Af.className="Multiply";et.registerClass(Af);var $f=class extends al{constructor(t){super(t)}mergeFunction(t){return W(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=Z(e,t[n]);return O(1/t.length,e)})}};$f.className="Average";et.registerClass($f);var Df=class extends al{constructor(t){super(t)}mergeFunction(t){return W(()=>{let e=t[0];for(let n=1;n<t.length;++n)e=Nn(e,t[n]);return e})}};Df.className="Maximum";et.registerClass(Df);var Ff=class extends al{constructor(t){super(t)}mergeFunction(t){return W(()=>{let e=t[0];for(let n=1;n<t.length;++n)e=Gi(e,t[n]);return e})}};Ff.className="Minimum";et.registerClass(Ff);var Rf=class extends al{constructor(t){super(t),this.DEFAULT_AXIS=-1,t==null&&(t={}),this.axis=t.axis==null?this.DEFAULT_AXIS:t.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(t){if(!(Array.isArray(t)&&Array.isArray(t[0]))||t.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");t=t;let e=!0;for(let o of t)if(o!=null){e=!1;break}if(e)return;let n=[];for(let o=0;o<t.length;++o){let s=t[o].slice();s.splice(this.axis,1);let i=!1;for(let a of n)if(x.arraysEqual(a,s)){i=!0;break}i||n.push(s)}if(n.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(t))}mergeFunction(t){return W(()=>Om(t,this.axis))}computeOutputShape(t){if(!(Array.isArray(t)&&Array.isArray(t[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let e=t,n=e[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of e.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(t,e){if(e==null)return null;if(!Array.isArray(e))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(t))throw new z("`inputs` should be an array for Concatenate");if(e.length!==t.length)throw new z(`Mismatch in the length of mask (${e.length}) and the legnth of inputs (${t.length})`);return W(()=>{let n=!0;if(e.forEach(i=>{if(i!=null){n=!1;return}}),n)return null;let o=[];for(let i=0;i<t.length;++i)e[i]==null?o.push(tt(br(t[i]),"bool")):e[i].rank<t[i].rank?o.push(yr(e[i],-1)):o.push(e[i]);let s=se(o,this.axis);return am(s,-1,!1)})}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};Rf.className="Concatenate";et.registerClass(Rf);function Oh(r,t){for(;r<0;)r+=t;return r}function Y8(r,t,e){if(r.shape.length>3||t.shape.length>3)throw new kt("batchDot is not implemented for tensors of 4D or higher rank yet");if(x.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),x.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof e=="number"&&(e=[e,e]),r.dtype==="complex64"||t.dtype==="complex64")throw new kt("batchDot is not implemented for complex64-type Tensors yet.");let n=r.shape.length,o=t.shape.length;e==null&&(e=[n-1,o-2]);let s=e;return W(()=>{let i;if(n>o){i=n-o;let u=[];for(let l=0;l<i;++l)u.push(1);t=R(t,t.shape.concat(u))}else if(o>n){i=o-n;let u=[];for(let l=0;l<i;++l)u.push(1);r=R(r,r.shape.concat(u))}else i=0;let a;if(r.shape.length===2&&t.shape.length===2)s[0]===s[1]?a=mt(O(r,t),s[0]):a=mt(O(Mt(r,[1,0]),t),s[1]);else{let u=s[0]!==r.shape.length-1,l=s[1]===t.shape.length-1;a=Gt(r,t,u,l)}if(i>0){let u;n>o?u=n+o-3:u=n-1;let l=[];for(let c=u;c<u+i;++c)l.push(c);a=Mn(a,l)}return a.shape.length===1&&(a=yr(a,1)),a})}var Of=class extends al{constructor(t){super(t),this.axes=t.axes,this.normalize=t.normalize==null?!1:t.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(t){x.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0],n=t[1];if(e.length>3||n.length>3)throw new kt("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,n);if(e[o[0]]!==n[o[1]])throw new z(`Dimension incompatibility: ${e[o[0]]} !== ${n[o[1]]}`)}mergeFunction(t){if(t.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${t.length} input(s).`);let e=t[0],n=t[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,i)=>Oh(s,t[i].shape.length)):o=[Oh(this.axes,e.shape.length),Oh(this.axes,n.shape.length)],this.normalize&&(e=Th(e,o[0]),n=Th(n,o[1])),Y8(e,n,o)}interpretAxes(t,e){let n;return Array.isArray(this.axes)?n=this.axes:n=[Oh(this.axes,t.length),Oh(this.axes,e.length)],n}computeOutputShape(t){x.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0].slice(),n=t[1].slice();if(e.length>3||n.length>3)throw new kt("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,n);e.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=e.concat(n);return s.length===1&&s.push(1),s}computeMask(t,e){return null}getConfig(){let t={axes:this.axes,normalize:this.normalize},e=super.getConfig();return Object.assign(t,e),t}};Of.className="Dot";et.registerClass(Of);var Lf=class extends Bt{constructor(t){super(t),this.supportsMasking=!0,this.stddev=t.stddev}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={stddev:this.stddev};return Object.assign(e,t),e}call(t,e){return W(()=>{this.invokeCallHook(t,e);let n=Lt(t);return du(()=>Z(Lm(n.shape,0,this.stddev),n),()=>n,e.training||!1)})}};Lf.className="GaussianNoise";et.registerClass(Lf);var Pf=class extends Bt{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return W(()=>{this.invokeCallHook(t,e);let n=Lt(t);return this.rate>0&&this.rate<1?du(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return O(n,Lm(n.shape,1,s))},()=>n,e.training||!1):n})}};Pf.className="GaussianDropout";et.registerClass(Pf);var Mf=class extends Bt{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate,this.noiseShape=t.noiseShape}_getNoiseShape(t){return this.noiseShape||Lt(t).shape}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return W(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(t);return du(()=>{let s=Lt(t),i=1.6732632423543772,a=1.0507009873554805,u=-i*a,l=Ln(Wi(n),this.rate);l=fc(l,"float32");let c=((1-this.rate)*(1+this.rate*u**2))**-.5,p=-c*u*this.rate,m=Z(O(s,l),O(Z(l,-1),u));return Z(O(m,c),p)},()=>Lt(t),e.training||!1)}return t})}};Mf.className="AlphaDropout";et.registerClass(Mf);function Lh(r,t,e,n,o,s=.001){let i;if(r.rank===2)i=kx(r,t,e,n,o,s);else if(r.rank===3)i=Tx(r,t,e,n,o,s);else if(r.rank===4)i=_x(r,t,e,n,o,s);else throw new kt(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return i}function Z8(r,t,e,n,o=.001){return W(()=>{let s=rc(r,n),i=s.mean,a=s.variance;return[Lh(r,i,a,e,t,o),i,a]})}function J8(r,t,e,n,o=.001){return W(()=>{let s=rc(r,n),i=s.mean,a=s.variance,u=[];for(let d of jr(0,r.rank))n.indexOf(d)!==-1?u.push(1):u.push(r.shape[d]);let l=R(i,u),c=R(a,u),p=t==null?null:R(t,u),m=e==null?null:R(e,u);return[Lh(r,l,c,m,p,o),i,a]})}function Q8(r,t,e,n,o=.001){return x.arraysEqual(n.slice().sort(),jr(0,r.rank-1))?Z8(r,t,e,n,o):J8(r,t,e,n,o)}var zf=class extends Bt{constructor(t){t==null&&(t={}),super(t),this.supportsMasking=!0,this.axis=t.axis==null?-1:t.axis,this.momentum=t.momentum==null?.99:t.momentum,this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=ge(t.betaInitializer||"zeros"),this.gammaInitializer=ge(t.gammaInitializer||"ones"),this.movingMeanInitializer=ge(t.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=ge(t.movingVarianceInitializer||"ones"),this.betaConstraint=We(t.betaConstraint),this.gammaConstraint=We(t.gammaConstraint),this.betaRegularizer=ve(t.betaRegularizer),this.gammaRegularizer=ve(t.gammaRegularizer)}build(t){t=te(t);let e=this.axis>=0?this.axis:this.axis+t.length,n=t[e];if(n==null)throw new z(`Axis ${e} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(t)}.`);this.inputSpec=[new we({ndim:t.length,axes:{[e]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight("gamma",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(t,e){return W(()=>{let n=e.training==null?!1:e.training,o=Lt(t),s=o.shape,i=s.length,a=jr(0,i),u=this.axis>=0?this.axis:this.axis+i;a.splice(u,1);let l=vo(1,i);l[u]=s[u];let c=a.slice();c.sort();let p=!x.arraysEqual(c,jr(0,i).slice(0,i-1)),m=()=>{if(p){let b=R(this.movingMean.read(),l),w=R(this.movingVariance.read(),l),v=this.center?R(this.beta.read(),l):null,N=this.scale?R(this.gamma.read(),l):null;return Lh(o,b,w,v,N,this.epsilon)}else return Lh(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=Q8(o,this.gamma.read(),this.beta.read(),a,this.epsilon),g=(b,w,v)=>{W(()=>{let N=1-v,E=b.read(),$=O(ut(E,w),N);b.write(ut(E,$))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let t={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_e(this.betaInitializer),gammaInitializer:_e(this.gammaInitializer),movingMeanInitializer:_e(this.movingMeanInitializer),movingVarianceInitializer:_e(this.movingVarianceInitializer),betaRegularizer:de(this.betaRegularizer),gammaRegularizer:de(this.gammaRegularizer),betaConstraint:Ge(this.betaConstraint),gammaConstraint:Ge(this.gammaConstraint)},e=super.getConfig();return Object.assign(t,e),t}};zf.className="BatchNormalization";et.registerClass(zf);var Bf=class extends Bt{constructor(t){if(t==null&&(t={}),super(t),this.axis=t.axis==null?-1:t.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let e of this.axis)if(!Number.isInteger(e))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=ge(t.betaInitializer||"zeros"),this.gammaInitializer=ge(t.gammaInitializer||"ones"),this.betaRegularizer=ve(t.betaRegularizer),this.gammaRegularizer=ve(t.gammaRegularizer),this.supportsMasking=!0}build(t){t=te(t);let e=t.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=e);for(let s of this.axis)if(s<0||s>=e)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Io(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>t[s]),o=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(t,e){let n=Lt(t),o=n.shape,s=o.length;return W(()=>{let{mean:a,variance:u}=rc(n,this.axis,!0),l=vo(1,s);for(let h of this.axis)l[h]=o[h];let c=h=>h!=null&&h.shape.length!==s?R(h,l):h,p=this.scale?c(this.gamma.read()):null,m=this.center?c(this.beta.read()):null,f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(o[h]),d.push(1)):(f.push(1),d.push(o[h]));return a=$r(a,f),u=$r(u,f),p!=null&&(p=$r(p,d)),m!=null&&(m=$r(m,d)),Lh(n,a,u,m,p,this.epsilon)})}getConfig(){let t={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_e(this.betaInitializer),gammaInitializer:_e(this.gammaInitializer),betaRegularizer:de(this.betaRegularizer),gammaRegularizer:de(this.gammaRegularizer)},e=super.getConfig();return Object.assign(t,e),t}};Bf.className="LayerNormalization";et.registerClass(Bf);function tY(r,t,e){return W(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(e==null&&(e=mn()),e!=="channelsLast"&&e!=="channelsFirst")throw new z(`Unknown data format: ${e}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return e==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],cn(r,n)})}var Vf=class extends Bt{constructor(t){if(t==null&&(t={}),super(t),this.dataFormat=t.dataFormat==null?mn():t.dataFormat,t.padding==null)this.padding=[[1,1],[1,1]];else if(typeof t.padding=="number")this.padding=[[t.padding,t.padding],[t.padding,t.padding]];else{if(t.padding=t.padding,t.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${t.padding.length} array.`);let e,n;if(typeof t.padding[0]=="number")e=[t.padding[0],t.padding[0]],n=[t.padding[1],t.padding[1]];else{if(t.padding=t.padding,t.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${t.padding[0].length} array.`);if(e=t.padding[0],t.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${t.padding[1].length} array.`);n=t.padding[1]}this.padding=[e,n]}this.inputSpec=[new we({ndim:4})]}computeOutputShape(t){t=te(t);let e,n;return this.dataFormat==="channelsFirst"?(t[2]!=null&&t[2]>=0?e=t[2]+this.padding[0][0]+this.padding[0][1]:e=null,t[3]!=null&&t[3]>=0?n=t[3]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],t[1],e,n]):(t[1]!=null&&t[1]>=0?e=t[1]+this.padding[0][0]+this.padding[0][1]:e=null,t[2]!=null&&t[2]>=0?n=t[2]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],e,n,t[3]])}call(t,e){return W(()=>tY(Lt(t),this.padding,this.dataFormat))}getConfig(){let t={padding:this.padding,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};Vf.className="ZeroPadding2D";et.registerClass(Vf);function Eb(r,t,e,n,o,s){return W(()=>{Le(o),kS(s),pn(n),e==null&&(e=[1,1]),n==null&&(n="valid"),o==null&&(o=mn()),s==null&&(s="max"),r=Rh(r,o);let i,a=n==="same"?"same":"valid";return s==="max"?i=Jl(r,t,e,a):i=Hl(r,t,e,a),o==="channelsFirst"&&(i=Mt(i,[0,3,1,2])),i})}function kD(r,t,e,n,o,s){return W(()=>{Le(o),kS(s),pn(n),e==null&&(e=[1,1,1]),n==null&&(n="valid"),o==null&&(o=mn()),s==null&&(s="max"),r=WS(r,o);let i,a=n==="same"?"same":"valid";return s==="max"?i=ty(r,t,e,a):i=Nx(r,t,e,a),o==="channelsFirst"&&(i=Mt(i,[0,4,1,2,3])),i})}var Sb=class extends Bt{constructor(t){if(t.poolSize==null&&(t.poolSize=2),super(t),typeof t.poolSize=="number")this.poolSize=[t.poolSize];else if(Array.isArray(t.poolSize)&&t.poolSize.length===1&&typeof t.poolSize[0]=="number")this.poolSize=t.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.poolSize)}`);if(Je(this.poolSize,"poolSize"),t.strides==null)this.strides=this.poolSize;else if(typeof t.strides=="number")this.strides=[t.strides];else if(Array.isArray(t.strides)&&t.strides.length===1&&typeof t.strides[0]=="number")this.strides=t.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.strides)}`);Je(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,pn(this.padding),this.inputSpec=[new we({ndim:3})]}computeOutputShape(t){t=te(t);let e=Tn(t[1],this.poolSize[0],this.padding,this.strides[0]);return[t[0],e,t[2]]}call(t,e){return W(()=>{this.invokeCallHook(t,e),t=Qa(Lt(t),2);let n=this.poolingFunction(Lt(t),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Mn(n,[2])})}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides},e=super.getConfig();return Object.assign(t,e),t}},Gf=class extends Sb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),pn(o),Eb(t,e,n,o,s,"max")}};Gf.className="MaxPooling1D";et.registerClass(Gf);var Wf=class extends Sb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),pn(o),Eb(t,e,n,o,s,"avg")}};Wf.className="AveragePooling1D";et.registerClass(Wf);var Nb=class extends Bt{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides];Je(this.poolSize,"poolSize"),Je(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Le(this.dataFormat),pn(this.padding),this.inputSpec=[new we({ndim:4})]}computeOutputShape(t){t=te(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2];return e=Tn(e,this.poolSize[0],this.padding,this.strides[0]),n=Tn(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,n]:[t[0],e,n,t[3]]}call(t,e){return W(()=>(this.invokeCallHook(t,e),this.poolingFunction(Lt(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Uf=class extends Nb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),pn(o),Eb(t,e,n,o,s,"max")}};Uf.className="MaxPooling2D";et.registerClass(Uf);var Hf=class extends Nb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),pn(o),Eb(t,e,n,o,s,"avg")}};Hf.className="AveragePooling2D";et.registerClass(Hf);var kb=class extends Bt{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides,t.strides];Je(this.poolSize,"poolSize"),Je(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Le(this.dataFormat),pn(this.padding),this.inputSpec=[new we({ndim:5})]}computeOutputShape(t){t=te(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[4]:t[3];return e=Tn(e,this.poolSize[0],this.padding,this.strides[0]),n=Tn(n,this.poolSize[1],this.padding,this.strides[1]),o=Tn(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,n,o]:[t[0],e,n,o,t[4]]}call(t,e){return W(()=>(this.invokeCallHook(t,e),this.poolingFunction(Lt(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},qf=class extends kb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),pn(o),kD(t,e,n,o,s,"max")}};qf.className="MaxPooling3D";et.registerClass(qf);var Kf=class extends kb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),pn(o),kD(t,e,n,o,s,"avg")}};Kf.className="AveragePooling3D";et.registerClass(Kf);var Tb=class extends Bt{constructor(t){super(t),this.inputSpec=[new we({ndim:3})]}computeOutputShape(t){return[t[0],t[2]]}call(t,e){throw new kt}},jf=class extends Tb{constructor(t){super(t||{})}call(t,e){return W(()=>{let n=Lt(t);return ke(n,1)})}};jf.className="GlobalAveragePooling1D";et.registerClass(jf);var Xf=class extends Tb{constructor(t){super(t||{})}call(t,e){return W(()=>{let n=Lt(t);return Mr(n,1)})}};Xf.className="GlobalMaxPooling1D";et.registerClass(Xf);var _b=class extends Bt{constructor(t){super(t),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Le(this.dataFormat),this.inputSpec=[new we({ndim:4})]}computeOutputShape(t){return t=t,this.dataFormat==="channelsLast"?[t[0],t[3]]:[t[0],t[1]]}call(t,e){throw new kt}getConfig(){let t={dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Yf=class extends _b{call(t,e){return W(()=>{let n=Lt(t);return this.dataFormat==="channelsLast"?ke(n,[1,2]):ke(n,[2,3])})}};Yf.className="GlobalAveragePooling2D";et.registerClass(Yf);var Zf=class extends _b{call(t,e){return W(()=>{let n=Lt(t);return this.dataFormat==="channelsLast"?Mr(n,[1,2]):Mr(n,[2,3])})}};Zf.className="GlobalMaxPooling2D";et.registerClass(Zf);var Ab=class extends Bt{constructor(t){super(t),this.layer=t.layer}build(t){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(t){this.layer!=null&&(this.layer.trainable=t)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(t){this.layer.setWeights(t)}getConfig(){let t={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},e=super.getConfig();return Object.assign(t,e),t}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(t)}static fromConfig(t,e,n={}){let o=e.layer,s=xn(o,n);delete e.layer;let i={layer:s};return Object.assign(i,e),new t(i)}},Jf=class extends Ab{constructor(t){super(t),this.supportsMasking=!0}build(t){if(t=te(t),t.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(t)}`);this.inputSpec=[{shape:t}];let e=[t[0]].concat(t.slice(2));this.layer.built||(this.layer.build(e),this.layer.built=!0),super.build(t)}computeOutputShape(t){t=te(t);let e=[t[0]].concat(t.slice(2)),n=this.layer.computeOutputShape(e),o=t[1];return[n[0],o].concat(n.slice(1))}call(t,e){return W(()=>(t=Lt(t),HS((i,a)=>[Lt(this.layer.call(i,e)),[]],t,[],!1,null,null,!1,!0)[1]))}};Jf.className="TimeDistributed";et.registerClass(Jf);function eY(r){qi($$,"BidirectionalMergeMode",r)}var rY="concat",Qf=class extends Ab{constructor(t){super(t);let e=t.layer.getConfig(),n={};n.className=t.layer.getClassName(),n.config=e,this.forwardLayer=xn(n),e.goBackwards=e.goBackwards!==!0;let o={};if(o.className=t.layer.getClassName(),o.config=e,this.backwardLayer=xn(o),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=t.mergeMode===void 0?rY:t.mergeMode,eY(this.mergeMode),t.weights)throw new kt("weights support is not implemented for Bidirectional layer yet.");this._stateful=t.layer.stateful,this.returnSequences=t.layer.returnSequences,this.returnState=t.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=t.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(t){this._trainable=t,this.forwardLayer!=null&&(this.forwardLayer.trainable=t),this.backwardLayer!=null&&(this.backwardLayer.trainable=t)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(t){let e=t.length,n=Math.floor(e/2);this.forwardLayer.setWeights(t.slice(0,n)),this.backwardLayer.setWeights(t.slice(n))}computeOutputShape(t){let e=this.forwardLayer.computeOutputShape(t);Array.isArray(e)&&Array.isArray(e[0])||(e=[e]),e=e;let n,o,s;return this.returnState&&(s=e.slice(1)),n=e[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):kr(o)}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=US(t,n,o,this.numConstants);if(t=s.inputs,n=s.initialState,o=s.constants,Array.isArray(t)&&(n=t.slice(1),t=t[0]),(n==null||n.length===0)&&o==null)return super.apply(t,e);let i=[],a=[];if(n!=null){let l=n.length;if(l%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");e.initialState=n,i.push(...n);let c=n.map(p=>new we({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),a.push(...c)}if(o!=null)throw new kt("Support for constants in Bidirectional layers is not implemented yet.");let u=i[0]instanceof Xr;for(let l of i)if(l instanceof Xr!==u)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(u){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return W(()=>{let n=e.initialState,o,s;if(n==null)o=this.forwardLayer.call(t,e),s=this.backwardLayer.call(t,e);else{let u=n.slice(0,n.length/2),l=n.slice(n.length/2);o=this.forwardLayer.call(t,Object.assign(e,{initialState:u})),s=this.backwardLayer.call(t,Object.assign(e,{initialState:l}))}let i;this.returnState&&(Array.isArray(o)&&(i=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=pr(s,1));let a;return this.mergeMode==="concat"?a=Om([o,s]):this.mergeMode==="sum"?a=Z(o,s):this.mergeMode==="ave"?a=O(.5,Z(o,s)):this.mergeMode==="mul"?a=O(o,s):this.mergeMode==null&&(a=[o,s]),this.returnState?this.mergeMode==null?a.concat(i):[a].concat(i):a})}resetStates(t){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(t){Xs(this.forwardLayer.name,()=>{this.forwardLayer.build(t)}),Xs(this.backwardLayer.name,()=>{this.backwardLayer.build(t)}),this.built=!0}computeMask(t,e){Array.isArray(e)&&(e=e[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[e,e]:n=e:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(i=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(t),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(t)}getConfig(){let t={mergeMode:this.mergeMode},e=super.getConfig();return Object.assign(t,e),t}static fromConfig(t,e){let n=xn(e.layer);if(delete e.layer,e.numConstants!=null)throw new kt("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let o=e;return o.layer=n,new t(o)}};Qf.className="Bidirectional";et.registerClass(Qf);function nY(r){return new Zs(r)}function oY(r){return new af(r)}function sY(r){return new nf(r)}function iY(r){return new of(r)}function aY(r){return new sf(r)}function lY(r){return new uf(r)}function uY(r){return new lf(r)}function cY(r){return new wu(r)}function pY(r){return new rl(r)}function mY(r){return new cf(r)}function fY(r){return new nl(r)}function dY(r){return new pf(r)}function hY(r){return new mf(r)}function gY(r){return new ff(r)}function xY(r){return new df(r)}function yY(r){return new hf(r)}function bY(r){return new If(r)}function wY(r){return new vf(r)}function vY(r){return new Ac(r)}function CY(r){return new wf(r)}function IY(r){return new Cf(r)}function SY(r){return new Sf(r)}function NY(r){return new Nf(r)}function kY(r){return new kf(r)}function TY(r){return new _f(r)}function _Y(r){return new Ef(r)}function EY(r){return new $f(r)}function AY(r){return new Rf(r)}function $Y(r){return new Df(r)}function DY(r){return new Ff(r)}function FY(r){return new Af(r)}function RY(r){return new Of(r)}function OY(r){return new zf(r)}function LY(r){return new Bf(r)}function PY(r){return new Vf(r)}function qS(r){return new Wf(r)}function MY(r){return qS(r)}function zY(r){return qS(r)}function KS(r){return new Hf(r)}function BY(r){return KS(r)}function VY(r){return KS(r)}function jS(r){return new Kf(r)}function GY(r){return jS(r)}function WY(r){return jS(r)}function UY(r){return new jf(r)}function HY(r){return new Yf(r)}function TD(r){return new Xf(r)}function _D(r){return new Zf(r)}function ED(r){return new Gf(r)}function AD(r){return new Uf(r)}function qY(r){return new qf(r)}function KY(r){return new xf(r)}function jY(r){return new Tc(r)}function XY(r){return new yf(r)}function YY(r){return new sl(r)}function ZY(r){return new gf(r)}function JY(r){return new kc(r)}function QY(r){return new bf(r)}function t7(r){return new Ec(r)}function e7(r){return new _n(r)}function r7(r){return new _c(r)}function n7(r){return new Qf(r)}function o7(r){return new Jf(r)}var s7=TD,i7=_D,a7=ED,l7=AD;function u7(r){return new Lf(r)}function c7(r){return new Pf(r)}function p7(r){return new Mf(r)}function m7(r){return new Tf(r)}var DD={};jt(DD,{MAPE:()=>I7,MSE:()=>k7,binaryAccuracy:()=>f7,binaryCrossentropy:()=>d7,categoricalAccuracy:()=>g7,categoricalCrossentropy:()=>x7,cosineProximity:()=>w7,mape:()=>S7,meanAbsoluteError:()=>v7,meanAbsolutePercentageError:()=>C7,meanSquaredError:()=>N7,mse:()=>T7,precision:()=>y7,recall:()=>b7,sparseCategoricalAccuracy:()=>h7});function f7(r,t){return Ah(r,t)}function d7(r,t){return Jy(r,t)}function h7(r,t){return Qy(r,t)}function g7(r,t){return $h(r,t)}function x7(r,t){return Dh(r,t)}function y7(r,t){return RS(r,t)}function b7(r,t){return nD(r,t)}function w7(r,t){return Eh(r,t)}function v7(r,t){return Zm(r,t)}function C7(r,t){return gu(r,t)}function I7(r,t){return gu(r,t)}function S7(r,t){return gu(r,t)}function N7(r,t){return ji(r,t)}function k7(r,t){return ji(r,t)}function T7(r,t){return ji(r,t)}var FD={};jt(FD,{modelFromJSON:()=>bD});var RD={};jt(RD,{l1:()=>E7,l1l2:()=>_7,l2:()=>A7});function _7(r){return new xu(r)}function E7(r){return ID(r)}function A7(r){return SD(r)}var Db=class extends el{constructor(){super(...arguments),this.model=null}setModel(t){if(!(t instanceof Bn))throw new Error("model must be a LayersModel, not some other Container");this.model=t}};function $b(r,t){return r<t}function OD(r,t){return r>t}var Fb=class extends Db{constructor(t){if(super(),t==null&&(t={}),t.restoreBestWeights)throw new kt("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=t.monitor||"val_loss",this.minDelta=Math.abs(t.minDelta||0),this.patience=t.patience||0,this.verbose=t.verbose||0,this.mode=t.mode||"auto",this.baseline=t.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=$b:this.mode==="max"?this.monitorFunc=OD:this.monitor.indexOf("acc")!==-1?this.monitorFunc=OD:this.monitorFunc=$b,this.monitorFunc===$b&&(this.minDelta*=-1)}async onTrainBegin(t){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===$b?1/0:-1/0}async onEpochEnd(t,e){await Ki(e);let n=this.getMonitorValue(e);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=t,this.model.stopTraining=!0)))}async onTrainEnd(t){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(t){t==null&&(t={});let e=t[this.monitor];return e==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(t)}`),e}};function $7(r){return new Fb(r)}var D7={earlyStopping:$7};var F7=B();F7.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,r=>{r&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var to;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_QINT16=15]="DT_QINT16",r[r.DT_QUINT16=16]="DT_QUINT16",r[r.DT_UINT16=17]="DT_UINT16",r[r.DT_COMPLEX128=18]="DT_COMPLEX128",r[r.DT_HALF=19]="DT_HALF",r[r.DT_RESOURCE=20]="DT_RESOURCE",r[r.DT_VARIANT=21]="DT_VARIANT",r[r.DT_UINT32=22]="DT_UINT32",r[r.DT_UINT64=23]="DT_UINT64",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",r[r.DT_QINT16_REF=115]="DT_QINT16_REF",r[r.DT_QUINT16_REF=116]="DT_QUINT16_REF",r[r.DT_UINT16_REF=117]="DT_UINT16_REF",r[r.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",r[r.DT_HALF_REF=119]="DT_HALF_REF",r[r.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",r[r.DT_VARIANT_REF=121]="DT_VARIANT_REF",r[r.DT_UINT32_REF=122]="DT_UINT32_REF",r[r.DT_UINT64_REF=123]="DT_UINT64_REF"})(to||(to={}));var LD;(function(r){let t;(function(e){e[e.LEGACY=0]="LEGACY",e[e.V1=1]="V1",e[e.V2=2]="V2"})(t=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(LD||(LD={}));var XS={};function O7(r,t){let e={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:t};XS[r]=e}function Rb(r){return XS[r]}function L7(r){delete XS[r]}function C(r,t,e,n,o){let s=t.inputParams[r];if(s&&s.inputIndexStart!==void 0){let a=s.inputIndexStart,u=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?a+1:s.inputIndexEnd;if(s.type==="tensor")return wr(t.inputNames[s.inputIndexStart],e,n,o);if(s.type==="tensors")return t.inputNames.slice(a,u).map(m=>wr(m,e,n,o));let l=wr(t.inputNames.slice(a)[0],e,n,o),c=l.dataSync();return s.type==="number"?c[0]:x.toNestedArray(l.shape,c)}let i=t.attrParams[r];return i&&i.value}function wr(r,t,e,n){let[o,s]=yn(r);if(n!=null){let a=n.getHashTableHandleByName(o);if(a!=null)return a}let i=e.currentContextIds.find(a=>!!t[Ob(o,a)]);return i!==void 0?t[Ob(o,i)][s]:void 0}function PD(r,t,e){return t[Ob(r,e.currentContextId)]}function _o(r,t){let[e,n,o]=yn(r);return[Ob(e,t&&t.currentContextId),n,o]}function Ob(r,t){return t?`${r}-${t}`:r}function yn(r){let t=r.split(":");if(t.length===1)return[r,0,void 0];let e=t[0],n=t.length===3?t[1]:void 0,o=Number(t[t.length-1]);return[e,o,n]}function Ph(r,t,e){let n=C("pad",r,t,e);if(n==="explicit"){n=C("explicitPaddings",r,t,e);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function ei(r){return r.kept?r:an(r)}var YS={};jt(YS,{json:()=>P7});var P7=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var ZS={};jt(ZS,{json:()=>M7});var M7=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var JS={};jt(JS,{json:()=>z7});var z7=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}];var QS={};jt(QS,{json:()=>B7});var B7=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var tN={};jt(tN,{json:()=>V7});var V7=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var eN={};jt(eN,{json:()=>G7});var G7=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var rN={};jt(rN,{json:()=>W7});var W7=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var nN={};jt(nN,{json:()=>U7});var U7=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var oN={};jt(oN,{json:()=>H7});var H7=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}];var sN={};jt(sN,{json:()=>q7});var q7=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}];var iN={};jt(iN,{json:()=>K7});var K7=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var aN={};jt(aN,{json:()=>j7});var j7=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}];var lN={};jt(lN,{json:()=>X7});var X7=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var uN={};jt(uN,{json:()=>Y7});var Y7=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var cN={};jt(cN,{json:()=>Z7});var Z7=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var pN={};jt(pN,{json:()=>J7});var J7=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}];var mN={};jt(mN,{json:()=>Q7});var Q7=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var fN={};jt(fN,{json:()=>tZ});var tZ=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}];var dN={};jt(dN,{json:()=>eZ});var eZ=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}];var Mh=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let t=[YS,ZS,JS,QS,tN,eN,rN,nN,oN,sN,iN,aN,lN,uN,cN,pN,mN,fN,dN],e=[].concat(...t.map(n=>n.json));this.opMappers=e.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}transformGraph(t,e={}){let n=t.node,o=[],s=[],i=[],a=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?o.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&i.push(h[g.name]),h),{}),u=[],l=[],c={},p={};e!=null&&(c=this.mapSignatureEntries(e.inputs),p=this.mapSignatureEntries(e.outputs));let m=Object.keys(a);m.forEach(h=>{let g=a[h];g.inputNames.forEach((y,b)=>{let[w,,v]=_o(y),N=a[w];if(N.outputs!=null){let E=N.outputs.indexOf(v);if(E!==-1){let $=`${w}:${E}`;g.inputNames[b]=$}}g.inputs.push(N),N.children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=a[h];g.children.length===0&&l.push(g)}):Object.keys(p).forEach(h=>{let[g]=_o(h),y=a[g];y!=null&&(y.signatureKey=p[h],l.push(y))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=_o(h),y=a[g];y&&(y.signatureKey=c[h],u.push(y))}):u=o;let f={};t.library!=null&&t.library.function!=null&&(f=t.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:a,inputs:u,outputs:l,weights:s,placeholders:o,signature:e,functions:f};return i.length>0&&(d.initNodes=i),d}mapSignatureEntries(t){return Object.keys(t||{}).reduce((e,n)=>(e[t[n].name]=n,e),{})}mapNode(t){let e=Rb(t.op)||this.opMappers[t.op]||{};t.attr==null&&(t.attr={});let n={name:t.name,op:t.op,category:e.category,inputNames:(t.input||[]).map(o=>o.startsWith("^")?o.slice(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:t.attr,outputs:e.outputs};return e.inputs!=null&&(n.inputParams=e.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),e.attrs!=null&&(n.attrParams=e.attrs.reduce((o,s)=>{let i=s.type,a;switch(s.type){case"string":a=Lb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Lb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":a=Wb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Wb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":a=Mb(t.attr,s.tfName,s.defaultValue||0),a===void 0&&!!s.tfDeprecatedName&&(a=Mb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":a=Gb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Gb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":a=Pb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Pb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":a=Hb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Hb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":a=Vb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Vb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":a=Ub(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Ub(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":a=zb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=zb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":a=Bb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Bb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":a=MD(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=MD(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${t.op}`)}return o[s.name]={value:a,type:i},o},{})),n}mapFunction(t){let e=t.nodeDef,n=[],o=[],s={};e!=null&&(s=e.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&o.push(p[m.name]),p),{}));let i=[],a=[];t.signature.inputArg.forEach(p=>{let[m]=_o(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:hN(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,i.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach((f,d)=>{let[h,,g]=_o(f),y=s[h];if(y.outputs!=null){let b=y.outputs.indexOf(g);if(b!==-1){let w=`${h}:${b}`;m.inputNames[d]=w}}m.inputs.push(y),y.children.push(m)})});let l=t.ret;t.signature.outputArg.forEach(p=>{let[m,f]=_o(l[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,a.push(d))});let c=this.mapArgsToSignature(t);return{nodes:s,inputs:i,outputs:a,weights:o,placeholders:n,signature:c}}mapArgsToSignature(t){return{methodName:t.signature.name,inputs:t.signature.inputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n),e),{}),outputs:t.signature.outputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n,t.ret),e),{})}}mapArgToTensorInfo(t,e){let n=t.name;return e!=null&&(n=e[n]),{name:n,dtype:t.type}}};function rZ(r){let t=B().global;if(typeof t.atob!="undefined")return t.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function zD(r,t){let e=Array.isArray(r)?String.fromCharCode.apply(null,r):rZ(r);return t?e:e.toLowerCase()}function Lb(r,t,e,n=!1){let o=r[t];return o!=null?zD(o.s,n):e}function Pb(r,t,e){let n=r[t];return n?n.b:e}function Mb(r,t,e){let n=r[t]||{},o=n.i!=null?n.i:n.f!=null?n.f:e;return typeof o=="number"?o:parseInt(o,10)}function hN(r){switch(typeof r=="string"&&(r=to[r]),r){case to.DT_FLOAT:case to.DT_HALF:return"float32";case to.DT_INT32:case to.DT_INT64:case to.DT_INT8:case to.DT_UINT8:return"int32";case to.DT_BOOL:return"bool";case to.DT_DOUBLE:return"float32";case to.DT_STRING:return"string";default:return null}}function MD(r,t,e){let n=r[t];return n&&n.func?n.func.name:e}function zb(r,t,e){let n=r[t];return n&&n.type?hN(n.type):e}function Bb(r,t,e){let n=r[t];return n&&n.list&&n.list.type?n.list.type.map(o=>hN(o)):e}function BD(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Vb(r,t,e){let n=r[t];return n&&n.shape?BD(n.shape):e}function Gb(r,t,e){let n=r[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o=="number"?o:parseInt(o,10)):e}function Wb(r,t,e,n=!1){let o=r[t];return o&&o.list&&o.list.s?o.list.s.map(s=>zD(s,n)):e}function Ub(r,t,e){let n=r[t];return n&&n.list&&n.list.shape?n.list.shape.map(o=>BD(o)):e}function Hb(r,t,e){let n=r[t];return n&&n.list&&n.list.b?n.list.b:e}var qb=class{constructor(t,e,n){this.node=t,this.tensorMap=e,this.context=n,this.inputs=[],this.attrs={},this.inputs=t.inputNames.map(o=>this.getInput(o)),t.rawAttrs!=null&&(this.attrs=Object.keys(t.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(t){return wr(t,this.tensorMap,this.context)}getAttr(t,e){let n=this.node.rawAttrs[t];if(n.tensor!=null)return wr(t,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Mb(this.node.rawAttrs,t,e);if(n.s!=null)return Lb(this.node.rawAttrs,t,e);if(n.b!=null)return Pb(this.node.rawAttrs,t,e);if(n.shape!=null)return Vb(this.node.rawAttrs,t,e);if(n.type!=null)return zb(this.node.rawAttrs,t,e);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Gb(this.node.rawAttrs,t,e);if(n.list.s!=null)return Wb(this.node.rawAttrs,t,e);if(n.list.shape!=null)return Ub(this.node.rawAttrs,t,e);if(n.list.b!=null)return Hb(this.node.rawAttrs,t,e);if(n.list.type!=null)return Bb(this.node.rawAttrs,t,e)}return e}};var ue={};jt(ue,{OP_SCOPE_SUFFIX:()=>D0,abs:()=>Ae,acos:()=>gx,acosh:()=>xx,add:()=>Z,addN:()=>U_,all:()=>am,any:()=>Yu,argMax:()=>Ri,argMin:()=>yx,asin:()=>bx,asinh:()=>wx,atan:()=>vx,atan2:()=>Cx,atanh:()=>Ix,avgPool:()=>Hl,avgPool3d:()=>Nx,basicLSTMCell:()=>K_,batchNorm:()=>Li,batchNorm2d:()=>kx,batchNorm3d:()=>Tx,batchNorm4d:()=>_x,batchToSpaceND:()=>ql,bincount:()=>Ex,booleanMaskAsync:()=>r6,broadcastArgs:()=>X_,broadcastTo:()=>Kl,buffer:()=>Ct,cast:()=>tt,ceil:()=>Ax,clipByValue:()=>Ir,clone:()=>an,complex:()=>vn,concat:()=>se,concat1d:()=>$x,concat2d:()=>Dx,concat3d:()=>Fx,concat4d:()=>Rx,conv1d:()=>um,conv2d:()=>Sn,conv2dTranspose:()=>pm,conv3d:()=>Ox,conv3dTranspose:()=>Px,cos:()=>jl,cosh:()=>mm,cosineWindow:()=>bh,cumprod:()=>Qu,cumsum:()=>fm,denseBincount:()=>Y_,depthToSpace:()=>Mx,depthwiseConv2d:()=>Pi,diag:()=>Z_,dilation2d:()=>zx,div:()=>ct,divNoNan:()=>Bx,dot:()=>Vx,dropout:()=>mS,einsum:()=>J_,elu:()=>Mi,enclosingPowerOfTwo:()=>fS,equal:()=>Ar,erf:()=>Gx,euclideanNorm:()=>Wx,exp:()=>or,expandDims:()=>yr,expm1:()=>Ux,eye:()=>ec,fft:()=>nu,fill:()=>zi,floor:()=>Bi,floorDiv:()=>im,fused:()=>su,gather:()=>Vi,gatherND:()=>p6,greater:()=>Xe,greaterEqual:()=>Ln,ifft:()=>Ya,imag:()=>Ul,image:()=>iu,inTopKAsync:()=>d6,irfft:()=>Tm,isFinite:()=>Hx,isInf:()=>qx,isNaN:()=>Kx,leakyRelu:()=>Xl,less:()=>dm,lessEqual:()=>Pn,linalg:()=>hS,linspace:()=>eE,localResponseNormalization:()=>jx,log:()=>Sr,log1p:()=>Yl,logSigmoid:()=>Zx,logSoftmax:()=>hm,logSumExp:()=>gm,logicalAnd:()=>Dr,logicalNot:()=>Zl,logicalOr:()=>xm,logicalXor:()=>Jx,losses:()=>d5,lowerBound:()=>rE,matMul:()=>Gt,max:()=>Mr,maxPool:()=>Jl,maxPool3d:()=>ty,maxPoolWithArgmax:()=>nE,maximum:()=>Nn,mean:()=>ke,meshgrid:()=>oE,min:()=>tc,minimum:()=>Gi,mirrorPad:()=>ey,mod:()=>ry,moments:()=>rc,movingAverage:()=>o6,mul:()=>O,multiRNNCell:()=>sE,multinomial:()=>iE,neg:()=>Yt,norm:()=>Xa,notEqual:()=>Hs,oneHot:()=>Di,ones:()=>cr,onesLike:()=>br,op:()=>k,outerProduct:()=>aE,pad:()=>cn,pad1d:()=>lE,pad2d:()=>uE,pad3d:()=>cE,pad4d:()=>pE,pool:()=>ny,pow:()=>ln,prelu:()=>tu,print:()=>ax,prod:()=>oy,rand:()=>mE,randomGamma:()=>EE,randomNormal:()=>sc,randomStandardNormal:()=>AE,randomUniform:()=>Wi,range:()=>eu,real:()=>ja,reciprocal:()=>uy,relu:()=>Fr,relu6:()=>ym,reshape:()=>R,reverse:()=>pr,reverse1d:()=>$E,reverse2d:()=>DE,reverse3d:()=>FE,reverse4d:()=>RE,rfft:()=>ou,round:()=>bm,rsqrt:()=>wm,scalar:()=>pt,scatterND:()=>i6,searchSorted:()=>gh,selu:()=>vm,separableConv2d:()=>Cm,setdiff1dAsync:()=>OE,sigmoid:()=>Kr,sign:()=>cy,signal:()=>f5,sin:()=>Im,sinh:()=>Sm,slice:()=>Ot,slice1d:()=>Nm,slice2d:()=>yh,slice3d:()=>km,slice4d:()=>ic,softmax:()=>ru,softplus:()=>Us,spaceToBatchND:()=>Ql,sparse:()=>h5,sparseToDense:()=>u6,spectral:()=>m5,split:()=>mr,sqrt:()=>Ne,square:()=>Ht,squaredDifference:()=>_m,squeeze:()=>Mn,stack:()=>sr,step:()=>yo,stridedSlice:()=>py,string:()=>g5,sub:()=>ut,sum:()=>mt,tan:()=>my,tanh:()=>Oi,tensor:()=>Cr,tensor1d:()=>Ve,tensor2d:()=>qs,tensor3d:()=>px,tensor4d:()=>LE,tensor5d:()=>PE,tensor6d:()=>ME,tile:()=>$r,topk:()=>fy,transpose:()=>Mt,truncatedNormal:()=>Em,unique:()=>dy,unsortedSegmentSum:()=>Am,unstack:()=>Nr,upperBound:()=>zE,variable:()=>hy,where:()=>$e,whereAsync:()=>xy,zeros:()=>Te,zerosLike:()=>St});var VD=(r,t,e,n=ue)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[n.add(C("a",r,t,e),C("b",r,t,e))];case"AddN":return[n.addN(C("tensors",r,t,e))];case"FloorMod":case"Mod":return[n.mod(C("a",r,t,e),C("b",r,t,e))];case"Mul":return[n.mul(C("a",r,t,e),C("b",r,t,e))];case"RealDiv":case"Div":return[n.div(C("a",r,t,e),C("b",r,t,e))];case"DivNoNan":return[n.divNoNan(C("a",r,t,e),C("b",r,t,e))];case"FloorDiv":return[n.floorDiv(C("a",r,t,e),C("b",r,t,e))];case"Sub":return[n.sub(C("a",r,t,e),C("b",r,t,e))];case"Minimum":return[n.minimum(C("a",r,t,e),C("b",r,t,e))];case"Maximum":return[n.maximum(C("a",r,t,e),C("b",r,t,e))];case"Pow":return[n.pow(C("a",r,t,e),C("b",r,t,e))];case"SquaredDifference":return[n.squaredDifference(C("a",r,t,e),C("b",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var GD=(r,t,e,n=ue)=>{switch(r.op){case"Abs":case"ComplexAbs":return[n.abs(C("x",r,t,e))];case"Acos":return[n.acos(C("x",r,t,e))];case"Acosh":return[n.acosh(C("x",r,t,e))];case"Asin":return[n.asin(C("x",r,t,e))];case"Asinh":return[n.asinh(C("x",r,t,e))];case"Atan":return[n.atan(C("x",r,t,e))];case"Atan2":return[n.atan2(C("x",r,t,e),C("y",r,t,e))];case"Atanh":return[n.atanh(C("x",r,t,e))];case"Ceil":return[n.ceil(C("x",r,t,e))];case"Complex":return[n.complex(C("real",r,t,e),C("imag",r,t,e))];case"Cos":return[n.cos(C("x",r,t,e))];case"Cosh":return[n.cosh(C("x",r,t,e))];case"Elu":return[n.elu(C("x",r,t,e))];case"Erf":return[n.erf(C("x",r,t,e))];case"Exp":return[n.exp(C("x",r,t,e))];case"Expm1":return[n.expm1(C("x",r,t,e))];case"Floor":return[n.floor(C("x",r,t,e))];case"Log":return[n.log(C("x",r,t,e))];case"Log1p":return[n.log1p(C("x",r,t,e))];case"Imag":return[n.imag(C("x",r,t,e))];case"Neg":return[n.neg(C("x",r,t,e))];case"Reciprocal":return[n.reciprocal(C("x",r,t,e))];case"Real":return[n.real(C("x",r,t,e))];case"Relu":return[n.relu(C("x",r,t,e))];case"Round":return[n.round(C("x",r,t,e))];case"Selu":return[n.selu(C("x",r,t,e))];case"Sigmoid":return[n.sigmoid(C("x",r,t,e))];case"Sin":return[n.sin(C("x",r,t,e))];case"Sign":return[n.sign(C("x",r,t,e))];case"Sinh":return[n.sinh(C("x",r,t,e))];case"Softplus":return[n.softplus(C("x",r,t,e))];case"Sqrt":return[n.sqrt(C("x",r,t,e))];case"Square":return[n.square(C("x",r,t,e))];case"Tanh":return[n.tanh(C("x",r,t,e))];case"Tan":return[n.tan(C("x",r,t,e))];case"ClipByValue":return[n.clipByValue(C("x",r,t,e),C("clipValueMin",r,t,e),C("clipValueMax",r,t,e))];case"Relu6":return[n.relu6(C("x",r,t,e))];case"Rsqrt":return[n.rsqrt(wr(r.inputNames[0],t,e))];case"Prod":return[n.prod(C("x",r,t,e),C("axes",r,t,e))];case"LeakyRelu":return[n.leakyRelu(C("x",r,t,e),C("alpha",r,t,e))];case"Prelu":return[n.prelu(C("x",r,t,e),C("alpha",r,t,e))];case"IsNan":return[n.isNaN(wr(r.inputNames[0],t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Vn(r,t,e=""){if(!(typeof r=="number"||typeof t=="number")){x.assert(r.length===t.length,()=>e+` Shapes ${r} and ${t} must match`);for(let n=0;n<r.length;n++){let o=r[n],s=t[n];x.assert(o<0||s<0||o===s,()=>e+` Shapes ${r} and ${t} must match`)}}}function WD(r){return!(typeof r=="number"||r.some(t=>t<0))}function td(r,t,e){let n=Kb(r,e),o=!WD(n);if(o&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(o&&t.forEach(s=>{n=Kb(s.shape,n)}),!WD(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function Kb(r,t){if(typeof r=="number")return t;if(typeof t=="number")return r;if(r.length!==t.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${t}`);let e=[];for(let n=0;n<r.length;++n){let o=r[n],s=t[n];if(o>=0&&s>=0&&o!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${t}`);e[n]=o>=0?o:s}return e}var jb=class{constructor(t,e,n,o,s,i,a){this.name=t,this.dtype=e,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=i,this.clearAfterRead=a,this.tensors=[],this.closed_=!1,this.idTensor=pt(0),Oe(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.tensor.id))&&e.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||t>=this.size())throw new Error(`Tried to read from index ${t}, but array size is: ${this.size()}`);let e=this.tensors[t];if(e.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${t} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(e.cleared=!0),e.read=!0,e.tensor}readMany(t){return t.map(e=>this.read(e))}write(t,e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||!this.dynamicSize&&t>=this.maxSize)throw new Error(`Tried to write to index ${t}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[t]||{};if(e.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t},
because the value dtype is ${e.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=e.shape),Vn(this.elementShape,e.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${t}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been written.`);n.tensor=e,Oe(e),n.written=!0,this.tensors[t]=n}writeMany(t,e){if(t.length!==e.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${t.length} is not the same as tensors size: ${e.length}.`);t.forEach((n,o)=>this.write(n,e[o]))}gather(t,e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${e}`);if(t)t=t.slice(0,this.size());else{t=[];for(let o=0;o<this.size();o++)t.push(o)}if(t.length===0)return Cr([],[0].concat(this.elementShape));let n=this.readMany(t);return Vn(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),sr(n,0)}concat(t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${t}`);if(this.size()===0)return Cr([],[0].concat(this.elementShape));let e=[];for(let o=0;o<this.size();o++)e.push(o);let n=this.readMany(e);return Vn(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),se(n,0)}scatter(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let n=Math.max(...t);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(t,Nr(e,0))}split(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);let n=0,o=t.map(u=>(n+=u,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${e.shape}`);if(!this.dynamicSize&&t.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${t.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:e.size/n,i=[];W(()=>{e=R(e,[1,n,s]);for(let u=0;u<t.length;++u){let l=u===0?0:o[u-1],c=[0,l,0],p=[1,t[u],s];i[u]=R(Ot(e,c,p),this.elementShape)}return i});let a=[];for(let u=0;u<t.length;u++)a[u]=u;this.writeMany(a,i)}};var ll=class{constructor(t,e,n,o=-1){this.tensors=t,this.elementShape=e,this.elementDtype=n,t!=null&&t.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Vn(e,s.shape,"TensorList shape mismatch: "),Oe(s)}),this.idTensor=pt(0),this.maxNumElements=o,Oe(this.idTensor)}get id(){return this.idTensor.id}copy(){return new ll([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.id))&&e.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(t,e,n=-1){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Vn(t,this.elementShape,"TensorList shape mismatch: ");let o=td(this.elementShape,this.tensors,t);return W(()=>{let s=this.tensors.map(i=>R(i,o));return sr(s,0)})}popBack(t,e){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=td(this.elementShape,this.tensors,t),o=this.tensors.pop();return Vn(o.shape,t,"TensorList shape mismatch: "),R(o,n)}pushBack(t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(Vn(t.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Oe(t),this.tensors.push(t)}resize(t){if(t<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${t}`);if(this.maxNumElements!==-1&&t>this.maxNumElements)throw new Error(`TensorListResize input size ${t} is greater maxNumElement ${this.maxNumElements}.`);let e=new ll([],this.elementShape,this.elementDtype,this.maxNumElements);e.tensors.length=t;for(let n=0;n<Math.min(this.tensors.length,t);++n)e.tensors[n]=this.tensors[n];return e}getItem(t,e,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(t<0||t>this.tensors.length)throw new Error(`Trying to access element ${t} in a list with ${this.tensors.length} elements.`);if(this.tensors[t]==null)throw new Error(`element at index ${t} is null.`);Vn(this.tensors[t].shape,e,"TensorList shape mismatch: ");let o=td(this.elementShape,this.tensors,e);return R(this.tensors[t],o)}setItem(t,e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(t<0||this.maxNumElements!==-1&&t>=this.maxNumElements)throw new Error(`Trying to set element ${t} in a list with max ${this.maxNumElements} elements.`);Vn(this.elementShape,e.shape,"TensorList shape mismatch: "),Oe(e),this.tensors[t]=e}gather(t,e,n){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);Vn(this.elementShape,n,"TensorList shape mismatch: "),t=t.slice(0,this.size());let o=td(this.elementShape,this.tensors,n);return t.length===0?Cr([],[0].concat(o)):W(()=>{let s=t.map(i=>R(this.tensors[i],o));return sr(s,0)})}concat(t,e){if(!!t&&t!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${t}`);Vn(this.elementShape,e,"TensorList shape mismatch: ");let n=td(this.elementShape,this.tensors,e);return this.size()===0?Cr([],[0].concat(n)):W(()=>{let o=this.tensors.map(s=>R(s,n));return se(o,0)})}};function UD(r,t,e){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==e)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${e}`);let o=r.shape.slice(1);Vn(o,t,"TensorList shape mismatch: ");let s=Nr(r);return new ll(s,t,n)}function HD(r,t,e,n){return new ll([],r,t,n)}function qD(r,t,e,n){if(t.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${r.shape[0]}`);let o=Math.max(...t);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new ll([],e,r.dtype,n),i=Nr(r,0);return t.forEach((a,u)=>{s.setItem(a,i[u])}),s}function KD(r,t,e){let n=0,o=t.map(c=>(n+=c,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),i=Kb(s,e),a=n===0?0:r.size/n,u=W(()=>{let c=[];r=R(r,[1,n,a]);for(let p=0;p<t.length;++p){let m=p===0?0:o[p-1],f=[0,m,0],d=[1,t[p],a];c[p]=R(Ot(r,f,d),i)}return r.dispose(),c}),l=new ll([],e,r.dtype,t.length);for(let c=0;c<u.length;c++)l.setItem(c,u[c]);return l}var jD=async(r,t,e)=>{switch(r.op){case"If":case"StatelessIf":{let n=C("thenBranch",r,t,e),o=C("elseBranch",r,t,e),s=C("cond",r,t,e),i=C("args",r,t,e);return(await s.data())[0]?e.functionMap[n].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap):e.functionMap[o].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap)}case"While":case"StatelessWhile":{let n=C("body",r,t,e),o=C("cond",r,t,e),s=C("args",r,t,e),i=await e.functionMap[o].executeFunctionAsync(s,e.tensorArrayMap,e.tensorListMap),a=s.map(c=>c.id),u=await i[0].data();i.forEach(c=>{!c.kept&&a.indexOf(c.id)===-1&&c.dispose()});let l=s;for(;u[0];){let c=l;l=await e.functionMap[n].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);let p=l.map(f=>f.id);c.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await e.functionMap[o].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);u=await m[0].data(),m.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return l}case"LoopCond":{let n=C("pred",r,t,e);return[ei(n)]}case"Switch":{let n=C("pred",r,t,e),o=C("data",r,t,e);return o.kept||(o=ei(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case"Merge":{let n=r.inputNames.find(o=>wr(o,t,e)!==void 0);if(n){let o=wr(n,t,e);return[ei(o)]}return}case"Enter":{let n=C("frameName",r,t,e),o=C("tensor",r,t,e);return e.enterFrame(n),[ei(o)]}case"Exit":{let n=C("tensor",r,t,e);return e.exitFrame(),[ei(n)]}case"NextIteration":{let n=C("tensor",r,t,e);return e.nextIteration(),[ei(n)]}case"TensorArrayV3":{let n=C("size",r,t,e),o=C("dtype",r,t,e),s=C("elementShape",r,t,e),i=C("dynamicSize",r,t,e),a=C("clearAfterRead",r,t,e),u=C("identicalElementShapes",r,t,e),l=C("name",r,t,e),c=new jb(l,o,n,s,u,i,a);return e.addTensorArray(c),[c.idTensor,pt(1)]}case"TensorArrayWriteV3":{let n=C("tensorArrayId",r,t,e),o=C("index",r,t,e),s=C("tensor",r,t,e),i=e.getTensorArray(n.id);return i.write(o,s),[i.idTensor]}case"TensorArrayReadV3":{let n=C("tensorArrayId",r,t,e),o=C("index",r,t,e);return[e.getTensorArray(n.id).read(o)]}case"TensorArrayGatherV3":{let n=C("tensorArrayId",r,t,e),o=C("indices",r,t,e),s=C("dtype",r,t,e);return[e.getTensorArray(n.id).gather(o,s)]}case"TensorArrayScatterV3":{let n=C("tensorArrayId",r,t,e),o=C("indices",r,t,e),s=C("tensor",r,t,e),i=e.getTensorArray(n.id);return i.scatter(o,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=C("tensorArrayId",r,t,e),o=e.getTensorArray(n.id),s=C("dtype",r,t,e);return[o.concat(s)]}case"TensorArraySplitV3":{let n=C("tensorArrayId",r,t,e),o=C("tensor",r,t,e),s=C("lengths",r,t,e),i=e.getTensorArray(n.id);return i.split(s,o),[i.idTensor]}case"TensorArraySizeV3":{let n=C("tensorArrayId",r,t,e),o=e.getTensorArray(n.id);return[pt(o.size(),"int32")]}case"TensorArrayCloseV3":{let n=C("tensorArrayId",r,t,e),o=e.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case"TensorListSetItem":{let n=C("tensorListId",r,t,e),o=C("index",r,t,e),s=C("tensor",r,t,e),i=e.getTensorList(n.id);return i.setItem(o,s),[i.idTensor]}case"TensorListGetItem":{let n=C("tensorListId",r,t,e),o=C("index",r,t,e),s=C("elementShape",r,t,e),i=C("elementDType",r,t,e);return[e.getTensorList(n.id).getItem(o,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=C("indices",r,t,e),o=C("tensor",r,t,e),s=C("elementShape",r,t,e),i=C("numElements",r,t,e),a=qD(o,n,s,i);return e.addTensorList(a),[a.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=C("elementShape",r,t,e),o=C("elementDType",r,t,e),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=C(s,r,t,e),a=r.op==="TensorListReserve"?-1:i,u=HD(n,o,i,a);return e.addTensorList(u),[u.idTensor]}case"TensorListGather":{let n=C("tensorListId",r,t,e),o=C("indices",r,t,e),s=C("elementShape",r,t,e),i=C("elementDType",r,t,e);return[e.getTensorList(n.id).gather(o,i,s)]}case"TensorListStack":{let n=C("tensorListId",r,t,e),o=C("elementShape",r,t,e),s=C("elementDType",r,t,e),i=C("numElements",r,t,e);return[e.getTensorList(n.id).stack(o,s,i)]}case"TensorListFromTensor":{let n=C("tensor",r,t,e),o=C("elementShape",r,t,e),s=C("elementDType",r,t,e),i=UD(n,o,s);return e.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let n=C("tensorListId",r,t,e),o=e.getTensorList(n.id),s=C("dtype",r,t,e),i=C("elementShape",r,t,e);return[o.concat(s,i)]}case"TensorListPushBack":{let n=C("tensorListId",r,t,e),o=C("tensor",r,t,e),s=e.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case"TensorListPopBack":{let n=C("tensorListId",r,t,e),o=C("elementShape",r,t,e),s=C("elementDType",r,t,e);return[e.getTensorList(n.id).popBack(o,s)]}case"TensorListSplit":{let n=C("tensor",r,t,e),o=C("elementShape",r,t,e),s=C("lengths",r,t,e),i=KD(n,s,o);return e.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=C("tensorListId",r,t,e),o=e.getTensorList(n.id);return[pt(o.size(),"int32")]}case"TensorListResize":{let n=C("tensorListId",r,t,e),o=C("size",r,t,e),i=e.getTensorList(n.id).resize(o);return e.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function XD(r,t,e){let[n,o]=C("fusedOps",r,t,e),s=n==="biasadd",i=!s,a=o==="prelu",u=n==="fusedbatchnorm",l=C("numArgs",r,t,e);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&s&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(u)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=C("strides",r,t,e),p=Ph(r,t,e),m=C("dataFormat",r,t,e).toUpperCase(),f=C("dilations",r,t,e),[d,h]=C("args",r,t,e);i&&(h=d,d=void 0);let g=C("leakyreluAlpha",r,t,e);return{stride:c,pad:p,dataFormat:m,dilations:f,biasArg:d,preluArg:h,activationFunc:o,leakyreluAlpha:g}}var YD=(r,t,e,n=ue)=>{switch(r.op){case"Conv1D":{let o=C("stride",r,t,e),s=C("pad",r,t,e),i=C("dataFormat",r,t,e).toUpperCase(),a=C("dilation",r,t,e);return[n.conv1d(C("x",r,t,e),C("filter",r,t,e),o,s,i,a)]}case"Conv2D":{let o=C("strides",r,t,e),s=Ph(r,t,e),i=C("dataFormat",r,t,e).toUpperCase(),a=C("dilations",r,t,e);return[n.conv2d(C("x",r,t,e),C("filter",r,t,e),[o[1],o[2]],s,i,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=XD(r,t,e);return[n.fused.conv2d({x:C("x",r,t,e),filter:C("filter",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=XD(r,t,e);return[n.fused.depthwiseConv2d({x:C("x",r,t,e),filter:C("filter",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let o=C("outputShape",r,t,e),s=C("strides",r,t,e),i=Ph(r,t,e);return[n.conv2dTranspose(C("x",r,t,e),C("filter",r,t,e),o,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let o=C("strides",r,t,e),s=Ph(r,t,e),i=C("dilations",r,t,e),a=C("dataFormat",r,t,e).toUpperCase();return[n.depthwiseConv2d(C("input",r,t,e),C("filter",r,t,e),[o[1],o[2]],s,a,[i[1],i[2]])]}case"Conv3D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("dataFormat",r,t,e).toUpperCase(),a=C("dilations",r,t,e);return[n.conv3d(C("x",r,t,e),C("filter",r,t,e),[o[1],o[2],o[3]],s,i,[a[1],a[2],a[3]])]}case"AvgPool":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.avgPool(C("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case"MaxPool":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.maxPool(C("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case"MaxPoolWithArgmax":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e),a=C("includeBatchInIndex",r,t,e),{result:u,indexes:l}=n.maxPoolWithArgmax(C("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s,a);return[u,l]}case"AvgPool3D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.avgPool3d(C("x",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case"MaxPool3D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.maxPool3d(C("x",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case"Dilation2D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("dilations",r,t,e),a=o[1],u=o[2],l=i[1],c=i[2];return[n.dilation2d(C("x",r,t,e),C("filter",r,t,e),[a,u],s,[l,c],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var ZD=(r,t,e,n=ue)=>{switch(r.op){case"Fill":{let o=C("shape",r,t,e),s=C("dtype",r,t,e),i=C("value",r,t,e);return[n.fill(o,i,s)]}case"LinSpace":{let o=C("start",r,t,e),s=C("stop",r,t,e),i=C("num",r,t,e);return[n.linspace(o,s,i)]}case"Multinomial":{let o=C("logits",r,t,e),s=C("numSamples",r,t,e),i=C("seed",r,t,e);return[n.multinomial(o,s,i)]}case"OneHot":{let o=C("indices",r,t,e),s=C("depth",r,t,e),i=C("onValue",r,t,e),a=C("offValue",r,t,e);return[n.oneHot(o,s,i,a)]}case"Ones":return[n.ones(C("shape",r,t,e),C("dtype",r,t,e))];case"OnesLike":return[n.onesLike(C("x",r,t,e))];case"RandomStandardNormal":return[n.randomStandardNormal(C("shape",r,t,e),C("dtype",r,t,e),C("seed",r,t,e))];case"RandomUniform":return[n.randomUniform(C("shape",r,t,e),C("minval",r,t,e),C("maxval",r,t,e),C("dtype",r,t,e))];case"Range":{let o=C("start",r,t,e),s=C("stop",r,t,e),i=C("step",r,t,e);return[n.range(o,s,i,C("dtype",r,t,e))]}case"TruncatedNormal":{let o=C("shape",r,t,e),s=C("mean",r,t,e),i=C("stdDev",r,t,e),a=C("seed",r,t,e);return[n.truncatedNormal(o,s,i,C("dtype",r,t,e),a)]}case"Zeros":return[n.zeros(C("shape",r,t,e),C("dtype",r,t,e))];case"ZerosLike":return[n.zerosLike(C("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function gN(r,t,e){let n=C("boxes",r,t,e),o=C("scores",r,t,e),s=C("maxOutputSize",r,t,e),i=C("iouThreshold",r,t,e),a=C("scoreThreshold",r,t,e),u=C("softNmsSigma",r,t,e);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:i,scoreThreshold:a,softNmsSigma:u}}var JD=async(r,t,e,n,o=ue)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l,softNmsSigma:c}=gN(r,t,e),p=await o.image.nonMaxSuppressionWithScoreAsync(s,i,a,u,l,c);return[p.selectedIndices,p.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=gN(r,t,e),c=C("padToMaxOutputSize",r,t,e),p=await o.image.nonMaxSuppressionPaddedAsync(s,i,a,u,l,c);return[p.selectedIndices,p.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=gN(r,t,e);return[await o.image.nonMaxSuppressionAsync(s,i,a,u,l)]}case"Where":{let s=o.cast(C("condition",r,t,e),"bool"),i=[await o.whereAsync(s)];return s.dispose(),i}case"ListDiff":return o.setdiff1dAsync(C("x",r,t,e),C("y",r,t,e));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var QD=(r,t,e,n=ue)=>{switch(r.op){case"LowerBound":{let o=C("sortedSequence",r,t,e),s=C("values",r,t,e);return[n.lowerBound(o,s)]}case"TopKV2":{let o=C("x",r,t,e),s=C("k",r,t,e),i=C("sorted",r,t,e),a=n.topk(o,s,i);return[a.values,a.indices]}case"UpperBound":{let o=C("sortedSequence",r,t,e),s=C("values",r,t,e);return[n.upperBound(o,s)]}case"Unique":{let o=C("x",r,t,e),s=n.unique(o);return[s.values,s.indices]}case"UniqueV2":{let o=C("x",r,t,e),s=C("axis",r,t,e),i=n.unique(o,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var tF=(r,t,e,n=ue)=>{switch(r.op){case"Const":return t[r.name];case"PlaceholderWithDefault":let o=C("default",r,t,e);return[wr(r.name,t,e)||o];case"Placeholder":return[wr(r.name,t,e)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=C("x",r,t,e);return[ei(c)]}case"IdentityN":return C("x",r,t,e).map(c=>ei(c));case"Snapshot":let s=C("x",r,t,e);return[ei(s)];case"Shape":return[n.tensor1d(C("x",r,t,e).shape,"int32")];case"ShapeN":return C("x",r,t,e).map(c=>n.tensor1d(c.shape));case"Size":return[n.scalar(C("x",r,t,e).size,"int32")];case"Rank":return[n.scalar(C("x",r,t,e).rank,"int32")];case"NoOp":return[n.scalar(1)];case"Print":let i=C("x",r,t,e),a=C("data",r,t,e),u=C("message",r,t,e),l=C("summarize",r,t,e);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(u);for(let c=0;c<a.length;c++)console.log(Array.prototype.slice.call(a[c].dataSync()).slice(0,l));return[i];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Xb=class{constructor(t,e){this.keyDType=t,this.valueDType=e,this.handle=pt(0),this.tensorMap=new Map,Oe(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(t=>t.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return pt(this.size(),"int32")}async import(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),W(()=>{let o=Nr(e),s=n.length,i=o.length;x.assert(s===i,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${i} elements.`);for(let a=0;a<s;a++){let u=n[a],l=o[a];Oe(l),this.tensorMap.set(u,l)}return this.handle})}async find(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return W(()=>{let o=[];for(let s=0;s<n.length;s++){let i=n[s],a=this.findWithDefault(i,e);o.push(a)}return sr(o)})}findWithDefault(t,e){let n=this.tensorMap.get(t);return n!=null?n:e}checkKeyAndValueTensor(t,e){if(t.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${t.dtype}`);if(e.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${e.dtype}`)}};var eF=async(r,t,e,n)=>{switch(r.op){case"HashTable":case"HashTableV2":{let o=C("keyDType",r,t,e),s=C("valueDType",r,t,e),i=new Xb(o,s);return n.addHashTable(r.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let o=C("tableHandle",r,t,e,n),s=C("keys",r,t,e),i=C("values",r,t,e);return[await n.getHashTableById(o.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let o=C("tableHandle",r,t,e,n),s=C("keys",r,t,e),i=C("defaultValue",r,t,e);return[await n.getHashTableById(o.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let o=C("tableHandle",r,t,e,n);return[n.getHashTableById(o.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var rF=(r,t,e,n=ue)=>{switch(r.op){case"ResizeBilinear":{let o=C("images",r,t,e),s=C("size",r,t,e),i=C("alignCorners",r,t,e),a=C("halfPixelCenters",r,t,e);return[n.image.resizeBilinear(o,[s[0],s[1]],i,a)]}case"ResizeNearestNeighbor":{let o=C("images",r,t,e),s=C("size",r,t,e),i=C("alignCorners",r,t,e),a=C("halfPixelCenters",r,t,e);return[n.image.resizeNearestNeighbor(o,[s[0],s[1]],i,a)]}case"CropAndResize":{let o=C("image",r,t,e),s=C("boxes",r,t,e),i=C("boxInd",r,t,e),a=C("cropSize",r,t,e),u=C("method",r,t,e),l=C("extrapolationValue",r,t,e);return[n.image.cropAndResize(o,s,i,a,u,l)]}case"ImageProjectiveTransformV3":{let o=C("images",r,t,e),s=C("transforms",r,t,e),i=C("outputShape",r,t,e),a=C("fillValue",r,t,e),u=C("interpolation",r,t,e),l=C("fillMode",r,t,e);return[n.image.transform(o,s,u.toLowerCase(),l.toLowerCase(),a,i)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var nF=(r,t,e,n=ue)=>{switch(r.op){case"Equal":return[n.equal(C("a",r,t,e),C("b",r,t,e))];case"NotEqual":return[n.notEqual(C("a",r,t,e),C("b",r,t,e))];case"Greater":return[n.greater(C("a",r,t,e),C("b",r,t,e))];case"GreaterEqual":return[n.greaterEqual(C("a",r,t,e),C("b",r,t,e))];case"Less":return[n.less(C("a",r,t,e),C("b",r,t,e))];case"LessEqual":return[n.lessEqual(C("a",r,t,e),C("b",r,t,e))];case"LogicalAnd":return[n.logicalAnd(C("a",r,t,e),C("b",r,t,e))];case"LogicalNot":return[n.logicalNot(C("a",r,t,e))];case"LogicalOr":return[n.logicalOr(C("a",r,t,e),C("b",r,t,e))];case"Select":case"SelectV2":return[n.where(C("condition",r,t,e),C("a",r,t,e),C("b",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var oF=(r,t,e,n=ue)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[n.matMul(C("a",r,t,e),C("b",r,t,e),C("transposeA",r,t,e),C("transposeB",r,t,e))];case"Einsum":return[n.einsum(C("equation",r,t,e),...C("tensors",r,t,e))];case"Transpose":return[n.transpose(C("x",r,t,e),C("perm",r,t,e))];case"_FusedMatMul":let[o,s]=C("fusedOps",r,t,e),i=o==="biasadd",a=s==="prelu",u=C("numArgs",r,t,e),l=C("leakyreluAlpha",r,t,e);if(i){if(a&&u!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&u!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,p]=C("args",r,t,e);return[n.fused.matMul({a:C("a",r,t,e),b:C("b",r,t,e),transposeA:C("transposeA",r,t,e),transposeB:C("transposeB",r,t,e),bias:c,activation:s,preluActivationWeights:p,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var sF=(r,t,e,n=ue)=>{switch(r.op){case"EuclideanNorm":return[n.euclideanNorm(C("x",r,t,e),C("axis",r,t,e),C("keepDims",r,t,e))];case"FusedBatchNorm":case"FusedBatchNormV2":return[n.batchNorm(C("x",r,t,e),C("mean",r,t,e),C("variance",r,t,e),C("offset",r,t,e),C("scale",r,t,e),C("epsilon",r,t,e))];case"FusedBatchNormV3":return[n.batchNorm(C("x",r,t,e),C("mean",r,t,e),C("variance",r,t,e),C("offset",r,t,e),C("scale",r,t,e),C("epsilon",r,t,e))];case"LRN":return[n.localResponseNormalization(C("x",r,t,e),C("radius",r,t,e),C("bias",r,t,e),C("alpha",r,t,e),C("beta",r,t,e))];case"Softmax":return[n.softmax(C("x",r,t,e))];case"LogSoftmax":return[n.logSoftmax(C("x",r,t,e))];case"SparseToDense":return[n.sparseToDense(C("sparseIndices",r,t,e),C("outputShape",r,t,e),C("sparseValues",r,t,e),C("defaultValue",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var iF=(r,t,e,n=ue)=>{switch(r.op){case"Max":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.max(C("x",r,t,e),a,u)]}case"Mean":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.mean(C("x",r,t,e),a,u)]}case"Min":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.min(C("x",r,t,e),a,u)]}case"Sum":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.sum(C("x",r,t,e),a,u)]}case"All":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.all(C("x",r,t,e),a,u)]}case"Any":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.any(C("x",r,t,e),a,u)]}case"ArgMax":{let a=C("axis",r,t,e);return[n.argMax(C("x",r,t,e),a)]}case"ArgMin":{let a=C("axis",r,t,e);return[n.argMin(C("x",r,t,e),a)]}case"Prod":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.prod(C("x",r,t,e),a,u)]}case"Cumprod":{let a=C("axis",r,t,e),u=C("exclusive",r,t,e),l=C("reverse",r,t,e);return[n.cumprod(C("x",r,t,e),a,u,l)]}case"Cumsum":{let a=C("axis",r,t,e),u=C("exclusive",r,t,e),l=C("reverse",r,t,e);return[n.cumsum(C("x",r,t,e),a,u,l)]}case"Bincount":let o=C("x",r,t,e),s=C("weights",r,t,e),i=C("size",r,t,e);return[n.bincount(o,s,i)];case"DenseBincount":{let a=C("x",r,t,e),u=C("weights",r,t,e),l=C("size",r,t,e),c=C("binaryOutput",r,t,e);return[n.denseBincount(a,u,l,c)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var aF=(r,t,e,n=ue)=>{switch(r.op){case"ConcatV2":case"Concat":{let o=C("n",r,t,e),s=C("axis",r,t,e),i=C("tensors",r,t,e);return i=i.slice(0,o),[n.concat(i,s)]}case"Gather":{let o=C("x",r,t,e),s=C("indices",r,t,e);return[n.gather(o,n.cast(s,"int32"),0)]}case"GatherV2":{let o=C("axis",r,t,e),s=C("batchDims",r,t,e),i=C("x",r,t,e),a=C("indices",r,t,e);return[n.gather(i,n.cast(a,"int32"),o,s)]}case"Reverse":{let o=C("dims",r,t,e),s=[];for(let a=0;a<o.length;a++)o[a]&&s.push(a);let i=C("x",r,t,e);return[n.reverse(i,s)]}case"ReverseV2":{let o=C("axis",r,t,e),s=C("x",r,t,e);return[n.reverse(s,o)]}case"Slice":{let o=C("begin",r,t,e),s=C("size",r,t,e);return[n.slice(C("x",r,t,e),o,s)]}case"StridedSlice":{let o=C("begin",r,t,e),s=C("end",r,t,e),i=C("strides",r,t,e),a=C("beginMask",r,t,e),u=C("endMask",r,t,e),l=C("ellipsisMask",r,t,e),c=C("newAxisMask",r,t,e),p=C("shrinkAxisMask",r,t,e),m=C("x",r,t,e);return[n.stridedSlice(m,o,s,i,a,u,l,c,p)]}case"Pack":return W(()=>{let o=C("axis",r,t,e),s=C("tensors",r,t,e),i=s[0].shape,a=n.squeeze(s[0]).shape,u=s.map(l=>{let c=x.arraysEqual(l.shape,i);if(!c&&!x.arraysEqual(n.squeeze(l).shape,a))throw new Error("the input tensors shape does not match");return c?l:n.reshape(l,i)});return[n.stack(u,o)]});case"Unpack":{let o=C("axis",r,t,e),s=C("tensor",r,t,e);return n.unstack(s,o)}case"Tile":{let o=C("reps",r,t,e);return[n.tile(C("x",r,t,e),o)]}case"Split":case"SplitV":{let o=C("axis",r,t,e),s=C("numOrSizeSplits",r,t,e),i=C("x",r,t,e);return n.split(i,s,o)}case"ScatterNd":{let o=C("indices",r,t,e),s=C("values",r,t,e),i=C("shape",r,t,e);return[n.scatterND(o,s,i)]}case"GatherNd":{let o=C("x",r,t,e),s=C("indices",r,t,e);return[n.gatherND(o,s)]}case"SparseToDense":{let o=C("sparseIndices",r,t,e),s=C("outputShape",r,t,e),i=C("sparseValues",r,t,e),a=C("defaultValue",r,t,e);return[n.sparseToDense(o,i,s,i.dtype===a.dtype?a:n.cast(a,i.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var lF=(r,t,e,n=ue)=>{switch(r.op){case"SparseFillEmptyRows":{let{outputIndices:o,outputValues:s,emptyRowIndicator:i,reverseIndexMap:a}=n.sparse.sparseFillEmptyRows(C("indices",r,t,e),C("values",r,t,e),C("denseShape",r,t,e),C("defaultValue",r,t,e));return[o,s,i,a]}case"SparseReshape":{let{outputIndices:o,outputShape:s}=n.sparse.sparseReshape(C("inputIndices",r,t,e),C("inputShape",r,t,e),C("newShape",r,t,e));return[o,s]}case"SparseSegmentMean":return[n.sparse.sparseSegmentMean(C("data",r,t,e),C("indices",r,t,e),C("segmentIds",r,t,e))];case"SparseSegmentSum":return[n.sparse.sparseSegmentSum(C("data",r,t,e),C("indices",r,t,e),C("segmentIds",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var uF=(r,t,e,n=ue)=>{switch(r.op){case"FFT":return[n.fft(C("x",r,t,e))];case"IFFT":return[n.ifft(C("x",r,t,e))];case"RFFT":return[n.rfft(C("x",r,t,e))];case"IRFFT":return[n.irfft(C("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var cF=(r,t,e,n=ue)=>{switch(r.op){case"StringNGrams":{let{nGrams:o,nGramsSplits:s}=n.string.stringNGrams(C("data",r,t,e),C("dataSplits",r,t,e),C("separator",r,t,e),C("nGramWidths",r,t,e),C("leftPad",r,t,e),C("rightPad",r,t,e),C("padWidth",r,t,e),C("preserveShortSequences",r,t,e));return[o,s]}case"StringSplit":{let{indices:o,values:s,shape:i}=n.string.stringSplit(C("input",r,t,e),C("delimiter",r,t,e),C("skipEmpty",r,t,e));return[o,s,i]}case"StringToHashBucketFast":return[n.string.stringToHashBucketFast(C("input",r,t,e),C("numBuckets",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var pF=(r,t,e,n=ue)=>{switch(r.op){case"Cast":return[n.cast(C("x",r,t,e),C("dtype",r,t,e))];case"ExpandDims":{let o=C("axis",r,t,e);return[n.expandDims(C("x",r,t,e),o)]}case"Squeeze":{let o=C("axis",r,t,e);return[n.squeeze(C("x",r,t,e),o)]}case"Reshape":return[n.reshape(C("x",r,t,e),C("shape",r,t,e))];case"MirrorPad":return[n.mirrorPad(C("x",r,t,e),C("padding",r,t,e),C("mode",r,t,e))];case"PadV2":case"Pad":return[n.pad(C("x",r,t,e),C("padding",r,t,e),C("constantValue",r,t,e))];case"SpaceToBatchND":{let o=C("blockShape",r,t,e),s=C("paddings",r,t,e);return[n.spaceToBatchND(C("x",r,t,e),o,s)]}case"BatchToSpaceND":{let o=C("blockShape",r,t,e),s=C("crops",r,t,e);return[n.batchToSpaceND(C("x",r,t,e),o,s)]}case"DepthToSpace":{let o=C("blockSize",r,t,e),s=C("dataFormat",r,t,e).toUpperCase();return[n.depthToSpace(C("x",r,t,e),o,s)]}case"BroadcastTo":return[n.broadcastTo(C("x",r,t,e),C("shape",r,t,e))];case"BroadcastArgs":return[n.broadcastArgs(C("s0",r,t,e),C("s1",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function xN(r,t,e,n,o=W){let s=((i,a,u)=>{switch(i.category){case"arithmetic":return o(()=>VD(i,a,u));case"basic_math":return o(()=>GD(i,a,u));case"control":return jD(i,a,u);case"convolution":return o(()=>YD(i,a,u));case"creation":return o(()=>ZD(i,a,u));case"dynamic":return JD(i,a,u);case"evaluation":return o(()=>QD(i,a,u));case"image":return o(()=>rF(i,a,u));case"graph":return o(()=>tF(i,a,u));case"logical":return o(()=>nF(i,a,u));case"matrices":return o(()=>oF(i,a,u));case"normalization":return o(()=>sF(i,a,u));case"reduction":return o(()=>iF(i,a,u));case"slice_join":return o(()=>aF(i,a,u));case"sparse":return o(()=>lF(i,a,u));case"spectral":return o(()=>uF(i,a,u));case"string":return o(()=>cF(i,a,u));case"transformation":return o(()=>pF(i,a,u));case"hash_table":return eF(i,a,u,n);case"custom":let l=Rb(i.op);if(l&&l.customExecutor)return l.customExecutor(new qb(i,a,u));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,t,e);return x.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var zh=class{constructor(t={},e={},n={},o={}){this.weightMap=t,this.tensorArrayMap=e,this.tensorListMap=n,this.functionMap=o,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(t,e){return{id:t,frameName:e,iterationId:0}}set currentContext(t){this.contexts!==t&&(this.contexts=t,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let t=[];for(let e=0;e<this.contexts.length-1;e++){let n=this.contexts.slice(0,this.contexts.length-e);t.push(this.contextIdforContexts(n))}t.push(""),this._currentContextIds=t}contextIdforContexts(t){return t?t.map(e=>e.id===0&&e.iterationId===0?"":`${e.frameName}-${e.iterationId}`).join("/"):""}enterFrame(t){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,t)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let t=Object.assign({},this.contexts[this.contexts.length-1]);t.iterationId+=1,t.id=this.lastId,this.contexts.splice(-1,1,t),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(t){return this.weightMap[t]}addTensorArray(t){this.tensorArrayMap[t.id]=t}getTensorArray(t){return this.tensorArrayMap[t]}addTensorList(t){this.tensorListMap[t.id]=t}getTensorList(t){return this.tensorListMap[t]}dispose(t){for(let e in this.tensorArrayMap)this.tensorArrayMap[e].clearAndClose(t);for(let e in this.tensorListMap)this.tensorListMap[e].clearAndClose(t)}};function yN(r,t,e,n){let o=new Set,s=[],i=null,a=null,u=new Set,l=Object.keys(r).map(m=>yn(m)[0]),c=[];n!=null&&(c=n.map(m=>yn(m.name)[0]));let p=[...t];for(;p.length>0;){let m=p.pop();if((bN(m)||NZ(m)||kZ(m))&&i==null&&(i=m,a=i.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),e[m.name]==null&&l.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{u.has(f.name)||(u.add(f.name),p.push(f))})}}return{inputs:r,outputs:t,usedNodes:o,missingInputs:s,dynamicNode:i,syncInputs:a}}function mF(r,t,e){let{usedNodes:n,inputs:o}=e,s=[],i=Object.keys(o).map(c=>yn(c)[0]).map(c=>r.nodes[c]),a=r.initNodes;i.forEach(c=>{n.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{n.has(c.name)&&s.push(c)}),a!=null&&a.forEach(c=>{n.has(c.name)&&s.push(c)});let u=new Set,l=[];for(;s.length>0;){let c=s.pop();u.add(c.name),t[c.name]||l.push(c),c.children.forEach(p=>{!u.has(p.name)&&n.has(p.name)&&p.inputs.every(m=>u.has(m.name))&&s.push(p)})}return l}var CZ=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],IZ=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],SZ=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function bN(r){return CZ.indexOf(r.op)>=0}function NZ(r){return IZ.indexOf(r.op)>=0}function kZ(r){return SZ.indexOf(r.op)>=0}var $c=class{constructor(t,e){this.graph=t,this.parent=e,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=t.outputs,this._inputs=t.inputs,this._initNodes=t.initNodes,this._signature=t.signature,this._functions=t.functions,t.functions!=null&&Object.keys(t.functions).forEach(n=>{this._functionExecutorMap[n]=new $c(t.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(t){let e=Object.keys(t).map(n=>t[n].map(o=>o.id));this._weightIds=[].concat(...e),this._weightMap=t}set resourceManager(t){this._resourceManager=t}get inputs(){return this._inputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(t=>t.signatureKey||t.name)}get outputNodes(){return this._outputs.map(t=>{let e=t.signatureKey||t.name;return t.defaultOutput?`${e}:${t.defaultOutput}`:e})}get functions(){return Object.keys(this._functions).reduce((t,e)=>(t[e]=this._functions[e].signature,t),{})}getCompilationKey(t,e){let n=t.map(s=>s.name).sort(),o=e.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+o.join(this.SEPERATOR)}compile(t,e){let n=yN(t,e,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:i}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${i}]`);if(o.length>0){let a=e.map(l=>l.name),u=Object.keys(t);throw new Error(`Cannot compute the outputs [${a}] from the provided inputs [${u}]. Missing the following inputs: [${o}]`)}return mF(this.graph,this.weightMap,n)}execute(t,e){t=this.mapInputs(t);let n=Object.keys(t).sort();this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e);let o=n.map(p=>this.graph.nodes[yn(p)[0]]),s=e.map(p=>yn(p)[0]),i=s.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),i.length===0&&(i=this._outputs);let a=this.getCompilationKey(o,i),u=this.compiledMap.get(a);u==null&&(u=this.compile(t,i),this.compiledMap.set(a,u));let l={},c={};return W(()=>{let p=new zh(this.weightMap,l,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(t).forEach(h=>{let[g,y]=yn(h),b=[];b[y]=t[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<u.length;h++){let g=u[h];if(!m[g.name]){let y=xN(g,m,p,this._resourceManager);if(x.isPromise(y))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=y,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),e.map(h=>wr(h,m,p))})}getFrozenTensorIds(t){let e=[].concat.apply([],Object.keys(t).map(n=>t[n]).map(n=>n.map(o=>o.id)));return new Set(e)}checkTensorForDisposal(t,e,n,o,s,i,a){e.category==="control"||i.indexOf(t)!==-1||(n[t].forEach(u=>{u!=null&&(a[u.id]=(a[u.id]||0)+e.children.length)}),e.inputs.forEach(u=>{if(u.category!=="control"){let l=PD(u.name,n,o);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!s.has(c.id)){let p=a[c.id];if(p===1){if(!this.keepTensorForDebug)c.dispose();else{let[m,f]=_o(e.name,o);this.intermediateTensors[m]?this.intermediateTensors[m][f]=c:(this.intermediateTensors[m]=[],this.intermediateTensors[m][f]=c)}delete a[c.id]}else p!=null&&a[c.id]--}})}}))}async executeAsync(t,e){return this._executeAsync(t,e)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(t=>this.intermediateTensors[t].forEach(e=>e.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(t=>{this.tensorsMap[t].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let t in this.intermediateTensors)this.intermediateTensors[t].forEach(e=>e.dispose()),delete this.intermediateTensors[t]}async _executeAsync(t,e,n=!1,o={},s={}){n||(t=this.mapInputs(t),this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e));try{this.keepTensorForDebug=B().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(c){console.warn(c.message)}this.resetIntermediateTensors();let i=new zh(this.weightMap,o,s,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(t,i,e,n);let a=e.map(c=>wr(c,this.tensorsMap,i)),u=a.map(c=>c.id),l=Object.keys(t).map(c=>t[c].id);return this.keepIds=new Set([...u,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&i.dispose(this.keepIds),a}async executeFunctionAsync(t,e,n){let o=t.reduce((s,i,a)=>(s[this.inputs[a].name]=i,s),{});return this._executeAsync(o,this.outputNodes,!0,e,n)}async executeWithControlFlow(t,e,n,o){let s=Object.keys(t),i=s.map(w=>this.graph.nodes[yn(w)[0]]),a=n.map(w=>yn(w)[0]),u=a.map(w=>this.graph.nodes[w]);u.length===0&&(u=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:p,syncInputs:m}=yN(t,u,this.weightMap,this._initNodes),f=[...i,...this.graph.weights,...this._initNodes||[]].map(w=>({node:w,contexts:e.currentContext})),d=Object.assign({},this.weightMap);Object.keys(t).forEach(w=>{let[v,N]=yn(w),E=[];E[N]=t[w],d[v]=E});let h={},g=this.getFrozenTensorIds(d),y={};for(;f.length>0;){let w=this.processStack(i,f,e,d,y,g,a,h,l);await Promise.all(w)}p==null&&!o&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=u.filter(w=>!bN(w)&&!wr(w.name,d,e)).map(w=>w.name);if(b.length>0){let w="";throw p!=null&&(w=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${w}`)}return d}processStack(t,e,n,o,s,i,a,u,l){let c=[];for(;e.length>0;){let p=e.pop();n.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&C("isConstant",p.node,o,n)&&([m]=_o(p.node.name,n)),o[p.node.name]==null){let f=xN(p.node,o,n,this._resourceManager);m||([m]=_o(p.node.name,n));let d=n.currentContext;x.isPromise(f)?c.push(f.then(h=>(o[m]=h,n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l),h))):(o[m]=f,this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l))}else this.processChildNodes(p.node,e,n,o,s,l)}return c}processChildNodes(t,e,n,o,s,i){t.children.forEach(a=>{let[u]=_o(a.name,n);s[u]||!i.has(a.name)||(a.op==="Merge"?a.inputNames.some(l=>!!wr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})):a.inputNames.every(l=>!!wr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})))})}dispose(){Object.keys(this.weightMap).forEach(t=>this.weightMap[t].forEach(e=>e.dispose()))}checkInputShapeAndType(t){Object.keys(t).forEach(e=>{let n=t[e],[o]=yn(e),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let i=s.attrParams.shape.value,a=i.length===n.shape.length&&n.shape.every((u,l)=>i[l]===-1||i[l]===u);x.assert(a,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${i}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&x.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(t){let e={};for(let n in t)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let o=this._signature.inputs[n];e[o.name]=t[n]}else e[n]=t[n];return e}checkInputs(t){let e=Object.keys(t).filter(n=>{let[o]=yn(n);return this.graph.nodes[o]==null});if(e.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${e}] that are not part of graph`)}mapOutputs(t){return t.map(e=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[e]!=null?this._signature.outputs[e].name:e,{})}checkOutputs(t){t.forEach(e=>{let[n]=yn(e);if(!this.graph.nodes[n])throw new Error(`The output '${e}' is not found in the graph`)})}};var Yb=class{constructor(t={},e={}){this.hashTableNameToHandle=t,this.hashTableMap=e}addHashTable(t,e){this.hashTableNameToHandle[t]=e.handle,this.hashTableMap[e.id]=e}getHashTableHandleByName(t){return this.hashTableNameToHandle[t]}getHashTableById(t){return this.hashTableMap[t]}dispose(){for(let t in this.hashTableMap)this.hashTableMap[t].clearAndClose(),delete this.hashTableMap[t];for(let t in this.hashTableNameToHandle)this.hashTableNameToHandle[t].dispose(),delete this.hashTableNameToHandle[t]}};var TZ="?tfjs-format=file",_Z="model.json",Bh=class{constructor(t,e={},n=Cn){this.modelUrl=t,this.loadOptions=e,this.version="n/a",this.io=n,e==null&&(this.loadOptions={}),this.resourceManager=new Yb}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let t=this.modelUrl;if(t.load!=null)this.handler=t;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(t,this.loadOptions);else{let e=this.io.getLoadHandlers(t,this.loadOptions);if(e.length===0)e.push(this.io.browserHTTPRequest(t,this.loadOptions));else if(e.length>1)throw new Error(`Found more than one (${e.length}) load handlers for URL '${[t]}'`);this.handler=e[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let t=this.handler.load();return x.isPromise(t)?t.then(e=>this.loadSync(e)):this.loadSync(t)}loadSync(t){this.artifacts=t;let e=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let s=this.artifacts.userDefinedMetadata;s.signature!=null&&(n=s.signature),s.structuredOutputKeys!=null&&(this.structuredOutputKeys=s.structuredOutputKeys)}this.signature=n,this.version=`${e.versions.producer}.${e.versions.minConsumer}`;let o=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new $c(Mh.Instance.transformGraph(e,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(o),this.executor.resourceManager=this.resourceManager,t.modelInitializer!=null&&t.modelInitializer.node!=null){let s=Mh.Instance.transformGraph(t.modelInitializer);this.initializer=new $c(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(t,e){if(typeof t=="string"){let n=this.io.getSaveHandlers(t);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${t}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${t}'`);t=n[0]}if(t.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return t.save(this.artifacts)}predict(t,e){let n=this.execute(t,this.outputNodes);if(this.structuredOutputKeys){let o=n instanceof Pt?[n]:n,s={};return o.forEach((i,a)=>s[this.structuredOutputKeys[a]]=i),s}return n}normalizeInputs(t){if(!(t instanceof Pt)&&!Array.isArray(t))return t;if(t=Array.isArray(t)?t:[t],t.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${t.length} input tensors.`);return this.inputNodes.reduce((e,n,o)=>(e[n]=t[o],e),{})}normalizeOutputs(t){return t=t||this.outputNodes,Array.isArray(t)?t:[t]}execute(t,e){t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=this.executor.execute(t,e);return n.length>1?n:n[0]}async executeAsync(t,e){t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=await this.executor.executeAsync(t,e);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(t){return Object.keys(t).reduce((e,n)=>(e[n]=[t[n]],e),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function EZ(r,t={},e=Cn){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof r=="string"&&(r=$Z(r));let n=new Bh(r,t,e);return await n.load(),n}function AZ(r){if(r==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!r.load)throw new Error(`modelUrl IO Handler ${r} has no load function`);let t=new Bh(r);return t.load(),t}function $Z(r){return r.endsWith("/")||(r=r+"/"),`${r}${_Z}${TZ}`}var fF="3.19.0";var FF={};jt(FF,{CSVDataset:()=>nd,Dataset:()=>ri,FileDataSource:()=>ld,TextLineDataset:()=>rd,URLDataSource:()=>ud,array:()=>IF,csv:()=>_F,func:()=>EF,generator:()=>AF,microphone:()=>DF,version_data:()=>BN,webcam:()=>$F,zip:()=>SF});var CF=vl(xh());var bF=vl(xh());function dF(r,t){return Zb(r,t)}function Zb(r,t,e=new Map,n=new Set){if(r==null)return null;if(typeof Blob=="function"&&r instanceof Blob)return r.slice();if(n.has(r))throw new Error("Circular references are not supported.");if(e.has(r))return e.get(r);let o=t(r);if(o.recurse&&o.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(o.recurse)if(vu(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let a=r[i],u=Zb(a,t,e,n);s[i]=u}return n.delete(r),r.__proto__&&(s.__proto__=r.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return e.set(r,o.value),o.value}function hF(r,t=vN){return gF(r,t)}function gF(r,t,e=new Set){let n=r[0];if(e.has(n))throw new Error("Circular references are not supported.");let o=t(r);if(o.recurse&&o.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(o.recurse)if(vu(n)){let s=Array.isArray(n)?[]:{};e.add(n);for(let i in n){let a=r.map(l=>l[i]),u=gF(a,t,e);s[i]=u}return e.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function vN(r){return r===null?null:vu(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function Jb(r,t){let e=new Map;Zb(r,t,e);for(let o of Array.from(e.keys())){let s=e.get(o);if(x.isPromise(s)){let i=await s;e.set(o,i)}}return Zb(r,t,e)}function vu(r){let t=!1;if(B().get("IS_BROWSER"))t=r instanceof TextDecoder;else{let{StringDecoder:e}=wN();t=r instanceof e}return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Pt)&&!(r instanceof Promise)&&!t)}function xF(r){return r==null||DZ(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Pt||x.isTypedArray(r)}function DZ(r){return r===null||typeof r!="object"&&typeof r!="function"}function yF(r){return dF(r,FZ)}function FZ(r){return r instanceof Pt?{value:r.clone(),recurse:!1}:vu(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var ed=class{constructor(t){if(this.capacity=t,this.begin=0,this.end=0,t==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(t<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(t),this.doubledCapacity=2*t}wrap(t){for(;t<0;)t+=this.doubledCapacity;return t%this.doubledCapacity}get(t){if(t<0)throw new RangeError("Can't get item at a negative index.");return this.data[t%this.capacity]}set(t,e){if(t<0)throw new RangeError("Can't set item at a negative index.");this.data[t%this.capacity]=e}length(){let t=this.end-this.begin;return t<0&&(t=this.doubledCapacity+t),t}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,t),this.end=this.wrap(this.end+1)}pushAll(t){for(let e of t)this.push(e)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let t=this.get(this.end);return this.set(this.end,void 0),t}unshift(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,t)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),t}shuffleExcise(t){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.wrap(this.begin+t),n=this.get(e);return this.set(e,this.pop()),n}};var Dc=class extends ed{constructor(){super(Dc.INITIAL_CAPACITY)}isFull(){return!1}push(t){super.isFull()&&this.expand(),super.push(t)}unshift(t){super.isFull()&&this.expand(),super.unshift(t)}expand(){let t=this.capacity*2,e=new Array(t),n=this.length();for(let o=0;o<n;o++)e[o]=this.get(this.wrap(this.begin+o));this.data=e,this.capacity=t,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Dc.INITIAL_CAPACITY=32;function RN(r){return new CN(r)}function Vh(r){return new IN(r)}function wF(r,t){return new tw(r,t)}function vF(r,t=ul.FAIL){return new DN(r,t)}var Qe=class{async toArray(){let t=[],e=await this.next();for(;!e.done;)t.push(e.value),e=await this.next();return t}async toArrayForTest(){let t=this.prefetch(100),e=[],n=await t.next();for(;!n.done;)e.push(n.value),n=await t.next();return e}async resolveFully(){let t=await this.next();for(;!t.done;)t=await this.next()}async resolveWhile(t){let e=await this.next(),n=t(e.value);for(;!e.done&&n;)e=await this.next(),n=t(e.value)}handleErrors(t){return new AN(this,t)}filter(t){return new _N(this,t)}map(t){return new EN(this,t)}mapAsync(t){return new Qb(this,t)}serialMapAsync(t){return new Qb(this,t).serial()}flatmap(t){return new $N(this,t)}async forEachAsync(t){return this.map(t).resolveFully()}async serialForEach(t){return this.serialMapAsync(t).resolveWhile(e=>e===!0)}rowMajorBatch(t,e=!0){return new TN(this,t,e)}columnMajorBatch(t,e=!0,n=vN){return this.rowMajorBatch(t,e).map(s=>hF(s,n))}concatenate(t,e){return new tw(RN([this,t]),e)}take(t){return t<0||t==null?this:new kN(this,t)}skip(t){return t<0||t==null?this:new NN(this,t)}prefetch(t){return new ew(this,t)}shuffle(t,e){return new FN(this,t,e)}serial(){return new SN(this)}},CN=class extends Qe{constructor(t){super(),this.items=t,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let t=this.items[this.trav];return this.trav++,{value:yF(t),done:!1}}},IN=class extends Qe{constructor(t){super(),this.nextFn=t}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(t){throw t.message=`Error thrown while iterating through a dataset: ${t.message}`,t}}},SN=class extends Qe{constructor(t){super(),this.upstream=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},NN=class extends Qe{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let t=await this.upstream.next();if(t.done)return t;_t(t.value)}return this.upstream.next()}},kN=class extends Qe{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},TN=class extends Qe{constructor(t,e,n=!0){super(),this.upstream=t,this.batchSize=e,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let t=[];for(;t.length<this.batchSize;){let e=await this.upstream.next();if(e.done)return this.enableSmallLastBatch&&t.length>0?{value:t,done:!1}:{value:null,done:!0};t.push(e.value)}return{value:t,done:!1}}},_N=class extends Qe{constructor(t,e){super(),this.upstream=t,this.predicate=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let t=await this.upstream.next();if(t.done||this.predicate(t.value))return t;_t(t.value)}}},EN=class extends Qe{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Map`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=fo.getTensorsInContainer(t.value),n=this.transform(t.value),o=fo.getTensorsInContainer(n);for(let s of e)fo.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},AN=class extends Qe{constructor(t,e){super(),this.upstream=t,this.handler=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(t){if(!this.handler(t))return{value:null,done:!0}}}},Qb=class extends Qe{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=fo.getTensorsInContainer(t.value),n=await this.transform(t.value),o=fo.getTensorsInContainer(n);for(let s of e)fo.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},Fc=class extends Qe{constructor(){super(),this.outputQueue=new Dc,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},$N=class extends Fc{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let t=await this.upstream.next();if(t.done)return!1;let e=fo.getTensorsInContainer(t.value),n=this.transform(t.value),o=fo.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of e)fo.isTensorInList(s,o)||s.dispose();return!0}},tw=class extends Qe{constructor(t,e){super(),this.baseErrorHandler=e,this.lastRead=null,this.iterator=null,this.moreIterators=t}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(t){if(await t,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let e=await this.iterator.next();return e.done?(this.iterator=null,this.readFromChain(t)):e}},ul;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(ul||(ul={}));var DN=class extends Qe{constructor(t,e=ul.FAIL){super(),this.iterators=t,this.mismatchMode=e,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(t){await t;let e=0,n=0;function o(i){return i instanceof Qe?{value:i.next().then(u=>(e++,u.done&&n++,u.value)),recurse:!1}:{value:null,recurse:!0}}let s=await Jb(this.iterators,o);if(e===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ul.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ul.SHORTEST:return{value:null,done:!0};case ul.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},ew=class extends Qe{constructor(t,e){super(),this.upstream=t,this.bufferSize=e,this.buffer=new ed(e)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let t=this.upstream.next();this.buffer.push(t)}}next(){return this.refill(),this.buffer.shift()}},FN=class extends ew{constructor(t,e,n){super(t,e),this.upstream=t,this.windowSize=e,this.upstreamExhausted=!1,this.random=bF.alea(n||x.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(t){return Math.floor(this.random()*t)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let t=this.chooseIndex(),e=await this.buffer.shuffleExcise(t);if(e.done)this.upstreamExhausted=!0;else return this.refill(),e}return{value:null,done:!0}}};var ri=class{constructor(){this.size=null}batch(t,e=!0){let n=this;x.assert(t>0,()=>`batchSize needs to be positive, but it is
${t}`);let o;return this.size===1/0||this.size==null?o=this.size:e?o=Math.ceil(this.size/t):o=Math.floor(this.size/t),En(async()=>(await n.iterator()).columnMajorBatch(t,e,RZ),o)}concatenate(t){let e=this,n;return this.size===1/0||t.size===1/0?n=1/0:this.size!=null&&t.size!=null?n=this.size+t.size:n=null,En(async()=>(await e.iterator()).concatenate(await t.iterator()),n)}filter(t){let e=this,n;return this.size===1/0?n=1/0:n=null,En(async()=>(await e.iterator()).filter(o=>W(()=>t(o))),n)}async forEachAsync(t){return(await this.iterator()).forEachAsync(t)}map(t){let e=this;return En(async()=>(await e.iterator()).map(n=>W(()=>t(n))),this.size)}mapAsync(t){let e=this;return En(async()=>(await e.iterator()).mapAsync(t),this.size)}prefetch(t){if(t==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let e=this;return En(async()=>(await e.iterator()).prefetch(t),this.size)}repeat(t){let e=this,n;return this.size!=null&&t>0?n=this.size*t:t===0?n=0:this.size!=null&&(t===void 0||t<0)?n=1/0:n=null,En(async()=>{let o=Vh(async()=>({value:await e.iterator(),done:!1}));return wF(o.take(t))},n)}skip(t){let e=this,n;return this.size!=null&&t>=0&&this.size>=t?n=this.size-t:this.size!=null&&(this.size<t||t===void 0||t<0)?n=0:n=null,En(async()=>(await e.iterator()).skip(t),n)}shuffle(t,e,n=!0){if(t==null||t<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=CF.alea(e||x.now().toString());return En(async()=>{let i=s.int32();return n&&(i+=s.int32()),(await o.iterator()).shuffle(t,i.toString())},this.size)}take(t){let e=this,n;return this.size!=null&&this.size>t?n=t:this.size!=null&&this.size<=t?n=this.size:n=null,En(async()=>(await e.iterator()).take(t),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};ri.MAX_BUFFER_SIZE=1e4;function En(r,t=null){return new class extends ri{constructor(){super(...arguments),this.size=t}async iterator(){return r()}}}function IF(r){return En(async()=>RN(r),r.length)}function SF(r){if(!vu(r))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(r))for(let e=0;e<r.length;e++)t=t==null?r[e].size:Math.min(t,r[e].size);else if(r instanceof Object)for(let e in r)t=t==null?r[e].size:Math.min(t,r[e].size);return En(async()=>{let e=await Jb(r,n=>{if(n instanceof ri)return{value:n.iterator(),recurse:!1};if(vu(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return vF(e,ul.SHORTEST)},t)}function RZ(r){if(r===null)return null;let t=r[0];return xF(t)?{value:OZ(r),recurse:!1}:{value:null,recurse:!0}}function OZ(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Pt?sr(r):Cr(r)}var rd=class extends ri{constructor(t){super(),this.input=t}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(o=>(o.endsWith("\r")&&(o=o.slice(0,-1)),o))}};var rw='"',Gh=Symbol("out"),NF=Symbol("field"),nw=Symbol("quote"),ON=Symbol("quoteafterquote"),kF=Symbol("quoteinquote"),nd=class extends ri{constructor(t,e){super(),this.input=t,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new rd(t),e||(e={}),this.hasHeader=e.hasHeader!==!1,this.fullColumnNames=e.columnNames,this.columnConfigs=e.columnConfigs,this.configuredColumnsOnly=e.configuredColumnsOnly,e.delimWhitespace?(x.assert(e.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=e.delimiter?e.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let t=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!t)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&t&&x.assert(t.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+t.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=t);let e=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(e).filter(o=>e[o]>1);if(x.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key "'+o+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let n=e.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let t=await this.base.iterator();return this.hasHeader&&(t=t.skip(1)),t.map(e=>this.makeDataElement(e))}makeDataElement(t){let e=this.parseRow(t),n={},o={};for(let s=0;s<this.fullColumnNames.length;s++){let i=this.fullColumnNames[s],a=this.columnConfigs?this.columnConfigs[i]:null;if(!(this.configuredColumnsOnly&&!a)){let u=e[s],l=null;if(u==="")if(a&&a.default!==void 0)l=a.default;else{if(a&&(a.required||a.isLabel))throw new Error(`Required column ${i} is empty in this line: ${t}`);l=void 0}else{let c=Number(u);if(isNaN(c))a&&a.dtype==="bool"?l=this.getBoolean(u):l=u;else if(!a||!a.dtype)l=c;else switch(a.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(u);break;default:l=c}}a&&a.isLabel?o[i]=l:n[i]=l}}return Object.keys(o).length===0?n:{xs:n,ys:o}}getBoolean(t){return t==="1"||t.toLowerCase()==="true"?1:0}parseRow(t,e=!0){let n=[],o=0,s=t.length,i=Gh;for(let a=0;a<s;a++)switch(i){case Gh:switch(t.charAt(a)){case rw:o=a+1,i=nw;break;case this.delimiter:if(o=a+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),i=Gh;break;default:i=NF,o=a;break}break;case NF:switch(t.charAt(a)){case this.delimiter:n.push(t.substring(o,a)),i=Gh,o=a+1;break;default:}break;case nw:switch(t.charAt(a)){case rw:i=ON;break;default:}break;case ON:switch(t.charAt(a)){case this.delimiter:n.push(t.substring(o,a-1)),i=Gh,o=a+1;break;case rw:i=nw;break;default:i=kF;break}break;case kF:switch(t.charAt(a)){case rw:i=nw;break;default:}break;default:}if(i===ON?n.push(t.substring(o,s-1)):n.push(t.substring(o)),e&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}};var od=class extends Qe{constructor(t){super(),this.microphoneConfig=t,this.isClosed=!1,this.fftSize=t.fftSize||1024;let e=Math.log2(this.fftSize);if(this.fftSize<0||e<4||e>14||!Number.isInteger(e))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=t.numFramesPerSpectrogram||43,this.sampleRateHz=t.sampleRateHz,this.columnTruncateLength=t.columnTruncateLength||this.fftSize,this.audioTrackConstraints=t.audioTrackConstraints,this.smoothingTimeConstant=t.smoothingTimeConstant||0,this.includeSpectrogram=t.includeSpectrogram!==!1,this.includeWaveform=t.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(t={}){if(!B().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let e=new od(t);return await e.start(),e}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let t=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new t,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let e=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,e.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let t,e,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:t,waveform:e},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let t=[],e=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&o({freqDataQueue:t,timeDataQueue:e}),t.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),e.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:t,timeDataQueue:e}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(t){let e=t[0].length,n=new Float32Array(t.length*e);return t.forEach((o,s)=>n.set(o,s*e)),n}getTensorFromAudioDataArray(t,e){let n=new Float32Array(x.sizeFromShape(e));return n.set(t,n.length-t.length),Cr(n,e)}};var sd=class extends Qe{constructor(t,e){if(super(),this.webcamVideoElement=t,this.webcamConfig=e,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ve([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,i=(1-o)/2,a=s+n,u=o+i;this.cropBox=qs([i,s,u,a],[1,4])}else this.cropBox=qs([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(t,e={}){if(!B().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!t){if(t=document.createElement("video"),!e.resizeWidth||!e.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");t.width=e.resizeWidth,t.height=e.resizeHeight}let n=new sd(t,e);return await n.start(),n}async start(){this.webcamConfig.facingMode&&x.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(t){throw t.message=`Error thrown while initializing video stream: ${t.message}`,t}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(t){console.log(t),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(t=>{this.webcamVideoElement.onloadedmetadata=()=>{t()}})}async next(){if(this.isClosed)return{value:null,done:!0};let t;try{t=mx.fromPixels(this.webcamVideoElement)}catch(e){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(t),done:!1}}catch(e){throw new Error(`Error thrown cropping the video: ${e.message}`)}finally{t.dispose()}else return{value:t,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(t){return W(()=>{let e=yr(tt(t,"float32"),0),n;n=iu.cropAndResize(e,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let o=n.shape;return R(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var id=class{};var Wh=class extends Qe{split(t){return new LN(this,t)}},LN=class extends Wh{constructor(t,e){super(),this.upstream=t,this.impl=new PN(t,e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},PN=class extends Fc{constructor(t,e){super(),this.upstream=t,this.separator=e,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let t=await this.upstream.next();if(t.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let e=t.value.split(this.separator);e[0]=this.carryover+e[0];for(let n of e.slice(0,-1))this.outputQueue.push(n);return this.carryover=e[e.length-1],!0}};var ow=class extends Qe{decodeUTF8(){return new MN(this)}},MN=class extends Wh{constructor(t){super(),this.upstream=t,this.impl=new zN(t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},zN=class extends Fc{constructor(t){if(super(),this.upstream=t,B().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:e}=wN();this.decoder=new e("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let t=await this.upstream.next(),e;if(t.done)return!1;e=t.value;let n;return B().get("IS_BROWSER")?n=this.decoder.decode(e,{stream:!0}):n=this.decoder.write(Buffer.from(e.buffer)),this.outputQueue.push(n),!0}};var ad=class extends ow{constructor(t,e={}){super(),this.file=t,this.options=e,x.assert(t instanceof Uint8Array||(B().get("IS_BROWSER")?t instanceof File||t instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=e.offset||0,this.chunkSize=e.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=a=>{let u=s.result;if(u instanceof ArrayBuffer&&(u=new Uint8Array(u)),!(u instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));e(u)},s.onabort=a=>n(new Error("Aborted")),s.onerror=a=>n(new Error(a.type));let i=this.file.slice(this.offset,o);s.readAsArrayBuffer(i)}this.offset=o}),done:!1}}};async function TF(r,t={},e){let n,o;typeof r=="string"?n=r:(n=r.url,o=LZ(r));let s=await(e||x.fetch)(n,o);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new ad(i,t)}else throw new Error(s.statusText)}var LZ=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function sw(r){return typeof r=="string"&&r.slice(0,7)==="file://"}var ld=class extends id{constructor(t,e={}){super(),this.input=t,this.options=e}async iterator(){if(sw(this.input)&&B().get("IS_NODE")){let t=iw();this.input=t.readFileSync(this.input.slice(7))}return new ad(this.input,this.options)}};var ud=class extends id{constructor(t,e={}){super(),this.url=t,this.fileOptions=e}async iterator(){return sw(this.url)?new ld(this.url,this.fileOptions).iterator():TF(this.url,this.fileOptions)}};function _F(r,t={}){return new nd(new ud(r),t)}function EF(r){let t=Vh(r);return En(async()=>t)}function AF(r){return En(async()=>{let t=await r();return Vh(()=>t.next())})}async function $F(r,t){return sd.create(r,t)}async function DF(r){return od.create(r)}var BN="3.19.0";function rt(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&x.assert(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var PZ=Vr.whereImpl,Cu=class extends Uo{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Qi(this,go())}nextDataId(){return Cu.nextDataId++}write(t,e,n){this.firstUse&&(this.firstUse=!1,B().get("IS_NODE")&&S.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let o={id:this.nextDataId()};return this.data.set(o,{values:t,dtype:n,refCount:1}),o}makeTensorInfo(t,e,n){let o;if(e==="string"&&n!=null&&n.length>0&&x.isString(n[0])){let s=n.map(i=>x.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return{dataId:o,shape:t,dtype:e}}refCount(t){return this.data.has(t)?this.data.get(t).refCount:0}incRef(t){let e=this.data.get(t);e.refCount++}decRef(t){if(this.data.has(t)){let e=this.data.get(t);e.refCount--}}move(t,e,n,o,s){this.data.set(t,{values:e,dtype:o,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(t){return this.readSync(t)}readSync(t){let{dtype:e,complexTensorInfos:n}=this.data.get(t);if(e==="complex64"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return S.mergeRealAndImagArrays(o,s)}return this.data.get(t).values}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype==="string")try{let n=e.map(o=>x.decodeString(o));return Ct(t.shape,t.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ct(t.shape,t.dtype,e)}makeOutput(t,e,n){return go().makeTensorFromTensorInfo(this.makeTensorInfo(e,n,t),this)}disposeData(t,e=!1){if(this.data.has(t)){if(this.data.get(t).refCount--,!e&&this.data.get(t).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(t);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(t)}return!0}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}async time(t){let e=x.now();return t(),{kernelMs:x.now()-e}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(t){rt([t],"where");let e=this.readSync(t.dataId);return PZ(t.shape,e)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Cu.nextDataId=0;var yw={};jt(yw,{addImpl:()=>GN,bincountImpl:()=>md,bincountReduceImpl:()=>aw,ceilImpl:()=>WN,concatImpl:()=>Rc,equalImpl:()=>UN,expImpl:()=>qN,expm1Impl:()=>jN,floorImpl:()=>XN,gatherNdImpl:()=>lw,gatherV2Impl:()=>uw,greaterEqualImpl:()=>ZN,greaterImpl:()=>YN,lessEqualImpl:()=>QN,lessImpl:()=>JN,linSpaceImpl:()=>cw,logImpl:()=>tk,maxImpl:()=>pw,maximumImpl:()=>ek,minimumImpl:()=>rk,multiplyImpl:()=>Uh,negImpl:()=>nk,notEqualImpl:()=>ok,prodImpl:()=>sk,rangeImpl:()=>Lc,rsqrtImpl:()=>ik,scatterImpl:()=>cl,sigmoidImpl:()=>oR,simpleAbsImpl:()=>VN,sliceImpl:()=>Pc,sparseFillEmptyRowsImpl:()=>mw,sparseReshapeImpl:()=>fw,sparseSegmentReductionImpl:()=>dd,sqrtImpl:()=>aR,squaredDifferenceImpl:()=>lk,stridedSliceImpl:()=>dw,stringNGramsImpl:()=>Mc,stringSplitImpl:()=>zc,stringToHashBucketFastImpl:()=>Bc,subImpl:()=>ck,tileImpl:()=>hw,topKImpl:()=>gw,transposeImpl:()=>fd,uniqueImpl:()=>xw});function VN(r){let t=new Float32Array(r.length);for(let e=0;e<r.length;++e)t[e]=Math.abs(r[e]);return t}var MZ=r=>{let{x:t}=r.inputs,e=r.backend;rt(t,"abs");let n=new Float32Array(x.sizeFromShape(t.shape)),o=e.data.get(t.dataId).values;return n=VN(o),e.makeOutput(n,t.shape,t.dtype)},RF={kernelName:ci,backendName:"cpu",kernelFunc:MZ};function re(r){return(t,e,n,o,s)=>{let i=S.assertAndGetBroadcastShape(t,e),a=i.length,u=x.computeStrides(i),l=x.sizeFromShape(i),c=x.getTypedArrayFromDType(s,l),p=t.length,m=e.length,f=x.computeStrides(t),d=x.computeStrides(e),h=S.getBroadcastDims(t,i),g=S.getBroadcastDims(e,i);if(h.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=r(n[y%n.length],o[y%o.length]);else for(let y=0;y<c.length;++y){let b=x.indexToLoc(y,a,u),w=b.slice(-p);h.forEach($=>w[$]=0);let v=x.locToIndex(w,p,f),N=b.slice(-m);g.forEach($=>N[$]=0);let E=x.locToIndex(N,m,d);c[y]=r(n[v],o[E])}return[c,i]}}function vr(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=e.makeTensorInfo(n.shape,"complex64"),u=e.data.get(a.dataId);return u.complexTensorInfos={real:e.makeTensorInfo(n.shape,"float32",s),imag:e.makeTensorInfo(o.shape,"float32",i)},a}var OF={kernelName:Sp,backendName:"cpu",kernelFunc:vr};function cd(r,t,e="float32"){if(e==="complex64"){let o=cd(r,t,"float32"),s=cd(r,t,"float32");return vr({inputs:{real:o,imag:s},backend:r})}let n=x.makeZerosTypedArray(x.sizeFromShape(t),e);return r.makeTensorInfo(t,e,n)}function Ur(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var LF={kernelName:lo,backendName:"cpu",kernelFunc:Ur};function Eo(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.real,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var PF={kernelName:Wp,backendName:"cpu",kernelFunc:Eo};function Ao(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return Ur({inputs:{x:o},backend:e});let i=cd(e,o.shape,o.dtype),a=Ao({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),u=vr({inputs:{real:a,imag:i},backend:e});return e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}if(o.dtype==="complex64"){let i=Eo({inputs:{input:o},backend:e}),a=Ao({inputs:{x:i},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(i),a}if(!x.hasEncodingLoss(o.dtype,s)){let i=Ur({inputs:{x:o},backend:e});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=e.data.get(o.dataId).values,a=Int32Array.from(i);return e.makeTensorInfo(o.shape,"int32",a)}if(s==="bool"){let i=e.data.get(o.dataId).values,a=x.toTypedArray([0],o.dtype),[u,l]=re((c,p)=>c!==p?1:0)(o.shape,[],i,a,"bool");return e.makeTensorInfo(l,"bool",u)}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var MF={kernelName:io,backendName:"cpu",kernelFunc:Ao};function ie(r,t,e,n){return e==null?({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;rt([i,a],r);let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=i.dtype==="string"?S.fromUint8ToStringArray(l):l,m=i.dtype==="string"?S.fromUint8ToStringArray(c):c,f=n||i.dtype,[d,h]=t(i.shape,a.shape,p,m,f);return u.makeTensorInfo(h,f,d)}:({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;if(i.dtype==="complex64"||a.dtype==="complex64"){let l=Ao({inputs:{x:i},backend:u,attrs:{dtype:"complex64"}}),c=u.data.get(l.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=u.data.get(p.dataId).values,d=u.data.get(m.dataId).values,h=Ao({inputs:{x:a},backend:u,attrs:{dtype:"complex64"}}),g=u.data.get(h.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=u.data.get(y.dataId).values,v=u.data.get(b.dataId).values,[N,E,$]=e(i.shape,a.shape,f,d,w,v),D=u.makeTensorInfo($,"float32",N),L=u.makeTensorInfo($,"float32",E),M=vr({inputs:{real:D,imag:L},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(h),u.disposeIntermediateTensorInfo(D),u.disposeIntermediateTensorInfo(L),M}else{let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=n||i.dtype,[m,f]=t(i.shape,a.shape,l,c,p);return u.makeTensorInfo(f,p,m)}}}function pd(r){return(t,e,n,o,s,i)=>{let a=S.assertAndGetBroadcastShape(t,e),u=x.sizeFromShape(a),l=a.length,c=x.computeStrides(a),p=x.getTypedArrayFromDType("float32",u),m=x.getTypedArrayFromDType("float32",u),f=S.getBroadcastDims(t,a),d=S.getBroadcastDims(e,a),h=S.mergeRealAndImagArrays(n,o),g=S.mergeRealAndImagArrays(s,i),y=t.length,b=x.computeStrides(t),w=e.length,v=x.computeStrides(e);if(f.length+d.length===0)for(let N=0;N<p.length;N++){let E=N%h.length,$=N%g.length,D=r(h[E*2],h[E*2+1],g[$*2],g[$*2+1]);p[N]=D.real,m[N]=D.imag}else for(let N=0;N<p.length;N++){let E=x.indexToLoc(N,l,c),$=E.slice(-y);f.forEach(H=>$[H]=0);let D=x.locToIndex($,y,b),L=E.slice(-w);d.forEach(H=>L[H]=0);let M=x.locToIndex(L,w,v),G=r(h[D*2],h[D*2+1],g[M*2],g[M*2+1]);p[N]=G.real,m[N]=G.imag}return[p,m,a]}}var GN=re((r,t)=>r+t),zZ=pd((r,t,e,n)=>({real:r+e,imag:t+n})),Yi=ie(jn,GN,zZ),zF={kernelName:jn,backendName:"cpu",kernelFunc:Yi};function md(r,t,e,n,o){let s=x.sizeFromShape(n),i=x.makeZerosTypedArray(o,e);for(let a=0;a<r.length;a++){let u=r[a];if(u<0)throw new Error("Input x must be non-negative!");u>=o||(s>0?i[u]+=t[a]:i[u]+=1)}return i}function aw(r,t,e,n=!1){let o=r.shape[0],s=r.shape[1],i=Ct([o,e],t.dtype);for(let a=0;a<o;a++)for(let u=0;u<s;u++){let l=r.get(a,u);if(l<0)throw new Error("Input x must be non-negative!");l>=e||(n?i.set(1,a,l):t.size>0?i.set(i.get(a,l)+t.get(a,u),a,l):i.set(i.get(a,l)+1,a,l))}return i}function bn(r){return(t,e,n)=>{let o=x.getTypedArrayFromDType(e,t.length);for(let s=0;s<t.length;++s)o[s]=r(t[s],n);return o}}function Et(r,t,e){return({inputs:n,attrs:o,backend:s})=>{let{x:i}=n;if(rt(i,r),i.dtype==="string"||e==="string")throw new Error("unaryKernelFunc does not support string input/output");let a=s,u=a.data.get(i.dataId).values,l=x.sizeFromShape(i.shape),c=e||i.dtype,p=x.getArrayFromDType(c,l);for(let m=0;m<l;++m)p[m]=t(u[m],o);return a.makeTensorInfo(i.shape,c,p)}}function $o(r,t,e){return({inputs:n,attrs:o,backend:s})=>{let{x:i}=n;if(rt(i,r),i.dtype==="string"||e==="string")throw new Error("unaryKernelFunc does not support string input/output");let a=s,u=a.data.get(i.dataId).values,l=e||i.dtype,c=t(u,l,o);return a.makeTensorInfo(i.shape,l,c)}}var WN=bn(r=>Math.ceil(r)),BZ=$o(Zo,WN),BF={kernelName:Zo,backendName:"cpu",kernelFunc:BZ};function Rc(r,t,e,n){let o=x.getArrayFromDType(e,x.sizeFromShape(t));if(n&&e!=="string"){let s=0;r.forEach(i=>{let a=x.sizeFromShape(i.shape);o.set(i.vals,s),s+=a})}else{let s=0;r.forEach(i=>{let a=e==="string"?S.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;l<i.shape[0];++l){let c=l*t[1]+s;for(let p=0;p<i.shape[1];++p)o[c+p]=a[u++]}s+=i.shape[1]})}return o}var UN=re((r,t)=>r===t?1:0),HN=ie(da,UN,null,"bool"),VF={kernelName:da,backendName:"cpu",kernelFunc:HN};var qN=bn(r=>Math.exp(r)),KN=$o(is,qN,"float32"),GF={kernelName:is,backendName:"cpu",kernelFunc:KN};var jN=bn(r=>Math.expm1(r)),VZ=$o(ha,jN),WF={kernelName:ha,backendName:"cpu",kernelFunc:VZ};var XN=bn(r=>Math.floor(r)),GZ=$o(as,XN),UF={kernelName:as,backendName:"cpu",kernelFunc:GZ};function lw(r,t,e,n,o,s,i,a,u){let l=Ct([n,s],e);for(let c=0;c<n;c++){let p=[],m=0;for(let f=0;f<o;f++){let d=r[c*o+f];m+=d*i[f],p.push(d)}if(m<0||m>=u/s)throw new Error(`Invalid indices: ${p} does not index into ${a}`);for(let f=0;f<s;f++)l.values[c*s+f]=t.get(...t.indexToLoc(m*s+f))}return l}function uw(r,t,e){let n=Ct(e,r.dtype);for(let o=0;o<n.size;++o){let i=n.indexToLoc(o).slice(),a=i[0],u=i[2],l=t.locToIndex([a,u]);i[2]=t.values[l];let c=r.locToIndex(i);0<=c&&c<r.values.length&&(n.values[o]=r.values[c])}return n}var YN=re((r,t)=>r>t?1:0),WZ=ie(ya,YN,null,"bool"),HF={kernelName:ya,backendName:"cpu",kernelFunc:WZ};var ZN=re((r,t)=>r>=t?1:0),UZ=ie(cs,ZN,null,"bool"),qF={kernelName:cs,backendName:"cpu",kernelFunc:UZ};var JN=re((r,t)=>r<t?1:0),HZ=ie(Ca,JN,null,"bool"),KF={kernelName:Ca,backendName:"cpu",kernelFunc:HZ};var QN=re((r,t)=>r<=t?1:0),qZ=ie(Ia,QN,null,"bool"),jF={kernelName:Ia,backendName:"cpu",kernelFunc:qZ};function cw(r,t,e){let n=(t-r)/(e-1),o=x.makeZerosTypedArray(e,"float32");o[0]=r;for(let s=1;s<o.length;s++)o[s]=o[s-1]+n;return o}var tk=bn(r=>Math.log(r)),KZ=$o(ms,tk),XF={kernelName:ms,backendName:"cpu",kernelFunc:KZ};function pw(r,t,e,n){let o=x.getTypedArrayFromDType(n,x.sizeFromShape(e));for(let s=0;s<o.length;++s){let i=s*t,a=r[i];for(let u=0;u<t;++u){let l=r[i+u];(Number.isNaN(l)||l>a)&&(a=l)}o[s]=a}return o}var ek=re((r,t)=>Math.max(r,t)),jZ=ie(ds,ek),YF={kernelName:ds,backendName:"cpu",kernelFunc:jZ};var rk=re((r,t)=>Math.min(r,t)),XZ=ie(ys,rk),ZF={kernelName:ys,backendName:"cpu",kernelFunc:XZ};var Uh=re((r,t)=>r*t),YZ=pd((r,t,e,n)=>({real:r*e-t*n,imag:r*n+t*e})),Oc=ie(ws,Uh,YZ),JF={kernelName:ws,backendName:"cpu",kernelFunc:Oc};function nk(r,t,e){let n=x.createScalarValue(-1,e);return Uh([],t,n,r,e)}function ZZ(r){let{inputs:t,backend:e}=r,{x:n}=t;rt(n,"neg");let o=e.data.get(n.dataId).values,[s,i]=nk(o,n.shape,n.dtype);return e.makeTensorInfo(i,n.dtype,s)}var QF={kernelName:hi,backendName:"cpu",kernelFunc:ZZ};var ok=re((r,t)=>r!==t?1:0),JZ=ie(Ea,ok,null,"bool"),tR={kernelName:Ea,backendName:"cpu",kernelFunc:JZ};function fd(r,t,e,n,o){let s=t.length,i=x.sizeFromShape(t),a=x.computeStrides(t),u=x.computeStrides(o),l=x.getTypedArrayFromDType(e,x.sizeFromShape(o));for(let c=0;c<i;++c){let p=x.indexToLoc(c,s,a),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[n[d]];let f=x.locToIndex(m,s,u);l[f]=r[c]}return l}function Ue(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{perm:s}=e;rt(o,"transpose");let i=o.shape.length,a=new Array(i);for(let p=0;p<a.length;p++)a[p]=o.shape[s[p]];let u=n.data.get(o.dataId).values,l=fd(u,o.shape,o.dtype,s,a);return{dataId:n.write(l,a,o.dtype),shape:a,dtype:o.dtype}}var eR={kernelName:Yn,backendName:"cpu",kernelFunc:Ue};function sk(r,t,e,n){let[o,s]=S.computeOutAndReduceShapes(r,n),i=ir(t,"int32"),a=x.makeZerosTypedArray(x.sizeFromShape(o),i),u=x.sizeFromShape(s);for(let l=0;l<a.length;++l){let c=l*u,p=1;for(let m=0;m<u;++m)p*=e[c+m];a[l]=p}return{outVals:a,outShape:o,outDtype:i}}function QZ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;rt(o,"prod");let a=o.shape.length,u=x.parseAxisParam(s,o.shape),l=S.getAxesPermutation(u,a),c=u,p=o,m=[];l!=null&&(p=Ue({inputs:{x:o},backend:e,attrs:{perm:l}}),m.push(p),c=S.getInnerMostAxes(c.length,a));let f=e.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=sk(p.shape,p.dtype,f,c),y=h;return i&&(y=S.expandShapeToKeepDim(h,u)),m.forEach(b=>e.disposeIntermediateTensorInfo(b)),e.makeTensorInfo(y,g,d)}var rR={kernelName:Ns,backendName:"cpu",kernelFunc:QZ};function Lc(r,t,e,n){let o=r===t,s=r<t&&e<0,i=t<r&&e>1;if(o||s||i)return x.makeZerosTypedArray(0,n);let a=Math.abs(Math.ceil((t-r)/e)),u=x.makeZerosTypedArray(a,n);t<r&&e===1&&(e=-1),u[0]=r;for(let l=1;l<u.length;l++)u[l]=u[l-1]+e;return u}var ik=bn(r=>1/Math.sqrt(r)),t9=$o(Ds,ik),nR={kernelName:Ds,backendName:"cpu",kernelFunc:t9};function cl(r,t,e,n,o,s,i,a,u,l){let c=[n/o,o],p=r.values,m=t.values;if(n===0)return Ct(e,t.dtype);let f=Ct(c,t.dtype);typeof u=="string"||typeof u=="number"?f.values.fill(u):typeof u=="boolean"&&f.values.fill(+u);for(let d=0;d<s;d++){let h=[],g=0;for(let y=0;y<i;y++){let b=p[d*i+y];h.push(b),g+=b*a[y]}if(g<0||g>=n/o)throw new Error(`Invalid indices: ${h} does not index into ${e}`);for(let y=0;y<o;y++)l?f.values[g*o+y]+=m[d*o+y]:f.values[g*o+y]=t.rank===0?m[0]:m[d*o+y]}return f}var oR=bn(r=>1/(1+Math.exp(-r))),ak=Et(Rs,r=>1/(1+Math.exp(-r))),sR={kernelName:Rs,backendName:"cpu",kernelFunc:ak};function Pc(r,t,e,n,o){let s=Be.isSliceContinous(n,t,e),i=x.sizeFromShape(e),a=x.computeStrides(n);if(s){let p=Be.computeFlatOffset(t,a);return o==="string"?r.slice(p,p+i):r.subarray(p,p+i)}let u=o==="string"?S.fromUint8ToStringArray(r):r,l=Ct(n,o,u),c=Ct(e,o);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+t[h]);c.set(l.get(...f),...m)}return o==="string"?S.fromStringArrayToUint8(c.values):c.values}function Do(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n;rt(o,"slice");let[a,u]=Be.parseSliceParams(o,s,i);Be.assertParamsValid(o,a,u);let l=e.data.get(o.dataId).values,c=Pc(l,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,c)}var iR={kernelName:wi,backendName:"cpu",kernelFunc:Do};function mw(r,t,e,n,o,s,i){let a=t[0],u=s[0],l=new Array(u),c=new Array(a),p=t[1];if(u===0){if(a!==0)throw new Error(S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(a));let g=x.getArrayFromDType(e,0),y=x.getArrayFromDType(o,0);return[g,[0,p],y,l,c]}let m=!0,f=0,d=new Array(u).fill(0);for(let g=0;g<a;++g){let y=r[g*p];if(y<0)throw new Error(S.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=u)throw new Error(S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,u));++d[y],m=m&&y>=f,f=y}let h=!0;for(let g=0;g<u;++g){let y=d[g]===0;l[g]=y,h=h&&!y,d[g]=Math.max(d[g],1),g>0&&(d[g]+=d[g-1])}if(h&&m){let g=r,y=n;for(let b=0;b<a;++b)c[b]=b;return[g,[a,p],y,l,c]}else{let g=d[u-1],y=x.getArrayFromDType(e,g*p),b=x.getArrayFromDType(o,g),w=new Array(u).fill(0);for(let v=0;v<a;++v){let N=r[v*p],E=w[N],$=(N===0?0:d[N-1])+E;w[N]++;for(let D=0;D<p;++D)y[$*p+D]=r[v*p+D];b[$]=n[v],c[v]=$}for(let v=0;v<u;++v)if(w[v]===0){let E=v===0?0:d[v-1];y[E*p+0]=v;for(let $=1;$<p;++$)y[E*p+$]=0;b[E]=i}return[y,[g,p],b,l,c]}}function fw(r,t,e,n,o){let s=x.sizeFromShape(n),i=t[0],a=o.length,u=[],l=1,c=-1;for(let g=0;g<a;++g){let y=o[g];if(y===-1){if(c!==-1)throw new Error(S.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,u.push(1)}else{if(y<0)throw new Error(S.getSparseReshapeNegativeOutputDimErrorMessage(g,y));l*=y,u.push(y)}}if(c!==-1){if(l<=0)throw new Error(S.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(s/l);if(l*g!==s)throw new Error(S.getSparseReshapeInputOutputMultipleErrorMessage(n,u));u[c]=g}if(x.sizeFromShape(u)!==s)throw new Error(S.getSparseReshapeInputOutputMismatchErrorMessage(n,u));let m=n.length,f=[];if(m>0){f[m-1]=1;for(let g=m-2;g>=0;--g)f[g]=f[g+1]*n[g+1]}let d=[];if(a>0){d[a-1]=1;for(let g=a-2;g>=0;--g)d[g]=d[g+1]*u[g+1]}let h=x.getArrayFromDType(e,i*a);for(let g=0;g<i;++g){let y=0;for(let b=0;b<m;++b)y+=r[g*m+b]*f[b];for(let b=0;b<a;++b)h[g*a+b]=Math.trunc(y/d[b]),y%=d[b]}return[h,[i,a],u]}function dd(r,t,e,n,o,s=!1,i=0){let a=n.length,u=[t[0],r.length/t[0]],l=u[1],p=a>0?o[a-1]+1:0;if(p<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=t.slice();m[0]=p;let f=m.reduce((w,v)=>w*v,1),d=x.getArrayFromDType(e,f);if(a===0)return p>0&&d.fill(i),[d,m];if(p<=0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=0,g=1,y=0,b=o[h];for(;;){let w=0;if(g<a){if(w=o[g],b===w){++g;continue}if(b>=w)throw new Error(S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>y&&d.fill(i,y*l,b*l);for(let v=h;v<g;++v){let N=n[v];if(N<0||N>=u[0])throw new Error(S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(v,n[v],u[0]));for(let E=0;E<l;E++)d[b*l+E]+=r[N*l+E]}if(s)for(let v=0;v<l;v++)d[b*l+v]/=g-h;if(h=g,++g,y=b+1,b=w,g>a)break}return y<p&&d.fill(i,y*l,p*l),[d,m]}var aR=bn(r=>Math.sqrt(r)),e9=Et(Os,r=>Math.sqrt(r)),lR={kernelName:Os,backendName:"cpu",kernelFunc:e9};var lk=re((r,t)=>{let e=r-t;return e*e}),r9=ie(Ms,lk),uR={kernelName:Ms,backendName:"cpu",kernelFunc:r9};function dw(r,t,e,n){let o=Ct(r,t.dtype);for(let s=0;s<o.size;s++){let i=o.indexToLoc(s),a=new Array(i.length);for(let u=0;u<a.length;u++)a[u]=i[u]*e[u]+n[u];o.set(t.get(...a),...i)}return o}var uk=class{constructor(t,e,n,o,s,i){this.separator=x.encodeString(t),this.nGramWidths=e,this.leftPad=x.encodeString(n),this.rightPad=x.encodeString(o),this.padWidth=s,this.preserveShort=i}getPadWidth(t){return Math.min(this.padWidth<0?t-1:this.padWidth,t-1)}getNumNGrams(t,e){let n=this.getPadWidth(e);return Math.max(0,t+2*n-e+1)}createNGrams(t,e,n,o,s,i){for(let a=0;a<s;++a){let u=this.getPadWidth(i),l=Math.max(0,u-a),c=Math.max(0,u-(s-(a+1))),p=i-(l+c),m=e+(l>0?0:a-u),f=0;f+=l*this.leftPad.length;for(let b=0;b<p;++b)f+=t[m+b].length;f+=c*this.rightPad.length,f+=(l+c+p-1)*this.separator.length,n[o+a]=new Uint8Array(f);let h=n[o+a],g=0,y=b=>b.forEach(w=>h[g++]=w);for(let b=0;b<l;++b)y(this.leftPad),y(this.separator);for(let b=0;b<p-1;++b)y(t[m+b]),y(this.separator);if(p>0){y(t[m+p-1]);for(let b=0;b<c;++b)y(this.separator),y(this.rightPad)}else{for(let b=0;b<c-1;++b)y(this.rightPad),y(this.separator);y(this.rightPad)}}}compute(t,e){let n=t.length,o=e.length;if(o>0){let u=e[0];if(u!==0)throw new Error(`First split value must be 0, got ${u}`);for(let l=1;l<o;++l){let c=e[l]>=u;if(c=c&&e[l]<=n,!c)throw new Error(`Invalid split value ${e[l]}, must be in [${u}, ${n}]`);u=e[l]}if(u!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${u}`)}let s=o-1,i=x.getArrayFromDType("int32",o);if(n===0||o===0){let u=new Array(n);for(let l=0;l<=s;++l)i[l]=0;return[u,i]}i[0]=0;for(let u=1;u<=s;++u){let l=e[u]-e[u-1],c=0;this.nGramWidths.forEach(p=>{c+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&c===0&&(c=1),i[u]=i[u-1]+c}let a=new Array(i[s]);for(let u=0;u<s;++u){let l=e[u],c=i[u];if(this.nGramWidths.forEach(p=>{let m=e[u+1]-e[u],f=this.getNumNGrams(m,p);this.createNGrams(t,l,a,c,f,p),c+=f}),this.preserveShort&&c===i[u]){let p=e[u+1]-e[u];if(p===0)continue;let m=p+2*this.padWidth,f=1;this.createNGrams(t,l,a,c,f,m)}}return[a,i]}};function Mc(r,t,e,n,o,s,i,a){return new uk(e,n,o,s,i,a).compute(r,t)}function n9(r,t,e,n){if(!r.length)return;if(t.length===0){for(let s=0;s<r.length;++s)n.push(r.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=r.indexOf(s);for(;i!==-1;){let a=r.subarray(0,i);(!e||a.length!==0)&&n.push(a),r=r.subarray(i+1),i=r.indexOf(s)}(!e||r.length!==0)&&n.push(r);return}let o=0;for(let s=0;s<r.length+1;s++)if(s===r.length||t.indexOf(r[s])!==-1){let i=r.subarray(o,s);(!e||i.length!==0)&&n.push(i),o=s+1}}function zc(r,t,e){let n=r.length,o=[],s=0,i=0,a=new Array(n);for(let m=0;m<n;++m){let f=o.length;n9(r[m],t,e,o);let d=o.length-f;a[m]=d,s+=d,i=Math.max(i,d)}let u=x.getArrayFromDType("int32",s*2),l=new Array(s),c=[n,i],p=0;for(let m=0;m<n;++m)for(let f=0;f<a[m];++f)u[p*2]=m,u[p*2+1]=f,l[p]=o[p],++p;return[u,l,c]}function Bc(r,t){let e=x.getArrayFromDType("int32",r.length);for(let n=0;n<r.length;++n)e[n]=x.fingerPrint64(r[n]).modulo(t).getLowBitsUnsigned();return e}var ck=re((r,t)=>r-t),o9=pd((r,t,e,n)=>({real:r-e,imag:t-n})),Hh=ie(zs,ck,o9),cR={kernelName:zs,backendName:"cpu",kernelFunc:Hh};function hw(r,t){let e=new Array(r.rank);for(let o=0;o<e.length;o++)e[o]=r.shape[o]*t[o];let n=Ct(e,r.dtype);for(let o=0;o<n.values.length;++o){let s=n.indexToLoc(o),i=new Array(r.rank);for(let u=0;u<i.length;u++)i[u]=s[u]%r.shape[u];let a=r.locToIndex(i);n.values[o]=r.values[a]}return n}var qh=(r,t)=>{let e=t.value-r.value;return e===0?r.index-t.index:e};function pR(r,t,e=0,n=r.length-1){for(;n>e;){if(n-e>600){let a=n-e+1,u=t-e+1,l=Math.log(a),c=.5*Math.exp(2*l/3),p=.5*Math.sqrt(l*c*(a-c)/a)*Math.sign(u-a/2),m=Math.max(e,Math.floor(t-u*c/a+p)),f=Math.min(n,Math.floor(t+(a-u)*c/a+p));pR(r,t,m,f)}let o=r[t],s=e,i=n;for(x.swap(r,e,t),qh(r[n],o)>0&&x.swap(r,e,n);s<i;){for(x.swap(r,s,i),s++,i--;qh(r[s],o)<0;)s=s+1;for(;qh(r[i],o)>0;)i=i-1}qh(r[e],o)===0?x.swap(r,e,i):(i=i+1,x.swap(r,i,n)),i<=t&&(e=i+1),t<=i&&(n=i-1)}}function gw(r,t,e,n,o){let s=t[t.length-1],[i,a]=[r.length/s,s],u=x.getTypedArrayFromDType(e,i*n),l=x.getTypedArrayFromDType("int32",i*n);for(let p=0;p<i;p++){let m=p*a,f=r.subarray(m,m+a),d=new Array(f.length);f.forEach((b,w)=>d[w]={value:b,index:w}),n<d.length&&(pR(d,n),d=d.slice(0,n)),o&&d.sort(qh);let h=p*n,g=u.subarray(h,h+n),y=l.subarray(h,h+n);for(let b=0;b<n;b++)g[b]=d[b].value,y[b]=d[b].index}let c=t.slice();return c[c.length-1]=n,[Ct(c,e,u),Ct(c,"int32",l)]}function xw(r,t,e,n){let o=x.parseAxisParam(t,e)[0],s=[1,e[0],1];for(let d=0;d<o;d++)s[0]*=e[d];s[1]=e[o];for(let d=o+1;d<e.length;d++)s[2]*=e[d];let i={},a=new Int32Array(e[o]),u=new fe(s,n,r),l=[],c=s[0]===1&&s[2]===1;for(let d=0;d<e[o];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(u.get(y,d,b));h=g.join(",")}if(i[h]!==void 0)a[d]=i[h];else{let g=Object.keys(i).length;i[h]=g,a[d]=g,l.push(d)}}let p=s.slice();p[1]=Object.keys(i).length;let m=new fe(p,n);l.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)m.set(u.get(g,d,y),g,h,y)});let f=e.slice();return f[o]=p[1],{outputValues:m.values,outputShape:f,indices:a}}sm("cpu",()=>new Cu,1);var pk=Et(ss,r=>r>=0?r:Math.exp(r)-1),mR={kernelName:ss,backendName:"cpu",kernelFunc:pk};function mk(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n;rt([o],"leakyRelu");let i=x.sizeFromShape(o.shape),a=e.data.get(o.dataId).values,u=x.getTypedArrayFromDType("float32",i);for(let l=0;l<a.length;l++)u[l]=a[l]<0?s*a[l]:a[l];return e.makeTensorInfo(o.shape,"float32",u)}var fR={kernelName:ps,backendName:"cpu",kernelFunc:mk};var i9=re((r,t)=>r<0?t*r:r);function fk(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t;rt([n,o],"prelu");let s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,[a,u]=i9(n.shape,o.shape,s,i,"float32");return e.makeTensorInfo(u,"float32",a)}var dR={kernelName:Ss,backendName:"cpu",kernelFunc:fk};var dk=Et(ks,r=>Math.max(0,r)),hR={kernelName:ks,backendName:"cpu",kernelFunc:dk};var hk=Et(Es,r=>Math.min(Math.max(0,r),6)),gR={kernelName:Es,backendName:"cpu",kernelFunc:hk};function Vc(r,t,e,n,o){if(e==="linear")return Ur({inputs:{x:t},backend:r});if(e==="relu")return dk({inputs:{x:t},backend:r});if(e==="elu")return pk({inputs:{x:t},backend:r});if(e==="relu6")return hk({inputs:{x:t},backend:r});if(e==="prelu")return fk({inputs:{x:t,alpha:n},backend:r});if(e==="leakyrelu")return mk({inputs:{x:t},backend:r,attrs:{alpha:o}});if(e==="sigmoid")return ak({inputs:{x:t},backend:r});throw new Error(`Activation ${e} has not been implemented for the CPU backend.`)}function Jt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=x.sizeFromShape(o.shape),a=x.inferFromImplicitShape(s,i),u=x.sizeFromShape(a);x.assert(i===u,()=>`The new shape (${a}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),e.incRef(o.dataId);let l=e.data.get(o.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;c.shape=a,p.shape=a}return{dataId:o.dataId,shape:a,dtype:o.dtype}}var xR={kernelName:yi,backendName:"cpu",kernelFunc:Jt};function gk(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;rt([o,s],"matMul");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=x.sizeFromShape(d),y=x.sizeFromShape(h),w=Pr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);x.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let v=i?[g,c,m]:[g,m,c],N=a?[y,f,p]:[y,p,f],E=Jt({inputs:{x:o},backend:e,attrs:{shape:v}}),$=Jt({inputs:{x:s},backend:e,attrs:{shape:N}}),D=i?E.shape[1]:E.shape[2],L=i?E.shape[2]:E.shape[1],M=a?$.shape[1]:$.shape[2],G=Math.max(g,y),H=e.data.get(E.dataId).values,q=e.data.get($.dataId).values,X=x.computeStrides(E.shape),j=x.computeStrides($.shape),[J,nt,K]=i?[X[0],1,X[1]]:[X[0],X[1],1],[ot,st,it]=a?[1,j[1],j[0]]:[j[1],1,j[0]],ft=L*M,lt=Ct([G,L,M],E.dtype),xt=lt.values,dt=e.blockSize;for(let bt=0;bt<G;bt++)for(let Nt=0;Nt<L;Nt+=dt)for(let At=0;At<M;At+=dt)for(let Dt=0;Dt<D;Dt+=dt){let qt=Math.min(Nt+dt,L),Kt=Math.min(At+dt,M),me=Math.min(Dt+dt,D);for(let Rt=Nt;Rt<qt;Rt++)for(let Ee=At;Ee<Kt;Ee++){let Ce=0;for(let le=Dt;le<me;le++){let qe=Math.min(bt,g-1)*J,Fe=Math.min(bt,y-1)*it,Jr=H[qe+Rt*nt+le*K],Me=q[le*ot+Ee*st+Fe];Ce+=Jr*Me}xt[bt*ft+(Rt*M+Ee)]+=Ce}}return e.disposeIntermediateTensorInfo(E),e.disposeIntermediateTensorInfo($),e.makeTensorInfo(w,lt.dtype,lt.values)}var yR={kernelName:Yo,backendName:"cpu",kernelFunc:gk};function a9(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m,f,d,h=[];m=gk({inputs:{a:o,b:s},attrs:{transposeA:u,transposeB:l},backend:e}),i&&(f=Yi({inputs:{a:m,b:i},backend:e}),h.push(m),m=f),c&&(d=Vc(e,m,c,a,p),h.push(m),m=d);for(let y of h)e.disposeIntermediateTensorInfo(y);return m}var bR={kernelName:Ni,backendName:"cpu",kernelFunc:a9};var l9=Et(ea,r=>Math.acos(r)),wR={kernelName:ea,backendName:"cpu",kernelFunc:l9};var u9=Et(ra,r=>Math.acosh(r)),vR={kernelName:ra,backendName:"cpu",kernelFunc:u9};function c9(r){let{inputs:t,backend:e}=r,n=t;rt(t,"addN");let o=n.map(a=>e.data.get(a.dataId).values),s=Ct(n[0].shape,n[0].dtype),i=s.values;for(let a=0;a<n.length;a++){let u=o[a];for(let l=0;l<i.length;l++)i[l]+=u[l]}return e.makeTensorInfo(s.shape,s.dtype,s.values)}var CR={kernelName:Ko,backendName:"cpu",kernelFunc:c9};function p9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;rt(o,"all");let a=x.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ue({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("all",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let v=0;v<f;++v){let N=h[b+v];w=w&&N}d[y]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let y=S.expandShapeToKeepDim(p,a),b=Jt({inputs:{x:g},backend:e,attrs:{shape:y}});return e.disposeIntermediateTensorInfo(g),b}return g}var IR={kernelName:na,backendName:"cpu",kernelFunc:p9};function m9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;rt(o,"any");let a=x.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ue({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("any",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let v=0;v<f;++v){let N=h[b+v];w=w||N}d[y]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let y=S.expandShapeToKeepDim(p,a),b=Jt({inputs:{x:g},backend:e,attrs:{shape:y}});return e.disposeIntermediateTensorInfo(g),b}return g}var SR={kernelName:oa,backendName:"cpu",kernelFunc:m9};function f9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;rt(o,"argMax");let i=x.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Ue({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims("argMax",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),m=x.sizeFromShape(c),f=x.makeZerosTypedArray(m,"int32"),d=x.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;g<f.length;++g){let y=g*d,b=h[y],w=0;for(let v=0;v<d;++v){let N=h[y+v];N>b&&(b=N,w=v)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,"int32",f)}var NR={kernelName:jo,backendName:"cpu",kernelFunc:f9};function d9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;rt(o,"argMin");let i=x.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Ue({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims("argMin",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),m=x.sizeFromShape(c),f=x.makeZerosTypedArray(m,"int32"),d=x.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;g<f.length;++g){let y=g*d,b=h[y],w=0;for(let v=0;v<d;++v){let N=h[y+v];N<b&&(b=N,w=v)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,"int32",f)}var kR={kernelName:Cl,backendName:"cpu",kernelFunc:d9};var h9=Et(sa,r=>Math.asin(r)),TR={kernelName:sa,backendName:"cpu",kernelFunc:h9};var g9=Et(ia,r=>Math.asinh(r)),_R={kernelName:ia,backendName:"cpu",kernelFunc:g9};var x9=Et(aa,r=>Math.atan(r)),ER={kernelName:aa,backendName:"cpu",kernelFunc:x9};var y9=re((r,t)=>Math.atan2(r,t)),b9=ie(ua,y9),AR={kernelName:ua,backendName:"cpu",kernelFunc:b9};var w9=Et(la,r=>Math.atanh(r)),$R={kernelName:la,backendName:"cpu",kernelFunc:w9};function hd(r,t,e,n,o,s){let i=o.strideHeight,a=o.strideWidth,u=o.dilationHeight,l=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=Ct(o.outShape,e),g=h.values,y=o.outShape[1]*o.outShape[2]*o.outShape[3],b=o.outShape[2]*o.outShape[3],w=o.outShape[3];for(let v=0;v<o.batchSize;++v){let N=v*y,E=v*n[0];for(let $=0;$<o.inChannels;++$)for(let D=0;D<o.outHeight;++D){let L=D*i-m,M=Math.max(0,L),G=Math.min(o.inHeight,c+L),H=N+D*b;for(let q=0;q<o.outWidth;++q){let X=q*a-f,j=Math.max(0,X),J=Math.min(o.inWidth,p+X),nt=d,K=0,ot=0;for(let it=M;it<G;it+=u){let ft=E+it*n[1];for(let lt=j;lt<J;lt+=l){let xt=ft+lt*n[2],dt=r[xt+$];s==="max"&&dt>nt?nt=dt:s==="avg"&&(K+=dt,ot++)}if(isNaN(nt))break}let st=H+q*w+$;g[st]=s==="avg"?K/ot:nt}}}return h}function bw(r,t,e,n,o=!1,s=!1){let i=Ct(n.outShape,"int32"),a=n.strideHeight,u=n.strideWidth,l=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=Ct(t,e,r);for(let g=0;g<n.batchSize;++g)for(let y=0;y<n.inChannels;++y)for(let b=0;b<n.outHeight;++b){let w=b*a-f,v=w;for(;v<0;)v+=l;let N=Math.min(n.inHeight,p+w);for(let E=0;E<n.outWidth;++E){let $=E*u-d,D=$;for(;D<0;)D+=c;let L=Math.min(n.inWidth,m+$),M=Number.NEGATIVE_INFINITY,G=-1;for(let H=v;H<N;H+=l){let q=H-w;for(let X=D;X<L;X+=c){let j=X-$,J=h.get(g,H,X,y);J>M&&(M=J,o?G=s?((g*n.inHeight+H)*n.inWidth+X)*n.inChannels+y:(H*n.inWidth+X)*n.inChannels+y:G=q*m+j)}}i.set(G,g,b,E,y)}}return i}function ww(r,t,e,n,o,s){let i=o.strideDepth,a=o.strideHeight,u=o.strideWidth,l=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,y=o.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=Ct(o.outShape,e),v=w.values,N=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],E=o.outShape[2]*o.outShape[3]*o.outShape[4],$=o.outShape[3]*o.outShape[4],D=o.outShape[4];for(let L=0;L<o.batchSize;++L){let M=L*N,G=L*n[0];for(let H=0;H<o.inChannels;++H)for(let q=0;q<o.outDepth;++q){let X=q*i-h,j=X;for(;j<0;)j+=l;let J=Math.min(o.inDepth,m+X),nt=M+q*E;for(let K=0;K<o.outHeight;++K){let ot=K*a-g,st=ot;for(;st<0;)st+=c;let it=Math.min(o.inHeight,f+ot),ft=nt+K*$;for(let lt=0;lt<o.outWidth;++lt){let xt=lt*u-y,dt=xt;for(;dt<0;)dt+=p;let bt=Math.min(o.inWidth,d+xt),Nt=ft+lt*D,At=b,Dt=0,qt=0;for(let me=j;me<J;me+=l){let Rt=G+me*n[1];for(let Ee=st;Ee<it;Ee+=c){let Ce=Rt+Ee*n[2];for(let le=dt;le<bt;le+=p){let qe=Ce+le*n[3],Fe=r[qe+H];if(s==="max"&&Fe>At?At=Fe:s==="avg"&&(Dt+=Fe,qt++),isNaN(At))break}if(isNaN(At))break}if(isNaN(At))break}let Kt=Nt+H;v[Kt]=s==="avg"?Dt/qt:At}}}}return w}function DR(r,t){let e=Ct(t.outShape,"int32"),n=t.strideDepth,o=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,a=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,m=t.padInfo.front,f=t.padInfo.top,d=t.padInfo.left;for(let h=0;h<t.batchSize;++h)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*n-m,w=b;for(;w<0;)w+=i;let v=Math.min(t.inDepth,l+b);for(let N=0;N<t.outHeight;++N){let E=N*o-f,$=E;for(;$<0;)$+=a;let D=Math.min(t.inHeight,c+E);for(let L=0;L<t.outWidth;++L){let M=L*s-d,G=M;for(;G<0;)G+=u;let H=Math.min(t.inWidth,p+M),q=Number.NEGATIVE_INFINITY,X=-1;for(let j=w;j<v;j+=i){let J=j-b;for(let nt=$;nt<D;nt+=a){let K=nt-E;for(let ot=G;ot<H;ot+=u){let st=ot-M,it=r.get(h,j,nt,ot,g);it>=q&&(q=it,X=J*c*p+K*c+st)}}}e.set(X,h,y,N,L,g)}}}return e}function v9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;rt(o,"avgPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;x.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))p=Ur({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=x.computeStrides(o.shape),d=hd(m,o.shape,o.dtype,f,c,"avg");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var FR={kernelName:Xo,backendName:"cpu",kernelFunc:v9};function C9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;rt(o,"avgPool3d");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=ww(p,o.shape,o.dtype,x.computeStrides(o.shape),c,"avg");return e.makeTensorInfo(m.shape,"float32",m.values)}var RR={kernelName:Il,backendName:"cpu",kernelFunc:C9};function I9(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;rt([o,s],"avgPool3DGrad");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,v=c.effectiveFilterDepth,N=c.effectiveFilterHeight,E=c.effectiveFilterWidth,$=v-1-c.padInfo.front,D=E-1-c.padInfo.left,L=N-1-c.padInfo.top,M=Ct(s.shape,"float32"),G=1/(d*h*g),H=e.bufferSync(o);for(let q=0;q<c.batchSize;++q)for(let X=0;X<c.inChannels;++X)for(let j=0;j<c.inDepth;++j)for(let J=0;J<c.inHeight;++J)for(let nt=0;nt<c.inWidth;++nt){let K=j-$,ot=J-L,st=nt-D,it=0;for(let ft=0;ft<v;ft+=y){let lt=(K+ft)/p;if(!(lt<0||lt>=c.outDepth||Math.floor(lt)!==lt))for(let xt=0;xt<N;xt+=b){let dt=(ot+xt)/m;if(!(dt<0||dt>=c.outHeight||Math.floor(dt)!==dt))for(let bt=0;bt<E;bt+=w){let Nt=(st+bt)/f;if(Nt<0||Nt>=c.outWidth||Math.floor(Nt)!==Nt)continue;it+=H.get(q,lt,dt,Nt,X)}}}M.set(it*G,q,j,J,nt,X)}return e.makeTensorInfo(M.shape,M.dtype,M.values)}var OR={kernelName:vp,backendName:"cpu",kernelFunc:I9};function S9(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;rt([o,s],"avgPoolGrad");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,v=y-1-c.padInfo.top,N=Ct(i.shape,"float32"),E=1/(f*d),$=e.data.get(o.dataId).values,D=Ct(o.shape,"float32",$);for(let L=0;L<c.batchSize;++L)for(let M=0;M<c.inChannels;++M)for(let G=0;G<c.inHeight;++G)for(let H=0;H<c.inWidth;++H){let q=G-v,X=H-w,j=0;for(let J=0;J<y;J+=h){let nt=(q+J)/p;if(!(nt<0||nt>=c.outHeight||Math.floor(nt)!==nt))for(let K=0;K<b;K+=g){let ot=(X+K)/m;if(ot<0||ot>=c.outWidth||Math.floor(ot)!==ot)continue;j+=D.get(L,nt,ot,M)}}N.set(j*E,L,G,H,M)}return e.makeTensorInfo(N.shape,N.dtype,N.values)}var LR={kernelName:wp,backendName:"cpu",kernelFunc:S9};function N9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,scale:s,offset:i,mean:a,variance:u}=t;x.assert(a.shape.length===u.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),x.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),x.assert(s==null||a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),rt([o,a,u,s,i],"batchNorm");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=e.data.get(o.dataId).values,p=e.data.get(a.dataId).values,m=e.data.get(u.dataId).values,f=s?e.data.get(s.dataId).values:new Float32Array([1]),d=i?e.data.get(i.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,y=f.length,b=m.length,w=p.length,v=0,N=0,E=0,$=0;for(let D=0;D<c.length;++D)h[D]=d[v++]+(c[D]-p[N++])*f[E++]/Math.sqrt(m[$++]+l),v>=g&&(v=0),N>=w&&(N=0),E>=y&&(E=0),$>=b&&($=0);return e.makeTensorInfo(o.shape,o.dtype,h)}var PR={kernelName:us,backendName:"cpu",kernelFunc:N9};function k9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;rt([o],"batchToSpaceND");let a=s.reduce((y,b)=>y*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=Jt({inputs:{x:o},backend:e,attrs:{shape:u}}),d=Ue({inputs:{x:f},backend:e,attrs:{perm:l}}),h=Jt({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Do({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var MR={kernelName:pi,backendName:"cpu",kernelFunc:k9};function T9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=md(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var zR={kernelName:Cp,backendName:"cpu",kernelFunc:T9};function _9(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],"int32",Int32Array.from(a))}var BR={kernelName:Ip,backendName:"cpu",kernelFunc:_9};var E9=Et(ao,(r,t)=>{let e=t;return r>e.clipValueMax?e.clipValueMax:r<e.clipValueMin?e.clipValueMin:r}),VR={kernelName:ao,backendName:"cpu",kernelFunc:E9};var A9=r=>{let{x:t}=r.inputs,e=r.backend,n=new Float32Array(x.sizeFromShape(t.shape)),o=e.data.get(t.dataId),s=o.complexTensorInfos.real,i=o.complexTensorInfos.imag,a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values;for(let l=0;l<a.length;l++){let c=a[l],p=u[l];n[l]=Math.hypot(c,p)}return e.makeOutput(n,t.shape,"float32")},GR={kernelName:Sl,backendName:"cpu",kernelFunc:A9};function Zi(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.imag,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var WR={kernelName:Lp,backendName:"cpu",kernelFunc:Zi};function Iu(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=x.parseAxisParam(o,t[0].shape)[0],i=S.computeOutShape(t.map(h=>h.shape),s);if(x.sizeFromShape(i)===0)return e.makeTensorInfo(i,t[0].dtype,[]);let a=t.filter(h=>x.sizeFromShape(h.shape)>0);if(a.length===1)return Ur({inputs:{x:a[0]},backend:e});let u=a.map(h=>h.shape);if(S.assertParamsConsistent(u,s),a[0].dtype==="complex64"){let h=a.map(v=>Eo({inputs:{input:v},backend:e})),g=a.map(v=>Zi({inputs:{input:v},backend:e})),y=Iu({inputs:h,backend:e,attrs:{axis:s}}),b=Iu({inputs:g,backend:e,attrs:{axis:s}}),w=vr({inputs:{real:y,imag:b},backend:e});return h.forEach(v=>e.disposeIntermediateTensorInfo(v)),g.forEach(v=>e.disposeIntermediateTensorInfo(v)),e.disposeIntermediateTensorInfo(y),e.disposeIntermediateTensorInfo(b),w}let l=a.map(h=>{let g=x.sizeFromShape(h.shape.slice(s));return Jt({inputs:{x:h},backend:e,attrs:{shape:[-1,g]}})}),c=l.map(h=>({vals:e.data.get(h.dataId).values,shape:h.shape}));i=S.computeOutShape(l.map(h=>h.shape),1);let p=l[0].shape[0]===1,m=Rc(c,i,t[0].dtype,p),f=S.computeOutShape(a.map(h=>h.shape),s),d=e.makeTensorInfo(f,t[0].dtype,m);return l.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var UR={kernelName:mi,backendName:"cpu",kernelFunc:Iu};function xk(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n;rt([o,s],"conv2d");let p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,y=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",v=new fe(m.outShape,o.dtype),N=x.computeStrides(o.shape),E=x.computeStrides(s.shape),$=N[0],D=w?N[1]:N[2],L=w?N[2]:1,M=w?1:N[1],G=v.strides[0],H=w?v.strides[1]:v.strides[2],q=w?v.strides[2]:1,X=w?1:v.strides[1],j=e.data.get(o.dataId).values,J=e.data.get(s.dataId).values,nt=v.values;for(let K=0;K<m.batchSize;++K){let ot=K*$,st=K*G;for(let it=0;it<m.outHeight;++it){let ft=st+it*H,lt=it*m.strideHeight-b;for(let xt=0;xt<f;++xt){let dt=lt+xt*h;if(dt<0||dt>=m.inHeight)continue;let bt=xt*E[0],Nt=ot+dt*D;for(let At=0;At<m.outWidth;++At){let Dt=ft+At*q,qt=At*m.strideWidth-y;for(let Kt=0;Kt<d;++Kt){let me=qt+Kt*g;if(me<0||me>=m.inWidth)continue;let Rt=bt+Kt*E[1],Ee=Nt+me*L,Ce=Rt;for(let le=0;le<m.inChannels;++le){let qe=j[Ee+le*M];for(let Fe=0;Fe<m.outChannels;++Fe)nt[Dt+Fe*X]+=qe*J[Ce+Fe];Ce+=m.outChannels}}}}}}return e.makeTensorInfo(v.shape,v.dtype,nt)}var HR={kernelName:Jo,backendName:"cpu",kernelFunc:xk};function $9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n;rt([o,s],"conv2dBackpropFilter");let p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,y=m.dataFormat==="channelsLast",b=new fe(m.filterShape,"float32"),w=m.padInfo.left,v=m.padInfo.top,N=e.data.get(o.dataId).values,E=e.data.get(s.dataId).values,$=new fe(o.shape,o.dtype,N),D=new fe(s.shape,s.dtype,E);for(let L=0;L<h;++L){let M=Math.max(0,Math.ceil((v-L)/f)),G=Math.min(m.outHeight,(m.inHeight+v-L)/f);for(let H=0;H<g;++H){let q=Math.max(0,Math.ceil((w-H)/d)),X=Math.min(m.outWidth,(m.inWidth+w-H)/d);for(let j=0;j<m.inChannels;++j)for(let J=0;J<m.outChannels;++J){let nt=0;for(let K=0;K<m.batchSize;++K)for(let ot=M;ot<G;++ot){let st=L+ot*f-v;for(let it=q;it<X;++it){let ft=H+it*d-w;y?nt+=$.get(K,st,ft,j)*D.get(K,ot,it,J):nt+=$.get(K,j,st,ft)*D.get(K,J,ot,it)}}b.set(nt,L,H,j,J)}}}return e.makeTensorInfo(b.shape,b.dtype,b.values)}var qR={kernelName:Np,backendName:"cpu",kernelFunc:$9};function D9(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n;rt([o,s],"conv2dBackpropInput");let p=x.computeStrides(s.shape),m=x.computeStrides(o.shape),f=S.convertConv2DDataFormat(l),d=S.computeConv2DInfo(i,s.shape,a,1,u,c,!1,f),h=new fe(d.inShape,"float32"),g=h.values,y=e.data.get(o.dataId).values,b=e.data.get(s.dataId).values,[w,v,N]=p,{batchSize:E,filterHeight:$,filterWidth:D,inChannels:L,inHeight:M,inWidth:G,outChannels:H,outHeight:q,outWidth:X,strideHeight:j,strideWidth:J}=d;f=d.dataFormat;let nt=$-1-d.padInfo.top,K=D-1-d.padInfo.left,ot=f==="channelsLast",st=h.strides[0],it=ot?h.strides[1]:h.strides[2],ft=ot?h.strides[2]:1,lt=ot?1:h.strides[1],xt=m[0],dt=ot?m[1]:m[2],bt=ot?m[2]:1,Nt=ot?1:m[1];for(let At=0;At<E;++At)for(let Dt=0;Dt<L;++Dt)for(let qt=0;qt<M;++qt){let Kt=qt-nt,me=Math.max(0,Math.ceil(Kt/j)),Rt=Math.min(q,($+Kt)/j);for(let Ee=0;Ee<G;++Ee){let Ce=Ee-K,le=Math.max(0,Math.ceil(Ce/J)),qe=Math.min(X,(D+Ce)/J),Fe=0;for(let Me=me;Me<Rt;++Me){let Lo=Me*j-Kt;for(let Or=le;Or<qe;++Or){let Qr=Or*J-Ce,tn=xt*At+dt*Me+bt*Or,qr=w*($-1-Lo)+v*(D-1-Qr)+N*Dt;for(let oo=0;oo<H;++oo){let $n=y[tn+Nt*oo],Po=b[qr+oo];Fe+=$n*Po}}}let Jr=st*At+it*qt+ft*Ee+lt*Dt;g[Jr]=Fe}}return e.makeTensorInfo(h.shape,h.dtype,h.values)}var KR={kernelName:Qo,backendName:"cpu",kernelFunc:D9};function F9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;rt([o,s],"conv3d");let l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=l,y=g.front,b=g.left,w=g.top,v=new fe(l.outShape,o.dtype),N=e.data.get(o.dataId).values,E=e.data.get(s.dataId).values,$=v.values,D=x.computeStrides(o.shape),L=x.computeStrides(s.shape);for(let M=0;M<l.batchSize;++M){let G=M*D[0],H=M*v.strides[0];for(let q=0;q<l.outDepth;++q){let X=H+q*v.strides[1],j=q*l.strideDepth-y;for(let J=0;J<c;++J){let nt=j+J*f;if(nt<0||nt>=l.inDepth)continue;let K=J*L[0],ot=G+nt*D[1];for(let st=0;st<l.outHeight;++st){let it=X+st*v.strides[2],ft=st*l.strideHeight-w;for(let lt=0;lt<p;++lt){let xt=ft+lt*d;if(xt<0||xt>=l.inHeight)continue;let dt=K+lt*L[1],bt=ot+xt*D[2];for(let Nt=0;Nt<l.outWidth;++Nt){let At=it+Nt*l.outChannels,Dt=Nt*l.strideWidth-b;for(let qt=0;qt<m;++qt){let Kt=Dt+qt*h;if(Kt<0||Kt>=l.inWidth)continue;let me=dt+qt*L[2],Rt=bt+Kt*l.inChannels,Ee=me;for(let Ce=0;Ce<l.inChannels;++Ce){let le=N[Rt+Ce];for(let qe=0;qe<l.outChannels;++qe)$[At+qe]+=le*E[Ee+qe];Ee+=l.outChannels}}}}}}}}return e.makeTensorInfo(v.shape,v.dtype,v.values)}var jR={kernelName:Nl,backendName:"cpu",kernelFunc:F9};function R9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n;rt([o,s],"conv3dBackpropFilterV2");let l=x.computeStrides(o.shape),c=x.computeStrides(s.shape),p=S.computeConv3DInfo(o.shape,u,i,1,a),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,y=p.filterWidth,b=new fe(p.filterShape,"float32"),w=b.values,[v,N,E,$]=b.strides,D=e.data.get(s.dataId).values,[L,M,G,H]=c,q=e.data.get(o.dataId).values,[X,j,J,nt]=l,K=p.padInfo.front,ot=p.padInfo.left,st=p.padInfo.top;for(let it=0;it<h;++it){let ft=Math.max(0,Math.ceil((K-it)/m)),lt=Math.min(p.outDepth,(p.inDepth+K-it)/m),xt=it*v;for(let dt=0;dt<g;++dt){let bt=Math.max(0,Math.ceil((st-dt)/f)),Nt=Math.min(p.outHeight,(p.inHeight+st-dt)/f),At=dt*N+xt;for(let Dt=0;Dt<y;++Dt){let qt=Math.max(0,Math.ceil((ot-Dt)/d)),Kt=Math.min(p.outWidth,(p.inWidth+ot-Dt)/d),me=Dt*E+At;for(let Rt=0;Rt<p.inChannels;++Rt){let Ee=Rt*$+me;for(let Ce=0;Ce<p.outChannels;++Ce){let le=0;for(let qe=0;qe<p.batchSize;++qe){let Fe=qe*X,Jr=qe*L;for(let Me=ft;Me<lt;++Me){let Or=(it+Me*m-K)*j+Fe,Qr=Me*M+Jr;for(let tn=bt;tn<Nt;++tn){let oo=(dt+tn*f-st)*J+Or,$n=tn*G+Qr;for(let Po=qt;Po<Kt;++Po){let xl=(Dt+Po*d-ot)*nt+oo,Du=Po*H+$n;le+=q[xl+Rt]*D[Du+Ce]}}}}w[Ee+Ce]=le}}}}}return e.makeTensorInfo(b.shape,b.dtype,b.values)}var XR={kernelName:kp,backendName:"cpu",kernelFunc:R9};function O9(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n;rt([o],"conv3dBackpropInputV2");let l=x.computeStrides(o.shape),c=x.computeStrides(s.shape),p=S.computeConv3DInfo(u,s.shape,a,1,i),m=new fe(p.inShape,"float32"),f=m.values,[d,h,g,y]=m.strides,b=e.data.get(o.dataId).values,[w,v,N,E]=l,$=e.data.get(s.dataId).values,[D,L,M,G]=c,{batchSize:H,filterDepth:q,filterHeight:X,filterWidth:j,inChannels:J,inDepth:nt,inHeight:K,inWidth:ot,outChannels:st,outDepth:it,outHeight:ft,outWidth:lt,strideDepth:xt,strideHeight:dt,strideWidth:bt}=p,Nt=q-1-p.padInfo.front,At=X-1-p.padInfo.top,Dt=j-1-p.padInfo.left;for(let qt=0;qt<H;++qt)for(let Kt=0;Kt<J;++Kt)for(let me=0;me<nt;++me){let Rt=me-Nt,Ee=Math.max(0,Math.ceil(Rt/xt)),Ce=Math.min(it,(q+Rt)/xt);for(let le=0;le<K;++le){let qe=le-At,Fe=Math.max(0,Math.ceil(qe/dt)),Jr=Math.min(ft,(X+qe)/dt);for(let Me=0;Me<ot;++Me){let Lo=Me-Dt,Or=Math.max(0,Math.ceil(Lo/bt)),Qr=Math.min(lt,(j+Lo)/bt),tn=0;for(let qr=Ee;qr<Ce;++qr){let oo=qr*xt-Rt;for(let $n=Fe;$n<Jr;++$n){let Po=$n*dt-qe;for(let so=Or;so<Qr;++so){let xl=so*bt-Lo,Du=w*qt+v*qr+N*$n+E*so,ep=D*(q-1-oo)+L*(X-1-Po)+M*(j-1-xl)+G*Kt;for(let dr=0;dr<st;++dr){let rp=b[Du+dr],np=$[ep+dr];tn+=rp*np}}}}f[d*qt+h*me+g*le+y*Me+Kt]=tn}}}return e.makeTensorInfo(m.shape,m.dtype,m.values)}var YR={kernelName:Tp,backendName:"cpu",kernelFunc:O9};var L9=Et(ts,r=>Math.cos(r)),ZR={kernelName:ts,backendName:"cpu",kernelFunc:L9};var P9=Et(es,r=>Math.cosh(r)),JR={kernelName:es,backendName:"cpu",kernelFunc:P9};function M9(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=a,y=Ct([d,h,g,f],"float32"),b=e.data.get(s.dataId).values,w=e.data.get(i.dataId).values,v=e.data.get(o.dataId).values,N=x.computeStrides(o.shape),E=x.computeStrides(y.shape);for(let $=0;$<d;$++){let D=$*4,L=b[D],M=b[D+1],G=b[D+2],H=b[D+3],q=w[$];if(q>=c)continue;let X=h>1?(G-L)*(p-1)/(h-1):0,j=g>1?(H-M)*(m-1)/(g-1):0;for(let J=0;J<h;J++){let nt=h>1?L*(p-1)+J*X:.5*(L+G)*(p-1);if(nt<0||nt>p-1){for(let K=0;K<g;K++)for(let ot=0;ot<f;ot++){let st=ot+K*E[2]+J*E[1]+$*E[0];y.values[st]=l}continue}if(u==="bilinear"){let K=Math.floor(nt),ot=Math.ceil(nt),st=nt-K;for(let it=0;it<g;it++){let ft=g>1?M*(m-1)+it*j:.5*(M+H)*(m-1);if(ft<0||ft>m-1){for(let bt=0;bt<f;bt++){let Nt=bt+it*E[2]+J*E[1]+$*E[0];y.values[Nt]=l}continue}let lt=Math.floor(ft),xt=Math.ceil(ft),dt=ft-lt;for(let bt=0;bt<f;bt++){let Nt=bt+lt*N[2]+K*N[1]+q*N[0],At=v[Nt];Nt=bt+xt*N[2]+K*N[1]+q*N[0];let Dt=v[Nt];Nt=bt+lt*N[2]+ot*N[1]+q*N[0];let qt=v[Nt];Nt=bt+xt*N[2]+ot*N[1]+q*N[0];let Kt=v[Nt],me=At+(Dt-At)*dt,Rt=qt+(Kt-qt)*dt;Nt=bt+it*E[2]+J*E[1]+$*E[0],y.values[Nt]=me+(Rt-me)*st}}}else for(let K=0;K<g;++K){let ot=g>1?M*(m-1)+K*j:.5*(M+H)*(m-1);if(ot<0||ot>m-1){for(let ft=0;ft<f;ft++){let lt=ft+K*E[2]+J*E[1]+$*E[0];y.values[lt]=l}continue}let st=Math.round(ot),it=Math.round(nt);for(let ft=0;ft<f;ft++){let lt=ft+st*N[2]+it*N[1]+q*N[0],xt=ft+K*E[2]+J*E[1]+$*E[0];y.values[xt]=v[lt]}}}}return e.makeTensorInfo(y.shape,y.dtype,y.values)}var QR={kernelName:pa,backendName:"cpu",kernelFunc:M9};function z9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;rt(o,"cumprod");let u=S.getAxesPermutation([s],o.shape.length),l=o;u!=null&&(l=Ue({inputs:{x:o},backend:e,attrs:{perm:u}}));let c=S.getInnerMostAxes(1,o.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=ir(l.dtype,"int32"),m=x.makeOnesTypedArray(x.sizeFromShape(l.shape),p),f=e.data.get(l.dataId).values,d=l.shape[l.shape.length-1],h=a?(y,b)=>y+d-b-1:(y,b)=>y+b;for(let y=0;y<f.length;y+=d)for(let b=0;b<d;b++){let w=h(y,b);if(b===0)m[w]=i?1:f[w];else{let v=h(y,b-1);m[w]=i?f[v]*m[v]:f[w]*m[v]}}let g=e.makeTensorInfo(l.shape,p,m);if(u!=null){let y=S.getUndoAxesPermutation(u),b=Ue({inputs:{x:g},backend:e,attrs:{perm:y}});return e.disposeIntermediateTensorInfo(g),e.disposeIntermediateTensorInfo(l),b}return g}var tO={kernelName:ca,backendName:"cpu",kernelFunc:z9};function B9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;rt(o,"cumsum");let u=S.getAxesPermutation([s],o.shape.length),l=o;u!=null&&(l=Ue({inputs:{x:o},backend:e,attrs:{perm:u}}));let c=S.getInnerMostAxes(1,o.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=ir(l.dtype,"int32"),m=x.makeZerosTypedArray(x.sizeFromShape(l.shape),p),f=e.data.get(l.dataId).values,d=l.shape[l.shape.length-1],h=a?(y,b)=>y+d-b-1:(y,b)=>y+b;for(let y=0;y<f.length;y+=d)for(let b=0;b<d;b++){let w=h(y,b);if(b===0)m[w]=i?0:f[w];else{let v=h(y,b-1);m[w]=i?f[v]+m[v]:f[w]+m[v]}}let g=e.makeTensorInfo(l.shape,p,m);if(u!=null){let y=S.getUndoAxesPermutation(u),b=Ue({inputs:{x:g},backend:e,attrs:{perm:y}});return e.disposeIntermediateTensorInfo(g),e.disposeIntermediateTensorInfo(l),b}return g}var eO={kernelName:rs,backendName:"cpu",kernelFunc:B9};function V9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=md(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=aw(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var rO={kernelName:_p,backendName:"cpu",kernelFunc:V9};function G9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n;x.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let a=o.shape[0],u=o.shape[1],l=o.shape[2],c=o.shape[3],p=u*s,m=l*s,f=c/(s*s),d=e.data.get(o.dataId).values,h=new Float32Array(a*p*m*f),g=0;for(let y=0;y<a;++y)for(let b=0;b<p;++b){let w=Math.floor(b/s),v=b%s;for(let N=0;N<m;++N){let E=Math.floor(N/s),$=N%s,D=(v*s+$)*f;for(let L=0;L<f;++L){let G=L+D+c*(E+l*(w+u*y));h[g++]=d[G]}}}return e.makeTensorInfo([a,p,m,f],o.dtype,h)}var nO={kernelName:ma,backendName:"cpu",kernelFunc:G9};function yk(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u,dimRoundingMode:l}=n;rt([o,s],"depthwiseConv2DNative");let c=x.computeStrides(o.shape),p=x.computeStrides(s.shape),m=u;m==null&&(m=[1,1]),x.assert(S.eitherStridesOrDilationsAreOne(i,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${m}'`);let f=S.computeConv2DInfo(o.shape,s.shape,i,m,a,l,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:y,padInfo:b}=f,w=b.left,v=b.top,N=f.outChannels/f.inChannels,E=new fe(f.outShape,o.dtype),$=e.data.get(o.dataId).values,D=e.data.get(s.dataId).values,L=E.values;for(let M=0;M<f.batchSize;++M){let G=M*c[0],H=M*E.strides[0];for(let q=0;q<f.outHeight;++q){let X=H+q*E.strides[1],j=q*f.strideHeight-v;for(let J=0;J<d;++J){let nt=j+J*g;if(nt<0||nt>=f.inHeight)continue;let K=J*p[0],ot=G+nt*c[1];for(let st=0;st<f.outWidth;++st){let it=X+st*E.strides[2],ft=st*f.strideWidth-w;for(let lt=0;lt<h;++lt){let xt=ft+lt*y;if(xt<0||xt>=f.inWidth)continue;let dt=K+lt*p[1],bt=ot+xt*f.inChannels,Nt=it,At=dt;for(let Dt=0;Dt<f.inChannels;++Dt){let qt=$[bt+Dt];for(let Kt=0;Kt<N;++Kt)L[Nt+Kt]+=qt*D[At+Kt];Nt+=N,At+=N}}}}}}return e.makeTensorInfo(E.shape,E.dtype,E.values)}var oO={kernelName:ns,backendName:"cpu",kernelFunc:yk};function W9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n;rt([o,s],"depthwiseConv2dNativeBackpropFilter");let p=S.computeConv2DInfo(o.shape,c,i,a,u,l,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new fe(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,v=e.data.get(o.dataId).values,N=new fe(o.shape,o.dtype,v),E=e.data.get(s.dataId).values,$=new fe(s.shape,s.dtype,E);for(let D=0;D<d;++D){let L=Math.max(0,Math.ceil((b-D)/m)),M=Math.min(p.outHeight,(p.inHeight+b-D)/m);for(let G=0;G<h;++G){let H=Math.max(0,Math.ceil((y-G)/f)),q=Math.min(p.outWidth,(p.inWidth+y-G)/f);for(let X=0;X<p.outChannels;++X){let j=Math.trunc(X/w),J=X%w,nt=0;for(let K=0;K<p.batchSize;++K)for(let ot=L;ot<M;++ot){let st=D+ot*m-b;for(let it=H;it<q;++it){let ft=G+it*f-y;nt+=N.get(K,st,ft,j)*$.get(K,ot,it,X)}}g.set(nt,D,G,j,J)}}}return e.makeTensorInfo(g.shape,g.dtype,g.values)}var sO={kernelName:Ep,backendName:"cpu",kernelFunc:W9};function U9(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n;rt([o,s],"depthwiseConv2DNativeBackpropInput");let p=x.computeStrides(o.shape),m=x.computeStrides(s.shape),f=S.computeConv2DInfo(c,s.shape,i,a,u,l,!0),d=new fe(f.inShape,"float32"),h=d.values,[g,y,b]=d.strides,w=e.data.get(o.dataId).values,[v,N,E]=p,$=e.data.get(s.dataId).values,[D,L,M]=m,{batchSize:G,filterHeight:H,filterWidth:q,inChannels:X,inHeight:j,inWidth:J,outChannels:nt,outHeight:K,outWidth:ot,strideHeight:st,strideWidth:it}=f,ft=H-1-f.padInfo.top,lt=q-1-f.padInfo.left,xt=nt/X;for(let dt=0;dt<G;++dt)for(let bt=0;bt<X;++bt)for(let Nt=0;Nt<j;++Nt){let At=Nt-ft,Dt=Math.max(0,Math.ceil(At/st)),qt=Math.min(K,(H+At)/st);for(let Kt=0;Kt<J;++Kt){let me=Kt-lt,Rt=Math.max(0,Math.ceil(me/it)),Ee=Math.min(ot,(q+me)/it),Ce=0;for(let le=Dt;le<qt;++le){let qe=le*st-At;for(let Fe=Rt;Fe<Ee;++Fe){let Jr=Fe*it-me,Me=v*dt+N*le+E*Fe,Lo=D*(H-1-qe)+L*(q-1-Jr)+M*bt;for(let Or=0;Or<xt;++Or){let Qr=bt*xt+Or,tn=w[Me+Qr],qr=$[Lo+Or];Ce+=tn*qr}}}h[g*dt+y*Nt+b*Kt+bt]=Ce}}return e.makeTensorInfo(d.shape,d.dtype,d.values)}var iO={kernelName:Ap,backendName:"cpu",kernelFunc:U9};function H9(r){let{inputs:t,backend:e}=r,{x:n}=t,o=x.sizeFromShape(n.shape),s=e.data.get(n.dataId).values,i=Ct([o,o],n.dtype),a=i.values;for(let l=0;l<s.length;l++)a[l*o+l]=s[l];let u=[...n.shape,...n.shape];return e.makeTensorInfo(u,i.dtype,i.values)}var aO={kernelName:$p,backendName:"cpu",kernelFunc:H9};var lO={kernelName:kl,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o}=r,{strides:s,pad:i,dilations:a}=e,u=t,l=u.data.get(n.dataId).values,c=n.shape.length,p=u.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:y,outWidth:b,padInfo:w,strideHeight:v,strideWidth:N,filterHeight:E,filterWidth:$,dilationHeight:D,dilationWidth:L,outShape:M}=S.computeDilation2DInfo(n.shape,o.shape,s,i,"NHWC",a),G=x.sizeFromShape(M),H=M.length,q=x.getArrayFromDType(n.dtype,G);for(let j=0;j<f;++j)for(let J=0;J<y;++J){let nt=J*v-w.top;for(let K=0;K<b;++K){let ot=K*N-w.left;for(let st=0;st<g;++st){let it=Number.MIN_SAFE_INTEGER;for(let lt=0;lt<E;++lt){let xt=nt+lt*D;if(xt>=0&&xt<d)for(let dt=0;dt<$;++dt){let bt=ot+dt*L;if(bt>=0&&bt<h){let Nt=x.locToIndex([j,xt,bt,st],c,x.computeStrides(n.shape)),At=x.locToIndex([lt,dt,st],m,x.computeStrides(o.shape)),Dt=l[Nt]+p[At];Dt>it&&(it=Dt)}}}let ft=x.locToIndex([j,J,K,st],H,x.computeStrides(M));q[ft]=it}}}return{dataId:u.write(x.toTypedArray(q,n.dtype),M,n.dtype),shape:M,dtype:n.dtype}}};var uO={kernelName:th,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=x.toNestedArray(n.shape,l.data.get(n.dataId).values),p=x.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:y,padInfo:b,strideHeight:w,strideWidth:v,filterHeight:N,filterWidth:E,dilationHeight:$,dilationWidth:D,outShape:L}=S.computeDilation2DInfo(n.shape,o.shape,i,a,"NHWC",u);x.assert(s.rank===L.length,()=>`Error in ${th}, dy must have the same rank as output ${L.length}, but got ${s.rank}`);let M=x.toNestedArray(L,l.data.get(s.dataId).values),G=x.makeZerosNestedTypedArray(o.shape,o.dtype);for(let q=0;q<m;++q)for(let X=0;X<g;++X){let j=X*w-b.top;for(let J=0;J<y;++J){let nt=J*v-b.left;for(let K=0;K<h;++K){let ot=Number.MIN_SAFE_INTEGER,st=0,it=0;for(let ft=0;ft<N;++ft){let lt=j+ft*$;if(lt>=0&&lt<f)for(let xt=0;xt<E;++xt){let dt=nt+xt*D;if(dt>=0&&dt<d){let bt=c[q][lt][dt][K]+p[ft][xt][K];bt>ot&&(ot=bt,st=ft,it=xt)}}}G[st][it][K]+=M[q][X][J][K]}}}return{dataId:l.write(x.toTypedArray(G,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var cO={kernelName:Qd,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=x.toNestedArray(n.shape,l.data.get(n.dataId).values),p=x.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:y,padInfo:b,strideHeight:w,strideWidth:v,filterHeight:N,filterWidth:E,dilationHeight:$,dilationWidth:D,outShape:L}=S.computeDilation2DInfo(n.shape,o.shape,i,a,"NHWC",u);x.assert(s.rank===L.length,()=>`Error in ${Qd}, dy must have the same rank as output ${L.length}, but got ${s.rank}`);let M=x.toNestedArray(L,l.data.get(s.dataId).values),G=x.makeZerosNestedTypedArray(n.shape,n.dtype);for(let q=0;q<m;++q)for(let X=0;X<g;++X){let j=X*w-b.top;for(let J=0;J<y;++J){let nt=J*v-b.left;for(let K=0;K<h;++K){let ot=Number.MIN_SAFE_INTEGER,st=j<0?0:j,it=nt<0?0:nt;for(let ft=0;ft<N;++ft){let lt=j+ft*$;if(lt>=0&&lt<f)for(let xt=0;xt<E;++xt){let dt=nt+xt*D;if(dt>=0&&dt<d){let bt=c[q][lt][dt][K]+p[ft][xt][K];bt>ot&&(ot=bt,st=lt,it=dt)}}}G[q][st][it][K]+=M[q][X][J][K]}}}return{dataId:l.write(x.toTypedArray(G,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function pl(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;rt(o,"sum");let a;o.dtype==="bool"?a=Ao({inputs:{x:o},backend:e,attrs:{dtype:"int32"}}):a=Ur({inputs:{x:o},backend:e});let u=a.shape.length,l=x.parseAxisParam(s,a.shape),c=S.getAxesPermutation(l,u),p=l,m=a;c!=null&&(m=Ue({inputs:{x:a},backend:e,attrs:{perm:c}}),p=S.getInnerMostAxes(p.length,u)),S.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=S.computeOutAndReduceShapes(m.shape,p),h=S.upcastType(m.dtype,"int32"),g=cd(e,f,h),y=x.sizeFromShape(d),b=e.data.get(g.dataId).values,w=e.data.get(m.dataId).values;for(let v=0;v<b.length;++v){let N=v*y,E=0;for(let $=0;$<y;++$)E+=w[N+$];b[v]=E}if(i){let v=S.expandShapeToKeepDim(g.shape,l),N=g;g=Jt({inputs:{x:g},backend:e,attrs:{shape:v}}),e.disposeIntermediateTensorInfo(N)}return e.disposeIntermediateTensorInfo(a),c!=null&&e.disposeIntermediateTensorInfo(m),g}var pO={kernelName:Ls,backendName:"cpu",kernelFunc:pl};function q9(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=S.decodeEinsumEquation(o,s.length);S.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=S.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:y,expandDims:b}=S.getEinsumPermutation(f,u[g]),w;S.isIdentityPermutation(y)?w=s[g]:(w=Ue({inputs:{x:s[g]},backend:e,attrs:{perm:y}}),d.push(w));let v=w.shape.slice();for(let N=0;N<b.length;++N)v.splice(b[N],0,1);x.arraysEqual(w.shape,v)||(w=Jt({inputs:{x:w},backend:e,attrs:{shape:v}}),d.push(w)),m===null?m=w:(m=Oc({inputs:{a:w,b:m},backend:e}),d.push(m))}h<p-1&&(l[h]>=0&&(m=pl({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var mO={kernelName:Dp,backendName:"cpu",kernelFunc:q9};function K9(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t;rt([n,o],"eluGrad");let s=new Float32Array(x.sizeFromShape(o.shape)),i=e.data.get(o.dataId).values,a=e.data.get(n.dataId).values;for(let u=0;u<i.length;++u){let l=i[u];l>=1?s[u]=a[u]:s[u]=a[u]*(l+1)}return e.makeTensorInfo(o.shape,"float32",s)}var fO={kernelName:Fp,backendName:"cpu",kernelFunc:K9};var j9=S.ERF_P,X9=S.ERF_A1,Y9=S.ERF_A2,Z9=S.ERF_A3,J9=S.ERF_A4,Q9=S.ERF_A5,tJ=Et(fa,r=>{let t=Math.sign(r),e=Math.abs(r),n=1/(1+j9*e);return t*(1-((((Q9*n+J9)*n+Z9)*n+Y9)*n+X9)*n*Math.exp(-e*e))}),dO={kernelName:fa,backendName:"cpu",kernelFunc:tJ};function gd(r){let{inputs:t,backend:e,attrs:n}=r,{input:o}=t,{dim:s}=n,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(x.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),Jt({inputs:{x:o},backend:e,attrs:{shape:a}})}var hO={kernelName:fi,backendName:"cpu",kernelFunc:gd};var eJ=re((r,t)=>r/t),Kh=ie(os,eJ),jh={kernelName:os,backendName:"cpu",kernelFunc:Kh};function vw(r,t,e){let n=r.shape,o=n[0],s=n[1],i=e.data.get(r.dataId),a=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[o,s],c=x.sizeFromShape(l),p=x.getTypedArrayFromDType("float32",c),m=x.getTypedArrayFromDType("float32",c);for(let g=0;g<o;g++){let y=Do({inputs:{x:a},backend:e,attrs:{begin:[g,0],size:[1,s]}}),b=Do({inputs:{x:u},backend:e,attrs:{begin:[g,0],size:[1,s]}}),w=vr({inputs:{real:y,imag:b},backend:e}),{real:v,imag:N}=rJ(w,t,e),E=S.mergeRealAndImagArrays(v,N);for(let $=0;$<s;$++){let D=S.getComplexWithIndex(E,$);p[g*s+$]=D.real,m[g*s+$]=D.imag}e.disposeIntermediateTensorInfo(y),e.disposeIntermediateTensorInfo(b),e.disposeIntermediateTensorInfo(w)}let f=e.makeTensorInfo(l,"float32",p),d=e.makeTensorInfo(l,"float32",m),h=vr({inputs:{real:f,imag:d},backend:e});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),h}function rJ(r,t,e){let n=x.sizeFromShape(r.shape),o=e.data.get(r.dataId),s=e.data.get(o.complexTensorInfos.real.dataId).values,i=e.data.get(o.complexTensorInfos.imag.dataId).values;if(nJ(n)){let a=bk(s,i,n,t,e),u=[r.shape[0],r.shape[1]];if(t){let l=e.makeTensorInfo(u,"float32",a.real),c=e.makeTensorInfo(u,"float32",a.imag),p=e.makeTensorInfo([],"float32",x.createScalarValue(n,"float32")),m=Ur({inputs:{x:p},backend:e}),f=jh.kernelFunc({inputs:{a:l,b:p},backend:e}),d=jh.kernelFunc({inputs:{a:c,b:m},backend:e}),h=e.data.get(f.dataId).values,g=e.data.get(d.dataId).values;return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return a}else{let a=S.mergeRealAndImagArrays(s,i),u=oJ(a,n,t);return S.splitRealAndImagArrays(u)}}function nJ(r){return(r&r-1)===0}function bk(r,t,e,n,o){if(e===1)return{real:r,imag:t};let s=S.mergeRealAndImagArrays(r,t),i=e/2,a=S.complexWithEvenIndex(s),u=a.real,l=a.imag,c=[u.length],p=o.makeTensorInfo(c,"float32",u),m=o.makeTensorInfo(c,"float32",l),f=vr({inputs:{real:p,imag:m},backend:o}),d=S.complexWithOddIndex(s),h=d.real,g=d.imag,y=[h.length],b=o.makeTensorInfo(y,"float32",h),w=o.makeTensorInfo(y,"float32",g),v=vr({inputs:{real:b,imag:w},backend:o}),N=bk(u,l,i,n,o),E=N.real,$=N.imag,D=[E.length],L=o.makeTensorInfo(D,"float32",E),M=o.makeTensorInfo(D,"float32",$),G=vr({inputs:{real:L,imag:M},backend:o}),H=bk(h,g,i,n,o),q=H.real,X=H.imag,j=[q.length],J=o.makeTensorInfo(j,"float32",q),nt=o.makeTensorInfo(j,"float32",X),K=vr({inputs:{real:J,imag:nt},backend:o}),ot=S.exponents(e,n),st=[ot.real.length],it=o.makeTensorInfo(st,"float32",ot.real),ft=o.makeTensorInfo(st,"float32",ot.imag),lt=vr({inputs:{real:it,imag:ft},backend:o}),xt=Oc({inputs:{a:lt,b:K},backend:o}),dt=Yi({inputs:{a:G,b:xt},backend:o}),bt=Hh({inputs:{a:G,b:xt},backend:o}),Nt=Eo({inputs:{input:dt},backend:o}),At=Eo({inputs:{input:bt},backend:o}),Dt=Zi({inputs:{input:dt},backend:o}),qt=Zi({inputs:{input:bt},backend:o}),Kt=Iu({inputs:[Nt,At],backend:o,attrs:{axis:0}}),me=Iu({inputs:[Dt,qt],backend:o,attrs:{axis:0}}),Rt=o.data.get(Kt.dataId).values,Ee=o.data.get(me.dataId).values;return o.disposeIntermediateTensorInfo(p),o.disposeIntermediateTensorInfo(m),o.disposeIntermediateTensorInfo(f),o.disposeIntermediateTensorInfo(b),o.disposeIntermediateTensorInfo(w),o.disposeIntermediateTensorInfo(v),o.disposeIntermediateTensorInfo(L),o.disposeIntermediateTensorInfo(M),o.disposeIntermediateTensorInfo(G),o.disposeIntermediateTensorInfo(J),o.disposeIntermediateTensorInfo(nt),o.disposeIntermediateTensorInfo(K),o.disposeIntermediateTensorInfo(it),o.disposeIntermediateTensorInfo(ft),o.disposeIntermediateTensorInfo(lt),o.disposeIntermediateTensorInfo(xt),o.disposeIntermediateTensorInfo(dt),o.disposeIntermediateTensorInfo(bt),o.disposeIntermediateTensorInfo(Nt),o.disposeIntermediateTensorInfo(Dt),o.disposeIntermediateTensorInfo(At),o.disposeIntermediateTensorInfo(qt),o.disposeIntermediateTensorInfo(Kt),o.disposeIntermediateTensorInfo(me),{real:Rt,imag:Ee}}function oJ(r,t,e){let n=new Float32Array(t*2);for(let o=0;o<t;o++){let s=0,i=0;for(let a=0;a<t;a++){let u=S.exponent(o*a,t,e),l=S.getComplexWithIndex(r,a);s+=l.real*u.real-l.imag*u.imag,i+=l.real*u.imag+l.imag*u.real}e&&(s/=t,i/=t),S.assignToTypedArray(n,s,i,o)}return n}function sJ(r){let{inputs:t,backend:e}=r,{input:n}=t,o=x.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=Jt({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=vw(a,!1,e),l=Jt({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var gO={kernelName:Rp,backendName:"cpu",kernelFunc:sJ};function Xh(r){let{backend:t,attrs:e}=r,{shape:n,value:o,dtype:s}=e,i=s||x.inferDtype(o),a=x.getArrayFromDType(i,x.sizeFromShape(n));return iJ(a,o,i),t.makeTensorInfo(n,i,a)}var xO={kernelName:Tl,backendName:"cpu",kernelFunc:Xh};function iJ(r,t,e){r.fill(t)}var yO={kernelName:ga,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,o=e,s=x.getTypedArrayFromDType(n.dtype,x.sizeFromShape(n.shape)),[i,a,u,l]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m<i;m++){let f=m*u*a*l;for(let d=0;d<a;d++){let h=d*(u*l);for(let g=0;g<u;g++){let y=g*l;for(let b=0;b<l;b++){let w=Math.round(u-g-1),v=f+h+y+b,N=c[v];if(w>=0&&w<u){let E=w*l,$=f+h+E+b;N=c[$]}s[v]=N}}}}return{dataId:o.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var aJ=re((r,t)=>Math.floor(r/t)),lJ=ie(ls,aJ,null,"int32"),bO={kernelName:ls,backendName:"cpu",kernelFunc:lJ};function uJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=xk({inputs:{x:o,filter:s},backend:e,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m}});if(i){let g=h;if(c==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let y=Jt({inputs:{x:i},backend:e,attrs:{shape:[i.shape[0],1,1]}});h=Yi({inputs:{a:h,b:y},backend:e}),e.disposeIntermediateTensorInfo(y)}else h=Yi({inputs:{a:h,b:i},backend:e});e.disposeIntermediateTensorInfo(g)}if(f){let g=h;if(c==="NCHW"&&f==="prelu"&&a.shape.length===1&&a.shape[0]!==1){let y=Jt({inputs:{x:a},backend:e,attrs:{shape:[a.shape[0],1,1]}});h=Vc(e,h,f,y,d),e.disposeIntermediateTensorInfo(y)}else h=Vc(e,h,f,a,d);e.disposeIntermediateTensorInfo(g)}return h}var wO={kernelName:ki,backendName:"cpu",kernelFunc:uJ};function cJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=yk({inputs:{x:o,filter:s},backend:e,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m}});if(i){let g=h;h=Yi({inputs:{a:h,b:i},backend:e}),e.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=Vc(e,h,f,a,d),e.disposeIntermediateTensorInfo(g)}return h}var vO={kernelName:Ti,backendName:"cpu",kernelFunc:cJ};function pJ(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=x.sizeFromShape(n.shape),i=o.shape,a=i[i.length-1],[u,l,c,p]=S.prepareAndValidate(n,o);if(l===0)return e.makeTensorInfo(u,n.dtype,[]);let m=e.data.get(o.dataId).values,f=e.bufferSync(n),d=lw(m,f,n.dtype,l,a,c,p,n.shape,s);return e.makeTensorInfo(u,n.dtype,d.values)}var CO={kernelName:xa,backendName:"cpu",kernelFunc:pJ};function mJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,indices:s}=t,{axis:i,batchDims:a}=n;rt([o,s],"gatherV2");let u=x.parseAxisParam(i,o.shape)[0],l=e.data.get(s.dataId).values,c=o.shape[u];for(let v=0;v<l.length;++v){let N=l[v];x.assert(N<=c-1&&N>=0,()=>`GatherV2: the index value ${N} is not in [0, ${c-1}]`)}let p=a;a==null&&(p=0);let m=x.sizeFromShape(s.shape),f=S.segment_util.collectGatherOpShapeInfo(o,s,u,p),d=Jt({inputs:{x:o},backend:e,attrs:{shape:[f.batchSize,f.outerSize,f.dimSize,f.sliceSize]}}),h=Jt({inputs:{x:s},backend:e,attrs:{shape:[f.batchSize,m/f.batchSize]}}),g=[f.batchSize,f.outerSize,m/f.batchSize,f.sliceSize],y=e.bufferSync(h),b=e.bufferSync(d),w=uw(b,y,g);return e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.makeTensorInfo(f.outputShape,w.dtype,w.values)}var IO={kernelName:di,backendName:"cpu",kernelFunc:mJ};function fJ(r){let{inputs:t,backend:e}=r,{input:n}=t,o=x.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=Jt({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=vw(a,!0,e),l=Jt({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var SO={kernelName:Op,backendName:"cpu",kernelFunc:fJ};var dJ=Et(ba,r=>Number.isFinite(r)?1:0,"bool"),NO={kernelName:ba,backendName:"cpu",kernelFunc:dJ};var hJ=Et(wa,r=>Math.abs(r)===1/0?1:0,"bool"),kO={kernelName:wa,backendName:"cpu",kernelFunc:hJ};var gJ=Et(va,r=>Number.isNaN(r)?1:0,"bool"),TO={kernelName:va,backendName:"cpu",kernelFunc:gJ};function xJ(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=cw(n,o,s);return t.makeTensorInfo([i.length],"float32",i)}var _O={kernelName:Pp,backendName:"cpu",kernelFunc:xJ};var yJ=Et(Sa,r=>Math.log1p(r)),EO={kernelName:Sa,backendName:"cpu",kernelFunc:yJ};var bJ=re((r,t)=>r&&t),wJ=ie(Na,bJ,null,"bool"),AO={kernelName:Na,backendName:"cpu",kernelFunc:wJ};var vJ=Et(ka,r=>r?0:1,"bool"),$O={kernelName:ka,backendName:"cpu",kernelFunc:vJ};var CJ=re((r,t)=>r||t),IJ=ie(Ta,CJ,null,"bool"),DO={kernelName:Ta,backendName:"cpu",kernelFunc:IJ};function SJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;rt(o,"LRN");let l=o.shape[3],c=l-1,p=e.data.get(o.dataId).values,m=x.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%l,y=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;y<=b;y++){let v=p[y];w+=v*v}return w}for(let h=0;h<m;h++){let g=d(h),y=p[h]*Math.pow(i+a*g,-u);f[h]=y}return e.makeTensorInfo(o.shape,o.dtype,f)}var FO={kernelName:_l,backendName:"cpu",kernelFunc:SJ};function NJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n;rt(i,"LRNGrad");let p=x.sizeFromShape(i.shape),m=i.shape[3],f=e.data.get(i.dataId).values,d=e.data.get(o.dataId).values,h=e.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let b=0;b<y;b++){let w=b%m,v=b-w+Math.max(0,w-a),N=b-w+Math.min(m,w+a+1),E=0;for(let $=v;$<N;$++)E+=Math.pow(d[$],2);E=l*E+u;for(let $=v;$<N;$++){let D=-2*l*c*d[$]*h[b]/E;b===$&&(D+=Math.pow(E,-c)),D*=f[b],g[$]+=D}}return e.makeTensorInfo(i.shape,o.dtype,g)}var RO={kernelName:Mp,backendName:"cpu",kernelFunc:NJ};function wk(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=e,u=o.shape,l=u.length,c=x.parseAxisParam(s,u),p=c,m=S.getAxesPermutation(p,l),f=a.data.get(o.dataId).values;if(m!=null){let v=new Array(l);for(let N=0;N<v.length;N++)v[N]=u[m[N]];f=fd(f,u,o.dtype,m,v),p=S.getInnerMostAxes(p.length,l),u=v}rt(o,"max"),S.assertAxesAreInnerMostDims("max",p,l);let[d,h]=S.computeOutAndReduceShapes(u,p),g=x.sizeFromShape(h),y=pw(f,g,d,o.dtype),b=a.write(y,d,o.dtype),w=d;return i&&(w=S.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:o.dtype}}var OO={kernelName:fs,backendName:"cpu",kernelFunc:wk};function kJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;rt(o,"maxPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;x.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))p=Ur({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=x.computeStrides(o.shape),d=hd(m,o.shape,o.dtype,f,c,"max");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var LO={kernelName:hs,backendName:"cpu",kernelFunc:kJ};function TJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;rt(o,"maxPool3d");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=ww(p,o.shape,o.dtype,x.computeStrides(o.shape),c,"max");return e.makeTensorInfo(m.shape,"float32",m.values)}var PO={kernelName:El,backendName:"cpu",kernelFunc:TJ};function _J(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;rt([o,s],"maxPool3DGrad");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.bufferSync(s),m=DR(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,v=c.effectiveFilterHeight,N=c.effectiveFilterWidth,E=w-1-c.padInfo.front,$=N-1-c.padInfo.left,D=v-1-c.padInfo.top,L=Ct(s.shape,"float32"),M=e.bufferSync(o);for(let G=0;G<c.batchSize;++G)for(let H=0;H<c.inChannels;++H)for(let q=0;q<c.inDepth;++q)for(let X=0;X<c.inHeight;++X)for(let j=0;j<c.inWidth;++j){let J=q-E,nt=X-D,K=j-$,ot=0;for(let st=0;st<w;st+=g){let it=(J+st)/f;if(!(it<0||it>=c.outDepth||Math.floor(it)!==it))for(let ft=0;ft<v;ft+=y){let lt=(nt+ft)/d;if(!(lt<0||lt>=c.outHeight||Math.floor(lt)!==lt))for(let xt=0;xt<N;xt+=b){let dt=(K+xt)/h;if(dt<0||dt>=c.outWidth||Math.floor(dt)!==dt)continue;let bt=w*v*N-1-m.get(G,it,lt,dt,H),Nt=st*v*N+ft*N+xt,At=bt===Nt?1:0;if(At===0)continue;ot+=M.get(G,it,lt,dt,H)*At}}}L.set(ot,G,q,X,j,H)}return e.makeTensorInfo(L.shape,L.dtype,L.values)}var MO={kernelName:Bp,backendName:"cpu",kernelFunc:_J};function EJ(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;rt([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=e.data.get(a.dataId).values,d=Ct(m.outShape,a.dtype,bw(f,a.shape,a.dtype,m).values),h=m.strideHeight,g=m.strideWidth,y=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,v=m.effectiveFilterWidth,N=v-1-m.padInfo.left,E=w-1-m.padInfo.top,$=Ct(a.shape,"float32"),D=e.data.get(o.dataId).values,L=Ct(o.shape,"float32",D);for(let M=0;M<m.batchSize;++M)for(let G=0;G<m.inChannels;++G)for(let H=0;H<m.inHeight;++H)for(let q=0;q<m.inWidth;++q){let X=H-E,j=q-N,J=0;for(let nt=0;nt<w;nt+=y){let K=(X+nt)/h;if(!(K<0||K>=m.outHeight||Math.floor(K)!==K))for(let ot=0;ot<v;ot+=b){let st=(j+ot)/g;if(st<0||st>=m.outWidth||Math.floor(st)!==st)continue;let it=w*v-1-d.get(M,K,st,G),ft=nt*v+ot,lt=it===ft?1:0;if(lt===0)continue;J+=L.get(M,K,st,G)*lt}}$.set(J,M,H,q,G)}return e.makeTensorInfo($.shape,$.dtype,$.values)}var zO={kernelName:zp,backendName:"cpu",kernelFunc:EJ};function BO(r,t,e,n,o){let s=x.computeStrides(t),i=hd(r,t,e,s,o,"max"),a=bw(r,t,e,o,!0,n);return[i.values,a.values]}var VO={kernelName:Vp,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;rt(n,"MaxPoolWithArgmax");let l=u.data.get(n.dataId).values,c=S.computePool2DInfo(n.shape,o,s,[1,1],i),[p,m]=BO(l,n.shape,n.dtype,a,c),f=u.write(p,c.outShape,n.dtype),d=u.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function AJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=x.parseAxisParam(s,o.shape),l=S.computeOutAndReduceShapes(o.shape,a)[1],c=x.sizeFromShape(l),p=[],m=e.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=Ao({inputs:{x:o},backend:e,attrs:{dtype:"float32"}});p.push(f);let d=Kh({inputs:{a:f,b:m},backend:e});p.push(d);let h=pl({inputs:{x:d},backend:e,attrs:{axis:s,keepDims:i}});return p.forEach(g=>e.disposeIntermediateTensorInfo(g)),h}var GO={kernelName:gs,backendName:"cpu",kernelFunc:AJ};function $J(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;rt(o,"min");let a=x.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ue({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("min",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let v=0;v<f;++v){let N=h[b+v];(Number.isNaN(N)||N<w)&&(w=N)}d[y]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let y=S.expandShapeToKeepDim(p,a),b=Jt({inputs:{x:g},backend:e,attrs:{shape:y}});return e.disposeIntermediateTensorInfo(g),b}return g}var WO={kernelName:xs,backendName:"cpu",kernelFunc:$J};function DJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,mode:i}=n;rt(o,"mirrorPad");let a=s.map((w,v)=>w[0]+o.shape[v]+w[1]),u=s.map(w=>w[0]),l=s.map((w,v)=>w[0]+o.shape[v]),c=i==="reflect"?0:1,p=e.data.get(o.dataId).values,m=o.shape.length,f=x.computeStrides(o.shape),d=x.sizeFromShape(a),h=a.length,g=x.computeStrides(a),y=x.getTypedArrayFromDType(o.dtype,d);for(let w=0;w<d;w++){let v=x.indexToLoc(w,h,g);for(let E=0;E<h;E++)v[E]<u[E]?v[E]=u[E]*2-v[E]-c:v[E]>=l[E]&&(v[E]=(l[E]-1)*2-v[E]+c);v=v.map((E,$)=>E-u[$]);let N=x.locToIndex(v,m,f);y[w]=p[N]}return{dataId:e.write(y,a,o.dtype),shape:a,dtype:o.dtype}}var UO={kernelName:bs,backendName:"cpu",kernelFunc:DJ};var FJ=re((r,t)=>{let e=r%t;return r<0&&t<0||r>=0&&t>=0?e:(e+t)%t}),RJ=ie(_a,FJ),HO={kernelName:_a,backendName:"cpu",kernelFunc:RJ};var KO=vl(xh());function vk(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=o.shape.length,a=s;if(a===-1&&(a=i-1),a!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${a}`);let u=x.parseAxisParam([a],o.shape),l=wk({inputs:{x:o},backend:e,attrs:{reductionIndices:u,keepDims:!1}}),c=S.expandShapeToKeepDim(l.shape,u),p=Jt({inputs:{x:l},backend:e,attrs:{shape:c}}),m=Hh({inputs:{a:o,b:p},backend:e}),f=KN({inputs:{x:m},backend:e}),d=pl({inputs:{x:f},backend:e,attrs:{axis:u,keepDims:!1}}),h=Jt({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Kh({inputs:{a:f,b:h},backend:e});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var qO={kernelName:Ps,backendName:"cpu",kernelFunc:vk};function OJ(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;rt(o,"multinomial");let u=a?o:vk({inputs:{logits:o},backend:e,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],p=e.data.get(u.dataId).values,m=[l,s],f=x.makeZerosTypedArray(x.sizeFromShape(m),"int32");for(let d=0;d<l;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let y=KO.alea(i.toString()),b=d*s;for(let w=0;w<s;++w){let v=y();f[b+w]=g.length;for(let N=0;N<g.length;N++)if(v<g[N]){f[b+w]=N;break}}}return a||e.disposeIntermediateTensorInfo(u),e.makeTensorInfo(m,"int32",f)}var jO={kernelName:Gp,backendName:"cpu",kernelFunc:OJ};var LJ=Vr.nonMaxSuppressionV3Impl;function PJ(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n;rt(o,"NonMaxSuppression");let l=e.data.get(o.dataId).values,c=e.data.get(s.dataId).values,{selectedIndices:p}=LJ(l,c,i,a,u);return e.makeTensorInfo([p.length],"int32",new Int32Array(p))}var XO={kernelName:Aa,backendName:"cpu",kernelFunc:PJ};var MJ=Vr.nonMaxSuppressionV4Impl;function zJ(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n;rt(o,"NonMaxSuppressionPadded");let c=e.data.get(o.dataId).values,p=e.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=MJ(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],"int32",new Int32Array(m)),e.makeTensorInfo([],"int32",new Int32Array([f]))]}var YO={kernelName:$a,backendName:"cpu",kernelFunc:zJ};var BJ=Vr.nonMaxSuppressionV5Impl;function VJ(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n;rt(o,"NonMaxSuppressionWithScore");let c=e.data.get(o.dataId).values,p=e.data.get(s.dataId).values,m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:y}=BJ(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],"int32",new Int32Array(g)),e.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var ZO={kernelName:Da,backendName:"cpu",kernelFunc:VJ};function GJ(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{depth:s,onValue:i,offValue:a}=n;rt(o,"oneHot");let u=x.sizeFromShape(o.shape),l=new Float32Array(u*s);l.fill(a);let c=e.data.get(o.dataId).values;for(let p=0;p<u;++p)c[p]>=0&&c[p]<s&&(l[p*s+c[p]]=i);return e.makeTensorInfo([...o.shape,s],"int32",l)}var JO={kernelName:vs,backendName:"cpu",kernelFunc:GJ};function Yh(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Eo({inputs:{input:n},backend:e}),s=Yh({inputs:{x:o},backend:e}),i=Zi({inputs:{input:n},backend:e}),a=Yh({inputs:{x:i},backend:e}),u=vr({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Xh({backend:e,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var QO={kernelName:Si,backendName:"cpu",kernelFunc:Yh};function tL(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Eo({inputs:{input:n},backend:e}),s=tL({inputs:{x:o},backend:e}),i=Zi({inputs:{input:n},backend:e}),a=Yh({inputs:{x:i},backend:e}),u=vr({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Xh({backend:e,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var eL={kernelName:gi,backendName:"cpu",kernelFunc:tL};function Ck(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return gd({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=gd({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=Iu({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var rL={kernelName:xi,backendName:"cpu",kernelFunc:Ck};function WJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;rt(o,"pad");let a=s.map((b,w)=>b[0]+o.shape[w]+b[1]),u=s.map(b=>b[0]),l=e.data.get(o.dataId).values,c=x.sizeFromShape(o.shape),p=o.shape.length,m=x.computeStrides(o.shape),f=x.sizeFromShape(a),d=a.length,h=x.computeStrides(a),g=x.getTypedArrayFromDType(o.dtype,f);i!==0&&g.fill(i);for(let b=0;b<c;b++){let v=x.indexToLoc(b,p,m).map((E,$)=>E+u[$]),N=x.locToIndex(v,d,h);g[N]=l[b]}return{dataId:e.write(g,a,o.dtype),shape:a,dtype:o.dtype}}var Cw={kernelName:Cs,backendName:"cpu",kernelFunc:WJ};var UJ=re((r,t)=>Math.pow(r,t)),HJ=ie(Is,UJ),nL={kernelName:Is,backendName:"cpu",kernelFunc:HJ};function qJ(r){let{backend:t,attrs:e}=r,{start:n,stop:o,dtype:s,step:i}=e,a=Lc(n,o,i,s);return t.makeTensorInfo([a.length],s,a)}var oL={kernelName:Al,backendName:"cpu",kernelFunc:qJ};var KJ=Et(Fa,r=>1/r),sL={kernelName:Fa,backendName:"cpu",kernelFunc:KJ};function jJ(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;rt(o,"resizeBilinear");let u=x.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(x.sizeFromShape([p,l,c,d])),y=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=0,v=y[0]/b[0],N=y[1]/b[1];for(let E=0;E<p;E++)for(let $=0;$<l;$++){let D;i?D=v*($+.5)-.5:D=v*$;let L=Math.max(0,Math.floor(D)),M=D-L,G=Math.min(m-1,Math.ceil(D)),H=E*u[0]+L*u[1],q=E*u[0]+G*u[1];for(let X=0;X<c;X++){let j;i?j=N*(X+.5)-.5:j=N*X;let J=Math.max(0,Math.floor(j)),nt=j-J,K=Math.min(f-1,Math.ceil(j)),ot=H+J*u[2],st=q+J*u[2],it=H+K*u[2],ft=q+K*u[2];for(let lt=0;lt<d;lt++){let xt=h[ot+lt],dt=h[st+lt],bt=h[it+lt],Nt=h[ft+lt],At=xt+(bt-xt)*nt,Dt=dt+(Nt-dt)*nt,qt=At+(Dt-At)*M;g[w++]=qt}}}return e.makeTensorInfo([p,l,c,d],"float32",g)}var iL={kernelName:_s,backendName:"cpu",kernelFunc:jJ};function XJ(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n;rt([s,o],"resizeBilinearGrad");let a=x.computeStrides(o.shape),[u,l,c,p]=o.shape,[,m,f]=s.shape,d=new Float32Array(u*l*c*p),h=[i&&m>1?l-1:l,i&&f>1?c-1:c],g=[i&&m>1?m-1:m,i&&f>1?f-1:f],y=h[0]/g[0],b=h[1]/g[1],w=e.data.get(s.dataId).values,v=0;for(let N=0;N<u;N++){let E=N*a[0];for(let $=0;$<m;$++){let D=$*y,L=Math.floor(D),M=Math.min(Math.ceil(D),l-1),G=E+L*a[1],H=E+M*a[1],q=D-L,X=1-q;for(let j=0;j<f;j++){let J=j*b,nt=Math.floor(J),K=Math.min(Math.ceil(J),c-1),ot=J-nt,st=1-ot,it=G+nt*a[2],ft=G+K*a[2],lt=H+nt*a[2],xt=H+K*a[2],dt=X*st,bt=X*ot,Nt=q*st,At=q*ot;for(let Dt=0;Dt<p;Dt++){let qt=w[v++];d[it+Dt]+=qt*dt,d[ft+Dt]+=qt*bt,d[lt+Dt]+=qt*Nt,d[xt+Dt]+=qt*At}}}}return e.makeTensorInfo([u,c,l,p],"float32",d)}var aL={kernelName:Hp,backendName:"cpu",kernelFunc:XJ};function YJ(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;rt(o,"resizeNearestNeighbor");let u=x.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(p*l*c*d),y=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=y[0]/b[0],v=y[1]/b[1],N=0;for(let E=0;E<p;E++){let $=E*u[0];for(let D=0;D<l;D++){let L=i?w*(D+.5):w*D,M=Math.min(m-1,s?Math.round(L):Math.floor(L));i&&(M=Math.max(0,M));let G=$+M*u[1];for(let H=0;H<c;H++){let q=i?v*(H+.5):v*H,X=Math.min(f-1,s?Math.round(q):Math.floor(q));i&&(X=Math.max(0,X));let j=G+X*u[2];for(let J=0;J<d;J++){let nt=h[j+J];g[N++]=nt}}}}return e.makeTensorInfo([p,l,c,d],o.dtype,g)}var lL={kernelName:Ts,backendName:"cpu",kernelFunc:YJ};function ZJ(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n;rt([s,o],"resizeNearestNeighborGrad");let a=x.computeStrides(o.shape),u=x.computeStrides(s.shape),[l,c,p,m]=o.shape,[,f,d]=s.shape,h=new Float32Array(l*c*p*m),g=e.data.get(s.dataId).values,y=[i&&f>1?c-1:c,i&&d>1?p-1:p],b=[i&&f>1?f-1:f,i&&d>1?d-1:d],w=y[0]/b[0],v=y[1]/b[1],N=1/w,E=1/v,$=Math.ceil(N)*2+2,D=Math.ceil(E)*2+2;for(let L=0;L<l;L++){let M=L*a[0];for(let G=0;G<c;G++){let H=M+G*a[1],q=Math.floor(G*N),X=Math.floor(q-$/2);for(let j=0;j<p;j++){let J=H+j*a[2],nt=Math.floor(j*E),K=Math.floor(nt-D/2);for(let ot=0;ot<m;ot++){let st=0;for(let it=0;it<$;it++){let ft=it+X;if(ft<0||ft>=f)continue;let lt=M+ft*u[1],xt=ft*w,dt=Math.min(c-1,i?Math.round(xt):Math.floor(xt));if(G===dt)for(let bt=0;bt<D;bt++){let Nt=bt+K;if(Nt<0||Nt>=d)continue;let At=lt+Nt*u[2],Dt=Nt*v,qt=Math.min(p-1,i?Math.round(Dt):Math.floor(Dt));j===qt&&(st+=g[At+ot])}}h[J+ot]=st}}}}return e.makeTensorInfo(o.shape,o.dtype,h)}var uL={kernelName:Up,backendName:"cpu",kernelFunc:ZJ};function JJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n;rt(o,"reverse");let i=o.shape.length,a=x.parseAxisParam(s,o.shape);if(i===0)return Ur({inputs:{x:o},backend:e});let u=new fe(o.shape,o.dtype),l=e.bufferSync(o);for(let c=0;c<u.size;c++){let p=u.indexToLoc(c),m=p.slice();a.forEach(f=>m[f]=o.shape[f]-1-m[f]),u.set(l.get(...m),...p)}return e.makeTensorInfo(u.shape,u.dtype,u.values)}var cL={kernelName:As,backendName:"cpu",kernelFunc:JJ};var pL={kernelName:Wa,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=x.getTypedArrayFromDType(n.dtype,x.sizeFromShape(n.shape)),[l,c,p,m]=n.shape,[f,d]=S.getImageCenter(i,c,p),h=255,g=Math.sin(o),y=Math.cos(o),b=a.data.get(n.dataId).values;for(let v=0;v<l;v++){let N=v*p*c*m;for(let E=0;E<c;E++){let $=E*(p*m);for(let D=0;D<p;D++){let L=D*m;for(let M=0;M<m;M++){let G=[l,E,D,M],H=G[2],q=G[1],X=(H-f)*y-(q-d)*g,j=(H-f)*g+(q-d)*y;X=Math.round(X+f),j=Math.round(j+d);let J=s;if(typeof s!="number"&&(M===3?J=h:J=s[M]),X>=0&&X<p&&j>=0&&j<c){let K=j*(p*m),ot=X*m,st=N+K+ot+M;J=b[st]}let nt=N+$+L+M;u[nt]=J}}}}return{dataId:a.write(u,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var QJ=Et($s,r=>{let t=Math.floor(r);return r-t<.5?Math.floor(r):r-t>.5?Math.ceil(r):t%2===0?t:t+1}),mL={kernelName:$s,backendName:"cpu",kernelFunc:QJ};function tQ(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=!0,f=e.bufferSync(o),d=e.bufferSync(s),h=cl(f,d,i,p,l,u,a,c,0,m);return e.makeTensorInfo(i,h.dtype,h.values)}var fL={kernelName:Ra,backendName:"cpu",kernelFunc:tQ};function eQ(r,t){let e=0,n=r.length,o=0;for(;e<n;)o=Math.floor((e+n)/2),r[o]<t?e=o+1:n=o;return n}function rQ(r,t){let e=0,n=r.length,o=0;for(;e<n;)o=Math.floor((e+n)/2),r[o]<=t?e=o+1:n=o;return n}function dL(r,t,e,n,o,s){let i=x.getArrayFromDType("int32",e*o);for(let a=0;a<e;++a){let u=r.slice(a*n,(a+1)*n),l=a*o;for(let c=0;c<o;++c)i[l+c]=s==="left"?eQ(u,t[c+l]):rQ(u,t[c+l])}return i}function nQ(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=dL(a,u,o.shape[0],o.shape[1],s.shape[1],i);return e.makeTensorInfo(s.shape,"int32",l)}var hL={kernelName:qp,backendName:"cpu",kernelFunc:nQ};function oQ(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t;rt([n,o,s],"select");let i=n.shape.length,a=e.data.get(n.dataId).values,u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=ir(o.dtype,s.dtype),p=x.makeZerosTypedArray(x.sizeFromShape(o.shape),c),m=0,f=i===0||i>1||o.shape.length===1?1:x.sizeFromShape(o.shape.slice(1));for(let d=0;d<a.length;d++)for(let h=0;h<f;h++)a[d]===1?p[m++]=u[d]:p[m++]=l[d];return e.makeTensorInfo(o.shape,c,p)}var gL={kernelName:bi,backendName:"cpu",kernelFunc:oQ};var sQ=S.SELU_SCALEALPHA,iQ=S.SELU_SCALE,aQ=Et(Oa,r=>r>=0?iQ*r:sQ*(Math.exp(r)-1)),xL={kernelName:Oa,backendName:"cpu",kernelFunc:aQ};var lQ=Et(Pa,r=>r<0?-1:r>0?1:0),yL={kernelName:Pa,backendName:"cpu",kernelFunc:lQ};var uQ=Et(Fs,r=>Math.sin(r)),bL={kernelName:Fs,backendName:"cpu",kernelFunc:uQ};var cQ=Et(La,r=>Math.sinh(r)),wL={kernelName:La,backendName:"cpu",kernelFunc:cQ};var pQ=11920928955078125e-23,vL=Math.log(pQ)+2,mQ=Et(Ma,r=>{let t=r>-vL,e=r<vL,n=Math.exp(r),o;return e?o=n:t?o=r:o=Math.log(1+n),o}),CL={kernelName:Ma,backendName:"cpu",kernelFunc:mQ};function fQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;rt([o],"spaceToBatchND");let a=x.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let E=1+s.length;E<o.shape.length;++E)u.push([0,0]);let l=Cw.kernelFunc({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),c=S.getReshaped(l.shape,s,a,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(l.shape,s,a,!1),h=Jt({inputs:{x:l},backend:e,attrs:{shape:c}}),b=Ue({inputs:{x:h},backend:e,attrs:{perm:p}}),N=Jt({inputs:{x:b},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(b),N}var IL={kernelName:vi,backendName:"cpu",kernelFunc:fQ};function dQ(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let a=e.data.get(n.dataId).values,u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=e.data.get(i.dataId).values[0],[p,m,f,d,h]=mw(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var SL={kernelName:$l,backendName:"cpu",kernelFunc:dQ};function hQ(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.data.get(o.dataId).values),a=e.data.get(n.dataId).values,u=Array.from(e.data.get(s.dataId).values),[l,c,p]=fw(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var NL={kernelName:za,backendName:"cpu",kernelFunc:hQ};function gQ(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=dd(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var kL={kernelName:Dl,backendName:"cpu",kernelFunc:gQ};function xQ(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=dd(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var TL={kernelName:Fl,backendName:"cpu",kernelFunc:xQ};function yQ(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1,d=e.bufferSync(o),h;switch(s.dtype){case"bool":{let g=e.bufferSync(s),y=Boolean(e.data.get(i.dataId).values[0]);h=cl(d,g,a,m,c,l,u,p,y,f);break}case"float32":{let g=e.bufferSync(s),y=e.data.get(i.dataId).values[0];h=cl(d,g,a,m,c,l,u,p,y,f);break}case"int32":{let g=e.bufferSync(s),y=e.data.get(i.dataId).values[0];h=cl(d,g,a,m,c,l,u,p,y,f);break}case"string":{let g=e.bufferSync(s),y=x.decodeString(e.data.get(i.dataId).values[0]);h=cl(d,g,a,m,c,l,u,p,y,f);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return e.makeTensorInfo(a,h.dtype,h.values)}var _L={kernelName:Kp,backendName:"cpu",kernelFunc:yQ};function bQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=x.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Do({inputs:{x:o},backend:e,attrs:{begin:l,size:m}});return l[a]+=p,f})}var EL={kernelName:Ci,backendName:"cpu",kernelFunc:bQ};var AL={kernelName:Rl,backendName:"cpu",kernelFunc:({inputs:r,backend:t})=>{let{x:e}=r,n=t;rt(e,"square");let o=n.data.get(e.dataId).values,s=new Float32Array(o.length);for(let a=0;a<o.length;++a){let u=o[a];s[a]=u*u}return{dataId:n.write(s,e.shape,e.dtype),shape:e.shape,dtype:e.dtype}}};var wQ=Et(uo,(r,t)=>{let e=t;return isNaN(r)?NaN:r>0?1:e.alpha}),$L={kernelName:uo,backendName:"cpu",kernelFunc:wQ};function vQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;rt(o,"stridedSlice");let{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:y,begin:b,end:w,strides:v}=Be.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=Jt({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||y){x.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let E=Be.computeOutShape(b,w,v),$=Do({inputs:{x:o},backend:e,attrs:{begin:b,size:E}});N=Jt({inputs:{x:$},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo($)}else{let E=e.bufferSync(o),$=dw(f,E,v,b);N=e.makeTensorInfo(d,$.dtype,$.values)}return N}var DL={kernelName:Ba,backendName:"cpu",kernelFunc:vQ};function CQ(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.data.get(c.dataId).values,f=e.data.get(p.dataId).values,[d,h]=Mc(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],"string",d),e.makeTensorInfo(p.shape,"int32",h)]}var FL={kernelName:Ol,backendName:"cpu",kernelFunc:CQ};function IQ(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values[0],[l,c,p]=zc(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],"int32",l),e.makeTensorInfo([m],"string",c),e.makeTensorInfo([2],"int32",new Int32Array(p))]}var RL={kernelName:Ll,backendName:"cpu",kernelFunc:IQ};function SQ(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(o<=0)throw new Error("Number of buckets must be at least 1");let i=e.data.get(s.dataId).values,a=Bc(i,o);return e.makeTensorInfo(s.shape,"int32",a)}var OL={kernelName:Pl,backendName:"cpu",kernelFunc:SQ};var NQ=Et(Bs,r=>Math.tan(r)),LL={kernelName:Bs,backendName:"cpu",kernelFunc:NQ};var kQ=Et(Vs,r=>Math.tanh(r)),PL={kernelName:Vs,backendName:"cpu",kernelFunc:kQ};function TQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;rt(o,"tile");let i=hw(e.bufferSync(o),s);return e.makeTensorInfo(i.shape,i.dtype,i.values)}var ML={kernelName:Xn,backendName:"cpu",kernelFunc:TQ};function _Q(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n;rt(o,"topk");let a=e.data.get(o.dataId).values,[u,l]=gw(a,o.shape,o.dtype,s,i);return[e.makeTensorInfo(u.shape,u.dtype,u.values),e.makeTensorInfo(l.shape,l.dtype,l.values)]}var zL={kernelName:Va,backendName:"cpu",kernelFunc:_Q};function EQ(r){let{inputs:t,attrs:e,backend:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=e,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],y=x.computeStrides(o.shape),b=y[0],w=y[1],v=y[2],N=x.getTypedArrayFromDType(o.dtype,x.sizeFromShape(g));N.fill(u);let E=n.data.get(o.dataId).values,$=n.data.get(s.dataId).values;for(let L=0;L<c;++L){let M=s.shape[0]===1?$:$.subarray(L*8,L*8+8);for(let G=0;G<d;++G)for(let H=0;H<h;++H)for(let q=0;q<f;++q){let X,j=M[6]*H+M[7]*G+1;if(j===0)continue;let J=(M[0]*H+M[1]*G+M[2])/j,nt=(M[3]*H+M[4]*G+M[5])/j,K=BL(J,m,a),ot=BL(nt,p,a);switch(i){case"nearest":X=RQ(E,p,m,b,w,v,L,ot,K,q,u);break;case"bilinear":X=OQ(E,p,m,b,w,v,L,ot,K,q,u);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let st=L*b+G*w+H*v+q;N[st]=X}return n.makeTensorInfo(g,o.dtype,N)}return{dataId:n.write(N,g,o.dtype),shape:o.shape,dtype:o.dtype}}var VL={kernelName:Ga,backendName:"cpu",kernelFunc:EQ};function BL(r,t,e){switch(e){case"reflect":return AQ(r,t);case"wrap":return $Q(r,t);case"nearest":return FQ(r,t);case"constant":default:return DQ(r,t)}}function AQ(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=2*t;e<n&&(e=n*Math.trunc(-e/n)+e),e=e<-t?e+n:-e-1}else if(e>t-1)if(t<=1)e=0;else{let n=2*t;e-=n*Math.trunc(e/n),e>=t&&(e=n-e-1)}return x.clamp(0,e,t-1)}function $Q(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=t-1;e+=t*(Math.trunc(-e/n)+1)}else if(e>t-1)if(t<=1)e=0;else{let n=t-1;e-=t*Math.trunc(e/n)}return x.clamp(0,e,t-1)}function DQ(r,t){return r}function FQ(r,t){return x.clamp(0,r,t-1)}function Zh(r,t,e,n,o,s,i,a,u,l,c){let p=i*n+a*o+u*s+l;return 0<=a&&a<t&&0<=u&&u<e?r[p]:c}function RQ(r,t,e,n,o,s,i,a,u,l,c){let p=Math.round(a),m=Math.round(u);return Zh(r,t,e,n,o,s,i,p,m,l,c)}function OQ(r,t,e,n,o,s,i,a,u,l,c){let p=Math.floor(a),m=Math.floor(u),f=p+1,d=m+1,h=(d-u)*Zh(r,t,e,n,o,s,i,p,m,l,c)+(u-m)*Zh(r,t,e,n,o,s,i,p,d,l,c),g=(d-u)*Zh(r,t,e,n,o,s,i,f,m,l,c)+(u-m)*Zh(r,t,e,n,o,s,i,f,d,l,c);return(f-a)*h+(a-p)*g}function LQ(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;rt(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:a,outputShape:u,indices:l}=xw(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],"int32",l)]}var GL={kernelName:jp,backendName:"cpu",kernelFunc:LQ};function PQ(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape.length,a=o.shape[s],u=new Array(i-1),l=0;for(let f=0;f<i;f++)f!==s&&(u[l++]=o.shape[f]);let c=new Array(i).fill(0),p=o.shape.slice();p[s]=1;let m=new Array(a);for(let f=0;f<m.length;f++){c[s]=f;let d=Do({inputs:{x:o},backend:e,attrs:{begin:c,size:p}});m[f]=Jt({inputs:{x:d},backend:e,attrs:{shape:u}}),e.disposeIntermediateTensorInfo(d)}return m}var WL={kernelName:Ii,backendName:"cpu",kernelFunc:PQ};function MQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n;rt(o,"unsortedSegmentSum");let a=o.shape.length,u=s.shape.length,l=[],c=[],p=a-u,m=s;for(let d=0;d<p;++d){let h=gd({inputs:{input:m},backend:e,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<i;++d){let h=x.createScalarValue(d,"int32"),g=e.makeTensorInfo([],"int32",h),y=HN({inputs:{a:g,b:m},backend:e}),b=Ao({inputs:{x:y},backend:e,attrs:{dtype:"float32"}}),w=Oc({inputs:{a:b,b:o},backend:e}),v=pl({inputs:{x:w},backend:e,attrs:{axis:0,keepDims:!1}});l.push(v),c.push(g),c.push(y),c.push(b),c.push(w),c.push(v)}let f=Ck({inputs:l,backend:e,attrs:{axis:0}});return c.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var UL={kernelName:Ml,backendName:"cpu",kernelFunc:MQ};var zQ=[bR,RF,wR,vR,zF,CR,IR,SR,NR,kR,TR,_R,ER,AR,$R,FR,RR,OR,LR,yR,PR,MR,zR,BR,MF,BF,VR,OF,GR,UR,HR,qR,KR,jR,XR,YR,ZR,JR,QR,tO,eO,rO,nO,oO,sO,iO,aO,lO,uO,cO,mO,mR,fO,VF,dO,GF,hO,WF,gO,xO,yO,UF,bO,wO,vO,CO,IO,HF,qF,LF,SO,WR,NO,kO,TO,fR,KF,jF,_O,XF,EO,AO,$O,DO,FO,RO,OO,YF,LO,PO,MO,zO,VO,GO,WO,ZF,UO,HO,jO,JF,QF,XO,YO,ZO,tR,JO,eL,rL,Cw,nL,dR,rR,oL,PF,jh,sL,hR,gR,xR,iL,aL,lL,uL,cL,pL,mL,nR,fL,hL,gL,xL,sR,yL,bL,wL,iR,qO,CL,IL,SL,NL,kL,TL,_L,EL,lR,AL,uR,$L,DL,FL,RL,OL,cR,pO,LL,PL,ML,zL,VL,eR,GL,WL,UL,QO];for(let r of zQ)Vu(r);var bd={};jt(bd,{assertNotComplex:()=>ni,bindCanvasToFramebuffer:()=>jQ,bindColorTextureToFramebuffer:()=>eg,bindTextureToProgramUniformSampler:()=>zk,bindTextureUnit:()=>jL,bindVertexBufferToProgramAttribute:()=>Tw,callAndCheck:()=>vt,canBeRepresented:()=>Tk,createFragmentShader:()=>Ek,createFramebuffer:()=>Lk,createProgram:()=>Ak,createStaticIndexBuffer:()=>Fk,createStaticVertexBuffer:()=>Dk,createTexture:()=>Rk,createVertexShader:()=>_k,getBatchDim:()=>fl,getExtensionOrThrow:()=>xd,getFramebufferErrorMessage:()=>XL,getMaxTexturesInShader:()=>Gk,getNumChannels:()=>qQ,getProgramUniformLocation:()=>Mk,getProgramUniformLocationOrThrow:()=>Pk,getRowsCols:()=>dl,getShapeAs3D:()=>rg,getTextureShapeFromLogicalShape:()=>Bk,getWebGLDisjointQueryTimerVersion:()=>Wk,getWebGLErrorMessage:()=>KL,getWebGLMaxTextureSize:()=>Vk,hasExtension:()=>Wn,isCapableOfRenderingToFloatTexture:()=>Uk,isDownloadFloatTextureEnabled:()=>Hk,isReshapeFree:()=>Nu,isWebGLFenceEnabled:()=>qk,isWebGLVersionEnabled:()=>Ew,linkProgram:()=>$k,logShaderSourceAndInfoLog:()=>kw,resetMaxTextureSize:()=>XQ,resetMaxTexturesInShader:()=>YQ,unbindColorTextureFromFramebuffer:()=>_w,unbindTextureUnit:()=>KQ,validateFramebuffer:()=>yd,validateProgram:()=>tg,validateTextureSize:()=>Ok});var Gc={},Ik={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Sk(r,t){Gc[r]=t}function Gn(r,t){if(!(r in Gc)||t!=null){let n=VQ(r,t);if(n!==null)Gc[r]=n;else return console.log("Could not get context for WebGL version",r),null}let e=Gc[r];return e==null||e.isContextLost()?(delete Gc[r],Gn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),Gc[r])}function BQ(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function VQ(r,t){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=t==null?BQ(r):t;return e.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Gc[r]},!1),r===1?e.getContext("webgl",Ik)||e.getContext("experimental-webgl",Ik):e.getContext("webgl2",Ik)}var Su;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(Su||(Su={}));var Hr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Hr||(Hr={}));var Rr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Rr||(Rr={}));function Wc(r,t){return[t,r]}function HL(r,t){return r*t}function Jh(r){let t=x.sizeFromShape(r),e=Math.ceil(t/4);return x.sizeToSquarishShape(e)}function Ji(r,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(r/2))]}function qL(r,t){let[e,n]=Ji(r,t);return e*n*4}function Qh(r,t){let e=r,n,o,s,i,a,u,l,c,p,m;return B().getNumber("WEBGL_VERSION")===2?(n=e.R32F,o=e.R16F,s=e.RGBA16F,i=e.RGBA32F,a=e.RED,l=4,c=1,p=e.HALF_FLOAT,m=e.FLOAT,u=e.RGBA8):(n=r.RGBA,o=r.RGBA,s=r.RGBA,i=e.RGBA,a=r.RGBA,l=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,m=r.FLOAT,u=r.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:a,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function vt(r,t){let e=t();return B().getBool("DEBUG")&&GQ(r),e}function GQ(r){let t=r.getError();if(t!==r.NO_ERROR)throw new Error("WebGL Error: "+KL(r,t))}var WQ=596e-10,UQ=65504;function Tk(r){return!!(B().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||WQ<Math.abs(r)&&Math.abs(r)<UQ)}function KL(r,t){switch(t){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function xd(r,t){return ml(r,()=>r.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function _k(r,t){let e=ml(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(vt(r,()=>r.shaderSource(e,t)),vt(r,()=>r.compileShader(e)),r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(e)),new Error("Failed to compile vertex shader.");return e}function Ek(r,t){let e=ml(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(vt(r,()=>r.shaderSource(e,t)),vt(r,()=>r.compileShader(e)),B().get("ENGINE_COMPILE_ONLY"))return e;if(r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw kw(t,r.getShaderInfoLog(e)),new Error("Failed to compile fragment shader.");return e}var HQ=/ERROR: [0-9]+:([0-9]+):/g;function kw(r,t){let e=HQ.exec(t);if(e==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(r);return}let n=+e[1],o=r.split(`
`),s=o.length.toString().length+2,i=o.map((p,m)=>x.rightPad((m+1).toString(),s)+p),a=0;for(let p=0;p<i.length;p++)a=Math.max(i[p].length,a);let u=i.slice(0,n-1),l=i.slice(n-1,n),c=i.slice(n);console.log(u.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${x.rightPad(l[0],a)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function Ak(r){return ml(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function $k(r,t){if(vt(r,()=>r.linkProgram(t)),!B().get("ENGINE_COMPILE_ONLY")&&r.getProgramParameter(t,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function tg(r,t){if(vt(r,()=>r.validateProgram(t)),r.getProgramParameter(t,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Dk(r,t){let e=ml(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return vt(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),vt(r,()=>r.bufferData(r.ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function Fk(r,t){let e=ml(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return vt(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,e)),vt(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function qQ(){return B().getNumber("WEBGL_VERSION")===2?1:4}function Rk(r){return ml(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function Ok(r,t){let e=B().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||t<=0){let n=`[${r}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(r>e||t>e){let n=`[${r}x${t}]`,o=`[${e}x${e}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+o+".")}}function Lk(r){return ml(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Tw(r,t,e,n,o,s,i){let a=r.getAttribLocation(t,e);return a===-1?!1:(vt(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),vt(r,()=>r.vertexAttribPointer(a,o,r.FLOAT,!1,s,i)),vt(r,()=>r.enableVertexAttribArray(a)),!0)}function jL(r,t,e){YL(r,e),vt(r,()=>r.activeTexture(r.TEXTURE0+e)),vt(r,()=>r.bindTexture(r.TEXTURE_2D,t))}function KQ(r,t){YL(r,t),vt(r,()=>r.activeTexture(r.TEXTURE0+t)),vt(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Pk(r,t,e){return ml(r,()=>r.getUniformLocation(t,e),'uniform "'+e+'" not present in program.')}function Mk(r,t,e){return r.getUniformLocation(t,e)}function zk(r,t,e,n){vt(r,()=>jL(r,t,n)),vt(r,()=>r.uniform1i(e,n))}function jQ(r){vt(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),vt(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),vt(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function eg(r,t,e){vt(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),vt(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0))}function _w(r,t){vt(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),vt(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function yd(r){let t=r.checkFramebufferStatus(r.FRAMEBUFFER);if(t!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+XL(r,t))}function XL(r,t){switch(t){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ml(r,t,e){let n=vt(r,()=>t());if(n==null)throw new Error(e);return n}function YL(r,t){let e=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+r.TEXTURE0;if(n<r.TEXTURE0||n>e){let o=`[gl.TEXTURE0, gl.TEXTURE${e}]`;throw new Error(`textureUnit must be in ${o}.`)}}function fl(r,t=2){return x.sizeFromShape(r.slice(0,r.length-t))}function dl(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function rg(r){let t=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(t=[fl(r),...dl(r)]),t}function Bk(r,t=!1){let e=B().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(e=e*2,r=r.map((o,s)=>s>=r.length-2?x.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=x.squeezeShape(r).newShape);let n=x.sizeFromShape(r);if(r.length<=1&&n<=e)return[1,n];if(r.length===2&&r[0]<=e&&r[1]<=e)return r;if(r.length===3&&r[0]*r[1]<=e&&r[2]<=e)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=e&&r[1]*r[2]<=e)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=e&&r[3]<=e)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=e&&r[1]*r[2]*r[3]<=e)return[r[0],r[1]*r[2]*r[3]];if(t){let o=fl(r),s=2,i=2;return r.length&&([s,i]=dl(r)),n=o*(s/2)*(i/2),x.sizeToSquarishShape(n).map(a=>a*2)}return x.sizeToSquarishShape(n)}function Iw(r){return r%2===0}function Nu(r,t){if(r=r.slice(-2),t=t.slice(-2),x.arraysEqual(r,t)||!r.length||!t.length||r[0]===0||r[1]===0||t[0]===0||t[1]===0)return!0;if(r.length!==t.length){let e=r.slice(-1)[0],n=t.slice(-1)[0];if(e===n||Iw(e)&&Iw(n)&&(r[0]===1||t[0]===1))return!0}return r[1]===t[1]&&Iw(r[0])&&Iw(t[0])}var Sw,Nw;function Vk(r){if(Sw==null){let t=Gn(r);Sw=t.getParameter(t.MAX_TEXTURE_SIZE)}return Sw}function XQ(){Sw=null}function YQ(){Nw=null}function Gk(r){if(Nw==null){let t=Gn(r);Nw=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Nw)}function Wk(r){if(r===0)return 0;let t,e=Gn(r);return Wn(e,"EXT_disjoint_timer_query_webgl2")&&r===2?t=2:Wn(e,"EXT_disjoint_timer_query")?t=1:t=0,t}function Wn(r,t){return r.getExtension(t)!=null}function Ew(r){try{if(Gn(r)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Uk(r){if(r===0)return!1;let t=Gn(r);if(r===1){if(!Wn(t,"OES_texture_float"))return!1}else if(!Wn(t,"EXT_color_buffer_float"))return!1;return kk(t)}function Hk(r){if(r===0)return!1;let t=Gn(r);if(r===1){if(!Wn(t,"OES_texture_float")||!Wn(t,"WEBGL_color_buffer_float"))return!1}else{if(Wn(t,"EXT_color_buffer_float"))return kk(t);let n="EXT_color_buffer_half_float";if(Wn(t,n)){let o=t.getExtension(n);return ZQ(t,o)}return!1}return kk(t)}function kk(r){let t=Qh(r),e=r.createTexture();r.bindTexture(r.TEXTURE_2D,e);let n=1,o=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatFloat,n,o,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(e),r.deleteFramebuffer(s),i}function ZQ(r,t){let e=Qh(r,t),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n);let o=1,s=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatHalfFloat,o,s,0,e.textureFormatFloat,e.textureTypeHalfFloat,null);let i=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,i),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(i),a}function qk(r){return r!==2?!1:Gn(r).fenceSync!=null}function ni(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&x.assert(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ft=B();Ft.registerFlag("HAS_WEBGL",()=>Ft.getNumber("WEBGL_VERSION")>0);Ft.registerFlag("WEBGL_VERSION",()=>Ew(2)?2:Ew(1)?1:0);Ft.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ft.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ft.get("WEBGL_VERSION")===2);Ft.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ft.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ft.registerFlag("WEBGL_PACK",()=>Ft.getBool("HAS_WEBGL"));Ft.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ft.getBool("WEBGL_PACK"));Ft.registerFlag("WEBGL_PACK_CLIP",()=>Ft.getBool("WEBGL_PACK"));Ft.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ft.getBool("WEBGL_PACK"));Ft.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ft.getBool("WEBGL_PACK"));Ft.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ft.getBool("WEBGL_PACK"));Ft.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ft.getBool("WEBGL_PACK"));Ft.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ft.getBool("WEBGL_PACK"));Ft.registerFlag("WEBGL_PACK_REDUCE",()=>Ft.getBool("WEBGL_PACK"));Ft.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ft.getBool("WEBGL_PACK"));Ft.registerFlag("WEBGL_CONV_IM2COL",()=>Ft.getBool("WEBGL_PACK"));Ft.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Vk(Ft.getNumber("WEBGL_VERSION")));Ft.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Gk(Ft.getNumber("WEBGL_VERSION")));Ft.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Ft.getNumber("WEBGL_VERSION");return r===0?0:Wk(r)});Ft.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ft.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Gl.isMobile());Ft.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Uk(Ft.getNumber("WEBGL_VERSION")));Ft.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ft.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ft.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ft.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Hk(Ft.getNumber("WEBGL_VERSION")));Ft.registerFlag("WEBGL_FENCE_API_ENABLED",()=>qk(Ft.getNumber("WEBGL_VERSION")));Ft.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ft.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ft.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Ft.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Gl.isMobile()?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});Ft.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ft.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ft.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ft.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function He(){let r,t,e,n,o,s,i,a,u,l;return B().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",t="in",e="out",n="in",o="texture",s="outputColor",i="out vec4 outputColor;",a=`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,u="",l=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(r="",t="attribute",e="varying",n="varying",o="texture2D",s="gl_FragColor",i="",a=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,u=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,l=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:r,attribute:t,varyingVs:e,varyingFs:n,texture2D:o,output:s,defineOutput:i,defineSpecialNaN:a,defineSpecialInf:u,defineRound:l}}function oi(r,t,e="index"){let n=x.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / ${o}`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${i}; ${a};`}).join("")}function Uc(r,t,e="index"){let n=x.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / outShapeStrides[${s}]`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * outShapeStrides[${s}]`:`index -= ${r[s]} * outShapeStrides[${s}]`;return`${i}; ${a};`}).join("")}function JQ(r,t){let e=r.length,n=r.map(s=>`${t}[${s}]`),o=new Array(e-1);o[e-2]=n[e-1];for(let s=e-3;s>=0;--s)o[s]=`(${o[s+1]} * ${n[s+1]})`;return o}function ZL(r,t,e="index"){let n=r.map((s,i)=>i),o=JQ(n,t);return o.map((s,i)=>{let a=`int ${r[i]} = ${e} / ${o[i]}`,u=i===o.length-1?`int ${r[i+1]} = ${e} - ${r[i]} * ${o[i]}`:`index -= ${r[i]} * ${o[i]}`;return`${a}; ${u};`}).join("")}function wd(r){let t=x.computeStrides(r).map(e=>e.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function vd(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var Aw=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;var{getBroadcastDims:JL}=S;function QL(r,t,e){let n=[];if(r.forEach(f=>{let d=x.sizeFromShape(f.shapeInfo.logicalShape);if(f.shapeInfo.isUniform?n.push(`uniform float ${f.name}${d>1?`[${d}]`:""};`):(n.push(`uniform sampler2D ${f.name};`),n.push(`uniform int offset${f.name};`)),e.enableShapeUniforms){let{uniformShape:h}=$w(e.packedInputs,f.shapeInfo.logicalShape,f.shapeInfo.texShape);switch(h.length){case 1:n.push(`uniform int ${f.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${f.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${f.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${f.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${f.name}TexShape;`)}}),e.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}e.customUniforms&&e.customUniforms.forEach(f=>{n.push(`uniform ${f.type} ${f.name}${f.arrayIndex?`[${f.arrayIndex}]`:""};`)});let o=n.join(`
`),s=r.map(f=>QQ(f,t,e.packedInputs,e.enableShapeUniforms)).join(`
`),i=t.texShape,a=He(),u=rtt(a),l,c,p=stt(a);return t.isPacked?(l=ttt(t.logicalShape,i,e.enableShapeUniforms),c=ott(a)):(l=ett(t.logicalShape,i,e.enableShapeUniforms),c=ntt(a)),e.packedInputs&&(p+=utt),[p,u,c,o,l,s,e.userCode].join(`
`)}function Id(r,t=!1){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return vtt(r,t);case 1:return Itt(r,t);case 2:return Ntt(r,t);case 3:return Ttt(r,t);case 4:return Ett(r,t);case 5:return Att(r);case 6:return $tt(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function tP(r,t){switch(r.shapeInfo.logicalShape.length){case 0:return wtt(r);case 1:return Ctt(r,t);case 2:return Stt(r,t);case 3:return ktt(r,t);default:return _tt(r,t)}}function QQ(r,t,e=!1,n){let o="";e?o+=tP(r,n):o+=Id(r,n);let s=r.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(e?o+=Dtt(r,t):o+=Ftt(r,t)),o}function ttt(r,t,e){switch(r.length){case 0:return eP();case 1:return ctt(r,t,e);case 2:return ytt(r,t,e);case 3:return mtt(r,t,e);default:return dtt(r,t,e)}}function ett(r,t,e){switch(r.length){case 0:return eP();case 1:return ptt(r,t,e);case 2:return btt(r,t,e);case 3:return ftt(r,t,e);case 4:return htt(r,t,e);case 5:return gtt(r,t);case 6:return xtt(r,t);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function rtt(r){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${r.texture2D}(textureSampler, uv).r;
}
`}function ntt(r){return`
void setOutput(float val) {
${r.output} = vec4(val, 0, 0, 0);
}
`}function ott(r){return`
void setOutput(vec4 val) {
${r.output} = val;
}
`}function stt(r){return`${r.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${r.varyingFs} vec2 resultUV;
${r.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${r.defineSpecialNaN}
${r.defineSpecialInf}
${r.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${itt}
${att}
${ltt}
`}var itt=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,att=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,ltt=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,utt=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function eP(){return`
int getOutputCoords() {
return 0;
}
`}function ctt(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?e?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?e?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:e?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function ptt(r,t,e){return t[0]===1?e?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?e?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:e?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function mtt(r,t,e){if(e)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[2]/2),s=o*Math.ceil(r[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec3(b, r, c);
}
`}function ftt(r,t,e){if(e)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Uc(["r","c","d"],r)}
return ivec3(r, c, d);
}
`;let n=oi(["r","c","d"],r);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function dtt(r,t,e){if(e)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[r.length-1]/2),s=o*Math.ceil(r[r.length-2]/2),i=s,a="",u="b, r, c";for(let l=2;l<r.length-1;l++)i*=r[r.length-l-1],a=`
int b${l} = index / ${i};
index -= b${l} * ${i};
`+a,u=`b${l}, `+u;return`
ivec${r.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${a}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec${r.length}(${u});
}
`}function htt(r,t,e){if(e)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Uc(["r","c","d","d2"],r)}
return ivec4(r, c, d, d2);
}
`;let n=oi(["r","c","d","d2"],r);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function gtt(r,t){let e=oi(["r","c","d","d2","d3"],r);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${e}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function xtt(r,t){let e=oi(["r","c","d","d2","d3","d4"],r);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${e}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function ytt(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(x.arraysEqual(r,t))return e?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let o=Math.ceil(r[1]/2);return e?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec2(r, c);
}
`}function btt(r,t,e){return x.arraysEqual(r,t)?e?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:r[1]===1?e?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:r[0]===1?e?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:e?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${r[1]};
int c = index - r * ${r[1]};
return ivec2(r, c);
}
`}function Hc(r){return`offset${r}`}function wtt(r){let t=r.name,e="get"+t.charAt(0).toUpperCase()+t.slice(1),n=He();return`
vec4 ${e}() {
return ${n.texture2D}(${t}, halfCR);
}
`}function vtt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${n}() {return ${e};}`;let[o,s]=r.shapeInfo.texShape;if(o===1&&s===1)return`
float ${n}() {
return sampleTexture(${e}, halfCR);
}
`;let i=Hc(e);if(t)return`
float ${n}() {
vec2 uv = uvFromFlat(${e}TexShape[0], ${e}TexShape[1], ${i});
return sampleTexture(${e}, uv);
}
`;let[a,u]=r.shapeInfo.texShape;return`
float ${n}() {
vec2 uv = uvFromFlat(${a}, ${u}, ${i});
return sampleTexture(${e}, uv);
}
`}function Ctt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=r.shapeInfo.texShape,s=He();if(t)return`
vec4 ${n}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${e}TexShape[0]) / 2.0), ceil(float(${e}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${e}, uv);
}
`;let i=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)];return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${e}, uv);
}
`}function Itt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
float ${n}(int index) {
${Sd(r)}
}
`;let o=r.shapeInfo.texShape,s=o[0],i=o[1];if(i===1&&s===1)return`
float ${n}(int index) {
return sampleTexture(${e}, halfCR);
}
`;let a=Hc(e);return i===1?t?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / float(${e}TexShape[0]));
return sampleTexture(${e}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${s}.0);
return sampleTexture(${e}, uv);
}
`:s===1?t?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / float(${e}TexShape[1]), 0.5);
return sampleTexture(${e}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${e}, uv);
}
`:t?`
float ${n}(int index) {
vec2 uv = uvFromFlat(${e}TexShape[0], ${e}TexShape[1], index + ${a});
return sampleTexture(${e}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${a});
return sampleTexture(${e}, uv);
}
`}function Stt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,i=s[0],a=s[1],u=He();if(s!=null&&x.arraysEqual(e,s))return t?`
vec4 ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return ${u.texture2D}(${n}, uv);
}
`:`
vec4 ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${i}.0);
return ${u.texture2D}(${n}, uv);
}
`;if(t)return`
vec4 ${o}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${u.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],c=Math.ceil(e[1]/2);return`
vec4 ${o}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function Ntt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape;if(s!=null&&x.arraysEqual(e,s)){if(t)return`
float ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`;let m=s[0],f=s[1];return`
float ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${f}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:i,keptDims:a}=x.squeezeShape(e),u=i;if(u.length<e.length){let m=Nd(r,u),f=["row","col"];return`
${Id(m,t)}
float ${o}(int row, int col) {
return ${o}(${kd(f,a)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
${Sd(r)}
}
`;let l=s[0],c=s[1],p=Hc(n);return c===1?t?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?t?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${o}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n}Shape[1] + col + ${p};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${e[1]} + col + ${p};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${n}, uv);
}
`}function ktt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(e[0]===1){let m=e.slice(1),f=[1,2],d=Nd(r,m),h=["b","row","col"];return`
${tP(d,t)}
vec4 ${o}(int b, int row, int col) {
return ${o}(${kd(h,f)});
}
`}let a=He();if(t)return`
vec4 ${o}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${a.texture2D}(${n}, uv);
}
`;let u=i[0],l=i[1],c=Math.ceil(e[2]/2),p=c*Math.ceil(e[1]/2);return`
vec4 ${o}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${u}, ${l}, ${p}, ${c}, b, row, col);
return ${a.texture2D}(${n}, uv);
}
`}function Ttt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e[1]*e[2],i=e[2],{newShape:a,keptDims:u}=x.squeezeShape(e),l=a;if(l.length<e.length){let h=Nd(r,l),g=["row","col","depth"];return`
${Id(h,t)}
float ${o}(int row, int col, int depth) {
return ${o}(${kd(g,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${Sd(r)}
}
`;let c=r.shapeInfo.texShape,p=c[0],m=c[1],f=r.shapeInfo.flatOffset;if(m===s&&f==null)return t?`
float ${o}(int row, int col, int depth) {
int stride1 = ${n}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&f==null)return t?`
float ${o}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${m}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let d=Hc(n);return t?`
float ${o}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${n}Shape[1] * ${n}Shape[2];
int stride1 = ${n}Shape[2];
int index = row * ${s} + col * ${i} + depth + ${d};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${d};
vec2 uv = uvFromFlat(${p}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function _tt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=He();if(t)return`
vec4 ${n}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${e}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${e}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${e}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${e}TexShape[0]) / 2.0), ceil(float(${e}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${o.texture2D}(${e}, uv);
}
`;let s=r.shapeInfo.logicalShape,i=s.length,a=r.shapeInfo.texShape,u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],l=u[0],c=u[1],p=Math.ceil(s[i-1]/2),m=p*Math.ceil(s[i-2]/2),f="int b, int row, int col",d=`b * ${m} + (row / 2) * ${p} + (col / 2)`;for(let h=2;h<i-1;h++)f=`int b${h}, `+f,m*=s[i-h-1],d=`b${h} * ${m} + `+d;return`
vec4 ${n}(${f}) {
int index = ${d};
int texR = index / ${c};
int texC = index - texR * ${c};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${l});
return ${o.texture2D}(${e}, uv);
}
`}function Ett(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e[3],i=e[2]*s,a=e[1]*i,{newShape:u,keptDims:l}=x.squeezeShape(e);if(u.length<e.length){let b=Nd(r,u),w=["row","col","depth","depth2"];return`
${Id(b,t)}
float ${o}(int row, int col, int depth, int depth2) {
return ${o}(${kd(w,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${a}, ${i}, ${s}, 1)));
${Sd(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1],d=`int stride2 = ${n}Shape[3];`,h=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(f===a&&c==null)return t?`
float ${o}(int row, int col, int depth, int depth2) {
${d}
${h}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`;if(f===s&&c==null)return t?`
float ${o}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${e[1]*e[2]}, ${e[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`;let y=Hc(n);return t?`
float ${o}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${d}
${h}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${y});
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${m}, ${f}, index + ${y});
return sampleTexture(${n}, uv);
}
`}function Att(r){let t=r.shapeInfo.logicalShape,e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=t[4],s=t[3]*o,i=t[2]*s,a=t[1]*i,{newShape:u,keptDims:l}=x.squeezeShape(t);if(u.length<t.length){let h=Nd(r,u),g=["row","col","depth","depth2","depth3"];return`
${Id(h)}
float ${n}(int row, int col, int depth, int depth2, int depth3) {
return ${n}(${kd(g,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${a}, ${i}, ${s}, ${o})) +
depth3;
${Sd(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===a&&c==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${e}, uv);
}
`;if(f===o&&c==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${e}, uv);
}
`;let d=Hc(e);return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${i} + depth * ${s} +
depth2 * ${o} + depth3 + ${d};
vec2 uv = uvFromFlat(${m}, ${f}, index);
return sampleTexture(${e}, uv);
}
`}function $tt(r){let t=r.shapeInfo.logicalShape,e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),{newShape:o,keptDims:s}=x.squeezeShape(t);if(o.length<t.length){let g=Nd(r,o),y=["row","col","depth","depth2","depth3","depth4"];return`
${Id(g)}
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${n}(${kd(y,s)});
}
`}let i=t[5],a=t[4]*i,u=t[3]*a,l=t[2]*u,c=t[1]*l;if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${l}, ${u}, ${a})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${Sd(r)}
}
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${l}, ${u}, ${a}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${e}, uv);
}
`;if(d===i&&p==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${e}, uv);
}
`;let h=Hc(e);return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${l} + depth * ${u} +
depth2 * ${a} + depth3 * ${i} + depth4 + ${h};
vec2 uv = uvFromFlat(${f}, ${d}, index);
return sampleTexture(${e}, uv);
}
`}function Sd(r){let t=r.name,e=x.sizeFromShape(r.shapeInfo.logicalShape);return e<2?`return ${t};`:`
for (int i = 0; i < ${e}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function Dtt(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o="get"+n+"AtOutCoords",s=r.shapeInfo.logicalShape.length,i=t.logicalShape.length,a=JL(r.shapeInfo.logicalShape,t.logicalShape),u=Wt(i),l=i-s,c,p=["x","y","z","w","u","v"];s===0?c="":i<2&&a.length>=1?c="coords = 0;":c=a.map(b=>`coords.${p[b+l]} = 0;`).join(`
`);let m="";i<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+l]}`).join(", ");let f="return outputValue;",h=x.sizeFromShape(r.shapeInfo.logicalShape)===1,y=x.sizeFromShape(t.logicalShape)===1;if(s===1&&!h&&!y)f=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(h&&!y)i===1?f=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:f=`
return vec4(outputValue.x);
`;else if(a.length){let b=s-2,w=s-1;a.indexOf(b)>-1&&a.indexOf(w)>-1?f="return vec4(outputValue.x);":a.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":a.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${o}() {
${u} coords = getOutputCoords();
${c}
vec4 outputValue = get${n}(${m});
${f}
}
`}function Ftt(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o="get"+n+"AtOutCoords",s=t.texShape,i=r.shapeInfo.texShape,a=r.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!r.shapeInfo.isUniform&&a===u&&r.shapeInfo.flatOffset==null&&x.arraysEqual(i,s))return`
float ${o}() {
return sampleTexture(${e}, resultUV);
}
`;let l=Wt(u),c=JL(r.shapeInfo.logicalShape,t.logicalShape),p=u-a,m,f=["x","y","z","w","u","v"];a===0?m="":u<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
`);let d="";return u<2&&a>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
float ${o}() {
${l} coords = getOutputCoords();
${m}
return get${n}(${d});
}
`}function Wt(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function $w(r,t,e){let{newShape:n,keptDims:o}=x.squeezeShape(t),s=t.length,i=r&&s===3&&t[0]===1,a=i?t.slice(1):n,u=!r&&s>1&&!x.arraysEqual(t,e)&&n.length<s||i;return{useSqueezeShape:u,uniformShape:u?a:t,keptDims:o}}function Nd(r,t){let e=JSON.parse(JSON.stringify(r));return e.shapeInfo.logicalShape=t,e}function kd(r,t){return t.map(e=>r[e]).join(", ")}function nP(r,t,e,n){let o=e.map((c,p)=>{let m={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(m.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:m}}),s=o.map(c=>c.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},a=QL(o,i,t),u=Ek(r.gl,a),l=r.createProgram(u);return B().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i},Kk(r,t,l))}function Kk(r,t,e){let n={},o={},s={},i=[],a,u,l,c=null,p=null;p=r.getUniformLocation(e,"NAN",!1),B().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(e,"INFINITY",!1));let m=!1;for(let f=0;f<t.variableNames.length;f++){let d=t.variableNames[f];n[d]=r.getUniformLocation(e,d,m),n[`offset${d}`]=r.getUniformLocation(e,`offset${d}`,m),t.enableShapeUniforms&&(o[`${d}Shape`]=r.getUniformLocation(e,`${d}Shape`,m),s[`${d}TexShape`]=r.getUniformLocation(e,`${d}TexShape`,m))}return t.enableShapeUniforms&&(a=r.getUniformLocation(e,"outShape",m),l=r.getUniformLocation(e,"outShapeStrides",m),u=r.getUniformLocation(e,"outTexShape",m)),t.customUniforms&&t.customUniforms.forEach((f,d)=>{i[d]=r.getUniformLocation(e,f.name,m)}),{uniformLocations:n,customUniformLocations:i,infLoc:c,nanLoc:p,inShapesLocations:o,inTexShapesLocations:s,outShapeLocation:a,outShapeStridesLocation:l,outTexShapeLocation:u}}function rP(r,t){if(r.length!==t.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${t.length} inputs`);r.forEach((e,n)=>{let o=e.logicalShape,s=t[n],i=s.shape;if(!x.arraysEqual(o,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${i} must match`);if(e.isUniform&&s.isUniform)return;let a=e.texShape,u=s.isUniform?null:s.texData.texShape;if(!x.arraysEqual(a,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${a} and ${u} must match`)})}function oP(r,t,e,n,o){t.program.enableShapeUniforms||(rP(t.inShapeInfos,e),rP([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):r.setOutputMatrixTexture(s.texture,i[0],i[1]),r.setProgram(t.webGLProgram),B().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&r.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&r.gl.uniform1f(t.nanLoc,NaN),e.forEach((u,l)=>{let c=t.program.variableNames[l],p=t.uniformLocations[c],m=t.uniformLocations[`offset${c}`],f=t.inShapesLocations[`${c}Shape`],d=t.inTexShapesLocations[`${c}TexShape`];if(f){let{uniformShape:h}=$w(t.program.packedInputs,u.shape,u.texData.texShape);switch(h.length){case 1:r.gl.uniform1iv(f,new Int32Array(h));break;case 2:r.gl.uniform2iv(f,new Int32Array(h));break;case 3:r.gl.uniform3iv(f,new Int32Array(h));break;case 4:r.gl.uniform4iv(f,new Int32Array(h));break;default:break}}if(d&&r.gl.uniform2i(d,u.texData.texShape[0],u.texData.texShape[1]),p!=null){if(u.isUniform){if(x.sizeFromShape(u.shape)<2)r.gl.uniform1f(p,u.uniformValues[0]);else{let h=u.uniformValues;h instanceof Float32Array||(h=new Float32Array(h)),r.gl.uniform1fv(p,h)}return}u.texData.slice!=null&&m!=null&&r.gl.uniform1i(m,u.texData.slice.flatOffset),r.setInputMatrixTexture(u.texData.texture.texture,p,l)}});let a=t.outShapeLocation;if(a)switch(n.shape.length){case 1:r.gl.uniform1iv(a,new Int32Array(n.shape));break;case 2:r.gl.uniform2iv(a,new Int32Array(n.shape));break;case 3:r.gl.uniform3iv(a,new Int32Array(n.shape));break;case 4:r.gl.uniform4iv(a,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let u=x.computeStrides(n.shape);switch(n.shape.length){case 2:r.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(u));break;case 3:r.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(u));break;case 4:r.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(u));break;default:break}}t.outTexShapeLocation&&r.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&o&&t.program.customUniforms.forEach((u,l)=>{let c=t.customUniformLocations[l],p=o[l];if(u.type==="float")r.gl.uniform1fv(c,p);else if(u.type==="vec2")r.gl.uniform2fv(c,p);else if(u.type==="vec3")r.gl.uniform3fv(c,p);else if(u.type==="vec4")r.gl.uniform4fv(c,p);else if(u.type==="int")r.gl.uniform1iv(c,p);else if(u.type==="ivec2")r.gl.uniform2iv(c,p);else if(u.type==="ivec3")r.gl.uniform3iv(c,p);else if(u.type==="ivec4")r.gl.uniform4iv(c,p);else throw Error(`uniform type ${u.type} is not supported yet.`)}),r.executeProgram()}function sP(r,t,e){let n="";t.concat(e).forEach(i=>{let a=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(r.enableShapeUniforms&&!i.isUniform){let u=i.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:p}=$w(r.packedInputs,i.shape,u),m="",f="",d="";if(c.length===1&&r.packedInputs){let N=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];m=`${N[0]>1}_${N[1]>1}`}else if(c.length===2&&!r.packedInputs)f=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!r.packedInputs){let N=x.computeStrides(c);d=`${N[0]===u[1]}_${N[N.length-1]===u[1]}`}let h=i.shape.length,g=c.length===2&&x.arraysEqual(i.shape,u),y=x.sizeFromShape(i.shape)===1,b=S.getBroadcastDims(i.shape,e.shape),w=!r.packedInputs&&h===e.shape.length&&x.arraysEqual(u,e.texData.texShape),v=r.packedInputs||c.length>2?"":`${u[0]>1}_${u[1]>1}`;n+=`${h}_${w}_${l?p:""}_${c.length}_${y}_${b}_${g}_${m}_${f}_${d}_${v}_${a}`}else{let u=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${u}_${a}`}});let o=r.userCode,s=r.constructor.name;return s+="_"+n+"_"+o+`${B().getNumber("WEBGL_VERSION")}`,s}function De(r){return B().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&r<=4}var Dw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Su.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let e=He();this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Uc(["r","c","d"],t):oi(["r","c","d"],t)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${e.output} = result;
}
`}};var Fw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Su.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let e=He();this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Uc(["r","c","d"],t):oi(["r","c","d"],t)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${e.output} = result;
}
`}};var Rw=class{constructor(t){this.variableNames=["A"],this.outTexUsage=Hr.DOWNLOAD;let e=He();this.outputShape=t,this.userCode=`
${Aw}
void main() {
float x = getAAtOutCoords();
${e.output} = encode_float(x);
}
`}};var Ow=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Hr.DOWNLOAD;let e=He();this.outputShape=t,this.userCode=`
${Aw}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${e.output} = encode_float(x);
}
`}};var Lw=class{constructor(t,e=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=He();this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length);let o="result";e&&(o="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?vd():wd(t)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${o}, 0., 0., 0.);
}
`}};var Pw=class{constructor(t,e=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=He();this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length);let o="",s="result";e&&(s="floor(result * 255. + 0.5)");for(let i=0;i<=1;i++)for(let a=0;a<=1;a++){let u=i*2+a;o+=`
localCoords = coords;
if(localCoords[2] + ${a} < ${this.enableShapeUniforms?"outShape[2]":`${t[2]}`}) {
localCoords[2] += ${a};
if (localCoords[1] + ${i} < ${this.enableShapeUniforms?"outShape[1]":`${t[1]}`}) {
localCoords[1] += ${i};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${u}] = values[0];
} else if (offset == 1) {
result[${u}] = values[1];
} else if (offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?vd():wd(t)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${o}
${n.output} = ${s};
}
`}};var cT={};jt(cT,{bindVertexProgramAttributeStreams:()=>rT,createBufferFromOutputTexture:()=>sT,createFloat16MatrixTexture:()=>Jk,createFloat16PackedMatrixTexture:()=>eT,createFloat32MatrixTexture:()=>Zk,createIndexBuffer:()=>Yk,createPackedMatrixTexture:()=>tT,createUnsignedBytesMatrixTexture:()=>Qk,createVertexBuffer:()=>Xk,createVertexShader:()=>jk,downloadByteEncodedFloatMatrixFromOutputTexture:()=>aT,downloadFloat32MatrixFromBuffer:()=>iT,downloadMatrixFromPackedOutputTexture:()=>uT,downloadPackedMatrixFromBuffer:()=>lT,getInternalFormatForFloat16MatrixTexture:()=>zw,getInternalFormatForFloat16PackedMatrixTexture:()=>Gw,getInternalFormatForFloat32MatrixTexture:()=>Mw,getInternalFormatForPackedMatrixTexture:()=>Vw,getInternalFormatForUnsignedBytesMatrixTexture:()=>Bw,uploadDenseMatrixToTexture:()=>nT,uploadPixelDataToTexture:()=>oT});function jk(r){let t=He(),e=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return _k(r,e)}function Xk(r){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Dk(r,t)}function Yk(r){let t=new Uint16Array([0,1,2,2,1,3]);return Fk(r,t)}function ng(r,t,e,n,o,s){Ok(t,e);let i=Rk(r),a=r.TEXTURE_2D;return vt(r,()=>r.bindTexture(a,i)),vt(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),vt(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),vt(r,()=>r.texParameteri(a,r.TEXTURE_MIN_FILTER,r.NEAREST)),vt(r,()=>r.texParameteri(a,r.TEXTURE_MAG_FILTER,r.NEAREST)),B().getNumber("WEBGL_VERSION")===1?vt(r,()=>r.texImage2D(a,0,n,t,e,0,o,s,null)):vt(r,()=>r.texStorage2D(a,1,n,t,e)),vt(r,()=>r.bindTexture(r.TEXTURE_2D,null)),{texture:i,texShape:[e,t]}}function Mw(r){return r.internalFormatFloat}function Zk(r,t,e,n){let[o,s]=Wc(t,e);return ng(r,o,s,Mw(n),n.textureFormatFloat,r.FLOAT)}function zw(r){return r.internalFormatHalfFloat}function Jk(r,t,e,n){let[o,s]=Wc(t,e);return ng(r,o,s,zw(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Bw(r){return r.downloadTextureFormat}function Qk(r,t,e,n){let[o,s]=Wc(t,e);return ng(r,o,s,Bw(n),r.RGBA,r.UNSIGNED_BYTE)}function Vw(r){return r.internalFormatPackedFloat}function tT(r,t,e,n){let[o,s]=Ji(t,e);return ng(r,o,s,Vw(n),r.RGBA,r.FLOAT)}function Gw(r){return r.internalFormatPackedHalfFloat}function eT(r,t,e,n){let[o,s]=Ji(t,e);return ng(r,o,s,Gw(n),r.RGBA,n.textureTypeHalfFloat)}function rT(r,t,e){return vt(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),Tw(r,t,"clipSpacePos",e,3,20,0)&&Tw(r,t,"uv",e,2,20,12)}function nT(r,t,e,n,o,s){vt(r,()=>r.bindTexture(r.TEXTURE_2D,t));let i,a,u;o instanceof Uint8Array?(i=new Uint8Array(e*n*4),a=r.UNSIGNED_BYTE,u=r.RGBA):(i=new Float32Array(e*n*4),a=r.FLOAT,u=s.internalFormatPackedFloat),i.set(o),B().getNumber("WEBGL_VERSION")===2?vt(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e,n,r.RGBA,a,i)):vt(r,()=>r.texImage2D(r.TEXTURE_2D,0,u,e,n,0,r.RGBA,a,i)),vt(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function oT(r,t,e){vt(r,()=>r.bindTexture(r.TEXTURE_2D,t)),e.data instanceof Uint8Array?B().getNumber("WEBGL_VERSION")===2?vt(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e.width,e.height,r.RGBA,r.UNSIGNED_BYTE,e.data)):vt(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,e.width,e.height,0,r.RGBA,r.UNSIGNED_BYTE,e.data)):B().getNumber("WEBGL_VERSION")===2?vt(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,e)):vt(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,e)),vt(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function sT(r,t,e,n){let o=r.createBuffer();vt(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let a=4*4*t*e;return vt(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,a,r.STREAM_READ)),vt(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,0)),vt(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function iT(r,t,e){let n=r,o=new Float32Array(e);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function aT(r,t,e,n){let[o,s]=Wc(t,e),i=4,a=new Uint8Array(HL(t*e,i));return vt(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,a)),new Float32Array(a.buffer)}function lT(r,t,e,n,o,s,i,a){let u=r,l=new Float32Array(qL(s,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function uT(r,t,e){let n=new Float32Array(t*e*4);return vt(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,n)),n}var qc=class{constructor(t){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let e=B().getNumber("WEBGL_VERSION");t!=null?(this.gl=t,Sk(e,t)):this.gl=Gn(e);let n="WEBGL_color_buffer_float",o="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),B().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",i="OES_texture_half_float";if(this.textureFloatExtension=xd(this.gl,s),Wn(this.gl,i))this.textureHalfFloatExtension=xd(this.gl,i);else if(B().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Wn(this.gl,o))this.colorBufferHalfFloatExtension=xd(this.gl,o);else if(B().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Wn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Wn(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Xk(this.gl),this.indexBuffer=Yk(this.gl),this.framebuffer=Lk(this.gl),this.textureConfig=Qh(this.gl,this.textureHalfFloatExtension)}get debug(){return B().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let t=this.gl;vt(t,()=>t.finish()),vt(t,()=>t.bindFramebuffer(t.FRAMEBUFFER,null)),vt(t,()=>t.deleteFramebuffer(this.framebuffer)),vt(t,()=>t.bindBuffer(t.ARRAY_BUFFER,null)),vt(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null)),vt(t,()=>t.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(t,e){return this.throwIfDisposed(),Zk(this.gl,t,e,this.textureConfig)}createFloat16MatrixTexture(t,e){return this.throwIfDisposed(),Jk(this.gl,t,e,this.textureConfig)}createUnsignedBytesMatrixTexture(t,e){return this.throwIfDisposed(),Qk(this.gl,t,e,this.textureConfig)}uploadPixelDataToTexture(t,e){this.throwIfDisposed(),oT(this.gl,t,e)}uploadDenseMatrixToTexture(t,e,n,o){this.throwIfDisposed(),nT(this.gl,t,e,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(t,e){return this.throwIfDisposed(),eT(this.gl,t,e,this.textureConfig)}createPackedMatrixTexture(t,e){return this.throwIfDisposed(),tT(this.gl,t,e,this.textureConfig)}deleteMatrixTexture(t){this.throwIfDisposed(),this.outputTexture===t&&(_w(this.gl,this.framebuffer),this.outputTexture=null),vt(this.gl,()=>this.gl.deleteTexture(t))}downloadByteEncodedFloatMatrixFromOutputTexture(t,e,n){return this.downloadMatrixDriver(t,()=>aT(this.gl,e,n,this.textureConfig))}downloadPackedMatrixFromBuffer(t,e,n,o,s,i){return lT(this.gl,t,e,n,o,s,i,this.textureConfig)}downloadFloat32MatrixFromBuffer(t,e){return iT(this.gl,t,e)}createBufferFromTexture(t,e,n){this.bindTextureToFrameBuffer(t);let o=sT(this.gl,e,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let t=this.createFence(this.gl);return this.pollFence(t)}createFence(t){let e,n;if(B().getBool("WEBGL_FENCE_API_ENABLED")){let o=t,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);t.flush(),n=()=>{let i=o.clientWaitSync(s,0,0);return i===o.ALREADY_SIGNALED||i===o.CONDITION_SATISFIED},e=s}else B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(e=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(e,B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:e,isFencePassed:n}}downloadMatrixFromPackedTexture(t,e,n){return this.downloadMatrixDriver(t,()=>uT(this.gl,e,n))}createProgram(t){this.throwIfDisposed();let e=this.gl;this.vertexShader==null&&(this.vertexShader=jk(e));let n=Ak(e);return vt(e,()=>e.attachShader(n,this.vertexShader)),vt(e,()=>e.attachShader(n,t)),$k(e,n),this.debug&&tg(e,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=rT(e,this.program,this.vertexBuffer)),n}deleteProgram(t){this.throwIfDisposed(),t===this.program&&(this.program=null),t!=null&&vt(this.gl,()=>this.gl.deleteProgram(t))}setProgram(t){this.throwIfDisposed(),this.program=t,this.program!=null&&this.debug&&tg(this.gl,this.program),vt(this.gl,()=>this.gl.useProgram(t))}getUniformLocation(t,e,n=!0){return this.throwIfDisposed(),n?Pk(this.gl,t,e):Mk(this.gl,t,e)}getAttributeLocation(t,e){return this.throwIfDisposed(),vt(this.gl,()=>this.gl.getAttribLocation(t,e))}getUniformLocationNoThrow(t,e){return this.throwIfDisposed(),this.gl.getUniformLocation(t,e)}setInputMatrixTexture(t,e,n){this.throwIfDisposed(),this.throwIfNoProgram(),zk(this.gl,t,e,n)}setOutputMatrixTexture(t,e,n){this.setOutputMatrixTextureDriver(t,n,e)}setOutputPackedMatrixTexture(t,e,n){this.throwIfDisposed();let[o,s]=Ji(e,n);this.setOutputMatrixTextureDriver(t,o,s)}setOutputMatrixWriteRegion(t,e,n,o){this.setOutputMatrixWriteRegionDriver(n,t,o,e)}setOutputPackedMatrixWriteRegion(t,e,n,o){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&tg(this.gl,this.program),yd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let t=this.gl;this.debug&&this.debugValidate(),vt(t,()=>t.drawElements(t.TRIANGLES,6,t.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),vt(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=xd(this.gl,B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let t=this.getQueryTimerExtensionWebGL1(),e=t.createQueryEXT();return t.beginQueryEXT(t.TIME_ELAPSED_EXT,e),e}endQuery(){if(B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let e=this.gl,n=this.getQueryTimerExtensionWebGL2();e.endQuery(n.TIME_ELAPSED_EXT);return}let t=this.getQueryTimerExtensionWebGL1();t.endQueryEXT(t.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(t){return await x.repeatedTry(()=>this.disposed||this.isQueryAvailable(t,B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(t,B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(t,e){if(e===0)return null;if(e===2){let n=this.gl;return n.getQueryParameter(t,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(t,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(t,e){if(e===0)return!0;if(e===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(t,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(t,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(t){return new Promise(e=>{this.addItemToPoll(()=>t.isFencePassed(),()=>e())})}pollItems(){let t=Ltt(this.itemsToPoll.map(e=>e.isDoneFn));for(let e=0;e<=t;++e){let{resolveFn:n}=this.itemsToPoll[e];n()}this.itemsToPoll=this.itemsToPoll.slice(t+1)}addItemToPoll(t,e){this.itemsToPoll.push({isDoneFn:t,resolveFn:e}),!(this.itemsToPoll.length>1)&&x.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(t){this.throwIfDisposed(),eg(this.gl,t,this.framebuffer),this.debug&&yd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(eg(this.gl,this.outputTexture,this.framebuffer),this.debug&&yd(this.gl)):_w(this.gl,this.framebuffer)}downloadMatrixDriver(t,e){this.bindTextureToFrameBuffer(t);let n=e();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(t,e,n){this.throwIfDisposed();let o=this.gl;eg(o,t,this.framebuffer),this.debug&&yd(o),this.outputTexture=t,vt(o,()=>o.viewport(0,0,e,n)),vt(o,()=>o.scissor(0,0,e,n))}setOutputMatrixWriteRegionDriver(t,e,n,o){this.throwIfDisposed(),vt(this.gl,()=>this.gl.scissor(t,e,n,o))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Ltt(r){let t=0;for(;t<r.length&&r[t]();++t);return t-1}var{addImpl:iP,bincountImpl:Ww,bincountReduceImpl:aP,ceilImpl:lP,concatImpl:uP,equalImpl:cP,expImpl:pP,expm1Impl:mP,floorImpl:fP,gatherNdImpl:dP,gatherV2Impl:hP,greaterImpl:gP,greaterEqualImpl:xP,lessImpl:yP,lessEqualImpl:bP,linSpaceImpl:wP,logImpl:vP,maxImpl:CP,maximumImpl:IP,minimumImpl:SP,multiplyImpl:NP,negImpl:kP,notEqualImpl:TP,prodImpl:_P,rangeImpl:EP,rsqrtImpl:AP,scatterImpl:$P,sigmoidImpl:DP,simpleAbsImpl:Uw,sliceImpl:FP,sparseFillEmptyRowsImpl:RP,sparseReshapeImpl:OP,sparseSegmentReductionImpl:Hw,sqrtImpl:LP,stridedSliceImpl:PP,stringNGramsImpl:MP,stringSplitImpl:zP,stringToHashBucketFastImpl:BP,subImpl:VP,tileImpl:GP,topKImpl:WP,transposeImpl:Kc,uniqueImpl:UP}=yw;function pT(r,t){return["x","y","z","w","u","v"].slice(0,t).map(e=>`${r}.${e}`)}function tr(r,t){return t===1?[r]:pT(r,t)}function HP(r,t){if(r===1)return"rc";let e="";for(let n=0;n<r;n++)e+=t[n],n<r-1&&(e+=",");return e}var qw=class{constructor(t){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.enableShapeUniforms=De(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let e=tr("rc",this.rank),n=Wt(this.rank),o=this.getOutOfBoundsCondition(e),s=this.getSetup(e),i=this.getOutput(e);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${o}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}getSourceCoordsArr(t){let e=[];for(let n=0;n<=1;n++)for(let o=0;o<=1;o++){let s=`${n===0?"r":"rp1"}, ${o===0?"c":"cp1"}`;for(let i=2;i<this.rank;i++)s=`${t[t.length-1-i]},`+s;e.push(s)}return e}getOutOfBoundsCondition(t){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let e="";for(let n=this.rank-2;n<this.rank;n++)e+=`${t[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(e+="||");return e}getSetup(t){if(this.rank===1)return"";let e=t.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],o=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${e[0]};
int c = ${e[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${o};
`}getOutput(t){let e=this.getSourceCoordsArr(t);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${e[0]}),
cEdge ? 0. : getA(${e[1]}),
rEdge ? 0. : getA(${e[2]}),
rEdge || cEdge ? 0. : getA(${e[3]})`}};var Td=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length);let n="";for(let o=0;o<4;o++){let s="thisRC = rc;";o%2===1&&(s+="thisRC.z += 1;"),o>1&&(s+="thisRC.y += 1;"),n+=`
${s}
${o>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${o}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${o>0?"}":""}
`}this.userCode=`
${Ptt(e,this.enableShapeUniforms)}
${this.enableShapeUniforms?vd():wd(t)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":t[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":t[2]};
${n}
setOutput(result);
}
`}};function Ptt(r,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?ZL(["r","c","d"],"inputShape"):oi(["r","c","d"],r)}
return ivec3(r, c, d);
}
`}var Kw=class{constructor(t){this.gpgpu=t,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(t,e,n){let o=KP(e,n),s=jP(t,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let i=qP(t,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=i,this.log();let u=this.freeTextures[s].shift();return this.usedTextures[s].push(u),u}let a;return o===Rr.PACKED_2X2_FLOAT32?a=this.gpgpu.createPackedMatrixTexture(t[0],t[1]):o===Rr.PACKED_2X2_FLOAT16?a=this.gpgpu.createFloat16PackedMatrixTexture(t[0],t[1]):o===Rr.UNPACKED_FLOAT32?a=this.gpgpu.createFloat32MatrixTexture(t[0],t[1]):o===Rr.UNPACKED_FLOAT16?a=this.gpgpu.createFloat16MatrixTexture(t[0],t[1]):o===Rr.PACKED_4X1_UNSIGNED_BYTE&&(a=this.gpgpu.createUnsignedBytesMatrixTexture(t[0],t[1])),this.usedTextures[s].push(a),this.numUsedTextures++,this._numBytesAllocated+=i,this.log(),a}releaseTexture(t,e,n,o){if(this.freeTextures==null)return;let s=KP(n,o),i=jP(e,s,o);i in this.freeTextures||(this.freeTextures[i]=[]);let a=qP(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),u=B().get("WEBGL_DELETE_TEXTURE_THRESHOLD");u!==-1&&this._numBytesAllocated>u?(this.gpgpu.deleteMatrixTexture(t.texture),this._numBytesAllocated-=a):(this.freeTextures[i].push(t),this.numFreeTextures++,this._numBytesFree+=a),this.numUsedTextures--;let l=this.usedTextures[i],c=l.indexOf(t);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let t=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${t})`);let e=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*e)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let t in this.freeTextures)this.freeTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});for(let t in this.usedTextures)this.usedTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Mtt(r,t){let e=r;if(t===e.R32F)return 4;if(t===e.R16F)return 2;if(t===e.RGBA32F)return 16;if(t===r.RGBA)return 16;if(t===e.RGBA16F)return 8;if(t===e.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function qP(r,t,e,n,o){let s=ztt(t,n),i;if(o){let[u,l]=Ji(r[0],r[1]);i=u*l}else{let[u,l]=Wc(r[0],r[1]);i=u*l}let a=Mtt(e,s);return i*a}function ztt(r,t){switch(r){case Rr.PACKED_2X2_FLOAT32:return Vw(t);case Rr.PACKED_2X2_FLOAT16:return Gw(t);case Rr.UNPACKED_FLOAT32:return Mw(t);case Rr.UNPACKED_FLOAT16:return zw(t);case Rr.PACKED_4X1_UNSIGNED_BYTE:return Bw(t);default:throw new Error(`Unknown physical texture type ${r}`)}}function Btt(r){return B().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?Rr.PACKED_2X2_FLOAT32:Rr.UNPACKED_FLOAT32:r?Rr.PACKED_2X2_FLOAT16:Rr.UNPACKED_FLOAT16}function KP(r,t){if(r===Hr.UPLOAD)return Rr.PACKED_2X2_FLOAT32;if(r===Hr.RENDER||r==null)return Btt(t);if(r===Hr.DOWNLOAD||r===Hr.PIXELS)return Rr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function jP(r,t,e){return`${r[0]}_${r[1]}_${t}_${e}`}var Zr=class{constructor(t,e){this.variableNames=["A"],this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${e}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},fr="if (isnan(x)) return x;",XP="return x;",mT="return abs(x);";var YP="return (x >= 0.0) ? x : (exp(x) - 1.0);",ZP=fr+`
return (x < 0.0) ? 0.0 : x;
`,JP=fr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,jc="return x;",QP="return 1.0 / (1.0 + exp(-1.0 * x));";var eM="return x;",rM=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,nM=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,oM=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,sM="return 1.0 / (1.0 + exp(-1.0 * x));",eo=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${e}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}};var jw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length);let e=t.length,n=tr("rc",e),o=Wt(e),s=HP(e,n),i=n.slice(-2),a=e<=1?"rc":`vec2(${i.join(",")})`;this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${a}));
}
`}};var Gtt=Vr.whereImpl,Wtt=1e-7,Utt=1e-4,Xw={};function Htt(r){return r in Xw||(Xw[r]={}),Xw[r]}var qtt=B().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),Ktt=600;function jtt(){return B().global.screen==null?1024:B().global.screen.height*B().global.screen.width*window.devicePixelRatio*Ktt/1024/1024}var ku=class extends Uo{constructor(t){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!B().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let e;if(t!=null){if(t instanceof qc)e=t;else{let n=Gn(B().getNumber("WEBGL_VERSION"),t);e=new qc(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Gn(B().getNumber("WEBGL_VERSION"));e=new qc(n),this.binaryCache=Htt(B().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=e,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new Kw(this.gpgpu),this.numMBBeforeWarning=jtt(),this.texData=new Qi(this,go())}nextDataId(){return ku.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(t,e,n){if((B().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||B().getBool("DEBUG"))&&this.checkNumericalProblems(t),n==="complex64"&&t!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let o={id:this.nextDataId()};return this.texData.set(o,{shape:e,dtype:n,values:t,usage:Hr.UPLOAD,refCount:1}),o}refCount(t){return this.texData.has(t)?this.texData.get(t).refCount:0}incRef(t){let e=this.texData.get(t);e.refCount++}decRef(t){if(this.texData.has(t)){let e=this.texData.get(t);e.refCount--}}move(t,e,n,o,s){if(B().getBool("DEBUG")&&this.checkNumericalProblems(e),o==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(t,{shape:n,dtype:o,values:e,usage:Hr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}readSync(t){let e=this.texData.get(t),{values:n,dtype:o,complexTensorInfos:s,slice:i,shape:a,isPacked:u}=e;if(i!=null){let m;u?m=new eo(a,jc):m=new Zr(a,jc);let f=this.runWebGLProgram(m,[{dataId:t,shape:a,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(t);if(o==="string")return n;let l=this.activeTimers!=null,c;l&&(c=x.now());let p;if(o==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=S.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(t);return l&&(this.downloadWaitMs+=x.now()-c),this.convertAndCacheOnCPU(t,p)}async read(t){if(this.pendingRead.has(t)){let d=this.pendingRead.get(t);return new Promise(h=>d.push(h))}let e=this.texData.get(t),{values:n,shape:o,slice:s,dtype:i,complexTensorInfos:a,isPacked:u}=e;if(s!=null){let d;u?d=new eo(o,jc):d=new Zr(o,jc);let h=this.runWebGLProgram(d,[{dataId:t,shape:o,dtype:i}],i),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(t);if(B().getBool("DEBUG")&&!B().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&B().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(i!=="complex64"&&B().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(t);let d=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(d.texture.texture,...Jh(o))}this.pendingRead.set(t,[]),i!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(i==="complex64"){let d=await Promise.all([this.read(a.real.dataId),this.read(a.imag.dataId)]),h=d[0],g=d[1];p=S.mergeRealAndImagArrays(h,g)}else if(l==null)p=this.getValuesFromTexture(t);else{let d=x.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,d)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let d=this.gpgpu.gl;vt(d,()=>d.deleteBuffer(l))}let m=this.convertAndCacheOnCPU(t,p),f=this.pendingRead.get(t);return this.pendingRead.delete(t),f.forEach(d=>d(m)),this.pendingDisposal.has(t)&&(this.pendingDisposal.delete(t),this.disposeData(t)&&go().removeDataId(t,this),this.pendingDeletes--),m}readToGPU(t,e={}){let n=this.texData.get(t),{values:o,shape:s,slice:i,dtype:a,isPacked:u,texture:l}=n;if(a==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(i!=null){let f;u?f=new eo(s,jc):f=new Zr(s,jc);let d=this.runWebGLProgram(f,[{dataId:t,shape:s,dtype:a}],a),h=this.readToGPU(d,e);return this.disposeIntermediateTensorInfo(d),h}if(l==null)throw o!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let c=this.decode(t,e.customTexShape),p=go().makeTensorFromTensorInfo(c),m=this.texData.get(c.dataId);return Object.assign({tensorRef:p},m.texture)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype==="string")try{let n=e.map(o=>x.decodeString(o));return Ct(t.shape,t.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ct(t.shape,t.dtype,e)}checkNumericalProblems(t){if(t!=null)for(let e=0;e<t.length;e++){let n=t[e];if(!Tk(n))throw B().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(t){let{shape:e,dtype:n,isPacked:o}=this.texData.get(t),s=x.sizeFromShape(e);if(B().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(t),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture.texture,...Jh(e)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let i=B().getBool("WEBGL_PACK")&&o===!0,a=i?rg(e):e,u=i?new Ow(a):new Rw(a),l=this.runWebGLProgram(u,[{shape:a,dtype:n,dataId:t}],"float32"),c=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(t){let e=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,t();let s=x.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),i=x.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=e,o&&(this.programTimersStack=null);let a={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let u=await Promise.all(s);a.kernelMs=x.sum(u),a.getExtraProfileInfo=()=>u.map((l,c)=>({name:i[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else a.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,a})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:x.now(),endMs:null}}endTimer(t){return B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),t):(t.endMs=x.now(),t)}async getQueryTime(t){if(B().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(t);let e=t;return e.endMs-e.startMs}disposeData(t,e=!1){if(this.pendingDisposal.has(t))return!1;if(!this.texData.has(t))return!0;if(e?this.texData.get(t).refCount=0:this.texData.get(t).refCount--,!e&&this.texData.get(t).refCount>0)return!1;if(this.pendingRead.has(t))return this.pendingDisposal.add(t),this.pendingDeletes++,!1;this.releaseGPUData(t);let{complexTensorInfos:n}=this.texData.get(t);return n!=null&&(this.disposeData(n.real.dataId,e),this.disposeData(n.imag.dataId,e)),this.texData.delete(t),!0}releaseGPUData(t){let{texture:e,dtype:n,texShape:o,usage:s,isPacked:i,slice:a}=this.texData.get(t),u=a&&a.origDataId||t,l=this.dataRefCount.get(u);l>1?this.dataRefCount.set(u,l-1):(this.dataRefCount.delete(u),e!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(e,o,s,i)));let c=this.texData.get(t);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(t){return this.uploadToGPU(t),this.texData.get(t).texture.texture}getDataInfo(t){return this.texData.get(t)}shouldExecuteOnCPU(t,e=qtt){return B().getBool("WEBGL_CPU_FORWARD")&&t.every(n=>this.texData.get(n.dataId).texture==null&&x.sizeFromShape(n.shape)<e)}getGPGPUContext(){return this.gpgpu}where(t){S.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let e=t.dataSync();return Gtt(t.shape,e)}packedUnaryOp(t,e,n){let o=new eo(t.shape,e),s=this.compileAndRun(o,[t],n);return go().makeTensorFromTensorInfo(s)}abs(t){if(this.shouldExecuteOnCPU([t])&&t.dtype!=="complex64"){let o=Uw(this.texData.get(t.dataId).values);return this.makeOutput(t.shape,t.dtype,o)}if(B().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,mT,t.dtype);let e=new Zr(t.shape,mT),n=this.compileAndRun(e,[t]);return go().makeTensorFromTensorInfo(n)}makeTensorInfo(t,e,n){let o;if(e==="string"&&n!=null&&n.length>0&&x.isString(n[0])){let s=n.map(i=>x.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return this.texData.get(o).usage=null,{dataId:o,shape:t,dtype:e}}makeOutput(t,e,n){return go().makeTensorFromTensorInfo(this.makeTensorInfo(t,e,n),this)}unpackTensor(t){let e=new jw(t.shape);return this.runWebGLProgram(e,[t],t.dtype)}packTensor(t){let e=new qw(t.shape),n=!0;return this.runWebGLProgram(e,[t],t.dtype,null,n)}packedReshape(t,e){let n=[fl(t.shape),...dl(t.shape)],o={dtype:t.dtype,shape:n,dataId:t.dataId},s=[fl(e),...dl(e)],i=new Td(s,n),a=!0,u=[n],l=this.runWebGLProgram(i,[o],t.dtype,u,a);return{dataId:l.dataId,shape:e,dtype:l.dtype}}decode(t,e){let n=this.texData.get(t),{isPacked:o,shape:s,dtype:i}=n;if(e!=null){let m=x.sizeFromShape(s),f=e[0]*e[1]*4;x.assert(m<=f,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let a=rg(s),u;o?u=new Fw(a):u=new Dw(a);let l=!0,c=[e!=null?e:Jh(a)],p=this.runWebGLProgram(u,[{shape:a,dtype:i,dataId:t}],i,c,l,e);return{dtype:i,shape:s,dataId:p.dataId}}runWebGLProgram(t,e,n,o,s=!1,i){let a=this.makeTensorInfo(t.outputShape,n),u=this.texData.get(a.dataId);if(t.packedOutput&&(u.isPacked=!0),t.outPackingScheme===Su.DENSE){let y=i!=null?i:Jh(t.outputShape);u.texShape=y.map(b=>b*2)}if(t.outTexUsage!=null&&(u.usage=t.outTexUsage),x.sizeFromShape(a.shape)===0)return u.values=x.getTypedArrayFromDType(a.dtype,0),a;let l=[],c=e.map(y=>{if(y.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(y.dataId);if(b.texture==null){if(!t.packedInputs&&x.sizeFromShape(y.shape)<=B().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:y.shape,texData:null,isUniform:!0,uniformValues:b.values};t.packedInputs&&(b.isPacked=!0,b.shape=y.shape)}if(this.uploadToGPU(y.dataId),!!b.isPacked!=!!t.packedInputs)y=b.isPacked?this.unpackTensor(y):this.packTensor(y),l.push(y),b=this.texData.get(y.dataId);else if(b.isPacked&&!Nu(b.shape,y.shape)){let w=y,v=y.shape;y.shape=b.shape,y=this.packedReshape(y,v),l.push(y),b=this.texData.get(y.dataId),w.shape=v}return{shape:y.shape,texData:b,isUniform:!1}});this.uploadToGPU(a.dataId);let p={shape:a.shape,texData:u,isUniform:!1},m=sP(t,c,p),f=this.getAndSaveBinary(m,()=>nP(this.gpgpu,t,c,p)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),B().get("ENGINE_COMPILE_ONLY")||oP(this.gpgpu,f,c,p,o),l.forEach(y=>this.disposeIntermediateTensorInfo(y)),d&&(h=this.endTimer(h),this.activeTimers.push({name:t.constructor.name,query:this.getQueryTime(h)}));let g=B().get("WEBGL_FLUSH_THRESHOLD");if(g>0){let y=x.now();y-this.lastGlFlushTime>g&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=y)}if(!B().getBool("WEBGL_LAZILY_UNPACK")&&u.isPacked&&s===!1){let y=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),y}return a}compileAndRun(t,e,n,o,s=!1){return n=n||e[0].dtype,this.runWebGLProgram(t,e,n,o,s)}getAndSaveBinary(t,e){return t in this.binaryCache||(this.binaryCache[t]=e()),this.binaryCache[t]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(B().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=W(()=>{if(!B().get("WEBGL_RENDER_FLOAT32_ENABLED")){let t=B().getBool("DEBUG");B().set("DEBUG",!1);let e=this.abs(pt(1e-8)).dataSync()[0];if(B().set("DEBUG",t),e>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Wtt:Utt}uploadToGPU(t){let e=this.texData.get(t),{shape:n,dtype:o,values:s,texture:i,usage:a,isPacked:u}=e;if(i!=null)return;let l=this.activeTimers!=null,c;l&&(c=x.now());let p=e.texShape;if(p==null&&(p=Bk(n,u),e.texShape=p),s!=null){let m=rg(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array||s instanceof Uint8ClampedArray;(u||!g)&&([d,h]=Ji(p[0],p[1])),u?f=new Pw(m,g):f=new Lw(m,g);let y=g?[h,d]:p,b=this.makeTensorInfo(y,o),w=this.texData.get(b.dataId);g?w.usage=Hr.PIXELS:w.usage=Hr.UPLOAD,w.texShape=y,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),d,h,s);let v=[[h,d]],N=!0,E=this.runWebGLProgram(f,[b],o,v,N),$=this.texData.get(E.dataId);e.texShape=$.texShape,e.isPacked=$.isPacked,e.usage=$.usage,B().get("ENGINE_COMPILE_ONLY")?this.disposeData(E.dataId):(e.texture=$.texture,e.values=null,this.texData.delete(E.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=x.now()-c)}else{let m=this.acquireTexture(p,a,o,u);e.texture=m}}convertAndCacheOnCPU(t,e){let n=this.texData.get(t),{dtype:o}=n;return this.releaseGPUData(t),e!=null&&(n.values=Xtt(e,o)),n.values}acquireTexture(t,e,n,o){if(this.numBytesInGPU+=this.computeBytes(t,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(t,e,o)}computeBytes(t,e){return t[0]*t[1]*x.bytesPerElement(e)}checkCompileCompletion(){for(let[,t]of Object.entries(this.binaryCache))this.checkCompletion_(t)}async checkCompileCompletionAsync(){let t=[];if(this.gpgpu.parallelCompilationExtension){for(let[,e]of Object.entries(this.binaryCache))t.push(this.checkCompletionAsync_(e));return Promise.all(t)}else{for(let[,e]of Object.entries(this.binaryCache)){let n=new Promise(o=>{try{this.checkCompletion_(e),o(!0)}catch(s){throw s}});t.push(n)}return Promise.all(t)}}async checkCompletionAsync_(t){return this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(t):(await wh(),this.checkCompletionAsync_(t))}checkCompletion_(t){if(this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)),this.gpgpu.gl.getShaderParameter(t.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(kw(t.source,this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,t]of Object.entries(this.binaryCache)){let{uniformLocations:e,customUniformLocations:n,infLoc:o,nanLoc:s,inShapesLocations:i,inTexShapesLocations:a,outShapeLocation:u,outShapeStridesLocation:l,outTexShapeLocation:c}=Kk(this.gpgpu,t.program,t.webGLProgram);t.uniformLocations=e,t.customUniformLocations=n,t.infLoc=o,t.nanLoc=s,t.inShapesLocations=i,t.inTexShapesLocations=a,t.outShapeLocation=u,t.outShapeStridesLocation=l,t.outTexShapeLocation=c}}};ku.nextDataId=0;function Xtt(r,t){if(t==="float32"||t==="complex64")return r;if(t==="int32"||t==="bool"){let e=t==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;n<e.length;++n)e[n]=Math.round(r[n]);return e}else throw new Error(`Unknown dtype ${t}`)}var iM="3.19.0";function aM(){B().set("WEBGL_FORCE_F16_TEXTURES",!0)}Gl.isBrowser()&&sm("webgl",()=>new ku,2);var bke={forceHalfFloat:aM};var Yw=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;var ro=class{constructor(t,e,n){this.variableNames=["A","B"],this.outputShape=S.assertAndGetBroadcastShape(e,n),this.enableShapeUniforms=De(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${t}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}};var Tu=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;var Fo=class{constructor(t,e,n,o=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=S.assertAndGetBroadcastShape(e,n);let s=this.outputShape.length;this.enableShapeUniforms=De(s);let i="";if(o)if(s===0||x.sizeFromShape(this.outputShape)===1)i=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(i=`
${Wt(s)} coords = getOutputCoords();
`,s===1)this.enableShapeUniforms?i+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:i+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let u=tr("coords",s);this.enableShapeUniforms?i+=`
bool nextRowOutOfBounds =
(${u[s-2]} + 1) >= outShape[${s} - 2];
bool nextColOutOfBounds =
(${u[s-1]} + 1) >= outShape[${s} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:i+=`
bool nextRowOutOfBounds =
(${u[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${u[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${t}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${i}
setOutput(result);
}
`}};function er(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var lM={kernelName:lo,backendName:"webgl",kernelFunc:er};function An(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.makeTensorInfo(n.shape,"complex64"),i=e.texData.get(s.dataId),a=er({inputs:{x:n},backend:e}),u=er({inputs:{x:o},backend:e});return i.complexTensorInfos={real:a,imag:u},s}var uM={kernelName:Sp,backendName:"webgl",kernelFunc:An};var fT="return (a < 0.) ? b * a : a;",dT=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function Ytt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n,i=e.makeTensorInfo([],"float32",x.createScalarValue(s,"float32")),a=B().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Fo(dT,o.shape,i.shape):new ro(fT,o.shape,i.shape),u=e.runWebGLProgram(a,[o,i],"float32");return e.disposeIntermediateTensorInfo(i),u}var cM={kernelName:ps,backendName:"webgl",kernelFunc:Ytt};var hT="return (a < 0.) ? b * a : a;",gT=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function Ztt(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=B().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Fo(gT,n.shape,o.shape):new ro(hT,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],"float32")}var pM={kernelName:Ss,backendName:"webgl",kernelFunc:Ztt};var Ro="if (isnan(x)) return x;",mM=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,fM=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function It({opSnippet:r,packedOpSnippet:t,cpuKernelImpl:e,dtype:n}){return({inputs:o,backend:s})=>{let{x:i}=o,a=s,u=n||i.dtype;if(a.shouldExecuteOnCPU([i])&&e!=null){let p=a.texData.get(i.dataId),m=e(p.values,u);return a.makeTensorInfo(i.shape,u,m)}let l=B().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return l?c=new eo(i.shape,t):c=new Zr(i.shape,r),a.runWebGLProgram(c,[i],u)}}function ce({opSnippet:r,packedOpSnippet:t,checkOutOfBounds:e=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:i,backend:a})=>{let{a:u,b:l}=i,c=a;if(n&&u.dtype==="complex64"){let d=c.texData.get(u.dataId),h=c.texData.get(l.dataId),[g,y]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[v,N]=w,E={dataId:v.dataId,dtype:v.dtype,shape:u.shape},$={dataId:N.dataId,dtype:N.dtype,shape:l.shape},D=new ro(r,u.shape,l.shape);return c.runWebGLProgram(D,[E,$],ir(v.dtype,N.dtype))}),b=An({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),b}let p=s||ir(u.dtype,l.dtype);if((u.dtype==="string"||l.dtype==="string"||c.shouldExecuteOnCPU([u,l]))&&o!=null){let d=c.texData.get(u.dataId).values,h=c.texData.get(l.dataId).values,g=u.dtype==="string"?S.fromUint8ToStringArray(d):d,y=u.dtype==="string"?S.fromUint8ToStringArray(h):h,[b,w]=o(u.shape,l.shape,g,y,p),v=c.makeTensorInfo(w,p),N=c.texData.get(v.dataId);return N.values=b,v}let m=B().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,f;return m?f=new Fo(t,u.shape,l.shape,e):f=new ro(r,u.shape,l.shape),c.runWebGLProgram(f,[u,l],p)}}function _u(r,t=!1){if(r==="linear")return t?eM:XP;if(r==="relu")return t?nM:ZP;if(r==="elu")return t?rM:YP;if(r==="relu6")return t?oM:JP;if(r==="prelu")return t?gT:hT;if(r==="leakyrelu")return t?dT:fT;if(r==="sigmoid")return t?sM:QP;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var _d=class{constructor(t,e,n,o=!1,s=!1,i=!1,a=null,u=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=De(this.outputShape.length);let c=o?t[1]:t[2],p=Math.ceil(c/2),m=o?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=o?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",y="";a&&(u?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${a}
}`:l?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${a}
}`:g=`vec4 activation(vec4 x) {
${a}
}`,y="result = activation(result);");let b=i?"result += getBiasAtOutCoords();":"";i&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let w="rc.x",v="rc.x";t[0]<e[0]?w=`int(min(float(rc.x), ${t[0]-1}.))`:e[0]<t[0]&&(v=`int(min(float(rc.x), ${e[0]-1}.))`),this.userCode=`
${g}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${w};
int batchB = ${v};
vec4 a = getMatrixA(batchA, ${m});
vec4 b = getMatrixB(batchB, ${f});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${d[0]} * ${h[0]});
result += (${d[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${y}
setOutput(result);
}
`}};var xT={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},og=class{constructor(t,e,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=S.assertAndGetBroadcastShape(e,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${t}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}};var dM="return a * b;";function sg(r){let{inputs:t,backend:e}=r,{a:n,b:o}=t,s=S.upcastType(n.dtype,o.dtype);if(n.dtype==="complex64"){let a=e.texData.get(n.dataId),u=e.texData.get(o.dataId),l=new og(xT.REAL,n.shape,o.shape),c=new og(xT.IMAG,n.shape,o.shape),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:n.shape},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:u.complexTensorInfos.real.dataId,dtype:u.complexTensorInfos.real.dtype,shape:o.shape},{dataId:u.complexTensorInfos.imag.dataId,dtype:u.complexTensorInfos.imag.dtype,shape:o.shape}],m=e.runWebGLProgram(l,p,"float32"),f=e.runWebGLProgram(c,p,"float32"),d=An({inputs:{real:m,imag:f},backend:e});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}if(e.shouldExecuteOnCPU([n,o])){let a=e.texData.get(n.dataId),u=e.texData.get(o.dataId),[l,c]=NP(n.shape,o.shape,a.values,u.values,s),p=e.makeTensorInfo(c,s),m=e.texData.get(p.dataId);return m.values=l,p}let i;return B().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Fo(dM,n.shape,o.shape):i=new ro(dM,n.shape,o.shape),e.runWebGLProgram(i,[n,o],s)}var hM={kernelName:ws,backendName:"webgl",kernelFunc:sg};function gM(r,t,e){let n=[fl(r.shape),...dl(r.shape)],o={dtype:r.dtype,shape:n,dataId:r.dataId},s=[fl(t),...dl(t)],i=new Td(s,n),a=!0,u=[n],l=e.runWebGLProgram(i,[o],r.dtype,u,a);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function at(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=e,a=x.sizeFromShape(o.shape),u=x.inferFromImplicitShape(s,a),l=x.sizeFromShape(u);x.assert(a===l,()=>`The new shape (${u}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(o.dataId);return c.isPacked&&!Nu(o.shape,u)&&!(c.texture!==null&&Nu(c.shape,u))?gM(o,u,i):(i.incRef(o.dataId),{dataId:o.dataId,shape:u,dtype:o.dtype})}var xM={kernelName:yi,backendName:"webgl",kernelFunc:at};var ig=class{constructor(t,e){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a=Math.floor(n/4)*4,u=n%4,l="sumValue += dot(values, ones);";if(e!=null){let p=1/e;l=`sumValue += dot(values * ${x.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${a}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${a};
if (${u===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}};var Zw=class{constructor(t,e){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a="0.0",u="";e==="prod"?a="1.0":e==="min"?(a="1.0 / 1e-20",u="min"):e==="max"&&(a="-1.0 / 1e-20",u="max");let l=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="sum"?l="sumValue":e==="prod"?l="prodValue":e==="all"?l="allValue":e==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,p=n%4,m=`
if (${e==="sum"}) {
sumValue += dot(values, ones);
} else if (${e==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${u}(values, minMaxValue);
if (${e==="min"} || ${e==="max"}) {
minMaxValue = ${u}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,f="vec4";e==="all"?(a="1.0",m=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,f="bvec4"):e==="any"&&(a="0.0",m=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,f="bvec4");let d="";s%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${a};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${a});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
${f} values = ${f}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${m}
} else if (${p===2}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${m}
} else if (${p===3}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${m}
}
setOutput(${l});
}
`}};function Qtt(r){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let e=t.length?t[t.length-1].outSize:r[1],n=S.computeOptimalWindowSize(e);t.push({inSize:e,windowSize:n,outSize:Math.ceil(e/n)})}return t}function Un(r,t,e,n){let o=Qtt(r.shape),s=r;for(let i=0;i<o.length;i++){let{inSize:a,windowSize:u,outSize:l}=o[i],c,p;e==="mean"?c=i===0?new ig({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l},a):new ig({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l}):c=new Zw({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l},e),p=s,s=n.runWebGLProgram(c,[s],t),p.dataId!==r.dataId&&n.disposeIntermediateTensorInfo(p)}return s}var Jw=class{constructor(t,e){this.variableNames=["A"];let n=new Array(t.length);for(let i=0;i<n.length;i++)n[i]=t[e[i]];this.outputShape=n,this.rank=n.length;let o=Wt(this.rank),s=tet(e);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function tet(r){let t=r.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let o=0;o<r.length;o++)n[r[o]]=e[o];return n.join()}var Qw=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(t.length);for(let c=0;c<n.length;c++)n[c]=t[e[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=Wt(this.rank),s=pT("rc",this.rank),i=new Array(this.rank);for(let c=0;c<e.length;c++)i[e[c]]=s[c];let a=`vec2(${i.slice(-2).join()})`,u=`++${s[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${i.join()}), ${a})`;this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${u}) {
result[1] = ${l};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${u}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Eu(r,t,e){let n=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Qw(r.shape,t):new Jw(r.shape,t);return e.runWebGLProgram(n,[r],r.dtype)}function yM(r,t,e,n){let o=t,s=r.shape.length,i=x.parseAxisParam(o,r.shape),a=i,u=S.getAxesPermutation(a,s),l=u!=null,c=r;l&&(c=Eu(r,u,n),a=S.getInnerMostAxes(a.length,s)),S.assertAxesAreInnerMostDims("sum",a,s);let[p,m]=S.computeOutAndReduceShapes(c.shape,a),f=p;e&&(f=S.expandShapeToKeepDim(p,i));let d=x.sizeFromShape(m),g=x.sizeFromShape(r.shape)/d,y=at({inputs:{x:c},attrs:{shape:[g,d]},backend:n}),b=Ku(r.dtype),w=Un(y,b,"sum",n),v=at({inputs:{x:w},attrs:{shape:f},backend:n});return n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(w),l&&n.disposeIntermediateTensorInfo(c),v}function Xc(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;return yM(o,s,i,e)}var bM={kernelName:Ls,backendName:"webgl",kernelFunc:Xc};function Pe(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{perm:s}=n,i=e,a=o.shape.length,u=new Array(a);for(let c=0;c<u.length;c++)u[c]=o.shape[s[c]];let l;if(i.shouldExecuteOnCPU([o])){let p=i.texData.get(o.dataId).values,m=Kc(p,o.shape,o.dtype,s,u);l=i.makeTensorInfo(u,o.dtype);let f=i.texData.get(l.dataId);f.values=m}else l=Eu(o,s,i);return l}var wM={kernelName:Yn,backendName:"webgl",kernelFunc:Pe};var yT=1e3;function Yc({a:r,b:t,transposeA:e,transposeB:n,backend:o,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:a=0,activation:u=null}){let l=r.shape.length,c=t.shape.length,p=e?r.shape[l-2]:r.shape[l-1],m=n?t.shape[c-1]:t.shape[c-2],f=e?r.shape[l-1]:r.shape[l-2],d=n?t.shape[c-2]:t.shape[c-1],h=r.shape.slice(0,-2),g=t.shape.slice(0,-2),y=x.sizeFromShape(h),b=x.sizeFromShape(g),v=Pr.assertAndGetBroadcastShape(r.shape.slice(0,-2),t.shape.slice(0,-2)).concat([f,d]);x.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${t.shape} and transposeA=${e} and transposeB=${n} must match.`);let N=e?[y,p,f]:[y,f,p],E=n?[b,d,m]:[b,m,d],$=at({inputs:{x:r},backend:o,attrs:{shape:N}}),D=at({inputs:{x:t},backend:o,attrs:{shape:E}}),L=[$,D],M=Math.max(y,b),G=e?$.shape[1]:$.shape[2],H=s!=null,q=i!=null,X=u==="leakyrelu",j=u!=null?_u(u,!0):null,J=H||q||X||j!=null,nt;if((f===1||d===1)&&G>yT&&J===!1){let ot=$,st=D;e&&(ot=Pe({inputs:{x:$},backend:o,attrs:{perm:[0,2,1]}}),L.push(ot)),n&&(st=Pe({inputs:{x:D},backend:o,attrs:{perm:[0,2,1]}}),L.push(st));let it=d!==1,ft=d===1,lt=ot;it&&(lt=at({inputs:{x:ot},backend:o,attrs:{shape:[M,G,1]}}),L.push(lt));let xt=d===1?2:1,dt=st;ft&&(dt=at({inputs:{x:st},backend:o,attrs:{shape:[M,1,G]}}),L.push(dt));let bt=sg({inputs:{a:lt,b:dt},backend:o});nt=Xc({inputs:{x:bt},backend:o,attrs:{axis:xt,keepDims:!0}}),L.push(bt)}else{let ot=ir(r.dtype,t.dtype),st=new _d(N,E,[M,f,d],e,n,H,j,q,X),it=[$,D];if(s!=null&&it.push(s),q&&it.push(i),X){let ft=o.makeTensorInfo([],"float32",x.createScalarValue(a,"float32"));it.push(ft),L.push(ft)}nt=o.runWebGLProgram(st,it,ot)}let K=at({inputs:{x:nt},backend:o,attrs:{shape:v}});L.push(nt);for(let ot of L)o.disposeIntermediateTensorInfo(ot);return K}function eet(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n;return Yc({a:o,b:s,transposeA:u,transposeB:l,backend:e,bias:i,preluActivationWeights:a,leakyreluAlpha:p,activation:c})}var vM={kernelName:Ni,backendName:"webgl",kernelFunc:eet};var CM="return abs(x);";function ret(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=e.texData.get(n.dataId),i=Uw(s.values);return e.makeTensorInfo(n.shape,n.dtype,i)}let o;return B().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new eo(n.shape,CM):o=new Zr(n.shape,CM),e.runWebGLProgram(o,[n],n.dtype)}var IM={kernelName:ci,backendName:"webgl",kernelFunc:ret};var net=fr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,oet=It({opSnippet:net}),SM={kernelName:ea,backendName:"webgl",kernelFunc:oet};var set=fr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,iet=It({opSnippet:set}),NM={kernelName:ra,backendName:"webgl",kernelFunc:iet};var kM="return a + b;",aet=ce({opSnippet:kM,packedOpSnippet:kM,supportsComplex:!0,cpuKernelImpl:iP}),TM={kernelName:jn,backendName:"webgl",kernelFunc:aet};var tv=class{constructor(t,e){this.outputShape=[],this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${o};
setOutput(result);
}
`}};var ev=class{constructor(t,e){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${o};
setOutput(result);
}
`}};function rv(r){let{inputs:t,backend:e}=r,n=t;if(n.length===1)return er({inputs:{x:n[0]},backend:e});if(n.length>B().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(n.length/2),l=rv({inputs:n.slice(0,u),backend:e}),c=rv({inputs:n.slice(u),backend:e});return rv({inputs:[l,c],backend:e})}let o=n.map(u=>u.dtype).reduce((u,l)=>ir(u,l)),s=n.map(u=>u.shape),a=B().getBool("WEBGL_PACK")?new ev(n[0].shape,s):new tv(n[0].shape,s);return e.runWebGLProgram(a,n,o)}var _M={kernelName:Ko,backendName:"webgl",kernelFunc:rv};function uet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=x.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims("all",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=x.sizeFromShape(f),h=at({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Un(h,h.dtype,"all",e),y;if(i){let b=S.expandShapeToKeepDim(m,u);y=at({inputs:{x:g},backend:e,attrs:{shape:b}})}else y=at({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),y}var EM={kernelName:na,backendName:"webgl",kernelFunc:uet};function cet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=x.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims("any",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=x.sizeFromShape(f),h=at({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Un(h,h.dtype,"any",e),y;if(i){let b=S.expandShapeToKeepDim(m,u);y=at({inputs:{x:g},backend:e,attrs:{shape:b}})}else y=at({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),y}var AM={kernelName:oa,backendName:"webgl",kernelFunc:cet};var nv=class{constructor(t,e,n){this.variableNames=["A"];let{windowSize:o,batchSize:s,outSize:i}=t;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,i];let a=e==="max"?">":"<",u=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${o}; i++) {
int inIdx = ${u};
float candidate = getA(batch, inIdx);
if (candidate ${a} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}};var ov=class{constructor(t,e,n,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,x.assert(t.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=t[t.length-1],i=Math.ceil(s/e);this.outputShape=t.slice(0,-1),i>1&&this.outputShape.push(i),o||this.variableNames.push("bestIndicesA");let a=this.outputShape,u=a.length,l=Wt(u),c=tr("coords",u),p,m;if(i===1){m=u+1;let D=Wt(m);p=`
${D} sourceLocR = ${D}(${c.join()}, 0);
++${c[u-1]};
${D} sourceLocG = ${D}(${c.join()}, 0);
++${c[u-2]};
${D} sourceLocA = ${D}(${c.join()}, 0);
--${c[u-1]};
${D} sourceLocB = ${D}(${c.join()}, 0);
--${c[u-2]};`}else m=u,p=`
${l} sourceLocR = coords;
++${c[u-1]};
${l} sourceLocG = coords;
++${c[u-2]};
${l} sourceLocA = coords;
--${c[u-1]};
${l} sourceLocB = coords;
--${c[u-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(D=>"int "+D),g=tr("sourceLocR",m-1).concat("inIdx.r"),y=tr("sourceLocG",m-1).concat("inIdx.g"),b=tr("sourceLocB",m-1).concat("inIdx.b"),w=tr("sourceLocA",m-1).concat("inIdx.a"),v=n==="max"?"greaterThan":"lessThan",N=o?"":`
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${w.join()})));`,E=`vec4(
getAChannel(${g.join()}),
hasNextCol ? getAChannel(${y.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,$=o?"":`
float getBestIndicesAChannel(${h.join()}) {
return getChannel(getBestIndicesA(${f.join()}),
vec2(${f.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${h.join()}) {
return getChannel(getA(${f.join()}),
vec2(${f.slice(-2).join()}));
}
${$}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[u-1]} < ${a[u-1]-1};
bool hasNextRow = ${c[u-2]} < ${a[u-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
sourceLocB${d}, sourceLocA${d}) * ${e};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${E};
for (int i = 0; i < ${e}; i++) {
inIdx = srcIdx;
${N}
vec4 candidate = ${E};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${v}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function $M(r,t,e,n=null){let o=t.shape[0],s=t.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let i=S.computeOptimalWindowSize(s),a={windowSize:i,inSize:s,batchSize:o,outSize:Math.ceil(s/i)},u=new nv(a,e,n==null),l=[t];n!=null&&l.push(n);let c=r.runWebGLProgram(u,l,"int32");if(c.shape[1]===1)return c;let p=$M(r,t,e,c);return r.disposeIntermediateTensorInfo(c),p}function DM(r,t,e,n=null){let o=n!=null?n.shape:t.shape,s=o[o.length-1],i=S.computeOptimalWindowSize(s),a=new ov(o,i,e,n==null),u=n==null?[t]:[t,n],l=r.runWebGLProgram(a,u,"int32");if(l.shape.length===t.shape.length){let c=DM(r,t,e,l);return r.disposeIntermediateTensorInfo(l),c}return l}function sv(r,t,e,n){let o=[e];if(S.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),o,t.shape.length),!B().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=r.texData.get(t.dataId),a=i!==null&&i.isPacked,u=t;a&&(u=r.unpackTensor(t),s.push(u));let[l,c]=S.computeOutAndReduceShapes(u.shape,o),p=x.sizeFromShape(c),m=at({inputs:{x:u},backend:r,attrs:{shape:[-1,p]}});s.push(m);let f=$M(r,m,n);s.push(f);let d=at({inputs:{x:f},backend:r,attrs:{shape:l}});return s.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}return DM(r,t,n)}function pet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=x.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Pe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=sv(e,u,i[0],"max");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var FM={kernelName:jo,backendName:"webgl",kernelFunc:pet};function met(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=x.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Pe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=sv(e,u,i[0],"min");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var RM={kernelName:Cl,backendName:"webgl",kernelFunc:met};var fet=fr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,det=It({opSnippet:fet}),OM={kernelName:sa,backendName:"webgl",kernelFunc:det};var het=fr+"return log(x + sqrt(x * x + 1.0));",get=It({opSnippet:het}),LM={kernelName:ia,backendName:"webgl",kernelFunc:get};var xet=fr+`
return atan(x);
`,yet=It({opSnippet:xet}),PM={kernelName:aa,backendName:"webgl",kernelFunc:yet};var bet=mM+`
return atan(a, b);
`,wet=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+fM+`
return result;
`,vet=ce({opSnippet:bet,packedOpSnippet:wet}),MM={kernelName:ua,backendName:"webgl",kernelFunc:vet};var Cet=fr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Iet=It({opSnippet:Cet}),zM={kernelName:la,backendName:"webgl",kernelFunc:Iet};var si=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let i=t.filterWidth,a=t.strideHeight,u=t.strideWidth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterHeight,m=t.effectiveFilterWidth,f=t.padInfo.top,d=t.padInfo.left;this.outputShape=t.outShape;let h=e==="avg",g=`((batch * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + d`,y=`(xR * ${t.inWidth} + xC) * ${t.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
const ivec2 strides = ivec2(${a}, ${u});
const ivec2 pads = ivec2(${f}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${D} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${o?s?g:y:`wR * ${m} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",v=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(v="avgValue / count");let N=Math.floor(i/4)*4,E=i%4,$=`
if (${h}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${a}, ${u});
const ivec2 pads = ivec2(${f}, ${d});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${t.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${N}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${$}
}
int xC = xCCorner + ${N};
if (${E===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${$}
} else if (${E===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${$}
} else if (${E===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${$}
}
}
setOutput(${v});
}
`}},Au=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let i=t.filterWidth,a=t.strideDepth,u=t.strideHeight,l=t.strideWidth,c=t.dilationDepth,p=t.dilationHeight,m=t.dilationWidth,f=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,g=t.padInfo.front,y=t.padInfo.top,b=t.padInfo.left;this.outputShape=t.outShape;let w=e==="avg",v="0.0";if(w||(v="-1.0 / 1e-20"),n){let M=">=";this.userCode=`
const ivec3 strides =
ivec3(${a}, ${u}, ${l});
const ivec3 pads = ivec3(${g}, ${y}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${t.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${m}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${M} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${o?s?`(((batch * ${t.inDepth} + xD) * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`((xD * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`wD * ${d} * ${h} +
wR * ${h} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let N="max",E=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(E="avgValue / count");let $=Math.floor(i/4)*4,D=i%4,L=`
if (${w}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${N}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${a}, ${u}, ${l});
const ivec3 pads = ivec3(${g}, ${y}, ${b});
const float initializationValue = ${v};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${t.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${v});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${t.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${$}; wC += 4) {
int xC = xCCorner + wC * ${m};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
);
${L}
}
int xC = xCCorner + ${$};
if (${D===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${L}
} else if (${D===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
initializationValue,
initializationValue
);
${L}
} else if (${D===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
initializationValue
);
${L}
}
}
setOutput(${E});
}
}
`}};function Net(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;ni(o,"avgPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;x.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))return er({inputs:{x:o},backend:e});let p=new si(c,"avg",!1);return e.runWebGLProgram(p,[o],"float32")}var BM={kernelName:Xo,backendName:"webgl",kernelFunc:Net};function ket(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,u,l),m=new Au(p,"avg",!1);return e.runWebGLProgram(m,[o],"float32")}var VM={kernelName:Il,backendName:"webgl",kernelFunc:ket};var iv=class{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterHeight,l=t.effectiveFilterWidth,c=u-1-t.padInfo.top,p=l-1-t.padInfo.left,m=1/(e*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${p});
const float avgMultiplier = float(${m});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${u};
wR += ${i}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${a}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},av=class{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterDepth,m=t.effectiveFilterHeight,f=t.effectiveFilterWidth,d=p-1-t.padInfo.front,h=m-1-t.padInfo.top,g=f-1-t.padInfo.left,y=1/(e*n*o);this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${g});
const float avgMultiplier = float(${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${m};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${i}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${f};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function Tet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new av(m);return e.runWebGLProgram(f,[o],i.dtype)}var GM={kernelName:vp,backendName:"webgl",kernelFunc:Tet};function _et(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;ni([o,s],"avgPoolGrad");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=new iv(c);return e.runWebGLProgram(p,[o],i.dtype)}var WM={kernelName:wp,backendName:"webgl",kernelFunc:_et};function Eet(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;return Yc({a:o,b:s,transposeA:i,transposeB:a,backend:e})}var UM={kernelName:Yo,backendName:"webgl",kernelFunc:Eet};var lv=class{constructor(t,e,n,o,s,i){this.outputShape=[],this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a="0.0";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let u="1.0";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push("scale"),u="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${a};
float scale = ${u};
float inv = scale * inversesqrt(variance + float(${i}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}};var uv=class{constructor(t,e,n,o,s,i){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a="vec4(0.0)";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let u="vec4(1.0)";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push("scale"),u="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=`
void main() {
vec4 offset = ${a};
vec4 scale = ${u};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${i}));
setOutput((x - mean) * inv + offset);
}
`}};var Aet=({inputs:r,backend:t,attrs:e})=>{let{x:n,mean:o,variance:s,offset:i,scale:a}=r;x.assert(o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),x.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),x.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:u}=e;u==null&&(u=.001);let l=[n,o,s],c=null;i!=null&&(c=i.shape,l.push(i));let p=null;a!=null&&(p=a.shape,l.push(a));let m=B().getBool("WEBGL_PACK_NORMALIZATION")?new uv(n.shape,o.shape,s.shape,c,p,u):new lv(n.shape,o.shape,s.shape,c,p,u);return t.runWebGLProgram(m,l,l[0].dtype)},HM={kernelName:us,backendName:"webgl",kernelFunc:Aet};var cv=class{constructor(t){this.variableNames=["source"],this.outputShape=t,this.rank=t.length;let e=Wt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=$et(this.rank),o,s=t.map((i,a)=>`sourceLoc.${bT[a]} = start[${a}] + coords.${bT[a]};`);o=`
${e} sourceLoc;
${e} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
void main() {
${o}
setOutput(getSource(${n}));
}
`}},bT=["x","y","z","w","u","v"];function $et(r){if(r===1)return"sourceLoc";if(r<=6)return bT.slice(0,r).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var pv=class{constructor(t){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let e=Wt(this.rank),n=tr("coords",this.rank),o=tr("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${o.slice(-2).join()})`,i=`getChannel(getSource(${o.join()}), ${s})`,a=`
result.x = ${i};
if (++${n[this.rank-1]} < ${t[this.rank-1]}) {
++${o[this.rank-1]};
result.y = ${i};
--${o[this.rank-1]};
}
`,u=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${t[this.rank-2]}) {
++${o[this.rank-2]};
result.z = ${i};
if (++${n[this.rank-1]} < ${t[this.rank-1]}) {
++${o[this.rank-1]};
result.w = ${i};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${e}(${t.map((c,p)=>`start[${p}]`).join()});`:t.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${e} coords = getOutputCoords();
${e} sourceLoc;
${l}
vec4 result = vec4(0.);
${a}
${u}
setOutput(result);
}
`}};function Det(r,t,e,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(e,r.dtype),i=n.texData.get(s.dataId);Object.assign(i,o),i.refCount=1,i.shape=e,i.dtype=r.dtype;let a=Be.computeFlatOffset(t,x.computeStrides(r.shape));o.slice&&(a+=o.slice.flatOffset),i.slice={flatOffset:a,origDataId:o.slice&&o.slice.origDataId||r.dataId};let u=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,u+1),s}function ii(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n,[a,u]=Be.parseSliceParams(o,s,i);if(Be.assertParamsValid(o,a,u),x.sizeFromShape(u)===0)return e.makeTensorInfo(u,o.dtype,[]);if(e.shouldExecuteOnCPU([o])||o.dtype==="string"){let p=e.texData.get(o.dataId),m=FP(p.values,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,m)}let{isPacked:l}=e.texData.get(o.dataId),c=Be.isSliceContinous(o.shape,a,u);if(l||!c){let p=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pv(u):new cv(u),m=[a];return e.runWebGLProgram(p,[o],o.dtype,m)}return e.uploadToGPU(o.dataId),Det(o,a,u,e)}var qM={kernelName:wi,backendName:"webgl",kernelFunc:ii};var Fet=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;x.assert(o.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let a=s.reduce((b,w)=>b*w),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=[],d=at({inputs:{x:o},backend:e,attrs:{shape:u}}),h=Pe({inputs:{x:d},backend:e,attrs:{perm:l}}),g=at({inputs:{x:h},backend:e,attrs:{shape:c}}),y=ii({inputs:{x:g},backend:e,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>e.disposeIntermediateTensorInfo(b)),y},KM={kernelName:pi,backendName:"webgl",kernelFunc:Fet};function Ret(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.readSync(o.dataId),u=e.readSync(s.dataId),l=Ww(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var jM={kernelName:Cp,backendName:"webgl",kernelFunc:Ret};function Oet(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.readSync(n.dataId),i=e.readSync(o.dataId),a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],"int32",Int32Array.from(a))}var XM={kernelName:Ip,backendName:"webgl",kernelFunc:Oet};var Let="return float(a != b);",wT=ce({opSnippet:Let,cpuKernelImpl:TP,dtype:"bool"}),YM={kernelName:Ea,backendName:"webgl",kernelFunc:wT};function hl(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return er({inputs:{x:o.complexTensorInfos.real},backend:e})}var ZM={kernelName:Wp,backendName:"webgl",kernelFunc:hl};var Pet="return float(int(x));";function JM(r,t){let e=new Zr(r.shape,Pet),n=t.runWebGLProgram(e,[r],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function vT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return er({inputs:{x:o},backend:e});let i=Te(o.shape),a=vT({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),u=An({inputs:{real:a,imag:i},backend:e});return i.dispose(),e.disposeIntermediateTensorInfo(a),u}if(o.dtype==="complex64"){let i=hl({inputs:{input:o},backend:e}),a=vT({inputs:{x:i},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(i),a}if(!x.hasEncodingLoss(o.dtype,s)){let i=er({inputs:{x:o},backend:e});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return JM(o,e);if(s==="bool"){let i=e.makeTensorInfo([],"bool",x.getTypedArrayFromDType("bool",1)),u=wT({inputs:{a:o,b:i},backend:e});return e.disposeIntermediateTensorInfo(i),u}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var QM={kernelName:io,backendName:"webgl",kernelFunc:vT};var tz="return ceil(x);",Met=It({opSnippet:tz,packedOpSnippet:tz,cpuKernelImpl:lP}),ez={kernelName:Zo,backendName:"webgl",kernelFunc:Met};var mv=class{constructor(t){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=t,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}};var fv=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=t,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function zet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a;B().getBool("WEBGL_PACK_CLIP")?a=new fv(o.shape):a=new mv(o.shape);let u=[[s],[i]];return e.runWebGLProgram(a,[o],o.dtype,u)}var rz={kernelName:ao,backendName:"webgl",kernelFunc:zet};var dv=class{constructor(t){this.variableNames=["real","imag"],this.outputShape=t,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function nz(r,t){return{dataId:t.dataId,dtype:t.dtype,shape:r.shape}}function Bet(r){let{inputs:t,backend:e}=r,{x:n}=t,o=e.texData.get(n.dataId),s=new dv(n.shape),i=[nz(n,o.complexTensorInfos.real),nz(n,o.complexTensorInfos.imag)];return e.runWebGLProgram(s,i,i[0].dtype)}var oz={kernelName:Sl,backendName:"webgl",kernelFunc:Bet};var hv=class{constructor(t){this.outputShape=[],this.outputShape=S.computeOutShape(t,1),this.variableNames=t.map((i,a)=>`T${a}`);let e=new Array(t.length-1);e[0]=t[0][1];for(let i=1;i<e.length;i++)e[i]=e[i-1]+t[i][1];let n=[`if (yC < ${e[0]}) setOutput(getT0(yR, yC));`];for(let i=1;i<e.length;i++){let a=e[i-1];n.push(`else if (yC < ${e[i]}) setOutput(getT${i}(yR, yC-${a}));`)}let o=e.length,s=e[e.length-1];n.push(`else setOutput(getT${o}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}};var xv=class{constructor(t,e){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=S.computeOutShape(t,e);let n=this.outputShape,o=n.length,s=Wt(o),i=tr("coords",o),a=["x","y","z","w","u","v"].slice(0,o);this.variableNames=t.map((h,g)=>`T${g}`);let u=new Array(t.length-1);u[0]=t[0][e];for(let h=1;h<u.length;h++)u[h]=u[h-1]+t[h][e];let l=a[e],c=a.slice(-2),p=a.join(),m=`if (${l} < ${u[0]}) {
return getChannel(
getT0(${p}), vec2(${c.join()}));
}`;for(let h=1;h<u.length;h++){let g=u[h-1];m+=`
if (${l} < ${u[h]} && ${l} >= ${u[h-1]}) {
return getChannel(
getT${h}(${gv(a,l,g)}),
vec2(${gv(c,l,g)}));
}`}let f=u.length,d=u[u.length-1];m+=`
return getChannel(
getT${f}(${gv(a,l,d)}),
vec2(${gv(c,l,d)}));`,this.userCode=`
float getValue(${a.map(h=>"int "+h)}) {
${m}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${i}), 0., 0., 0.);
${i[o-1]} = ${i[o-1]} + 1;
if (${i[o-1]} < ${n[o-1]}) {
result.g = getValue(${i});
}
${i[o-2]} = ${i[o-2]} + 1;
if (${i[o-2]} < ${n[o-2]}) {
result.a = getValue(${i});
}
${i[o-1]} = ${i[o-1]} - 1;
if (${i[o-2]} < ${n[o-2]} &&
${i[o-1]} < ${n[o-1]}) {
result.b = getValue(${i});
}
setOutput(result);
}
`}};function gv(r,t,e){let n=r.indexOf(t);return r.map((s,i)=>i===n?`${s} - ${e}`:s).join()}function Zc(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return er({inputs:{x:o.complexTensorInfos.imag},backend:e})}var sz={kernelName:Lp,backendName:"webgl",kernelFunc:Zc};function Ed(r,t,e){let n=r[0].dtype;if(n==="complex64"){let p=r.map(g=>hl({inputs:{input:g},backend:e})),m=r.map(g=>Zc({inputs:{input:g},backend:e})),f=Ed(p,t,e),d=Ed(m,t,e),h=An({inputs:{real:f,imag:d},backend:e});return p.forEach(g=>e.disposeIntermediateTensorInfo(g)),m.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),h}let o=e.shouldExecuteOnCPU(r);if(n==="string"&&(o=!0),o){let p=r.map(b=>{let w=x.sizeFromShape(b.shape.slice(t));return at({inputs:{x:b},backend:e,attrs:{shape:[-1,w]}})}),m=p.map(b=>({vals:e.readSync(b.dataId),shape:b.shape})),f=S.computeOutShape(p.map(b=>b.shape),1),d=p[0].shape[0]===1,h=uP(m,f,n,d),g=S.computeOutShape(r.map(b=>b.shape),t),y=e.makeTensorInfo(g,n,h);return p.forEach(b=>e.disposeIntermediateTensorInfo(b)),y}let s=B().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(r.length>s){let p=[];for(let f=0;f<r.length;f+=s){let d=r.slice(f,f+s);p.push(Ed(d,t,e))}let m=Ed(p,t,e);for(let f of p)e.disposeIntermediateTensorInfo(f);return m}if(B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let p=new xv(r.map(m=>m.shape),t);return e.runWebGLProgram(p,r,n)}let{tensors2D:i,outShape:a}=Vet(r,t,e),u=new hv(i.map(p=>p.shape)),l=e.runWebGLProgram(u,i,n);i.forEach(p=>e.disposeIntermediateTensorInfo(p));let c=at({inputs:{x:l},attrs:{shape:a},backend:e});return e.disposeIntermediateTensorInfo(l),c}function Vet(r,t,e){let n=S.computeOutShape(r.map(s=>s.shape),t);return{tensors2D:r.map(s=>at({inputs:{x:s},attrs:{shape:[-1,x.sizeFromShape(s.shape.slice(t))]},backend:e})),outShape:n}}function CT(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=x.parseAxisParam(o,t[0].shape)[0],i=S.computeOutShape(t.map(l=>l.shape),s);if(x.sizeFromShape(i)===0)return e.makeTensorInfo(i,t[0].dtype,[]);let a=t.filter(l=>x.sizeFromShape(l.shape)>0);if(a.length===1)return er({inputs:{x:a[0]},backend:e});let u=a.map(l=>l.shape);return S.assertParamsConsistent(u,s),Ed(a,s,e)}var iz={kernelName:mi,backendName:"webgl",kernelFunc:CT};var Ad=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=t.outShape;let i=t.padInfo.top,a=t.padInfo.left,u=t.strideHeight,l=t.strideWidth,c=t.dilationHeight,p=t.dilationWidth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4,g=t.dataFormat==="channelsLast",y=g?1:2,b=g?2:3,w=g?3:1,v="",N="";n&&(o?v=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?v=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:v=`
float activation(float x) {
${n}
}
`,N="result = activation(result);");let E=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${v}
const ivec2 strides = ivec2(${u}, ${l});
const ivec2 pads = ivec2(${i}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${w}];
ivec2 xRCCorner =
ivec2(coords[${y}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${g}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${h===1}) {
if (${g}) {
dotProd +=
getX(batch, xR, xC, ${d}) *
getW(wR, wC, ${d}, d2);
} else {
dotProd +=
getX(batch, ${d}, xR, xC) *
getW(wR, wC, ${d}, d2);
}
} else if (${h===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2)
);
if (${g}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${h===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2),
getW(wR, wC, ${d} + 2, d2)
);
if (${g}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1),
getX(batch, xR, xC, ${d} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC),
getX(batch, ${d} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${E}
${N}
setOutput(result);
}
`}},yv=class{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let e=t.padInfo.front,n=t.padInfo.top,o=t.padInfo.left,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.filterDepth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${i}, ${a});
const ivec3 pads = ivec3(${e}, ${n}, ${o});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${u};
if (xF < 0 || xF >= ${t.inDepth}) {
continue;
}
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${h===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${d}) *
getW(wF, wR, wC, ${d}, d2);
} else if (${h===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${h===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1),
getX(batch, xF, xR, xC, ${d} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2),
getW(wF, wR, wC, ${d} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}};var bv=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length);let{dataFormat:n}=e,o=He(),s=n==="channelsLast",i=s?1:2,a=s?2:3,u=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${t[2]} && pos < ${t[1]}) {`,l="";for(let c=0;c<=1;c++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.z + ${p};
pos = rc.y + ${c};
${u}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${i}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${a}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${s}) {
innerDims = vec2(d1, ch);
result[${c*2+p}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${c*2+p}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${o.output} = result;
}
`}};function wv(r,t){let e=r.length;return e>=3?t?[...r.slice(0,-3),r[e-3]*r[e-2],r[e-1]]:[...r.slice(0,-3),r[e-3],r[e-2]*r[e-1]]:!t&&e===1&&r[0]>1?[r[0],1]:null}function vv({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let u=r.shape,l=n.texData.get(r.dataId),c=e.inChannels,p=u[0]*u[1]*u[2],m=e.outChannels,f=e.dataFormat==="channelsLast",d=!1,h=!1,g,y=[];if(s!=null){let v=wv(s.shape,f);v!=null&&(s=at({inputs:{x:s},backend:n,attrs:{shape:v}}),y.push(s))}if(o!=null){let v=wv(o.shape,f);v!=null&&(o=at({inputs:{x:o},backend:n,attrs:{shape:v}}),y.push(o))}if(!((p===1||m===1)&&c>yT)&&l.isPacked&&f&&l.texture!=null&&u[2]%2!==0&&x.arraysEqual(l.shape.slice(-3),u.slice(-3))){let v=u[0]*u[1]*(u[2]+1),N={dataId:r.dataId,shape:[1,v,e.inChannels],dtype:r.dtype},E=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,x.assert(Nu(l.shape,N.shape),()=>`packed reshape ${l.shape} to ${N.shape} isn't free`);let $=at({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}});y.push($);let D=Yc({a:N,b:$,backend:n,transposeA:d,transposeB:h,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i}),L=n.texData.get(D.dataId);x.assert(L.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=E,L.shape=e.outShape,g=er({inputs:{x:D},backend:n}),g.shape=e.outShape,y.push(D)}else{let v=e.outHeight*e.outWidth,N=at({inputs:{x:r},backend:n,attrs:{shape:f?[e.batchSize,v,e.inChannels]:[e.batchSize,e.inChannels,v]}}),E=at({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}}),$=Yc({a:f?N:E,b:f?E:N,transposeA:!f,transposeB:h,backend:n,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i});g=at({inputs:{x:$},backend:n,attrs:{shape:e.outShape}}),y.push(N),y.push(E),y.push($)}for(let v of y)n.disposeIntermediateTensorInfo(v);return g}function Cv({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=e,d=f==="channelsLast",h=u*l*c,g=m*p,y=[e.batchSize,h,g],b=!0,w=!1,v=[];if(s!=null){let K=wv(s.shape,d);K!=null&&(s=at({inputs:{x:s},backend:n,attrs:{shape:K}}),v.push(s))}if(o!=null){let K=wv(o.shape,d);K!=null&&(o=at({inputs:{x:o},backend:n,attrs:{shape:K}}),v.push(o))}let N=at({inputs:{x:t},backend:n,attrs:{shape:[1,h,x.sizeFromShape(t.shape)/h]}});v.push(N);let E=new bv(y,e),$=[r.shape,[e.padInfo.top,e.padInfo.left],[e.strideHeight,e.strideWidth],[e.dilationHeight,e.dilationWidth],[e.inChannels],[e.filterWidth*e.inChannels],[e.outWidth]],D=n.runWebGLProgram(E,[r],"float32",$),L=at({inputs:{x:D},backend:n,attrs:{shape:y}});v.push(D),v.push(L);let M=o!=null,G=s!=null,H=a==="leakyrelu",q=a?_u(a,!0):null,X=new _d(d?L.shape:N.shape,d?N.shape:L.shape,d?[e.batchSize,g,e.outChannels]:[e.batchSize,e.outChannels,g],b,w,M,q,G,H),j=d?[L,N]:[N,L];if(o&&j.push(o),G&&j.push(s),H){let K=n.makeTensorInfo([],"float32",x.createScalarValue(i,"float32"));j.push(K),v.push(K)}let J=n.runWebGLProgram(X,j,"float32"),nt=at({inputs:{x:J},backend:n,attrs:{shape:e.outShape}});v.push(J);for(let K of v)n.disposeIntermediateTensorInfo(K);return nt}function Get(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=vv({x:o,filter:s,convInfo:m,backend:e});else if(B().getBool("WEBGL_CONV_IM2COL"))f=Cv({x:o,filter:s,convInfo:m,backend:e});else{let h=new Ad(m);f=e.runWebGLProgram(h,[o,s],"float32")}let d=at({inputs:{x:f},backend:e,attrs:{shape:m.outShape}});return e.disposeIntermediateTensorInfo(f),d}var az={kernelName:Jo,backendName:"webgl",kernelFunc:Get};var Iv=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${t.batchSize}; b++) {
for (int yR = 0; yR < ${t.outHeight}; yR++) {
int xR = wR + yR * ${e} - ${o};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int yC = 0; yC < ${t.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
if (${i}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},Sv=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dataFormat==="channelsLast",a=e-1-t.padInfo.top,u=n-1-t.padInfo.left,l=i?1:2,c=i?2:3,p=i?3:1;this.userCode=`
const ivec2 pads = ivec2(${a}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${e}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${e} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${t.outChannels}; d2++) {
if (${i}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},Nv=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.padInfo.front,i=t.padInfo.top,a=t.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${t.batchSize}; b++) {
for (int yF = 0; yF < ${t.outDepth}; yF++) {
int xF = wF + yF * ${e} - ${s};
if (xF < 0 || xF >= ${t.inDepth}) {
continue;
}
for (int yR = 0; yR < ${t.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${i};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int yC = 0; yC < ${t.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${a};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},kv=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=e-1-t.padInfo.front,l=n-1-t.padInfo.top,c=o-1-t.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${u}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${e}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${t.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${e} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${i}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
for (int d2 = 0; d2 < ${t.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function Wet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),f=new Iv(m);return e.runWebGLProgram(f,[o,s],"float32")}var lz={kernelName:Np,backendName:"webgl",kernelFunc:Wet};function Uet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(i,s.shape,a,1,u,c,!1,p),f=new Sv(m);return e.runWebGLProgram(f,[o,s],"float32")}var uz={kernelName:Qo,backendName:"webgl",kernelFunc:Uet};function Het(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),c=new yv(l);return e.runWebGLProgram(c,[o,s],"float32")}var cz={kernelName:Nl,backendName:"webgl",kernelFunc:Het};function qet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n,l=S.computeConv3DInfo(o.shape,u,i,1,a),c=new Nv(l);return e.runWebGLProgram(c,[o,s],"float32")}var pz={kernelName:kp,backendName:"webgl",kernelFunc:qet};function Ket(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n,l=S.computeConv3DInfo(u,s.shape,a,1,i),c=new kv(l);return e.runWebGLProgram(c,[o,s],"float32")}var mz={kernelName:Tp,backendName:"webgl",kernelFunc:Ket};var jet=Ro+`
return cos(x);
`,Xet=It({opSnippet:jet}),fz={kernelName:ts,backendName:"webgl",kernelFunc:Xet};var Yet=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,Zet=It({opSnippet:Yet}),dz={kernelName:es,backendName:"webgl",kernelFunc:Zet};var Tv=class{constructor(t,e,n,o,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[i,a,u,l]=t,[c]=e,[p,m]=n;this.outputShape=[c,p,m,l];let f=o==="bilinear"?1:0,[d,h]=[`${a-1}.0`,`${u-1}.0`],[g,y,b]=p>1?[`${(a-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,v,N]=m>1?[`${(u-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
const float height_ratio = float(${g});
const float width_ratio = float(${w});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${i}) {
return;
}
float height_scale = ${y};
float width_scale = ${v};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${d} ) {
setOutput(float(${s}));
return;
}
float in_x = ${N};
if( in_x < 0.0 || in_x > ${h} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${f} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}};var Jet=r=>{let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,c=new Tv(o.shape,s.shape,a,u,l);return e.runWebGLProgram(c,[o,s,i],"float32")},hz={kernelName:pa,backendName:"webgl",kernelFunc:Jet};var Jc;(function(r){r.Prod="*",r.Sum="+"})(Jc||(Jc={}));var ag=class{constructor(t,e,n,o){this.op=t,this.outputShape=e,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let s=this.outputShape.length,i=this.op===Jc.Prod?"1.0":"0.0",a=n?i:`getX(${gz(s,"coords",this.op)})`,u=this.outputShape[this.outputShape.length-1],l="",c="";n?(l=o?`end != ${u-1}`:"end != 0",c=o?"end + 1":"end - 1"):(l=o?`end + pow2 < ${u}`:"end >= pow2",c=o?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${Wt(s)} coords = getOutputCoords();
int end = ${xz(s,"coords",this.op)};
float val = ${a};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${c};
${xz(s,"coords",this.op)} = idx;
val ${this.op}= getX(${gz(s,"coords",this.op)});
}
setOutput(val);
}
`}};function gz(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.x, ${t}.y`;if(r===3)return`${t}.x, ${t}.y, ${t}.z`;if(r===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function xz(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.y`;if(r===3)return`${t}.z`;if(r===4)return`${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function _v(r,t,e,n,o,s){let i=t.shape.length,a=S.getAxesPermutation([n],i),u=t;a!=null&&(u=Pe({inputs:{x:t},backend:e,attrs:{perm:a}}));let l=S.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let c=u.shape[l],p=er({inputs:{x:u},backend:e});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new ag(r,u.shape,!1,s),d=[[m]],h=p;p=e.runWebGLProgram(f,[p],p.dtype,d),e.disposeIntermediateTensorInfo(h)}if(o){let m=new ag(r,u.shape,o,s),f=p;p=e.runWebGLProgram(m,[p],p.dtype),e.disposeIntermediateTensorInfo(f)}if(a!=null){let m=S.getUndoAxesPermutation(a),f=Pe({inputs:{x:p},backend:e,attrs:{perm:m}});return e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(u),f}return p}function Qet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return _v(Jc.Prod,o,e,s,i,a)}var yz={kernelName:ca,backendName:"webgl",kernelFunc:Qet};function trt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return _v(Jc.Sum,o,e,s,i,a)}var bz={kernelName:rs,backendName:"webgl",kernelFunc:trt};function ert(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=Ww(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=aP(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var wz={kernelName:_p,backendName:"webgl",kernelFunc:ert};var Ev=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=t,this.blockSize=e,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${e};
int offset_h = imod(h, ${e});
int in_w = w / ${e};
int offset_w = imod(w, ${e});
int offset_d = (offset_h * ${e} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function rrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i==="NHWC"?o.shape[1]:o.shape[2],l=i==="NHWC"?o.shape[2]:o.shape[3],c=i==="NHWC"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i==="NHWC"?[a,p,m,f]:[a,f,p,m],h=new Ev(d,s,i);return e.runWebGLProgram(h,[o],o.dtype)}var vz={kernelName:ma,backendName:"webgl",kernelFunc:rrt};var $d=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=De(this.outputShape.length);let i=t.filterHeight,a=t.filterWidth,u=t.outChannels/t.inChannels,l="",c="";n&&(o?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,c="result = activation(result);");let p=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${u};
int q = d2 - d1 * ${u};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${i}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${a}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${c}
setOutput(result);
}
`}};var Dd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=De(this.outputShape.length);let i=t.outChannels/t.inChannels,a=t.padInfo.left,u=t.strideWidth,l=t.dilationWidth,c=t.filterHeight,p=t.filterWidth,m=p,f=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let y=0;y<p;y++)f+=`
vec4 xTexelC${y*2};
int xTexelC${y*2}Ready;
vec4 xTexelC${y*2+1};
int xTexelC${y*2+1}Ready;
vec4 xC${y};`;f+=`
for (int r = 0; r < ${c}; r++) {
`;for(let y=0;y<p;y++)f+=`
xTexelC${y*2} = vec4(0.0);
xTexelC${y*2}Ready = 0;
xTexelC${y*2+1} = vec4(0.0);
xTexelC${y*2+1}Ready = 0;
xC${y} = vec4(0.0);`;f+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let y=0;y<(m+1)/2;y++){let b=y*2;if(f+=`
xC = xCCorner + ${b*l};
`,u===1){if(b<p&&(a%2===1?(f+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
`,l===1&&b>0?f+=`
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
`:f+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
} else {
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
}
`):f+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xC${b} = xTexelC${b};
`,b+1<p)){let w=a%2===0?x.nearestLargerEven(l):l;l%2===0&&a%2===1||l%2!==0&&a%2!==1?(f+=`
xCOffset = xC + imod(pads[1], 2) + ${w};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
`,l>1&&(f+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
xTexelC${b}Ready = 1;
}
`),f+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
`):w===1?f+=`
xC${b+1} = xTexelC${b};
`:f+=`
xCOffset = xC + ${w};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b+1} = xTexelC${b+1};
`}}else b<p&&(a%2===1?(f+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`,b+1<p&&(f+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
`)):(f+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(
xTexelC${b}.xy, xTexelC${b+1}.xy);
`,b+1<p&&(f+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`)));b<p&&(f+=`
wTexel = getW(r, ${b}, d1, q);
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
`,b+1<p&&(f+=`
wTexel = getW(r, ${b+1}, d1, q);
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
`))}f+=`
}
`,f+=`
}
`;let d="",h="";n&&(o?d=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?d=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:d=`vec4 activation(vec4 x) {
${n}
}`,h="result = activation(result);");let g=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${d}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${f}
vec4 result = dotProd - vec4(0.000000000000001);
${g}
${h}
setOutput(result);
}
`}};function nrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u,dimRoundingMode:l}=n,c=u;c==null&&(c=[1,1]),x.assert(S.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=S.computeConv2DInfo(o.shape,s.shape,i,c,a,l,!0),m;B().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?m=new Dd(p):m=new $d(p);let f=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return e.runWebGLProgram(m,[o,s],"float32",f)}var Cz={kernelName:ns,backendName:"webgl",kernelFunc:nrt};var Av=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.outChannels/t.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${i} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${t.batchSize}; b++) {
for (int yR = 0; yR < ${t.outHeight}; yR++) {
int xR = wR + yR * ${e} - ${o};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int yC = 0; yC < ${t.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},$v=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=e-1-t.padInfo.top,a=n-1-t.padInfo.left,u=t.outChannels/t.inChannels;this.userCode=`
const ivec2 pads = ivec2(${i}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${e}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${e} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${u}; dm++) {
int d2 = d1 * ${u} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function ort(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n,p=S.computeConv2DInfo(o.shape,c,i,a,u,l,!0),m=new Av(p);return e.runWebGLProgram(m,[o,s],"float32")}var Iz={kernelName:Ep,backendName:"webgl",kernelFunc:ort};function srt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n,p=S.computeConv2DInfo(c,s.shape,i,a,u,l,!0),m=new $v(p);return e.runWebGLProgram(m,[o,s],"float32")}var Sz={kernelName:Ap,backendName:"webgl",kernelFunc:srt};var Dv=class{constructor(t){this.variableNames=["X"],this.outputShape=[t,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function irt(r){let{inputs:t,backend:e}=r,{x:n}=t,o=[...n.shape,...n.shape],s=x.sizeFromShape(n.shape),i=at({inputs:{x:n},backend:e,attrs:{shape:[s]}}),a=new Dv(s),u=e.runWebGLProgram(a,[i],i.dtype),l=at({inputs:{x:u},backend:e,attrs:{shape:o}});return e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(u),l}var Nz={kernelName:$p,backendName:"webgl",kernelFunc:irt};var Fv=class{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let{inHeight:e,inWidth:n,padInfo:o,strideHeight:s,strideWidth:i,filterHeight:a,filterWidth:u,dilationHeight:l,dilationWidth:c}=t,{top:p,left:m}=o;this.userCode=`
const ivec2 strides = ivec2(${s}, ${i});
const ivec2 pads = ivec2(${p}, ${m});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${a}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${e}) {
for (int w = 0; w < ${u}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function art(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeDilation2DInfo(o.shape,s.shape,i,a,"NHWC",u),c,p=new Fv(l);c=e.runWebGLProgram(p,[o,s],"float32");let m=at({inputs:{x:c},backend:e,attrs:{shape:l.outShape}});return e.disposeIntermediateTensorInfo(c),m}var kz={kernelName:kl,backendName:"webgl",kernelFunc:art};function lrt(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=S.decodeEinsumEquation(o,s.length);S.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=S.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:y,expandDims:b}=S.getEinsumPermutation(f,u[g]),w;S.isIdentityPermutation(y)?w=s[g]:(w=Pe({inputs:{x:s[g]},backend:e,attrs:{perm:y}}),d.push(w));let v=w.shape.slice();for(let N=0;N<b.length;++N)v.splice(b[N],0,1);x.arraysEqual(w.shape,v)||(w=at({inputs:{x:w},backend:e,attrs:{shape:v}}),d.push(w)),m===null?m=w:(m=sg({inputs:{a:w,b:m},backend:e}),d.push(m))}h<p-1&&(l[h]>=0&&(m=Xc({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var Tz={kernelName:Dp,backendName:"webgl",kernelFunc:lrt};var urt="return (x >= 0.0) ? x : (exp(x) - 1.0);",crt=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,prt=It({opSnippet:urt,packedOpSnippet:crt}),_z={kernelName:ss,backendName:"webgl",kernelFunc:prt};var mrt="return (b >= 1.0) ? a : a * (b + 1.0);",frt=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,drt=r=>{let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=B().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Fo(frt,n.shape,o.shape):new ro(mrt,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],n.dtype)},Ez={kernelName:Fp,backendName:"webgl",kernelFunc:drt};var hrt=`
return vec4(equal(a, b));
`,grt="return float(a == b);",xrt=ce({opSnippet:grt,packedOpSnippet:hrt,dtype:"bool",cpuKernelImpl:cP}),Az={kernelName:da,backendName:"webgl",kernelFunc:xrt};var yrt=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${S.ERF_P};
float a1 = ${S.ERF_A1};
float a2 = ${S.ERF_A2};
float a3 = ${S.ERF_A3};
float a4 = ${S.ERF_A4};
float a5 = ${S.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,brt=It({opSnippet:yrt}),$z={kernelName:fa,backendName:"webgl",kernelFunc:brt};var wrt=Ro+`
return exp(x);
`,vrt=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,IT=It({opSnippet:wrt,packedOpSnippet:vrt,cpuKernelImpl:pP,dtype:"float32"}),Dz={kernelName:is,backendName:"webgl",kernelFunc:IT};function Rv(r){let{inputs:t,attrs:e,backend:n}=r,{dim:o}=e,{input:s}=t,i=s.shape.length,a=s.shape.slice(),u=o;return o<0&&(x.assert(-(i+1)<=o,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+o+1),a.splice(u,0,1),at({inputs:{x:s},backend:n,attrs:{shape:a}})}var Fz={kernelName:fi,backendName:"webgl",kernelFunc:Rv};var Rz="return exp(x) - 1.0;",Crt=It({opSnippet:Rz,packedOpSnippet:Rz,cpuKernelImpl:mP}),Oz={kernelName:ha,backendName:"webgl",kernelFunc:Crt};var lg=class{constructor(t,e,n){this.variableNames=["real","imag"];let o=e[1];this.outputShape=e;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,i=n?`${o}.0`:"1.0",a;if(t==="real")a="return real * expR - imag * expI;";else if(t==="imag")a="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${t}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${a}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${o});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${o}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${i};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function Ov(r,t,e){let n=e.texData.get(r.dataId),o=x.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=o/s,a=at({inputs:{x:r},backend:e,attrs:{shape:[i,s]}}),u=a.shape,l=new lg("real",u,t),c=new lg("imag",u,t),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:u},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:u}],m=e.runWebGLProgram(l,p,"float32"),f=e.runWebGLProgram(c,p,"float32"),d=An({inputs:{real:m,imag:f},backend:e});e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f);let h=at({inputs:{x:d},backend:e,attrs:{shape:r.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(d),h}function Irt(r){let{inputs:t,backend:e}=r,{input:n}=t;return Ov(n,!1,e)}var Lz={kernelName:Rp,backendName:"webgl",kernelFunc:Irt};var Lv=class{constructor(t,e){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=t,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function gl(r){let{backend:t,attrs:e}=r,{shape:n,value:o}=e,{dtype:s}=e;if(s=s||x.inferDtype(o),s==="string"){let i=x.getArrayFromDType(s,x.sizeFromShape(n));return i.fill(o),t.makeTensorInfo(n,s,i)}else{let i=new Lv(n,o),a=[[o]];return t.runWebGLProgram(i,[],s,a)}}var Pz={kernelName:Tl,backendName:"webgl",kernelFunc:gl};var Pv=class{constructor(t){this.variableNames=["Image"],this.outputShape=[];let e=t[2];this.outputShape=t,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${e} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${e}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}};var Mz={kernelName:ga,backendName:"webgl",kernelFunc:({inputs:r,backend:t})=>{let{image:e}=r,n=t,o=new Pv(e.shape);return n.runWebGLProgram(o,[e],e.dtype)}};var zz="return floor(x);",Srt=It({opSnippet:zz,packedOpSnippet:zz,cpuKernelImpl:fP}),Bz={kernelName:as,backendName:"webgl",kernelFunc:Srt};var Nrt=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,krt=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Trt=ce({opSnippet:Nrt,packedOpSnippet:krt,dtype:"int32"}),Vz={kernelName:ls,backendName:"webgl",kernelFunc:Trt};var Mv=class{constructor(t){this.variableNames=["A"];let e=He(),[n,o]=t;this.outputShape=t,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);
vec4 values = ${e.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}};var zv=class{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let e=He(),[n,o]=t;this.outputShape=t,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${o}.0, ${n}.0);
vec4 values = ${e.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${e.output} = result;
}
`}};var Gz={kernelName:eh,backendName:"webgl",kernelFunc:_rt},Fd;function _rt(r){let{inputs:t,backend:e,attrs:n}=r,{pixels:o}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&o instanceof HTMLVideoElement,a=typeof HTMLImageElement!="undefined"&&o instanceof HTMLImageElement,[u,l]=i?[o.videoWidth,o.videoHeight]:[o.width,o.height],c=[l,u],p=[l,u,s];(a||i)&&(Fd==null&&(Fd=document.createElement("canvas").getContext("2d")),Fd.canvas.width=u,Fd.canvas.height=l,Fd.drawImage(o,0,0,u,l),o=Fd.canvas);let m=e.makeTensorInfo(c,"int32");e.texData.get(m.dataId).usage=Hr.PIXELS,e.gpgpu.uploadPixelDataToTexture(e.getTexture(m.dataId),o);let f=B().getBool("WEBGL_PACK")?new zv(p):new Mv(p),d=e.runWebGLProgram(f,[m],"int32");return e.disposeData(m.dataId),d}function Ert(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(o.shape,s.shape,u,p,l,m,!1,h),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=vv({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else if(B().getBool("WEBGL_CONV_IM2COL"))y=Cv({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else{let v=i!=null,N=a!=null,E=f==="leakyrelu",$=f?_u(f,!1):null,D=new Ad(g,v,$,N,E),L=[o,s],M=(G,H)=>{if(H==="NCHW"&&G.shape.length===1&&G.shape[0]!==1){let q=at({inputs:{x:G},backend:e,attrs:{shape:[G.shape[0],1,1]}});return b.push(q),q}return G};if(v&&L.push(M(i,c)),N&&L.push(M(a,c)),E){let G=e.makeTensorInfo([],"float32",x.createScalarValue(d,"float32"));L.push(G),b.push(G)}y=e.runWebGLProgram(D,L,"float32")}let w=at({inputs:{x:y},backend:e,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>e.disposeIntermediateTensorInfo(v)),w}var Wz={kernelName:ki,backendName:"webgl",kernelFunc:Ert};function Art(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),x.assert(S.eitherStridesOrDilationsAreOne(u,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${h}'`);let g=S.computeConv2DInfo(o.shape,s.shape,u,h,l,p,!0),y=B().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=m?_u(m,y):null,w=[o,s],v=i!=null,N=a!=null,E=m==="leakyrelu";if(v&&w.push(i),N&&w.push(a),E){let M=e.makeTensorInfo([],"float32",x.createScalarValue(f,"float32"));w.push(M),d.push(M)}let $;y?$=new Dd(g,v,b,N,E):$=new $d(g,v,b,N,E);let D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],L=e.runWebGLProgram($,w,"float32",D);return d.forEach(M=>e.disposeIntermediateTensorInfo(M)),L}var Uz={kernelName:Ti,backendName:"webgl",kernelFunc:Art};var Bv=class{constructor(t,e,n,o){this.sliceDim=t,this.strides=e,this.paramsShape=o,this.variableNames=["x","indices"],this.outputShape=n;let s=Wt(e.length),i=Wt(n.length),a=this.sliceDim>1?"strides[j]":"strides",u=Wt(o.length),l=o.length>1?"paramsShape[j]":"paramsShape";this.userCode=`
${s} strides = ${s}(${this.strides});
${u} paramsShape = ${u}(${this.paramsShape});
void main() {
${i} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${l};
flattenIndex += index * ${a};
}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function $rt(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=o.shape,i=s[s.length-1],a=x.sizeFromShape(n.shape),[u,l,c,p]=S.prepareAndValidate(n,o),m=at({inputs:{x:o},backend:e,attrs:{shape:[l,i]}}),f=at({inputs:{x:n},backend:e,attrs:{shape:[x.sizeFromShape(n.shape)/c,c]}});if(e.shouldExecuteOnCPU([n,o])||n.dtype==="string"){let y=e.readSync(o.dataId),b=e.bufferSync(n),w=dP(y,b,n.dtype,l,i,c,p,n.shape,a);return e.makeTensorInfo(u,n.dtype,w.values)}let d=new Bv(i,p,[l,c],n.shape),h=e.runWebGLProgram(d,[f,m],f.dtype),g=at({inputs:{x:h},backend:e,attrs:{shape:u}});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(h),g}var Hz={kernelName:xa,backendName:"webgl",kernelFunc:$rt};var Vv=class{constructor(t,e){this.variableNames=["A","indices"],this.outputShape=e,this.rank=e.length;let n=Wt(this.rank),o=Drt(t,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${t[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${o}));
}
`}};function Drt(r,t){let e=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let o=0;o<r.length;o++)o===2?n.push("index"):n.push(`${e[o]}`);return n.join()}function ST(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,indices:s}=t,{axis:i,batchDims:a}=n,u=x.parseAxisParam(i,o.shape)[0];if(B().get("DEBUG")){let b=e.readSync(s.dataId),w=o.shape[u];for(let v=0;v<b.length;++v){let N=b[v];x.assert(N<=w-1&&N>=0,()=>`GatherV2: the index value ${N} is not in [0, ${w-1}]`)}}let l=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),c=x.sizeFromShape(s.shape),p=[],m=at({inputs:{x:o},backend:e,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),f=at({inputs:{x:s},backend:e,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(m),p.push(f);let d=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(e.shouldExecuteOnCPU([o,s])||o.dtype==="string"){let b=e.bufferSync(f),w=e.bufferSync(m),v=hP(w,b,d);return p.forEach(N=>e.disposeIntermediateTensorInfo(N)),e.makeTensorInfo(l.outputShape,v.dtype,v.values)}let h=new Vv(m.shape,d),g=e.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let y=at({inputs:{x:g},backend:e,attrs:{shape:l.outputShape}});return p.forEach(b=>e.disposeIntermediateTensorInfo(b)),y}var qz={kernelName:di,backendName:"webgl",kernelFunc:ST};var Frt="return float(a > b);",Rrt=`
return vec4(greaterThan(a, b));
`,Ort=ce({opSnippet:Frt,packedOpSnippet:Rrt,cpuKernelImpl:gP,dtype:"bool"}),Kz={kernelName:ya,backendName:"webgl",kernelFunc:Ort};var Lrt="return float(a >= b);",Prt=`
return vec4(greaterThanEqual(a, b));
`,Mrt=ce({opSnippet:Lrt,packedOpSnippet:Prt,dtype:"bool",cpuKernelImpl:xP}),jz={kernelName:cs,backendName:"webgl",kernelFunc:Mrt};function zrt(r){let{inputs:t,backend:e}=r,{input:n}=t;return Ov(n,!0,e)}var Xz={kernelName:Op,backendName:"webgl",kernelFunc:zrt};var Brt="return float(!isnan(x) && !isinf(x));",Vrt=It({opSnippet:Brt,dtype:"bool"}),Yz={kernelName:ba,backendName:"webgl",kernelFunc:Vrt};var Grt="return float(isinf(x));",Wrt=It({opSnippet:Grt,dtype:"bool"}),Zz={kernelName:wa,backendName:"webgl",kernelFunc:Wrt};var Urt="return float(isnan(x));",Hrt=It({opSnippet:Urt,dtype:"bool"}),Jz={kernelName:va,backendName:"webgl",kernelFunc:Hrt};var qrt="return float(a < b);",Krt=`
return vec4(lessThan(a, b));
`,jrt=ce({opSnippet:qrt,packedOpSnippet:Krt,cpuKernelImpl:yP,dtype:"bool"}),Qz={kernelName:Ca,backendName:"webgl",kernelFunc:jrt};var Xrt="return float(a <= b);",Yrt=`
return vec4(lessThanEqual(a, b));
`,Zrt=ce({opSnippet:Xrt,packedOpSnippet:Yrt,cpuKernelImpl:bP,dtype:"bool"}),t3={kernelName:Ia,backendName:"webgl",kernelFunc:Zrt};function Jrt(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=wP(n,o,s);return t.makeTensorInfo([i.length],"float32",i)}var e3={kernelName:Pp,backendName:"webgl",kernelFunc:Jrt};var Qrt=Ro+`
return x < 0.0 ? 0./0. : log(x);
`,tnt=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,ent=It({opSnippet:Qrt,packedOpSnippet:tnt,cpuKernelImpl:vP}),r3={kernelName:ms,backendName:"webgl",kernelFunc:ent};var rnt=Ro+`
return log(1.0 + x);
`,nnt=It({opSnippet:rnt}),n3={kernelName:Sa,backendName:"webgl",kernelFunc:nnt};var ont="return float(a >= 1.0 && b >= 1.0);",snt=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,int=ce({opSnippet:ont,packedOpSnippet:snt,dtype:"bool"}),o3={kernelName:Na,backendName:"webgl",kernelFunc:int};var ant="return float(!(x >= 1.0));",lnt=It({opSnippet:ant}),s3={kernelName:ka,backendName:"webgl",kernelFunc:lnt};var unt="return float(a >= 1.0 || b >= 1.0);",cnt=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,pnt=ce({opSnippet:unt,packedOpSnippet:cnt,dtype:"bool"}),i3={kernelName:Ta,backendName:"webgl",kernelFunc:pnt};var Gv=class{constructor(t,e,n,o,s){this.variableNames=["x"],this.outputShape=[];let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${i}; j <= ${i}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${a}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${u};
setOutput(val);
}
`}};var Wv=class{constructor(t,e,n,o,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${i};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${i}; j <= ${i}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${a}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${u};
setOutput(result);
}
`}};var mnt=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n,l=B().getBool("WEBGL_PACK_NORMALIZATION")?new Wv(o.shape,s,i,a,u):new Gv(o.shape,s,i,a,u);return e.runWebGLProgram(l,[o],o.dtype)},a3={kernelName:_l,backendName:"webgl",kernelFunc:mnt};var Uv=class{constructor(t,e,n,o,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=t,this.depth=t[3],this.depthRadius=e,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${e})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${e} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${o}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${o})
* float(${s})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}};var fnt=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n,p=new Uv(o.shape,a,u,l,c);return e.runWebGLProgram(p,[o,s,i],o.dtype)},l3={kernelName:Mp,backendName:"webgl",kernelFunc:fnt};function u3(r,t,e,n){let o=x.sizeFromShape(t),i=x.sizeFromShape(r.shape)/o,a=at({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Un(a,r.dtype,"max",n),l=at({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}function NT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=o.shape.length,u=x.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=e.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let w=e.texData.get(f.dataId).values,v=new Array(a);for(let $=0;$<v.length;$++)v[$]=o.shape[c[$]];let N=Kc(w,o.shape,o.dtype,c,v);f=e.makeTensorInfo(v,o.dtype);let E=e.texData.get(f.dataId);E.values=N}else f=Eu(o,c,e);l=S.getInnerMostAxes(l.length,a)}S.assertAxesAreInnerMostDims("max",l,a);let[d,h]=S.computeOutAndReduceShapes(f.shape,l),g=d;i&&(g=S.expandShapeToKeepDim(d,u));let y;if(m){let w=e.texData.get(f.dataId).values,v=CP(w,x.sizeFromShape(h),g,o.dtype);y=e.makeTensorInfo(g,o.dtype);let N=e.texData.get(y.dataId);N.values=v}else y=u3(f,h,g,e);return p&&e.disposeIntermediateTensorInfo(f),y}var c3={kernelName:fs,backendName:"webgl",kernelFunc:NT};var dnt=Yw+`
return max(a, b);
`,hnt=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Tu+`
return result;
`,gnt=ce({opSnippet:dnt,packedOpSnippet:hnt,cpuKernelImpl:IP}),p3={kernelName:ds,backendName:"webgl",kernelFunc:gnt};function xnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;ni(o,"maxPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;x.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))return er({inputs:{x:o},backend:e});let p=new si(c,"max",!1);return e.runWebGLProgram(p,[o],o.dtype)}var m3={kernelName:hs,backendName:"webgl",kernelFunc:xnt};function ynt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dataFormat:u,dimRoundingMode:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,l,u),m=new Au(p,"max",!1);return e.runWebGLProgram(m,[o],o.dtype)}var f3={kernelName:El,backendName:"webgl",kernelFunc:ynt};var Hv=class{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideHeight,n=t.strideWidth,o=t.dilationHeight,s=t.effectiveFilterHeight,i=t.effectiveFilterWidth,a=s-1-t.padInfo.top,u=i-1-t.padInfo.left,l=s*i-1;this.userCode=`
const ivec2 pads = ivec2(${a}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${o}) {
float dyR = float(dyRCorner + wR) / ${e}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${i}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${i} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},qv=class{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.dilationDepth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterDepth,l=t.effectiveFilterHeight,c=t.effectiveFilterWidth,p=u-1-t.padInfo.front,m=l-1-t.padInfo.top,f=c-1-t.padInfo.left,d=u*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${m}, ${f});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${e}.0;
if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${i}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${a}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${d} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function bnt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new Au(m,"max",!0),d=e.runWebGLProgram(f,[i],i.dtype),h=new qv(m),g=e.runWebGLProgram(h,[o,d],i.dtype);return e.disposeIntermediateTensorInfo(d),g}var d3={kernelName:Bp,backendName:"webgl",kernelFunc:bnt};function wnt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;ni([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=!0,d=new si(m,"max",f),h=e.runWebGLProgram(d,[a],a.dtype),g=new Hv(m),y=e.runWebGLProgram(g,[o,h],a.dtype);return e.disposeIntermediateTensorInfo(h),y}var h3={kernelName:zp,backendName:"webgl",kernelFunc:wnt};function g3(r,t,e,n){let o=new si(e,"max",!1),s=n.runWebGLProgram(o,[r],"float32");o=new si(e,"max",!0,!0,t);let i=n.runWebGLProgram(o,[r],"float32");return[s,i]}var x3={kernelName:Vp,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;x.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let l=[1,1];x.assert(S.eitherStridesOrDilationsAreOne(s,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${l}'`);let c=S.computePool2DInfo(n.shape,o,s,l,i),[p,m]=g3(n,a,c,u);return[p,m]}};function y3(r,t,e,n){let o=x.sizeFromShape(t),i=x.sizeFromShape(r.shape)/o,a=at({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Un(a,"float32","mean",n),l=at({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}var b3={kernelName:gs,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{keepDims:o,axis:s}=t,i=e,a=n.shape.length,u=x.parseAxisParam(s,n.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=i.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let v=i.texData.get(d.dataId).values,N=new Array(a);for(let D=0;D<N.length;D++)N[D]=n.shape[c[D]];let E=Kc(v,n.shape,n.dtype,c,N);d=i.makeTensorInfo(N,n.dtype);let $=i.texData.get(d.dataId);$.values=E}else d=Eu(n,c,i);f.push(d),l=S.getInnerMostAxes(l.length,a)}S.assertAxesAreInnerMostDims("sum",l,a);let[h,g]=S.computeOutAndReduceShapes(d.shape,l),y=h;o&&(y=S.expandShapeToKeepDim(h,u));let b=y3(d,g,y,i);for(let w of f)i.disposeIntermediateTensorInfo(w);return b}};function vnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=x.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,o.shape.length)),S.assertAxesAreInnerMostDims("min",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=x.sizeFromShape(f),h=at({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Un(h,h.dtype,"min",e),y;if(i){let b=S.expandShapeToKeepDim(m,u);y=at({inputs:{x:g},backend:e,attrs:{shape:b}})}else y=at({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),y}var w3={kernelName:xs,backendName:"webgl",kernelFunc:vnt};var Cnt=Yw+`
return min(a, b);
`,Int=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Tu+`
return result;
`,Snt=ce({opSnippet:Cnt,packedOpSnippet:Int,cpuKernelImpl:SP}),v3={kernelName:ys,backendName:"webgl",kernelFunc:Snt};var Kv=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=e.map((c,p)=>c[0]+t[p]+c[1]);let o=t.length,s=Wt(o),i=e.map(c=>c[0]).join(","),a=e.map((c,p)=>c[0]+t[p]).join(","),u=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o),l=n==="reflect"?0:1;if(o===1){this.userCode=`
int start = ${i};
int end = ${a};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${i});
${s} end = ${s}(${a});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${o}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${s} coords = outC - start;
setOutput(getX(${u}));
}
`}};var jv=class{constructor(t,e,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.map((d,h)=>d[0]+t[h]+d[1]);let o=t.length,s=Wt(o),i=e.map(d=>d[0]).join(","),a=e.map((d,h)=>d[0]+t[h]).join(","),u=tr("rc",o),l=tr("source",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${l.slice(-2).join()})`,m=n==="reflect"?0:1,f="";if(o===1){let d=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${m};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${m};
}
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${l.join()}), ${p});
${u[o-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let d=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${m}) +
gte * ((end - 1) * 2 - source + ${m});
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${l.join()}), ${p});
${u[o-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${u[o-2]} += 1;
if(${u[o-2]} < ${this.outputShape[o-2]}) {
${d}
result[2] = getChannel(getX(${l.join()}), ${p});
${u[o-1]} += 1;
if(${c}) {
${d}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${s} start = ${s}(${i});
const ${s} end = ${s}(${a});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${f}
setOutput(result);
}
`}};var Nnt=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{paddings:o,mode:s}=e,i=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jv(n.shape,o,s):new Kv(n.shape,o,s);return t.runWebGLProgram(i,[n],n.dtype)},C3={kernelName:bs,backendName:"webgl",kernelFunc:Nnt};var knt=`if (b == 0.0) return NAN;
return mod(a, b);`,Tnt=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Tu+`
return result;
`,_nt=ce({opSnippet:knt,packedOpSnippet:Tnt}),I3={kernelName:_a,backendName:"webgl",kernelFunc:_nt};var Xv=class{constructor(t,e,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[t,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${e-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${e-1}));
}
`}};var Ent=`
if (a == b) {
return 1.0;
};
return a / b;`,Ant=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,kT=ce({opSnippet:Ent,packedOpSnippet:Ant,checkOutOfBounds:!0}),S3={kernelName:os,backendName:"webgl",kernelFunc:kT};var N3="return a - b;",TT=ce({opSnippet:N3,packedOpSnippet:N3,supportsComplex:!0,cpuKernelImpl:VP}),k3={kernelName:zs,backendName:"webgl",kernelFunc:TT};function _T(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=x.parseAxisParam([s],o.shape),a=NT({inputs:{x:o},backend:e,attrs:{reductionIndices:i,keepDims:!1}}),u=S.expandShapeToKeepDim(a.shape,i),l=at({inputs:{x:a},backend:e,attrs:{shape:u}}),c=TT({inputs:{a:o,b:l},backend:e}),p=IT({inputs:{x:c},backend:e}),m=Xc({inputs:{x:p},backend:e,attrs:{axis:i,keepDims:!1}}),f=at({inputs:{x:m},backend:e,attrs:{shape:u}}),d=kT({inputs:{a:p,b:f},backend:e});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}var T3={kernelName:Ps,backendName:"webgl",kernelFunc:_T};function $nt(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n,u=a?o:_T({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),l=u.shape[0],c=u.shape[1],p=new Xv(l,c,s),m=[[i]],f=e.runWebGLProgram(p,[u],"int32",m);return a||e.disposeIntermediateTensorInfo(u),f}var _3={kernelName:Gp,backendName:"webgl",kernelFunc:$nt};var Dnt=fr+`
return -x;
`,Fnt=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Rnt(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])){let s=e.texData.get(n.dataId),[i,a]=kP(s.values,n.shape,n.dtype);return e.makeTensorInfo(a,n.dtype,i)}let o;return B().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new eo(n.shape,Fnt):o=new Zr(n.shape,Dnt),e.runWebGLProgram(o,[n],n.dtype)}var E3={kernelName:hi,backendName:"webgl",kernelFunc:Rnt};var Ont=Vr.nonMaxSuppressionV3Impl;function Lnt(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),{selectedIndices:p}=Ont(l,c,i,a,u);return e.makeTensorInfo([p.length],"int32",new Int32Array(p))}var A3={kernelName:Aa,backendName:"webgl",kernelFunc:Lnt};var Pnt=Vr.nonMaxSuppressionV4Impl;function Mnt(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=Pnt(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],"int32",new Int32Array(m)),e.makeTensorInfo([],"int32",new Int32Array([f]))]}var $3={kernelName:$a,backendName:"webgl",kernelFunc:Mnt};var znt=Vr.nonMaxSuppressionV5Impl;function Bnt(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:y}=znt(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],"int32",new Int32Array(g)),e.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var D3={kernelName:Da,backendName:"webgl",kernelFunc:Bnt};var Yv=class{constructor(t,e,n,o){this.variableNames=["indices"],this.outputShape=[t,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${o}), float(${n}),
float(index == coords.y)));
}
`}};var Vnt=r=>{let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{depth:s,onValue:i,offValue:a}=n,u=x.sizeFromShape(o.shape),l=new Yv(u,s,i,a),c=at({inputs:{x:o},backend:e,attrs:{shape:[u]}}),p=e.runWebGLProgram(l,[c],o.dtype);e.disposeIntermediateTensorInfo(c);let m=[...o.shape,s],f=at({inputs:{x:p},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(p),f},F3={kernelName:vs,backendName:"webgl",kernelFunc:Vnt};function ug(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="complex64"){let o=hl({inputs:{input:n},backend:e}),s=ug({inputs:{x:o},backend:e}),i=Zc({inputs:{input:n},backend:e}),a=ug({inputs:{x:i},backend:e}),u=An({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return gl({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:e})}var R3={kernelName:Si,backendName:"webgl",kernelFunc:ug};function O3(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let o=hl({inputs:{input:n},backend:e}),s=O3({inputs:{x:o},backend:e}),i=Zc({inputs:{input:n},backend:e}),a=ug({inputs:{x:i},backend:e}),u=An({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return gl({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:e})}var L3={kernelName:gi,backendName:"webgl",kernelFunc:O3};function Gnt(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return Rv({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=Rv({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=CT({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var P3={kernelName:xi,backendName:"webgl",kernelFunc:Gnt};var Zv=class{constructor(t,e,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=e.map((l,c)=>l[0]+t[c]+l[1]);let o=t.length,s=Wt(o),i=e.map(l=>l[0]).join(","),a=e.map((l,c)=>l[0]+t[c]).join(","),u=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o);if(o===1){this.userCode=`
int start = ${i};
int end = ${a};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${i});
${s} end = ${s}(${a});
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${s} coords = outC - start;
setOutput(getX(${u}));
}
}
`}};var Jv=class{constructor(t,e,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=e.map((h,g)=>h[0]+t[g]+h[1]);let o=t.length,s=Wt(o),i=e.map(h=>h[0]).join(","),a=e.map((h,g)=>h[0]+t[g]).join(","),u=tr("rc",o),l=tr("source",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${l.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${u[o-1]} += 1;
if(${c}) {
`,o===1?"":`}
rc = outputLoc;
${u[o-2]} += 1;
if(${u[o-2]} < ${this.outputShape[o-2]}) {`,o===1?"":` ${u[o-1]} += 1;
if(${c}) {`],f=o===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=o===1?2:4;h<g;h++)d+=`
${m[h]}
if (${f}) {
result[${h}] = float(value);
} else {
${s} source = rc - start;
result[${h}] = getChannel(getX(${l.join()}), ${p});
}
`;d+=o===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${i});
const ${s} end = ${s}(${a});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}};var ET=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;if(x.sizeFromShape(o.shape)===0){let l=s.map((c,p)=>c[0]+o.shape[p]+c[1]);return gl({backend:e,attrs:{shape:l,value:i,dtype:o.dtype}})}let a=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Jv(o.shape,s,i):new Zv(o.shape,s,i),u=[[i]];return e.runWebGLProgram(a,[o],o.dtype,u)},M3={kernelName:Cs,backendName:"webgl",kernelFunc:ET};var Wnt=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,Unt=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Tu+`
return result;
`,Hnt=ce({opSnippet:Wnt,packedOpSnippet:Unt}),z3={kernelName:Is,backendName:"webgl",kernelFunc:Hnt};function qnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=[],l=x.parseAxisParam(s,o.shape),c=l,p=S.getAxesPermutation(c,a),m=o;p!=null&&(m=Pe({inputs:{x:o},backend:e,attrs:{perm:p}}),c=S.getInnerMostAxes(c.length,a),u.push(m)),S.assertAxesAreInnerMostDims("prod",c,a);let f;if(e.shouldExecuteOnCPU([m])){let d=e.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:y}=_P(m.shape,m.dtype,d,c);f=e.makeTensorInfo(g,y,h)}else{let[d,h]=S.computeOutAndReduceShapes(m.shape,c),g=x.sizeFromShape(h),y=at({inputs:{x:m},backend:e,attrs:{shape:[-1,g]}}),b=Ku(o.dtype),w=Un(y,b,"prod",e);f=at({inputs:{x:w},backend:e,attrs:{shape:d}}),u.push(y),u.push(w)}if(i){u.push(f);let d=S.expandShapeToKeepDim(f.shape,l);f=at({inputs:{x:f},backend:e,attrs:{shape:d}})}return u.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var B3={kernelName:Ns,backendName:"webgl",kernelFunc:qnt};var AT=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=EP(n,o,s,i);return t.makeTensorInfo([a.length],i,a)},V3={kernelName:Al,backendName:"webgl",kernelFunc:AT};var Knt="return 1.0 / x;",jnt=It({opSnippet:Knt}),G3={kernelName:Fa,backendName:"webgl",kernelFunc:jnt};var Xnt=fr+`
return (x < 0.0) ? 0.0 : x;
`,Ynt=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Znt=It({opSnippet:Xnt,packedOpSnippet:Ynt}),W3={kernelName:ks,backendName:"webgl",kernelFunc:Znt};var Jnt=fr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Qnt=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,tot=It({opSnippet:Jnt,packedOpSnippet:Qnt}),U3={kernelName:Es,backendName:"webgl",kernelFunc:tot};var Qv=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}};var tC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,
${u}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function eot(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=B().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new tC(o.shape,u,l,s,i):new Qv(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],"float32")}var H3={kernelName:_s,backendName:"webgl",kernelFunc:eot};var eC=class{constructor(t,e,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${i}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${a}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function rot(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new eC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var q3={kernelName:Hp,backendName:"webgl",kernelFunc:rot};var rC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};var nC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":f="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,
${u}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function not(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=B().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new nC(o.shape,u,l,s,i):new rC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],o.dtype)}var K3={kernelName:Ts,backendName:"webgl",kernelFunc:not};var oC=class{constructor(t,e,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${i}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${a}) {
continue;
}
float sourceFracRow =
float(${u[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${u[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${o}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function oot(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new oC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var j3={kernelName:Up,backendName:"webgl",kernelFunc:oot};var sC=class{constructor(t,e){this.variableNames=["x"];let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=t,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${t[0]} - coord - 1));
}
`;return}let o=a=>e.indexOf(a)!==-1&&t[a]!==1?`${t[a]} - coords[${a}] - 1`:`coords[${a}]`,s=t.map((a,u)=>o(u)).join(","),i=Wt(n);this.userCode=`
void main() {
${i} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}};var iC=class{constructor(t,e){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=t;let o=tr("rc",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,i=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,a=Wt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${t[0]} - rc - 1),
${t[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${t[0]} - (rc + 1) - 1),
${t[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${u(o.slice())};
if(${s}){
result.g = ${l(o.slice())};
}
if(${i}) {
result.b = ${c(o.slice())};
if(${s}) {
result.a = ${p(o.slice())};
}
}
setOutput(result);
}
`;function u(d){return m(d)}function l(d){return d[n-1]="("+d[n-1]+" + 1)",m(d)}function c(d){return d[n-2]="("+d[n-2]+" + 1)",m(d)}function p(d){return d[n-1]="("+d[n-1]+" + 1)",d[n-2]="("+d[n-2]+" + 1)",m(d)}function m(d){let h=t.map((b,w)=>f(w,d)),g=h.join(","),y=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${y}))`}function f(d,h){return e.indexOf(d)!==-1&&t[d]!==1?`${t[d]} - ${h[d]} - 1`:`${h[d]}`}}};function sot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=o.shape.length,a=x.parseAxisParam(s,o.shape);if(i===0)return er({inputs:{x:o},backend:e});let u=B().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new iC(o.shape,a):new sC(o.shape,a);return e.runWebGLProgram(u,[o],o.dtype)}var X3={kernelName:As,backendName:"webgl",kernelFunc:sot};var aC=class{constructor(t,e){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=t[1],o=t[2];this.outputShape=t;let s="";typeof e=="number"?s=`float outputValue = ${e.toFixed(2)};`:s=`
vec3 fill = vec3(${e.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${s}
if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}};var Y3={kernelName:Wa,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=new aC(n.shape,s),[l,c]=S.getImageCenter(i,n.shape[1],n.shape[2]),p=[[l,c,Math.sin(o),Math.cos(o)]];return a.runWebGLProgram(u,[n],n.dtype,p)}};var iot=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,aot=It({opSnippet:iot}),Z3={kernelName:$s,backendName:"webgl",kernelFunc:aot};var lot="return inversesqrt(x);",uot=It({opSnippet:lot,cpuKernelImpl:AP}),J3={kernelName:Ds,backendName:"webgl",kernelFunc:uot};var Rd=class{constructor(t,e,n,o,s,i,a=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=i;let u=Wt(s.length),l=Wt(i.length),c="";n===1?c="i":n===2&&(c="i, j");let p=`getIndices(${c})`,m="";o===1?m="i":o===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=e>1?"strides[j]":"strides";this.userCode=`
${u} strides = ${u}(${s});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${t}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${e}; j++) {
int index = round(${p});
flattenedIndex += index * ${d};
}
if (flattenedIndex == coords[0]) {
sum += ${f};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function cot(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=[p/l,l];if(p===0)return e.makeTensorInfo(i,o.dtype);let f=at({inputs:{x:o},backend:e,attrs:{shape:[u,a]}}),d=at({inputs:{x:s},backend:e,attrs:{shape:[u,l]}}),h=e.makeTensorInfo([],"float32",new Float32Array([0])),g=new Rd(u,a,f.shape.length,d.shape.length,c,m),y=e.runWebGLProgram(g,[d,f,h],d.dtype),b=at({inputs:{x:y},backend:e,attrs:{shape:i}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(y),e.disposeIntermediateTensorInfo(h),b}var Q3={kernelName:Ra,backendName:"webgl",kernelFunc:cot};var lC=class{constructor(t,e,n,o){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[t,n];let s="while (left < right) {",i=`for (int i = 0; i < ${Math.ceil(Math.log2(e+1))}; ++i) { if (left >= right) break;`,a=B().getNumber("WEBGL_VERSION")===2?s:i,u=o==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${a}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${u} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function pot(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=new lC(o.shape[0],o.shape[1],s.shape[1],i),u=[[o.shape[1]]];return e.runWebGLProgram(a,[o,s],"int32",u)}var tB={kernelName:qp,backendName:"webgl",kernelFunc:pot};var uC=class{constructor(t,e,n){this.variableNames=["c","a","b"],this.outputShape=e;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",o="resRC";else{let a=["resRC.x","resRC.y","resRC.z","resRC.w"],u=[],l=[];for(let c=0;c<e.length;c++)l.push(`${a[c]}`),c<t&&u.push(`${a[c]}`);o=u.join(),s=l.join()}let i=Wt(n);this.userCode=`
void main() {
${i} resRC = getOutputCoords();
float cVal = getC(${o});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function mot(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=new uC(n.shape.length,o.shape,o.shape.length);return e.runWebGLProgram(i,[n,o,s],ir(o.dtype,s.dtype))}var eB={kernelName:bi,backendName:"webgl",kernelFunc:mot};var fot=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${S.SELU_SCALEALPHA};
float scale = ${S.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,dot=It({opSnippet:fot}),rB={kernelName:Oa,backendName:"webgl",kernelFunc:dot};var hot=Ro+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,got=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,xot=It({opSnippet:hot,packedOpSnippet:got,cpuKernelImpl:DP}),nB={kernelName:Rs,backendName:"webgl",kernelFunc:xot};var yot=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,bot=It({opSnippet:yot}),oB={kernelName:Pa,backendName:"webgl",kernelFunc:bot};var wot=Ro+`
return sin(x);
`,vot=It({opSnippet:wot}),sB={kernelName:Fs,backendName:"webgl",kernelFunc:vot};var Cot=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,Iot=It({opSnippet:Cot}),iB={kernelName:La,backendName:"webgl",kernelFunc:Iot};var Sot=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,Not=It({opSnippet:Sot}),aB={kernelName:Ma,backendName:"webgl",kernelFunc:Not};var kot=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;x.assert(o.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let a=s.reduce((y,b)=>y*b),u=[[0,0]];u.push(...i);for(let y=1+s.length;y<o.shape.length;++y)u.push([0,0]);let l=[],c=ET({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),p=S.getReshaped(c.shape,s,a,!1),m=S.getPermuted(p.length,s.length,!1),f=S.getReshapedPermuted(c.shape,s,a,!1),d=at({inputs:{x:c},backend:e,attrs:{shape:p}}),h=Pe({inputs:{x:d},backend:e,attrs:{perm:m}}),g=at({inputs:{x:h},backend:e,attrs:{shape:f}});return l.push(c),l.push(d),l.push(h),l.forEach(y=>e.disposeIntermediateTensorInfo(y)),g},lB={kernelName:vi,backendName:"webgl",kernelFunc:kot};function Tot(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let a=e.readSync(n.dataId),u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=e.readSync(i.dataId)[0],[p,m,f,d,h]=RP(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var uB={kernelName:$l,backendName:"webgl",kernelFunc:Tot};function _ot(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.readSync(o.dataId)),a=e.readSync(n.dataId),u=Array.from(e.readSync(s.dataId)),[l,c,p]=OP(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var cB={kernelName:za,backendName:"webgl",kernelFunc:_ot};function Eot(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=Hw(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var pB={kernelName:Dl,backendName:"webgl",kernelFunc:Eot};function Aot(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=Hw(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var mB={kernelName:Fl,backendName:"webgl",kernelFunc:Aot};function $ot(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1;if(s.dtype==="string"){let y=e.bufferSync(o),b=e.bufferSync(s),w=x.decodeString(e.readSync(i.dataId)[0]),v=$P(y,b,a,m,c,l,u,p,w,f);return e.makeTensorInfo(a,v.dtype,v.values)}let d=new Rd(l,u,o.shape.length,s.shape.length,p,[m,1],f),h=e.runWebGLProgram(d,[s,o,i],s.dtype),g=at({inputs:{x:h},backend:e,attrs:{shape:a}});return e.disposeIntermediateTensorInfo(h),g}var fB={kernelName:Kp,backendName:"webgl",kernelFunc:$ot};function Dot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=x.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=o.shape.length,c=new Array(l).fill(0),p=o.shape.slice();return u.map(m=>{let f=[...p];f[a]=m;let d=ii({inputs:{x:o},backend:e,attrs:{begin:c,size:f}});return c[a]+=m,d})}var dB={kernelName:Ci,backendName:"webgl",kernelFunc:Dot};var hB="return sqrt(x);",Fot=It({opSnippet:hB,packedOpSnippet:hB,cpuKernelImpl:LP}),gB={kernelName:Os,backendName:"webgl",kernelFunc:Fot};var Rot="return x * x;",Oot=It({opSnippet:Rot}),xB={kernelName:Rl,backendName:"webgl",kernelFunc:Oot};var yB="return (a - b) * (a - b);",Lot=ce({opSnippet:yB,packedOpSnippet:yB}),bB={kernelName:Ms,backendName:"webgl",kernelFunc:Lot};function Pot({inputs:r,attrs:t,backend:e}){let{x:n}=r,o=fr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Zr(n.shape,o);return e.runWebGLProgram(s,[n],n.dtype)}var wB={kernelName:uo,backendName:"webgl",kernelFunc:Pot};var cC=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=n;let o=n.length,s=Wt(n.length),i=Wt(n.length),a="";if(o===1)a="coords * strides + begin";else{let u=0;a=n.map((l,c)=>(u++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${u-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${t});
${s} strides = ${s}(${e});
void main() {
${i} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}};function Mot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:y,begin:b,end:w,strides:v}=Be.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=at({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||y){x.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let $=Be.computeOutShape(b,w,v),D=ii({inputs:{x:o},backend:e,attrs:{begin:b,size:$}});N=at({inputs:{x:D},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(D)}else if(e.shouldExecuteOnCPU([o])){let D=e.readSync(o.dataId),L=Ct(o.shape,o.dtype,D),M=PP(f,L,v,b);N=e.makeTensorInfo(d,o.dtype,M.values)}else{let D=new cC(b,v,f);N=e.runWebGLProgram(D,[o],o.dtype)}let E=at({inputs:{x:N},backend:e,attrs:{shape:d}});return e.disposeIntermediateTensorInfo(N),E}var vB={kernelName:Ba,backendName:"webgl",kernelFunc:Mot};function zot(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.readSync(c.dataId),f=e.readSync(p.dataId),[d,h]=MP(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],"string",d),e.makeTensorInfo(p.shape,"int32",h)]}var CB={kernelName:Ol,backendName:"webgl",kernelFunc:zot};function Bot(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.readSync(s.dataId),u=e.readSync(i.dataId)[0],[l,c,p]=zP(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],"int32",l),e.makeTensorInfo([m],"string",c),e.makeTensorInfo([2],"int32",new Int32Array(p))]}var IB={kernelName:Ll,backendName:"webgl",kernelFunc:Bot};function Vot(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(o<=0)throw new Error("Number of buckets must be at least 1");let i=e.readSync(s.dataId),a=BP(i,o);return e.makeTensorInfo(s.shape,"int32",a)}var SB={kernelName:Pl,backendName:"webgl",kernelFunc:Vot};var Got="return tan(x);",Wot=It({opSnippet:Got}),NB={kernelName:Bs,backendName:"webgl",kernelFunc:Wot};var Uot=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,Hot=It({opSnippet:Uot}),kB={kernelName:Vs,backendName:"webgl",kernelFunc:Hot};var pC=class{constructor(t,e){this.variableNames=["A"];let n=new Array(t.length);for(let i=0;i<n.length;i++)n[i]=t[i]*e[i];this.outputShape=n,this.rank=n.length;let o=Wt(this.rank),s=qot(t);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function qot(r){let t=r.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${r[0]})`;let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let o=0;o<r.length;o++)n.push(`imod(${e[o]}, ${r[o]})`);return n.join()}function $T(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;if(o.dtype==="string"||o.shape.length>5){let u=e.readSync(o.dataId),l=o.dtype==="string"?u.map(m=>x.decodeString(m)):u,c=Ct(o.shape,o.dtype,l),p=GP(c,s);return e.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new pC(o.shape,s);return e.runWebGLProgram(i,[o],o.dtype)}var TB={kernelName:Xn,backendName:"webgl",kernelFunc:$T};var mC=class{constructor(t){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=t,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},fC=class{constructor(t){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=t,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Qc(r,t){t!==null&&r.disposeIntermediateTensorInfo(t)}function _B(r){let t=1;for(;t<r;)t*=2;return t}function Kot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n,a=B().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),u=B().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),l=o.shape,c=l[l.length-1];if(e.shouldExecuteOnCPU([o])||c<a||s>u){let M=e.readSync(o.dataId),[G,H]=WP(M,l,o.dtype,s,i);return[e.makeTensorInfo(G.shape,G.dtype,G.values),e.makeTensorInfo(H.shape,H.dtype,H.values)]}if(s===0)return l[l.length-1]=0,[e.makeTensorInfo(l,o.dtype,[]),e.makeTensorInfo(l,"int32",[])];if(c===1)return[o,gl({attrs:{shape:l,dtype:"int32",value:0},backend:e})];let p=e.texData.get(o.dataId),m=p!==null&&p.isPacked,f=m?e.unpackTensor(o):o,h=x.sizeFromShape(l)/c,g=at({inputs:{x:f},attrs:{shape:[h,c]},backend:e});m&&Qc(e,f);let y=_B(s),b=_B(c),w=null,v=()=>w===null?[g,g]:[g,w],N=(M,G,H)=>{let q=v(),X=new mC(H),J=[[c],[w===null?1:0],[Number.NEGATIVE_INFINITY],[M],[G]],nt=w;w=e.runWebGLProgram(X,q,"int32",J),Qc(e,nt)};for(let M=1;M<y;M*=2){let G=M*2;for(let H=M;H>=1;H/=2)N(G,H,[h,b])}for(let M=b;M>y;M/=2){let G=v(),H=new fC([h,M/2]),X=[[c],[w===null?1:0],[y]],j=w;w=e.runWebGLProgram(H,G,"int32",X),Qc(e,j);let J=y/2,nt=J*2;for(let K=J;K>=1;K/=2)N(nt,K,w.shape)}let E=w;w=ii({inputs:{x:w},backend:e,attrs:{begin:0,size:[h,s]}}),Qc(e,E);let $=ST({inputs:{x:g,indices:w},backend:e,attrs:{axis:1,batchDims:1}});Qc(e,g);let D=l.slice(0,-1);D.push(s),E=w,w=at({inputs:{x:w},attrs:{shape:D},backend:e}),Qc(e,E);let L=$;return $=at({inputs:{x:$},attrs:{shape:D},backend:e}),Qc(e,L),[$,w]}var EB={kernelName:Va,backendName:"webgl",kernelFunc:Kot};var dC=class{constructor(t,e,n,o,s,i){this.variableNames=["Image","Transforms"],this.outputShape=i;let a=n==="nearest"?1:2,u;switch(o){case"constant":u=1;break;case"reflect":u=2;break;case"wrap":u=3;break;case"nearest":u=4;break;default:u=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${u} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${u} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${u} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${t} && 0 <= coordX && coordX < ${e}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${s});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${s});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${e}));
float mapY = mapCoord(inY, float(${t}));
if (${a} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function jot(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],y=new dC(p,m,i,a,u,g);return e.runWebGLProgram(y,[o,s],"float32")}var AB={kernelName:Ga,backendName:"webgl",kernelFunc:jot};function Xot(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;ni(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:a,outputShape:u,indices:l}=UP(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],"int32",l)]}var $B={kernelName:jp,backendName:"webgl",kernelFunc:Xot};function Yot(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o,a=i.shape.length,u=o.shape[s],l=new Array(a-1),c=0;for(let h=0;h<a;h++)h!==s&&(l[c++]=i.shape[h]);let p=[],m=new Array(a).fill(0),f=i.shape.slice();f[s]=1;let d=new Array(u);for(let h=0;h<d.length;h++){m[s]=h;let g=ii({inputs:{x:i},backend:e,attrs:{begin:m,size:f}}),y=at({inputs:{x:g},backend:e,attrs:{shape:l}});d[h]=y,p.push(g)}return p.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var DB={kernelName:Ii,backendName:"webgl",kernelFunc:Yot};var hC=class{constructor(t,e){this.variableNames=["x","segmentIds"];let n=t.windowSize,o=t.batchSize,s=t.inSize,i=t.numSegments,a=i*Math.ceil(s/n);this.outputShape=[o,a];let u="0.0",l="sumValue",c=Math.floor(n/4)*4,p=n%4,m=`
sumValue += dot(values, segFilter);
`,f="";s%n>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let d="";s%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${u};
float getValue(int batch, int inIdx) {
${f}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${d}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${i})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${i})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${m}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${m}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${m}
}
setOutput(${l});
}
`}};function Zot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n,a=o.shape.length,u=[],l=0,c=S.getAxesPermutation([l],a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),u.push(p),l=S.getInnerMostAxes(1,a)[0]);let m=S.segment_util.computeOutShape(p.shape,l,i),f=x.sizeFromShape([p.shape[l]]),d=at({inputs:{x:p},backend:e,attrs:{shape:[-1,f]}});u.push(d);let h=Ku(o.dtype),g=(v,N,E,$,D)=>{let L=v.shape[0],M=v.shape[1],G=S.segment_util.segOpComputeOptimalWindowSize(M,D),H={windowSize:G,inSize:M,batchSize:L,numSegments:D},q=new hC(H,N),X=e.compileAndRun(q,[v,E],$);if(u.push(X),X.shape[1]===D)return X;let j=AT({backend:e,attrs:{start:0,stop:D,step:1,dtype:"float32"}}),J=$T({inputs:{x:j},backend:e,attrs:{reps:[M/G]}});return u.push(j),u.push(J),g(X,N,J,$,D)},y=g(d,"unsortedSegmentSum",s,h,i),b=at({inputs:{x:y},backend:e,attrs:{shape:m}}),w=b;if(c!=null){u.push(b);let v=S.getUndoAxesPermutation(c);w=Pe({inputs:{x:w},backend:e,attrs:{perm:v}})}return u.forEach(v=>e.disposeIntermediateTensorInfo(v)),w}var FB={kernelName:Ml,backendName:"webgl",kernelFunc:Zot};var Jot=[vM,IM,SM,NM,TM,_M,EM,AM,FM,RM,OM,LM,PM,MM,zM,BM,VM,GM,WM,UM,HM,KM,jM,XM,QM,ez,rz,uM,oz,iz,az,lz,uz,cz,pz,mz,fz,dz,hz,yz,bz,wz,vz,Cz,Iz,Sz,Nz,kz,Tz,_z,Ez,Az,$z,Dz,Fz,Oz,Lz,Pz,Mz,Bz,Vz,Gz,Wz,Uz,Hz,qz,Kz,jz,lM,Xz,sz,Yz,Zz,Jz,cM,Qz,t3,e3,r3,n3,o3,s3,i3,a3,l3,c3,p3,m3,f3,d3,h3,x3,b3,w3,v3,C3,I3,_3,hM,E3,A3,$3,D3,YM,F3,L3,P3,M3,z3,pM,B3,V3,ZM,S3,G3,W3,U3,xM,H3,q3,K3,j3,X3,Y3,Z3,J3,Q3,tB,eB,rB,nB,oB,sB,iB,qM,T3,aB,lB,uB,cB,pB,mB,fB,dB,gB,xB,bB,wB,vB,CB,IB,SB,k3,bM,NB,kB,TB,EB,AB,wM,$B,DB,FB,R3];for(let r of Jot)Vu(r);var Zt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(Zt||(Zt={}));var $u;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu",r[r.sigmoid=5]="sigmoid",r[r.elu=6]="elu"})($u||($u={}));var RB;function Qot(r){RB=r.wasm.cwrap(Ni,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function tst(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=0;if(i!=null){let D=e.dataIdMap.get(i.dataId);if(D.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${D.shape.length}.`);d=D.id}let h=a==null?0:e.dataIdMap.get(a.dataId).id,g=$u[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=u?o.shape[2]:o.shape[1],b=l?s.shape[1]:s.shape[2],w=Pr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)),v=e.makeOutput([...w,y,b],o.dtype),N=e.dataIdMap.get(v.dataId).id,E=new Uint8Array(new Int32Array(o.shape).buffer),$=new Uint8Array(new Int32Array(s.shape).buffer);return RB(m,E,o.shape.length,f,$,s.shape.length,u,l,g,d,h,p||0,N),v}var OB={kernelName:Ni,backendName:"wasm",setupFunc:Qot,kernelFunc:tst};function ae(r,t){let e;function n(s){e=s.wasm.cwrap(r,null,["number","number","number"])}function o(s){let{backend:i,inputs:{x:a}}=s,u=i.dataIdMap.get(a.dataId).id,l=i.makeOutput(a.shape,t||a.dtype),c=i.dataIdMap.get(l.dataId).id;return x.sizeFromShape(l.shape)===0||e(u,Zt[a.dtype],c),l}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:o}}var LB=ae(ci);function pe(r,t,e){let n;function o(i){n=i.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:a,inputs:u}=i,{a:l,b:c}=u,p=a.dataIdMap.get(l.dataId).id,m=a.dataIdMap.get(c.dataId).id,f=e!=null?e:l.dtype,d=S.assertAndGetBroadcastShape(l.shape,c.shape),h=a.makeOutput(d,f);if(x.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(l.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),b=a.dataIdMap.get(h.dataId).id;return(()=>n(p,g,l.shape.length,m,y,c.shape.length,Zt[l.dtype],b))(),h}return{kernelName:r,backendName:"wasm",setupFunc:o,kernelFunc:s}}var est=!0,PB=pe(jn,est);var MB;function rst(r){MB=r.wasm.cwrap(Ko,null,["array","number","number","number"])}function nst(r){let{inputs:t,backend:e}=r,n=e.makeOutput(t[0].shape,t[0].dtype);if(x.sizeFromShape(n.shape)===0)return n;let o=t.map(a=>e.dataIdMap.get(a.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),i=e.dataIdMap.get(n.dataId).id;return MB(s,o.length,Zt[n.dtype],i),n}var zB={kernelName:Ko,backendName:"wasm",setupFunc:rst,kernelFunc:nst};function tp(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype),o=e.typedArrayFromHeap(t);return e.typedArrayFromHeap(n).set(o),n}var BB={kernelName:lo,backendName:"wasm",kernelFunc:tp};var VB;function ost(r){VB=r.wasm.cwrap(Yn,null,["number","array","number","number","number","array","number"])}function no(r){let{inputs:t,backend:e,attrs:n}=r,[o,s]=ist(t.x.shape,n.perm),i=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(i=!1);let a=sst(t.x.shape,n.perm),u={dataId:t.x.dataId,shape:o,dtype:t.x.dtype};if(i){let d=tp({inputs:t,backend:e});return d.shape=a,d}let l=e.makeOutput(a,u.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.dataIdMap.get(l.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(u.shape).buffer);return VB(c,f,u.shape.length,Zt[u.dtype],p,m,s.length),l}function sst(r,t){let e=new Array(r.length);for(let n=0;n<e.length;n++)e[n]=r[t[n]];return e}function ist(r,t){let e=[],n=[];for(let o=0;o<r.length;++o)r[o]!==1&&e.push(r[o]),r[t[o]]!==1&&n.push(t[o]);for(let o=0;o<n.length;++o){let s=-1;for(let i=0;i<n.length;++i)n[i]>=o&&(s===-1||n[s]>n[i])&&(s=i);n[s]=o}return[e,n]}var GB={kernelName:Yn,backendName:"wasm",kernelFunc:no,setupFunc:ost};function wn(r,t,e){let n=r.shape,o=r.shape.length,s=x.parseAxisParam(t,n),i=s,a=S.getAxesPermutation(i,o),u=null,l=!1;if(a!=null){let c=new Array(o);for(let f=0;f<c.length;f++)c[f]=n[a[f]];i=S.getInnerMostAxes(i.length,o),u=no({inputs:{x:r},attrs:{perm:a},backend:e});let p=e.dataIdMap.get(r.dataId).id;e.dataIdMap.get(u.dataId).id!==p&&(l=!0)}return{transposed:u,originalAxes:s,axes:i,inputWasTransposed:l}}var WB;function ast(r){WB=r.wasm.cwrap(na,null,["number, number, number"])}function lst(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=wn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("all",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),y=x.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;WB(u,y,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var UB={kernelName:na,backendName:"wasm",setupFunc:ast,kernelFunc:lst};var HB;function ust(r){HB=r.wasm.cwrap(oa,null,["number, number, number"])}function cst(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=wn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("any",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),y=x.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;HB(u,y,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var qB={kernelName:oa,backendName:"wasm",setupFunc:ust,kernelFunc:cst};var KB;function pst(r){KB=r.wasm.cwrap(jo,null,["number","number","number","number","number"])}function mst(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o}=n,{x:s}=e,i=t.dataIdMap.get(s.dataId).id,a=i,u=s,{transposed:l,axes:c,inputWasTransposed:p}=wn(s,o,t);if(p){let y=t.dataIdMap.get(l.dataId).id;y!==i&&(u=l,a=y)}let m=u.shape.slice(0,-1),f=t.makeOutput(m,"int32"),d=t.dataIdMap.get(f.dataId).id,h=x.sizeFromShape(f.shape),g=u.shape[c[0]];return KB(a,Zt[u.dtype],h,g,d),p&&t.disposeData(l.dataId),f}var jB={kernelName:jo,backendName:"wasm",kernelFunc:mst,setupFunc:pst};var XB;function fst(r){XB=r.wasm.cwrap(Xo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function dst(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=S.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let v=n.makeOutput(c.outShape,"float32"),N=n.dataIdMap.get(v.dataId).id;return XB(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,y,b,w,N),v}var YB={kernelName:Xo,backendName:"wasm",setupFunc:fst,kernelFunc:dst};function lr(r){let{inputs:t,attrs:e}=r,{x:n}=t,{shape:o}=e,s=x.sizeFromShape(n.shape),i=x.inferFromImplicitShape(o,s);return x.assert(s===x.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var ZB={kernelName:yi,backendName:"wasm",kernelFunc:lr};var JB;function hst(r){JB=r.wasm.cwrap(Yo,null,["number","array","number","number","array","number","number","number","number"])}function gst(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=x.sizeFromShape(d),y=x.sizeFromShape(h),w=Pr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);x.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let v=i?[g,c,m]:[g,m,c],N=a?[y,f,p]:[y,p,f],E=lr({inputs:{x:o},backend:e,attrs:{shape:v}}),$=lr({inputs:{x:s},backend:e,attrs:{shape:N}}),D=e.dataIdMap.get(E.dataId).id,L=e.dataIdMap.get($.dataId).id,M=i?E.shape[2]:E.shape[1],G=a?$.shape[1]:$.shape[2],H=Math.max(g,y),q=e.makeOutput([H,M,G],E.dtype),X=e.dataIdMap.get(q.dataId).id,j=new Uint8Array(new Int32Array(E.shape).buffer),J=new Uint8Array(new Int32Array($.shape).buffer);return JB(D,j,E.shape.length,L,J,$.shape.length,i,a,X),e.disposeData(E.dataId),e.disposeData($.dataId),q.shape=w,q}var QB={kernelName:Yo,backendName:"wasm",setupFunc:hst,kernelFunc:gst};function Oo(r){let{inputs:{x:t},attrs:{begin:e,size:n},backend:o}=r,[s,i]=Be.parseSliceParams(t,e,n),a=Be.isSliceContinous(t.shape,s,i),u=o.readSync(t.dataId),l=o.makeOutput(i,t.dtype),c=x.computeStrides(t.shape),p=o.dataIdMap.get(l.dataId);if(a){let d=Be.computeFlatOffset(s,c);return t.dtype==="string"?p.stringBytes=u.slice(d,d+x.sizeFromShape(i)):o.typedArrayFromHeap(l).set(u.subarray(d,d+x.sizeFromShape(i))),l}if(t.dtype==="string"){let d=Pc(u,s,i,t.shape,t.dtype);return p.stringBytes=d,l}let m=o.typedArrayFromHeap(l),f=t.shape.length;if(f===2)xst(u,c[0],m,s,i);else if(f===3)yst(u,c[0],c[1],m,s,i);else if(f===4)bst(u,c[0],c[1],c[2],m,s,i);else{let d=Pc(u,s,i,t.shape,t.dtype);m.set(d)}return l}function xst(r,t,e,n,o){let s=0,i=n[0],a=n[1],u=i+o[0];for(let l=i;l<u;l++){let c=l*t+a;e.set(r.subarray(c,c+o[1]),s),s+=o[1]}}function yst(r,t,e,n,o,s){let i=0,a=o[0],u=o[1],l=o[2],c=a+s[0],p=u+s[1];for(let m=a;m<c;m++)for(let f=u;f<p;f++){let d=m*t+f*e+l;n.set(r.subarray(d,d+s[2]),i),i+=s[2]}}function bst(r,t,e,n,o,s,i){let a=0,u=s[0],l=s[1],c=s[2],p=u+i[0],m=l+i[1],f=c+i[2],d=s[3];for(let h=u;h<p;h++)for(let g=l;g<m;g++)for(let y=c;y<f;y++){let b=h*t+g*e+y*n+d;o.set(r.subarray(b,b+i[3]),a),a+=i[3]}}var tV={kernelName:wi,backendName:"wasm",kernelFunc:Oo};function wst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n,a=s.reduce((y,b)=>y*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=lr({inputs:{x:o},backend:e,attrs:{shape:u}}),d=no({inputs:{x:f},backend:e,attrs:{perm:l}}),h=lr({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Oo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeData(f.dataId),e.disposeData(d.dataId),e.disposeData(f.dataId),g}var eV={kernelName:pi,backendName:"wasm",kernelFunc:wst};function ai(r){let{inputs:{x:t},attrs:{dtype:e},backend:n}=r,o=n.makeOutput(t.shape,e),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(o).set(s),o}var rV={kernelName:io,backendName:"wasm",kernelFunc:ai};var nV=ae(Zo);var oV;function vst(r){oV=r.wasm.cwrap(ao,null,["number","number","number","number"])}function Cst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a=e.dataIdMap.get(o.dataId).id,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(u.dataId).id;return oV(a,s,i,l),u}var sV={kernelName:ao,backendName:"wasm",setupFunc:vst,kernelFunc:Cst};function DT(r){let{inputs:t,backend:e}=r,n=x.parseAxisParam(r.attrs.axis,t[0].shape)[0],o=S.computeOutShape(t.map(f=>f.shape),n),s=t.filter(f=>x.sizeFromShape(f.shape)>0);if(s.length===1)return tp({inputs:{x:s[0]},backend:e});let i=e.makeOutput(o,t[0].dtype);if(x.sizeFromShape(o)===0)return i;let a=s.map(f=>f.shape);if(S.assertParamsConsistent(a,n),s[0].dtype==="string"){let f=s.map(w=>{let v=x.sizeFromShape(w.shape.slice(n));return lr({inputs:{x:w},backend:e,attrs:{shape:[-1,v]}})}),d=f.map(w=>({vals:e.readSync(w.dataId),shape:w.shape}));o=S.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=Rc(d,o,t[0].dtype,h),y=S.computeOutShape(s.map(w=>w.shape),n);i.shape=y;let b=e.dataIdMap.get(i.dataId);return b.stringBytes=S.fromStringArrayToUint8(g),f.forEach(w=>e.disposeData(w.dataId)),i}let u=x.sizeFromShape(s[0].shape.slice(0,n)),l=0,c=s.map(f=>{let d=x.sizeFromShape(f.shape.slice(n));return l+=d,d}),p=s.map(f=>e.typedArrayFromHeap(f)),m=e.typedArrayFromHeap(i);for(let f=0;f<u;f++){let d=f*l;for(let h=0;h<p.length;h++){let g=c[h],y=f*g,b=p[h].subarray(y,y+g);m.set(b,d),d+=g}}return i}var iV={kernelName:mi,backendName:"wasm",kernelFunc:DT};var aV;function Ist(r){aV=r.wasm.cwrap(Jo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Sst(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p,dataFormat:m}=e,f=S.convertConv2DDataFormat(m),d=S.computeConv2DInfo(o.shape,s.shape,u,l,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,y=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,v=d.padInfo.left,N=d.dilationHeight,E=d.dilationWidth,$=d.strideHeight,D=d.strideWidth,L=d.inChannels,M=d.outChannels,G=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let H=n.makeOutput(d.outShape,"float32"),q=n.dataIdMap.get(H.dataId).id;return aV(i,o.shape[0],o.shape[1],o.shape[2],a,h,g,y,b,w,v,G,N,E,$,D,L,M,q),H}var lV={kernelName:Jo,backendName:"wasm",setupFunc:Ist,kernelFunc:Sst};var uV;function Nst(r){uV=r.wasm.cwrap(Qo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function kst(r){let{backend:t,inputs:e,attrs:n}=r,{dy:o,filter:s}=e,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,inputShape:c}=n,p=1,m=S.convertConv2DDataFormat(u),f=S.computeConv2DInfo(c,s.shape,i,p,a,l,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:y,inHeight:b,inWidth:w,outChannels:v,outHeight:N,outWidth:E,strideHeight:$,strideWidth:D}=f,L=h-1-f.padInfo.top,M=g-1-f.padInfo.left,G=f.dataFormat==="channelsLast",H=x.computeStrides(f.inShape),q=x.computeStrides(o.shape),[X,j,J]=x.computeStrides(s.shape),nt=H[0],K=G?H[1]:H[2],ot=G?H[2]:1,st=G?1:H[1],it=q[0],ft=G?q[1]:q[2],lt=G?q[2]:1,xt=G?1:q[1],dt=t.makeOutput(f.inShape,"float32"),bt=t.dataIdMap.get(dt.dataId).id,Nt=t.dataIdMap.get(o.dataId).id,At=t.dataIdMap.get(s.dataId).id;return uV(Nt,At,d,h,g,b,w,y,N,E,v,$,D,L,M,X,j,J,nt,K,ot,st,it,ft,lt,xt,bt),dt}var cV={kernelName:Qo,backendName:"wasm",setupFunc:Nst,kernelFunc:kst};var pV=ae(ts);var mV=ae(es);var FT;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(FT||(FT={}));var fV;function Tst(r){fV=r.wasm.cwrap(pa,null,["number","number","number","number","array","number","number","number","number","number"])}function _st(r){let{backend:t,inputs:e,attrs:n}=r,{method:o,extrapolationValue:s,cropSize:i}=n,{image:a,boxes:u,boxInd:l}=e,c=u.shape[0],[p,m]=i,f=[c,p,m,a.shape[3]],d=t.dataIdMap.get(a.dataId),h;a.dtype!=="float32"&&(h=ai({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),d=t.dataIdMap.get(h.dataId));let g=d.id,y=t.dataIdMap.get(u.dataId).id,b=t.dataIdMap.get(l.dataId).id,w=t.makeOutput(f,"float32"),v=t.dataIdMap.get(w.dataId).id,N=new Uint8Array(new Int32Array(a.shape).buffer);return fV(g,y,b,c,N,p,m,FT[o],s,v),h!=null&&t.disposeData(h.dataId),w}var dV={kernelName:pa,backendName:"wasm",setupFunc:Tst,kernelFunc:_st};var hV;function Est(r){hV=r.wasm.cwrap(ca,null,["number","number","number","number","number","number"])}function Ast(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;x.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumprod does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=no({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims("cumprod",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;hV(d,i?1:0,a?1:0,f,h,Zt[o.dtype]);let g=m;if(l!==null){let y=S.getUndoAxesPermutation(l);g=no({inputs:{x:m},attrs:{perm:y},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var gV={kernelName:ca,backendName:"wasm",setupFunc:Est,kernelFunc:Ast};var xV;function $st(r){xV=r.wasm.cwrap(rs,null,["number","number","number","number","number","number"])}function Dst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;x.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=no({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims("cumsum",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;xV(d,i?1:0,a?1:0,f,h,Zt[o.dtype]);let g=m;if(l!==null){let y=S.getUndoAxesPermutation(l);g=no({inputs:{x:m},attrs:{perm:y},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var yV={kernelName:rs,backendName:"wasm",setupFunc:$st,kernelFunc:Dst};var bV;function Fst(r){bV=r.wasm.cwrap(ma,null,["number","number","number","array","number","array","array","number","number"])}function Rst(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i==="NHWC"?o.shape[1]:o.shape[2],l=i==="NHWC"?o.shape[2]:o.shape[3],c=i==="NHWC"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i==="NHWC"?[a,p,m,f]:[a,f,p,m],h=t.makeOutput(d,"float32"),y=t.dataIdMap.get(o.dataId).id,b=new Uint8Array(new Int32Array(x.computeStrides(o.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),v=new Uint8Array(new Int32Array(x.computeStrides(d)).buffer),N=t.dataIdMap.get(h.dataId).id;return bV(y,s,i==="NHWC"?1:0,b,o.shape.length-1,w,v,d.length,N),h}var wV={kernelName:ma,backendName:"wasm",setupFunc:Fst,kernelFunc:Rst};var vV;function Ost(r){vV=r.wasm.cwrap(ns,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Lst(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p}=e,m=l==null?[1,1]:l,f=S.computeConv2DInfo(o.shape,s.shape,u,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,y=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,v=f.dilationHeight,N=f.dilationWidth,E=f.strideHeight,$=f.strideWidth,D=f.inChannels,L=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let G=n.makeOutput(f.outShape,"float32"),H=n.dataIdMap.get(G.dataId).id;return vV(i,o.shape[0],o.shape[1],o.shape[2],a,d,h,g,y,b,w,M,v,N,E,$,D,L,H),G}var CV={kernelName:ns,backendName:"wasm",setupFunc:Ost,kernelFunc:Lst};var IV=ae(ss);var Pst=!1,SV=pe(da,Pst,"bool");var NV=ae(is,"float32");function gC(r){let{inputs:t,attrs:e,backend:n}=r,{input:o}=t,{dim:s}=e,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(x.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),lr({inputs:{x:o},backend:n,attrs:{shape:a}})}var kV={kernelName:fi,backendName:"wasm",kernelFunc:gC};function RT(r){let{attrs:{shape:t,value:e,dtype:n},backend:o}=r,s=o.makeOutput(t,n);return o.typedArrayFromHeap(s).fill(e),s}var TV={kernelName:Tl,backendName:"wasm",kernelFunc:RT};var _V;function Mst(r){_V=r.wasm.cwrap(ga,null,["number","number","number","number","number","number"])}function zst(r){let{inputs:t,backend:e}=r,{image:n}=t,o=e.makeOutput(n.shape,n.dtype),s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,[a,u,l,c]=n.shape;return _V(s,a,u,l,c,i),o}var EV={kernelName:ga,backendName:"wasm",kernelFunc:zst,setupFunc:Mst};var AV=ae(as);var Bst=!1,$V=pe(ls,Bst);var DV;function Vst(r){DV=r.wasm.cwrap(us,null,["number","number","number","number","number","number","number"])}function Gst(r){let{backend:t,inputs:e,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:i,variance:a,offset:u,scale:l}=e,c=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,m=t.dataIdMap.get(a.dataId).id,f=u!=null?t.dataIdMap.get(u.dataId).id:0,d=l!=null?t.dataIdMap.get(l.dataId).id:0,h=t.makeOutput(s.shape,s.dtype);if(x.sizeFromShape(s.shape)===0)return h;let g=t.dataIdMap.get(h.dataId).id;return DV(c,p,m,f,d,o,g),h}var FV={kernelName:us,backendName:"wasm",setupFunc:Vst,kernelFunc:Gst};var RV;function Wst(r){RV=r.wasm.cwrap(ki,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ust(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m),g=$u[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let y=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,v=0;if(i!=null){let lt=n.dataIdMap.get(i.dataId);if(lt.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${lt.shape.length}.`);if(lt.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${lt.shape}) does not match the number of output channels (${w})`);v=lt.id}let N=h.filterHeight,E=h.filterWidth,$=h.padInfo.top,D=h.padInfo.right,L=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,H=h.dilationWidth,q=h.strideHeight,X=h.strideWidth,j=h.inChannels,J=h.padInfo.type==="SAME"?1:0,nt=h.batchSize,K=h.inHeight,ot=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let st=n.makeOutput(h.outShape,"float32"),it=n.dataIdMap.get(st.dataId).id,ft=a==null?0:n.dataIdMap.get(a.dataId).id;return RV(y,nt,K,ot,b,N,E,v,$,D,L,M,J,G,H,q,X,j,w,g,ft,d||0,it),st}var OV={kernelName:ki,backendName:"wasm",setupFunc:Wst,kernelFunc:Ust};var LV;function Hst(r){LV=r.wasm.cwrap(Ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qst(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m,!0),g=$u[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,v=0;if(i!=null){let lt=n.dataIdMap.get(i.dataId);if(lt.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${lt.shape.length}.`);if(lt.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${lt.shape}) does not match the number of output channels (${w})`);v=lt.id}let N=h.filterHeight,E=h.filterWidth,$=h.padInfo.top,D=h.padInfo.right,L=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,H=h.dilationWidth,q=h.strideHeight,X=h.strideWidth,j=h.inChannels,J=h.padInfo.type==="SAME"?1:0,nt=h.batchSize,K=h.inHeight,ot=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let st=n.makeOutput(h.outShape,"float32"),it=n.dataIdMap.get(st.dataId).id,ft=a==null?0:n.dataIdMap.get(a.dataId).id;return LV(y,nt,K,ot,b,N,E,v,$,D,L,M,J,G,H,q,X,j,w,g,ft,d||0,it),st}var PV={kernelName:Ti,backendName:"wasm",setupFunc:Hst,kernelFunc:qst};var MV;function Kst(r){MV=r.wasm.cwrap(xa,null,["number","number","number","number","number","number","array","number"])}function jst(r){let{backend:t,inputs:e}=r,{params:n,indices:o}=e,[s,i,a,u]=fx.prepareAndValidate(n,o),l=t.makeOutput(s,n.dtype);if(i===0)return l;let c=o.shape,p=c[c.length-1],f=t.dataIdMap.get(n.dataId).id,h=t.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),y=t.dataIdMap.get(l.dataId).id;return MV(f,Zt[n.dtype],h,i,p,a,g,y),l}var zV={kernelName:xa,backendName:"wasm",setupFunc:Kst,kernelFunc:jst};var BV;function Xst(r){BV=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Yst(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,indices:s}=e,{axis:i,batchDims:a}=n,u=x.parseAxisParam(i,o.shape)[0],l=t.readSync(s.dataId),c=o.shape[u];for(let L=0;L<l.length;++L){let M=l[L];x.assert(M<=c-1&&M>=0,()=>`GatherV2: the index value ${M} is not in [0, ${c-1}]`)}let p=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),m=lr({inputs:{x:o},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),f=x.sizeFromShape(s.shape),d=lr({inputs:{x:s},attrs:{shape:[p.batchSize,f/p.batchSize]},backend:t}),h=[p.batchSize,p.outerSize,f/p.batchSize,p.sliceSize],g=t.makeOutput(h,o.dtype);if(x.sizeFromShape(o.shape)===0)return g;let y=m.shape.length-1,w=t.dataIdMap.get(m.dataId).id,N=t.dataIdMap.get(d.dataId).id,E=t.dataIdMap.get(g.dataId).id,$=new Uint8Array(new Int32Array(x.computeStrides(m.shape)).buffer),D=new Uint8Array(new Int32Array(x.computeStrides(h)).buffer);return BV(w,Zt[o.dtype],$,y,N,p.batchSize,D,E),t.disposeData(m.dataId),t.disposeData(d.dataId),g.shape=p.outputShape,g}var VV={kernelName:di,backendName:"wasm",setupFunc:Xst,kernelFunc:Yst};var Zst=!1,GV=pe(ya,Zst,"bool");var Jst=!1,WV=pe(cs,Jst,"bool");var UV;function Qst(r){UV=r.wasm.cwrap(ps,null,["number","number","number","number"])}function tit(r){let{inputs:{x:t},attrs:{alpha:e},backend:n}=r,o=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(x.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;UV(o,Zt[t.dtype],e,i)}return s}var HV={kernelName:ps,backendName:"wasm",setupFunc:Qst,kernelFunc:tit};var eit=!1,qV=pe(Ca,eit,"bool");var rit=!1,KV=pe(Ia,rit,"bool");var jV=ae(ms);var nit=!1,XV=pe(Na,nit,"bool");var YV=ae(ka);var oit=!1,ZV=pe(Ta,oit,"bool");var sit=!1,JV=pe(b1,sit,"bool");var QV;function iit(r){QV=r.wasm.cwrap(fs,null,["number","number","number","number"])}function ait(r){let{backend:t,inputs:e,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=wn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("max",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),y=x.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;QV(u,Zt[i.dtype],y,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var tG={kernelName:fs,backendName:"wasm",setupFunc:iit,kernelFunc:ait};var lit=!1,eG=pe(ds,lit);var rG;function uit(r){rG=r.wasm.cwrap(hs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cit(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id;x.assert(o.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${o.dtype}.`);let{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=S.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,v=c.strideWidth,N=c.inChannels,E=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let $=n.makeOutput(c.outShape,"float32"),D=n.dataIdMap.get($.dataId).id;return rG(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,y,b,w,v,N,E,D),$}var nG={kernelName:hs,backendName:"wasm",setupFunc:uit,kernelFunc:cit};var oG;function pit(r){oG=r.wasm.cwrap(gs,null,["number, number, number"])}function mit(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=wn(i,o,t),d=p;if(f){let v=t.dataIdMap.get(c.dataId).id;v!==a&&(l=c,u=v,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("mean",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),y=x.sizeFromShape(g),b=l;l.dtype!=="float32"&&(b=ai({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),u=t.dataIdMap.get(b.dataId).id);let w=t.makeOutput(h,"float32");if(x.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(w.dataId).id;oG(u,y,v)}if(f&&t.disposeData(c.dataId),s){let v=S.expandShapeToKeepDim(w.shape,m);w.shape=v}return l.dtype!=="float32"&&t.disposeData(b.dataId),w}var sG={kernelName:gs,backendName:"wasm",setupFunc:pit,kernelFunc:mit};var iG;function fit(r){iG=r.wasm.cwrap(xs,null,["number","number","number","number"])}function dit(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=wn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w)}let d=l.shape.length;S.assertAxesAreInnerMostDims("min",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),y=x.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;iG(u,Zt[i.dtype],y,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var aG={kernelName:xs,backendName:"wasm",setupFunc:fit,kernelFunc:dit};var hit=!1,lG=pe(ys,hit);var OT;(function(r){r[r.reflect=0]="reflect",r[r.symmetric=1]="symmetric"})(OT||(OT={}));var uG;function git(r){uG=r.wasm.cwrap(bs,null,["number","array","number","number","array","array","number","number"])}function xit(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,mode:o}}=r,s=n.map((d,h)=>d[0]+t.shape[h]+d[1]),i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),u=e.dataIdMap.get(a.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return uG(i,l,t.shape.length,Zt[t.dtype],m,f,OT[o],u),a}var cG={kernelName:bs,backendName:"wasm",kernelFunc:xit,setupFunc:git};var yit=!0,pG=pe(ws,yit);var mG=ae(hi);function Od(r,t){let e=new Int32Array(r.wasm.HEAPU8.buffer,t,4),n=e[0],o=e[1],s=e[2],i=e[3];return r.wasm._free(t),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:i}}var fG;function bit(r){fG=r.wasm.cwrap(Aa,"number",["number","number","number","number","number"])}function wit(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i}=n,{boxes:a,scores:u}=e,l=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(u.dataId).id,p=fG(l,c,s,o,i),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Od(t,p);return t.wasm._free(d),t.wasm._free(h),t.makeOutput([f],"int32",m)}var dG={kernelName:Aa,backendName:"wasm",setupFunc:bit,kernelFunc:wit};var hG;function vit(r){hG=r.wasm.cwrap($a,"number",["number","number","number","number","number","bool"])}function Cit(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=hG(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Od(t,m);t.wasm._free(h);let y=t.makeOutput([d],"int32",f),b=t.makeOutput([],"int32",g);return[y,b]}var gG={kernelName:$a,backendName:"wasm",setupFunc:vit,kernelFunc:Cit};var xG;function Iit(r){xG=r.wasm.cwrap(Da,"number",["number","number","number","number","number","number"])}function Sit(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,softNmsSigma:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=xG(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Od(t,m);t.wasm._free(g);let y=t.makeOutput([d],"int32",f),b=t.makeOutput([d],"float32",h);return[y,b]}var yG={kernelName:Da,backendName:"wasm",setupFunc:Iit,kernelFunc:Sit};var Nit=!1,bG=pe(Ea,Nit,"bool");var wG;function kit(r){wG=r.wasm.cwrap(vs,null,["number","number","number","number","number"])}function Tit(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{depth:s,onValue:i,offValue:a}=n,u=e.makeOutput([...o.shape,s],"int32"),l=e.dataIdMap.get(u.dataId).id,p=e.dataIdMap.get(o.dataId).id;return wG(p,s,i,a,l),u}var vG={kernelName:vs,backendName:"wasm",setupFunc:kit,kernelFunc:Tit};function _it(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(1),n}var CG={kernelName:gi,backendName:"wasm",kernelFunc:_it};function Eit(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return gC({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=gC({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=DT({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeData(c.dataId)),l}var IG={kernelName:xi,backendName:"wasm",kernelFunc:Eit};var SG;function Ait(r){SG=r.wasm.cwrap(Cs,null,["number","array","number","number","array","array","number","number"])}function $it(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,constantValue:o}}=r,s=n.map((h,g)=>h[0]+t.shape[g]+h[1]);if(x.sizeFromShape(t.shape)===0)return RT({backend:e,attrs:{shape:s,value:o,dtype:t.dtype}});let i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(h=>h[0]),m=n.map(h=>h[1]),f=new Uint8Array(new Int32Array(p).buffer),d=new Uint8Array(new Int32Array(m).buffer);return SG(i,c,t.shape.length,Zt[t.dtype],f,d,o,l),a}var xC={kernelName:Cs,backendName:"wasm",kernelFunc:$it,setupFunc:Ait};var Dit=!1,NG=pe(Is,Dit);var kG;function Fit(r){kG=r.wasm.cwrap(Ss,null,["number","number","number"])}function Rit(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,a=s,u=n,l=u;u.dtype!=="float32"&&(l=ai({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),a=e.dataIdMap.get(l.dataId).id);let c=e.makeOutput(n.shape,"float32"),p=e.dataIdMap.get(c.dataId).id;return kG(a,i,p),u.dtype!=="float32"&&e.disposeData(l.dataId),c}var TG={kernelName:Ss,backendName:"wasm",setupFunc:Fit,kernelFunc:Rit};var _G;function Oit(r){_G=r.wasm.cwrap(Ns,null,["number","number","number","number"])}function Lit(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=wn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("prod",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),y=x.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;_G(u,y,Zt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var EG={kernelName:Ns,backendName:"wasm",setupFunc:Oit,kernelFunc:Lit};var Pit=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=Lc(n,o,s,i),u=t.makeOutput([a.length],i);return t.typedArrayFromHeap(u).set(a),u},AG={kernelName:Al,backendName:"wasm",kernelFunc:Pit};var Mit=!0,$G=pe(os,Mit);var DG=ae(ks);var FG=ae(Es);var RG;function zit(r){RG=r.wasm.cwrap(_s,null,["number","number","number","number","number","number","number","number","number","number"])}function Bit(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.dataIdMap.get(o.dataId),g;h.dtype!=="float32"&&(g=ai({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),h=t.dataIdMap.get(g.dataId));let y=h.id,b=t.makeOutput(d,"float32");if(x.sizeFromShape(o.shape)===0)return b;let w=t.dataIdMap.get(b.dataId).id;return RG(y,c,p,m,f,u,l,s?1:0,i?1:0,w),g!=null&&t.disposeData(g.dataId),b}var OG={kernelName:_s,backendName:"wasm",setupFunc:zit,kernelFunc:Bit};var LG;function Vit(r){LG=r.wasm.cwrap(Ts,null,["number","number","number","number","number","number","number","number","number","number"])}function Git(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.makeOutput(d,"float32");if(x.sizeFromShape(o.shape)===0)return h;let g=t.dataIdMap.get(o.dataId),y;g.dtype!=="float32"&&(y=ai({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(y.dataId));let b=g.id,w=t.dataIdMap.get(h.dataId).id;return LG(b,c,p,m,f,u,l,s?1:0,i?1:0,w),y!=null&&t.disposeData(y.dataId),h}var PG={kernelName:Ts,backendName:"wasm",setupFunc:Vit,kernelFunc:Git};var MG;function Wit(r){MG=r.wasm.cwrap(As,null,["number","array","number","array","number","number"])}function Uit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=x.parseAxisParam(s,o.shape);if(o.shape.length===0)return tp({inputs:{x:o},backend:e});let a=e.makeOutput(o.shape,o.dtype),u=e.dataIdMap.get(o.dataId).id,l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);MG(u,c,i.length,p,o.shape.length,l);let m=lr({inputs:{x:a},attrs:{shape:o.shape},backend:e});return e.disposeData(a.dataId),m}var zG={kernelName:As,backendName:"wasm",kernelFunc:Uit,setupFunc:Wit};var BG;function Hit(r){BG=r.wasm.cwrap(Wa,null,["number","number","number","number","number","number","number","number","array","number","number"])}function qit(r){let{inputs:t,backend:e,attrs:n}=r,{image:o}=t,{radians:s,fillValue:i,center:a}=n,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(o.dataId).id,c=e.dataIdMap.get(u.dataId).id,[p,m,f,d]=o.shape,[h,g]=S.getImageCenter(a,m,f),y=i===0,b=255,w=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(w).buffer);return BG(l,p,m,f,d,s,h,g,v,w.length,c),u}var VG={kernelName:Wa,backendName:"wasm",kernelFunc:qit,setupFunc:Hit};var GG=ae($s);var WG=ae(Ds);var UG;function Kit(r){UG=r.wasm.cwrap(Ra,null,["number","number","number","number","number","number","array","number","number"])}function jit(r){let{backend:t,inputs:e,attrs:n}=r,{indices:o,updates:s}=e,{shape:i}=n,a=t.makeOutput(i,s.dtype);if(x.sizeFromShape(i)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=fh.calculateShapes(s,o,i),d=t.dataIdMap.get(o.dataId).id,g=t.dataIdMap.get(s.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),b=t.dataIdMap.get(a.dataId).id;return UG(d,g,Zt[s.dtype],u,l,c,y,m,b),a}var HG={kernelName:Ra,backendName:"wasm",setupFunc:Kit,kernelFunc:jit};var qG;function Xit(r){qG=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Yit(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=e.dataIdMap.get(n.dataId).id,a=e.dataIdMap.get(o.dataId).id,u=e.dataIdMap.get(s.dataId).id,l=e.makeOutput(o.shape,o.dtype),c=e.dataIdMap.get(l.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:x.sizeFromShape(o.shape.slice(1));return qG(i,a,u,f,c),l}var KG={kernelName:bi,backendName:"wasm",kernelFunc:Yit,setupFunc:Xit};var jG;function Zit(r){jG=r.wasm.cwrap(Rs,null,["number","number"])}function Jit(r){let{backend:t,inputs:{x:e}}=r,n=t.dataIdMap.get(e.dataId).id,o=t.makeOutput(e.shape,e.dtype),s=t.dataIdMap.get(o.dataId).id;return x.sizeFromShape(o.shape)===0||jG(n,s),o}var XG={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Zit,kernelFunc:Jit};var YG=ae(Fs);var ZG;function Qit(r){ZG=r.wasm.cwrap(Ps,null,["number","number","number","number"])}function tat(r){let{backend:t,inputs:{logits:e},attrs:{dim:n}}=r,o=t.dataIdMap.get(e.dataId).id,s=t.makeOutput(e.shape,e.dtype),i=t.dataIdMap.get(s.dataId).id,a=e.shape[n],u=x.sizeFromShape(e.shape)/a;return x.sizeFromShape(s.shape)===0||ZG(o,i,a,u),s}var JG={kernelName:Ps,backendName:"wasm",setupFunc:Qit,kernelFunc:tat};function eat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n,a=x.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let E=1+s.length;E<o.shape.length;++E)u.push([0,0]);let l=xC.kernelFunc({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),c=S.getReshaped(l.shape,s,a,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(l.shape,s,a,!1),h=lr({inputs:{x:l},backend:e,attrs:{shape:c}}),b=no({inputs:{x:h},backend:e,attrs:{perm:p}}),N=lr({inputs:{x:b},backend:e,attrs:{shape:m}});return e.disposeData(l.dataId),e.disposeData(h.dataId),e.disposeData(b.dataId),N}var QG={kernelName:vi,backendName:"wasm",kernelFunc:eat};var tW;function rat(r){tW=r.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function nat(r){let{backend:t,inputs:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=e,a=n.shape[0],u=n.shape[1],l=t.readSync(s.dataId)[0],c=[a+l,u],p=t.dataIdMap.get(n.dataId).id,m=t.dataIdMap.get(o.dataId).id,f=t.dataIdMap.get(i.dataId).id,d=t.makeOutput(c,n.dtype),h=t.dataIdMap.get(d.dataId).id,g=t.makeOutput(c.slice(0,1),o.dtype),y=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([l],"bool"),w=t.dataIdMap.get(b.dataId).id,v=t.makeOutput([a],n.dtype),N=t.dataIdMap.get(v.dataId).id,E=t.makeOutput([4],"int32"),$=t.dataIdMap.get(E.dataId).id,D=tW(p,m,Zt[o.dtype],a,l,u,f,h,y,w,N,$),L=t.readSync(E.dataId),M;switch(L[0]){case 1:{M=S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(L[1]);break}case 2:{M=S.getSparseFillEmptyRowsNegativeIndexErrorMessage(L[1],L[2]);break}case 3:M=S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(L[1],L[2],L[3]);break;default:M=""}if(t.disposeData(E.dataId),M)throw t.disposeData(d.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(v.dataId),new Error(M);let G=d,H=g;return D!==c[0]&&(G=Oo({inputs:{x:d},attrs:{begin:0,size:[D,u]},backend:t}),H=Oo({inputs:{x:g},attrs:{begin:0,size:D},backend:t}),t.disposeData(d.dataId),t.disposeData(g.dataId)),[G,H,b,v]}var eW={kernelName:$l,backendName:"wasm",setupFunc:rat,kernelFunc:nat};var rW;function oat(r){rW=r.wasm.cwrap(za,null,["number","number","number","number","number","number","number"])}function sat(r){let{backend:t,inputs:e}=r,{inputIndices:n,inputShape:o,newShape:s}=e;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(s.dataId).id,l=n.shape[0],c=x.sizeFromShape(s.shape),p=t.makeOutput([l,c],n.dtype),m=t.dataIdMap.get(p.dataId).id,f=t.makeOutput([c],s.dtype),d=t.dataIdMap.get(f.dataId).id,h=t.makeOutput([3],"int32"),g=t.dataIdMap.get(h.dataId).id;rW(i,a,u,l,m,d,g);let y=t.readSync(h.dataId),b;switch(y[0]){case 0:{b=S.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{b=S.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:b=S.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let w=Array.from(t.readSync(o.dataId)),v=Array.from(t.readSync(f.dataId));b=S.getSparseReshapeInputOutputMultipleErrorMessage(w,v);break}case 4:{let w=Array.from(t.readSync(o.dataId)),v=Array.from(t.readSync(f.dataId));b=S.getSparseReshapeInputOutputMismatchErrorMessage(w,v);break}default:b=""}if(t.disposeData(h.dataId),b)throw t.disposeData(p.dataId),t.disposeData(f.dataId),new Error(b);return[p,f]}var nW={kernelName:za,backendName:"wasm",setupFunc:oat,kernelFunc:sat};var oW;function yC(r){oW=r.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function bC(r,t){let{backend:e,inputs:n}=r,{data:o,indices:s,segmentIds:i}=n,a=s.shape[0],u=e.readSync(i.dataId,a-1,a)[0],c=a>0?u+1:0;if(c<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=o.shape.slice();p[0]=c;let m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=e.dataIdMap.get(i.dataId).id,h=e.makeOutput(p,o.dtype),g=e.dataIdMap.get(h.dataId).id,y=e.makeOutput([4],"int32"),b=e.dataIdMap.get(y.dataId).id;oW(m,Zt[o.dtype],o.shape[0],f,d,g,b,t,0);let w=e.readSync(y.dataId),v;switch(w[0]){case 0:{v=S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{v=S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:v=S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(w[1],w[2]);break;case 3:v=S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(w[1],w[2],w[3]);break;default:v=""}if(e.disposeData(y.dataId),v)throw e.disposeData(h.dataId),new Error(v);return h}function iat(r){return bC(r,!0)}var sW={kernelName:Dl,backendName:"wasm",setupFunc:yC,kernelFunc:iat};function aat(r){return bC(r,!1)}var iW={kernelName:Fl,backendName:"wasm",setupFunc:yC,kernelFunc:aat};function lat(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=e,a=x.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Oo({inputs:{x:o},attrs:{begin:l,size:m},backend:n});return l[a]+=p,f})}var aW={kernelName:Ci,backendName:"wasm",kernelFunc:lat};var lW=ae(Os);var uW=ae(Rl);var uat=!0,cW=pe(Ms,uat);var pW;function cat(r){pW=r.wasm.cwrap(uo,null,["number","number","number","number"])}function pat(r){let{backend:t,inputs:e,attrs:n}=r,{alpha:o}=n,{x:s}=e,i=t.dataIdMap.get(s.dataId).id,a=t.makeOutput(s.shape,s.dtype),u=t.dataIdMap.get(a.dataId).id;return pW(i,o,Zt[s.dtype],u),a}var mW={kernelName:uo,backendName:"wasm",setupFunc:cat,kernelFunc:pat};var fW;function mat(r){fW=r.wasm.cwrap(Ba,null,["number","array","number","array","array","array","array","array","number","number"])}function fat(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:y,begin:b,end:w,strides:v}=Be.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=lr({inputs:{x:o},backend:t,attrs:{shape:d}});else if(g||y){x.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let E=Be.computeOutShape(b,w,v),$=Oo({inputs:{x:o},backend:t,attrs:{begin:b,size:E}});N=lr({inputs:{x:$},backend:t,attrs:{shape:d}}),t.disposeData($.dataId)}else{let E=t.makeOutput(f,"float32"),$=t.dataIdMap.get(o.dataId).id,D=new Uint8Array(new Int32Array(x.computeStrides(o.shape)).buffer),L=new Uint8Array(new Int32Array(b).buffer),M=new Uint8Array(new Int32Array(w).buffer),G=new Uint8Array(new Int32Array(v).buffer),H=new Uint8Array(new Int32Array(f).buffer),q=new Uint8Array(new Int32Array(x.computeStrides(f)).buffer),X=t.dataIdMap.get(E.dataId).id;fW($,D,o.shape.length,L,M,G,H,q,f.length,X),N=lr({inputs:{x:E},backend:t,attrs:{shape:d}}),t.disposeData(E.dataId)}return N}var dW={kernelName:Ba,backendName:"wasm",setupFunc:mat,kernelFunc:fat};function dat(r){let{backend:t,inputs:e,attrs:n}=r,{data:o,dataSplits:s}=e,{separator:i,nGramWidths:a,leftPad:u,rightPad:l,padWidth:c,preserveShortSequences:p}=n,m=t.readSync(o.dataId),f=t.readSync(s.dataId),[d,h]=Mc(m,f,i,a,u,l,c,p),g=t.makeOutput([d.length],"string"),y=t.dataIdMap.get(g.dataId);y.stringBytes=d;let b=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(b).set(h),[g,b]}var hW={kernelName:Ol,backendName:"wasm",kernelFunc:dat};function hat(r){let{backend:t,inputs:e,attrs:n}=r,{input:o,delimiter:s}=e,{skipEmpty:i}=n,a=t.readSync(o.dataId),u=t.readSync(s.dataId),[l,c,p]=zc(a,u[0],i),m=c.length,f=t.makeOutput([m,2],"int32");t.typedArrayFromHeap(f).set(l);let h=t.makeOutput([m],"string"),g=t.dataIdMap.get(h.dataId);g.stringBytes=c;let y=t.makeOutput([2],"int32");return t.typedArrayFromHeap(y).set(p),[f,h,y]}var gW={kernelName:Ll,backendName:"wasm",kernelFunc:hat};function gat(r){let{backend:t,inputs:e,attrs:n}=r,{input:o}=e,{numBuckets:s}=n,i=t.readSync(o.dataId),a=Bc(i,s),u=t.makeOutput(o.shape,"int32");return t.typedArrayFromHeap(u).set(a),u}var xW={kernelName:Pl,backendName:"wasm",kernelFunc:gat};var xat=!0,yW=pe(zs,xat);var bW;function yat(r){bW=r.wasm.cwrap(Ls,null,["number","number","number","number"])}function bat(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=wn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("sum",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),y=x.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;bW(u,y,Zt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var wW={kernelName:Ls,backendName:"wasm",setupFunc:yat,kernelFunc:bat};var vW=ae(Bs);var CW=ae(Vs);var IW;function wat(r){IW=r.wasm.cwrap(Xn,null,["number","array","number","array","number","number"])}function vat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,s=e.dataIdMap.get(o.dataId).id,{reps:i}=n,a=new Array(o.shape.length);for(let m=0;m<a.length;m++)a[m]=o.shape[m]*i[m];let u=new Uint8Array(new Int32Array(o.shape).buffer),l=new Uint8Array(new Int32Array(a).buffer),c=e.makeOutput(a,o.dtype),p=e.dataIdMap.get(c.dataId).id;return IW(s,u,o.shape.length,l,a.length,Zt[c.dtype],p),c}var SW={kernelName:Xn,backendName:"wasm",setupFunc:wat,kernelFunc:vat};var NW;function Cat(r){NW=r.wasm.cwrap(Va,null,["number","array","number","number","number","bool","number","number"])}var Iat=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{k:o,sorted:s}=e,i=t.dataIdMap.get(n.dataId).id,a=new Uint8Array(new Int32Array(n.shape).buffer),u=n.shape.slice();u[u.length-1]=o;let l=t.makeOutput(u,n.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,"int32"),m=t.dataIdMap.get(p.dataId).id;return NW(i,a,n.shape.length,Zt[n.dtype],o,s,c,m),[l,p]},kW={kernelName:Va,backendName:"wasm",setupFunc:Cat,kernelFunc:Iat};var TW;function Sat(r){TW=r.wasm.cwrap(Ga,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Nat(r){let{backend:t,inputs:e,attrs:n}=r,{image:o,transforms:s}=e,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],y=new Uint8Array(new Int32Array(x.computeStrides(o.shape)).buffer),b=t.makeOutput(g,o.dtype),w=t.dataIdMap.get(b.dataId).id,N=t.dataIdMap.get(o.dataId).id,$=t.dataIdMap.get(s.dataId).id,D=i==="nearest"?1:2,L;switch(a){case"constant":L=1;break;case"reflect":L=2;break;case"wrap":L=3;break;case"nearest":L=4;break;default:L=1;break}return TW(N,$,s.shape[0]>1,c,d,h,f,m,p,y,o.shape.length-1,D,L,u,w),b}var _W={kernelName:Ga,backendName:"wasm",setupFunc:Sat,kernelFunc:Nat};function kat(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape[s],a=o.shape.length,u=new Array(a-1),l=0;for(let f=0;f<a;f++)f!==s&&(u[l++]=o.shape[f]);let c=new Array(i),p=new Array(a).fill(0),m=o.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=Oo({inputs:{x:o},attrs:{begin:p,size:m},backend:e});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:u}))}var EW={kernelName:Ii,backendName:"wasm",kernelFunc:kat};function Tat(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(0),n}var AW={kernelName:Si,backendName:"wasm",kernelFunc:Tat};var _at=[OB,LB,PB,zB,UB,qB,jB,YB,QB,eV,rV,nV,sV,iV,lV,cV,pV,mV,dV,gV,yV,wV,CV,IV,SV,NV,kV,TV,EV,AV,$V,FV,OV,PV,zV,VV,GV,WV,BB,HV,qV,KV,jV,XV,YV,ZV,JV,tG,eG,nG,sG,aG,lG,cG,pG,mG,dG,gG,yG,bG,vG,CG,IG,xC,NG,TG,EG,AG,$G,DG,FG,ZB,OG,PG,zG,VG,GG,WG,HG,KG,XG,YG,tV,JG,QG,eW,nW,sW,iW,aW,lW,uW,cW,mW,dW,hW,gW,xW,yW,wW,vW,CW,SW,kW,_W,GB,EW,AW];for(let r of _at)Vu(r);var LT=B();LT.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));LT.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(LT.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var GT=vl(RW()),BW=vl(LW()),WT=vl(PW());var MW=GT.default||GT,Eat=WT.default||WT,dg=class extends Uo{constructor(t){super(),this.wasm=t,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(GW),VT=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Qi(this,go())}write(t,e,n){let o={id:this.dataIdNextNumber++};return this.move(o,t,e,n,1),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(t){let e=x.now();return t(),{kernelMs:x.now()-e}}move(t,e,n,o,s){let i=this.dataIdNextNumber++;if(o==="string"){let c=e;this.dataIdMap.set(t,{id:i,stringBytes:c,shape:n,dtype:o,memoryOffset:null,refCount:s});return}let a=x.sizeFromShape(n),u=a*x.bytesPerElement(o),l=this.wasm._malloc(u);this.dataIdMap.set(t,{id:i,memoryOffset:l,shape:n,dtype:o,refCount:s}),this.wasm.tfjs.registerTensor(i,a,l),e!=null&&this.wasm.HEAPU8.set(new Uint8Array(e.buffer,e.byteOffset,u),l)}async read(t){return this.readSync(t)}readSync(t,e,n){let{memoryOffset:o,dtype:s,shape:i,stringBytes:a}=this.dataIdMap.get(t);if(s==="string")return(e==null||e===0)&&(n==null||n>=a.length)?a:a.slice(e,n);e=e||0,n=n||x.sizeFromShape(i);let u=x.bytesPerElement(s),l=this.wasm.HEAPU8.slice(o+e*u,o+n*u);return $at(l.buffer,s)}disposeData(t,e=!1){if(this.dataIdMap.has(t)){let n=this.dataIdMap.get(t);if(n.refCount--,!e&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(t)}return!0}refCount(t){return this.dataIdMap.has(t)?this.dataIdMap.get(t).refCount:0}incRef(t){let e=this.dataIdMap.get(t);e!=null&&e.refCount++}floatPrecision(){return 32}getMemoryOffset(t){return this.dataIdMap.get(t).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(t,e,n){let o;if(n==null)o=this.write(null,t,e);else{let s=this.dataIdNextNumber++;o={id:s},this.dataIdMap.set(o,{id:s,memoryOffset:n,shape:t,dtype:e,refCount:1});let i=x.sizeFromShape(t);this.wasm.tfjs.registerTensor(s,i,n)}return{dataId:o,shape:t,dtype:e}}typedArrayFromHeap({shape:t,dtype:e,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),i=x.sizeFromShape(t);switch(e){case"float32":return new Float32Array(o,s,i);case"int32":return new Int32Array(o,s,i);case"bool":return new Uint8Array(o,s,i);default:throw new Error(`Unknown dtype ${e}`)}}};function Aat(r){return(t,e)=>(x.fetch(r,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,t).then(s=>{e(s.instance,s.module)})})}),{})}function zW(r,t,e){if(CC!=null)return CC;let n="tfjs-backend-wasm.wasm";return r&&t?n="tfjs-backend-wasm-threaded-simd.wasm":r&&(n="tfjs-backend-wasm-simd.wasm"),mg!=null&&mg[n]!=null?mg[n]:e+n}async function VW(){let[r,t]=await Promise.all([B().getAsync("WASM_HAS_SIMD_SUPPORT"),B().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((e,n)=>{let o={};o.locateFile=(a,u)=>{if(a.endsWith(".worker.js")){let l=BW.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(c)}return a.endsWith(".wasm")?zW(r,t,pg!=null?pg:u):u+a},UT&&(o.instantiateWasm=Aat(zW(r,t,pg!=null?pg:"")));let s=!1;o.onAbort=()=>{if(s||fg)return;fg=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let i;t&&r&&CC==null?(o.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+MW.toString()],{type:"text/javascript"}),i=MW(o)):i=Eat(o),i.then(a=>{s=!0,fg=!1;let u=null;a.tfjs={init:a.cwrap("init",null,[]),initWithThreadsCount:a.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:a.cwrap("get_threads_count","number",[]),registerTensor:a.cwrap("register_tensor",null,["number","number","number"]),disposeData:a.cwrap("dispose_data",u,["number"]),dispose:a.cwrap("dispose",u,[])},e({wasm:a})}).catch(n)})}function $at(r,t){switch(t){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${t}`)}}var Dat=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],CC=null,pg=null,mg={},fg=!1,UT=!1;function Fat(r,t=!1){if(K0("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),fg)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");CC=r,UT=t}function Rat(r,t=!1){if(fg)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")pg=r;else{mg=r;let e=Dat.filter(n=>mg[n]==null);if(e.length>0)throw new Error(`There were no entries found for the following binaries: ${e.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}UT=t}var GW=-1,VT=-1;function Oat(r){GW=r}function Lat(){if(VT===-1)throw new Error("WASM backend not initialized.");return VT}var Pat="3.19.0";var Mat=2;sm("wasm",async()=>{let{wasm:r}=await VW();return new dg(r)},Mat);var zat="3.19.0",Bat="3.19.0",Vat="3.19.0",Gat="3.19.0",Wat="3.19.0",Uat="3.19.0",Hat="3.19.0",qat="3.19.0",Kat={tfjs:zat,"tfjs-core":Bat,"tfjs-data":Vat,"tfjs-layers":Gat,"tfjs-converter":Wat,"tfjs-backend-cpu":Uat,"tfjs-backend-webgl":Hat,"tfjs-backend-wasm":qat};export{ci as Abs,ea as Acos,ra as Acosh,au as AdadeltaOptimizer,lu as AdagradOptimizer,uu as AdamOptimizer,cu as AdamaxOptimizer,jn as Add,Ko as AddN,na as All,oa as Any,jo as ArgMax,Cl as ArgMin,sa as Asin,ia as Asinh,aa as Atan,ua as Atan2,la as Atanh,Xo as AvgPool,Il as AvgPool3D,vp as AvgPool3DGrad,wp as AvgPoolGrad,dg as BackendWasm,Yo as BatchMatMul,pi as BatchToSpaceND,Cp as Bincount,Ip as BroadcastArgs,y1 as BroadcastTo,Db as Callback,Hy as CallbackList,io as Cast,Zo as Ceil,ao as ClipByValue,Sp as Complex,Sl as ComplexAbs,mi as Concat,Jo as Conv2D,Np as Conv2DBackpropFilter,Qo as Conv2DBackpropInput,Nl as Conv3D,kp as Conv3DBackpropFilterV2,Tp as Conv3DBackpropInputV2,ts as Cos,es as Cosh,pa as CropAndResize,ca as Cumprod,rs as Cumsum,Ky as CustomCallback,Qi as DataStorage,_p as DenseBincount,ma as DepthToSpace,ns as DepthwiseConv2dNative,Ep as DepthwiseConv2dNativeBackpropFilter,Ap as DepthwiseConv2dNativeBackpropInput,$p as Diag,kl as Dilation2D,th as Dilation2DBackpropFilter,Qd as Dilation2DBackpropInput,p0 as ENV,Fb as EarlyStopping,Dp as Einsum,ss as Elu,Fp as EluGrad,Zd as Environment,da as Equal,fa as Erf,is as Exp,fi as ExpandDims,ha as Expm1,Rp as FFT,Tl as Fill,ga as FlipLeftRight,as as Floor,ls as FloorDiv,eh as FromPixels,us as FusedBatchNorm,ki as FusedConv2D,Ti as FusedDepthwiseConv2D,qc as GPGPUContext,xa as GatherNd,di as GatherV2,Bh as GraphModel,ya as Greater,cs as GreaterEqual,qy as History,Op as IFFT,lo as Identity,Lp as Imag,we as InputSpec,ba as IsFinite,wa as IsInf,va as IsNan,Uo as KernelBackend,_l as LRN,Mp as LRNGrad,Nh as LayerVariable,Bn as LayersModel,ps as LeakyRelu,Ca as Less,Ia as LessEqual,Pp as LinSpace,ms as Log,Sa as Log1p,w1 as LogSoftmax,Na as LogicalAnd,ka as LogicalNot,Ta as LogicalOr,b1 as LogicalXor,Qat as LowerBound,ku as MathBackendWebGL,fs as Max,hs as MaxPool,El as MaxPool3D,Bp as MaxPool3DGrad,zp as MaxPoolGrad,Vp as MaxPoolWithArgmax,ds as Maximum,gs as Mean,xs as Min,ys as Minimum,bs as MirrorPad,_a as Mod,pu as MomentumOptimizer,Gp as Multinomial,ws as Multiply,hi as Neg,Aa as NonMaxSuppressionV3,$a as NonMaxSuppressionV4,Da as NonMaxSuppressionV5,Ea as NotEqual,D0 as OP_SCOPE_SUFFIX,vs as OneHot,gi as OnesLike,Br as Optimizer,Ks as OptimizerConstructors,xi as Pack,Cs as PadV2,tlt as Pool,Is as Pow,Ss as Prelu,Ns as Prod,mu as RMSPropOptimizer,_n as RNN,Al as Range,C0 as Rank,Wp as Real,os as RealDiv,Fa as Reciprocal,Ye as Reduction,ks as Relu,Es as Relu6,yi as Reshape,_s as ResizeBilinear,Hp as ResizeBilinearGrad,Ts as ResizeNearestNeighbor,Up as ResizeNearestNeighborGrad,As as Reverse,Wa as RotateWithOffset,$s as Round,Ds as Rsqrt,Ui as SGDOptimizer,Ra as ScatterNd,qp as SearchSorted,bi as Select,Oa as Selu,Xi as Sequential,Rs as Sigmoid,Pa as Sign,Fs as Sin,La as Sinh,wi as Slice,Ps as Softmax,Ma as Softplus,vi as SpaceToBatchND,$l as SparseFillEmptyRows,za as SparseReshape,Dl as SparseSegmentMean,Fl as SparseSegmentSum,Kp as SparseToDense,Ci as SplitV,Os as Sqrt,Rl as Square,Ms as SquaredDifference,uo as Step,Ba as StridedSlice,Ol as StringNGrams,Ll as StringSplit,Pl as StringToHashBucketFast,zs as Sub,Ls as Sum,Xr as SymbolicTensor,Bs as Tan,Vs as Tanh,Pt as Tensor,fe as TensorBuffer,Xn as Tile,Va as TopK,Ga as Transform,Yn as Transpose,jp as Unique,Ii as Unpack,Ml as UnsortedSegmentSum,elt as UpperBound,Ua as Variable,Si as ZerosLike,Ni as _FusedMatMul,Ae as abs,gx as acos,xx as acosh,Z as add,U_ as addN,am as all,Yu as any,Ri as argMax,yx as argMin,bx as asin,wx as asinh,vx as atan,Cx as atan2,Ix as atanh,Hl as avgPool,Nx as avgPool3d,I_ as backend,S as backend_util,K_ as basicLSTMCell,Li as batchNorm,kx as batchNorm2d,Tx as batchNorm3d,_x as batchNorm4d,ql as batchToSpaceND,Ex as bincount,r6 as booleanMaskAsync,X_ as broadcastArgs,Kl as broadcastTo,Pr as broadcast_util,mx as browser,Ct as buffer,D7 as callbacks,tt as cast,Ax as ceil,Ir as clipByValue,an as clone,vn as complex,se as concat,$x as concat1d,Dx as concat2d,Fx as concat3d,Rx as concat4d,J$ as constraints,um as conv1d,Sn as conv2d,pm as conv2dTranspose,Ox as conv3d,Px as conv3dTranspose,llt as copyRegisteredKernels,jl as cos,mm as cosh,bh as cosineWindow,Qu as cumprod,fm as cumsum,un as customGrad,FF as data,Y_ as denseBincount,K0 as deprecationWarn,Mx as depthToSpace,Pi as depthwiseConv2d,L7 as deregisterOp,Gl as device_util,Z_ as diag,zx as dilation2d,Jct as disableDeprecationWarnings,_t as dispose,Qct as disposeVariables,ct as div,Bx as divNoNan,Vx as dot,mS as dropout,J_ as einsum,Mi as elu,Zct as enableDebugMode,Yct as enableProdMode,fS as enclosingPowerOfTwo,go as engine,B as env,Ar as equal,Gx as erf,Wx as euclideanNorm,or as exp,yr as expandDims,Ux as expm1,ec as eye,nu as fft,zi as fill,spt as findBackend,ipt as findBackendFactory,Bi as floor,im as floorDiv,aM as forceHalfFloat,su as fused,Vi as gather,p6 as gatherND,fx as gather_util,npt as getBackend,d0 as getGradient,nh as getKernel,Xg as getKernelsForBackend,Lat as getThreadsCount,cT as gpgpu_util,vK as grad,CK as grads,Xe as greater,Ln as greaterEqual,Ya as ifft,Ul as imag,iu as image,d6 as inTopKAsync,Q$ as initializers,BS as input,Cn as io,Tm as irfft,Hx as isFinite,qx as isInf,Kx as isNaN,Oe as keep,Vr as kernel_impls,$D as layers,Xl as leakyRelu,dm as less,Pn as lessEqual,hS as linalg,eE as linspace,EZ as loadGraphModel,AZ as loadGraphModelSync,W8 as loadLayersModel,jx as localResponseNormalization,Sr as log,Yl as log1p,Zx as logSigmoid,hm as logSoftmax,gm as logSumExp,Dr as logicalAnd,Zl as logicalNot,xm as logicalOr,Jx as logicalXor,d5 as losses,rE as lowerBound,Gt as matMul,N_ as math,Mr as max,Jl as maxPool,ty as maxPool3d,nE as maxPoolWithArgmax,Nn as maximum,ke as mean,mh as memory,oE as meshgrid,DD as metrics,tc as min,Gi as minimum,ey as mirrorPad,ry as mod,V8 as model,FD as models,rc as moments,o6 as movingAverage,O as mul,sE as multiRNNCell,iE as multinomial,Yt as neg,wh as nextFrame,Xa as norm,Hs as notEqual,Di as oneHot,cr as ones,br as onesLike,k as op,aE as outerProduct,cn as pad,lE as pad1d,uE as pad2d,cE as pad3d,pE as pad4d,ny as pool,ln as pow,tu as prelu,ax as print,oy as prod,tpt as profile,mE as rand,EE as randomGamma,sc as randomNormal,AE as randomStandardNormal,Wi as randomUniform,eu as range,rpt as ready,ja as real,uy as reciprocal,sm as registerBackend,U8 as registerCallbackConstructor,C1 as registerGradient,Vu as registerKernel,O7 as registerOp,RD as regularizers,Fr as relu,ym as relu6,opt as removeBackend,R as reshape,pr as reverse,$E as reverse1d,DE as reverse2d,FE as reverse3d,RE as reverse4d,ou as rfft,bm as round,wm as rsqrt,pt as scalar,i6 as scatterND,fh as scatter_util,gh as searchSorted,vm as selu,Cm as separableConv2d,G8 as sequential,et as serialization,oH as setBackend,apt as setPlatform,Oat as setThreadsCount,Fat as setWasmPath,Rat as setWasmPaths,Sk as setWebGLContext,OE as setdiff1dAsync,Kr as sigmoid,cy as sign,f5 as signal,Im as sin,Sm as sinh,Ot as slice,Nm as slice1d,yh as slice2d,km as slice3d,ic as slice4d,Be as slice_util,ru as softmax,Us as softplus,Ql as spaceToBatchND,h5 as sparse,u6 as sparseToDense,m5 as spectral,mr as split,Ne as sqrt,Ht as square,_m as squaredDifference,Mn as squeeze,sr as stack,yo as step,py as stridedSlice,g5 as string,ut as sub,mt as sum,Ku as sumOutType,my as tan,Oi as tanh,Cr as tensor,Ve as tensor1d,qs as tensor2d,px as tensor3d,LE as tensor4d,PE as tensor5d,ME as tensor6d,fo as tensor_util,G_ as test_util,W as tidy,$r as tile,ept as time,fy as topk,pc as train,Mt as transpose,Em as truncatedNormal,dy as unique,alt as unregisterGradient,ilt as unregisterKernel,Am as unsortedSegmentSum,Nr as unstack,ir as upcastType,zE as upperBound,x as util,IK as valueAndGrad,SK as valueAndGrads,hy as variable,Xx as variableGrads,Kat as version,fF as version_converter,W_ as version_core,tf as version_layers,Pat as version_wasm,iM as version_webgl,bke as webgl,bd as webgl_util,$e as where,xy as whereAsync,Te as zeros,St as zerosLike};