4224 lines
1.1 MiB
4224 lines
1.1 MiB
|
|
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var T_=Object.create,ed=Object.defineProperty,N_=Object.getPrototypeOf,S_=Object.prototype.hasOwnProperty,C_=Object.getOwnPropertyNames,__=Object.getOwnPropertyDescriptor;var Gw=e=>ed(e,"__esModule",{value:!0});var E_=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),td=(e,t)=>{for(var n in t)ed(e,n,{get:t[n],enumerable:!0})},F_=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of C_(t))!S_.call(e,a)&&a!=="default"&&ed(e,a,{get:()=>t[a],enumerable:!(n=__(t,a))||n.enumerable});return e},A_=e=>F_(Gw(ed(e!=null?T_(N_(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e);var G2=E_((Bae,U2)=>{Gw(Bae);td(Bae,{isNodejs:()=>Wae});function Wae(){return typeof global=="object"&&!0&&typeof U2!="undefined"&&typeof process!="undefined"&&!!process.version}});var Og={};td(Og,{Abs:()=>So,Acos:()=>Co,Acosh:()=>_o,AdadeltaOptimizer:()=>Eh,AdagradOptimizer:()=>Fh,AdamOptimizer:()=>Ah,AdamaxOptimizer:()=>$h,Add:()=>Wr,AddN:()=>Ts,All:()=>ld,Any:()=>ud,ArgMax:()=>Ns,ArgMin:()=>Xu,Asin:()=>Eo,Asinh:()=>Fo,Atan:()=>Ao,Atan2:()=>Do,Atanh:()=>$o,AvgPool:()=>Ss,AvgPool3D:()=>Yu,AvgPool3DGrad:()=>pd,AvgPoolGrad:()=>cd,BackendWasm:()=>z2,BatchMatMul:()=>Cs,BatchToSpaceND:()=>Ju,Bincount:()=>dd,BroadcastTo:()=>r0,Callback:()=>LI,CallbackList:()=>P1,Cast:()=>_s,Ceil:()=>Es,ClipByValue:()=>Vr,Complex:()=>hd,ComplexAbs:()=>Qu,Concat:()=>Ro,Conv2D:()=>Fs,Conv2DBackpropFilter:()=>md,Conv2DBackpropInput:()=>As,Conv3D:()=>Zu,Conv3DBackpropFilterV2:()=>fd,Conv3DBackpropInputV2:()=>gd,Cos:()=>$s,Cosh:()=>Mo,CropAndResize:()=>Po,Cumsum:()=>Ds,CustomCallback:()=>L1,DataStorage:()=>rd,DenseBincount:()=>yd,DepthToSpace:()=>Oo,DepthwiseConv2dNative:()=>Rs,DepthwiseConv2dNativeBackpropFilter:()=>bd,DepthwiseConv2dNativeBackpropInput:()=>xd,Diag:()=>vd,Dilation2D:()=>ec,Dilation2DBackpropFilter:()=>kd,Dilation2DBackpropInput:()=>wd,ENV:()=>Vg,EarlyStopping:()=>BI,Elu:()=>Lo,EluGrad:()=>Id,Environment:()=>n0,Equal:()=>Bo,Erf:()=>zo,Exp:()=>Ps,ExpandDims:()=>Wo,Expm1:()=>Vo,FFT:()=>Td,Fill:()=>tc,FlipLeftRight:()=>Uo,Floor:()=>Os,FloorDiv:()=>Ls,FromPixels:()=>Ld,FusedBatchNorm:()=>zs,FusedConv2D:()=>yi,FusedDepthwiseConv2D:()=>bi,GatherNd:()=>Ho,GatherV2:()=>Go,GraphModel:()=>gT,Greater:()=>jo,GreaterEqual:()=>Bs,History:()=>O1,IFFT:()=>Nd,Identity:()=>Ws,Imag:()=>Sd,InputSpec:()=>Xt,IsFinite:()=>qo,IsInf:()=>Ko,IsNan:()=>Xo,KernelBackend:()=>ju,LRN:()=>rc,LRNGrad:()=>_d,LayerVariable:()=>A1,LayersModel:()=>wr,LeakyRelu:()=>Vs,Less:()=>Yo,LessEqual:()=>Jo,LinSpace:()=>Cd,Log:()=>Us,Log1p:()=>Qo,LogSoftmax:()=>s0,LogicalAnd:()=>Zo,LogicalNot:()=>nc,LogicalOr:()=>ac,Max:()=>Gs,MaxPool:()=>js,MaxPool3D:()=>sc,MaxPool3DGrad:()=>Fd,MaxPoolGrad:()=>Ed,MaxPoolWithArgmax:()=>Ad,Maximum:()=>Hs,Mean:()=>qs,Min:()=>Ks,Minimum:()=>Xs,MirrorPad:()=>ic,Mod:()=>el,MomentumOptimizer:()=>Dh,Multinomial:()=>$d,Multiply:()=>Ys,Neg:()=>tl,NonMaxSuppressionV3:()=>al,NonMaxSuppressionV4:()=>rl,NonMaxSuppressionV5:()=>sl,NotEqual:()=>nl,OP_SCOPE_SUFFIX:()=>g0,OneHot:()=>Js,OnesLike:()=>il,Optimizer:()=>br,Pack:()=>ol,PadV2:()=>Qs,Pool:()=>wE,Pow:()=>Zs,Prelu:()=>ei,Prod:()=>ll,RMSPropOptimizer:()=>Rh,RNN:()=>er,Range:()=>oc,Rank:()=>Xg,Real:()=>Dd,RealDiv:()=>Ms,Reciprocal:()=>ul,Reduction:()=>hn,Relu:()=>ti,Relu6:()=>ai,Reshape:()=>cl,ResizeBilinear:()=>ni,ResizeBilinearGrad:()=>Md,ResizeNearestNeighbor:()=>lc,ResizeNearestNeighborGrad:()=>Rd,Reverse:()=>ri,RotateWithOffset:()=>Tl,Round:()=>si,Rsqrt:()=>ii,SGDOptimizer:()=>Pc,ScatterNd:()=>pl,Select:()=>dl,Selu:()=>hl,Sequential:()=>Xl,Sigmoid:()=>li,Sign:()=>gl,Sin:()=>oi,Sinh:()=>fl,Slice:()=>ml,Softmax:()=>pi,Softplus:()=>yl,SpaceToBatchND:()=>uc,SparseToDense:()=>Pd,SplitV:()=>bl,Sqrt:()=>ui,Square:()=>cc,SquaredDifference:()=>di,Step:()=>Gr,StridedSlice:()=>xl,Sub:()=>hi,Sum:()=>ci,SymbolicTensor:()=>Fa,Tan:()=>vl,Tanh:()=>mi,Tensor:()=>Ee,TensorBuffer:()=>Ot,Tile:()=>Ur,TopK:()=>wl,Transpose:()=>fi,Unique:()=>Od,Unpack:()=>kl,UnsortedSegmentSum:()=>pc,Variable:()=>Hr,ZerosLike:()=>Il,_FusedMatMul:()=>gi,abs:()=>Lt,acos:()=>vy,acosh:()=>wy,add:()=>J,addN:()=>Q0,all:()=>Zd,any:()=>kc,argMax:()=>Ic,argMin:()=>ky,asin:()=>Iy,asinh:()=>Ty,atan:()=>Ny,atan2:()=>Sy,atanh:()=>Cy,avgPool:()=>Qn,avgPool3d:()=>Fy,backend:()=>J0,backend_util:()=>_,basicLSTMCell:()=>YA,batchNorm:()=>fr,batchNorm2d:()=>nk,batchNorm3d:()=>ak,batchNorm4d:()=>rk,batchToSpaceND:()=>Nc,bincount:()=>sk,booleanMaskAsync:()=>eM,broadcastTo:()=>Sc,browser:()=>ki,buffer:()=>Le,callbacks:()=>WW,cast:()=>ue,ceil:()=>Ay,clipByValue:()=>qt,clone:()=>Xr,complex:()=>jr,concat:()=>Je,concat1d:()=>ik,concat2d:()=>ok,concat3d:()=>lk,concat4d:()=>uk,constraints:()=>r1,conv1d:()=>th,conv2d:()=>Ft,conv2dTranspose:()=>nh,conv3d:()=>Dy,conv3dTranspose:()=>b$,copyRegisteredKernels:()=>TE,cos:()=>Cc,cosh:()=>ah,cosineWindow:()=>sb,cumsum:()=>rh,customGrad:()=>ja,data:()=>bT,denseBincount:()=>pk,deprecationWarn:()=>xy,depthToSpace:()=>Ry,depthwiseConv2d:()=>Qr,deregisterOp:()=>UW,device_util:()=>Hd,diag:()=>S$,dilation2d:()=>My,disableDeprecationWarnings:()=>lA,dispose:()=>Ae,disposeVariables:()=>uA,div:()=>xe,divNoNan:()=>Py,dot:()=>dk,dropout:()=>Dk,elu:()=>Rl,enableDebugMode:()=>oA,enableProdMode:()=>iA,enclosingPowerOfTwo:()=>Rk,engine:()=>Ua,env:()=>ee,equal:()=>Zr,erf:()=>Oy,exp:()=>dn,expandDims:()=>Mn,expm1:()=>Ly,eye:()=>zy,fft:()=>Rc,fill:()=>Sn,findBackend:()=>gA,findBackendFactory:()=>yA,floor:()=>Ml,floorDiv:()=>Qd,fused:()=>ns,gather:()=>Ni,gatherND:()=>$k,gather_util:()=>dy,getBackend:()=>mA,getGradient:()=>jg,getKernel:()=>zd,getKernelsForBackend:()=>Bd,grad:()=>tD,grads:()=>nD,greater:()=>pa,greaterEqual:()=>es,ifft:()=>Wl,imag:()=>sh,image:()=>Xa,inTopKAsync:()=>pM,initializers:()=>p1,input:()=>T1,io:()=>Ht,irfft:()=>vh,isFinite:()=>hk,isInf:()=>mk,isNaN:()=>fk,keep:()=>jt,kernel_impls:()=>Ya,layers:()=>I1,leakyRelu:()=>_c,less:()=>ih,lessEqual:()=>Si,linalg:()=>jk,linspace:()=>gk,loadGraphModel:()=>V4,loadLayersModel:()=>oW,localResponseNormalization:()=>By,log:()=>Pn,log1p:()=>oh,logSigmoid:()=>bk,logSoftmax:()=>uh,logSumExp:()=>Uy,logicalAnd:()=>da,logicalNot:()=>Ec,logicalOr:()=>ch,logicalXor:()=>kk,losses:()=>SP,matMul:()=>ze,math:()=>$0,max:()=>Zn,maxPool:()=>At,maxPool3d:()=>Gy,maxPoolWithArgmax:()=>Ik,maximum:()=>qa,mean:()=>St,memory:()=>Yd,metrics:()=>MI,min:()=>Ol,minimum:()=>Ll,mirrorPad:()=>Hy,mod:()=>jy,model:()=>sW,models:()=>PI,moments:()=>ph,movingAverage:()=>aM,mul:()=>L,multiRNNCell:()=>AD,multinomial:()=>Tk,neg:()=>Nt,nextFrame:()=>Mh,norm:()=>Th,notEqual:()=>_i,oneHot:()=>Fl,ones:()=>Ka,onesLike:()=>On,op:()=>P,outerProduct:()=>PD,pad:()=>ea,pad1d:()=>zD,pad2d:()=>WD,pad3d:()=>UD,pad4d:()=>HD,pool:()=>Nk,pow:()=>gr,prelu:()=>Ac,print:()=>S0,prod:()=>dh,profile:()=>cA,rand:()=>eR,randomGamma:()=>rR,randomNormal:()=>Sk,randomUniform:()=>zl,range:()=>hh,ready:()=>hA,real:()=>$c,reciprocal:()=>Xy,registerBackend:()=>Jd,registerCallbackConstructor:()=>lW,registerGradient:()=>i0,registerKernel:()=>hc,registerOp:()=>VW,regularizers:()=>OI,relu:()=>qe,relu6:()=>mh,removeBackend:()=>fA,reshape:()=>U,reverse:()=>Ln,reverse1d:()=>hR,reverse2d:()=>fR,reverse3d:()=>yR,reverse4d:()=>xR,rfft:()=>Mc,round:()=>Yy,rsqrt:()=>fh,scalar:()=>pe,scatterND:()=>Ak,scatter_util:()=>hy,selu:()=>gh,separableConv2d:()=>Ei,sequential:()=>iW,serialization:()=>re,setBackend:()=>dA,setPlatform:()=>bA,setWasmPath:()=>Fae,setWasmPaths:()=>Aae,setdiff1dAsync:()=>Ck,sigmoid:()=>ca,sign:()=>Jy,signal:()=>NP,sin:()=>yh,sinh:()=>bh,slice:()=>We,slice1d:()=>xh,slice2d:()=>Qy,slice3d:()=>Bl,slice4d:()=>Dc,slice_util:()=>pn,softmax:()=>Ta,softplus:()=>Pl,spaceToBatchND:()=>Fc,sparseToDense:()=>rb,spectral:()=>TP,split:()=>zn,sqrt:()=>nn,square:()=>ot,squaredDifference:()=>wh,squeeze:()=>ts,stack:()=>$t,step:()=>Vl,stridedSlice:()=>Zy,sub:()=>me,sum:()=>Se,sumOutType:()=>Gd,tan:()=>eb,tanh:()=>Dl,tensor:()=>Yn,tensor1d:()=>Qe,tensor2d:()=>Na,tensor3d:()=>Kd,tensor4d:()=>Sa,tensor5d:()=>HR,tensor6d:()=>jR,tensor_util:()=>Ia,test_util:()=>q0,tidy:()=>D,tile:()=>Ha,time:()=>pA,topk:()=>tb,train:()=>Ai,transpose:()=>Ve,truncatedNormal:()=>kh,unique:()=>Ih,unregisterGradient:()=>IE,unregisterKernel:()=>kE,unsortedSegmentSum:()=>nb,unstack:()=>ut,upcastType:()=>ua,util:()=>w,valueAndGrad:()=>aD,valueAndGrads:()=>rD,variable:()=>_k,variableGrads:()=>yk,version:()=>LZ,version_converter:()=>yT,version_core:()=>Y0,version_layers:()=>sm,version_wasm:()=>$ae,where:()=>Nn,whereAsync:()=>ab,zeros:()=>xt,zerosLike:()=>Ge});var $_=Object.create,nd=Object.defineProperty,D_=Object.getPrototypeOf,R_=Object.prototype.hasOwnProperty,M_=Object.getOwnPropertyNames,P_=Object.getOwnPropertyDescriptor,O_=e=>nd(e,"__esModule",{value:!0}),cn=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Oe=(e,t)=>{for(var n in t)nd(e,n,{get:t[n],enumerable:!0})},L_=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of M_(t))!R_.call(e,a)&&a!=="default"&&nd(e,a,{get:()=>t[a],enumerable:!(n=P_(t,a))||n.enumerable});return e},Io=e=>L_(O_(nd(e!=null?$_(D_(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),z_=cn(()=>{}),B_=cn((e,t)=>{(function(n,a,r){function s(c){var u=this,p=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(c),u.s0<0&&(u.s0+=1),u.s1-=p(c),u.s1<0&&(u.s1+=1),u.s2-=p(c),u.s2<0&&(u.s2+=1),p=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var p=new s(c),d=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var c=4022871197,u=function(p){p=p.toString();for(var d=0;d<p.length;d++){c+=p.charCodeAt(d);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),W_=cn((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),V_=cn((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,p==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),U_=cn((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.x,d=c.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,c.i=d+1&7,m};function u(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.x&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),G_=cn((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.w,d=c.X,h=c.i,m,f;return c.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,c.i=h,f+(p^p>>>16)|0};function u(p,d){var h,m,f,g,y,b=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,g=-32;g<x;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.X&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),H_=cn((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.b,h=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^h,c.c=h=h-m|0,c.d=m<<16^h>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)c.b^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),j_=cn(()=>{}),q_=cn((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),p=u*2,d=s-1,h;function m(N,T,S){var A=[];T=T==!0?{entropy:!0}:T||{};var $=b(y(T.entropy?[N,v(n)]:N==null?x():N,3),A),R=new f(A),B=function(){for(var V=R.g(i),W=c,G=0;V<u;)V=(V+G)*s,W*=s,G=R.g(1);for(;V>=p;)V/=2,W/=2,G>>>=1;return(V+G)/W};return B.int32=function(){return R.g(4)|0},B.quick=function(){return R.g(4)/4294967296},B.double=B,b(v(R.S),n),(T.pass||S||function(V,W,G,H){return H&&(H.S&&g(H,R),V.state=function(){return g(R,{})}),G?(a[l]=V,W):V})(B,$,"global"in T?T.global:this==a,T.state)}a["seed"+l]=m;function f(N){var T,S=N.length,A=this,$=0,R=A.i=A.j=0,B=A.S=[];for(S||(N=[S++]);$<s;)B[$]=$++;for($=0;$<s;$++)B[$]=B[R=d&R+N[$%S]+(T=B[$])],B[R]=T;(A.g=function(V){for(var W,G=0,H=A.i,X=A.j,q=A.S;V--;)W=q[H=d&H+1],G=G*s+q[d&(q[H]=q[X=d&X+W])+(q[X]=W)];return A.i=H,A.j=X,G})(s)}function g(N,T){return T.i=N.i,T.j=N.j,T.S=N.S.slice(),T}function y(N,T){var S=[],A=typeof N,$;if(T&&A=="object")for($ in N)try{S.push(y(N[$],T-1))}catch(R){}return S.length?S:A=="string"?N:N+"\0"}function b(N,T){for(var S=N+"",A,$=0;$<S.length;)T[d&$]=d&(A^=T[d&$]*19)+S.charCodeAt($++);return v(T)}function x(){try{var N;return h&&(N=h.randomBytes)?N=N(s):(N=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(N)),v(N)}catch(A){var T=r.navigator,S=T&&T.plugins;return[+new Date,r,S,r.screen,v(n)]}}function v(N){return String.fromCharCode.apply(0,N)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=j_()}catch(N){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),ad=cn((e,t)=>{var n=B_(),a=W_(),r=V_(),s=U_(),i=G_(),o=H_(),l=q_();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),K_=cn(()=>{}),Hu=cn(()=>{}),X_=cn(()=>{}),Y_=cn(()=>{}),J_=cn((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Z.buffer!=Be&&en(Z.buffer),vn}function i(){return Z.buffer!=Be&&en(Z.buffer),It}function o(){return Z.buffer!=Be&&en(Z.buffer),wn}function l(){return Z.buffer!=Be&&en(Z.buffer),Kn}function c(){return Z.buffer!=Be&&en(Z.buffer),un}var u=typeof r!="undefined"?r:{},p,d;u.ready=new Promise(function(I,C){p=I,d=C});var h={},m;for(m in u)u.hasOwnProperty(m)&&(h[m]=u[m]);var f=[],g="./this.program",y=function(I,C){throw C},b=!1,x=!1,v=!1,N=!1;b=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",N=!b&&!v&&!x;var T=u.ENVIRONMENT_IS_PTHREAD||!1;T&&(Be=u.buffer);var S="";function A(I){return u.locateFile?u.locateFile(I,S):S+I}var $,R,B,V,W,G;if(v){x?S=Hu().dirname(S)+"/":S=__dirname+"/",$=function(I,C){return W||(W=require("fs")),G||(G=Hu()),I=G.normalize(I),W.readFileSync(I,C?null:"utf8")},B=function(I){var C=$(I,!0);return C.buffer||(C=new Uint8Array(C)),fe(C.buffer),C},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof Gu))throw I}),process.on("unhandledRejection",cr),y=function(I){process.exit(I)},u.inspect=function(){return"[Emscripten Module object]"};var H;try{H=X_()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=H.Worker}else N?(typeof read!="undefined"&&($=function(I){return read(I)}),B=function(I){var C;return typeof readbuffer=="function"?new Uint8Array(readbuffer(I)):(C=read(I,"binary"),fe(typeof C=="object"),C)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(b||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof a!="undefined"&&a&&(S=a),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",v?($=function(I,C){return W||(W=require("fs")),G||(G=Hu()),I=G.normalize(I),W.readFileSync(I,C?null:"utf8")},B=function(I){var C=$(I,!0);return C.buffer||(C=new Uint8Array(C)),fe(C.buffer),C}):($=function(I){var C=new XMLHttpRequest;return C.open("GET",I,!1),C.send(null),C.responseText},x&&(B=function(I){var C=new XMLHttpRequest;return C.open("GET",I,!1),C.responseType="arraybuffer",C.send(null),new Uint8Array(C.response)}),R=function(I,C,O){var j=new XMLHttpRequest;j.open("GET",I,!0),j.responseType="arraybuffer",j.onload=function(){if(j.status==200||j.status==0&&j.response){C(j.response);return}O()},j.onerror=O,j.send(null)}),V=function(I){document.title=I});v&&typeof performance=="undefined"&&(global.performance=Y_().performance);var X=u.print||console.log.bind(console),q=u.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(u[m]=h[m]);h=null,u.arguments&&(f=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(y=u.quit);var te=Atomics.load,Q=Atomics.store,se=Atomics.compareExchange,ne;u.wasmBinary&&(ne=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&cr("no native wasm support detected");var Z,de,oe=!1,ge;function fe(I,C){I||cr("Assertion failed: "+C)}function we(I){var C=u["_"+I];return fe(C,"Cannot call unknown function "+I+", make sure it is exported"),C}function Te(I,C,O,j,he){var le={string:function(Tn){var ko=0;if(Tn!=null&&Tn!==0){var Uw=(Tn.length<<2)+1;ko=xo(Uw),nt(Tn,ko,Uw)}return ko},array:function(Tn){var ko=xo(Tn.length);return Xe(Tn,ko),ko}};function ce(Tn){return C==="string"?Fe(Tn):C==="boolean"?Boolean(Tn):Tn}var be=we(I),at=[],Ut=0;if(j)for(var Mt=0;Mt<j.length;Mt++){var Lr=le[O[Mt]];Lr?(Ut===0&&(Ut=Uu()),at[Mt]=Lr(j[Mt])):at[Mt]=j[Mt]}var wo=be.apply(null,at);return wo=ce(wo),Ut!==0&&bo(Ut),wo}function _e(I,C,O,j){O=O||[];var he=O.every(function(ce){return ce==="number"}),le=C!=="string";return le&&he&&!j?we(I):function(){return Te(I,C,O,arguments,j)}}function Re(I,C,O){for(var j=C+O,he="";!(C>=j);){var le=I[C++];if(!le)return he;if(!(le&128)){he+=String.fromCharCode(le);continue}var ce=I[C++]&63;if((le&224)==192){he+=String.fromCharCode((le&31)<<6|ce);continue}var be=I[C++]&63;if((le&240)==224?le=(le&15)<<12|ce<<6|be:le=(le&7)<<18|ce<<12|be<<6|I[C++]&63,le<65536)he+=String.fromCharCode(le);else{var at=le-65536;he+=String.fromCharCode(55296|at>>10,56320|at&1023)}}return he}function Fe(I,C){return I?Re(i(),I,C):""}function tt(I,C,O,j){if(!(j>0))return 0;for(var he=O,le=O+j-1,ce=0;ce<I.length;++ce){var be=I.charCodeAt(ce);if(be>=55296&&be<=57343){var at=I.charCodeAt(++ce);be=65536+((be&1023)<<10)|at&1023}if(be<=127){if(O>=le)break;C[O++]=be}else if(be<=2047){if(O+1>=le)break;C[O++]=192|be>>6,C[O++]=128|be&63}else if(be<=65535){if(O+2>=le)break;C[O++]=224|be>>12,C[O++]=128|be>>6&63,C[O++]=128|be&63}else{if(O+3>=le)break;C[O++]=240|be>>18,C[O++]=128|be>>12&63,C[O++]=128|be>>6&63,C[O++]=128|be&63}}return C[O]=0,O-he}function nt(I,C,O){return tt(I,i(),C,O)}function it(I){for(var C=0,O=0;O<I.length;++O){var j=I.charCodeAt(O);j>=55296&&j<=57343&&(j=65536+((j&1023)<<10)|I.charCodeAt(++O)&1023),j<=127?++C:j<=2047?C+=2:j<=65535?C+=3:C+=4}return C}function Xe(I,C){s().set(I,C)}function mt(I,C){return I%C>0&&(I+=C-I%C),I}var Be,vn,It,qn,Zt,wn,Kn,Rn,un;function en(I){Be=I,u.HEAP8=vn=new Int8Array(I),u.HEAP16=qn=new Int16Array(I),u.HEAP32=wn=new Int32Array(I),u.HEAPU8=It=new Uint8Array(I),u.HEAPU16=Zt=new Uint16Array(I),u.HEAPU32=Kn=new Uint32Array(I),u.HEAPF32=Rn=new Float32Array(I),u.HEAPF64=un=new Float64Array(I)}var za=u.INITIAL_MEMORY||16777216;if(T)Z=u.wasmMemory,Be=u.buffer;else if(u.wasmMemory)Z=u.wasmMemory;else if(Z=new WebAssembly.Memory({initial:za/65536,maximum:2147483648/65536,shared:!0}),!(Z.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Z&&(Be=Z.buffer),za=Be.byteLength,en(Be);var sa,ia=[],$r=[],lr=[],Dr=[],co=[],ka=!1,Ap=!1;T||$r.push({func:function(){qp()}}),T&&(ka=!0);function kf(){if(!T){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)Rp(u.preRun.shift());ho(ia)}}function $p(){ka=!0,ho($r)}function If(){T||ho(lr)}function Dp(){T||(Ap=!0)}function kn(){if(!T){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Tf(u.postRun.shift());ho(co)}}function Rp(I){ia.unshift(I)}function Tf(I){co.unshift(I)}var ur=0,Rr=null,xs=null;function Nf(I){fe(!T,"addRunDependency cannot be used in a pthread worker"),ur++,u.monitorRunDependencies&&u.monitorRunDependencies(ur)}function Sf(I){if(ur--,u.monitorRunDependencies&&u.monitorRunDependencies(ur),ur==0&&(Rr!==null&&(clearInterval(Rr),Rr=null),xs)){var C=xs;xs=null,C()}}u.preloadedImages={},u.preloadedAudios={};function cr(I){u.onAbort&&u.onAbort(I),T&&console.error("Pthread aborting at "+new Error().stack),I+="",q(I),oe=!0,ge=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var C=new WebAssembly.RuntimeError(I);throw d(C),C}function Mp(I,C){return String.prototype.startsWith?I.startsWith(C):I.indexOf(C)===0}var po="data:application/octet-stream;base64,";function Pp(I){return Mp(I,po)}var Cf="file://";function Op(I){return Mp(I,Cf)}var In="tfjs-backend-wasm-threaded-simd.wasm";Pp(In)||(In=A(In));function _f(I){try{if(I==In&&ne)return new Uint8Array(ne);if(B)return B(I);throw"both async and sync fetching of the wasm failed"}catch(C){cr(C)}}function Lp(){if(!ne&&(b||x)){if(typeof fetch=="function"&&!Op(In))return fetch(In,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+In+"'";return I.arrayBuffer()}).catch(function(){return _f(In)});if(R)return new Promise(function(I,C){R(In,function(O){I(new Uint8Array(O))},C)})}return Promise.resolve().then(function(){return _f(In)})}function Ef(){var I={a:xg};function C(ce,be){var at=ce.exports;if(u.asm=at,sa=u.asm.F,de=be,!T){var Ut=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Mt){ke.loadWasmModuleToWorker(Mt,function(){--Ut||Sf("wasm-instantiate")})})}}T||Nf("wasm-instantiate");function O(ce){C(ce.instance,ce.module)}function j(ce){return Lp().then(function(be){return WebAssembly.instantiate(be,I)}).then(ce,function(be){q("failed to asynchronously prepare wasm: "+be),cr(be)})}function he(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!Pp(In)&&!Op(In)&&typeof fetch=="function"?fetch(In,{credentials:"same-origin"}).then(function(ce){var be=WebAssembly.instantiateStreaming(ce,I);return be.then(O,function(at){return q("wasm streaming compile failed: "+at),q("falling back to ArrayBuffer instantiation"),j(O)})}):j(O)}if(u.instantiateWasm)try{var le=u.instantiateWasm(I,C);return le}catch(ce){return q("Module.instantiateWasm callback failed with error: "+ce),!1}return he().catch(d),{}}var zp={8991:function(I,C){setTimeout(function(){Ow(I,C)},0)}};function Ff(){ke.initRuntime()}function ho(I){for(;I.length>0;){var C=I.shift();if(typeof C=="function"){C(u);continue}var O=C.func;typeof O=="number"?C.arg===void 0?sa.get(O)():sa.get(O)(C.arg):O(C.arg===void 0?null:C.arg)}}function mo(I,C){if(I<=0||I>s().length||I&!0||C<0)return-28;if(C==0)return 0;C>=2147483647&&(C=Infinity);var O=Atomics.load(o(),vo>>2),j=0;if(O==I){var he=Atomics.compareExchange(o(),vo>>2,O,0);if(he==O&&(--C,j=1,C<=0))return 1}var le=Atomics.notify(o(),I>>2,C);if(le>=0)return le+j;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=mo;function Af(I){if(T)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";o()[I+12>>2]=0;var C=ke.pthreads[I];C.worker.terminate(),ke.freeThreadData(C),ke.runningWorkers.splice(ke.runningWorkers.indexOf(C.worker),1),C.worker.pthread=void 0}function $f(I){if(T)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var C=ke.pthreads[I];C.worker.postMessage({cmd:"cancel"})}function Df(I){if(T)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[I+12>>2]=0;var C=ke.pthreads[I];if(C){var O=C.worker;ke.returnWorkerToPool(O)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,C=0;C<I;++C)ke.allocateUnusedWorker()},initRuntime:function(){for(var I=ws(228),C=0;C<228/4;++C)l()[I/4+C]=0;o()[I+12>>2]=I;var O=I+152;o()[O>>2]=O;for(var j=ws(512),C=0;C<128;++C)l()[j/4+C]=0;Atomics.store(l(),I+100>>2,j),Atomics.store(l(),I+40>>2,I),Qp(I,!x,1),Pw(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();T&&yo()&&Mw()},threadExit:function(I){var C=yo();C&&(Atomics.store(l(),C+4>>2,I),Atomics.store(l(),C+0>>2,1),Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),ke.runExitHandlers(),mo(C+0,2147483647),Qp(0,0,0),T&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlers();var I=yo();Atomics.store(l(),I+4>>2,-1),Atomics.store(l(),I+0>>2,1),mo(I+0,2147483647),Qp(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in ke.pthreads){var C=ke.pthreads[I];C&&C.worker&&ke.returnWorkerToPool(C.worker)}ke.pthreads={};for(var O=0;O<ke.unusedWorkers.length;++O){var j=ke.unusedWorkers[O];j.terminate()}ke.unusedWorkers=[];for(var O=0;O<ke.runningWorkers.length;++O){var j=ke.runningWorkers[O],C=j.pthread;ke.freeThreadData(C),j.terminate()}ke.runningWorkers=[]},freeThreadData:function(I){if(I){if(I.threadInfoStruct){var C=o()[I.threadInfoStruct+100>>2];o()[I.threadInfoStruct+100>>2]=0,Vu(C),Vu(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&Vu(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[I.pthread.threadInfoStruct],ke.unusedWorkers.push(I),ke.runningWorkers.splice(ke.runningWorkers.indexOf(I),1),ke.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){o()[Vw>>2]=0;try{I()}finally{o()[Vw>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,C){I.onmessage=function(O){var j=O.data,he=j.cmd;if(I.pthread&&(ke.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),j.targetThread&&j.targetThread!=yo()){var le=ke.pthreads[j.targetThread];le?le.worker.postMessage(O.data,j.transferList):console.error('Internal error! Worker sent a message "'+he+'" to target pthread '+j.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(he==="processQueuedMainThreadWork")Rg();else if(he==="spawnThread")Hp(O.data);else if(he==="cleanupThread")Df(j.thread);else if(he==="killThread")Af(j.thread);else if(he==="cancelThread")$f(j.thread);else if(he==="loaded")I.loaded=!0,C&&C(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(he==="print")X("Thread "+j.threadId+": "+j.text);else if(he==="printErr")q("Thread "+j.threadId+": "+j.text);else if(he==="alert")alert("Thread "+j.threadId+": "+j.text);else if(he==="exit"){var ce=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);ce&&ke.returnWorkerToPool(I)}else if(he==="exitProcess")try{I_(j.returnCode)}catch(be){if(be instanceof Gu)return;throw be}else he==="cancelDone"?ke.returnWorkerToPool(I):he==="objectTransfer"?ke.receiveObjectTransfer(O.data):O.data.target==="setimmediate"?I.postMessage(O.data):q("worker sent an unknown command "+he);ke.currentProxiedOperationCallerThread=void 0},I.onerror=function(O){q("pthread sent an error! "+O.filename+":"+O.lineno+": "+O.message)},v&&(I.on("message",function(O){I.onmessage({data:O})}),I.on("error",function(O){I.onerror(O)}),I.on("exit",function(O){})),I.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||a,wasmMemory:Z,wasmModule:de})},allocateUnusedWorker:function(){var I=A("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(I){for(var C=performance.now()+I;performance.now()<C;);}};function Rf(I,C){Bw(I,C),bo(I)}u.establishStackSpace=Rf;function Mf(){return ie}u.getNoExitRuntime=Mf;function Pf(I,C){return sa.get(I)(C)}u.invokeEntryPoint=Pf;function Of(I,C,O,j){cr("Assertion failed: "+Fe(I)+", at: "+[C?Fe(C):"unknown filename",O,j?Fe(j):"unknown function"])}function Lf(I,C){var O=_main(I,C)}var vs;v?vs=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:T?vs=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?vs=dateNow:vs=function(){return performance.now()};function zf(I){return o()[Dw()>>2]=I,I}function Bf(I,C){if(T)return Mr(1,1,I,C)}function Wf(I,C){if(I==C)postMessage({cmd:"processQueuedMainThreadWork"});else if(T)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var O=ke.pthreads[I],j=O&&O.worker;if(!j)return;j.postMessage({cmd:"processThreadQueue"})}return 1}function Vf(){cr()}function Uf(I,C,O){var j=Kf(C,O);return zp[I].apply(null,j)}function Gf(I,C){}function Hf(I,C,O){if(I<=0||I>s().length||I&!0)return-28;if(b){if(Atomics.load(o(),I>>2)!=C)return-6;for(var j=performance.now(),he=j+O,le=Atomics.exchange(o(),vo>>2,I);;){if(j=performance.now(),j>he)return le=Atomics.exchange(o(),vo>>2,0),-73;if(le=Atomics.exchange(o(),vo>>2,0),le==0)break;if(Rg(),Atomics.load(o(),I>>2)!=C)return-6;le=Atomics.exchange(o(),vo>>2,I)}return 0}else{var ce=Atomics.wait(o(),I>>2,C,O);if(ce==="timed-out")return-73;if(ce==="not-equal")return-6;if(ce==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ce}}function jf(I,C,O){i().copyWithin(I,C,C+O)}function qf(){return v?require("os").cpus().length:navigator.hardwareConcurrency}function Mr(I,C){for(var O=arguments.length-2,j=Uu(),he=O,le=xo(he*8),ce=le>>3,be=0;be<O;be++){var at=arguments[2+be];c()[ce+be]=at}var Ut=zw(I,he,le,C);return bo(j),Ut}var Pu=[],Ou=[];function Kf(I,C){Ou.length=0;var O;for(C>>=2;O=i()[I++];){var j=O<105;j&&C&1&&C++,Ou.push(j?c()[C++>>1]:o()[C]),++C}return Ou}function Xf(I,C,O){Pu.length=C;for(var j=O>>3,he=0;he<C;he++)Pu[he]=c()[j+he];var le=I<0,ce=le?zp[-I-1]:bg[I];return ce.apply(null,Pu)}function Yf(){return i().length}function Jf(I){try{return Z.grow(I-Be.byteLength+65535>>>16),en(Z.buffer),1}catch(C){}}function Qf(I){var C=Yf();if(I<=C)return!1;var O=2147483648;if(I>O)return!1;for(var j=1;j<=4;j*=2){var he=C*(1+.2/j);he=Math.min(he,I+100663296);var le=Math.min(O,mt(Math.max(I,he),65536)),ce=Jf(le);if(ce)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var I=Pe.eventHandlers.length-1;I>=0;--I)Pe._removeHandler(I);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(Dr.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,C,O){function j(ce,be){if(ce.length!=be.length)return!1;for(var at in ce)if(ce[at]!=be[at])return!1;return!0}for(var he in Pe.deferredCalls){var le=Pe.deferredCalls[he];if(le.targetFunction==I&&j(le.argsList,O))return}Pe.deferredCalls.push({targetFunction:I,precedence:C,argsList:O}),Pe.deferredCalls.sort(function(ce,be){return ce.precedence<be.precedence})},removeDeferredCalls:function(I){for(var C=0;C<Pe.deferredCalls.length;++C)Pe.deferredCalls[C].targetFunction==I&&(Pe.deferredCalls.splice(C,1),--C)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var I=0;I<Pe.deferredCalls.length;++I){var C=Pe.deferredCalls[I];Pe.deferredCalls.splice(I,1),--I,C.targetFunction.apply(null,C.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,C){for(var O=0;O<Pe.eventHandlers.length;++O)Pe.eventHandlers[O].target==I&&(!C||C==Pe.eventHandlers[O].eventTypeString)&&Pe._removeHandler(O--)},_removeHandler:function(I){var C=Pe.eventHandlers[I];C.target.removeEventListener(C.eventTypeString,C.eventListenerFunc,C.useCapture),Pe.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var C=function(j){++Pe.inEventHandler,Pe.currentEventHandler=I,Pe.runDeferredCalls(),I.handlerFunc(j),Pe.runDeferredCalls(),--Pe.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=C,I.target.addEventListener(I.eventTypeString,C,I.useCapture),Pe.eventHandlers.push(I),Pe.registerRemoveEventListeners();else for(var O=0;O<Pe.eventHandlers.length;++O)Pe.eventHandlers[O].target==I.target&&Pe.eventHandlers[O].eventTypeString==I.eventTypeString&&Pe._removeHandler(O--)},queueEventHandlerOnThread_iiii:function(I,C,O,j,he){var le=Uu(),ce=xo(12);o()[ce>>2]=O,o()[ce+4>>2]=j,o()[ce+8>>2]=he,Mg(0,I,637534208,C,j,ce),bo(le)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Zf(I){var C=it(I)+1,O=ws(C);return nt(I,O,C),O}function eg(I,C,O,j){var he=Uu(),le=xo(12),ce=0;C&&(ce=Zf(C)),o()[le>>2]=ce,o()[le+4>>2]=O,o()[le+8>>2]=j,Mg(0,I,657457152,0,ce,le),bo(he)}function tg(I,C,O,j){C=C?Fe(C):"",eg(I,C,O,j)}function ng(I){return I>2?Fe(I):I}var ag=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function rg(I){I=ng(I);var C=ag[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return C}function Lu(I){return rg(I)}function Bp(I,C,O){var j=Lu(I);if(!j)return-4;if(j.canvasSharedPtr&&(o()[j.canvasSharedPtr>>2]=C,o()[j.canvasSharedPtr+4>>2]=O),j.offscreenCanvas||!j.controlTransferredOffscreen){j.offscreenCanvas&&(j=j.offscreenCanvas);var he=!1;if(j.GLctxObject&&j.GLctxObject.GLctx){var le=j.GLctxObject.GLctx.getParameter(2978);he=le[0]===0&&le[1]===0&&le[2]===j.width&&le[3]===j.height}j.width=C,j.height=O,he&&j.GLctxObject.GLctx.viewport(0,0,C,O)}else if(j.canvasSharedPtr){var ce=o()[j.canvasSharedPtr+8>>2];return tg(ce,I,C,O),1}else return-4;return 0}function Wp(I,C,O){return T?Mr(2,1,I,C,O):Bp(I,C,O)}function sg(I,C,O){var j=Lu(I);return j?Bp(I,C,O):Wp(I,C,O)}function ig(I){}function og(I,C){}function lg(I){var C=I.getExtension("ANGLE_instanced_arrays");if(C)return I.vertexAttribDivisor=function(O,j){C.vertexAttribDivisorANGLE(O,j)},I.drawArraysInstanced=function(O,j,he,le){C.drawArraysInstancedANGLE(O,j,he,le)},I.drawElementsInstanced=function(O,j,he,le,ce){C.drawElementsInstancedANGLE(O,j,he,le,ce)},1}function ug(I){var C=I.getExtension("OES_vertex_array_object");if(C)return I.createVertexArray=function(){return C.createVertexArrayOES()},I.deleteVertexArray=function(O){C.deleteVertexArrayOES(O)},I.bindVertexArray=function(O){C.bindVertexArrayOES(O)},I.isVertexArray=function(O){return C.isVertexArrayOES(O)},1}function cg(I){var C=I.getExtension("WEBGL_draw_buffers");if(C)return I.drawBuffers=function(O,j){C.drawBuffersWEBGL(O,j)},1}function pg(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var et={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(I){et.lastError||(et.lastError=I)},getNewId:function(I){for(var C=et.counter++,O=I.length;O<C;O++)I[O]=null;return C},getSource:function(I,C,O,j){for(var he="",le=0;le<C;++le){var ce=j?o()[j+le*4>>2]:-1;he+=Fe(o()[O+le*4>>2],ce<0?void 0:ce)}return he},createContext:function(I,C){var O=I.getContext("webgl",C);if(!O)return 0;var j=et.registerContext(O,C);return j},registerContext:function(I,C){var O=ws(8);o()[O+4>>2]=yo();var j={handle:O,attributes:C,version:C.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=j),et.contexts[O]=j,(typeof C.enableExtensionsByDefault=="undefined"||C.enableExtensionsByDefault)&&et.initExtensions(j),O},makeContextCurrent:function(I){return et.currentContext=et.contexts[I],u.ctx=Pr=et.currentContext&&et.currentContext.GLctx,!(I&&!Pr)},getContext:function(I){return et.contexts[I]},deleteContext:function(I){et.currentContext===et.contexts[I]&&(et.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(et.contexts[I].GLctx.canvas),et.contexts[I]&&et.contexts[I].GLctx.canvas&&(et.contexts[I].GLctx.canvas.GLctxObject=void 0),Vu(et.contexts[I].handle),et.contexts[I]=null},initExtensions:function(I){if(I||(I=et.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var C=I.GLctx;lg(C),ug(C),cg(C),C.disjointTimerQueryExt=C.getExtension("EXT_disjoint_timer_query"),pg(C);var O=C.getSupportedExtensions()||[];O.forEach(function(j){j.indexOf("lose_context")<0&&j.indexOf("debug")<0&&C.getExtension(j)})}},populateUniformTable:function(I){for(var C=et.programs[I],O=et.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},j=O.uniforms,he=Pr.getProgramParameter(C,35718),le=0;le<he;++le){var ce=Pr.getActiveUniform(C,le),be=ce.name;O.maxUniformLength=Math.max(O.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var at=Pr.getUniformLocation(C,be);if(at){var Ut=et.getNewId(et.uniforms);j[be]=[ce.size,Ut],et.uniforms[Ut]=at;for(var Mt=1;Mt<ce.size;++Mt){var Lr=be+"["+Mt+"]";at=Pr.getUniformLocation(C,Lr),Ut=et.getNewId(et.uniforms),et.uniforms[Ut]=at}}}}},dg=["default","low-power","high-performance"];function hg(I,C){var O=C>>2,j=o()[O+(24>>2)],he={alpha:!!o()[O+(0>>2)],depth:!!o()[O+(4>>2)],stencil:!!o()[O+(8>>2)],antialias:!!o()[O+(12>>2)],premultipliedAlpha:!!o()[O+(16>>2)],preserveDrawingBuffer:!!o()[O+(20>>2)],powerPreference:dg[j],failIfMajorPerformanceCaveat:!!o()[O+(28>>2)],majorVersion:o()[O+(32>>2)],minorVersion:o()[O+(36>>2)],enableExtensionsByDefault:o()[O+(40>>2)],explicitSwapControl:o()[O+(44>>2)],proxyContextToMainThread:o()[O+(48>>2)],renderViaOffscreenBackBuffer:o()[O+(52>>2)]},le=Lu(I);if(!le||he.explicitSwapControl)return 0;var ce=et.createContext(le,he);return ce}function mg(I,C){return hg(I,C)}var fo={mappings:{},buffers:[null,[],[]],printChar:function(I,C){var O=fo.buffers[I];C===0||C===10?((I===1?X:q)(Re(O,0)),O.length=0):O.push(C)},varargs:void 0,get:function(){fo.varargs+=4;var I=o()[fo.varargs-4>>2];return I},getStr:function(I){var C=Fe(I);return C},get64:function(I,C){return I}};function Vp(I){return T?Mr(3,1,I):0}function Up(I,C,O,j,he){if(T)return Mr(4,1,I,C,O,j,he)}function Gp(I,C,O,j){if(T)return Mr(5,1,I,C,O,j);for(var he=0,le=0;le<O;le++){for(var ce=o()[C+le*8>>2],be=o()[C+(le*8+4)>>2],at=0;at<be;at++)fo.printChar(I,i()[ce+at]);he+=be}return o()[j>>2]=he,0}function fg(I){var C=ke.threadExitHandlers.pop();I&&C()}function gg(I,C){ke.threadExitHandlers.push(function(){sa.get(I)(C)})}function Hp(I){if(T)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var C=ke.getNewWorker();if(C.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(C);for(var O=ws(128*4),j=0;j<128;++j)o()[O+j*4>>2]=0;var he=I.stackBase+I.stackSize,le=ke.pthreads[I.pthread_ptr]={worker:C,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},ce=le.threadInfoStruct>>2;Atomics.store(l(),ce+(64>>2),I.detached),Atomics.store(l(),ce+(100>>2),O),Atomics.store(l(),ce+(40>>2),le.threadInfoStruct),Atomics.store(l(),ce+(80>>2),I.stackSize),Atomics.store(l(),ce+(76>>2),he),Atomics.store(l(),ce+(104>>2),I.stackSize),Atomics.store(l(),ce+(104+8>>2),he),Atomics.store(l(),ce+(104+12>>2),I.detached);var be=Rw(),at=be+40;Atomics.store(l(),ce+(172>>2),at),C.pthread=le;var Ut={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};C.runPthread=function(){Ut.time=performance.now(),C.postMessage(Ut,I.transferList)},C.loaded&&(C.runPthread(),delete C.runPthread)}function yg(I,C,O,j){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return q("pthread_create called with a null thread pointer!"),28;var he=[],le=0;if(T&&(he.length===0||le))return Lw(687865856,I,C,O,j);if(le)return le;var ce=0,be=0,at=0;C&&C!=-1?(ce=o()[C>>2],ce+=81920,be=o()[C+8>>2],at=o()[C+12>>2]!==0):ce=2097152;var Ut=be==0;Ut?be=Ww(16,ce):(be-=ce,fe(be>0));for(var Mt=ws(228),Lr=0;Lr<228>>2;++Lr)l()[(Mt>>2)+Lr]=0;o()[I>>2]=Mt,o()[Mt+12>>2]=Mt;var wo=Mt+152;o()[wo>>2]=wo;var Tn={stackBase:be,stackSize:ce,allocatedOwnStack:Ut,detached:at,startRoutine:O,pthread_ptr:Mt,arg:j,transferList:he};return T?(Tn.cmd="spawnThread",postMessage(Tn,he)):Hp(Tn),0}function jp(I){if(T)return Mr(6,1,I);switch(I){case 30:return 16384;case 85:var C=2147483648;return C/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return zf(28),-1}T||ke.initMainThreadBlock();var Pr,bg=[null,Bf,Wp,Vp,Up,Gp,jp],xg={e:Of,r:Lf,x:Wf,b:Vf,y:Uf,j:Gf,c:Hf,d:mo,f:vs,p:jf,z:qf,u:Xf,q:Qf,v:sg,i:ig,t:og,w:mg,m:Vp,n:Up,g:Gp,o:Ff,a:Z||u.wasmMemory,k:fg,l:gg,h:yg,s:jp},$w=Ef(),qp=u.___wasm_call_ctors=function(){return(qp=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},vg=u._init=function(){return(vg=u._init=u.asm.B).apply(null,arguments)},wg=u._register_tensor=function(){return(wg=u._register_tensor=u.asm.C).apply(null,arguments)},kg=u._dispose_data=function(){return(kg=u._dispose_data=u.asm.D).apply(null,arguments)},Ig=u._dispose=function(){return(Ig=u._dispose=u.asm.E).apply(null,arguments)},Tg=u._Abs=function(){return(Tg=u._Abs=u.asm.G).apply(null,arguments)},Ng=u._Add=function(){return(Ng=u._Add=u.asm.H).apply(null,arguments)},Sg=u._AddN=function(){return(Sg=u._AddN=u.asm.I).apply(null,arguments)},Cg=u._ArgMax=function(){return(Cg=u._ArgMax=u.asm.J).apply(null,arguments)},_g=u._AvgPool=function(){return(_g=u._AvgPool=u.asm.K).apply(null,arguments)},Eg=u._BatchMatMul=function(){return(Eg=u._BatchMatMul=u.asm.L).apply(null,arguments)},Fg=u._Ceil=function(){return(Fg=u._Ceil=u.asm.M).apply(null,arguments)},Ag=u._ClipByValue=function(){return(Ag=u._ClipByValue=u.asm.N).apply(null,arguments)},$g=u._Conv2D=function(){return($g=u._Conv2D=u.asm.O).apply(null,arguments)},Kp=u._Conv2DBackpropInput=function(){return(Kp=u._Conv2DBackpropInput=u.asm.P).apply(null,arguments)},Xp=u._Cos=function(){return(Xp=u._Cos=u.asm.Q).apply(null,arguments)},zu=u._CropAndResize=function(){return(zu=u._CropAndResize=u.asm.R).apply(null,arguments)},go=u._Cumsum=function(){return(go=u._Cumsum=u.asm.S).apply(null,arguments)},Dg=u._DepthToSpace=function(){return(Dg=u._DepthToSpace=u.asm.T).apply(null,arguments)},Bu=u._DepthwiseConv2dNative=function(){return(Bu=u._DepthwiseConv2dNative=u.asm.U).apply(null,arguments)},K=u._Equal=function(){return(K=u._Equal=u.asm.V).apply(null,arguments)},ae=u._Exp=function(){return(ae=u._Exp=u.asm.W).apply(null,arguments)},Ne=u._FlipLeftRight=function(){return(Ne=u._FlipLeftRight=u.asm.X).apply(null,arguments)},Ye=u._Floor=function(){return(Ye=u._Floor=u.asm.Y).apply(null,arguments)},_t=u._FloorDiv=function(){return(_t=u._FloorDiv=u.asm.Z).apply(null,arguments)},yt=u._FusedBatchNorm=function(){return(yt=u._FusedBatchNorm=u.asm._).apply(null,arguments)},Ue=u._FusedConv2D=function(){return(Ue=u._FusedConv2D=u.asm.$).apply(null,arguments)},He=u._FusedDepthwiseConv2D=function(){return(He=u._FusedDepthwiseConv2D=u.asm.aa).apply(null,arguments)},tn=u._Gather=function(){return(tn=u._Gather=u.asm.ba).apply(null,arguments)},pr=u._GatherNd=function(){return(pr=u._GatherNd=u.asm.ca).apply(null,arguments)},dr=u._Greater=function(){return(dr=u._Greater=u.asm.da).apply(null,arguments)},Yp=u._GreaterEqual=function(){return(Yp=u._GreaterEqual=u.asm.ea).apply(null,arguments)},Wu=u._LeakyRelu=function(){return(Wu=u._LeakyRelu=u.asm.fa).apply(null,arguments)},Xn=u._Less=function(){return(Xn=u._Less=u.asm.ga).apply(null,arguments)},Or=u._LessEqual=function(){return(Or=u._LessEqual=u.asm.ha).apply(null,arguments)},Jp=u._Log=function(){return(Jp=u._Log=u.asm.ia).apply(null,arguments)},$C=u._LogicalAnd=function(){return($C=u._LogicalAnd=u.asm.ja).apply(null,arguments)},DC=u._Max=function(){return(DC=u._Max=u.asm.ka).apply(null,arguments)},RC=u._MaxPool=function(){return(RC=u._MaxPool=u.asm.la).apply(null,arguments)},MC=u._Maximum=function(){return(MC=u._Maximum=u.asm.ma).apply(null,arguments)},PC=u._Mean=function(){return(PC=u._Mean=u.asm.na).apply(null,arguments)},OC=u._Min=function(){return(OC=u._Min=u.asm.oa).apply(null,arguments)},LC=u._Minimum=function(){return(LC=u._Minimum=u.asm.pa).apply(null,arguments)},zC=u._Multiply=function(){return(zC=u._Multiply=u.asm.qa).apply(null,arguments)},BC=u._Neg=function(){return(BC=u._Neg=u.asm.ra).apply(null,arguments)},WC=u._NonMaxSuppressionV3=function(){return(WC=u._NonMaxSuppressionV3=u.asm.sa).apply(null,arguments)},VC=u._NonMaxSuppressionV4=function(){return(VC=u._NonMaxSuppressionV4=u.asm.ta).apply(null,arguments)},UC=u._NonMaxSuppressionV5=function(){return(UC=u._NonMaxSuppressionV5=u.asm.ua).apply(null,arguments)},GC=u._NotEqual=function(){return(GC=u._NotEqual=u.asm.va).apply(null,arguments)},HC=u._OneHot=function(){return(HC=u._OneHot=u.asm.wa).apply(null,arguments)},jC=u._PadV2=function(){return(jC=u._PadV2=u.asm.xa).apply(null,arguments)},qC=u._Pow=function(){return(qC=u._Pow=u.asm.ya).apply(null,arguments)},KC=u._Prelu=function(){return(KC=u._Prelu=u.asm.za).apply(null,arguments)},XC=u._Prod=function(){return(XC=u._Prod=u.asm.Aa).apply(null,arguments)},YC=u._RealDiv=function(){return(YC=u._RealDiv=u.asm.Ba).apply(null,arguments)},JC=u._Relu=function(){return(JC=u._Relu=u.asm.Ca).apply(null,arguments)},QC=u._Relu6=function(){return(QC=u._Relu6=u.asm.Da).apply(null,arguments)},ZC=u._ResizeBilinear=function(){return(ZC=u._ResizeBilinear=u.asm.Ea).apply(null,arguments)},e_=u._Reverse=function(){return(e_=u._Reverse=u.asm.Fa).apply(null,arguments)},t_=u._RotateWithOffset=function(){return(t_=u._RotateWithOffset=u.asm.Ga).apply(null,arguments)},n_=u._Round=function(){return(n_=u._Round=u.asm.Ha).apply(null,arguments)},a_=u._Rsqrt=function(){return(a_=u._Rsqrt=u.asm.Ia).apply(null,arguments)},r_=u._ScatterNd=function(){return(r_=u._ScatterNd=u.asm.Ja).apply(null,arguments)},s_=u._SelectV2=function(){return(s_=u._SelectV2=u.asm.Ka).apply(null,arguments)},i_=u._Sigmoid=function(){return(i_=u._Sigmoid=u.asm.La).apply(null,arguments)},o_=u._Sin=function(){return(o_=u._Sin=u.asm.Ma).apply(null,arguments)},l_=u._Softmax=function(){return(l_=u._Softmax=u.asm.Na).apply(null,arguments)},u_=u._Sqrt=function(){return(u_=u._Sqrt=u.asm.Oa).apply(null,arguments)},c_=u._Square=function(){return(c_=u._Square=u.asm.Pa).apply(null,arguments)},p_=u._SquaredDifference=function(){return(p_=u._SquaredDifference=u.asm.Qa).apply(null,arguments)},d_=u._Step=function(){return(d_=u._Step=u.asm.Ra).apply(null,arguments)},h_=u._StridedSlice=function(){return(h_=u._StridedSlice=u.asm.Sa).apply(null,arguments)},m_=u._Sub=function(){return(m_=u._Sub=u.asm.Ta).apply(null,arguments)},f_=u._Sum=function(){return(f_=u._Sum=u.asm.Ua).apply(null,arguments)},g_=u._Tanh=function(){return(g_=u._Tanh=u.asm.Va).apply(null,arguments)},y_=u._Tile=function(){return(y_=u._Tile=u.asm.Wa).apply(null,arguments)},b_=u._TopK=function(){return(b_=u._TopK=u.asm.Xa).apply(null,arguments)},x_=u._Transpose=function(){return(x_=u._Transpose=u.asm.Ya).apply(null,arguments)},v_=u.__FusedMatMul=function(){return(v_=u.__FusedMatMul=u.asm.Za).apply(null,arguments)},ws=u._malloc=function(){return(ws=u._malloc=u.asm._a).apply(null,arguments)},Vu=u._free=function(){return(Vu=u._free=u.asm.$a).apply(null,arguments)},Dw=u.___errno_location=function(){return(Dw=u.___errno_location=u.asm.ab).apply(null,arguments)},Rw=u._emscripten_get_global_libc=function(){return(Rw=u._emscripten_get_global_libc=u.asm.bb).apply(null,arguments)},yo=u._pthread_self=function(){return(yo=u._pthread_self=u.asm.cb).apply(null,arguments)},Mw=u.___pthread_tsd_run_dtors=function(){return(Mw=u.___pthread_tsd_run_dtors=u.asm.db).apply(null,arguments)},Rg=u._emscripten_main_thread_process_queued_calls=function(){return(Rg=u._emscripten_main_thread_process_queued_calls=u.asm.eb).apply(null,arguments)},w_=u._emscripten_current_thread_process_queued_calls=function(){return(w_=u._emscripten_current_thread_process_queued_calls=u.asm.fb).apply(null,arguments)},Pw=u._emscripten_register_main_browser_thread_id=function(){return(Pw=u._emscripten_register_main_browser_thread_id=u.asm.gb).apply(null,arguments)},Ow=u.__emscripten_do_dispatch_to_thread=function(){return(Ow=u.__emscripten_do_dispatch_to_thread=u.asm.hb).apply(null,arguments)},Lw=u._emscripten_sync_run_in_main_thread_4=function(){return(Lw=u._emscripten_sync_run_in_main_thread_4=u.asm.ib).apply(null,arguments)},zw=u._emscripten_run_in_main_runtime_thread_js=function(){return(zw=u._emscripten_run_in_main_runtime_thread_js=u.asm.jb).apply(null,arguments)},Mg=u.__emscripten_call_on_thread=function(){return(Mg=u.__emscripten_call_on_thread=u.asm.kb).apply(null,arguments)},k_=u._emscripten_tls_init=function(){return(k_=u._emscripten_tls_init=u.asm.lb).apply(null,arguments)},Qp=u.__emscripten_thread_init=function(){return(Qp=u.__emscripten_thread_init=u.asm.mb).apply(null,arguments)},Uu=u.stackSave=function(){return(Uu=u.stackSave=u.asm.nb).apply(null,arguments)},bo=u.stackRestore=function(){return(bo=u.stackRestore=u.asm.ob).apply(null,arguments)},xo=u.stackAlloc=function(){return(xo=u.stackAlloc=u.asm.pb).apply(null,arguments)},Bw=u._emscripten_stack_set_limits=function(){return(Bw=u._emscripten_stack_set_limits=u.asm.qb).apply(null,arguments)},Ww=u._memalign=function(){return(Ww=u._memalign=u.asm.rb).apply(null,arguments)},Vw=u.__emscripten_allow_main_runtime_queued_calls=9880,vo=u.__emscripten_main_thread_futex=11368;u.cwrap=_e,u.PThread=ke,u.PThread=ke,u.wasmMemory=Z,u.ExitStatus=Gu;var Zp;function Gu(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}xs=function I(){Zp||Pg(),Zp||(xs=I)};function Pg(I){if(I=I||f,ur>0)return;if(T){p(u),postMessage({cmd:"loaded"});return}if(kf(),ur>0)return;function C(){Zp||(Zp=!0,u.calledRun=!0,!oe&&($p(),If(),p(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),kn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),C()},1)):C()}u.run=Pg;function I_(I,C){if(!(C&&ie&&I===0)){if(!C&&T)throw postMessage({cmd:"exitProcess",returnCode:I}),new Gu(I);ie||(ke.terminateAllThreads(),ge=I,Dp(),u.onExit&&u.onExit(I),oe=!0),y(I,new Gu(I))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return T&&(ie=!1,ke.initWorker()),Pg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),Q_=cn((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,ae){i=K,o=ae});var l={},c;for(c in s)s.hasOwnProperty(c)&&(l[c]=s[c]);var u=[],p="./this.program",d=function(K,ae){throw ae},h=!1,m=!1,f=!1,g=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!f&&!m;var y="";function b(K){return s.locateFile?s.locateFile(K,y):y+K}var x,v,N,T,S,A;f?(m?y=Hu().dirname(y)+"/":y=__dirname+"/",x=function(K,ae){return S||(S=require("fs")),A||(A=Hu()),K=A.normalize(K),S.readFileSync(K,ae?null:"utf8")},N=function(K){var ae=x(K,!0);return ae.buffer||(ae=new Uint8Array(ae)),X(ae.buffer),ae},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof Dg))throw K}),process.on("unhandledRejection",ka),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(K){return read(K)}),N=function(K){var ae;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ae=read(K,"binary"),X(typeof ae=="object"),ae)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var ae=new XMLHttpRequest;return ae.open("GET",K,!1),ae.send(null),ae.responseText},m&&(N=function(K){var ae=new XMLHttpRequest;return ae.open("GET",K,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),v=function(K,ae,Ne){var Ye=new XMLHttpRequest;Ye.open("GET",K,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){ae(Ye.response);return}Ne()},Ye.onerror=Ne,Ye.send(null)},T=function(K){document.title=K});var $=s.print||console.log.bind(console),R=s.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(s[c]=l[c]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(d=s.quit);var B;s.wasmBinary&&(B=s.wasmBinary);var V=s.noExitRuntime||!0;typeof WebAssembly!="object"&&ka("no native wasm support detected");var W,G=!1,H;function X(K,ae){K||ka("Assertion failed: "+ae)}function q(K){var ae=s["_"+K];return X(ae,"Cannot call unknown function "+K+", make sure it is exported"),ae}function te(K,ae,Ne,Ye,_t){var yt={string:function(Xn){var Or=0;if(Xn!=null&&Xn!==0){var Jp=(Xn.length<<2)+1;Or=zu(Jp),de(Xn,Or,Jp)}return Or},array:function(Xn){var Or=zu(Xn.length);return oe(Xn,Or),Or}};function Ue(Xn){return ae==="string"?ie(Xn):ae==="boolean"?Boolean(Xn):Xn}var He=q(K),tn=[],pr=0;if(Ye)for(var dr=0;dr<Ye.length;dr++){var Yp=yt[Ne[dr]];Yp?(pr===0&&(pr=Kp()),tn[dr]=Yp(Ye[dr])):tn[dr]=Ye[dr]}var Wu=He.apply(null,tn);return Wu=Ue(Wu),pr!==0&&Xp(pr),Wu}function Q(K,ae,Ne,Ye){Ne=Ne||[];var _t=Ne.every(function(Ue){return Ue==="number"}),yt=ae!=="string";return yt&&_t&&!Ye?q(K):function(){return te(K,ae,Ne,arguments,Ye)}}var se=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(K,ae,Ne){for(var Ye=ae+Ne,_t=ae;K[_t]&&!(_t>=Ye);)++_t;if(_t-ae>16&&K.subarray&&se)return se.decode(K.subarray(ae,_t));for(var yt="";ae<_t;){var Ue=K[ae++];if(!(Ue&128)){yt+=String.fromCharCode(Ue);continue}var He=K[ae++]&63;if((Ue&224)==192){yt+=String.fromCharCode((Ue&31)<<6|He);continue}var tn=K[ae++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|He<<6|tn:Ue=(Ue&7)<<18|He<<12|tn<<6|K[ae++]&63,Ue<65536)yt+=String.fromCharCode(Ue);else{var pr=Ue-65536;yt+=String.fromCharCode(55296|pr>>10,56320|pr&1023)}}return yt}function ie(K,ae){return K?ne(Te,K,ae):""}function Z(K,ae,Ne,Ye){if(!(Ye>0))return 0;for(var _t=Ne,yt=Ne+Ye-1,Ue=0;Ue<K.length;++Ue){var He=K.charCodeAt(Ue);if(He>=55296&&He<=57343){var tn=K.charCodeAt(++Ue);He=65536+((He&1023)<<10)|tn&1023}if(He<=127){if(Ne>=yt)break;ae[Ne++]=He}else if(He<=2047){if(Ne+1>=yt)break;ae[Ne++]=192|He>>6,ae[Ne++]=128|He&63}else if(He<=65535){if(Ne+2>=yt)break;ae[Ne++]=224|He>>12,ae[Ne++]=128|He>>6&63,ae[Ne++]=128|He&63}else{if(Ne+3>=yt)break;ae[Ne++]=240|He>>18,ae[Ne++]=128|He>>12&63,ae[Ne++]=128|He>>6&63,ae[Ne++]=128|He&63}}return ae[Ne]=0,Ne-_t}function de(K,ae,Ne){return Z(K,Te,ae,Ne)}function oe(K,ae){we.set(K,ae)}function ge(K,ae){return K%ae>0&&(K+=ae-K%ae),K}var fe,we,Te,_e,Re,Fe,tt,nt,it;function Xe(K){fe=K,s.HEAP8=we=new Int8Array(K),s.HEAP16=_e=new Int16Array(K),s.HEAP32=Fe=new Int32Array(K),s.HEAPU8=Te=new Uint8Array(K),s.HEAPU16=Re=new Uint16Array(K),s.HEAPU32=tt=new Uint32Array(K),s.HEAPF32=nt=new Float32Array(K),s.HEAPF64=it=new Float64Array(K)}var mt=s.INITIAL_MEMORY||16777216,Be,vn=[],It=[],qn=[],Zt=[],wn=!1;It.push({func:function(){Lp()}});function Kn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)za(s.preRun.shift());Rr(vn)}function Rn(){wn=!0,Rr(It)}function un(){Rr(qn)}function en(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)sa(s.postRun.shift());Rr(Zt)}function za(K){vn.unshift(K)}function sa(K){Zt.unshift(K)}var ia=0,$r=null,lr=null;function Dr(K){ia++,s.monitorRunDependencies&&s.monitorRunDependencies(ia)}function co(K){if(ia--,s.monitorRunDependencies&&s.monitorRunDependencies(ia),ia==0&&($r!==null&&(clearInterval($r),$r=null),lr)){var ae=lr;lr=null,ae()}}s.preloadedImages={},s.preloadedAudios={};function ka(K){s.onAbort&&s.onAbort(K),K+="",R(K),G=!0,H=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ae=new WebAssembly.RuntimeError(K);throw o(ae),ae}function Ap(K,ae){return String.prototype.startsWith?K.startsWith(ae):K.indexOf(ae)===0}var kf="data:application/octet-stream;base64,";function $p(K){return Ap(K,kf)}var If="file://";function Dp(K){return Ap(K,If)}var kn="tfjs-backend-wasm.wasm";$p(kn)||(kn=b(kn));function Rp(K){try{if(K==kn&&B)return new Uint8Array(B);if(N)return N(K);throw"both async and sync fetching of the wasm failed"}catch(ae){ka(ae)}}function Tf(){if(!B&&(h||m)){if(typeof fetch=="function"&&!Dp(kn))return fetch(kn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+kn+"'";return K.arrayBuffer()}).catch(function(){return Rp(kn)});if(v)return new Promise(function(K,ae){v(kn,function(Ne){K(new Uint8Array(Ne))},ae)})}return Promise.resolve().then(function(){return Rp(kn)})}function ur(){var K={a:In};function ae(Ue,He){var tn=Ue.exports;s.asm=tn,W=s.asm.g,Xe(W.buffer),Be=s.asm.m,co("wasm-instantiate")}Dr("wasm-instantiate");function Ne(Ue){ae(Ue.instance)}function Ye(Ue){return Tf().then(function(He){return WebAssembly.instantiate(He,K)}).then(Ue,function(He){R("failed to asynchronously prepare wasm: "+He),ka(He)})}function _t(){return!B&&typeof WebAssembly.instantiateStreaming=="function"&&!$p(kn)&&!Dp(kn)&&typeof fetch=="function"?fetch(kn,{credentials:"same-origin"}).then(function(Ue){var He=WebAssembly.instantiateStreaming(Ue,K);return He.then(Ne,function(tn){return R("wasm streaming compile failed: "+tn),R("falling back to ArrayBuffer instantiation"),Ye(Ne)})}):Ye(Ne)}if(s.instantiateWasm)try{var yt=s.instantiateWasm(K,ae);return yt}catch(Ue){return R("Module.instantiateWasm callback failed with error: "+Ue),!1}return _t().catch(o),{}}function Rr(K){for(;K.length>0;){var ae=K.shift();if(typeof ae=="function"){ae(s);continue}var Ne=ae.func;typeof Ne=="number"?ae.arg===void 0?Be.get(Ne)():Be.get(Ne)(ae.arg):Ne(ae.arg===void 0?null:ae.arg)}}function xs(){ka()}function Nf(K,ae,Ne){Te.copyWithin(K,ae,ae+Ne)}function Sf(){return Te.length}function cr(K){try{return W.grow(K-fe.byteLength+65535>>>16),Xe(W.buffer),1}catch(ae){}}function Mp(K){var ae=Sf(),Ne=2147483648;if(K>Ne)return!1;for(var Ye=1;Ye<=4;Ye*=2){var _t=ae*(1+.2/Ye);_t=Math.min(_t,K+100663296);var yt=Math.min(Ne,ge(Math.max(K,_t),65536)),Ue=cr(yt);if(Ue)return!0}return!1}var po={mappings:{},buffers:[null,[],[]],printChar:function(K,ae){var Ne=po.buffers[K];ae===0||ae===10?((K===1?$:R)(ne(Ne,0)),Ne.length=0):Ne.push(ae)},varargs:void 0,get:function(){po.varargs+=4;var K=Fe[po.varargs-4>>2];return K},getStr:function(K){var ae=ie(K);return ae},get64:function(K,ae){return K}};function Pp(K){return 0}function Cf(K,ae,Ne,Ye,_t){}function Op(K,ae,Ne,Ye){for(var _t=0,yt=0;yt<Ne;yt++){for(var Ue=Fe[ae+yt*8>>2],He=Fe[ae+(yt*8+4)>>2],tn=0;tn<He;tn++)po.printChar(K,Te[Ue+tn]);_t+=He}return Fe[Ye>>2]=_t,0}var In={a:xs,d:Nf,e:Mp,f:Pp,c:Cf,b:Op},_f=ur(),Lp=s.___wasm_call_ctors=function(){return(Lp=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},Ef=s._init=function(){return(Ef=s._init=s.asm.i).apply(null,arguments)},zp=s._register_tensor=function(){return(zp=s._register_tensor=s.asm.j).apply(null,arguments)},Ff=s._dispose_data=function(){return(Ff=s._dispose_data=s.asm.k).apply(null,arguments)},ho=s._dispose=function(){return(ho=s._dispose=s.asm.l).apply(null,arguments)},mo=s._Abs=function(){return(mo=s._Abs=s.asm.n).apply(null,arguments)},Af=s._Add=function(){return(Af=s._Add=s.asm.o).apply(null,arguments)},$f=s._AddN=function(){return($f=s._AddN=s.asm.p).apply(null,arguments)},Df=s._ArgMax=function(){return(Df=s._ArgMax=s.asm.q).apply(null,arguments)},ke=s._AvgPool=function(){return(ke=s._AvgPool=s.asm.r).apply(null,arguments)},Rf=s._BatchMatMul=function(){return(Rf=s._BatchMatMul=s.asm.s).apply(null,arguments)},Mf=s._Ceil=function(){return(Mf=s._Ceil=s.asm.t).apply(null,arguments)},Pf=s._ClipByValue=function(){return(Pf=s._ClipByValue=s.asm.u).apply(null,arguments)},Of=s._Conv2D=function(){return(Of=s._Conv2D=s.asm.v).apply(null,arguments)},Lf=s._Conv2DBackpropInput=function(){return(Lf=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},vs=s._Cos=function(){return(vs=s._Cos=s.asm.x).apply(null,arguments)},zf=s._CropAndResize=function(){return(zf=s._CropAndResize=s.asm.y).apply(null,arguments)},Bf=s._Cumsum=function(){return(Bf=s._Cumsum=s.asm.z).apply(null,arguments)},Wf=s._DepthToSpace=function(){return(Wf=s._DepthToSpace=s.asm.A).apply(null,arguments)},Vf=s._DepthwiseConv2dNative=function(){return(Vf=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},Uf=s._Equal=function(){return(Uf=s._Equal=s.asm.C).apply(null,arguments)},Gf=s._Exp=function(){return(Gf=s._Exp=s.asm.D).apply(null,arguments)},Hf=s._FlipLeftRight=function(){return(Hf=s._FlipLeftRight=s.asm.E).apply(null,arguments)},jf=s._Floor=function(){return(jf=s._Floor=s.asm.F).apply(null,arguments)},qf=s._FloorDiv=function(){return(qf=s._FloorDiv=s.asm.G).apply(null,arguments)},Mr=s._FusedBatchNorm=function(){return(Mr=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},Pu=s._FusedConv2D=function(){return(Pu=s._FusedConv2D=s.asm.I).apply(null,arguments)},Ou=s._FusedDepthwiseConv2D=function(){return(Ou=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},Kf=s._Gather=function(){return(Kf=s._Gather=s.asm.K).apply(null,arguments)},Xf=s._GatherNd=function(){return(Xf=s._GatherNd=s.asm.L).apply(null,arguments)},Yf=s._Greater=function(){return(Yf=s._Greater=s.asm.M).apply(null,arguments)},Jf=s._GreaterEqual=function(){return(Jf=s._GreaterEqual=s.asm.N).apply(null,arguments)},Qf=s._LeakyRelu=function(){return(Qf=s._LeakyRelu=s.asm.O).apply(null,arguments)},Pe=s._Less=function(){return(Pe=s._Less=s.asm.P).apply(null,arguments)},Zf=s._LessEqual=function(){return(Zf=s._LessEqual=s.asm.Q).apply(null,arguments)},eg=s._Log=function(){return(eg=s._Log=s.asm.R).apply(null,arguments)},tg=s._LogicalAnd=function(){return(tg=s._LogicalAnd=s.asm.S).apply(null,arguments)},ng=s._Max=function(){return(ng=s._Max=s.asm.T).apply(null,arguments)},ag=s._MaxPool=function(){return(ag=s._MaxPool=s.asm.U).apply(null,arguments)},rg=s._Maximum=function(){return(rg=s._Maximum=s.asm.V).apply(null,arguments)},Lu=s._Mean=function(){return(Lu=s._Mean=s.asm.W).apply(null,arguments)},Bp=s._Min=function(){return(Bp=s._Min=s.asm.X).apply(null,arguments)},Wp=s._Minimum=function(){return(Wp=s._Minimum=s.asm.Y).apply(null,arguments)},sg=s._Multiply=function(){return(sg=s._Multiply=s.asm.Z).apply(null,arguments)},ig=s._Neg=function(){return(ig=s._Neg=s.asm._).apply(null,arguments)},og=s._NonMaxSuppressionV3=function(){return(og=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},lg=s._NonMaxSuppressionV4=function(){return(lg=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},ug=s._NonMaxSuppressionV5=function(){return(ug=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},cg=s._NotEqual=function(){return(cg=s._NotEqual=s.asm.ca).apply(null,arguments)},pg=s._OneHot=function(){return(pg=s._OneHot=s.asm.da).apply(null,arguments)},et=s._PadV2=function(){return(et=s._PadV2=s.asm.ea).apply(null,arguments)},dg=s._Pow=function(){return(dg=s._Pow=s.asm.fa).apply(null,arguments)},hg=s._Prelu=function(){return(hg=s._Prelu=s.asm.ga).apply(null,arguments)},mg=s._Prod=function(){return(mg=s._Prod=s.asm.ha).apply(null,arguments)},fo=s._RealDiv=function(){return(fo=s._RealDiv=s.asm.ia).apply(null,arguments)},Vp=s._Relu=function(){return(Vp=s._Relu=s.asm.ja).apply(null,arguments)},Up=s._Relu6=function(){return(Up=s._Relu6=s.asm.ka).apply(null,arguments)},Gp=s._ResizeBilinear=function(){return(Gp=s._ResizeBilinear=s.asm.la).apply(null,arguments)},fg=s._Reverse=function(){return(fg=s._Reverse=s.asm.ma).apply(null,arguments)},gg=s._RotateWithOffset=function(){return(gg=s._RotateWithOffset=s.asm.na).apply(null,arguments)},Hp=s._Round=function(){return(Hp=s._Round=s.asm.oa).apply(null,arguments)},yg=s._Rsqrt=function(){return(yg=s._Rsqrt=s.asm.pa).apply(null,arguments)},jp=s._ScatterNd=function(){return(jp=s._ScatterNd=s.asm.qa).apply(null,arguments)},Pr=s._SelectV2=function(){return(Pr=s._SelectV2=s.asm.ra).apply(null,arguments)},bg=s._Sigmoid=function(){return(bg=s._Sigmoid=s.asm.sa).apply(null,arguments)},xg=s._Sin=function(){return(xg=s._Sin=s.asm.ta).apply(null,arguments)},$w=s._Softmax=function(){return($w=s._Softmax=s.asm.ua).apply(null,arguments)},qp=s._Sqrt=function(){return(qp=s._Sqrt=s.asm.va).apply(null,arguments)},vg=s._Square=function(){return(vg=s._Square=s.asm.wa).apply(null,arguments)},wg=s._SquaredDifference=function(){return(wg=s._SquaredDifference=s.asm.xa).apply(null,arguments)},kg=s._Step=function(){return(kg=s._Step=s.asm.ya).apply(null,arguments)},Ig=s._StridedSlice=function(){return(Ig=s._StridedSlice=s.asm.za).apply(null,arguments)},Tg=s._Sub=function(){return(Tg=s._Sub=s.asm.Aa).apply(null,arguments)},Ng=s._Sum=function(){return(Ng=s._Sum=s.asm.Ba).apply(null,arguments)},Sg=s._Tanh=function(){return(Sg=s._Tanh=s.asm.Ca).apply(null,arguments)},Cg=s._Tile=function(){return(Cg=s._Tile=s.asm.Da).apply(null,arguments)},_g=s._TopK=function(){return(_g=s._TopK=s.asm.Ea).apply(null,arguments)},Eg=s._Transpose=function(){return(Eg=s._Transpose=s.asm.Fa).apply(null,arguments)},Fg=s.__FusedMatMul=function(){return(Fg=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},Ag=s._malloc=function(){return(Ag=s._malloc=s.asm.Ha).apply(null,arguments)},$g=s._free=function(){return($g=s._free=s.asm.Ia).apply(null,arguments)},Kp=s.stackSave=function(){return(Kp=s.stackSave=s.asm.Ja).apply(null,arguments)},Xp=s.stackRestore=function(){return(Xp=s.stackRestore=s.asm.Ka).apply(null,arguments)},zu=s.stackAlloc=function(){return(zu=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=Q;var go;function Dg(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}lr=function K(){go||Bu(),go||(lr=K)};function Bu(K){if(K=K||u,ia>0||(Kn(),ia>0))return;function ae(){go||(go=!0,s.calledRun=!0,!G&&(Rn(),un(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),en()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ae()},1)):ae()}if(s.run=Bu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Bu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Z_=1e-7,eE=1e-4,rd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ju=class{refCount(e){return oa("refCount")}incRef(e){return oa("incRef")}timerAvailable(){return!0}time(e){return oa("time")}read(e){return oa("read")}readSync(e){return oa("readSync")}numDataIds(){return oa("numDataIds")}disposeData(e,t){return oa("disposeData")}write(e,t,n){return oa("write")}move(e,t,n,a,r){return oa("move")}memory(){return oa("memory")}floatPrecision(){return oa("floatPrecision")}epsilon(){return this.floatPrecision()===32?Z_:eE}dispose(){return oa("dispose")}};function oa(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Hw(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function tE(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function qu(e,t,n){return Math.max(e,Math.min(t,n))}function nE(e){return e%2==0?e:e+1}function aE(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function rE(e,t){let n=Math.random();return t*n+(1-n)*e}function sE(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function on(e,t,n=""){F(hr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ks(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Is(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||ln(e)&&!n)for(let a=0;a<e.length;++a)Is(e[a],t,n);else t.push(e);return t}function Pt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function iE(e){return e.length===0}function hr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Gt(e){return e%1==0}function oE(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function lE(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function uE(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return Hw(t),t}function Ku(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function cE(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function pE(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function la(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),F(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(a=>Gt(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function jw(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:la(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function qw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Kw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Xw(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function Yw(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function dE(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function ln(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Lg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Jw(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function zr(e){return typeof e=="string"||e instanceof String}function Qw(e){return typeof e=="boolean"}function Zw(e){return typeof e=="number"}function sd(e){return Array.isArray(e)?sd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Zw(e)?"float32":zr(e)?"string":Qw(e)?"bool":"float32"}function Br(e){return!!(e&&e.constructor&&e.call&&e.apply)}function id(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function To(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function e0(e,t,n){let a=new Array;if(t.length===1){let r=t[0];for(let s=0;s<r;s++)a[s]=n[e+s]}else{let r=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<r;o++)a[o]=e0(e+o*i,s,n)}return a}function No(e,t){if(e.length===0)return t[0];let n=e.reduce((a,r)=>a*r);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return e0(0,e,t)}function zg(e,t){let n=od(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function od(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function hE(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return No(e,new Float32Array(n));if(t==="int32")return No(e,new Int32Array(n));if(t==="bool")return No(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Bg(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function mE(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function fE(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Wg(e){return e&&e.then&&typeof e.then=="function"}var t0="tfjsflags",n0=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Wg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=gE(this.global.location.search);t0 in e&&e[t0].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=yE(n,a)})}};function gE(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(bE(t,a[0],a[1]),a.join("="))),t}function bE(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function yE(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ee(){return Vg}var Vg=null;function xE(e){Vg=e}var Ug;function a0(){if(Ug==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Ug=e}return Ug}function vE(){let e=a0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Gg(e,t){let n=vE();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var So="Abs",Co="Acos",_o="Acosh",Wr="Add",Ts="AddN",ld="All",ud="Any",Ns="ArgMax",Xu="ArgMin",Eo="Asin",Fo="Asinh",Ao="Atan",$o="Atanh",Do="Atan2",Ss="AvgPool",cd="AvgPoolGrad",Yu="AvgPool3D",pd="AvgPool3DGrad",Cs="BatchMatMul",Ju="BatchToSpaceND",dd="Bincount",r0="BroadcastTo",_s="Cast",Es="Ceil",Vr="ClipByValue",hd="Complex",Qu="ComplexAbs",Ro="Concat",Fs="Conv2D",md="Conv2DBackpropFilter",As="Conv2DBackpropInput",Zu="Conv3D",fd="Conv3DBackpropFilterV2",gd="Conv3DBackpropInputV2",$s="Cos",Mo="Cosh",Ds="Cumsum",Po="CropAndResize",yd="DenseBincount",Oo="DepthToSpace",Rs="DepthwiseConv2dNative",bd="DepthwiseConv2dNativeBackpropFilter",xd="DepthwiseConv2dNativeBackpropInput",vd="Diag",ec="Dilation2D",wd="Dilation2DBackpropInput",kd="Dilation2DBackpropFilter",Ms="RealDiv",Lo="Elu",Id="EluGrad",zo="Erf",Bo="Equal",Ps="Exp",Wo="ExpandDims",Vo="Expm1",Td="FFT",tc="Fill",Uo="FlipLeftRight",Os="Floor",Ls="FloorDiv",zs="FusedBatchNorm",Go="GatherV2",Ho="GatherNd",jo="Greater",Bs="GreaterEqual",Ws="Identity",Nd="IFFT",Sd="Imag",qo="IsFinite",Ko="IsInf",Xo="IsNan",Vs="LeakyRelu",Yo="Less",Jo="LessEqual",Cd="LinSpace",Us="Log",Qo="Log1p",Zo="LogicalAnd",nc="LogicalNot",ac="LogicalOr",s0="LogSoftmax",rc="LRN",_d="LRNGrad",Gs="Max",Hs="Maximum",js="MaxPool",Ed="MaxPoolGrad",sc="MaxPool3D",Fd="MaxPool3DGrad",Ad="MaxPoolWithArgmax",qs="Mean",Ks="Min",Xs="Minimum",ic="MirrorPad",el="Mod",$d="Multinomial",Ys="Multiply",tl="Neg",nl="NotEqual",al="NonMaxSuppressionV3",rl="NonMaxSuppressionV4",sl="NonMaxSuppressionV5",il="OnesLike",Js="OneHot",ol="Pack",Qs="PadV2",wE="Pool",Zs="Pow",ei="Prelu",ll="Prod",oc="Range",Dd="Real",ul="Reciprocal",ti="Relu",cl="Reshape",lc="ResizeNearestNeighbor",Rd="ResizeNearestNeighborGrad",ni="ResizeBilinear",Md="ResizeBilinearGrad",ai="Relu6",ri="Reverse",si="Round",ii="Rsqrt",pl="ScatterNd",dl="Select",hl="Selu",ml="Slice",oi="Sin",fl="Sinh",gl="Sign",li="Sigmoid",yl="Softplus",ui="Sqrt",ci="Sum",uc="SpaceToBatchND",bl="SplitV",pi="Softmax",di="SquaredDifference",cc="Square",hi="Sub",Pd="SparseToDense",xl="StridedSlice",vl="Tan",mi="Tanh",Ur="Tile",wl="TopK",fi="Transpose",Od="Unique",kl="Unpack",pc="UnsortedSegmentSum",Il="ZerosLike",Gr="Step",Ld="FromPixels",Tl="RotateWithOffset",gi="_FusedMatMul",yi="FusedConv2D",bi="FusedDepthwiseConv2D",Nl=Gg("kernelRegistry",()=>new Map),dc=Gg("gradRegistry",()=>new Map);function zd(e,t){let n=Hg(e,t);return Nl.get(n)}function jg(e){return dc.get(e)}function Bd(e){let t=Nl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function hc(e){let{kernelName:t,backendName:n}=e,a=Hg(t,n);Nl.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Nl.set(a,e)}function i0(e){let{kernelName:t}=e;dc.has(t)&&ee().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),dc.set(t,e)}function kE(e,t){let n=Hg(e,t);if(!Nl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Nl.delete(n)}function IE(e){if(!dc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);dc.delete(e)}function TE(e,t){Bd(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});hc(a)})}function Hg(e,t){return`${t}_${e}`}var w={};Oe(w,{arraysEqual:()=>hr,assert:()=>F,assertNonNegativeIntegerDimensions:()=>Bg,assertNonNull:()=>ks,assertShapesMatch:()=>on,bytesFromStringArray:()=>Jw,bytesPerElement:()=>Lg,checkConversionForErrors:()=>Xw,clamp:()=>qu,computeStrides:()=>To,createScalarValue:()=>NE,createShuffledIndices:()=>uE,decodeString:()=>Vd,distSquared:()=>sE,encodeString:()=>fc,fetch:()=>SE,flatten:()=>Is,getArrayFromDType:()=>Kw,getTypedArrayFromDType:()=>qw,hasEncodingLoss:()=>dE,indexToLoc:()=>fE,inferDtype:()=>sd,inferFromImplicitShape:()=>pE,isBoolean:()=>Qw,isFunction:()=>Br,isInt:()=>Gt,isNumber:()=>Zw,isPromise:()=>Wg,isScalarShape:()=>iE,isString:()=>zr,isTypedArray:()=>ln,isValidDtype:()=>Yw,locToIndex:()=>mE,makeOnesTypedArray:()=>zg,makeZerosNestedTypedArray:()=>hE,makeZerosTypedArray:()=>od,nearestDivisor:()=>id,nearestLargerEven:()=>nE,now:()=>mc,parseAxisParam:()=>la,randUniform:()=>rE,repeatedTry:()=>cE,rightPad:()=>Ku,shuffle:()=>Hw,shuffleCombo:()=>tE,sizeFromShape:()=>Pt,sizeToSquarishShape:()=>lE,squeezeShape:()=>jw,sum:()=>aE,tanh:()=>oE,toNestedArray:()=>No,toTypedArray:()=>Wd});function NE(e,t){return t==="string"?fc(e):Wd([e],t)}function CE(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Wd(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Is(e)),ee().getBool("DEBUG")&&Xw(e,t),CE(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function mc(){return ee().platform.now()}function SE(e,t){return ee().platform.fetch(e,t)}function fc(e,t="utf-8"){return t=t||"utf-8",ee().platform.encode(e,t)}function Vd(e,t="utf-8"){return t=t||"utf-8",ee().platform.decode(e,t)}var FE=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new EE)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=mc();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:mc()-i})}if(ee().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(c=>{_E(c,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function _E(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var EE=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Ku(`${a}ms`,9):a.error,o=Ku(e,25),l=t.rank,c=t.size,u=Ku(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${d}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function AE(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let p in u){let d=u[p],h=!1;for(let m=0;m<t.length;m++)if(a[d.id]){c.outputs.forEach(f=>a[f.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let p=0;p<c.outputs.length;p++)if(s[c.outputs[p].id]){for(let d in u)s[u[d].id]=!0,i[c.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&i[c.id]){let u={};for(let d in c.inputs){let h=c.inputs[d];a[h.id]&&(u[d]=h)}let p=Object.assign({},c);p.inputs=u,p.outputs=c.outputs,o.push(p)}}return o}function $E(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!hr(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let p=e[u.id];e[u.id]=a(p,c),p.dispose()}}}}var o0=20,gc=3,qg=7;function RE(e,t,n,a){let r=To(t),s=DE(e,t,n,r),i=t.length,o=Ud(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(`
|
|
`)),l.join(`
|
|
`)}function DE(e,t,n,a){let r=Pt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?bc(e):e;if(o>1)for(let c=0;c<r/s;c++){let u=c*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],yc(l[u+p],0,n).length)}return i}function yc(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(qg))} + ${parseFloat(e[1].toFixed(qg))}j`:zr(e)?a=`'${e}'`:n==="bool"?a=l0(e):a=parseFloat(e.toFixed(qg)).toString(),Ku(a,t)}function l0(e){return e===0?"false":"true"}function Ud(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=bc(e);return[yc(f[0],0,n)]}return n==="bool"?[l0(e[0])]:[e[0].toString()]}if(l===1){if(o>o0){let g=gc*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-gc)*i,o*i));return n==="complex64"&&(y=bc(y),b=bc(b)),["["+y.map((x,v)=>yc(x,r[v],n)).join(", ")+", ..., "+b.map((x,v)=>yc(x,r[o-gc+v],n)).join(", ")+"]"]}let f=n==="complex64"?bc(e):Array.from(e);return["["+f.map((g,y)=>yc(g,r[y],n)).join(", ")+"]"]}let c=t.slice(1),u=a.slice(1),p=a[0]*i,d=[];if(o>o0){for(let f=0;f<gc;f++){let g=f*p,y=g+p;d.push(...Ud(e.slice(g,y),c,n,u,r,!1))}d.push("...");for(let f=o-gc;f<o;f++){let g=f*p,y=g+p;d.push(...Ud(e.slice(g,y),c,n,u,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*p,y=g+p;d.push(...Ud(e.slice(g,y),c,n,u,r,f===o-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let f=1;f<d.length-1;f++)d[f]=" "+d[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function bc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ot=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Pt(e),n!=null){let a=n.length;F(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Kw(t,this.size),this.strides=To(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ba().makeTensor(this.values,this.shape,this.dtype)}},Ba=null,Sl=null,ME=null;function PE(e){Ba=e}function OE(e){Sl=e}function LE(e){ME=e}var Ee=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Pt(e),this.strides=To(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Sl.buffer(this.shape,this.dtype,e)}bufferSync(){return Sl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return No(this.shape,e)}arraySync(){return No(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Ba().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Vd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ba().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Vd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ba().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ba().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Sl.print(this,e)}clone(){return this.throwIfDisposed(),Sl.clone(this)}toString(e=!1){let t=this.dataSync();return RE(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Sl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ba().makeVariable(this,e,t,n)}};Object.defineProperty(Ee,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Y(){return Gg("Tensor",()=>Ee)}Y();var Hr=class extends Ee{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!hr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ba().disposeTensor(this),this.dataId=e.dataId,Ba().incRef(this,null)}dispose(){Ba().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Hr,Symbol.hasInstance,{value:e=>e instanceof Ee&&e.assign!=null&&e.assign instanceof Function});var Ia={};Oe(Ia,{assertTypesMatch:()=>u0,getTensorsInContainer:()=>Kg,isTensorInList:()=>zE,makeTypesMatch:()=>Tt});var Xg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Xg||(Xg={}));var Yg;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Yg||(Yg={}));var Jg;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Jg||(Jg={}));var Qg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Qg||(Qg={}));var Zg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Zg||(Zg={}));var BE={float32:Qg,int32:Yg,bool:Jg,complex64:Zg};function ua(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return BE[e][t]}function Gd(e){return ua(e,"int32")}function Tt(e,t){if(e.dtype===t.dtype)return[e,t];let n=ua(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function u0(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function zE(e,t){return t.some(n=>n.id===e.id)}function Kg(e){let t=[],n=new Set;return c0(e,t,n),t}function c0(e,t,n){if(e==null)return;if(e instanceof Ee){t.push(e);return}if(!WE(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),c0(s,t,n))}}function WE(e){return Array.isArray(e)||typeof e=="object"}function ey(e){return e.kernelName!=null}var p0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},xc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new p0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new FE(this.backendInstance),!0}setupRegisteredKernels(){Bd(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Bd(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ju)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return xc.nextTensorId++}nextVariableId(){return xc.nextVariableId++}clone(e){let t=M.runKernel(Ws,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return M.runKernel(_s,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(zd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=ey(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(ey(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=zd(h,this.backendName);F(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(v=>{if(v.rank!=null)return v;let{dataId:N,shape:T,dtype:S}=v;return this.makeTensorFromDataId(N,T,S)});if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:c,attrs:u}=e,p=ey(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),a&&this.addTapeNode(l,c,t,p,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=jg(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&zr(e[0])&&(r=e.map(o=>fc(o)));let s=a.write(r,t,n),i=new Ee(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=Jw(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Ee(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Hr(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Lg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Hr||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Lg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=jg(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let p=n[u],d=od(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return c}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Kg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(r instanceof Ee,()=>"The result y returned by f() must be a tensor.");let s=AE(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?VE(r.shape):n,$E(i,s,l=>this.tidy(l),UE);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return F(Br(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Ee),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),F(n.value instanceof Ee,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(Br(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];F(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(c.every(p=>p instanceof Ee),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((p,d)=>{u[d]=()=>p}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=mc(),n=await this.backend.time(e);return n.wallMs=mc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new p0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};xc.nextTensorId=0;xc.nextVariableId=0;function VE(e){let t=zg(Pt(e),"float32");return M.makeTensor(t,e,"float32")}function d0(){let e=a0();if(e._tfengine==null){let t=new n0(e);e._tfengine=new xc(t)}return xE(e._tfengine.ENV),PE(()=>e._tfengine),e._tfengine}var M=d0();function UE(e,t){let n={a:e,b:t};return M.runKernel(Wr,n)}var Hd={};Oe(Hd,{isBrowser:()=>h0,isMobile:()=>GE});function HE(){return typeof navigator!="undefined"&&navigator!=null}function GE(){if(HE()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function h0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Wa=ee();Wa.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Wa.registerFlag("IS_BROWSER",()=>h0());Wa.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Wa.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Wa.registerFlag("PROD",()=>!1);Wa.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Wa.getBool("DEBUG"));Wa.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Wa.registerFlag("IS_TEST",()=>!1);Wa.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Va(e,t){let n=e;if(ln(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||ln(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&ee().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&m0(e,a,[]),a}function m0(e,t,n){if(n=n||[],!Array.isArray(e)&&!ln(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)m0(e[r],a,n.concat(r))}function f0(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function E(e,t,n,a="numeric"){if(e instanceof Ee)return f0(a,e.dtype,t,n),e;let r=sd(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),f0(a,r,t,n),e==null||!ln(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Va(e,r);!ln(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Wd(e,r):Is(e,[],!0);return M.makeTensor(i,s,r)}function vc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>E(r,`${t}[${s}]`,n,a))}var g0="__op";function P(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+g0;let r=(...s)=>{M.startScope(n);try{let i=a(...s);return Wg(i)&&console.error("Cannot return a Promise inside of tidy."),M.endScope(i),i}catch(i){throw M.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function jE(e,t){let n=E(e,"real","complex"),a=E(t,"imag","complex");on(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return M.runKernel(hd,r)}var jr=P({complex_:jE});function qr(e,t,n,a){if(a==null&&(a=sd(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!ln(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Bg(t);let r=Pt(t),s=Pt(n);F(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Pt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!ln(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Wd(e,a):Is(e,[],!0),M.makeTensor(e,t,a)}function Yn(e,t,n){let a=Va(e,n);return qr(e,t,a,n)}var ty={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},jd=4;async function KE(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let c={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+jd*d.length,m=new Uint8Array(h),f=0;for(let g=0;g<d.length;g++){let y=d[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=jd,m.set(y,f),f+=y.length}p(m)});a.push(u)}else a.push(l.data());t!=null&&(c.group=t),n.push(c)}let s=await Promise.all(a);return{data:qE(s),specs:n}}function y0(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,c=Pt(l),u;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=ty[p.dtype],h=e.slice(r,r+c*d),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){u=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];u[f]=g*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=XE()),u=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);u=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];u[f]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=c*d}else if(o==="string"){let p=Pt(s.shape);u=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+jd))[0];r+=jd;let m=new Uint8Array(e.slice(r,r+h));u.push(m),r+=h}}else{let p=ty[o],d=e.slice(r,r+c*p);if(o==="float32")u=new Float32Array(d);else if(o==="int32")u=new Int32Array(d);else if(o==="bool")u=new Uint8Array(d);else if(o==="complex64"){u=new Float32Array(d);let h=new Float32Array(u.length/2),m=new Float32Array(u.length/2);for(let y=0;y<h.length;y++)h[y]=u[y*2],m[y]=u[y*2+1];let f=Yn(h,l,"float32"),g=Yn(m,l,"float32");n[i]=jr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=c*p}o!=="complex64"&&(n[i]=Yn(u,l,o))}return n}function qE(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var ny=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function b0(e){return ny?Buffer.byteLength(e):new Blob([e]).size}function YE(e){if(ny)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function JE(e){if(ny){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function ay(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function x0(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function wc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:b0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:b0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function QE(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function ZE(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function eF(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function XE(){let e=QE(),t=ZE(),n=eF();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Et=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Et.instance==null&&(Et.instance=new Et),Et.instance}static registerSaveRouter(e){Et.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Et.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Et.getHandlers(e,"save")}static getLoadHandlers(e,t){return Et.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Et.getInstance().loadRouters:Et.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},tF=e=>Et.registerSaveRouter(e),nF=e=>Et.registerLoadRouter(e),aF=e=>Et.getSaveHandlers(e),rF=(e,t)=>Et.getLoadHandlers(e,t),ry="tensorflowjs",sy=1,xi="models_store",Kr="model_info_store";function v0(){if(!ee().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function iy(e){let t=e.result;t.createObjectStore(xi,{keyPath:"modelPath"}),t.createObjectStore(Kr,{keyPath:"modelPath"})}var vi=class{constructor(e){if(this.indexedDB=v0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(ry,sy);r.onupgradeneeded=()=>iy(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(xi,"readonly"),o=i.objectStore(xi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=wc(t),o=s.transaction(Kr,"readwrite"),l=o.objectStore(Kr),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(xi,"readwrite");let p=u.objectStore(xi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=d=>{l=o.objectStore(Kr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},c.onerror=p=>(s.close(),a(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};vi.URL_SCHEME="indexeddb://";var w0=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(vi.URL_SCHEME)?sF(e.slice(vi.URL_SCHEME.length)):null;Et.registerSaveRouter(w0);Et.registerLoadRouter(w0);function sF(e){return new vi(e)}function iF(e){return e.startsWith(vi.URL_SCHEME)?e.slice(vi.URL_SCHEME.length):e}var oF=class{constructor(){this.indexedDB=v0()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(ry,sy);n.onupgradeneeded=()=>iy(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Kr,"readonly"),s=r.objectStore(Kr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=iF(e),new Promise((t,n)=>{let a=this.indexedDB.open(ry,sy);a.onupgradeneeded=()=>iy(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Kr,"readwrite"),i=s.objectStore(Kr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=r.transaction(xi,"readwrite");let p=l.objectStore(xi).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=p=>(u(),r.close(),n(o.error))}},o.onerror=c=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},mr="/",Cl="tensorflowjs_models",k0="info",lF="model_topology",uF="weight_specs",cF="weight_data",pF="model_metadata";function I0(e){return{info:[Cl,e,k0].join(mr),topology:[Cl,e,lF].join(mr),weightSpecs:[Cl,e,uF].join(mr),weightData:[Cl,e,cF].join(mr),modelMetadata:[Cl,e,pF].join(mr)}}function dF(e){let t=e.split(mr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(mr)}function hF(e){return e.startsWith(wi.URL_SCHEME)?e.slice(wi.URL_SCHEME.length):e}var wi=class{constructor(e){if(!ee().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=I0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=wc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,YE(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=JE(s),t}};wi.URL_SCHEME="localstorage://";var T0=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(wi.URL_SCHEME)?mF(e.slice(wi.URL_SCHEME.length)):null;Et.registerSaveRouter(T0);Et.registerLoadRouter(T0);function mF(e){return new wi(e)}var fF=class{constructor(){F(ee().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Cl+mr,n=mr+k0;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=dF(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=hF(e);let t=I0(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},_l="://",Jn=class{constructor(){this.managers={}}static getInstance(){return Jn.instance==null&&(Jn.instance=new Jn),Jn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(_l)&&(e=e.slice(0,e.indexOf(_l))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Jn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function qd(e){if(e.indexOf(_l)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Jn.getSchemes().join(",")}`);return{scheme:e.split(_l)[0],path:e.split(_l)[1]}}async function N0(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Et.getLoadHandlers(e);F(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Et.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=qd(e).scheme,l=qd(e).path,c=o===qd(e).scheme,u=await r.load();n&&c&&await Jn.getManager(o).removeModel(l);let p=await i.save(u);return n&&!c&&await Jn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function gF(){let e=Jn.getSchemes(),t={};for(let n of e){let a=await Jn.getManager(n).listModels();for(let r in a){let s=n+_l+r;t[s]=a[r]}}return t}async function yF(e){let t=qd(e);return Jn.getManager(t.scheme).removeModel(t.path)}async function bF(e,t){return N0(e,t,!1)}async function xF(e,t){return N0(e,t,!0)}var vF=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ee().get("IS_BROWSER")){ee().setPlatform("browser",new vF);try{Jn.registerManager(wi.URL_SCHEME,new fF)}catch(e){}try{Jn.registerManager(vi.URL_SCHEME,new oF)}catch(e){}}var wF={importFetch:()=>z_()},oy,kF=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ee().global.fetch!=null?ee().global.fetch(e,t):(oy==null&&(oy=wF.importFetch()),oy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ee().get("IS_NODE")&&ee().setPlatform("node",new kF);function Le(e,t="float32",n){return t=t||"float32",Bg(e),new Ot(e,t,n)}function IF(e,t){let n=E(e,"x","cast");if(!Yw(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return M.runKernel(_s,a,r)}var ue=P({cast_:IF});function TF(e){let t={x:E(e,"x","clone","string_or_numeric")};return M.runKernel(Ws,t)}var Xr=P({clone_:TF});function S0(e,t=!1){console.log(e.toString(t))}d0();var NF={buffer:Le,cast:ue,clone:Xr,print:S0};OE(NF);var Ht={};Oe(Ht,{browserFiles:()=>SF,browserHTTPRequest:()=>_F,concatenateArrayBuffers:()=>ay,copyModel:()=>bF,decodeWeights:()=>y0,encodeWeights:()=>KE,fromMemory:()=>EF,getLoadHandlers:()=>rF,getModelArtifactsInfoForJSON:()=>wc,getSaveHandlers:()=>aF,http:()=>uy,isHTTPScheme:()=>ly,listModels:()=>gF,loadWeights:()=>CF,moveModel:()=>xF,registerLoadRouter:()=>nF,registerSaveRouter:()=>tF,removeModel:()=>yF,weightsLoaderFactory:()=>C0,withSaveHandler:()=>FF});var AF="model",$F=".json",DF=".weights.bin";function _0(e){return new Promise(t=>setTimeout(t)).then(e)}var El=class{constructor(e){if(!ee().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(El.URL_SCHEME)&&(e=e.slice(El.URL_SCHEME.length)),(e==null||e.length===0)&&(e=AF),this.modelTopologyFileName=e+$F,this.weightDataFileName=e+DF}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await _0(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await _0(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:wc(e)}}}};El.URL_SCHEME="downloads://";var RF=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let u=[],p=[],d=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),d.push(null)}),u.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=g=>{let y=g.target.result,b=p.indexOf(m);if(d[b]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:ay(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=g=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>x0(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=x0(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},PF=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(El.URL_SCHEME)?MF(e.slice(El.URL_SCHEME.length)):null;Et.registerSaveRouter(PF);function MF(e="model"){return new El(e)}function SF(e){return new RF(e)}function E0(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(c=>{let u=n+ ++r/e.length*(a-n);return t(u),c}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),F(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function F0(e,t){t==null&&(t={});let n=t.fetchFunc==null?ee().platform.fetch:t.fetchFunc,a=e.map(c=>n(c,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await E0(a,t.onProgress,r,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await E0(i,t.onProgress,o,l)}async function CF(e,t="",n,a){return C0(r=>F0(r,{requestInit:a}))(e,t,n)}function C0(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=ty[y]*Pt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((v,N)=>{v===g.name&&(x(),i[N]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),p={},d=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=u[d+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let v=new Uint8Array(u[d+x]);y.set(v,b),b+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),N=y0(v,[x.manifestEntry]);for(let T in N)p[T]=N[T]}),d+=m}),p}}var OF="application/octet-stream",LF="application/json",cy=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ee().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:LF}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:OF}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:wc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;a!=null&&([c,u]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(p.modelInitializer=d),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=zF(t),r=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(r+u+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await F0(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,ay(l)]}};cy.URL_SCHEME_REGEX=/^https?:\/\//;function zF(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function ly(e){return e.match(cy.URL_SCHEME_REGEX)!=null}var A0=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>ly(a)):n=ly(e),n)return uy(e,t)}return null};Et.registerSaveRouter(A0);Et.registerLoadRouter(A0);function uy(e,t){return new cy(e,t)}function _F(e,t){return uy(e,t)}var py=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},BF=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function EF(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new py(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new py({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new py({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function FF(e){return new BF(e)}var $0={};Oe($0,{confusionMatrix:()=>WF});function VF(e,t,n=!1,a=!1){let r=E(e,"a","matMul"),s=E(t,"b","matMul");[r,s]=Tt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return M.runKernel(Cs,i,o)}var ze=P({matMul_:VF});function UF(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:E(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return M.runKernel(Js,r,s)}var Fl=P({oneHot_:UF});function GF(e,t){let n=E(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return M.runKernel(fi,a,r)}var Ve=P({transpose_:GF});function HF(e,t,n){let a=E(e,"labels","confusionMatrix"),r=E(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),F(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),F(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Fl(ue(a,"int32"),n),i=Fl(ue(r,"int32"),n),o=Ve(s),l=ze(o,i);return ue(l,"int32")}var WF=P({confusionMatrix_:HF}),ki={};Oe(ki,{fromPixels:()=>qF,toPixels:()=>jF});function Kd(e,t,n){if(ks(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Va(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return qr(e,t,a,n)}var Al;function KF(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let d=2;if(r&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(zd(Ld,M.backendName)!=null){let d={pixels:e},h={numChannels:t};return M.runKernel(Ld,d,h)}let[l,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:a||n?u=e.data:(s||r||o)&&(Al==null&&(Al=document.createElement("canvas").getContext("2d")),Al.canvas.width=l,Al.canvas.height=c,Al.drawImage(e,0,0,l,c),u=Al.getImageData(0,0,l,c).data);let p;if(t===4)p=new Int32Array(u);else{let d=l*c;p=new Int32Array(d*t);for(let h=0;h<d;h++)for(let m=0;m<t;++m)p[h*t+m]=u[h*4+m]}return Kd(p,[c,l,t],"int32")}async function jF(e,t){let n=E(e,"img","toPixels");if(!(e instanceof Ee)){let c=n;n=ue(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let c=0;c<a*r;++c){let u=[0,0,0,255];for(let d=0;d<s;d++){let h=i[c*s+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(u[0]=h*o,u[1]=h*o,u[2]=h*o):u[d]=h*o}let p=c*4;l[p+0]=Math.round(u[0]),l[p+1]=Math.round(u[1]),l[p+2]=Math.round(u[2]),l[p+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=a;let c=t.getContext("2d"),u=new ImageData(l,r,a);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var qF=P({fromPixels_:KF}),dy={};Oe(dy,{prepareAndValidate:()=>D0});function D0(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Pt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let c=1;for(let p=s;p<n;++p)c*=o[p],l.push(o[p]);let u=[...To(e.shape).map(p=>p/c),1].slice(0,s);return[l,i,c,u]}var hy={};Oe(hy,{calculateShapes:()=>R0,validateInput:()=>fy,validateUpdateShape:()=>my});function my(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function fy(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}my(n,t,e)}function R0(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Pt(t.shape)/o,c=[...To(n.slice(0,r)),1],u=Pt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:c,outputSize:u}}var pn={};Oe(pn,{assertParamsValid:()=>XF,computeFlatOffset:()=>JF,computeOutShape:()=>M0,getNormalizedAxes:()=>O0,isSliceContinous:()=>YF,maskToAxes:()=>Xd,parseSliceParams:()=>U0,sliceInfo:()=>QF,startForAxis:()=>W0,startIndicesWithElidedDims:()=>L0,stopForAxis:()=>V0,stopIndicesWithElidedDims:()=>z0,stridesForAxis:()=>B0,stridesWithElidedDims:()=>P0});function XF(e,t,n){let a=e.shape.length;F(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),F(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)F(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Xd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function M0(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function P0(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function G0(e,t,n){return n<=e?n:n-(t-1)}function H0(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function O0(e,t,n,a,r,s,i,o,l){let c=e.length,u=new Array(c),p=new Array(c),d=new Array(c);if(t.length&&n>0){let h=t[0],m=n+1;u=L0(i,h,m,a,e),p=z0(o,h,m,r,e),d=P0(s,h,m,e)}else for(let h=0;h<c;h++)u[h]=W0(i,a,s,e,h,l),p[h]=V0(o,r,s,e,h,l),d[h]=B0(s,h,l);return{begin:u,end:p,strides:d}}function L0(e,t,n,a,r){let s=[...r],i=H0(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=G0(t,n,o),c=a[l];e&1<<l&&(c=0),s[o]=c}return s}function z0(e,t,n,a,r){let s=[...r],i=H0(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=G0(t,n,o),c=a[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),s[o]=c}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=qu(0,s[o],r[o])}return s}function B0(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function W0(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=qu(0,i,l-1),i}function V0(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=qu(0,i,l):i=qu(-1,i,l-1),i}function YF(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function JF(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function U0(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function QF(e,t,n,a,r,s,i,o,l){let c=t.slice(),u=n.slice(),p=a;a==null&&(p=new Array(c.length));let d=Xd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,m=Xd(o),f=e.slice();m.forEach(T=>{c[T]=0,u[T]=1,f.splice(T,0,1)});let{begin:g,end:y,strides:b}=O0(f,d,h,c,u,p,r,s,i);c=g,u=y,p=b;let x=Xd(l);x.forEach(T=>{u[T]=c[T]+1,p[T]=1});let v=M0(c,u,p),N=v.filter((T,S)=>x.indexOf(S)===-1);return{nonStrided:p.every(T=>T===1),$begin:c,$end:u,$strides:p,size:v,newShape:f,outShape:N}}var re={};Oe(re,{Serializable:()=>j0,SerializationMap:()=>Ii,registerClass:()=>Yr});var j0=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ii=class{constructor(){this.classNameMap={}}static getMap(){return Ii.instance==null&&(Ii.instance=new Ii),Ii.instance}static register(e){Ii.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Yr(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ii.register(e)}var q0={};Oe(q0,{TEST_EPSILON_FLOAT16:()=>K0,encodeStrings:()=>X0,expectArrayBuffersEqual:()=>rA,expectArraysClose:()=>ZF,expectArraysEqual:()=>tA,expectNumbersClose:()=>nA,expectPromiseToFail:()=>eA,expectValuesInRange:()=>aA,testEpsilon:()=>gy});var sA=.001,K0=.1;function ZF(e,t,n){return n==null&&(n=gy()),yy(e,t,(a,r)=>by(a,r,n))}function gy(){return M.backend.floatPrecision()===32?sA:K0}function yy(e,t,n){let a=!0;if((ln(e)||ln(t))&&(a=!1),ln(e)&&ln(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Va(e),o=Va(t);if(!hr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=ln(e)?e:Is(e),s=ln(t)?t:Is(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function eA(e,t){e().then(()=>t.fail(),()=>t())}function tA(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return zr(e)||zr(e[0])||zr(t)||zr(t[0])?yy(e,n,(a,r)=>a==r):yy(e,t,(a,r)=>by(a,r,0))}function nA(e,t,n){if(n==null&&(n=gy()),!by(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function by(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function aA(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function rA(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function X0(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?X0(n):e[t]=fc(n)}return e}var Y0="3.2.0";function iA(){ee().set("PROD",!0)}function oA(){ee().set("DEBUG",!0)}function lA(){ee().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function xy(e){ee().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}LE(xy);function uA(){M.disposeVariables()}function Ua(){return M}function Yd(){return M.memory()}function cA(e){return M.profile(e)}function D(e,t){return M.tidy(e,t)}function Ae(e){Kg(e).forEach(t=>t.dispose())}function jt(e){return M.keep(e)}function pA(e){return M.time(e)}function dA(e){return M.setBackend(e)}function hA(){return M.ready()}function mA(){return M.backendName}function fA(e){M.removeBackend(e)}function gA(e){return M.findBackend(e)}function yA(e){return M.findBackendFactory(e)}function Jd(e,t,n=1){return M.registerBackend(e,t,n)}function J0(){return M.backend}function bA(e,t){ee().setPlatform(e,t)}function xA(e,t){let n=E(e,"a","add"),a=E(t,"b","add");[n,a]=Tt(n,a);let r={a:n,b:a};return M.runKernel(Wr,r)}var J=P({add_:xA});function vA(e,t){let n=E(e,"a","floorDiv"),a=E(t,"b","floorDiv");[n,a]=Tt(n,a);let r={a:n,b:a};return M.runKernel(Ls,r)}var Qd=P({floorDiv_:vA});function wA(e,t){let n=E(e,"a","div"),a=E(t,"b","div");if([n,a]=Tt(n,a),n.dtype==="int32"&&a.dtype==="int32")return Qd(n,a);let r={a:n,b:a},s={};return M.runKernel(Ms,r,s)}var xe=P({div_:wA});function kA(e,t){let n=E(e,"a","mul"),a=E(t,"b","mul");[n,a]=Tt(n,a);let r={a:n,b:a};return M.runKernel(Ys,r)}var L=P({mul_:kA});function IA(e){let t=E(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return M.runKernel(Qu,n)}else{let n={x:t};return M.runKernel(So,n)}}var Lt=P({abs_:IA});function TA(e){let t={x:E(e,"x","acos")};return M.runKernel(Co,t)}var vy=P({acos_:TA});function NA(e){let t={x:E(e,"x","acosh")};return M.runKernel(_o,t)}var wy=P({acosh_:NA});function SA(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>E(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!hr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return M.runKernel(Ts,a)}var Q0=P({addN_:SA});function CA(e,t=null,n=!1){let a={x:E(e,"x","all","bool")},r={axis:t,keepDims:n};return M.runKernel(ld,a,r)}var Zd=P({all_:CA});function _A(e,t=null,n=!1){let a={x:E(e,"x","any","bool")},r={axis:t,keepDims:n};return M.runKernel(ud,a,r)}var kc=P({any_:_A});function EA(e,t=0){let n={x:E(e,"x","argMax")},a={axis:t};return M.runKernel(Ns,n,a)}var Ic=P({argMax_:EA});function FA(e,t=0){let n={x:E(e,"x","argMin")},a={axis:t};return M.runKernel(Xu,n,a)}var ky=P({argMin_:FA});function AA(e){let t={x:E(e,"x","asin")};return M.runKernel(Eo,t)}var Iy=P({asin_:AA});function $A(e){let t={x:E(e,"x","asinh")};return M.runKernel(Fo,t)}var Ty=P({asinh_:$A});function DA(e){let t={x:E(e,"x","atan")};return M.runKernel(Ao,t)}var Ny=P({atan_:DA});function RA(e,t){let n=E(e,"a","atan2"),a=E(t,"b","atan2");[n,a]=Tt(n,a);let r={a:n,b:a};return M.runKernel(Do,r)}var Sy=P({atan2_:RA});function MA(e){let t={x:E(e,"x","atanh")};return M.runKernel($o,t)}var Cy=P({atanh_:MA});function PA(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=Z0(r);return Tc(e,o,n,s,a,null,null,l)}function ek(e,t,n,a,r,s,i="channelsLast"){let[o,l]=eh(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Tc(e,c,n,a,r,s,!1,i)}function OA(e,t,n,a,r,s,i="NDHWC"){let[o,l,c]=_y(t),u,p;if(i==="NDHWC")p="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return tk(e,u,n,a,r,!1,p,s)}function Tc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,c,u,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,p]=e;else if(o==="channelsFirst")[l,p,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,m]=t,[f,g]=eh(n),[y,b]=eh(a),x=$l(d,y),v=$l(h,b),{padInfo:N,outHeight:T,outWidth:S}=LA(r,c,u,f,g,x,v,s,o),A=i?m*p:m,$;return o==="channelsFirst"?$=[l,A,T,S]:o==="channelsLast"&&($=[l,T,S,A]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:p,outHeight:T,outWidth:S,outChannels:A,padInfo:N,strideHeight:f,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:e,outShape:$,filterShape:t}}function tk(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,c,u,p,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,p,d]=e;else if(i==="channelsFirst")[l,d,c,u,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=_y(n),[v,N,T]=_y(a),S=$l(h,v),A=$l(m,N),$=$l(f,T),{padInfo:R,outDepth:B,outHeight:V,outWidth:W}=zA(r,c,u,p,y,b,x,S,A,$,o),G=s?g*d:g,H;return i==="channelsFirst"?H=[l,G,B,V,W]:i==="channelsLast"&&(H=[l,B,V,W,G]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:p,inChannels:d,outDepth:B,outHeight:V,outWidth:W,outChannels:G,padInfo:R,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:S,effectiveFilterHeight:A,effectiveFilterWidth:$,dilationDepth:v,dilationHeight:N,dilationWidth:T,inShape:e,outShape:H,filterShape:t}}function BA(e,t,n,a,r){a==null&&(a=Ey(e,t,n));let s=e[0],i=e[1],o=Ti((s-t+2*a)/n+1,r),l=Ti((i-t+2*a)/n+1,r);return[o,l]}function WA(e,t,n,a,r,s){r==null&&(r=Ey(e,t,a));let i=e[0],o=e[1],l=e[2],c=Ti((i-t+2*r)/a+1,s),u=Ti((o-t+2*r)/a+1,s),p=Ti((l-t+2*r)/a+1,s);return[c,u,p,n]}function Ey(e,t,n,a=1){let r=$l(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function eh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function _y(e){return typeof e=="number"?[e,e,e]:e}function $l(e,t){return t<=1?e:e+(e-1)*(t-1)}function LA(e,t,n,a,r,s,i,o,l){let c,u,p;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=BA([t,n],s,a,e,o);u=d[0],p=d[1]}else if(e==="same"){u=Math.ceil(t/a),p=Math.ceil(n/r);let d=Math.max(0,(u-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(d/2),f=d-m,g=Math.floor(h/2),y=h-g;c={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:h,left:m,right:f,type:d===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=Ti((t-s+d+h)/a+1,o),p=Ti((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:p}}function zA(e,t,n,a,r,s,i,o,l,c,u){let p,d,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=WA([t,n,a,1],o,1,r,e,u);d=f[0],h=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(d-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+c-a,b=Math.floor(f/2),x=f-b,v=Math.floor(g/2),N=g-v,T=Math.floor(y/2),S=y-T;p={top:v,bottom:N,left:T,right:S,front:b,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:m}}function Ti(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Jr(e){let[t,n,a]=eh(e);return t===1&&n===1&&a===1}function Ga(e,t){return Jr(e)||Jr(t)}function Z0(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function VA(e,t){let n={x:E(e,"x","reshape","string_or_numeric")},a={shape:t};return M.runKernel(cl,n,a)}var U=P({reshape_:VA});function UA(e,t,n,a,r){let s=E(e,"x","avgPool","float32"),i=1;F(Ga(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&F(Gt(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(Ss,c,u);return p=ue(p,s.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Qn=P({avgPool_:UA});function GA(e,t,n,a,r,s="NDHWC"){let i=E(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Gt(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(Yu,c,u);return p=ue(p,o.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Fy=P({avgPool3d_:GA});function HA(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=vc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Xr(n[0]);let a=n,r={axis:t};return M.runKernel(Ro,a,r)}var Je=P({concat_:HA});function jA(e){let t={x:E(e,"x","sigmoid")};return M.runKernel(li,t)}var ca=P({sigmoid_:jA});function qA(e,t,n){let a=E(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return M.runKernel(ml,r,s)}var We=P({slice_:qA});function KA(e){let t={x:E(e,"x","tanh")};return M.runKernel(mi,t)}var Dl=P({tanh_:KA});function XA(e,t,n,a,r,s){let i=E(e,"forgetBias","basicLSTMCell"),o=E(t,"lstmKernel","basicLSTMCell"),l=E(n,"lstmBias","basicLSTMCell"),c=E(a,"data","basicLSTMCell"),u=E(r,"c","basicLSTMCell"),p=E(s,"h","basicLSTMCell"),d=Je([c,p],1),h=ze(d,o),m=J(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=We(m,[0,0],y),x=We(m,[0,g],y),v=We(m,[0,g*2],y),N=We(m,[0,g*3],y),T=J(L(ca(b),Dl(x)),L(u,ca(J(i,v)))),S=L(Dl(T),ca(N));return[T,S]}var YA=P({basicLSTMCell_:XA});function JA(e,t,n){let a=E(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);F(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return M.runKernel(Ju,s,i)}var Nc=P({batchToSpaceND_:JA});function QA(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function ZA(e,t,n,a,r,s){s==null&&(s=.001);let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;a!=null&&(u=E(a,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:QA(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},h=M.runKernel(zs,p,d);return U(h,i.shape)}var fr=P({batchNorm_:ZA});function e$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),fr(i,o,l,u,c,s)}var nk=P({batchNorm2d_:e$});function t$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),fr(i,o,l,u,c,s)}var ak=P({batchNorm3d_:t$});function n$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),fr(i,o,l,u,c,s)}var rk=P({batchNorm4d_:n$});function a$(e,t,n){let a=E(e,"x","bincount"),r=E(t,"weights","bincount");F(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return M.runKernel(dd,s,i)}var sk=P({bincount_:a$});function r$(e,t){let n=E(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=U(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Xr(n);let i={x:n},o={reps:s};return M.runKernel(Ur,i,o)}var Sc=P({broadcastTo_:r$});function s$(e){let t={x:E(e,"x","ceil")};return M.runKernel(Es,t)}var Ay=P({ceil_:s$});function i$(e,t,n){let a=E(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return M.runKernel(Vr,r,s)}var qt=P({clipByValue_:i$});function o$(e){return Je(e,0)}var ik=P({concat1d_:o$});function l$(e,t){return Je(e,t)}var ok=P({concat2d_:l$});function u$(e,t){return Je(e,t)}var lk=P({concat3d_:u$});function c$(e,t){return Je(e,t)}var uk=P({concat4d_:c$});function p$(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","conv2d"),l=E(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Gt(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?c.shape[3]:c.shape[1];F(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),F(Ga(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=M.runKernel(Fs,d,h);return u?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ft=P({conv2d_:p$});function d$(e,t,n,a,r="NWC",s=1,i){let o=E(e,"x","conv1d"),l=E(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1]])),F(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Gt(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Ga(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=U(c,[c.shape[0],1,c.shape[1],c.shape[2]]),h=Ft(d,p,[1,n],a,"NHWC",[1,s],i);return u?U(h,[h.shape[2],h.shape[3]]):U(h,[h.shape[0],h.shape[2],h.shape[3]])}var th=P({conv1d_:d$});function h$(e,t,n,a,r,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),F(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Gt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let d={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=M.runKernel(As,d,h);return c?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var $y=P({conv2DBackpropInput_:h$});function m$(e,t,n,a,r,s){let i=E(e,"x","conv2dTranspose"),o=E(t,"filter","conv2dTranspose");return $y(n,i,o,a,r,"NHWC",s)}var nh=P({conv2dTranspose_:m$});function f$(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=E(e,"x","conv3d"),o=E(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Ga(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},d=M.runKernel(Zu,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Dy=P({conv3d_:f$});function g$(e,t,n,a,r){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},d=M.runKernel(gd,u,p);return o?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var ck=P({conv3DBackpropInput_:g$});function y$(e,t,n,a,r){let s=E(e,"x","conv3dTranspose"),i=E(t,"filter","conv3dTranspose");return ck(n,s,i,a,r)}var b$=P({conv3dTranspose_:y$});function x$(e){let t={x:E(e,"x","cos")};return M.runKernel($s,t)}var Cc=P({cos_:x$});function v$(e){let t={x:E(e,"x","cosh")};return M.runKernel(Mo,t)}var ah=P({cosh_:v$});function w$(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return M.runKernel(Ds,r,s)}var rh=P({cumsum_:w$});function k$(e,t,n,a=!1){let r=E(e,"x","denseBincount"),s=E(t,"weights","denseBincount");F(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),F(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return M.runKernel(yd,i,o)}var pk=P({denseBincount_:k$});function I$(e,t,n="NHWC"){let a=E(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];F(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return M.runKernel(Oo,o,l)}var Ry=P({depthToSpace_:I$});function T$(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","depthwiseConv2d"),l=E(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Gt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:c,filter:l},d={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=M.runKernel(Rs,p,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Qr=P({depthwiseConv2d_:T$});function N$(e){let t={x:E(e,"x","diag")};return M.runKernel(vd,t)}var S$=P({diag_:N$});function C$(e,t,n,a,r=[1,1],s="NHWC"){let i=E(e,"x","dilation2d"),o=E(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},p={strides:n,pad:a,dilations:r},d=M.runKernel(ec,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var My=P({dilation2d_:C$});function _$(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function zt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function bt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function E$(e,t){let n=E(e,"a","equal"),a=E(t,"b","equal");[n,a]=Tt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Bo,r)}var Zr=P({equal_:E$});function F$(e,t,n){let a=E(t,"a","where"),r=E(n,"b","where"),s=E(e,"condition","where","bool"),i=bt(a.shape,r.shape),o=Sc(a,i),l=Sc(r,i);s.rank===1&&F(s.shape[0]===a.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&on(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return M.runKernel(dl,c)}var Nn=P({where_:F$});function A$(e){let t={x:E(e,"x","zerosLike")};return M.runKernel(Il,t)}var Ge=P({zerosLike_:A$});function $$(e,t){let n=E(e,"a","div"),a=E(t,"b","div");[n,a]=Tt(n,a);let r=xe(n,a),s=Ge(r),i=Zr(a,s);return Nn(i,s,r)}var Py=P({divNoNan_:$$});function D$(e,t){let n=E(e,"t1","dot"),a=E(t,"t2","dot");F((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(F(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=U(n,[1,-1]),o=U(a,[-1,1]),l=ze(i,o);return U(l,[])}else if(n.rank===1&&a.rank===2){let i=U(n,[1,-1]),o=U(a,[a.shape[0],a.shape[1]]),l=ze(i,o);return U(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=U(a,[-1,1]),o=ze(n,i);return U(o,[o.size])}else{let i=U(a,[a.shape[0],a.shape[1]]);return ze(n,i)}}var dk=P({dot_:D$});function R$(e){let t={x:E(e,"x","elu")};return M.runKernel(Lo,t)}var Rl=P({elu_:R$});function M$(e){let t=E(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ue(t,"float32"));let n={x:t};return M.runKernel(zo,n)}var Oy=P({erf_:M$});function P$(e){let t={x:E(e,"x","exp")};return M.runKernel(Ps,t)}var dn=P({exp_:P$});function O$(e,t=0){let n=E(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return M.runKernel(Wo,a,r)}var Mn=P({expandDims_:O$});function L$(e){let t={x:E(e,"x","expm1")};return M.runKernel(Vo,t)}var Ly=P({expm1_:L$});function z$(e,t){let n=E(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return M.runKernel(Ur,a,r)}var Ha=P({tile_:z$});function B$(e,t,n,a="float32"){t==null&&(t=e);let r=Le([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=U(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ha(Mn(i,0),[n[0],1,1]);if(n.length===2)return Ha(Mn(Mn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ha(Mn(Mn(Mn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var zy=P({eye_:B$});function Sn(e,t,n){let a={shape:e,value:t,dtype:n};return M.runKernel(tc,{},a)}function W$(e){let t={x:E(e,"x","floor")};return M.runKernel(Os,t)}var Ml=P({floor_:W$});function V$(e,t,n=0,a=0){let r=E(e,"x","gather"),s=E(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return M.runKernel(Go,i,o)}var Ni=P({gather_:V$});function U$(e,t){let n=E(e,"a","greater"),a=E(t,"b","greater");[n,a]=Tt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(jo,r)}var pa=P({greater_:U$});function G$(e,t){let n=E(e,"a","greaterEqual"),a=E(t,"b","greaterEqual");[n,a]=Tt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Bs,r)}var es=P({greaterEqual_:G$});function H$(e){let t={input:E(e,"input","imag")};return M.runKernel(Sd,t)}var sh=P({imag_:H$});function j$(e){let t={x:E(e,"x","isFinite")};return M.runKernel(qo,t)}var hk=P({isFinite_:j$});function q$(e){let t={x:E(e,"x","isInf")};return M.runKernel(Ko,t)}var mk=P({isInf_:q$});function K$(e){let t={x:E(e,"x","isNaN")};return M.runKernel(Xo,t)}var fk=P({isNaN_:K$});function X$(e,t=.2){let n={x:E(e,"x","leakyRelu")},a={alpha:t};return M.runKernel(Vs,n,a)}var _c=P({leakyRelu_:X$});function Y$(e,t){let n=E(e,"a","less"),a=E(t,"b","less");[n,a]=Tt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Yo,r)}var ih=P({less_:Y$});function J$(e,t){let n=E(e,"a","lessEqual"),a=E(t,"b","lessEqual");[n,a]=Tt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Jo,r)}var Si=P({lessEqual_:J$});function gk(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return M.runKernel(Cd,{},a)}function Q$(e,t=5,n=1,a=1,r=.5){let s=E(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Gt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:a,beta:r},u=M.runKernel(rc,l,c);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var By=P({localResponseNormalization_:Q$});function Z$(e){let t={x:E(e,"x","log")};return M.runKernel(Us,t)}var Pn=P({log_:Z$});function eD(e){let t={x:E(e,"x","log1p")};return M.runKernel(Qo,t)}var oh=P({log1p_:eD});function tD(e){return F(Br(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=E(t,"x","tf.grad","string_or_numeric"),r=n!=null?E(n,"dy","tf.grad"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(a),[a],r);return r!=null&&on(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),lh(i),i[0]})}}function nD(e){return F(Br(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=vc(t,"args","tf.grads","string_or_numeric"),r=n!=null?E(n,"dy","tf.grads"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(...a),a,r);return r!=null&&on(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),lh(i),i})}}function aD(e){return F(Br(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Ee,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=M.gradients(()=>e(t),[t],n);return lh(a),{grad:a[0],value:r}}}function rD(e){return F(Br(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(r=>r instanceof Ee),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=M.gradients(()=>e(...t),t,n);return n!=null&&on(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),lh(a.grads),a}}function yk(e,t){F(Br(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(c=>c instanceof Hr),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in M.registeredVariables)t.push(M.registeredVariables[c])}let a=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=M.gradients(e,t,null,s);F(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),a!=null&&a.forEach(c=>l[c.name]=null),{value:i,grads:l}}function ja(e){return M.customGrad(e)}function lh(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function sD(e){let t={x:E(e,"x","neg")};return M.runKernel(tl,t)}var Nt=P({neg_:sD});function iD(e){let t={x:E(e,"x","softplus")};return M.runKernel(yl,t)}var Pl=P({softplus_:iD});function oD(e){let t=E(e,"x","logSigmoid");return ja(n=>({value:Nt(Pl(Nt(n))),gradFunc:a=>L(a,ca(Nt(n)))}))(t)}var bk=P({logSigmoid_:oD});function lD(e,t=null,n=!1){let a={x:E(e,"x","max")},r={reductionIndices:t,keepDims:n};return M.runKernel(Gs,a,r)}var Zn=P({max_:lD});function uD(e,t){let n=E(e,"a","sub"),a=E(t,"b","sub");[n,a]=Tt(n,a);let r={a:n,b:a};return M.runKernel(hi,r)}var me=P({sub_:uD});function cD(e,t=null,n=!1){let a=E(e,"x","sum");a.dtype==="bool"&&(a=ue(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(ci,r,s)}var Se=P({sum_:cD});function pD(e,t=-1){let n=E(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ja((a,r)=>{let s=!0,i=Zn(a,t,!0),o=me(a,i),l=me(ue(o,"float32"),Pn(Se(dn(o),t,s)));return r([l]),{value:l,gradFunc:(c,u)=>{let[p]=u,d=!0,h=dn(p);return me(c,L(Se(c,t,d),h))}}})(n)}var uh=P({logSoftmax_:pD});function Wy(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function xk(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function vk(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function Ci(e,t){let n=t.map(a=>1);return xk(e,n,t)}function dD(e,t,n){F(Wy(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function wk(e,t){if(Wy(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function Vy(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function hD(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function mD(e,t=null,n=!1){let a=E(e,"x","logSumExp"),r=la(t,a.shape),s=Zn(a,r,!0),i=me(a,s),o=dn(i),l=Se(o,r),c=Pn(l),u=J(U(s,c.shape),c);if(n){let p=Ci(u.shape,r);return U(u,p)}return u}var Uy=P({logSumExp_:mD});function fD(e,t){let n=E(e,"a","logicalAnd","bool"),a=E(t,"b","logicalAnd","bool");bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Zo,r)}var da=P({logicalAnd_:fD});function gD(e){let t={x:E(e,"x","logicalNot","bool")};return M.runKernel(nc,t)}var Ec=P({logicalNot_:gD});function yD(e,t){let n=E(e,"a","logicalOr","bool"),a=E(t,"b","logicalOr","bool");bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(ac,r)}var ch=P({logicalOr_:yD});function bD(e,t){let n=E(e,"a","logicalXor","bool"),a=E(t,"b","logicalXor","bool");return bt(n.shape,a.shape),da(ch(e,t),Ec(da(e,t)))}var kk=P({logicalXor_:bD});function xD(e,t,n,a,r){let s=E(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Ga(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&F(Gt(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(js,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var At=P({maxPool_:xD});function vD(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=E(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Gt(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(sc,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Gy=P({maxPool3d_:vD});function wD(e,t,n,a,r=!1){let s={x:E(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=M.runKernel(Ad,s,i);return{result:o[0],indexes:o[1]}}var Ik=P({maxPoolWithArgmax_:wD});function kD(e,t){let n=E(e,"a","maximum"),a=E(t,"b","maximum");[n,a]=Tt(n,a),n.dtype==="bool"&&(n=ue(n,"int32"),a=ue(a,"int32")),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Hs,r)}var qa=P({maximum_:kD});function ID(e,t=null,n=!1){let a={x:E(e,"x","mean")},r={axis:t,keepDims:n};return M.runKernel(qs,a,r)}var St=P({mean_:ID});function TD(e,t=null,n=!1){let a={x:E(e,"x","min")},r={axis:t,keepDims:n};return M.runKernel(Ks,a,r)}var Ol=P({min_:TD});function ND(e,t){let n=E(e,"a","minimum"),a=E(t,"b","minimum");[n,a]=Tt(n,a),n.dtype==="bool"&&(n=ue(n,"int32"),a=ue(a,"int32")),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Xs,r)}var Ll=P({minimum_:ND});function SD(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=E(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return M.runKernel(ic,i,s)}var Hy=P({mirrorPad_:SD});function CD(e,t){let n=E(e,"a","mod"),a=E(t,"b","mod");[n,a]=Tt(n,a);let r={a:n,b:a};return M.runKernel(el,r)}var jy=P({mod_:CD});function _D(e){let t=E(e,"x","square"),n={};return M.runKernel("Square",{x:t},n)}var ot=P({square_:_D});function ED(e,t=null,n=!1){e=E(e,"x","moments");let a=la(t,e.shape),r=St(e,a,n),s=r.shape;n||(s=Ci(r.shape,a));let i=ot(me(ue(e,"float32"),U(r,s))),o=St(i,a,n);return{mean:r,variance:o}}var ph=P({moments_:ED});function FD(e,t,n,a){let r=E(t,"data","multiRNNCell"),s=vc(n,"c","multiRNNCell"),i=vc(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](o,s[p],i[p]);l.push(d[0]),l.push(d[1]),o=d[1]}let c=[],u=[];for(let p=0;p<l.length;p+=2)c.push(l[p]),u.push(l[p+1]);return[c,u]}var AD=P({multiRNNCell_:FD});function $D(e,t,n,a=!1){let r=E(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?U(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},c=M.runKernel($d,o,l);return i===1?U(c,[c.size]):c}var Tk=P({multinomial_:$D});function DD(e,t){let n=E(e,"a","notEqual"),a=E(t,"b","notEqual");[n,a]=Tt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(nl,r)}var _i=P({notEqual_:DD});function xt(e,t="float32"){if(t==="complex64"){let a=xt(e,"float32"),r=xt(e,"float32");return jr(a,r)}let n=od(Pt(e),t);return M.makeTensor(n,e,t)}function Ka(e,t="float32"){if(t==="complex64"){let a=Ka(e,"float32"),r=xt(e,"float32");return jr(a,r)}let n=zg(Pt(e),t);return M.makeTensor(n,e,t)}function RD(e){let t={x:E(e,"x","onesLike")};return M.runKernel(il,t)}var On=P({onesLike_:RD});function MD(e,t){let n=E(e,"v1","outerProduct"),a=E(t,"v2","outerProduct");F(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=U(n,[-1,1]),s=U(a,[1,-1]);return ze(r,s)}var PD=P({outerProduct_:MD});function OD(e,t,n=0){let a=E(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return M.runKernel(Qs,s,r)}var ea=P({pad_:OD});function LD(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ea(e,[t],n)}var zD=P({pad1d_:LD});function BD(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var WD=P({pad2d_:BD});function VD(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var UD=P({pad3d_:VD});function GD(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var HD=P({pad4d_:GD});function jD(e,t,n){let a=E(e,"x","spaceToBatchND");F(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return M.runKernel(uc,r,s)}var Fc=P({spaceToBatchND_:jD});function XD(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=E(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Ga(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let c=ek(o.shape,t,s,r,a),u=[c.dilationHeight,c.dilationWidth],p;a==="same"?p=KD([c.filterHeight,c.filterWidth],u):p=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[h,m]=qD([c.inHeight,c.inWidth],u,p),f=d?a:"valid",g=d?o:Fc(o,u,h),y=(n==="avg"?()=>Qn(g,t,s,f):()=>At(g,t,s,f))(),b=d?y:Nc(y,u,m);return l?U(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function qD(e,t,n){let a=n.map(u=>u[0]),r=n.map(u=>u[1]),s=e.concat(a,r),i=t.map((u,p)=>(u-s[p]%u)%u),o=r.map((u,p)=>u+i[p]),l=t.map((u,p)=>[a[p],o[p]]),c=t.map((u,p)=>[0,i[p]]);return[l,c]}function KD(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var Nk=P({pool_:XD});function YD(e,t){let n=E(e,"base","pow"),a=E(t,"exp","pow");[n,a]=Tt(n,a);let r={a:n,b:a};return M.runKernel(Zs,r)}var gr=P({pow_:YD});function JD(e,t){let n=E(e,"x","prelu"),a=E(t,"alpha","prelu"),r={x:n,alpha:a};return M.runKernel(ei,r)}var Ac=P({prelu_:JD});function QD(e,t=null,n=!1){let a=E(e,"x","prod");a.dtype==="bool"&&(a=ue(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(ll,r,s)}var dh=P({prod_:QD});function ZD(e,t,n){let a=Pt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return M.makeTensor(r,e,n)}var eR=P({rand_:ZD}),qy=Io(ad()),Ky=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=qy.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},tR=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=qy.alea(r.toString()),this.randn=new Ky(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},nR=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=qy.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function aR(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new tR(t,n,a,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var rR=P({randomGamma_:aR});function sR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new Ky(t,n,a,!1,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Sk=P({randomNormal_:sR});function iR(e,t=0,n=1,a="float32",r){let s=Le(e,a),i=new nR(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var zl=P({randomUniform_:iR});function hh(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return M.runKernel(oc,{},r)}function oR(e){let t={input:E(e,"input","real")};return M.runKernel(Dd,t)}var $c=P({real_:oR});function lR(e){let t={x:E(e,"x","reciprocal")};return M.runKernel(ul,t)}var Xy=P({reciprocal_:lR});function uR(e){let t={x:E(e,"x","relu")};return M.runKernel(ti,t)}var qe=P({relu_:uR});function cR(e){let t={x:E(e,"x","relu6")};return M.runKernel(ai,t)}var mh=P({relu6_:cR});function pR(e,t){let n={x:E(e,"x","reverse")},a={dims:t};return M.runKernel(ri,n,a)}var Ln=P({reverse_:pR});function dR(e){let t=E(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ln(t,0)}var hR=P({reverse1d_:dR});function mR(e,t){let n=E(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ln(n,t)}var fR=P({reverse2d_:mR});function gR(e,t){let n=E(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ln(n,t)}var yR=P({reverse3d_:gR});function bR(e,t){let n=E(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ln(n,t)}var xR=P({reverse4d_:bR});function vR(e){let t={x:E(e,"x","round")};return M.runKernel(si,t)}var Yy=P({round_:vR});function wR(e){let t={x:E(e,"x","rsqrt")};return M.runKernel(ii,t)}var fh=P({rsqrt_:wR});function pe(e,t){if((ln(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&ln(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return qr(e,[],[],t)}function kR(e){let t={x:E(e,"x","selu")};return M.runKernel(hl,t)}var gh=P({selu_:kR});function IR(e,t,n,a,r,s=[1,1],i="NHWC"){let o=E(e,"x","separableConv2d"),l=E(t,"depthwiseFilter","separableConv2d"),c=E(n,"pointwiseFilter","separableConv2d"),u=o,p=!1;if(o.rank===3&&(p=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),F(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],h=l.shape[3];F(c.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${c.shape[2]}.`);let m=Qr(u,l,a,r,i,s),f=Ft(m,c,1,"valid",i);return p?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ei=P({separableConv2d_:IR});async function TR(e,t){let n=E(e,"x","setdiff1d"),a=E(t,"y","setdiff1d");F(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let u=0;u<r.length;u++)i.has(r[u])||o++;let l=new Ot([o],n.dtype),c=new Ot([o],"int32");for(let u=0,p=0;u<r.length;u++)i.has(r[u])||(l.values[p]=r[u],c.values[p]=u,p++);return[l.toTensor(),c.toTensor()]}var Ck=TR;function NR(e){let t={x:E(e,"x","sign")};return M.runKernel(gl,t)}var Jy=P({sign_:NR});function SR(e){let t={x:E(e,"x","sin")};return M.runKernel(oi,t)}var yh=P({sin_:SR});function CR(e){let t={x:E(e,"x","sinh")};return M.runKernel(fl,t)}var bh=P({sinh_:CR});function _R(e,t,n){let a=E(e,"x","slice1d");return F(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),We(a,[t],[n])}var xh=P({slice1d_:_R});function ER(e,t,n){let a=E(e,"x","slice2d");return F(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var Qy=P({slice2d_:ER});function FR(e,t,n){let a=E(e,"x","slice3d");return F(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var Bl=P({slice3d_:FR});function AR(e,t,n){let a=E(e,"x","slice4d");return F(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var Dc=P({slice4d_:AR});function $R(e,t=-1){let n=E(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return M.runKernel(pi,a,r)}var Ta=P({softmax_:$R});function DR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(Td,t)}var Rc=P({fft_:DR});function RR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(Nd,t)}var Wl=P({ifft_:RR});function MR(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=U(e,[n,t]);a=Wl(r)}else{let r=[n,2*(t-1)],s=U($c(e),[n,t]),i=U(sh(e),[n,t]),o=Ln(We(s,[0,1],[n,t-2]),1),l=L(Ln(We(i,[0,1],[n,t-2]),1),pe(-1)),c=Je([s,o],1),u=Je([i,l],1),p=U(jr(c,u),[r[0],r[1]]);a=Wl(p)}if(a=$c(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=U(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var vh=P({irfft_:MR});function PR(e,t,n=0){let a={x:E(e,"x","split")},r={numOrSizeSplits:t,axis:n};return M.runKernel(bl,a,r)}var zn=P({split_:PR});function OR(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=We(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Je([e,xt(m)],e.shape.length-1),n=t}else r=e;let s=Ge(r),i=U(jr(r,s),[a,n]),o=Rc(i),l=Math.floor(n/2)+1,c=$c(o),u=sh(o),p=zn(c,[l,n-l],c.shape.length-1),d=zn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,U(jr(p[0],d[0]),h)}var Mc=P({rfft_:OR});function LR(e){let t={x:E(e,"x","sqrt")};return M.runKernel(ui,t)}var nn=P({sqrt_:LR});function zR(e,t){let n=E(e,"a","squaredDifference"),a=E(t,"b","squaredDifference");[n,a]=Tt(n,a),bt(n.shape,a.shape);let r={a:n,b:a},s={};return M.runKernel(di,r,s)}var wh=P({squaredDifference_:zR});function BR(e,t){let n=E(e,"x","squeeze");return U(n,jw(n.shape,t).newShape)}var ts=P({squeeze_:BR});function WR(e,t=0){let n=vc(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return M.runKernel(ol,a,r)}var $t=P({stack_:WR});function VR(e,t=0){let n={x:E(e,"x","step")},a={alpha:t};return M.runKernel(Gr,n,a)}var Vl=P({step_:VR});function UR(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let c={x:E(e,"x","stridedSlice")},u={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return M.runKernel(xl,c,u)}var Zy=P({stridedSlice_:UR});function GR(e){let t={x:E(e,"x","tan")};return M.runKernel(vl,t)}var eb=P({tan_:GR});function Qe(e,t){ks(e);let n=Va(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return qr(e,null,n,t)}function Na(e,t,n){if(ks(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Va(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return qr(e,t,a,n)}function Sa(e,t,n){if(ks(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Va(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return qr(e,t,a,n)}function HR(e,t,n){if(ks(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Va(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return qr(e,t,a,n)}function jR(e,t,n){if(ks(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Va(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,qr(e,t,a,n)}function qR(e,t=1,n=!0){let a=E(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=M.runKernel(wl,s,i);return{values:o,indices:l}}var tb=P({topk_:qR});function KR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Ky(t,n,a,!0,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var kh=P({truncatedNormal_:KR});function XR(e,t=0){let n=E(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=M.runKernel(Od,a,r);return{values:s,indices:i}}var Ih=P({unique_:XR});function YR(e,t,n){let a=E(e,"x","unsortedSegmentSum"),r=E(t,"segmentIds","unsortedSegmentSum","int32");F(Gt(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return M.runKernel(pc,s,i)}var nb=P({unsortedSegmentSum_:YR});function JR(e,t=0){let n=E(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return M.runKernel(kl,a,r)}var ut=P({unstack_:JR});function _k(e,t=!0,n,a){return M.makeVariable(e,t,n,a)}function Ek(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Le(e,"int32"),r=Le([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function QR(e){let t=E(e,"condition","whereAsync","bool"),n=await t.data(),a=Ek(t.shape,n);return e!==t&&t.dispose(),a}var ab=QR;async function ZR(e,t,n){let a=E(e,"tensor","boolMask"),r=E(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;F(i>0,()=>"mask cannot be scalar"),on(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let c=o.slice(0,s).concat([l],o.slice(s+i)),u=U(a,c),p=U(r,[-1]),d=await ab(p),h=ts(d,[1]),m=Ni(u,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),p.dispose(),d.dispose(),m}var eM=ZR;function tM(e,t="euclidean",n=null,a=!1){e=E(e,"x","norm");let r=Fk(e,t,n),s=r.shape;if(a){let i=la(n,e.shape);s=Ci(r.shape,i)}return U(r,s)}function Fk(e,t,n=null){if(e.rank===0)return Lt(e);if(e.rank!==1&&n===null)return Fk(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(Lt(e),n);if(t===Infinity)return Zn(Lt(e),n);if(t===-Infinity)return Ol(Lt(e),n);if(t==="euclidean"||t===2)return nn(Se(gr(Lt(e),pe(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Zn(Se(Lt(e),n[0]),n[1]-1);if(t===Infinity)return Zn(Se(Lt(e),n[1]),n[0]);if(t===-Infinity)return Ol(Se(Lt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return nn(Se(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Th=P({norm_:tM});function nM(e,t,n,a,r=!0){let s=E(e,"v","movingAverage"),i=E(t,"x","movingAverage"),o=E(n,"decay","movingAverage");u0(s,i),F(hr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=pe(1),c=me(l,o),u=L(me(i,s),c);if(r){F(a!=null,()=>"When using zeroDebias: true, step is required.");let p=E(a,"step","movingAverage");u=xe(u,me(l,gr(o,p)))}return J(s,u)}var aM=P({movingAverage_:nM});function rM(e,t,n){let a=E(e,"indices","scatterND","int32"),r=E(t,"updates","scatterND");fy(r,a,n);let s={indices:a,updates:r},i={shape:n};return M.runKernel(pl,s,i)}var Ak=P({scatterND_:rM});function sM(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function iM(e,t,n,a=0){let r=E(e,"sparseIndices","sparseToDense","int32"),s=E(t,"sparseValues","sparseToDense"),i=E(a,"defaultValue","sparseToDense",s.dtype);sM(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return M.runKernel(Pd,o,l)}var rb=P({sparseToDense_:iM});function oM(e,t){let n=E(t,"indices","gatherND","int32"),a={params:E(e,"x","gatherND"),indices:n};return M.runKernel(Ho,a)}var $k=P({gatherND_:oM});function lM(e,t){if(t==null)return e.shape.slice();if(hr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function uM(e,t,n,a){let r=E(e,"x","dropout");if(F(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ee?r.clone():r;let s=lM(r,n),i=1-t,o=xe(Ml(J(zl(s,0,1,"float32",a),i)),i);return L(r,o)}var Dk=P({dropout_:uM});function Rk(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function sb(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Qe(r,"float32")}async function cM(e,t,n=1){let a=E(e,"predictions","inTopK"),r=E(t,"targets","inTopK");F(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),F(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),on(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,c]=[i.length/s,s],u=qw("bool",l);for(let p=0;p<l;p++){let d=p*c,h=i.subarray(d,d+c),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),u[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){u[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Yn(u,r.shape,"bool")}var pM=cM,ns={};Oe(ns,{conv2d:()=>dM,depthwiseConv2d:()=>hM,matMul:()=>mM});function fM(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),F(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&F(Gt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},d={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return M.runKernel(md,p,d)}var ib=P({conv2DBackpropFilter_:fM});function Nh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,Vl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Sh(e,t){let n=t,a=zt(e.shape,t.shape);return a.length>0&&(n=Se(n,a)),U(n,e.shape)}function Ch(e,t,n,a){if(t==="linear")return e;if(t==="relu")return qe(e);if(t==="elu")return Rl(e);if(t==="relu6")return mh(e);if(t==="prelu")return Ac(e,n);if(t==="leakyrelu")return _c(e,a);throw new Error(`Unknown fused activation ${t}.`)}var _h=(e,t)=>!(e>0)||t==="linear";function gM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",_h(M.state.gradientDepth,l)===!1){let N=Ft(e,t,n,a,r,s,i);return o!=null&&(N=J(N,o)),Ch(N,l,c,u)}let p=E(e,"x","conv2d"),d=E(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Gt(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(h.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Ga(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=Tc(h.shape,d.shape,n,s,a,i),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Tt(g,p),bt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused conv2d"));let b=(N,T)=>{let[S,A,$,R]=T,B=Nh(N,$,l);F(Jr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let V=$y(A.shape,B,S,n,a),W=ib(A,B,S.shape,n,a),G=[V,W];if(R!=null){let H=Sh(R,B);G.push(H)}return G},x={x:h,filter:d,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?ja((N,T,S)=>{let A=M.runKernel(yi,x,v);return S([T,N,A]),m&&(A=U(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,d):ja((N,T,S,A)=>{let $=M.runKernel(yi,x,v);return A([T,N,$,S]),m&&($=U($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,d,g)}var dM=P({fusedConv2d_:gM});function yM(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return M.runKernel(bd,c,u)}var Mk=P({depthwiseConv2dNativeBackpropFilter_:yM});function bM(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=M.runKernel(xd,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Pk=P({depthwiseConv2dNativeBackpropInput_:bM});function xM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(_h(M.state.gradientDepth,l)===!1){let N=Qr(e,t,n,a,r,s,i);return o!=null&&(N=J(N,o)),Ch(N,l,c,u)}let p=E(e,"x","depthwiseConv2d"),d=E(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Ga(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Gt(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=Tc(h.shape,d.shape,n,s,a,i,!0),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Tt(g,p),bt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused depthwiseConv2d"));let b=(N,T)=>{F(Jr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[S,A,$,R]=T,B=Nh(N,$,l),V=Pk(A.shape,B,S,n,a,s,i),W=Mk(A,B,S.shape,n,a,s,i);if(R!=null){let G=Sh(g,B);return[V,W,G]}return[V,W]},x={x:h,filter:d,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?ja((N,T,S)=>{let A=M.runKernel(bi,x,v);return S([T,N,A]),m&&(A=U(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,d):ja((N,T,S,A)=>{let $=M.runKernel(bi,x,v);return A([T,N,$,S]),m&&($=U($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,d,g)}var hM=P({fusedDepthwiseConv2d_:xM});function vM({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(_h(M.state.gradientDepth,s)===!1){let R=ze(e,t,n,a);return r!=null&&(R=J(R,r)),Ch(R,s,i,o)}let l=E(e,"a","fused matMul"),c=E(t,"b","fused matMul");[l,c]=Tt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),g=Pt(m),y=Pt(f);F(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),F(hr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),F(u===p,()=>`Error in fused matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=l.shape.slice(0,-2).concat([d,h]),x=n?U(l,[g,u,d]):U(l,[g,d,u]),v=a?U(c,[y,h,p]):U(c,[y,p,h]),N;r!=null&&(N=E(r,"bias","fused matMul"),[N]=Tt(N,l),bt(b,N.shape));let T;i!=null&&(T=E(i,"prelu weights","fused matMul"));let S=(R,B)=>{let[V,W,G,H]=B,X=Nh(U(R,G.shape),G,s),q,te;if(!n&&!a?(q=ze(X,W,!1,!0),te=ze(V,X,!0,!1)):!n&&a?(q=ze(X,W,!1,!1),te=ze(X,V,!0,!1)):n&&!a?(q=ze(W,X,!1,!0),te=ze(V,X,!1,!1)):(q=ze(W,X,!0,!0),te=ze(X,V,!0,!0)),r!=null){let Q=Sh(H,X);return[q,te,Q]}else return[q,te]},A={a:x,b:v,bias:N,preluActivationWeights:T},$={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ja((R,B,V)=>{let W=M.runKernel(gi,A,$);return V([R,B,W]),{value:U(W,b),gradFunc:S}})(x,v):ja((R,B,V,W)=>{let G=M.runKernel(gi,A,$);return W([R,B,G,V]),{value:U(G,b),gradFunc:S}})(x,v,N)}var mM=P({fusedMatMul_:vM});function wM(e){return sb(e,.54,.46)}var kM=P({hammingWindow_:wM});function IM(e){return sb(e,.5,.5)}var Ok=P({hannWindow_:IM});function TM(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(We(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Je([We(e,s,t-o),Sn([o],r)]);i.push(l),s+=n}return i.length===0?Na([],[0,t]):U(Je(i),[i.length,t])}var Lk=P({frame_:TM});function NM(e,t,n,a,r=Ok){a==null&&(a=Rk(t));let s=Lk(e,t,n),i=L(s,r(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Mc(We(i,[l,0],[1,t]),a));return Je(o)}var SM=P({stft_:NM});function CM(e,t,n,a,r="bilinear",s=0){let i=E(e,"image","cropAndResize"),o=E(t,"boxes","cropAndResize","float32"),l=E(n,"boxInd","cropAndResize","int32"),c=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),F(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),F(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),F(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return M.runKernel(Po,u,p)}var _M=P({cropAndResize_:CM});function EM(e){let t=E(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return M.runKernel(Uo,n,{})}var FM=P({flipLeftRight_:EM});function AM(e,t,n=0,a=.5){let r=E(e,"image","rotateWithOffset","float32");F(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return M.runKernel(Tl,s,i)}var $M=P({rotateWithOffset_:AM});function Ul(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function DM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppression"),i=E(t,"scores","nonMaxSuppression"),o=Ul(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return M.runKernel(al,{boxes:s,scores:i},l)}var RM=P({nonMaxSuppression_:DM});function PM(e,t,n){let a=MM(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function MM(e,t,n){return LM(e,t,n||OM)}function OM(e,t){return e>t?1:e<t?-1:0}function LM(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function zk(e,t,n,a,r){return ob(e,t,n,a,r,0)}function Bk(e,t,n,a,r,s){return ob(e,t,n,a,r,0,!1,s,!0)}function Wk(e,t,n,a,r,s){return ob(e,t,n,a,r,s,!0)}function ob(e,t,n,a,r,s,i=!1,o=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(Vk);let u=s>0?-.5/s:0,p=[],d=[];for(;p.length<n&&c.length>0;){let g=c.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let N=p.length-1;N>=x;--N){let T=zM(e,b,p[N]);if(T>=a){v=!0;break}if(g.score=g.score*BM(a,u,T),g.score<=r)break}g.suppressBeginIndex=p.length,v||(g.score===y?(p.push(b),d.push(g.score)):g.score>r&&PM(c,g,Vk))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=d),l&&(f.validOutputs=h),f}function zM(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-c)*(d-u);if(h<=0||m<=0)return 0;let f=Math.max(s,c),g=Math.max(i,u),y=Math.min(o,p),b=Math.min(l,d),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function BM(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function Vk(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function WM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),o=Ul(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:p}=zk(c,u,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Qe(p,"int32")}var VM=WM;function UM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Ul(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=M.runKernel(sl,c,u);return{selectedIndices:p[0],selectedScores:p[1]}}var GM=P({nonMaxSuppressionWithScore_:UM});async function HM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Ul(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],p=c[1],{selectedIndices:d,selectedScores:h}=Wk(u,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qe(d,"int32"),selectedScores:Qe(h)}}var jM=HM;function qM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Ul(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:p,padToMaxOutputSize:s},m=M.runKernel(rl,d,h);return{selectedIndices:m[0],validOutputs:m[1]}}var KM=P({nonMaxSuppressionPadded_:qM});async function XM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Ul(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Bk(d,h,c,u,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qe(m,"int32"),validOutputs:pe(f,"int32")}}var YM=XM;function JM(e,t,n=!1,a=!1){let r=E(e,"images","resizeBilinear");F(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(ni,o,l);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Uk=P({resizeBilinear_:JM});function QM(e,t,n=!1,a=!1){let r=E(e,"images","resizeNearestNeighbor");F(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(lc,o,l);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Gk=P({resizeNearestNeighbor_:QM});function ZM(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=E(e,"a","bandPart");F(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=U(hh(0,s,1,"int32"),[-1,1]),l=hh(0,i,1,"int32"),c=me(o,l),u=da(Si(c,pe(+t,"int32")),es(c,pe(-n,"int32"))),p=xt([s,i],a.dtype);return U($t(ut(U(a,[-1,s,i])).map(d=>Nn(u,d,p))),r)}var eP=P({bandPart_:ZM});function tP(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>ts(r,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(M.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=L(Se(L(n[i],s)),n[i]);s=me(s,o)}return xe(s,Th(s,"euclidean"))}));return t?$t(n,0):n}var nP=P({gramSchmidt_:tP});function aP(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Hk(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),a=ut(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[c,u]=Hk(l,t);r.push(c),s.push(u)});let i=U($t(r,0),e.shape),o=U($t(s,0),e.shape);return[i,o]}}function Hk(e,t=!1){return M.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=zy(n),s=Xr(e),i=Na([[1]],[1,1]),o=Xr(i),l=n>=a?a:n;for(let c=0;c<l;++c){let u=s,p=o,d=r;[o,s,r]=M.tidy(()=>{let h=We(s,[c,c],[n-c,1]),m=Th(h),f=We(s,[c,c],[1,1]),g=Nn(pa(f,0),Na([[-1]]),Na([[1]])),y=me(f,L(g,m)),b=xe(h,y);b.shape[0]===1?o=Xr(i):o=Je([i,We(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=Nt(xe(ze(g,y),m)),v=We(s,[c,0],[n-c,a]),N=L(x,o),T=Ve(o);if(c===0)s=me(v,ze(N,ze(T,v)));else{let $=me(v,ze(N,ze(T,v)));s=Je([We(s,[0,0],[c,a]),$],0)}let S=Ve(N),A=We(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=me(A,ze(ze(A,o),S));else{let $=me(A,ze(ze(A,o),S));r=Je([We(r,[0,0],[n,c]),$],1)}return[o,s,r]}),Ae([u,p,d])}return!t&&n>a&&(r=We(r,[0,0],[n,a]),s=We(s,[0,0],[a,a])),[r,s]})}var rP=P({qr_:aP}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function sP(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=E(t,"weights","computeWeightedLoss"));let s=r==null?a:L(a,r);if(n===hn.NONE)return s;if(n===hn.SUM)return Se(s);if(n===hn.MEAN){if(r==null)return St(s);{let i=a.size/r.size,o=xe(Se(s),Se(r));return i>1?xe(o,pe(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return xe(Se(s),pe(a.size));{let i=L(r,Ka(a.shape)),o=ue(Se(_i(i,pe(0))),"float32");return xe(Se(s),o)}}throw Error(`Unknown reduction: ${n}`)}var yr=P({computeWeightedLoss_:sP});function iP(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","absoluteDifference"),s=E(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=E(n,"weights","absoluteDifference")),on(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(me(r,s));return yr(o,i,a)}var oP=P({absoluteDifference_:iP});function lP(e,t,n,a,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","cosineDistance"),i=E(t,"predictions","cosineDistance"),o=null;a!=null&&(o=E(a,"weights","cosineDistance")),on(s.shape,i.shape,"Error in cosineDistance: ");let l=pe(1),c=me(l,Se(L(s,i),n,!0));return yr(c,o,r)}var uP=P({cosineDistance_:lP});function cP(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","hingeLoss"),s=E(t,"predictions","hingeLoss"),i=null;n!=null&&(i=E(n,"weights","hingeLoss")),on(r.shape,s.shape,"Error in hingeLoss: ");let o=pe(1);r=me(L(pe(2),r),o);let l=qe(me(o,L(r,s)));return yr(l,i,a)}var pP=P({hingeLoss_:cP});function dP(e,t,n,a=1,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","huberLoss"),i=E(t,"predictions","huberLoss"),o=null;n!=null&&(o=E(n,"weights","huberLoss")),on(s.shape,i.shape,"Error in huberLoss: ");let l=pe(a),c=Lt(me(i,s)),u=Ll(c,l),p=me(c,u),d=J(L(pe(.5),ot(u)),L(l,p));return yr(d,o,r)}var hP=P({huberLoss_:dP});function mP(e,t,n,a=1e-7,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","logLoss"),i=E(t,"predictions","logLoss"),o=null;n!=null&&(o=E(n,"weights","logLoss")),on(s.shape,i.shape,"Error in logLoss: ");let l=pe(1),c=pe(a),u=Nt(L(s,Pn(J(i,c)))),p=L(me(l,s),Pn(J(me(l,i),c))),d=me(u,p);return yr(d,o,r)}var fP=P({logLoss_:mP});function gP(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","meanSquaredError"),s=E(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=E(n,"weights","meanSquaredError")),on(r.shape,s.shape,"Error in meanSquaredError: ");let o=wh(r,s);return yr(o,i,a)}var yP=P({meanSquaredError_:gP});function bP(e,t){let n=E(e,"labels","sigmoidCrossEntropyWithLogits"),a=E(t,"logits","sigmoidCrossEntropyWithLogits");on(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=qe(a),s=L(a,n),i=oh(dn(Nt(Lt(a))));return J(me(r,s),i)}function xP(e,t,n,a=0,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"multiClassLabels","sigmoidCrossEntropy"),i=E(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","sigmoidCrossEntropy")),on(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let c=pe(a),u=pe(1),p=pe(.5);s=J(L(s,me(u,c)),L(p,c))}let l=bP(s,i);return yr(l,o,r)}var vP=P({sigmoidCrossEntropy_:xP});function wP(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ja((a,r,s)=>{let i=Uy(r,[n],!0),o=me(ue(r,"float32"),i);s([a,o]);let l=Nt(L(o,a));return{value:Se(l,[n]),gradFunc:(c,u)=>{let[p,d]=u,h=Ci(c.shape,[n]);return[L(U(c,h),me(ue(p,"float32"),dn(d))),L(U(c,h),me(dn(d),ue(p,"float32")))]}}})(e,t)}function kP(e,t,n,a=0,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"onehotLabels","softmaxCrossEntropy"),i=E(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","softmaxCrossEntropy")),on(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let c=pe(a),u=pe(1),p=pe(s.shape[1]);s=J(L(s,me(u,c)),xe(c,p))}let l=wP(s,i);return yr(l,o,r)}var IP=P({softmaxCrossEntropy_:kP}),TP={fft:Rc,ifft:Wl,rfft:Mc,irfft:vh},NP={hammingWindow:kM,hannWindow:Ok,frame:Lk,stft:SM},Xa={flipLeftRight:FM,resizeNearestNeighbor:Gk,resizeBilinear:Uk,rotateWithOffset:$M,cropAndResize:_M,nonMaxSuppression:RM,nonMaxSuppressionAsync:VM,nonMaxSuppressionWithScore:GM,nonMaxSuppressionWithScoreAsync:jM,nonMaxSuppressionPadded:KM,nonMaxSuppressionPaddedAsync:YM},jk={bandPart:eP,gramSchmidt:nP,qr:rP},SP={absoluteDifference:oP,computeWeightedLoss:yr,cosineDistance:uP,hingeLoss:pP,huberLoss:hP,logLoss:fP,meanSquaredError:yP,sigmoidCrossEntropy:vP,softmaxCrossEntropy:IP},br=class extends j0{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ae(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return yk(e,t)}dispose(){this.iterations_!=null&&Ae(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:pe(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(br,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Eh=class extends br{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;D(()=>{let l=J(L(i,this.rho),L(ot(s),1-this.rho)),c=L(xe(nn(J(o,this.epsilon)),nn(J(i,this.epsilon))),s),u=J(L(o,this.rho),L(ot(c),1-this.rho));i.assign(l),o.assign(u);let p=J(L(c,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ae(this.accumulatedGrads.map(e=>e.variable)),Ae(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Eh.className="Adadelta";Yr(Eh);var Fh=class extends br{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:D(()=>Sn(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;D(()=>{let i=J(s,ot(r));s.assign(i);let o=J(L(xe(r,nn(J(i,M.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ae(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Fh.className="Adagrad";Yr(Fh);var Ah=class extends br{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],D(()=>{this.accBeta1=pe(t).variable(),this.accBeta2=pe(n).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=me(1,this.accBeta1),a=me(1,this.accBeta2);t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:D(()=>Ge(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:D(()=>Ge(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,p=J(L(c,this.beta1),L(l,1-this.beta1)),d=J(L(u,this.beta2),L(ot(l),1-this.beta2)),h=xe(p,n),m=xe(d,a);c.assign(p),u.assign(d);let f=J(L(xe(h,J(nn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ae(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),D(()=>{this.accBeta1.assign(gr(this.beta1,this.iterations_+1)),this.accBeta2.assign(gr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Ah.className="Adam";Yr(Ah);var $h=class extends br{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],D(()=>{this.iteration=pe(0).variable(),this.accBeta1=pe(t).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=me(1,this.accBeta1),a=xe(-this.learningRate,J(L(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ge(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ge(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,p=J(L(c,this.beta1),L(l,1-this.beta1)),d=L(u,this.beta2),h=Lt(l),m=qa(d,h);c.assign(p),u.assign(m);let f=J(L(xe(a,n),xe(p,J(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ae(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};$h.className="Adamax";Yr($h);var Pc=class extends br{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=M.registeredVariables[t];D(()=>{let s=J(L(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=jt(pe(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Pc.className="SGD";Yr(Pc);var Dh=class extends Pc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=pe(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&D(()=>{let i,o=J(L(this.m,r),s);this.useNesterov?i=J(L(this.c,J(s,L(o,this.m))),a):i=J(L(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ae(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Dh.className="Momentum";Yr(Dh);var Rh=class extends br{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=M.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;D(()=>{let l=J(L(i,this.decay),L(ot(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=J(L(c,this.decay),L(s,1-this.decay)),p=xe(L(s,this.learningRate),nn(me(l,J(ot(u),this.epsilon)))),d=J(L(o,this.momentum),p);i.assign(l),c.assign(u),o.assign(d);let h=me(a,d);a.assign(h)}else{let c=J(L(i,this.decay),L(ot(s),1-this.decay)),u=J(L(o,this.momentum),xe(L(s,this.learningRate),nn(J(c,this.epsilon))));i.assign(c),o.assign(u);let p=me(a,u);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ae(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ae(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ae(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Rh.className="RMSProp";Yr(Rh);var Fi=class{static sgd(e){return new Pc(e)}static momentum(e,t,n=!1){return new Dh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Rh(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Ah(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Eh(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new $h(e,t,n,a,r)}static adagrad(e,t=.1){return new Fh(e,t)}},Ai={sgd:Fi.sgd,momentum:Fi.momentum,adadelta:Fi.adadelta,adagrad:Fi.adagrad,rmsprop:Fi.rmsprop,adamax:Fi.adamax,adam:Fi.adam},CP=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Mh(){return new Promise(e=>CP(()=>e()))}var _={};Oe(_,{ERF_A1:()=>LP,ERF_A2:()=>zP,ERF_A3:()=>BP,ERF_A4:()=>WP,ERF_A5:()=>VP,ERF_P:()=>OP,PARALLELIZE_THRESHOLD:()=>lb,SELU_SCALE:()=>Kk,SELU_SCALEALPHA:()=>qk,applyActivation:()=>Ch,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>dD,assertParamsConsistent:()=>_P,assignToTypedArray:()=>YP,axesAreInnerMostDims:()=>Wy,calculateShapes:()=>R0,combineLocations:()=>xk,complexWithEvenIndex:()=>qP,complexWithOddIndex:()=>KP,computeConv2DInfo:()=>Tc,computeConv3DInfo:()=>tk,computeDefaultPad:()=>Ey,computeDilation2DInfo:()=>PA,computeOptimalWindowSize:()=>FP,computeOutAndReduceShapes:()=>vk,computeOutShape:()=>EP,computePool2DInfo:()=>ek,computePool3DInfo:()=>OA,convertConv2DDataFormat:()=>Z0,eitherStridesOrDilationsAreOne:()=>Ga,expandShapeToKeepDim:()=>Ci,exponent:()=>QP,exponents:()=>JP,fromStringArrayToUint8:()=>tO,fromUint8ToStringArray:()=>eO,getAxesPermutation:()=>wk,getBroadcastDims:()=>_$,getComplexWithIndex:()=>XP,getFusedBiasGradient:()=>Sh,getFusedDyActivation:()=>Nh,getImageCenter:()=>AP,getInnerMostAxes:()=>hD,getPermuted:()=>DP,getReductionAxes:()=>zt,getReshaped:()=>$P,getReshapedPermuted:()=>RP,getSliceBeginCoords:()=>MP,getSliceSize:()=>PP,getUndoAxesPermutation:()=>Vy,log:()=>GP,mergeRealAndImagArrays:()=>HP,prepareAndValidate:()=>D0,prepareSplitSize:()=>ZP,segment_util:()=>Xk,shouldFuse:()=>_h,slice_util:()=>pn,splitRealAndImagArrays:()=>jP,tupleValuesAreOne:()=>Jr,upcastType:()=>ua,validateInput:()=>fy,validateUpdateShape:()=>my,warn:()=>UP});function _P(e,t){let n=e[0].length;e.forEach((r,s)=>{F(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)F(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function EP(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var lb=30;function FP(e){return e<=lb?e:id(e,Math.floor(Math.sqrt(e)))}function AP(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function $P(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function DP(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function RP(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function MP(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function PP(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var qk=1.7580993408473768,Kk=1.0507009873554805,OP=.3275911,LP=.254829592,zP=-.284496736,BP=1.421413741,WP=-1.453152027,VP=1.061405429;function UP(...e){ee().getBool("IS_TEST")||console.warn(...e)}function GP(...e){ee().getBool("IS_TEST")||console.log(...e)}function HP(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function jP(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function qP(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function KP(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function XP(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function YP(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function JP(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function QP(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}function ZP(e,t,n=0){let a=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var Xk={};Oe(Xk,{collectGatherOpShapeInfo:()=>rO,computeOutShape:()=>aO,segOpComputeOptimalWindowSize:()=>nO});function nO(e,t){let n=!1,a;for(e<=lb?(a=e,n=!0):a=id(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=id(e,a+1);return a}function aO(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function rO(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,c=1,u=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),c*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),u*=e.shape[p];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:i,outputShape:o}}function eO(e){try{return e.map(t=>Vd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function tO(e){return e.map(t=>fc(t))}var Ya={};Oe(Ya,{nonMaxSuppressionV3Impl:()=>zk,nonMaxSuppressionV4Impl:()=>Bk,nonMaxSuppressionV5Impl:()=>Wk,whereImpl:()=>Ek});var Yk={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Vl(ue(n,"float32"),-1))}}},sO={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ot(ue(n,"float32")),r=nn(me(pe(1),a));return Nt(xe(e,r))}}}},iO={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=nn(me(ot(ue(n,"float32")),1));return xe(e,a)}}}},oO={kernelName:Wr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=Se(s,i)),U(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=Se(s,i)),U(s,a.shape)}}}},lO={kernelName:Ts,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},uO={kernelName:Ns,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},cO={kernelName:Xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},pO={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,nn(me(pe(1),ot(ue(n,"float32")))))}}},dO={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=nn(J(pe(1),ot(ue(n,"float32"))));return xe(e,a)}}}},hO={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=J(ot(n),ot(a)),i=L(e,xe(a,s)),o=zt(n.shape,r);return o.length>0&&(i=Se(i,o)),U(i,n.shape)},b:()=>{let s=J(ot(n),ot(a)),i=Nt(L(e,xe(n,s))),o=zt(a.shape,r);return o.length>0&&(i=Se(i,o)),U(i,a.shape)}}}},mO={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,J(ot(ue(n,"float32")),1))}}},fO={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,me(pe(1),ot(ue(n,"float32"))))}}};function gO(e,t,n,a,r,s){let i=E(e,"dy","avgPool3dGrad"),o=E(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&F(Gt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:c},d={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=M.runKernel(pd,p,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var yO=P({avgPool3dGrad_:gO}),bO={kernelName:Yu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>yO(e,a,r,s,i,o)}}};function xO(e,t,n,a,r){let s=E(e,"dy","avgPoolGrad"),i=E(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},p={filterSize:n,strides:a,pad:r},d=M.runKernel(cd,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var vO=P({avgPoolGrad_:xO}),wO={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>vO(e,a,r,s,i)}}},kO={kernelName:Cs,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>ze(e,r,!1,!0),b:()=>ze(a,e,!0,!1)}:!s&&i?{a:()=>ze(e,r,!1,!1),b:()=>ze(e,a,!0,!1)}:s&&!i?{a:()=>ze(r,e,!1,!0),b:()=>ze(a,e,!1,!1)}:{a:()=>ze(r,e,!0,!0),b:()=>ze(e,a,!0,!0)}}},IO={kernelName:Ju,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Fc(e,a,r)}}},TO={kernelName:r0,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Se(e,o,!0)}}},NO={kernelName:_s,gradFunc:e=>({x:()=>e.clone()})},SO={kernelName:Es,gradFunc:e=>({x:()=>Ge(e)})},CO={kernelName:Vr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>Nn(da(es(a,r),Si(a,s)),e,Ge(e))}}},_O={kernelName:Qu,inputsToSave:["x"],gradFunc:Yk.gradFunc},EO={kernelName:Ro,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=la(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},FO={kernelName:Fs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Jr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>$y(a.shape,e,r,i,o,l),filter:()=>ib(a,e,r.shape,i,o,l)}}},AO={kernelName:As,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Ft(e,r,s,i,o,1,l),filter:()=>ib(e,a,r.shape,s,i,o,l)}}};function $O(e,t,n,a,r){let s=e;e.rank===4&&(s=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return M.runKernel(fd,o,l)}var DO=P({conv3DBackpropFilter_:$O}),RO={kernelName:Zu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;F(Jr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>ck(i.shape,e,o,r,s),filter:()=>DO(i,e,o.shape,r,s)}}},MO={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Nt(yh(ue(n,"float32"))),e)}}},PO={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(bh(ue(n,"float32")),e)}}},OO={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=wk([r],a.rank),l=rh(e,r,s,!i);return o!=null&&(l=Ve(l,o)),l}}}},LO={kernelName:Rs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;F(Jr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),F(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),F(Ga(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&F(Gt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Pk(l.shape,e,c,r,s,a,i),filter:()=>Mk(l,e,c.shape,r,s,a,i)}}},zO={kernelName:ec,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>M.runKernel(wd,s,n),filter:()=>M.runKernel(kd,i,n)}}},BO={kernelName:Lo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>M.runKernel(Id,a)}}},WO={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=L(dn(Nt(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,a)}}},VO={kernelName:Ps,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},UO={kernelName:Wo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},GO={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,dn(n))}}},HO={kernelName:Os,gradFunc:e=>({x:()=>Ge(e)})},jO={kernelName:Ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=xe(e,ue(a,"float32")),i=zt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=L(e,ue(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=U(Se(s,i),a.shape));let o=ot(a);return Nt(xe(s,ue(o,"float32")))}}}},qO={kernelName:zs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?pe(1):o,c=zt(s.shape,r.shape),u=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)u.push(r.shape[f]);u.push(1)}let p=me(r,s),d=L(e,l),h=fh(J(i,pe(a))),m=L(L(L(h,h),h),pe(-.5));return{x:()=>s.rank===1?U(L(L(e,Ha(U(h,[1,1,1,s.shape[0]]),u)),l),r.shape):U(L(L(e,h),l),r.shape),mean:()=>{let f=L(L(h,pe(-1)),d);return s.rank===1&&(f=Se(f,c)),U(f,s.shape)},variance:()=>{let f=L(L(m,p),d);return s.rank===1&&(f=Se(f,c)),U(f,s.shape)},scale:()=>{let f=L(p,h),g=L(e,f);return s.rank===1&&(g=Se(g,c)),U(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Se(f,c)),U(f,s.shape)}}}},KO={kernelName:Go,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=la(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,c=o.slice(0,i),u=c.length,p=o.slice(s,o.length).slice(1),d=p.length,h=Jk(0,u),m=Jk(u+1,u+1+d),f=Qk([c,[l],p]),g=U(e,f),y=U(r,[l]),b=Qk([[u],h,m]),x=Ve(g,b),v=nb(x,y,a.shape[i]),N=Vy(b);return v=Ve(v,N),v},indices:()=>r}}};function Jk(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Qk(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var XO={kernelName:Bs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ge(n),b:()=>Ge(a)}}},YO={kernelName:Ws,gradFunc:e=>({x:()=>ue(e,"float32")})},JO={kernelName:qo,gradFunc:e=>({x:()=>Ge(e)})},QO={kernelName:Ko,gradFunc:e=>({x:()=>Ge(e)})},ZO={kernelName:Xo,gradFunc:e=>({x:()=>Ge(e)})},eL={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=pa(a,0);return{x:()=>Nn(s,e,L(e,r))}}},tL={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,J(n,1))}}},nL={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ue(n,"float32"))}}},aL={kernelName:s0,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=dn(a);return me(e,L(Se(e,r,s),i))}}}};function rL(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return M.runKernel(_d,o,l)}var sL=P({localResponseNormalizationBackprop_:rL}),iL={kernelName:rc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>sL(a,r,e,s,i,o,l)}}};function Zk(e,t,n,a){return t.rank<n.rank&&(t=U(t,Ci(t.shape,a))),e.rank<n.rank&&(e=U(e,Ci(e.shape,a))),{x:()=>L(e,ue(Zr(n,t),e.dtype))}}var e1={kernelName:Gs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=la(r,s.shape),l=Zk(e,i,s,o);return{x:()=>l.x()}}},oL={kernelName:Hs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>L(e,ue(es(n,a),"float32")),b:()=>L(e,ue(ih(n,a),"float32"))}}};function lL(e,t,n,a,r,s,i){let o=E(e,"dy","maxPool3dGrad"),l=E(t,"input","maxPool3dGrad"),c=E(n,"output","maxPool3dGrad"),u=o,p=l,d=c,h=!1;l.rank===4&&(h=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=U(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),F(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&F(Gt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:p,output:d},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=M.runKernel(Fd,m,f);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var uL=P({maxPool3dGrad_:lL}),cL={kernelName:sc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>uL(e,a,r,s,i,o,l)}}};function pL(e,t,n,a,r,s,i){let o=E(e,"dy","maxPoolGrad"),l=E(t,"input","maxPoolGrad"),c=E(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Gt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return M.runKernel(Ed,u,p)}var dL=P({maxPoolGrad_:pL}),hL={kernelName:js,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>dL(e,a,r,s,i,o)}}},mL={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=la(r,a.shape),i=vk(a.shape,s)[1],o=Pt(i);return{x:()=>{let l=a.shape.slice();s.forEach(u=>{l[u]=1});let c=U(e,l);return xe(L(c,Ka(a.shape,"float32")),o)}}}},fL={kernelName:Ks,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=la(r,s.shape),l=Zk(e,i,s,o);return{x:()=>l.x()}}},gL={kernelName:Xs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>L(e,ue(Si(n,a),"float32")),b:()=>L(e,ue(pa(n,a),"float32"))}}},yL={kernelName:ic,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>We(e,s,a.shape)}}},bL={kernelName:el,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=zt(n.shape,r);return s.length>0?U(Se(e,s),n.shape):e},b:()=>{let s=L(e,Nt(Ml(xe(n,a)))),i=zt(a.shape,r);return i.length>0?U(Se(s,i),a.shape):s}}}},xL={kernelName:Ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=L(e,ue(a,"float32")),i=zt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=L(e,ue(n,"float32")),i=zt(a.shape,r);return i.length>0?U(Se(s,i),a.shape):s}}}},vL={kernelName:tl,gradFunc:e=>({x:()=>Nt(e)})},wL={kernelName:Js,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>xt(n.shape,"float32")}}},kL={kernelName:il,gradFunc:e=>({x:()=>Ge(e)})},IL={kernelName:ol,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ut(e,a).map(r=>()=>r)}},t1={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>We(e,s,a.shape)}}},TL={kernelName:Zs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=bt(s.shape,i.shape);return{a:()=>{let l=ue(i,"float32"),c=L(e,L(l,gr(s,me(l,pe(1))))),u=zt(s.shape,o);return u.length>0&&(c=Se(c,u)),U(c,s.shape)},b:()=>{let l=pa(s,0),c=Nn(l,Pn(s),Ge(s)),u=L(e,L(r,c)),p=zt(i.shape,o);return p.length>0&&(u=Se(u,p)),U(u,i.shape)}}}},NL={kernelName:ei,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=pa(n,0);return{x:()=>Nn(r,e,L(e,a)),alpha:()=>{let s=Nn(r,Ge(e),L(e,n)),i=zt(a.shape,e.shape);return i.length>0&&(s=Se(s,i)),U(s,a.shape)}}}},SL={kernelName:Ms,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=xe(e,ue(a,"float32")),i=zt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=L(e,ue(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=U(Se(s,i),a.shape));let o=ot(a);return Nt(xe(s,ue(o,"float32")))}}}},CL={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,Nt(ot(n)))}}},_L={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=L(Si(n,6),Vl(n));return{x:()=>L(e,ue(a,"float32"))}}},EL={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ue(Vl(n),"float32"))}}},FL={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},AL={kernelName:ni,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(Md,r,n)}}},$L={kernelName:lc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(Rd,r,n)}}},DL={kernelName:ri,gradFunc:(e,t,n)=>{let{dims:a}=n,r=la(a,e.shape);return{x:()=>Ln(e,r)}}},RL={kernelName:si,gradFunc:e=>({x:()=>Ge(e)})},ML={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Nt(xe(e,L(gr(n,1.5),2)))}}},PL={kernelName:dl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ue(Ge(n),"float32"),t:()=>L(e,ue(n,e.dtype)),e:()=>L(e,ue(Ec(n),e.dtype))}}},OL={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=pa(n,pe(0)),r=pe(qk),s=pe(Kk),i=L(e,s),o=L(L(e,r),dn(ue(n,"float32")));return Nn(a,i,o)}}}},LL={kernelName:li,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,me(pe(1),n)))}}},zL={kernelName:gl,gradFunc:e=>({x:()=>Ge(e)})},BL={kernelName:oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Cc(ue(n,"float32")),e)}}},WL={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(ah(ue(n,"float32")),e)}}},VL={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=U0(a,r,s),c=[];for(let u=0;u<e.rank;u++)c.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>ea(e,c)}}},UL={kernelName:pi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=L(e,a);return{logits:()=>me(i,L(Se(i,[r],s),a))}}},GL={kernelName:yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ca(n))}}},n1={kernelName:uc,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Nc(e,a,r)}}},a1={kernelName:bl,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Je(e,a)}}},HL={kernelName:ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,L(nn(ue(n,"float32")),2))}}},jL={kernelName:cc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(ue(n,"float32"),2))}}},qL={kernelName:di,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pe(2);return{a:()=>L(e,L(r,me(n,a))),b:()=>L(e,L(r,me(a,n)))}}},KL={kernelName:Gr,gradFunc:e=>({x:()=>Ge(e)})},XL={kernelName:hi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=Se(s,i)),U(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=Se(s,i)),U(Nt(s),a.shape)}}}},YL={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;la(s,a.shape).forEach(l=>{r[l]=1});let i=U(e,r),o=L(i,Ka(a.shape,"float32"));return{x:()=>o}}},JL={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ot(Cc(n)))}}},QL={kernelName:mi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(me(pe(1),ot(n)),e)}}},ZL={kernelName:Ur,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ge(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=J(s,We(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=J(s,We(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=J(s,We(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let c=0;c<r[3];++c)s=J(s,We(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],c*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},e3={kernelName:fi,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=Vy(r);return{x:()=>Ve(e,s)}}},t3={kernelName:kl,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>$t(e,r)}}},a3={kernelName:pc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>n3(e,n)}}};function n3(e,t){let n=qa(t,Ge(t)),a=Ni(e,n),r=es(t,pe(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=Mn(r,o+1);r=da(r,Ka(a.shape,"bool"));let i=Ge(a);return Nn(r,a,i)}var r3={kernelName:Il,gradFunc:e=>({x:()=>Ge(e)})},s3=[Yk,sO,iO,oO,lO,uO,cO,pO,dO,hO,mO,fO,bO,wO,kO,IO,TO,NO,SO,CO,_O,EO,AO,FO,RO,MO,PO,OO,LO,zO,SL,BO,WO,VO,UO,GO,jO,HO,qO,KO,XO,YO,JO,QO,ZO,eL,tL,nL,aL,iL,e1,e1,oL,cL,hL,mL,fL,gL,yL,bL,xL,vL,wL,kL,IL,t1,t1,TL,NL,CL,_L,EL,FL,AL,$L,DL,RL,ML,PL,OL,LL,zL,BL,WL,VL,UL,GL,n1,n1,a1,a1,HL,qL,jL,KL,XL,YL,JL,QL,ZL,e3,t3,a3,r3];for(let e of s3)i0(e);Y().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};Y().prototype.acos=function(){return this.throwIfDisposed(),vy(this)};Y().prototype.acosh=function(){return this.throwIfDisposed(),wy(this)};Y().prototype.add=function(e){return this.throwIfDisposed(),J(this,e)};Y().prototype.all=function(e,t){return this.throwIfDisposed(),Zd(this,e,t)};Y().prototype.any=function(e,t){return this.throwIfDisposed(),kc(this,e,t)};Y().prototype.argMax=function(e){return this.throwIfDisposed(),Ic(this,e)};Y().prototype.argMin=function(e){return this.throwIfDisposed(),ky(this,e)};Y().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),U(this,[])};Y().prototype.asType=function(e){return this.throwIfDisposed(),ue(this,e)};Y().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};Y().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};Y().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};Y().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),U(this,[e,t,n,a])};Y().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),U(this,[e,t,n,a,r])};Y().prototype.asin=function(){return this.throwIfDisposed(),Iy(this)};Y().prototype.asinh=function(){return this.throwIfDisposed(),Ty(this)};Y().prototype.atan=function(){return this.throwIfDisposed(),Ny(this)};Y().prototype.atan2=function(e){return this.throwIfDisposed(),Sy(this,e)};Y().prototype.atanh=function(){return this.throwIfDisposed(),Cy(this)};Y().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),Qn(this,e,t,n,a)};Y().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Nc(this,e,t)};Y().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),fr(this,e,t,n,a,r)};Y().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Sc(this,e)};Y().prototype.cast=function(e){return this.throwIfDisposed(),ue(this,e)};Y().prototype.ceil=function(){return this.throwIfDisposed(),Ay(this)};Y().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),qt(this,e,t)};Y().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ee&&(e=[e]),Je([this,...e],t)};Y().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),th(this,e,t,n,a,r,s)};Y().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),nh(this,e,t,n,a,r)};Y().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ft(this,e,t,n,a,r,s)};Y().prototype.cos=function(){return this.throwIfDisposed(),Cc(this)};Y().prototype.cosh=function(){return this.throwIfDisposed(),ah(this)};Y().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),rh(this,e,t,n)};Y().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Ry(this,e,t)};Y().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Qr(this,e,t,n,a,r,s)};Y().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),My(this,e,t,n,a,r)};Y().prototype.divNoNan=function(e){return this.throwIfDisposed(),Py(this,e)};Y().prototype.div=function(e){return this.throwIfDisposed(),xe(this,e)};Y().prototype.dot=function(e){return this.throwIfDisposed(),dk(this,e)};Y().prototype.elu=function(){return this.throwIfDisposed(),Rl(this)};Y().prototype.equal=function(e){return this.throwIfDisposed(),Zr(this,e)};Y().prototype.erf=function(){return this.throwIfDisposed(),Oy(this)};Y().prototype.exp=function(){return this.throwIfDisposed(),dn(this)};Y().prototype.expandDims=function(e){return this.throwIfDisposed(),Mn(this,e)};Y().prototype.expm1=function(){return this.throwIfDisposed(),Ly(this)};Y().prototype.fft=function(){return this.throwIfDisposed(),Rc(this)};Y().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};Y().prototype.floor=function(){return this.throwIfDisposed(),Ml(this)};Y().prototype.floorDiv=function(e){return this.throwIfDisposed(),Qd(this,e)};Y().prototype.gather=function(e,t){return this.throwIfDisposed(),Ni(this,e,t)};Y().prototype.greaterEqual=function(e){return this.throwIfDisposed(),es(this,e)};Y().prototype.greater=function(e){return this.throwIfDisposed(),pa(this,e)};Y().prototype.ifft=function(){return this.throwIfDisposed(),Wl(this)};Y().prototype.irfft=function(){return this.throwIfDisposed(),vh(this)};Y().prototype.isFinite=function(){return this.throwIfDisposed(),hk(this)};Y().prototype.isInf=function(){return this.throwIfDisposed(),mk(this)};Y().prototype.isNaN=function(){return this.throwIfDisposed(),fk(this)};Y().prototype.leakyRelu=function(e){return this.throwIfDisposed(),_c(this,e)};Y().prototype.lessEqual=function(e){return this.throwIfDisposed(),Si(this,e)};Y().prototype.less=function(e){return this.throwIfDisposed(),ih(this,e)};Y().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),By(this,e,t,n,a)};Y().prototype.logSigmoid=function(){return this.throwIfDisposed(),bk(this)};Y().prototype.logSoftmax=function(e){return this.throwIfDisposed(),uh(this,e)};Y().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Uy(this,e,t)};Y().prototype.log=function(){return this.throwIfDisposed(),Pn(this)};Y().prototype.log1p=function(){return this.throwIfDisposed(),oh(this)};Y().prototype.logicalAnd=function(e){return this.throwIfDisposed(),da(this,e)};Y().prototype.logicalNot=function(){return this.throwIfDisposed(),Ec(this)};Y().prototype.logicalOr=function(e){return this.throwIfDisposed(),ch(this,e)};Y().prototype.logicalXor=function(e){return this.throwIfDisposed(),kk(this,e)};Y().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),ze(this,e,t,n)};Y().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),At(this,e,t,n,a)};Y().prototype.max=function(e,t){return this.throwIfDisposed(),Zn(this,e,t)};Y().prototype.maximum=function(e){return this.throwIfDisposed(),qa(this,e)};Y().prototype.mean=function(e,t){return this.throwIfDisposed(),St(this,e,t)};Y().prototype.min=function(e,t){return this.throwIfDisposed(),Ol(this,e,t)};Y().prototype.minimum=function(e){return this.throwIfDisposed(),Ll(this,e)};Y().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Hy(this,e,t)};Y().prototype.mod=function(e){return this.throwIfDisposed(),jy(this,e)};Y().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};Y().prototype.neg=function(){return this.throwIfDisposed(),Nt(this)};Y().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Th(this,e,t,n)};Y().prototype.notEqual=function(e){return this.throwIfDisposed(),_i(this,e)};Y().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Fl(this,e,t,n)};Y().prototype.onesLike=function(){return this.throwIfDisposed(),On(this)};Y().prototype.pad=function(e,t){return this.throwIfDisposed(),ea(this,e,t)};Y().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),Nk(this,e,t,n,a,r)};Y().prototype.pow=function(e){return this.throwIfDisposed(),gr(this,e)};Y().prototype.prelu=function(e){return this.throwIfDisposed(),Ac(this,e)};Y().prototype.prod=function(e,t){return this.throwIfDisposed(),dh(this,e,t)};Y().prototype.reciprocal=function(){return this.throwIfDisposed(),Xy(this)};Y().prototype.relu=function(){return this.throwIfDisposed(),qe(this)};Y().prototype.relu6=function(){return this.throwIfDisposed(),mh(this)};Y().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};Y().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};Y().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Uk(this,e,t,n)};Y().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Gk(this,e,t,n)};Y().prototype.reverse=function(e){return this.throwIfDisposed(),Ln(this,e)};Y().prototype.rfft=function(){return this.throwIfDisposed(),Mc(this)};Y().prototype.round=function(){return this.throwIfDisposed(),Yy(this)};Y().prototype.rsqrt=function(){return this.throwIfDisposed(),fh(this)};Y().prototype.selu=function(){return this.throwIfDisposed(),gh(this)};Y().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ei(this,e,t,n,a,r,s)};Y().prototype.sigmoid=function(){return this.throwIfDisposed(),ca(this)};Y().prototype.sign=function(){return this.throwIfDisposed(),Jy(this)};Y().prototype.sin=function(){return this.throwIfDisposed(),yh(this)};Y().prototype.sinh=function(){return this.throwIfDisposed(),bh(this)};Y().prototype.slice=function(e,t){return this.throwIfDisposed(),We(this,e,t)};Y().prototype.softmax=function(e){return this.throwIfDisposed(),Ta(this,e)};Y().prototype.softplus=function(){return this.throwIfDisposed(),Pl(this)};Y().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Fc(this,e,t)};Y().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};Y().prototype.sqrt=function(){return this.throwIfDisposed(),nn(this)};Y().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Y().prototype.squaredDifference=function(e){return this.throwIfDisposed(),wh(this,e)};Y().prototype.squeeze=function(e){return this.throwIfDisposed(),ts(this,e)};Y().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ee?[this,e]:[this,...e];return $t(n,t)};Y().prototype.step=function(e){return this.throwIfDisposed(),Vl(this,e)};Y().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Zy(this,e,t,n,a,r,s,i,o)};Y().prototype.sub=function(e){return this.throwIfDisposed(),me(this,e)};Y().prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};Y().prototype.tan=function(){return this.throwIfDisposed(),eb(this)};Y().prototype.tanh=function(){return this.throwIfDisposed(),Dl(this)};Y().prototype.tile=function(e){return this.throwIfDisposed(),Ha(this,e)};Y().prototype.toBool=function(){return this.throwIfDisposed(),ue(this,"bool")};Y().prototype.toFloat=function(){return this.throwIfDisposed(),ue(this,"float32")};Y().prototype.toInt=function(){return this.throwIfDisposed(),ue(this,"int32")};Y().prototype.topk=function(e,t){return this.throwIfDisposed(),tb(this,e,t)};Y().prototype.transpose=function(e){return this.throwIfDisposed(),Ve(this,e)};Y().prototype.unique=function(e){return this.throwIfDisposed(),Ih(this,e)};Y().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),nb(this,e,t)};Y().prototype.unstack=function(e){return this.throwIfDisposed(),ut(this,e)};Y().prototype.where=function(e,t){return this.throwIfDisposed(),Nn(e,this,t)};Y().prototype.zerosLike=function(){return this.throwIfDisposed(),Ge(this)};var r1={};Oe(r1,{maxNorm:()=>i3,minMaxNorm:()=>u3,nonNeg:()=>l3,unitNorm:()=>o3});var ub;function Bt(){return ub==null&&(ub=J0().epsilon()),ub}function Ca(){return"channelsLast"}var xr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xr.prototype)}},_a=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,_a.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},$e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$e.prototype)}},s1=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,s1.prototype)}};function $i(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Ja(e,t){if(!e)throw new s1(t)}function i1(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Cn(e){return e.length===1?e[0]:e}function ft(e){return Array.isArray(e)?e:[e]}function vr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Di(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ha={};function cb(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function pb(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>pb(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:pb(a))}}}function Oc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ha)i=ha[s];else if(i=t[s],i==null)throw new z(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new z(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ha?[o,l]=ha.className:i in t&&([o,l]=t[i]),o==null)throw new z(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(ha))c[h]=ha[h];for(let h of Object.keys(n))c[h]=n[h];let u=s.config;u.customObjects=c;let p=Object.assign({},ha);for(let h of Object.keys(n))ha[h]=n[h];pb(s.config);let d=l(o,s.config,n,r);return ha=Object.assign({},p),d}else{let c=Object.assign({},ha);for(let p of Object.keys(n))ha[p]=n[p];let u=new o(s.config);return ha=Object.assign({},c),u}}}function c3(e,t){return e<t?-1:e>t?1:0}function Ph(e,t){return-1*c3(e,t)}function as(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function p3(e){if(e==null)throw new z(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ri(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new z(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function db(e,t,n=0,a=Infinity){return Ja(n>=0),Ja(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Kt(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Kt(n,`element ${a+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${o1(e)}.`)}function o1(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>o1(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function d3(e,t){let n=w.now(),a;return(...r)=>{let s=w.now();return s-n<t||(n=s,a=e(...r)),a}}function l1(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function hb(e,t){return D(()=>nn(Se(L(e,e),t,!0)))}var Lc=class extends re.Serializable{getConfig(){return{}}},mb=class extends Lc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=hb(e,this.axis),n=qt(t,0,this.maxValue);return L(e,xe(n,J(Bt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};mb.className="MaxNorm";re.registerClass(mb);var fb=class extends Lc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>xe(e,J(Bt(),hb(e,this.axis))))}getConfig(){return{axis:this.axis}}};fb.className="UnitNorm";re.registerClass(fb);var gb=class extends Lc{apply(e){return qe(e)}};gb.className="NonNeg";re.registerClass(gb);var yb=class extends Lc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=hb(e,this.axis),n=J(L(this.rate,qt(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,xe(n,J(Bt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};yb.className="MinMaxNorm";re.registerClass(yb);var u1={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Wt(e){return cb(e)}function c1(e,t={}){return Oc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in u1?u1[e]:e,config:{}};return c1(t)}else return e instanceof Lc?e:c1(e)}function i3(e){return new mb(e)}function o3(e){return new fb(e)}function l3(){return new gb}function u3(e){return new yb(e)}var p1={};Oe(p1,{constant:()=>f3,glorotNormal:()=>k3,glorotUniform:()=>w3,heNormal:()=>I3,heUniform:()=>T3,identity:()=>x3,leCunNormal:()=>N3,leCunUniform:()=>S3,ones:()=>m3,orthogonal:()=>C3,randomNormal:()=>y3,randomUniform:()=>g3,truncatedNormal:()=>b3,varianceScaling:()=>v3,zeros:()=>h3});var _3=["channelsFirst","channelsLast"],E3=["nearest","bilinear"],F3=["valid","same","causal"],A3=["max","avg"],$3=["sum","mul","concat","ave"],Gl=new Map;function Dt(e){Ri(_3,"DataFormat",e)}function D3(e){Ri(E3,"InterpolationFormat",e)}function ta(e){Ri(F3,"PaddingMode",e)}function d1(e){Ri(A3,"PoolMode",e)}var zc=[],h1="/";function Mi(e,t){zc.push(e);try{let n=t();return zc.pop(),n}catch(n){throw zc.pop(),n}}function R3(){return zc.length===0?"":zc.join(h1)+h1}function f1(e){if(!m1(e))throw new Error("Not a valid tensor name: '"+e+"'");return R3()+e}function g1(e){if(!m1(e))throw new Error("Not a valid tensor name: '"+e+"'");Gl.has(e)||Gl.set(e,0);let t=Gl.get(e);if(Gl.set(e,Gl.get(e)+1),t>0){let n=`${e}_${t}`;return Gl.set(n,1),n}else return e}var M3=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function m1(e){return!!e.match(M3)}function P3(e){return e===parseInt(e.toString(),10)}function rs(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function y1(e){return e=Array.isArray(e)?new Float32Array(e):e,Qe(e)}function Hl(e){return Ol(y1(e)).dataSync()[0]}function ss(e){return Zn(y1(e)).dataSync()[0]}function Ea(e,t){if(t<e)throw new z(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Bc(e,t){return e.asType(t)}function Wc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function O3(e,t){return D(()=>{if(e.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Wc(e,1);return bb(n,[1,t,1])})}function L3(e){let t=[rs(e.shape)];return e.reshape(t)}function z3(e){if(e.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],rs(e.shape,1)];return e.reshape(t)}function Pi(e,t,n){return D(()=>{switch(e.rank){case 1:return xh(e,t,n);case 2:return Qy(e,[t,0],[n,e.shape[1]]);case 3:return Bl(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Dc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return We(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return We(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function xb(e,t,n){return D(()=>{switch(e.rank){case 1:return xh(e,t,n);case 2:return Qy(e,[0,t],[e.shape[0],n]);case 3:return Bl(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Dc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Oh(e,t,n,a){return D(()=>{switch(e.rank){case 1:return xh(e,t,n);case 2:switch(a){case 1:return Pi(e,t,n);case 2:return xb(e,t,n);default:throw new z(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Pi(e,t,n);case 2:return Bl(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return xb(e,t,n);default:throw new z(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Pi(e,t,n);case 2:return Dc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Dc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return xb(e,t,n);default:throw new z(`The axis is not within the rank of the tensor ${a}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function vb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Je(e,t)}function b1(e,t){switch(e.rank){case 1:return ik([e,t]);case 2:return ok([e,t],0);case 3:return lk([e,t],0);case 4:return uk([e,t],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function bb(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new z(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ha(e,t)}function Lh(e,t=0,n=1,a,r){return Sk(e,t,n,a,r)}function Qa(e,t,n,a){if(e.rank<2||t.rank<2)throw new $e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new $e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return ns.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?wb(e.rank,a,Ca()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let p=[...r,...c],d=!1,h=!1;return ns.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:a?wb(e.rank,a,Ca()):null,activation:n}).reshape(p)}}function x1(e,t,n){return D(()=>(Array.isArray(t)?t=Qe(t,"int32"):t=t.toInt(),Ni(e,t,n)))}function Vc(e){return L(e,e)}function wb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new z(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new z(`Unsupported input rank by biasAdd: ${t.rank}`)}function Za(e,t,n){return D(()=>(n==null&&(n=Ca()),Dt(n),e.add(wb(e.rank,t,n))))}function B3(e,t=1){if(t!==1)throw new $e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Rl(e)}function W3(e){return D(()=>xe(e,Lt(e).add(1)))}function v1(e,t,n,a){return D(()=>Dk(e,t,n,a))}function V3(e){return D(()=>{let t=J(.5,L(.2,e));return qt(t,0,1)})}function Uc(e,t,n=!1){return n?e():t()}var U3=["fanIn","fanOut","fanAvg"],G3=["normal","uniform","truncatedNormal"];function H3(e){Ri(U3,"FanMode",e)}function j3(e){Ri(G3,"Distribution",e)}var ma=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},kb=class extends ma{apply(e,t){return xt(e,t)}};kb.className="Zeros";re.registerClass(kb);var zh=class extends ma{apply(e,t){return Ka(e,t)}};zh.className="Ones";re.registerClass(zh);var Ib=class extends ma{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return D(()=>L(pe(this.value),Ka(e,t)))}getConfig(){return{value:this.value}}};Ib.className="Constant";re.registerClass(Ib);var Tb=class extends ma{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return zl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Tb.className="RandomUniform";re.registerClass(Tb);var Nb=class extends ma{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`randomNormal does not support dType ${t}.`);return Lh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Nb.className="RandomNormal";re.registerClass(Nb);var Sb=class extends ma{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`truncatedNormal does not support dType ${t}.`);return kh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Sb.className="TruncatedNormal";re.registerClass(Sb);var Cb=class extends ma{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return D(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,zy(e[0]))})}getConfig(){return{gain:this.gain}}};Cb.className="Identity";re.registerClass(Cb);function q3(e,t="channelsLast"){let n,a;if(Dt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=rs(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=rs(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=rs(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var _n=class extends ma{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,H3(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,j3(this.distribution),this.seed=e.seed}apply(e,t){let n=q3(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`${this.getClassName()} does not support dType ${t}.`);return kh(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return zl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};_n.className="VarianceScaling";re.registerClass(_n);var Bh=class extends _n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Bh.className="GlorotUniform";re.registerClass(Bh);var Wh=class extends _n{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Wh.className="GlorotNormal";re.registerClass(Wh);var Vh=class extends _n{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Vh.className="HeNormal";re.registerClass(Vh);var Uh=class extends _n{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Uh.className="HeUniform";re.registerClass(Uh);var Gh=class extends _n{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Gh.className="LeCunNormal";re.registerClass(Gh);var Hh=class extends _n{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return _n.className}};Hh.className="LeCunNormal";re.registerClass(Hh);var _b=class extends ma{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new $e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return D(()=>{if(e.length<2)throw new $e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Lh(n,0,1,"float32"),r=jk.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};_b.className="Orthogonal";re.registerClass(_b);var w1={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function k1(e,t={}){return Oc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return cb(e)}function vt(e){if(typeof e=="string"){let t=e in w1?w1[e]:e;if(t==="GlorotNormal")return new Wh;if(t==="GlorotUniform")return new Bh;if(t==="HeNormal")return new Vh;if(t==="HeUniform")return new Uh;if(t==="LeCunNormal")return new Gh;if(t==="LeCunUniform")return new Hh;{let n={};return n.className=t,n.config={},k1(n)}}else return e instanceof ma?e:k1(e)}function h3(){return new kb}function m3(){return new zh}function f3(e){return new Ib(e)}function g3(e){return new Tb(e)}function y3(e){return new Nb(e)}function b3(e){return new Sb(e)}function x3(e){return new Cb(e)}function v3(e){return new _n(e)}function w3(e){return new Bh(e)}function k3(e){return new Wh(e)}function I3(e){return new Vh(e)}function T3(e){return new Uh(e)}function N3(e){return new Gh(e)}function S3(e){return new Hh(e)}function C3(e){return new _b(e)}var I1={};Oe(I1,{Layer:()=>je,RNN:()=>er,RNNCell:()=>Gc,activation:()=>uz,add:()=>bz,alphaDropout:()=>tB,average:()=>xz,averagePooling1d:()=>Eb,averagePooling2d:()=>Fb,averagePooling3d:()=>Ab,avgPool1d:()=>_z,avgPool2d:()=>Fz,avgPool3d:()=>$z,avgPooling1d:()=>Ez,avgPooling2d:()=>Az,avgPooling3d:()=>Dz,batchNormalization:()=>Nz,bidirectional:()=>qz,concatenate:()=>vz,conv1d:()=>tz,conv2d:()=>nz,conv2dTranspose:()=>az,conv3d:()=>rz,convLstm2d:()=>Uz,convLstm2dCell:()=>Gz,cropping2D:()=>iz,dense:()=>cz,depthwiseConv2d:()=>lz,dot:()=>Tz,dropout:()=>pz,elu:()=>X3,embedding:()=>yz,flatten:()=>hz,gaussianDropout:()=>eB,gaussianNoise:()=>Zz,globalAveragePooling1d:()=>Rz,globalAveragePooling2d:()=>Mz,globalMaxPool1d:()=>Xz,globalMaxPool2d:()=>Yz,globalMaxPooling1d:()=>N1,globalMaxPooling2d:()=>S1,gru:()=>Oz,gruCell:()=>Lz,input:()=>T1,inputLayer:()=>K3,layerNormalization:()=>Sz,leakyReLU:()=>J3,lstm:()=>zz,lstmCell:()=>Bz,masking:()=>nB,maxPool1d:()=>Jz,maxPool2d:()=>Qz,maxPooling1d:()=>C1,maxPooling2d:()=>_1,maxPooling3d:()=>Pz,maximum:()=>wz,minimum:()=>kz,multiply:()=>Iz,permute:()=>gz,prelu:()=>Q3,reLU:()=>Y3,repeatVector:()=>mz,reshape:()=>fz,rnn:()=>Hz,separableConv2d:()=>sz,simpleRNN:()=>Wz,simpleRNNCell:()=>Vz,softmax:()=>Z3,spatialDropout1d:()=>dz,stackedRNNCells:()=>jz,thresholdedReLU:()=>ez,timeDistributed:()=>Kz,upSampling2d:()=>oz,zeroPadding2d:()=>Cz});var aB=0;function E1(){return aB++}var jh={};function qh(e=""){return e in jh||(jh[e]=0),jh[e]+=1,e+jh[e].toString()}function $b(e){return Array.isArray(e)&&Array.isArray(e[0])}function Kh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Me(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new z(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ct(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new z(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Xh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var F1="Variable",A1=class{constructor(e,t="float32",n=F1,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=E1(),n=n==null?F1:n,this.originalName=f1(n),this.name=g1(this.originalName),this.trainable_=a,this.constraint=r,this.val=_k(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),rB(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function rB(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Db(e){return e.map(t=>t.read())}function Rb(e){e.forEach(t=>{t[0].write(t[1])})}var Xt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Fa=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=E1(),s!=null&&(this.originalName=f1(s),this.name=g1(this.originalName)),this.rank=t.length}},sB=0,Yh=class{constructor(e,t){this.callArgs=t,this.id=sB++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},iB=0,je=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=iB++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=vr(n)+"_"+qh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new _a(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Cn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Cn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new xr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new xr(`Layer ${this.name} is not connected, no input to return.`);return Cn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new xr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new xr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Cn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ft(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ft(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new z(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),c=r.axes[o],u=l>=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ft(e),a=!0;for(let s of n)if(!(s instanceof Fa)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Fa){r=!1;break}if(a===r)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return Mi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ft(e))s.push(i.shape);this.build(Cn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=ft(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Cn(o),this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=oB(e),i=this.computeOutputShape(s),o,l=lB(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Fa(l,c,this,ft(e),t,this.name,u)):o=new Fa(l,i,this,ft(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new xr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new xr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new _a(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Xh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Db(e?this.trainableWeights:this.weights)}setWeights(e){D(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Db(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!w.arraysEqual(s.shape,o.shape))throw new z(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Rb(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new z(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=vt("zeros"));let o=a.apply(t,n),l=new A1(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ft(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=ft(e);t=ft(t),n=ft(n),a=ft(a),r=Kh(r),s=Kh(s);let l=[],c=[],u=[];for(let p of o)l.push(p.sourceLayer),c.push(p.nodeIndex),u.push(p.tensorIndex);new Yh({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function oB(e){e=ft(e);let t=[];for(let n of e)t.push(n.shape);return Cn(t)}function lB(e){return"float32"}function $1(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],c=$1(i,o,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var jl=class extends je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:qh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Fa(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Yh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};jl.className="InputLayer";re.registerClass(jl);function D1(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new jl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function is(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ae(a)}}function R1(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var M1;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(M1||(M1={}));var uB=125,ql=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},P1=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},cB=class extends ql{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=D(()=>J(this.totals[a],L(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:D(()=>{let a=L(xe(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),jt(t[n])}))}},O1=class extends ql{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},L1=class extends ql{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=uB),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=d3(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await is(n),a.push(this.yield(e,t,n))),a.push(Mh()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await is(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await is(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Mh()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await is(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await is(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Mh()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await is(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await is(e),await this.trainEnd(e))}};function z1(e,t){return e==null&&(e={}),e instanceof ql?[e]:Array.isArray(e)&&e[0]instanceof ql?e:ft(e).map(n=>new L1(n,t))}var fa=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),fa.checkForDuplicate(t),fa.constructors[e]==null&&(fa.constructors[e]=[]),fa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in fa.constructors)fa.constructors[+t].forEach(n=>{if(n===e)throw new z("Duplicate callback constructor.")})}static clear(){fa.constructors={}}static createCallbacks(e){let t=[];for(let n in fa.constructors){let a=+n;e>=a&&t.push(...fa.constructors[a])}return t.map(n=>new n)}};fa.constructors={};function B1(e,t,n,a,r,s,i,o,l){let c=new O1,u=[new cB,...fa.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let p=new P1(u);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:c}}function Aa(e,t={},n=!1){return Oc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Jh(e,t){return D(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Se(Vc(e),t,!0),a=Sn(n.shape,Bt()),r=nn(qa(n,a));return xe(e,r)})}function Oi(e,t){return D(()=>St(Vc(me(t,e)),-1))}function Qh(e,t){return D(()=>St(Lt(me(t,e)),-1))}function Kl(e,t){return D(()=>{let n=me(e,t),a=qt(Lt(e),Bt(),Number.MAX_VALUE),r=Lt(xe(n,a));return L(100,St(r,-1))})}function pB(e,t){return D(()=>{let n=qt(t,Bt(),Number.MAX_VALUE),a=Pn(J(1,n)),r=qt(e,Bt(),Number.MAX_VALUE),s=Pn(J(1,r));return St(Vc(me(a,s)),-1)})}function dB(e,t){return D(()=>{let n=qa(0,me(1,L(e,t)));return St(Vc(n),-1)})}function hB(e,t){return D(()=>{let n=qa(0,me(1,L(e,t)));return St(n,-1)})}function mB(e,t){return D(()=>{let n=Se(L(e,t),-1),a=Zn(L(me(1,e),t),-1);return qa(0,J(1,me(a,n)))})}function fB(e,t){return D(()=>{let n=Math.log(2),a=me(t,e),r=me(J(a,Pl(L(-2,a))),n);return St(r,-1)})}function Hc(e,t,n=!1){return D(()=>{if(n)t=Ta(t);else{let a=Se(t,t.shape.length-1,!0);t=xe(t,a)}return t=qt(t,Bt(),1-Bt()),Nt(Se(L(e.toFloat(),Pn(t)),t.shape.length-1))})}function Zh(e,t,n=!1){return D(()=>{let a=Ml(L3(e)).toInt();t=qt(t,Bt(),1-Bt());let r=t.shape,s=Fl(a,r[r.length-1]).reshape(r);return Hc(s,t,n)})}function gB(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return D(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function em(e,t){return D(()=>{let n;return n=qt(t,Bt(),1-Bt()),n=Pn(xe(n,me(1,n))),St(gB(e,n),-1)})}function yB(e,t){return D(()=>{let n=qt(e,Bt(),1),a=qt(t,Bt(),1);return Se(L(e,Pn(xe(n,a))),-1)})}function bB(e,t){return D(()=>{let n=Pn(J(Bt(),t));return St(me(t,L(e,n)),-1)})}function Mb(e,t){return D(()=>{let n=Jh(e,-1),a=Jh(t,-1),r=L(n,a);return Nt(Se(r,-1))})}var tm={meanSquaredError:Oi,meanAbsoluteError:Qh,meanAbsolutePercentageError:Kl,meanSquaredLogarithmicError:pB,squaredHinge:dB,hinge:hB,categoricalHinge:mB,logcosh:fB,categoricalCrossentropy:Hc,sparseCategoricalCrossentropy:Zh,binaryCrossentropy:em,kullbackLeiblerDivergence:yB,poisson:bB,cosineProximity:Mb};function Pb(e){if(typeof e=="string"){if(e in tm)return tm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(t)}else return e}function Ob(e,t){return D(()=>{let n=L(.5,On(t)),a=Bc(pa(t,n),e.dtype);return St(Zr(e,a),-1)})}function Lb(e,t){return D(()=>Bc(Zr(Ic(e,-1),Ic(t,-1)),"float32"))}function W1(e,t){return D(()=>da(e.equal(1),t.equal(1)).sum().cast("float32"))}function xB(e,t){return D(()=>da(e.equal(1),t.equal(0)).sum().cast("float32"))}function vB(e,t){return D(()=>da(e.equal(0),t.equal(1)).sum().cast("float32"))}function V1(e,t){return D(()=>{let n=W1(e,t),a=vB(e,t),r=n.add(a);return Nn(pa(r,0),n.div(r),0).cast("float32")})}function wB(e,t){return D(()=>{let n=W1(e,t),a=xB(e,t),r=n.add(a);return Nn(pa(r,0),n.div(r),0).cast("float32")})}function U1(e,t){return em(e,t)}function G1(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Zr(e,t).asType("float32")}var kB=Oi,IB=Oi,TB=Qh,NB=Qh,SB=Kl,CB=Kl,zb=Hc,_B=Mb,H1=Zh,nm={binaryAccuracy:Ob,categoricalAccuracy:Lb,precision:V1,categoricalCrossentropy:zb,sparseCategoricalCrossentropy:H1,mse:kB,MSE:IB,mae:TB,MAE:NB,mape:SB,MAPE:CB,cosine:_B};function EB(e){if(typeof e=="string"&&e in nm)return nm[e];if(typeof e!="string"&&e!=null)return e;throw new z(`Unknown metric ${e}`)}function am(e){if(Ja(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(tm))if(tm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(nm))if(nm[n]===e){t=n;break}return t!==void 0?t:e.name}}function FB(e){let t={Adagrad:()=>Ai.adagrad(.01),Adadelta:()=>Ai.adadelta(1,.95,Bt()),Adam:()=>Ai.adam(.001,.9,.999,Bt()),Adamax:()=>Ai.adamax(.002,.9,.999,Bt(),0),RMSProp:()=>Ai.rmsprop(.001,.9,0,Bt()),SGD:()=>Ai.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new z(`Unknown Optimizer ${e}`)}var j1=1*1024*1024;function q1(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Bb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>j1&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${j1}.`)}}function Bb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Bb(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Bb(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function MB(e,t,n,a=console.log){let r=$B(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!r){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}a("_".repeat(t)),rm(s,n,a),a("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)r?DB(o[u],n,a):RB(o[u],n,i,a),a((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=AB(e),c=Xh(e.nonTrainableWeights);a(`Total params: ${l+c}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${c}`),a("_".repeat(t))}function AB(e){let t;return e.collectedTrainableWeights!=null?t=Xh(e.collectedTrainableWeights):t=Xh(e.trainableWeights),t}function $B(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function rm(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function DB(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];rm(i,t,n)}function RB(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let p=0;p<u.inboundLayers.length;++p){let d=u.inboundLayers[p].name,h=u.nodeIndices[p],m=u.tensorIndices[p];s.push(`${d}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],c=[`${i} (${o})`,r,e.countParams().toString(),l];rm(c,t,a);for(let u=1;u<s.length;++u)rm(["","","",s[u]],t,a)}function K1(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function jc(e,t){if(e===null)return null;if(typeof e=="string")return Di(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];K1(t,r,s)?n.push(s):n.push(jc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Di(a);n[s]=jc(r,s)}}return n}}function Wb(e,t){if(e==null)return null;if(typeof e=="string")return vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];K1(t,r,s)?n.push(s):n.push(Wb(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=vr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=Wb(r,a)}return n}}var sm="3.2.0";function PB(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ue(t,e.dtype)}catch(n){throw new z(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Li=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Li)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=PB(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new z(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Fa){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Fa){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ae(this.id2Mask)}},Vb={},X1={};function qc(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),p,d;if(Vb[u]==null){let m=OB(i,t);p=m.sorted,d=m.recipientCounts,Vb[u]=p,X1[u]=d}p=Vb[u],d={},r||Object.assign(d,X1[u]);let h=new Li(t);for(let m=0;m<p.length;++m){if(a!=null){let $=Yd().numTensors;$>a.maxNumTensors&&(a.maxNumTensors=$),$<a.minNumTensors&&(a.minNumTensors=$)}let f=p[m],g=f.sourceLayer;if(g instanceof jl)continue;let y=[],b=[],x=[],v=!1;for(let $ of f.inputs){let R=h.getValue($),B=h.getMask($);y.push(R),b.push(B),B!=null&&(v=!0),r||(d[$.name]--,d[$.name]===0&&!t.hasKey($)&&o.indexOf($.name)===-1&&!R.isDisposed&&$.sourceLayer.stateful!==!0&&x.push(R))}v&&(n=n||{},n.mask=b[0]);let N=ft(g.apply(y,n)),T=null;g.supportsMasking&&(T=g.computeMask(y,b));let S=LB(f),A=Array.isArray(S)?S:[S];for(let $=0;$<A.length;++$){h.hasKey(A[$])||h.add(A[$],N[$],Array.isArray(T)?T[0]:T);let R=o.indexOf(A[$].name);R!==-1&&(l[R]=N[$])}r||Ae(x)}return h.disposeMasks(),s?l:l[0]}function OB(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=Y1(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=Y1(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(c=>a[l].add(c))}}return{sorted:n,recipientCounts:zB(a)}}function zB(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Y1(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:a,recipientMap:r}}function LB(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var tr=class extends je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=qh(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],as(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);as(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Ja(x===0,"input layer has >1 nodes"),Ja(v===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof jl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,v,N,T)=>{(v==null||N==null||T==null)&&(v=y.sourceLayer,N=y.nodeIndex,T=y.tensorIndex);let S=v.inboundNodes[N];if(x.indexOf(S)!==-1)throw new _a(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(b.indexOf(S)!==-1)return;this.containerNodes.add(tr.nodeKey(v,N)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(S)===-1&&x.push(S);let A=S.inboundLayers.length;for(let $=0;$<A;$++){let R=S.inputTensors[$],B=S.inboundLayers[$],V=S.nodeIndices[$],W=S.tensorIndices[$];o(R,b,x,B,V,W)}for(b.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);i.push(S)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let v=0;v<y.inboundLayers.length;v++){let N=y.inboundLayers[v],T=y.nodeIndices[v],S=N.inboundNodes[T],A=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(b+1,A),n[S.id]=S}}let p={};for(let y in t){let b=t[y];b in p||(p[b]=[]),p[b].push(n[y])}let d={};for(let y in a){let b=a[y];b in d||(d[b]=[]),d[b].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(Ph);this.layers=[];for(let y of h){let b=d[y];b.sort((x,v)=>{let N=s[x.id],T=s[v.id];return N<T?-1:N>T?1:0});for(let x of b)x instanceof tr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Ph);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of p[y]){let x=b.outboundLayer;if(x!=null){for(let v of b.inputTensors)if(m.indexOf(v)===-1)throw new _a(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of b.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new _a(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Yh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new z(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new z(`${s.length} of ${a} weights are not set: ${s}`)}Rb(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${sm}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Wb(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return D(()=>{e=ft(e);let n=new Li;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return qc(this.outputs,n,t)})}computeMask(e,t){return D(()=>{e=ft(e);let n;return t==null?n=$i(null,e.length):n=ft(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Kh(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],c=o.name+"_0_0";n[c]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Ph);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];u.push(x)}let p=c.computeOutputShape(Cn(u)),d=Kh(p),h=c.inboundNodes.indexOf(l);for(let m=0;m<d.length;m++){let f=`${c.name}_${h}_${m}`;n[f]=d[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${c}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];Ja(o in n),r.push(n[o])}return Cn(r)}runInternalGraph(e,t){t==null&&(t=$i(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],c=e[o],u=t[o];n[l.id]=[c,u]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Ph);for(let o of a){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,p=c.inputTensors,d=c.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,g,y,b;if(c.callArgs!=null&&(m=c.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=ft(u.call(x,m)),b=ft(u.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=ft(u.call(f,m)),b=ft(u.computeMask(f,g));if(u.activityRegularizer)throw new $e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<d.length;++x){let v=d[x],N=y[x],T=b[x];n[v.id]=[N,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){Ja(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,c]=n[o.id];i.push(l.shape),r.push(l),s.push(c)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof tr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=tr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new z(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new z("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new z(`No such layer: ${e}`)}calculateLosses(){return D(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=tr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let p=s.inboundNodes[u],d=tr.nodeKey(s,u),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let g=p.inboundLayers[f],y=p.nodeIndices[f],b=p.tensorIndices[f],x=tr.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,b,h])}l.push(m)}}}let c={};c.name=s.name,c.className=i,c.config=o,c.inboundNodes=l,n.push(c)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=tr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[s];a.push([i.name,c,u])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=tr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[s];r.push([i.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let v=x[0],N=x[1],T=x[2];if(b=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let S=r[v];if(S.inboundNodes.length<=N){i(f,g);return}let A=S.inboundNodes[N];y.push(A.outputTensors[T])}y.length>0&&f.apply(Cn(y),b)}function l(f){let g=f.name,y=Aa(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!p3(s);)for(let f of u){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let p=[],d=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];Ja(g in r);let x=r[g].inboundNodes[y].outputTensors;p.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];Ja(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}return new e({inputs:p,outputs:d,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){D(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function BB(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function J1(e,t){return BB(e,t,"classWeight")}async function Q1(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=D(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ae(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Qe(i,"float32")}else return null}function WB(e,t){return L(e,t)}var VB=32;function eI(e,t){let n,a,r=t;n=r.xs,a=r.ys,w.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=Z1("input",e.inputNames,n),i=Z1("output",e.outputNames,a),o=s[0].shape[0];w.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)w.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)w.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function Z1(e,t,n){if(n instanceof Ee)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new z(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function UB(e){if(e.length===3)throw new $e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function HB(e,t,n){let a=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(tI(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=UB(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=z1(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=B1(u,p,n.epochs,null,null,GB(t,n),null,r,c);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await d.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:N}=eI(e,x.value),T={};T.batch=b,T.size=v[0].shape[0],await d.onBatchBegin(b,T);let S=[];if(n.classWeight!=null){let R=J1(n.classWeight,e.outputNames);for(let B=0;B<R.length;++B)S.push(await Q1(N[B],null,R[B]))}let A=v.concat(N).concat(S),$=o(A);Ae(A);for(let R=0;R<l.length;++R){let B=l[R],V=$[R];T[B]=V,jt(V)}await d.onBatchEnd(b,T),R1(T),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;tI(n.validationData)?v=ft(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=ft(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?VB:n.validationBatchSize,verbose:0}));for(let N=0;N<e.metricsNames.length;++N)g[`val_${e.metricsNames[N]}`]=v[N]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(m,g),m++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function GB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function tI(e){return typeof e.iterator=="function"}function jB(e){return typeof e.next=="function"}async function qB(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new $e("Verbose mode is not implemented yet.");w.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=jB(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let c=await i.next();if(s=D(()=>{if(c.value){let{xs:u,ys:p}=eI(e,c.value),d=u.concat(p),h=D(()=>r(d));if(Ae(d),l===0)for(let f=0;f<h.length;++f)s.push(pe(0));let m=d[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=D(()=>J(s[f],L(m,g))),l>0&&Ae(y)}Ae(h),o+=m,++l}return s}),c.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<s.length;++c){let u=s[c];s[c]=xe(s[c],o),Ae(u)}return Cn(s)}function Ub(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Kc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Pi(a,t,n-t)):Pi(e,t,n-t)}function Gb(e,t){return D(()=>e==null?null:Array.isArray(e)?e.map(n=>Gb(n,t)):x1(e,t.dtype==="int32"?t:t.toInt()))}function Hb(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function KB(e,t,n,a,r,s,i,o,l,c,u,p,d,h,m){r==null&&(r=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Ea(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=B1(o,i,s,d,g,h,r,f,p);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v<s;++v){await b.onEpochBegin(v);let N={};if(h!=null)throw new $e("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new $e("batch shuffling is not implemneted yet");u&&w.shuffle(y);let T=Qe(y),S=Hb(g,r);for(let A=0;A<S.length;++A){let $={};if(await b.onBatchBegin(A,$),D(()=>{let R=S[A][0],B=S[A][1],V=Pi(T,R,B-R);$.batch=A,$.size=B-R;let W=Gb(n,V),G=t(W);for(let H=0;H<a.length;++H){let X=a[H],q=G[H];$[X]=q,jt(q)}if(A===S.length-1&&f){let H=e.testLoop(l,c,r);for(let X=0;X<a.length;++X){let q=a[X],te=H[X];jt(te),N["val_"+q]=te}}}),await b.onBatchEnd(A,$),R1($),e.stopTraining_)break}T.dispose()}if(await b.onEpochEnd(v,N),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function XB(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,c,u;try{let p=a.batchSize==null?32:a.batchSize;Ub(p);let d=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,d,p);r=h[0],s=h[1],u=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new $e("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let T=!0,S=await e.standardizeUserData(i,o,null,null,T,p);l=S[0],c=S[1],f=l.concat(c)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let T=Math.floor(r[0].shape[0]*(1-a.validationSplit)),S=r[0].shape[0];l=Kc(r,T,S),r=Kc(r,0,T),c=Kc(s,T,S),s=Kc(s,0,T),f=l.concat(c)}else a.validationSteps!=null&&(m=!0);let g=r.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=b.slice().concat(b.map(T=>"val_"+T))):(x=null,f=[],v=b.slice());let N=z1(a.callbacks,a.yieldEvery);return await KB(e,y,g,b,p,a.epochs,a.verbose,N,x,f,a.shuffle,v,a.initialEpoch,null,null)}finally{e.isTraining=!1,zi(r,t),zi(s,n),zi(l,i),zi(c,o),u!=null&&Ae(u)}}function nI(e){let t=[];e instanceof Ee&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Wc(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function zi(e,t){if(e==null)return;let n=[];if(t instanceof Ee)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ee)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function YB(e){return e instanceof Ee}function jb(e){return Array.isArray(e)}function aI(e){return!YB(e)&&!jb(e)}function rI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(jb(e)&&e.length>0)i=!0;else if(aI(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new z(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(aI(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new z(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(jb(e)){if(e=e,e.length!==t.length)throw new z(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new z(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=nI(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new z(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&c!==u)throw new z(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function JB(e,t,n){let a=as(e.map(s=>s.shape[0]));a.sort();let r=as(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!w.arraysEqual(a,r))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function QB(e,t,n){let a=[Oi,em,Hc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Hc&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),c=o.slice(1);for(let u=0;u<l.length;++u){let p=l[u],d=c[u];if(d!=null&&p!==d)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function sI(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new z(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new z(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new z(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u!==c)throw new z(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function ZB(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var eW="layers-model",wr=class extends tr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");MB(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=FB(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof br))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new z(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Pb(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Pb(s))}else{let s=Pb(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Mi("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=ZB(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Mi("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",c,u,p;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===em?["accuracy","acc"].indexOf(d)!==-1?u=Ob:["crossentropy","ce"].indexOf(d)!==-1&&(u=U1):this.lossFunctions[s]===Zh?["accuracy","acc"].indexOf(d)!==-1?u=G1:["crossentropy","ce"].indexOf(d)!==-1&&(u=H1):["accuracy","acc"].indexOf(d)!==-1?u=Lb:["crossentropy","ce"].indexOf(d)!==-1&&(u=zb);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),p=u,c=l+f}else p=EB(d),c=l+am(d);let h;Mi(c,()=>{h=p}),r(s,c,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;Ub(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Cn(l)}finally{zi(s[0],e),zi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),qB(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new z(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Li;if(e instanceof Ee&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new z(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=qc(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=$i(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return D(()=>{let a=this.checkNumSamples(e);if(n)throw new $e("Verbose predictLoop() is not implemented yet.");let r=Hb(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)D(()=>{let o=r[i][0],l=r[i][1],c=Kc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;d<c.length;++d)u.push({key:this.inputs[d],value:c[d]});else u.push({key:this.inputs[0],value:c});let p=new Li(u);return qc(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return Cn(s.map(i=>Je(i,0)))})}predict(e,t={}){let n=nI(e);sI(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return Ub(a),this.predictLoop(n,a)}finally{zi(n,e)}}predictOnBatch(e){sI(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new _a("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Zh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=rI(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=rI(t,this.feedOutputNames,r,!1,"target"),JB(e,t,null),QB(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let c=J1(a,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await Q1(o[u],null,c[u]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return D(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new $e("Verbose mode is not implemented yet.");if(r!=null)throw new $e("steps mode in testLoop() is not implemented yet");{let o=Hb(s,n),l=Qe(Ea(0,s));for(let c=0;c<o.length;++c){let u=o[c][0],p=o[c][1],d=Pi(l,u,p-u),h=Gb(t,d),m=e(h);if(c===0)for(let f=0;f<m.length;++f)i.push(pe(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=J(i[f],L(p-u,g))}}for(let c=0;c<i.length;++c)i[c]=xe(i[c],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;i1(e,a)>1&&(r+=`_${i1(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let h=0;h<this.inputs.length;++h)c.push({key:this.inputs[h],value:n[h]});let u=new Li(c),p=qc(this.outputs,u,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=WB(m,r[h]));let f=St(m);t.push(f),h===0?d=m:d=J(d,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=St(f(a[g],p[g]))}jt(m),s.push(m)}return d=St(d),this.calculateLosses().forEach(h=>{d=J(d,h)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>D(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Li(s),o=qc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=St(c(r[l],o[l]));l===0?n=u:n=J(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],p=St(c(r[u],o[u]));t.push(p)}return t})}async fit(e,t,n={}){return XB(this,e,t,n)}async fitDataset(e,t){return HB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ae(s),Cn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Yd().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Yd().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=vr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[vr(am(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>vr(am(e)));{let e={};for(let t in this.metrics)e[t]=vr(am(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=jc(e.optimizer_config),n=Aa(t),a;if(typeof e.loss=="string")a=Di(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Di(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Di(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Di(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Di(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Ht.getSaveHandlers(e);if(i.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new z(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ht.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:eW,generatedBy:`TensorFlow.js tfjs-layers v${sm}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Ht.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Ht.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;q1(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){q1(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};wr.className="Model";re.registerClass(wr);var iI=class extends wr{};iI.className="Functional";re.registerClass(iI);async function tW(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=jc(n),r=Aa(a,t);if(e.weightsManifest!=null){let s=await Ht.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ae(s)}return r}async function aW(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ht.getLoadHandlers(e,t);if(n.length===0)n.push(Ht.browserHTTPRequest(e,t));else if(n.length>1)throw new z(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return nW(e,void 0,t)}async function nW(e,t,n){if(n==null&&(n={}),e.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Aa(jc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=rW(a.weightData,a.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Ae(c),Ae(u.map(p=>p.tensor))}return o}function rW(e,t){let n=Ht.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Xl=class extends wr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:qh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Xl||e instanceof wr,n;if(t){if(n=e,n.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=D1({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=$1(this.outputs[0])}this.inboundNodes=[],new Yh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:$i(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ct(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new wr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new _a("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new _a("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new _a("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new _a("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Xl))throw new $e(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Aa(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Xl.className="Sequential";re.registerClass(Xl);function sW(e){return new wr(e)}function iW(e){return new Xl(e)}function oW(e,t){return t==null&&(t={}),aW(e,t)}function T1(e){return D1(e)}function lW(e,t){fa.registerCallbackConstructor(e,t)}var Bn=class extends re.Serializable{getConfig(){return{}}},oI=class extends Bn{apply(e,t=1){return B3(e,t)}};oI.className="elu";re.registerClass(oI);var lI=class extends Bn{apply(e){return gh(e)}};lI.className="selu";re.registerClass(lI);var uI=class extends Bn{apply(e){return qe(e)}};uI.className="relu";re.registerClass(uI);var cI=class extends Bn{apply(e){return D(()=>Ll(6,qe(e)))}};cI.className="relu6";re.registerClass(cI);var pI=class extends Bn{apply(e){return e}};pI.className="linear";re.registerClass(pI);var dI=class extends Bn{apply(e){return ca(e)}};dI.className="sigmoid";re.registerClass(dI);var hI=class extends Bn{apply(e){return V3(e)}};hI.className="hardSigmoid";re.registerClass(hI);var mI=class extends Bn{apply(e){return Pl(e)}};mI.className="softplus";re.registerClass(mI);var fI=class extends Bn{apply(e){return W3(e)}};fI.className="softsign";re.registerClass(fI);var gI=class extends Bn{apply(e){return Dl(e)}};gI.className="tanh";re.registerClass(gI);var qb=class extends Bn{apply(e,t=-1){return Ta(e,t)}};qb.className="softmax";re.registerClass(qb);var yI=class extends Bn{apply(e,t=-1){return uh(e,t)}};yI.className="logSoftmax";re.registerClass(yI);var bI=class extends Bn{apply(e,t=1){return D(()=>ca(e.mul(t)).mul(e))}};bI.className="swish";re.registerClass(bI);function os(e){return e.getClassName()}function Kb(e,t={}){return Oc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ls(e){if(e==null){let t={};return t.className="linear",t.config={},Kb(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Kb(t)}else return e instanceof Bn?e:Kb(e)}function Xb(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var xI=class extends re.Serializable{},Xc=class extends xI{constructor(e){super();Xb(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return D(()=>{let t=xt([1]);return this.hasL1&&(t=J(t,Se(L(this.l1,Lt(e))))),this.hasL2&&(t=J(t,Se(L(this.l2,Vc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Xc.className="L1L2";re.registerClass(Xc);function uW(e){return Xb(e),new Xc({l1:e!=null?e.l1:null,l2:0})}function cW(e){return Xb(e),new Xc({l2:e!=null?e.l2:null,l1:0})}var vI={l1l2:"L1L2"};function pt(e){return cb(e)}function wI(e,t={}){return Oc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function wt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in vI?vI[e]:e,config:{}};return wI(t)}else return e instanceof xI?e:wI(e)}var Yb=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Me(e);let n=qe(e);return this.maxValue!=null&&(n=qt(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Yb.className="ReLU";re.registerClass(Yb);var Jb=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return _c(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Jb.className="LeakyReLU";re.registerClass(Jb);var Qb=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=vt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=wt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ct(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Xt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Me(e),Ac(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ct(this.alphaInitializer),alphaRegularizer:pt(this.alphaRegularizer),alphaConstraint:Wt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Qb.className="PReLU";re.registerClass(Qb);var Zb=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new $e(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return Rl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Zb.className="ELU";re.registerClass(Zb);var ex=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Me(e);return n.mul(Bc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};ex.className="ThresholdedReLU";re.registerClass(ex);var tx=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new qb().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Me(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};tx.className="Softmax";re.registerClass(tx);function Yl(e,t,n){if(typeof e=="number")return $i(e,t);if(e.length!==t)throw new z(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!P3(r))throw new z(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function $a(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function im(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ss([n-t,0]);else if(a==="same")e=e*t;else throw new z(`Unsupport padding mode: ${a}.`);return e}function nx(e,t){return D(()=>(Dt(t),t==="channelsFirst"?Ve(e,[0,2,3,1]):e))}function kI(e,t){return D(()=>(Dt(t),t==="channelsFirst"?Ve(e,[0,2,3,4,1]):e))}function pW(e,t,n,a=1,r="valid",s,i=1){return D(()=>{if(s==null&&(s=Ca()),Dt(s),e.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ve(e,[0,2,1])),r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=th(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Za(o,n)),o})}function II(e,t,n,a=[1,1],r="valid",s,i,o=null){return D(()=>{if(s==null&&(s=Ca()),Dt(s),e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=nx(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ns.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ve(l,[0,3,1,2])),l})}function dW(e,t,n,a=[1,1,1],r="valid",s,i){return D(()=>{if(s==null&&(s=Ca()),Dt(s),e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=kI(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Dy(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Za(o,n)),s==="channelsFirst"&&(o=Ve(o,[0,4,1,2,3])),o})}var ax=class extends je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ax.verifyArgs(t),this.rank=e,Kt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new $e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yl(t.kernelSize,e,"kernelSize"),this.strides=Yl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ta(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Dt(this.dataFormat),this.activation=ls(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=vt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=wt(t.biasRegularizer),this.activityRegularizer=wt(t.activityRegularizer),this.dilationRate=Yl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ja("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!db(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:os(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),biasConstraint:Wt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Yc=class extends ax{constructor(e,t){super(e,t);this.kernel=null,Yc.verifyArgs(t),this.filters=t.filters,Kt(this.filters,"filters"),this.kernelInitializer=vt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=wt(t.kernelRegularizer)}build(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return D(()=>{e=Me(e);let n,a=this.bias==null?null:this.bias.read(),r=l1(this.activation.getClassName());if(r!=null&&this.rank===2)n=II(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=pW(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=II(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=dW(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new $e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ct(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=$a(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Ct(this.kernelInitializer),kernelRegularizer:pt(this.kernelRegularizer),kernelConstraint:Wt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Jc=class extends Yc{constructor(e){super(2,e);Jc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!db(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Jc.className="Conv2D";re.registerClass(Jc);var om=class extends Yc{constructor(e){super(3,e);om.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};om.className="Conv3D";re.registerClass(om);var rx=class extends Jc{constructor(e){super(e);if(this.inputSpec=[new Xt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ct(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Xt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{let n=Me(e);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],c=this.kernelSize[0],u=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=im(o,p,c,this.padding),m=im(l,d,u,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ve(n,[0,2,3,1]));let g=nh(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ve(g,[0,3,1,2])),this.bias!=null&&(g=Za(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ct(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=im(t[a],o,s,this.padding),t[r]=im(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};rx.className="Conv2DTranspose";re.registerClass(rx);var TI=class extends Yc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=vt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=wt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=vt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=wt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=ct(e),e.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Xt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{e=Me(e);let n;if(this.rank===1)throw new $e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ve(e,[0,2,3,1])),n=Ei(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Za(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ve(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.pointwiseRegularizer=pt(this.pointwiseRegularizer),e.depthwiseConstraint=Wt(this.depthwiseConstraint),e.pointwiseConstraint=Wt(this.pointwiseConstraint),e}};TI.className="SeparableConv";var sx=class extends TI{constructor(e){super(2,e)}};sx.className="SeparableConv2D";re.registerClass(sx);var lm=class extends Yc{constructor(e){super(1,e);lm.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!db(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};lm.className="Conv1D";re.registerClass(lm);var ix=class extends je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return D(()=>{if(e=Me(e),this.dataFormat==="channelsLast"){let n=Oh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Oh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Oh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Oh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ix.className="Cropping2D";re.registerClass(ix);var ox=class extends je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,D3(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return D(()=>{let n=Me(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ve(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ve(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ox.className="UpSampling2D";re.registerClass(ox);function hW(e,t,n=[1,1],a="valid",r,s){return D(()=>{r==null&&(r=Ca()),Dt(r);let i=nx(e,r);if(e.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Qr(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ve(i,[0,3,1,2])),i})}var lx=class extends ax{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=vt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=wt(e.depthwiseRegularizer)}build(e){if(e=ct(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{e=Me(e);let n=hW(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Za(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=$a(t,this.kernelSize[0],this.padding,this.strides[0]),s=$a(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.depthwiseConstraint=Wt(this.depthwiseRegularizer),e}};lx.className="DepthwiseConv2D";re.registerClass(lx);function NI(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function SI(e,t,n,a=!1,r,s,i=!1,o=!1){return D(()=>{let l=t.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Ea(2,l));if(t=Ve(t,c),s!=null)throw new $e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=Mn(r,-1)),r=Ve(r,c)),a&&(t=Ln(t,0),r!=null&&(r=Ln(r,0)));let u=[],p,d=n,h=t.shape[0],m=ut(t),f;r!=null&&(f=ut(r));for(let y=0;y<h;++y){let b=m[y],x=D(()=>e(b,d));if(r==null)p=x[0],d=x[1];else{let v=D(()=>{let N=f[y],T=On(N).sub(N),S=x[0].mul(N).add(d[0].mul(T)),A=d.map(($,R)=>x[1][R].mul(N).add($.mul(T)));return{output:S,newStates:A}});p=v.output,d=v.newStates}o&&u.push(p)}let g;return o&&(g=$t(u,1)),[p,g,d]})}var er=class extends je{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new um({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Xt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ea(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){$b(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return D(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new $e("Constants support is not implemented in RNN yet.");$b(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Xt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new $e("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Xt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new xr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>xt([n,a])):this.states_=[xt([n,this.cell.stateSize])];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>xt([n,a])):this.states_[0]=xt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!w.arraysEqual(r.shape,i))throw new z(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>jt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=NI(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Xt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Fa){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Me(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new z(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=SI((d,h)=>{let m=this.cell.call([d].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,a);let p=this.returnSequences?c:l;return this.returnState?[p].concat(u):p})}getInitialState(e){return D(()=>{let t=xt(e.shape);return t=Se(t,[1,2]),t=Wc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?bb(t,[1,n]):t):this.cell.stateSize>1?[bb(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===er.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Aa(a,n);return new e(Object.assign(t,{cell:r}))}};er.className="RNN";re.registerClass(er);var Gc=class extends je{},cm=class extends Gc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=vt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Hl([1,ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=Qa(L(e,s),this.kernel.read()):r=Qa(e,this.kernel.read()),this.bias!=null&&(r=Za(r,this.bias.read())),i!=null&&(n=L(n,i));let o=J(r,Qa(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Wt(this.kernelConstraint),recurrentConstraint:Wt(this.recurrentConstraint),biasConstraint:Wt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};cm.className="SimpleRNNCell";re.registerClass(cm);var ux=class extends er{constructor(e){e.cell=new cm(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};ux.className="SimpleRNN";re.registerClass(ux);var pm=class extends Gc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=vt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Hl([1,ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let c=Qa(e,this.kernel.read());this.useBias&&(c=Za(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=L(a,s[0]));let u=this.recurrentKernel.read(),[p,d]=zn(u,[2*this.units,this.units],u.rank-1),h=Qa(a,p),[m,f,g]=zn(c,3,c.rank-1),[y,b]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(J(m,y)),o=this.recurrentActivation.apply(J(f,b));let x=Qa(L(o,a),d);l=this.activation.apply(J(g,x));let v=J(L(i,a),L(J(1,Nt(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),recurrentActivation:os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Wt(this.kernelConstraint),recurrentConstraint:Wt(this.recurrentConstraint),biasConstraint:Wt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};pm.className="GRUCell";re.registerClass(pm);var cx=class extends er{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new pm(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};cx.className="GRU";re.registerClass(cx);var Qc=class extends Gc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=vt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Hl([1,ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ct(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends ma{apply(i,o){let l=r.apply([s]),c=new zh().apply([s]),u=r.apply([s*2]);return b1(b1(l,c),u)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let p=Qa(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=L(a,i[0])),p=J(p,Qa(a,this.recurrentKernel.read())),this.useBias&&(p=Za(p,this.bias.read()));let[d,h,m,f]=zn(p,4,p.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),c=J(L(l,r),L(o,this.activation.apply(m))),u=this.recurrentActivation.apply(f);let g=L(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),recurrentActivation:os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Wt(this.kernelConstraint),recurrentConstraint:Wt(this.recurrentConstraint),biasConstraint:Wt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Qc.className="LSTMCell";re.registerClass(Qc);var px=class extends er{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Qc(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};px.className="LSTM";re.registerClass(px);var um=class extends Gc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return D(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){$b(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Mi(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Aa(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Db(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Rb(t)}};um.className="StackedRNNCells";re.registerClass(um);function us(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>v1(t(),n),i=()=>Uc(s,t,a);return!r||r<=1?jt(i().clone()):Array(r).fill(void 0).map(i).map(o=>jt(o.clone()))}var mW=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},CI=class extends er{constructor(e){if(e.unroll)throw new $e("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new $e("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Xt({ndim:5})]}call(e,t){return D(()=>{if(this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return D(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=xt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new xr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>xt(r)):this.states_=[xt(r)];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>xt(r)):this.states_[0]=xt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!w.arraysEqual(i.shape,o))throw new z(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>jt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=$a(l,a[0],r,s[0],i[0]),p=$a(c,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,p]:[u,p,n]]}};CI.className="ConvRNN2D";var dm=class extends Qc{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Kt(this.filters,"filters"),this.kernelSize=Yl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Kt(o,"kernelSize")),this.strides=Yl(a||1,2,"strides"),this.strides.forEach(o=>Kt(o,"strides")),this.padding=r||"valid",ta(this.padding),this.dataFormat=s||"channelsLast",Dt(this.dataFormat),this.dilationRate=Yl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Kt(o,"dilationRate"))}build(e){var t;e=ct(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends ma{apply(u,p){let d=l.apply([c]),h=Ka([c]),m=l.apply([c*2]);return vb([d,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return D(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Q,se,ne)=>!se||!se[ne]?Q:L(se[ne],Q),c=l(a,o,0),u=l(a,o,1),p=l(a,o,2),d=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,v,N,T]=zn(this.kernel.read(),i,b),[S,A,$,R]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,S,this.padding),u=this.inputConv(u,v,A,this.padding),p=this.inputConv(p,N,$,this.padding),d=this.inputConv(d,T,R,this.padding);let[B,V,W,G]=zn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,B),f=this.recurrentConv(f,V),g=this.recurrentConv(g,W),y=this.recurrentConv(y,G);let H=this.recurrentActivation.apply(J(c,m)),X=this.recurrentActivation.apply(J(u,f)),q=J(L(X,s),L(H,this.activation.apply(J(p,g)))),te=L(this.recurrentActivation.apply(J(d,y)),this.activation.apply(q));return[te,te,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=mW(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=Ft(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Za(r,n,this.dataFormat):r}recurrentConv(e,t){return Ft(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};dm.className="ConvLSTM2DCell";re.registerClass(dm);var dx=class extends CI{constructor(e){let t=new dm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};dx.className="ConvLSTM2D";re.registerClass(dx);var hm=class extends je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Uc(()=>v1(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};hm.className="Dropout";re.registerClass(hm);var hx=class extends hm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};hx.className="SpatialDropout1D";re.registerClass(hx);var mx=class extends je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=wt(e.kernelRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ct(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ct(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e),a=l1(this.activation.getClassName()),r;return a!=null?r=Qa(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=Qa(n,this.kernel.read()),this.bias!=null&&(r=Za(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:os(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Wt(this.kernelConstraint),biasConstraint:Wt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};mx.className="Dense";re.registerClass(mx);var fx=class extends je{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ct(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],rs(e,1)]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return z3(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};fx.className="Flatten";re.registerClass(fx);var gx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.activation=ls(e.activation)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.activation.apply(n)})}getConfig(){let e={activation:os(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};gx.className="Activation";re.registerClass(gx);var yx=class extends je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return D(()=>(e=Me(e),O3(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};yx.className="RepeatVector";re.registerClass(yx);var bx=class extends je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new z("Can only specifiy one unknown dimension.");else r*=l}let i=rs(e);if(s!==null){if(r===0||i%r!=0)throw new z(n);a[s]=i/r}else if(i!==r)throw new z(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};bx.className="Reshape";re.registerClass(bx);var xx=class extends je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ea(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Xt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ct(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ve(Me(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};xx.className="Permute";re.registerClass(xx);var vx=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Me(e),a=-1;return kc(_i(n,this.maskValue),a)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e),a=-1,r=!0,s=kc(_i(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};vx.className="Masking";re.registerClass(vx);var wx=class extends je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ft(e.inputLength))}this.inputDim=e.inputDim,Kt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Kt(this.outputDim,"outputDim"),this.embeddingsInitializer=vt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=wt(e.embeddingsRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return D(()=>this.maskZero?(e=Me(e),_i(e,Ge(e))):null)}computeOutputShape(e){if(e=ct(e),this.inputLength==null)return[...e,this.outputDim];let t=ft(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);return n.dtype!=="int32"&&(n=Bc(n,"int32")),x1(this.embeddings.read(),n.as1D()).reshape(ct(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:pt(this.embeddingsRegularizer),activityRegularizer:pt(this.activityRegularizer),embeddingsConstraint:Wt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};wx.className="Embedding";re.registerClass(wx);var Bi=class extends je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new $e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ct(e)]),e=e,e.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=as(t),t.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&as(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return D(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ss(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Wc(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let c=o.shape,u=c[0],p=c.slice(1).concat([u]),d=o.reshape([u].concat(rs(c.slice(1))));d=Ve(d,[1,0]),d=d.reshape(p),n.push(d),r=!0}else if(l>1){let c=Ea(1,l).concat([0]);n.push(Ve(o,c)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Ve(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Ea(0,i-1));s=Ve(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=as(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return D(()=>{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:Mn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=da(n,t[a]);return n})}},kx=class extends Bi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return t})}};kx.className="Add";re.registerClass(kx);var Ix=class extends Bi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};Ix.className="Multiply";re.registerClass(Ix);var Tx=class extends Bi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return L(1/e.length,t)})}};Tx.className="Average";re.registerClass(Tx);var Nx=class extends Bi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=qa(t,e[n]);return t})}};Nx.className="Maximum";re.registerClass(Nx);var Sx=class extends Bi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ll(t,e[n]);return t})}};Sx.className="Minimum";re.registerClass(Sx);var Cx=class extends Bi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(w.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return D(()=>vb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return D(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(On(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(Mn(t[s],-1)):a.push(t[s]);let r=Je(a,this.axis);return Zd(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Cx.className="Concatenate";re.registerClass(Cx);function Zc(e,t){for(;e<0;)e+=t;return e}function fW(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new $e("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new $e("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return D(()=>{let i;if(a>r){i=a-r;let l=[];for(let c=0;c<i;++c)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let c=0;c<i;++c)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,c=s[1]===t.shape.length-1;o=e.matMul(t,l,c)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let c=[];for(let u=l;u<l+i;++u)c.push(u);o=o.squeeze(c)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var _x=class extends Bi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new z(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Zc(r,e[s].shape.length)):a=[Zc(this.axes,t.shape.length),Zc(this.axes,n.shape.length)],this.normalize&&(t=Jh(t,a[0]),n=Jh(n,a[1])),fW(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Zc(this.axes,e.length),Zc(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};_x.className="Dot";re.registerClass(_x);var Ex=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);return Uc(()=>Lh(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Ex.className="GaussianNoise";re.registerClass(Ex);var Fx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.rate>0&&this.rate<1?Uc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(Lh(n.shape,1,a))},()=>n,t.training||!1):n})}};Fx.className="GaussianDropout";re.registerClass(Fx);var Ax=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Me(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Uc(()=>{let a=Me(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=es(zl(n),this.rate);o=Bc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>Me(e),t.training||!1)}return e})}};Ax.className="AlphaDropout";re.registerClass(Ax);function ep(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=nk(e,t,n,a,r,s);else if(e.rank===3)i=ak(e,t,n,a,r,s);else if(e.rank===4)i=rk(e,t,n,a,r,s);else throw new $e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function gW(e,t,n,a,r=.001){return D(()=>{let s=ph(e,a),i=s.mean,o=s.variance;return[ep(e,i,o,n,t,r),i,o]})}function yW(e,t,n,a,r=.001){return D(()=>{let s=ph(e,a),i=s.mean,o=s.variance,l=[];for(let h of Ea(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let c=i.reshape(l),u=o.reshape(l),p=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[ep(e,c,u,d,p,r),i,o]})}function bW(e,t,n,a,r=.001){return w.arraysEqual(a.slice().sort(),Ea(0,e.rank-1))?gW(e,t,n,a,r):yW(e,t,n,a,r)}var $x=class extends je{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=vt(e.betaInitializer||"zeros"),this.gammaInitializer=vt(e.gammaInitializer||"ones"),this.movingMeanInitializer=vt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=vt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer)}build(e){e=ct(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Xt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training,a=Me(e),r=a.shape,s=r.length,i=Ea(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=$i(1,s);l[o]=r[o];let c=i.slice();c.sort();let u=!w.arraysEqual(c,Ea(0,s).slice(0,s-1)),p=()=>{if(u){let g=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),b=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return ep(a,g,y,b,x,this.epsilon)}else return ep(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,m]=bW(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{D(()=>{let x=1-b,v=g.read(),N=v.sub(y).mul(x);g.write(v.sub(N))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer),betaConstraint:Wt(this.betaConstraint),gammaConstraint:Wt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};$x.className="BatchNormalization";re.registerClass($x);var Dx=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=vt(e.betaInitializer||"zeros"),this.gammaInitializer=vt(e.gammaInitializer||"ones"),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ct(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==as(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Me(e),a=n.shape,r=a.length;return D(()=>{let s=!0,{mean:i,variance:o}=ph(n,this.axis,s),l=$i(1,r);for(let m of this.axis)l[m]=a[m];let c=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,u=c(this.gamma.read()),p=c(this.beta.read()),d=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(d.push(a[m]),h.push(1)):(d.push(1),h.push(a[m]));return i=i.tile(d),o=o.tile(d),u=u.tile(h),p=p.tile(h),ep(n,i,o,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Dx.className="LayerNormalization";re.registerClass(Dx);function xW(e,t,n){return D(()=>{if(e.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Ca()),n!=="channelsLast"&&n!=="channelsFirst")throw new z(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ea(e,a)})}var Rx=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Ca():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){e=ct(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return D(()=>xW(Me(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Rx.className="ZeroPadding2D";re.registerClass(Rx);function mm(e,t,n,a,r,s){return D(()=>{Dt(r),d1(s),ta(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Ca()),s==null&&(s="max"),e=nx(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=At(e,t,n,o):i=Qn(e,t,n,o),r==="channelsFirst"&&(i=Ve(i,[0,3,1,2])),i})}function _I(e,t,n,a,r,s){return D(()=>{Dt(r),d1(s),ta(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Ca()),s==null&&(s="max"),e=kI(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Gy(e,t,n,o):i=Fy(e,t,n,o),r==="channelsFirst"&&(i=Ve(i,[0,4,1,2,3])),i})}var EI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Kt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ta(this.padding),this.inputSpec=[new Xt({ndim:3})]}computeOutputShape(e){e=ct(e);let t=$a(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return D(()=>{this.invokeCallHook(e,t),e=Wc(Me(e),2);let n=this.poolingFunction(Me(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ts(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Mx=class extends EI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),ta(a),mm(e,t,n,a,r,"max")}};Mx.className="MaxPooling1D";re.registerClass(Mx);var Px=class extends EI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),ta(a),mm(e,t,n,a,r,"avg")}};Px.className="AveragePooling1D";re.registerClass(Px);var FI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),ta(this.padding),this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=$a(t,this.poolSize[0],this.padding,this.strides[0]),n=$a(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ox=class extends FI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),ta(a),mm(e,t,n,a,r,"max")}};Ox.className="MaxPooling2D";re.registerClass(Ox);var Lx=class extends FI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),ta(a),mm(e,t,n,a,r,"avg")}};Lx.className="AveragePooling2D";re.registerClass(Lx);var AI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),ta(this.padding),this.inputSpec=[new Xt({ndim:5})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=$a(t,this.poolSize[0],this.padding,this.strides[0]),n=$a(n,this.poolSize[1],this.padding,this.strides[1]),a=$a(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},zx=class extends AI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),ta(a),_I(e,t,n,a,r,"max")}};zx.className="MaxPooling3D";re.registerClass(zx);var Bx=class extends AI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),ta(a),_I(e,t,n,a,r,"avg")}};Bx.className="AveragePooling3D";re.registerClass(Bx);var $I=class extends je{constructor(e){super(e);this.inputSpec=[new Xt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new $e}},Wx=class extends $I{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Me(e);return St(n,1)})}};Wx.className="GlobalAveragePooling1D";re.registerClass(Wx);var Vx=class extends $I{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Me(e);return Zn(n,1)})}};Vx.className="GlobalMaxPooling1D";re.registerClass(Vx);var DI=class extends je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new $e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ux=class extends DI{call(e,t){return D(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?St(n,[1,2]):St(n,[2,3])})}};Ux.className="GlobalAveragePooling2D";re.registerClass(Ux);var Gx=class extends DI{call(e,t){return D(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?Zn(n,[1,2]):Zn(n,[2,3])})}};Gx.className="GlobalMaxPooling2D";re.registerClass(Gx);var RI=class extends je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Aa(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},Hx=class extends RI{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ct(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ct(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return D(()=>(e=Me(e),SI((n,a)=>[Me(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Hx.className="TimeDistributed";re.registerClass(Hx);function vW(e){Ri($3,"BidirectionalMergeMode",e)}var wW="concat",jx=class extends RI{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Aa(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Aa(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?wW:e.mergeMode,vW(this.mergeMode),e.weights)throw new $e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Cn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=NI(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Xt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(a!=null)throw new $e("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Fa;for(let l of s)if(l instanceof Fa!==o)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let p=super.apply(l,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=Ln(r,1));let i;return this.mergeMode==="concat"?i=vb([a,r]):this.mergeMode==="sum"?i=J(a,r):this.mergeMode==="ave"?i=L(.5,J(a,r)):this.mergeMode==="mul"?i=L(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Mi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Mi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Aa(t.layer);if(delete t.layer,t.numConstants!=null)throw new $e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};jx.className="Bidirectional";re.registerClass(jx);function K3(e){return new jl(e)}function X3(e){return new Zb(e)}function Y3(e){return new Yb(e)}function J3(e){return new Jb(e)}function Q3(e){return new Qb(e)}function Z3(e){return new tx(e)}function ez(e){return new ex(e)}function tz(e){return new lm(e)}function nz(e){return new Jc(e)}function az(e){return new rx(e)}function rz(e){return new om(e)}function sz(e){return new sx(e)}function iz(e){return new ix(e)}function oz(e){return new ox(e)}function lz(e){return new lx(e)}function uz(e){return new gx(e)}function cz(e){return new mx(e)}function pz(e){return new hm(e)}function dz(e){return new hx(e)}function hz(e){return new fx(e)}function mz(e){return new yx(e)}function fz(e){return new bx(e)}function gz(e){return new xx(e)}function yz(e){return new wx(e)}function bz(e){return new kx(e)}function xz(e){return new Tx(e)}function vz(e){return new Cx(e)}function wz(e){return new Nx(e)}function kz(e){return new Sx(e)}function Iz(e){return new Ix(e)}function Tz(e){return new _x(e)}function Nz(e){return new $x(e)}function Sz(e){return new Dx(e)}function Cz(e){return new Rx(e)}function Eb(e){return new Px(e)}function _z(e){return Eb(e)}function Ez(e){return Eb(e)}function Fb(e){return new Lx(e)}function Fz(e){return Fb(e)}function Az(e){return Fb(e)}function Ab(e){return new Bx(e)}function $z(e){return Ab(e)}function Dz(e){return Ab(e)}function Rz(e){return new Wx(e)}function Mz(e){return new Ux(e)}function N1(e){return new Vx(e)}function S1(e){return new Gx(e)}function C1(e){return new Mx(e)}function _1(e){return new Ox(e)}function Pz(e){return new zx(e)}function Oz(e){return new cx(e)}function Lz(e){return new pm(e)}function zz(e){return new px(e)}function Bz(e){return new Qc(e)}function Wz(e){return new ux(e)}function Vz(e){return new cm(e)}function Uz(e){return new dx(e)}function Gz(e){return new dm(e)}function Hz(e){return new er(e)}function jz(e){return new um(e)}function qz(e){return new jx(e)}function Kz(e){return new Hx(e)}var Xz=N1,Yz=S1,Jz=C1,Qz=_1;function Zz(e){return new Ex(e)}function eB(e){return new Fx(e)}function tB(e){return new Ax(e)}function nB(e){return new vx(e)}var MI={};Oe(MI,{MAPE:()=>$W,MSE:()=>MW,binaryAccuracy:()=>kW,binaryCrossentropy:()=>IW,categoricalAccuracy:()=>NW,categoricalCrossentropy:()=>SW,cosineProximity:()=>EW,mape:()=>DW,meanAbsoluteError:()=>FW,meanAbsolutePercentageError:()=>AW,meanSquaredError:()=>RW,mse:()=>PW,precision:()=>CW,recall:()=>_W,sparseCategoricalAccuracy:()=>TW});function kW(e,t){return Ob(e,t)}function IW(e,t){return U1(e,t)}function TW(e,t){return G1(e,t)}function NW(e,t){return Lb(e,t)}function SW(e,t){return zb(e,t)}function CW(e,t){return V1(e,t)}function _W(e,t){return wB(e,t)}function EW(e,t){return Mb(e,t)}function FW(e,t){return Qh(e,t)}function AW(e,t){return Kl(e,t)}function $W(e,t){return Kl(e,t)}function DW(e,t){return Kl(e,t)}function RW(e,t){return Oi(e,t)}function MW(e,t){return Oi(e,t)}function PW(e,t){return Oi(e,t)}var PI={};Oe(PI,{modelFromJSON:()=>tW});var OI={};Oe(OI,{l1:()=>LW,l1l2:()=>OW,l2:()=>zW});function OW(e){return new Xc(e)}function LW(e){return uW(e)}function zW(e){return cW(e)}var LI=class extends ql{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof wr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function fm(e,t){return e<t}function zI(e,t){return e>t}var BI=class extends LI{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new $e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=fm:this.mode==="max"?this.monitorFunc=zI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=zI:this.monitorFunc=fm,this.monitorFunc===fm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===fm?Infinity:-Infinity}async onEpochEnd(e,t){await is(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function BW(e){return new BI(e)}var WW={earlyStopping:BW},Da;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Da||(Da={}));var WI;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(WI||(WI={}));var qx={};function VW(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};qx[e]=n}function VI(e){return qx[e]}function UW(e){delete qx[e]}function k(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return En(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>En(p,n,a,r));let c=En(t.inputNames.slice(o)[0],n,a,r),u=c.dataSync();return s.type==="number"?u[0]:w.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function En(e,t,n,a){let[r,s]=Wn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[gm(r,o)]);return i!==void 0?t[gm(r,i)][s]:void 0}function GW(e,t,n){return t[gm(e,n.currentContextId)]}function kr(e,t){let[n,a]=Wn(e);return[gm(n,t&&t.currentContextId),a]}function gm(e,t){return t?`${e}-${t}`:e}function Wn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function ym(e,t,n){let a=k("pad",e,t,n);if(a==="explicit"){a=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Ir(e){return e.kept?e:Xr(e)}var UI={};Oe(UI,{json:()=>HW});var HW=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],GI={};Oe(GI,{json:()=>jW});var jW=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],HI={};Oe(HI,{json:()=>qW});var qW=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],jI={};Oe(jI,{json:()=>KW});var KW=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],qI={};Oe(qI,{json:()=>XW});var XW=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],KI={};Oe(KI,{json:()=>YW});var YW=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],XI={};Oe(XI,{json:()=>JW});var JW=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],YI={};Oe(YI,{json:()=>QW});var QW=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],JI={};Oe(JI,{json:()=>ZW});var ZW=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],QI={};Oe(QI,{json:()=>e4});var e4=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],ZI={};Oe(ZI,{json:()=>t4});var t4=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],eT={};Oe(eT,{json:()=>n4});var n4=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],tT={};Oe(tT,{json:()=>a4});var a4=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],nT={};Oe(nT,{json:()=>r4});var r4=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],aT={};Oe(aT,{json:()=>s4});var s4=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],rT={};Oe(rT,{json:()=>i4});var i4=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],sT={};Oe(sT,{json:()=>o4});var o4=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],oT=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[UI,GI,HI,jI,qI,KI,XI,ZI,QI,YI,eT,tT,nT,aT,rT,sT,JI],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(g=>{let[y]=kr(g);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=kr(m),g=i[f];g!=null&&(g.signatureKey=u[m],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=kr(m),g=i[f];g&&(g.signatureKey=c[m],o.push(g))}):o=a;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:d};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=VI(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Kx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Kx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=nv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=nv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Yx(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=Yx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=tv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=tv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Xx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Xx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=rv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=rv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=ev(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ev(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=av(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=av(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Qx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Qx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=Zx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Zx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=iT(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=iT(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&a.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=kr(c.name),p={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Jx(c.type),type:"dtype"}},children:[]};p.signatureKey=c.name,s.push(p),r[u]=p}),Object.keys(r).forEach(c=>{let u=r[c];u.inputNames.forEach(p=>{let[d]=kr(p);u.inputs.push(r[d]),r[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,p]=kr(o[c.name]),d=r[u];d!=null&&(d.defaultOutput=p,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function l4(e){let t=ee().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function lT(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):l4(e);return t?n:n.toLowerCase()}function Kx(e,t,n,a=!1){let r=e[t];return r!=null?lT(r.s,a):n}function Xx(e,t,n){let a=e[t];return a?a.b:n}function Yx(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function Jx(e){switch(typeof e=="string"&&(e=Da[e]),e){case Da.DT_FLOAT:return"float32";case Da.DT_INT32:case Da.DT_INT64:case Da.DT_INT8:case Da.DT_UINT8:return"int32";case Da.DT_BOOL:return"bool";case Da.DT_DOUBLE:return"float32";case Da.DT_STRING:return"string";default:return null}}function iT(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function Qx(e,t,n){let a=e[t];return a&&a.type?Jx(a.type):n}function Zx(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>Jx(r)):n}function uT(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ev(e,t,n){let a=e[t];return a&&a.shape?uT(a.shape):n}function tv(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function nv(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>lT(s,a)):n}function av(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>uT(r)):n}function rv(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var u4=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return En(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return En(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Yx(this.node.rawAttrs,e,t);if(n.s!=null)return Kx(this.node.rawAttrs,e,t);if(n.b!=null)return Xx(this.node.rawAttrs,e,t);if(n.shape!=null)return ev(this.node.rawAttrs,e,t);if(n.type!=null)return Qx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return tv(this.node.rawAttrs,e,t);if(n.list.s!=null)return nv(this.node.rawAttrs,e,t);if(n.list.shape!=null)return av(this.node.rawAttrs,e,t);if(n.list.b!=null)return rv(this.node.rawAttrs,e,t);if(n.list.type!=null)return Zx(this.node.rawAttrs,e,t)}return t}},c4=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[J(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[Q0(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[jy(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[L(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[xe(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[Py(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[Qd(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[me(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[Ll(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[qa(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[gr(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[wh(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},p4=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Lt(k("x",e,t,n))];case"Acos":return[vy(k("x",e,t,n))];case"Acosh":return[wy(k("x",e,t,n))];case"Asin":return[Iy(k("x",e,t,n))];case"Asinh":return[Ty(k("x",e,t,n))];case"Atan":return[Ny(k("x",e,t,n))];case"Atan2":return[Sy(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[Cy(k("x",e,t,n))];case"Ceil":return[Ay(k("x",e,t,n))];case"Complex":return[jr(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[Cc(k("x",e,t,n))];case"Cosh":return[ah(k("x",e,t,n))];case"Elu":return[Rl(k("x",e,t,n))];case"Erf":return[Oy(k("x",e,t,n))];case"Exp":return[dn(k("x",e,t,n))];case"Expm1":return[Ly(k("x",e,t,n))];case"Floor":return[Ml(k("x",e,t,n))];case"Log":return[Pn(k("x",e,t,n))];case"Log1p":return[oh(k("x",e,t,n))];case"Imag":return[sh(k("x",e,t,n))];case"Neg":return[Nt(k("x",e,t,n))];case"Reciprocal":return[Xy(k("x",e,t,n))];case"Real":return[$c(k("x",e,t,n))];case"Relu":return[qe(k("x",e,t,n))];case"Round":return[Yy(k("x",e,t,n))];case"Selu":return[gh(k("x",e,t,n))];case"Sigmoid":return[ca(k("x",e,t,n))];case"Sin":return[yh(k("x",e,t,n))];case"Sign":return[Jy(k("x",e,t,n))];case"Sinh":return[bh(k("x",e,t,n))];case"Softplus":return[Pl(k("x",e,t,n))];case"Sqrt":return[nn(k("x",e,t,n))];case"Square":return[ot(k("x",e,t,n))];case"Tanh":return[Dl(k("x",e,t,n))];case"Tan":return[eb(k("x",e,t,n))];case"ClipByValue":return[qt(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[mh(k("x",e,t,n))];case"Rsqrt":return[fh(En(e.inputNames[0],t,n))];case"Prod":return[dh(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[_c(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[Ac(k("x",e,t,n),k("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ga(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];w.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function cT(e){return!(typeof e=="number"||e.some(t=>t<0))}function tp(e,t,n){let a=sv(e,n),r=!cT(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=sv(s.shape,a)}),!cT(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function sv(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var d4=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=pe(0),jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ga(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Yn([],[0].concat(this.elementShape));let n=this.readMany(e);return ga(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),$t(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Yn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ga(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Je(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ut(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];D(()=>{t=U(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],c=[0,l,0],u=[1,e[o],r];s[o]=U(We(t,c,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},np=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ga(t,r.shape,"TensorList shape mismatch: "),jt(r)}),this.idTensor=pe(0),this.maxNumElements=a,jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new np([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ga(e,this.elementShape,"TensorList shape mismatch: ");let a=tp(this.elementShape,this.tensors,e);return D(()=>{let r=this.tensors.map(s=>U(s,a));return $t(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=tp(this.elementShape,this.tensors,e),a=this.tensors.pop();return ga(a.shape,e,"TensorList shape mismatch: "),U(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ga(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ga(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=tp(this.elementShape,this.tensors,t);return U(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ga(this.elementShape,t.shape,"TensorList shape mismatch: "),jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ga(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=tp(this.elementShape,this.tensors,n);return e.length===0?Yn([],[0].concat(a)):D(()=>{let r=e.map(s=>U(this.tensors[s],a));return $t(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ga(this.elementShape,t,"TensorList shape mismatch: ");let n=tp(this.elementShape,this.tensors,t);return this.size()===0?Yn([],[0].concat(n)):D(()=>{let a=this.tensors.map(r=>U(r,n));return Je(a,0)})}};function h4(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ga(r,t,"TensorList shape mismatch: ");let s=ut(e);return new np(s,t,a)}function m4(e,t,n){return new np([],e,t,n)}function f4(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new np([],n,e.dtype,a),i=ut(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function g4(e,t,n){let a=0,r=t.map(u=>(a+=u,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=sv(s,n),o=a===0?0:e.size/a,l=D(()=>{let u=[];e=U(e,[1,a,o]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],m=[1,t[p],o];u[p]=U(We(e,h,m),i)}return e.dispose(),u}),c=new np([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var y4=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=k("body",e,t,n),r=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let p=c.map(h=>h.id);u.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let a=k("pred",e,t,n);return[Ir(a)]}case"Switch":{let a=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Ir(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>En(r,t,n)!==void 0);if(a){let r=En(a,t,n);return[Ir(r)]}return}case"Enter":{let a=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(a),[Ir(r)]}case"Exit":{let a=k("tensor",e,t,n);return n.exitFrame(),[Ir(a)]}case"NextIteration":{let a=k("tensor",e,t,n);return n.nextIteration(),[Ir(a)]}case"TensorArrayV3":{let a=k("size",e,t,n),r=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),c=k("name",e,t,n),u=new d4(c,r,a,s,l,i,o);return n.addTensorArray(u),[u.idTensor,pe(1)]}case"TensorArrayWriteV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=k("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[pe(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=k("indices",e,t,n),r=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=f4(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=k("elementShape",e,t,n),r=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=m4(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=k("tensorListId",e,t,n),r=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=h4(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=k("tensorListId",e,t,n),r=k("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=g4(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function pT(e,t,n){let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=k("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=k("strides",e,t,n),u=ym(e,t,n),p=k("dataFormat",e,t,n).toUpperCase(),d=k("dilations",e,t,n),[h,m]=k("args",e,t,n),f=k("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:p,dilations:d,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var b4=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=k("stride",e,t,n),r=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilation",e,t,n);return[th(k("x",e,t,n),k("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=k("strides",e,t,n),r=ym(e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[Ft(k("x",e,t,n),k("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=pT(e,t,n);return[ns.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=pT(e,t,n);return[ns.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=k("outputShape",e,t,n),r=k("strides",e,t,n),s=ym(e,t,n);return[nh(k("x",e,t,n),k("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=k("strides",e,t,n),r=ym(e,t,n),s=k("dilations",e,t,n),i=k("dataFormat",e,t,n).toUpperCase();return[Qr(k("input",e,t,n),k("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=k("strides",e,t,n),r=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[Dy(k("x",e,t,n),k("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=k("strides",e,t,n),r=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Qn(k("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=k("strides",e,t,n),r=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[At(k("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=k("strides",e,t,n),r=k("pad",e,t,n),s=k("kernelSize",e,t,n),i=k("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Ik(k("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=k("strides",e,t,n),r=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Fy(k("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=k("strides",e,t,n),r=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Gy(k("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=k("strides",e,t,n),r=k("pad",e,t,n),s=k("dilations",e,t,n),i=a[1],o=a[2],l=s[1],c=s[2];return[My(k("x",e,t,n),k("filter",e,t,n),[i,o],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},x4=(e,t,n)=>{switch(e.op){case"Fill":{let a=k("shape",e,t,n),r=k("dtype",e,t,n),s=k("value",e,t,n);return[Sn(a,s,r)]}case"LinSpace":{let a=k("start",e,t,n),r=k("stop",e,t,n),s=k("num",e,t,n);return[gk(a,r,s)]}case"Multinomial":{let a=k("logits",e,t,n),r=k("numSamples",e,t,n),s=k("seed",e,t,n);return[Tk(a,r,s)]}case"OneHot":{let a=k("indices",e,t,n),r=k("depth",e,t,n),s=k("onValue",e,t,n),i=k("offValue",e,t,n);return[Fl(a,r,s,i)]}case"Ones":return[Ka(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[On(k("x",e,t,n))];case"RandomUniform":return[zl(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let a=k("start",e,t,n),r=k("stop",e,t,n),s=k("step",e,t,n);return[hh(a,r,s,k("dtype",e,t,n))]}case"TruncatedNormal":{let a=k("shape",e,t,n),r=k("mean",e,t,n),s=k("stdDev",e,t,n),i=k("seed",e,t,n);return[kh(a,r,s,k("dtype",e,t,n),i)]}case"Zeros":return[xt(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[Ge(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function iv(e,t,n){let a=k("boxes",e,t,n),r=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var v4=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=iv(e,t,n),c=await Xa.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=iv(e,t,n),l=k("padToMaxOutputSize",e,t,n),c=await Xa.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=iv(e,t,n);return[await Xa.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=ue(k("condition",e,t,n),"bool"),r=[await ab(a)];return a.dispose(),r}case"ListDiff":return Ck(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},w4=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=k("x",e,t,n),r=k("k",e,t,n),s=k("sorted",e,t,n),i=tb(a,r,s);return[i.values,i.indices]}case"Unique":{let a=k("x",e,t,n),r=Ih(a);return[r.values,r.indices]}case"UniqueV2":{let a=k("x",e,t,n),r=k("axis",e,t,n),s=Ih(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},k4=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=k("default",e,t,n);return[En(e.name,t,n)||a];case"Placeholder":return[En(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=k("x",e,t,n);return[Ir(c)]}case"IdentityN":return k("x",e,t,n).map(c=>Ir(c));case"Snapshot":let r=k("x",e,t,n);return[Ir(r)];case"Shape":return[Qe(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(c=>Qe(c.shape));case"Size":return[pe(k("x",e,t,n).size,"int32")];case"Rank":return[pe(k("x",e,t,n).rank,"int32")];case"NoOp":return[pe(1)];case"Print":let s=k("x",e,t,n),i=k("data",e,t,n),o=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},I4=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=pe(0),this.tensorMap=new Map,jt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),D(()=>{let a=ut(t),r=n.length,s=a.length;w.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];jt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return D(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return $t(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},T4=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=k("keyDType",e,t,n),s=k("valueDType",e,t,n),i=new I4(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},N4=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=k("images",e,t,n),r=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Xa.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=k("images",e,t,n),r=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Xa.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=k("image",e,t,n),r=k("boxes",e,t,n),s=k("boxInd",e,t,n),i=k("cropSize",e,t,n),o=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[Xa.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},S4=(e,t,n)=>{switch(e.op){case"Equal":return[Zr(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[_i(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[pa(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[es(k("a",e,t,n),k("b",e,t,n))];case"Less":return[ih(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[Si(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[da(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[Ec(k("a",e,t,n))];case"LogicalOr":return[ch(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[Nn(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},C4=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ze(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Transpose":return[Ve(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=k("args",e,t,n);return[ns.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_4=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[fr(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[fr(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[By(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[Ta(k("x",e,t,n))];case"LogSoftmax":return[uh(k("x",e,t,n))];case"SparseToDense":return[rb(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},E4=(e,t,n)=>{switch(e.op){case"Max":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Zn(k("x",e,t,n),i,o)]}case"Mean":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[St(k("x",e,t,n),i,o)]}case"Min":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Ol(k("x",e,t,n),i,o)]}case"Sum":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Se(k("x",e,t,n),i,o)]}case"All":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Zd(k("x",e,t,n),i,o)]}case"Any":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[kc(k("x",e,t,n),i,o)]}case"ArgMax":{let i=k("axis",e,t,n);return[Ic(k("x",e,t,n),i)]}case"ArgMin":{let i=k("axis",e,t,n);return[ky(k("x",e,t,n),i)]}case"Prod":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[dh(k("x",e,t,n),i,o)]}case"Cumsum":{let i=k("axis",e,t,n),o=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[rh(k("x",e,t,n),i,o,l)]}case"Bincount":let a=k("x",e,t,n),r=k("weights",e,t,n),s=k("size",e,t,n);return[sk(a,r,s)];case"DenseBincount":{let i=k("x",e,t,n),o=k("weights",e,t,n),l=k("size",e,t,n),c=k("binaryOutput",e,t,n);return[pk(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},F4=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=k("n",e,t,n),r=k("axis",e,t,n),s=k("tensors",e,t,n);return s=s.slice(0,a),[Je(s,r)]}case"Gather":{let a=k("x",e,t,n),r=k("indices",e,t,n);return[Ni(a,ue(r,"int32"),0)]}case"GatherV2":{let a=k("axis",e,t,n),r=k("batchDims",e,t,n),s=k("x",e,t,n),i=k("indices",e,t,n);return[Ni(s,ue(i,"int32"),a,r)]}case"Reverse":{let a=k("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=k("x",e,t,n);return[Ln(s,r)]}case"ReverseV2":{let a=k("axis",e,t,n),r=k("x",e,t,n);return[Ln(r,a)]}case"Slice":{let a=k("begin",e,t,n),r=k("size",e,t,n);return[We(k("x",e,t,n),a,r)]}case"StridedSlice":{let a=k("begin",e,t,n),r=k("end",e,t,n),s=k("strides",e,t,n),i=k("beginMask",e,t,n),o=k("endMask",e,t,n),l=k("ellipsisMask",e,t,n),c=k("newAxisMask",e,t,n),u=k("shrinkAxisMask",e,t,n),p=k("x",e,t,n);return[Zy(p,a,r,s,i,o,l,c,u)]}case"Pack":return D(()=>{let a=k("axis",e,t,n),r=k("tensors",e,t,n),s=r[0].shape,i=ts(r[0]).shape,o=r.map(l=>{let c=w.arraysEqual(l.shape,s);if(!c&&!w.arraysEqual(ts(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:U(l,s)});return[$t(o,a)]});case"Unpack":{let a=k("axis",e,t,n),r=k("tensor",e,t,n);return ut(r,a)}case"Tile":{let a=k("reps",e,t,n);return[Ha(k("x",e,t,n),a)]}case"Split":case"SplitV":{let a=k("axis",e,t,n),r=k("numOrSizeSplits",e,t,n),s=k("x",e,t,n);return zn(s,r,a)}case"ScatterNd":{let a=k("indices",e,t,n),r=k("values",e,t,n),s=k("shape",e,t,n);return[Ak(a,r,s)]}case"GatherNd":{let a=k("x",e,t,n),r=k("indices",e,t,n);return[$k(a,r)]}case"SparseToDense":{let a=k("sparseIndices",e,t,n),r=k("outputShape",e,t,n),s=k("sparseValues",e,t,n),i=k("defaultValue",e,t,n);return[rb(a,s,r,s.dtype===i.dtype?i:ue(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},A4=(e,t,n)=>{switch(e.op){case"FFT":return[Rc(k("x",e,t,n))];case"IFFT":return[Wl(k("x",e,t,n))];case"RFFT":return[Mc(k("x",e,t,n))];case"IRFFT":return[vh(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$4=(e,t,n)=>{switch(e.op){case"Cast":return[ue(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let a=k("axis",e,t,n);return[Mn(k("x",e,t,n),a)]}case"Squeeze":{let a=k("axis",e,t,n);return[ts(k("x",e,t,n),a)]}case"Reshape":return[U(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[Hy(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[ea(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let a=k("blockShape",e,t,n),r=k("paddings",e,t,n);return[Fc(k("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=k("blockShape",e,t,n),r=k("crops",e,t,n);return[Nc(k("x",e,t,n),a,r)]}case"DepthToSpace":{let a=k("blockSize",e,t,n),r=k("dataFormat",e,t,n).toUpperCase();return[Ry(k("x",e,t,n),a,r)]}case"BroadcastTo":return[Sc(k("x",e,t,n),k("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function dT(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return D(()=>c4(s,i,o));case"basic_math":return D(()=>p4(s,i,o));case"control":return y4(s,i,o);case"convolution":return D(()=>b4(s,i,o));case"creation":return D(()=>x4(s,i,o));case"dynamic":return v4(s,i,o);case"evaluation":return D(()=>w4(s,i,o));case"image":return D(()=>N4(s,i,o));case"graph":return D(()=>k4(s,i,o));case"logical":return D(()=>S4(s,i,o));case"matrices":return D(()=>C4(s,i,o));case"normalization":return D(()=>_4(s,i,o));case"reduction":return D(()=>E4(s,i,o));case"slice_join":return D(()=>F4(s,i,o));case"spectral":return D(()=>A4(s,i,o));case"transformation":return D(()=>$4(s,i,o));case"hash_table":return T4(s,i,o,a);case"custom":let l=VI(s.op);if(l&&l.customExecutor)return l.customExecutor(new u4(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var hT=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function fT(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Wn(d)[0]),u=[];a!=null&&(u=a.map(d=>Wn(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((mT(d)||D4(d)||R4(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function M4(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(u=>Wn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{a.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{a.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{a.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&s.push(p)})}return c}var P4=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],O4=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],L4=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function mT(e){return P4.indexOf(e.op)>=0}function D4(e){return O4.indexOf(e.op)>=0}function R4(e){return L4.indexOf(e.op)>=0}var ov=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new ov(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=fT(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return M4(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(u=>this.graph.nodes[Wn(u)[0]]),r=t.map(u=>Wn(u)[0]),s=r.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return D(()=>{let u=new hT(this.weightMap,l,c,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Wn(m),y=[];y[g]=e[m],p[f]=y});let d=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let g=dT(f,p,u,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=g,this.checkTensorForDisposal(f.name,f,p,u,d,r,h)}}return this.parent==null&&u.dispose(d),t.map(m=>En(m,p,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=GW(o.name,n,a);l!=null&&l.forEach(c=>{if(c&&!r.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new hT(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>En(p,i,s)),l=o.map(p=>p.id),c=Object.keys(e).map(p=>e[p].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(d=>{d&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Wn(b)[0]]),i=n.map(b=>Wn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:p}=fT(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,v]=Wn(b),N=[];N[v]=e[b],h[x]=N});let m={},f=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let b=this.processStack(s,d,t,h,g,f,i,m,l);await Promise.all(b)}u==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!mT(b)&&!En(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw u!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let p="";if(u.node.op==="Enter"&&k("isConstant",u.node,a,n)&&([p]=kr(u.node.name,n)),a[u.node.name]==null){let d=dT(u.node,a,n,this._resourceManager);p||([p]=kr(u.node.name,n));let h=n.currentContext;w.isPromise(d)?c.push(d.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l),m))):(a[p]=d,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l))}else this.processChildNodes(u.node,t,n,a,r,l)}return c}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=kr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!En(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!En(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Wn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Wn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Wn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},z4=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},B4="?tfjs-format=file",W4="model.json",gT=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new z4}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Ht.browserHTTPRequest(e,this.loadOptions);else{let t=Ht.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Ht.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=Ht.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new ov(oT.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=oT.Instance.transformGraph(e.modelInitializer);this.initializer=new ov(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Ht.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ee)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function V4(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${W4}${B4}`);let n=new gT(e,t);return await n.load(),n}var yT="3.2.0",bT={};Oe(bT,{CSVDataset:()=>vT,Dataset:()=>Jl,FileDataSource:()=>wT,TextLineDataset:()=>xT,URLDataSource:()=>kT,array:()=>U4,csv:()=>H4,func:()=>j4,generator:()=>q4,microphone:()=>X4,version_data:()=>IT,webcam:()=>K4,zip:()=>G4});var Y4=Io(ad()),J4=Io(ad());function Q4(e,t){return bm(e,t)}function bm(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Ql(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=bm(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Z4(e,t=NT){return TT(e,t)}function TT(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Ql(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(c=>c[i]),l=TT(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function NT(e){return e===null?null:Ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function ST(e,t){let n=new Map;bm(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(w.isPromise(r)){let s=await r;n.set(a,s)}}return bm(e,t,n)}function Ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ee))}function tV(e){return e==null||eV(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ee||w.isTypedArray(e)}function eV(e){return e===null||typeof e!="object"&&typeof e!="function"}function aV(e){return Q4(e,nV)}function nV(e){return e instanceof Ee?{value:e.clone(),recurse:!1}:Ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var CT=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},lv=class extends CT{constructor(){super(lv.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};lv.INITIAL_CAPACITY=32;function _T(e){return new rV(e)}function uv(e){return new sV(e)}function iV(e,t){return new ET(e,t)}function lV(e,t=cs.FAIL){return new oV(e,t)}var Yt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new fV(this,e)}filter(e){return new hV(this,e)}map(e){return new mV(this,e)}mapAsync(e){return new FT(this,e)}serialMapAsync(e){return new FT(this,e).serial()}flatmap(e){return new gV(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new dV(this,e,t)}columnMajorBatch(e,t=!0,n=NT){return this.rowMajorBatch(e,t).map(a=>Z4(a,n))}concatenate(e,t){return new ET(_T([this,e]),t)}take(e){return e<0||e==null?this:new pV(this,e)}skip(e){return e<0||e==null?this:new cV(this,e)}prefetch(e){return new AT(this,e)}shuffle(e,t){return new yV(this,e,t)}serial(){return new uV(this)}},rV=class extends Yt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:aV(e),done:!1}}},sV=class extends Yt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},uV=class extends Yt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},cV=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ae(e.value)}return this.upstream.next()}},pV=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},dV=class extends Yt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},hV=class extends Yt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ae(e.value)}}},mV=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ia.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ia.getTensorsInContainer(n);for(let r of t)Ia.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},fV=class extends Yt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},FT=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ia.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ia.getTensorsInContainer(n);for(let r of t)Ia.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},cv=class extends Yt{constructor(){super();this.outputQueue=new lv,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},gV=class extends cv{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ia.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ia.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ia.isTensorInList(r,a)||r.dispose();return!0}},ET=class extends Yt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},cs;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(cs||(cs={}));var oV=class extends Yt{constructor(e,t=cs.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Yt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await ST(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case cs.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case cs.SHORTEST:return{value:null,done:!0};case cs.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},AT=class extends Yt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new CT(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},yV=class extends AT{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=J4.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Vn(async()=>(await n.iterator()).columnMajorBatch(e,t,bV),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Vn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Vn(async()=>(await t.iterator()).filter(a=>D(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Vn(async()=>(await t.iterator()).map(n=>D(()=>e(n))),this.size)}mapAsync(e){let t=this;return Vn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Vn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Vn(async()=>{let a=uv(async()=>({value:await t.iterator(),done:!1}));return iV(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Vn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=Y4.alea(t||w.now().toString());return Vn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Vn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Vn(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function U4(e){return Vn(async()=>_T(e),e.length)}function G4(e){if(!Ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Vn(async()=>{let n=await ST(e,a=>{if(a instanceof Jl)return{value:a.iterator(),recurse:!1};if(Ql(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return lV(n,cs.SHORTEST)},t)}function bV(e){if(e===null)return null;let t=e[0];return tV(t)?{value:xV(e),recurse:!1}:{value:null,recurse:!0}}function xV(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ee?$t(e):Yn(e)}var xT=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},xm='"',ap=Symbol("out"),$T=Symbol("field"),vm=Symbol("quote"),pv=Symbol("quoteafterquote"),DT=Symbol("quoteinquote"),vT=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new xT(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let c=Number(o);if(isNaN(c))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=c;else switch(i.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(o);break;default:l=c}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=ap;for(let i=0;i<r;i++)switch(s){case ap:switch(e.charAt(i)){case xm:a=i+1,s=vm;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=ap;break;default:s=$T,a=i;break}break;case $T:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=ap,a=i+1;break;default:}break;case vm:switch(e.charAt(i)){case xm:s=pv;break;default:}break;case pv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=ap,a=i+1;break;case xm:s=vm;break;default:s=DT;break}break;case DT:switch(e.charAt(i)){case xm:s=vm;break;default:}break;default:}if(s===pv?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},RT=class extends Yt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ee().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new RT(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Yn(n,t)}},MT=class extends Yt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Qe([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Na([s,r,o,i],[1,4])}else this.cropBox=Na([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ee().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new MT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ki.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return D(()=>{let t=Mn(ue(e,"float32"),0),n;n=Xa.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return U(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},PT=class{},OT=class extends Yt{split(e){return new vV(this,e)}},vV=class extends OT{constructor(e,t){super();this.upstream=e,this.impl=new wV(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},wV=class extends cv{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},IV=class extends Yt{decodeUTF8(){return new kV(this)}},kV=class extends OT{constructor(e){super();this.upstream=e,this.impl=new TV(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},TV=class extends cv{constructor(e){super();if(this.upstream=e,ee().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=K_();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ee().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},LT=class extends IV{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(ee().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function SV(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=NV(e));let r=await w.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new LT(s,t)}else throw new Error(r.statusText)}var NV=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function zT(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var wT=class extends PT{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(zT(this.input)&&ee().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new LT(this.input,this.options)}},kT=class extends PT{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return zT(this.url)?new wT(this.url,this.fileOptions).iterator():SV(this.url,this.fileOptions)}};function H4(e,t={}){return new vT(new kT(e),t)}function j4(e){let t=uv(e);return Vn(async()=>t)}function q4(e){return Vn(async()=>{let t=await e();return uv(()=>t.next())})}async function K4(e,t){return MT.create(e,t)}async function X4(e){return RT.create(e)}var IT="3.2.0";function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var CV=Ya.whereImpl,dv=class extends ju{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new rd(this,Ua())}nextDataId(){return dv.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,ee().get("IS_NODE")&&_.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return Ua().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return CV(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};dv.nextDataId=0;var BT={};Oe(BT,{addImpl:()=>VT,bincountImpl:()=>hv,bincountReduceImpl:()=>UT,ceilImpl:()=>GT,concatImpl:()=>mv,expImpl:()=>HT,expm1Impl:()=>jT,floorImpl:()=>qT,gatherV2Impl:()=>KT,greaterImpl:()=>XT,lessImpl:()=>YT,linSpaceImpl:()=>JT,logImpl:()=>QT,maxImpl:()=>ZT,maximumImpl:()=>eN,minimumImpl:()=>tN,multiplyImpl:()=>fv,negImpl:()=>nN,notEqualImpl:()=>aN,prodImpl:()=>rN,rangeImpl:()=>yv,rsqrtImpl:()=>sN,simpleAbsImpl:()=>WT,sliceImpl:()=>wm,squaredDifferenceImpl:()=>iN,stridedSliceImpl:()=>oN,subImpl:()=>lN,tileImpl:()=>uN,topKImpl:()=>cN,transposeImpl:()=>gv,uniqueImpl:()=>pN});function WT(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var _V=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=WT(r),n.makeOutput(a,t.shape,"float32")},EV={kernelName:So,backendName:"cpu",kernelFunc:_V};function Rt(e){return(t,n,a,r,s)=>{let i=_.assertAndGetBroadcastShape(t,n),o=i.length,l=w.computeStrides(i),c=w.sizeFromShape(i),u=w.getTypedArrayFromDType(s,c),p=t.length,d=n.length,h=w.computeStrides(t),m=w.computeStrides(n),f=_.getBroadcastDims(t,i),g=_.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<u.length;++y)u[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<u.length;++y){let b=w.indexToLoc(y,o,l),x=b.slice(-p);f.forEach(S=>x[S]=0);let v=w.locToIndex(x,p,h),N=b.slice(-d);g.forEach(S=>N[S]=0);let T=w.locToIndex(N,d,m);u[y]=e(a[v],r[T])}return[u,i]}}function Un(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var FV={kernelName:hd,backendName:"cpu",kernelFunc:Un};function km(e,t,n="float32"){if(n==="complex64"){let r=km(e,t,"float32"),s=km(e,t,"float32");return Un({inputs:{real:r,imag:s},backend:e})}let a=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function nr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var AV={kernelName:Ws,backendName:"cpu",kernelFunc:nr};function Wi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var $V={kernelName:Dd,backendName:"cpu",kernelFunc:Wi};function ps(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return nr({inputs:{x:r},backend:n});let i=km(n,r.shape,r.dtype),o=ps({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Un({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Wi({inputs:{input:r},backend:n}),o=ps({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=nr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[l,c]=Rt((u,p)=>u!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var DV={kernelName:_s,backendName:"cpu",kernelFunc:ps};function Jt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ve([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=ps({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(d.dataId).values,f=ps({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(b.dataId).values,[N,T,S]=n(i.shape,o.shape,h,m,x,v),A=l.makeTensorInfo(S,"float32",N),$=l.makeTensorInfo(S,"float32",T),R=Un({inputs:{real:A,imag:$},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(A),l.disposeIntermediateTensorInfo($),R}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}}}function bv(e){return(t,n,a,r,s,i)=>{let o=_.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(o),c=o.length,u=w.computeStrides(o),p=w.getTypedArrayFromDType("float32",l),d=w.getTypedArrayFromDType("float32",l),h=_.getBroadcastDims(t,o),m=_.getBroadcastDims(n,o),f=_.mergeRealAndImagArrays(a,r),g=_.mergeRealAndImagArrays(s,i),y=t.length,b=w.computeStrides(t),x=n.length,v=w.computeStrides(n);if(h.length+m.length===0)for(let N=0;N<p.length;N++){let T=N%f.length,S=N%g.length,A=e(f[T*2],f[T*2+1],g[S*2],g[S*2+1]);p[N]=A.real,d[N]=A.imag}else for(let N=0;N<p.length;N++){let T=w.indexToLoc(N,c,u),S=T.slice(-y);h.forEach(V=>S[V]=0);let A=w.locToIndex(S,y,b),$=T.slice(-x);m.forEach(V=>$[V]=0);let R=w.locToIndex($,x,v),B=e(f[A*2],f[A*2+1],g[R*2],g[R*2+1]);p[N]=B.real,d[N]=B.imag}return[p,d,o]}}var VT=Rt((e,t)=>e+t),RV=bv((e,t,n,a)=>({real:e+n,imag:t+a})),rp=Jt(Wr,VT,RV),MV={kernelName:Wr,backendName:"cpu",kernelFunc:rp};function hv(e,t,n,a,r){let s=w.sizeFromShape(a),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function UT(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Le([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let c=e.get(o,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(a?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function Zl(e){return(t,n,a)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function st(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=w.sizeFromShape(i.shape),u=n||i.dtype,p=w.getArrayFromDType(u,c);for(let d=0;d<c;++d)p[d]=t(l[d],r);return o.makeTensorInfo(i.shape,u,p)}}function eu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,r);return o.makeTensorInfo(i.shape,c,u)}}var GT=Zl(e=>Math.ceil(e)),PV=eu(Es,GT),OV={kernelName:Es,backendName:"cpu",kernelFunc:PV};function mv(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let p=0;p<i.shape[1];++p)r[u+p]=o[l++]}s+=i.shape[1]})}return r}var HT=Zl(e=>Math.exp(e)),dN=eu(Ps,HT),LV={kernelName:Ps,backendName:"cpu",kernelFunc:dN},jT=Zl(e=>Math.expm1(e)),zV=eu(Vo,jT),BV={kernelName:Vo,backendName:"cpu",kernelFunc:zV},qT=Zl(e=>Math.floor(e)),WV=eu(Os,qT),VV={kernelName:Os,backendName:"cpu",kernelFunc:WV};function KT(e,t,n){let a=Le(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let c=e.locToIndex(s);a.values[r]=e.values[c]}return a}var XT=Rt((e,t)=>e>t?1:0),UV=Jt(jo,XT,null,"bool"),GV={kernelName:jo,backendName:"cpu",kernelFunc:UV},YT=Rt((e,t)=>e<t?1:0),HV=Jt(Yo,YT,null,"bool"),jV={kernelName:Yo,backendName:"cpu",kernelFunc:HV};function JT(e,t,n){let a=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var QT=Zl(e=>Math.log(e)),qV=eu(Us,QT),KV={kernelName:Us,backendName:"cpu",kernelFunc:qV};function ZT(e,t,n,a){let r=w.getTypedArrayFromDType(a,w.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let c=e[i+l];c>o&&(o=c)}r[s]=o}return r}var eN=Rt((e,t)=>Math.max(e,t)),XV=Jt(Hs,eN),YV={kernelName:Hs,backendName:"cpu",kernelFunc:XV},tN=Rt((e,t)=>Math.min(e,t)),JV=Jt(Xs,tN),QV={kernelName:Xs,backendName:"cpu",kernelFunc:JV},fv=Rt((e,t)=>e*t),ZV=bv((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),xv=Jt(Ys,fv,ZV),eU={kernelName:Ys,backendName:"cpu",kernelFunc:xv};function nN(e,t,n){let a=w.createScalarValue(-1,n);return fv([],t,a,e,n)}function tU(e){let{inputs:t,backend:n}=e,{x:a}=t;ve(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=nN(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var nU={kernelName:tl,backendName:"cpu",kernelFunc:tU},aN=Rt((e,t)=>e!==t?1:0),aU=Jt(nl,aN,null,"bool"),rU={kernelName:nl,backendName:"cpu",kernelFunc:aU};function gv(e,t,n,a,r){let s=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),l=w.computeStrides(r),c=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let u=0;u<i;++u){let p=w.indexToLoc(u,s,o),d=new Array(p.length);for(let m=0;m<d.length;m++)d[m]=p[a[m]];let h=w.locToIndex(d,s,l);c[h]=e[u]}return c}function ya(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ve(r,"transpose");let i=r.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=r.shape[s[u]];let l=a.data.get(r.dataId).values,c=gv(l,r.shape,r.dtype,s,o);return{dataId:a.write(c,o,r.dtype),shape:o,dtype:r.dtype}}var sU={kernelName:fi,backendName:"cpu",kernelFunc:ya};function rN(e,t,n,a){let[r,s]=_.computeOutAndReduceShapes(e,a),i=ua(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),l=w.sizeFromShape(s);for(let c=0;c<o.length;++c){let u=c*l,p=1;for(let d=0;d<l;++d)p*=n[u+d];o[c]=p}return{outVals:o,outShape:r,outDtype:i}}function iU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"prod");let o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=_.getAxesPermutation(l,o),u=l,p=r,d=[];c!=null&&(p=ya({inputs:{x:r},backend:n,attrs:{perm:c}}),d.push(p),u=_.getInnerMostAxes(u.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:g}=rN(p.shape,p.dtype,h,u),y=f;return i&&(y=_.expandShapeToKeepDim(f,l)),d.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var oU={kernelName:ll,backendName:"cpu",kernelFunc:iU};function yv(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var sN=Zl(e=>1/Math.sqrt(e)),lU=eu(ii,sN),uU={kernelName:ii,backendName:"cpu",kernelFunc:lU};function wm(e,t,n,a,r){let s=pn.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let p=pn.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,c=Le(a,r,l),u=Le(n,r);for(let p=0;p<u.size;++p){let d=u.indexToLoc(p),h=d.map((m,f)=>m+t[f]);u.set(c.get(...h),...d)}return r==="string"?_.fromStringArrayToUint8(u.values):u.values}function Vi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ve(r,"slice");let[o,l]=pn.parseSliceParams(r,s,i);pn.assertParamsValid(r,o,l);let c=n.data.get(r.dataId).values,u=wm(c,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var cU={kernelName:ml,backendName:"cpu",kernelFunc:Vi},iN=Rt((e,t)=>{let n=e-t;return n*n}),pU=Jt(di,iN),dU={kernelName:di,backendName:"cpu",kernelFunc:pU};function oN(e,t,n,a){let r=Le(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var lN=Rt((e,t)=>e-t),hU=bv((e,t,n,a)=>({real:e-n,imag:t-a})),vv=Jt(hi,lN,hU),mU={kernelName:hi,backendName:"cpu",kernelFunc:vv};function uN(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Le(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function cN(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=w.getTypedArrayFromDType(n,i*a),c=w.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let d=p*o,h=e.subarray(d,d+o),m=[];for(let b=0;b<h.length;b++)m.push({value:h[b],index:b});m.sort((b,x)=>x.value-b.value);let f=p*a,g=l.subarray(f,f+a),y=c.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let u=t.slice();return u[u.length-1]=a,[Le(u,n,l),Le(u,"int32",c)]}function pN(e,t,n,a){let r=w.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Ot(s,a,e),c=[],u=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(u)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,c.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let d=new Ot(p,a);c.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)d.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:o}}var fU="3.2.0";Jd("cpu",()=>new dv,1);var hN=st(Lo,e=>e>=0?e:Math.exp(e)-1),gU={kernelName:Lo,backendName:"cpu",kernelFunc:hN};function mN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ve([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",i);for(let c=0;c<o.length;c++)l[c]=o[c]<0?s*o[c]:o[c];return n.makeTensorInfo(r.shape,"float32",l)}var yU={kernelName:Vs,backendName:"cpu",kernelFunc:mN},bU=Rt((e,t)=>e<0?t*e:e);function fN(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ve([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=bU(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var xU={kernelName:ei,backendName:"cpu",kernelFunc:fN},gN=st(ti,e=>Math.max(0,e)),vU={kernelName:ti,backendName:"cpu",kernelFunc:gN},yN=st(ai,e=>Math.min(Math.max(0,e),6)),wU={kernelName:ai,backendName:"cpu",kernelFunc:yN};function wv(e,t,n,a,r){if(n==="linear")return nr({inputs:{x:t},backend:e});if(n==="relu")return gN({inputs:{x:t},backend:e});if(n==="elu")return hN({inputs:{x:t},backend:e});if(n==="relu6")return yN({inputs:{x:t},backend:e});if(n==="prelu")return fN({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return mN({inputs:{x:t},backend:e,attrs:{alpha:r}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function kt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,i),l=w.sizeFromShape(o);w.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,p=c.complexTensorInfos.imag;u.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var kU={kernelName:cl,backendName:"cpu",kernelFunc:kt};function bN(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ve([r,s],"matMul");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=g===y||g===1||y===1;w.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);w.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,u,d]:[g,d,u],N=o?[y,h,p]:[y,p,h],T=kt({inputs:{x:r},backend:n,attrs:{shape:v}}),S=kt({inputs:{x:s},backend:n,attrs:{shape:N}}),A=i?T.shape[1]:T.shape[2],$=i?T.shape[2]:T.shape[1],R=o?S.shape[1]:S.shape[2],B=Math.max(g,y),V=n.data.get(T.dataId).values,W=n.data.get(S.dataId).values,G=w.computeStrides(T.shape),H=w.computeStrides(S.shape),[X,q,te]=i?[G[0],1,G[1]]:[G[0],G[1],1],[Q,se,ne]=o?[1,H[1],H[0]]:[H[1],1,H[0]],ie=$*R,Z=Le([B,$,R],T.dtype),de=Z.values,oe=n.blockSize;for(let ge=0;ge<B;ge++)for(let fe=0;fe<$;fe+=oe)for(let we=0;we<R;we+=oe)for(let Te=0;Te<A;Te+=oe){let _e=Math.min(fe+oe,$),Re=Math.min(we+oe,R),Fe=Math.min(Te+oe,A);for(let tt=fe;tt<_e;tt++)for(let nt=we;nt<Re;nt++){let it=0;for(let Xe=Te;Xe<Fe;Xe++){let mt=Math.min(ge,g-1)*X,Be=Math.min(ge,y-1)*ne,vn=V[mt+tt*q+Xe*te],It=W[Xe*Q+nt*se+Be];it+=vn*It}de[ge*ie+(tt*R+nt)]+=it}}return n.disposeIntermediateTensorInfo(T),n.disposeIntermediateTensorInfo(S),n.makeTensorInfo(x,Z.dtype,Z.values)}var IU={kernelName:Cs,backendName:"cpu",kernelFunc:bN};function TU(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d,h,m,f=[];d=bN({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:c},backend:n}),i&&(h=rp({inputs:{a:d,b:i},backend:n}),f.push(d),d=h),u&&(m=wv(n,d,u,o,p),f.push(d),d=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return d}var NU={kernelName:gi,backendName:"cpu",kernelFunc:TU},SU=st(Co,e=>Math.acos(e)),CU={kernelName:Co,backendName:"cpu",kernelFunc:SU},_U=st(_o,e=>Math.acosh(e)),EU={kernelName:_o,backendName:"cpu",kernelFunc:_U};function FU(e){let{inputs:t,backend:n}=e,a=t;ve(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Le(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let c=0;c<i.length;c++)i[c]+=l[c]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var AU={kernelName:Ts,backendName:"cpu",kernelFunc:FU};function $U(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"all");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ya({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("all",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let N=f[b+v];x=x&&N}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var DU={kernelName:ld,backendName:"cpu",kernelFunc:$U};function RU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"any");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ya({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("any",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let N=f[b+v];x=x||N}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var MU={kernelName:ud,backendName:"cpu",kernelFunc:RU};function PU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMax");let i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=ya({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=w.sizeFromShape(u),h=w.makeZerosTypedArray(d,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let N=f[y+v];N>b&&(b=N,x=v)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var OU={kernelName:Ns,backendName:"cpu",kernelFunc:PU};function LU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMin");let i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=ya({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=w.sizeFromShape(u),h=w.makeZerosTypedArray(d,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let N=f[y+v];N<b&&(b=N,x=v)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var zU={kernelName:Xu,backendName:"cpu",kernelFunc:LU},BU=st(Eo,e=>Math.asin(e)),WU={kernelName:Eo,backendName:"cpu",kernelFunc:BU},VU=st(Fo,e=>Math.asinh(e)),UU={kernelName:Fo,backendName:"cpu",kernelFunc:VU},GU=st(Ao,e=>Math.atan(e)),HU={kernelName:Ao,backendName:"cpu",kernelFunc:GU},jU=Rt((e,t)=>Math.atan2(e,t)),qU=Jt(Do,jU),KU={kernelName:Do,backendName:"cpu",kernelFunc:qU},XU=st($o,e=>Math.atanh(e)),YU={kernelName:$o,backendName:"cpu",kernelFunc:XU};function kv(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Le(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let N=v*y,T=v*a[0];for(let S=0;S<r.inChannels;++S)for(let A=0;A<r.outHeight;++A){let $=A*i-d,R=Math.max(0,$),B=Math.min(r.inHeight,u+$),V=N+A*b;for(let W=0;W<r.outWidth;++W){let G=W*o-h,H=Math.max(0,G),X=Math.min(r.inWidth,p+G),q=m,te=0,Q=0;for(let ne=R;ne<B;ne+=l){let ie=T+ne*a[1];for(let Z=H;Z<X;Z+=c){let de=ie+Z*a[2],oe=e[de+S];s==="max"&&oe>q?q=oe:s==="avg"&&(te+=oe,Q++)}if(isNaN(q))break}let se=V+W*x+S;g[se]=s==="avg"?te/Q:q}}}return f}function xN(e,t,n,a,r=!1,s=!1){let i=Le(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,c=a.dilationHeight,u=a.dilationWidth,p=a.effectiveFilterHeight,d=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Le(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,v=x;for(;v<0;)v+=c;let N=Math.min(a.inHeight,p+x);for(let T=0;T<a.outWidth;++T){let S=T*l-m,A=S;for(;A<0;)A+=u;let $=Math.min(a.inWidth,d+S),R=Number.NEGATIVE_INFINITY,B=-1;for(let V=v;V<N;V+=c){let W=V-x;for(let G=A;G<$;G+=u){let H=G-S,X=f.get(g,V,G,y);X>R&&(R=X,r?B=s?((g*a.inHeight+V)*a.inWidth+G)*a.inChannels+y:(V*a.inWidth+G)*a.inChannels+y:B=W*d+H)}}i.set(B,g,b,T,y)}}return i}function vN(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Le(r.outShape,n),v=x.values,N=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],A=r.outShape[4];for(let $=0;$<r.batchSize;++$){let R=$*N,B=$*a[0];for(let V=0;V<r.inChannels;++V)for(let W=0;W<r.outDepth;++W){let G=W*i-f,H=G;for(;H<0;)H+=c;let X=Math.min(r.inDepth,d+G),q=R+W*T;for(let te=0;te<r.outHeight;++te){let Q=te*o-g,se=Q;for(;se<0;)se+=u;let ne=Math.min(r.inHeight,h+Q),ie=q+te*S;for(let Z=0;Z<r.outWidth;++Z){let de=Z*l-y,oe=de;for(;oe<0;)oe+=p;let ge=Math.min(r.inWidth,m+de),fe=ie+Z*A,we=b,Te=0,_e=0;for(let Fe=H;Fe<X;Fe+=c){let tt=B+Fe*a[1];for(let nt=se;nt<ne;nt+=u){let it=tt+nt*a[2];for(let Xe=oe;Xe<ge;Xe+=p){let mt=it+Xe*a[3],Be=e[mt+V];if(s==="max"&&Be>we?we=Be:s==="avg"&&(Te+=Be,_e++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let Re=fe+V;v[Re]=s==="avg"?Te/_e:we}}}}return x}function JU(e,t){let n=Le(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-d,x=b;for(;x<0;)x+=i;let v=Math.min(t.inDepth,c+b);for(let N=0;N<t.outHeight;++N){let T=N*r-h,S=T;for(;S<0;)S+=o;let A=Math.min(t.inHeight,u+T);for(let $=0;$<t.outWidth;++$){let R=$*s-m,B=R;for(;B<0;)B+=l;let V=Math.min(t.inWidth,p+R),W=Number.NEGATIVE_INFINITY,G=-1;for(let H=x;H<v;H+=i){let X=H-b;for(let q=S;q<A;q+=o){let te=q-T;for(let Q=B;Q<V;Q+=l){let se=Q-R,ne=e.get(f,H,q,Q,g);ne>=W&&(W=ne,G=X*u*p+te*u+se)}}}n.set(G,f,y,N,$,g)}}}return n}function QU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))p=nr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=kv(d,r.shape,r.dtype,h,u,"avg");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var ZU={kernelName:Ss,backendName:"cpu",kernelFunc:QU};function eG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;ve(r,"avgPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=vN(p,r.shape,r.dtype,w.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var tG={kernelName:Yu,backendName:"cpu",kernelFunc:eG};function nG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;ve([r,s],"avgPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=u.strideDepth,d=u.strideHeight,h=u.strideWidth,m=u.filterDepth,f=u.filterHeight,g=u.filterWidth,y=u.dilationDepth,b=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,N=u.effectiveFilterHeight,T=u.effectiveFilterWidth,S=v-1-u.padInfo.front,A=T-1-u.padInfo.left,$=N-1-u.padInfo.top,R=Le(s.shape,"float32"),B=1/(m*f*g),V=n.bufferSync(r);for(let W=0;W<u.batchSize;++W)for(let G=0;G<u.inChannels;++G)for(let H=0;H<u.inDepth;++H)for(let X=0;X<u.inHeight;++X)for(let q=0;q<u.inWidth;++q){let te=H-S,Q=X-$,se=q-A,ne=0;for(let ie=0;ie<v;ie+=y){let Z=(te+ie)/p;if(!(Z<0||Z>=u.outDepth||Math.floor(Z)!==Z))for(let de=0;de<N;de+=b){let oe=(Q+de)/d;if(!(oe<0||oe>=u.outHeight||Math.floor(oe)!==oe))for(let ge=0;ge<T;ge+=x){let fe=(se+ge)/h;fe<0||fe>=u.outWidth||Math.floor(fe)!==fe||(ne+=V.get(W,Z,oe,fe,G))}}}R.set(ne*B,W,H,X,q,G)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var aG={kernelName:pd,backendName:"cpu",kernelFunc:nG};function rG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ve([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=u.strideHeight,d=u.strideWidth,h=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,g=u.dilationWidth,y=u.effectiveFilterHeight,b=u.effectiveFilterWidth,x=b-1-u.padInfo.left,v=y-1-u.padInfo.top,N=Le(i.shape,"float32"),T=1/(h*m),S=n.data.get(r.dataId).values,A=Le(r.shape,"float32",S);for(let $=0;$<u.batchSize;++$)for(let R=0;R<u.inChannels;++R)for(let B=0;B<u.inHeight;++B)for(let V=0;V<u.inWidth;++V){let W=B-v,G=V-x,H=0;for(let X=0;X<y;X+=f){let q=(W+X)/p;if(!(q<0||q>=u.outHeight||Math.floor(q)!==q))for(let te=0;te<b;te+=g){let Q=(G+te)/d;Q<0||Q>=u.outWidth||Math.floor(Q)!==Q||(H+=A.get($,q,Q,R))}}N.set(H*T,$,B,V,R)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var sG={kernelName:cd,backendName:"cpu",kernelFunc:rG};function iG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;w.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([r,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=a;c==null&&(c=.001);let u=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),g=m.length,y=h.length,b=d.length,x=p.length,v=0,N=0,T=0,S=0;for(let A=0;A<u.length;++A)f[A]=m[v++]+(u[A]-p[N++])*h[T++]/Math.sqrt(d[S++]+c),v>=g&&(v=0),N>=x&&(N=0),T>=y&&(T=0),S>=b&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var oG={kernelName:zs,backendName:"cpu",kernelFunc:iG};function lG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ve([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=kt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ya({inputs:{x:h},backend:n,attrs:{perm:c}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:u}}),g=Vi({inputs:{x:f},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var uG={kernelName:Ju,backendName:"cpu",kernelFunc:lG};function cG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,c=hv(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var pG={kernelName:dd,backendName:"cpu",kernelFunc:cG},dG=st(Vr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),hG={kernelName:Vr,backendName:"cpu",kernelFunc:dG},mG=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;c<o.length;c++){let u=o[c],p=l[c];a[c]=Math.hypot(u,p)}return n.makeOutput(a,t.shape,"float32")},fG={kernelName:Qu,backendName:"cpu",kernelFunc:mG};function tu(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var gG={kernelName:Sd,backendName:"cpu",kernelFunc:tu};function nu(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(f=>f.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>w.sizeFromShape(f.shape)>0);if(o.length===1)return nr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(_.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>Wi({inputs:{input:v},backend:n})),g=o.map(v=>tu({inputs:{input:v},backend:n})),y=nu({inputs:f,backend:n,attrs:{axis:s}}),b=nu({inputs:g,backend:n,attrs:{axis:s}}),x=Un({inputs:{real:y,imag:b},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let c=o.map(f=>{let g=w.sizeFromShape(f.shape.slice(s));return kt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=_.computeOutShape(c.map(f=>f.shape),1);let p=c[0].shape[0]===1,d=mv(u,i,t[0].dtype,p),h=_.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var yG={kernelName:Ro,backendName:"cpu",kernelFunc:nu};function wN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a;ve([r,s],"conv2d");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,b=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Ot(d.outShape,r.dtype),N=w.computeStrides(r.shape),T=w.computeStrides(s.shape),S=N[0],A=x?N[1]:N[2],$=x?N[2]:1,R=x?1:N[1],B=v.strides[0],V=x?v.strides[1]:v.strides[2],W=x?v.strides[2]:1,G=x?1:v.strides[1],H=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,q=v.values;for(let te=0;te<d.batchSize;++te){let Q=te*S,se=te*B;for(let ne=0;ne<d.outHeight;++ne){let ie=se+ne*V,Z=ne*d.strideHeight-b;for(let de=0;de<h;++de){let oe=Z+de*f;if(oe<0||oe>=d.inHeight)continue;let ge=de*T[0],fe=Q+oe*A;for(let we=0;we<d.outWidth;++we){let Te=ie+we*W,_e=we*d.strideWidth-y;for(let Re=0;Re<m;++Re){let Fe=_e+Re*g;if(Fe<0||Fe>=d.inWidth)continue;let tt=ge+Re*T[1],nt=fe+Fe*$,it=tt;for(let Xe=0;Xe<d.inChannels;++Xe){let mt=H[nt+Xe*R];for(let Be=0;Be<d.outChannels;++Be)q[Te+Be*G]+=mt*X[it+Be];it+=d.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,q)}var bG={kernelName:Fs,backendName:"cpu",kernelFunc:wN};function xG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a;ve([r,s],"conv2dBackpropFilter");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=d,y=d.dataFormat==="channelsLast",b=new Ot(d.filterShape,"float32"),x=d.padInfo.left,v=d.padInfo.top,N=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,S=new Ot(r.shape,r.dtype,N),A=new Ot(s.shape,s.dtype,T);for(let $=0;$<f;++$){let R=Math.max(0,Math.ceil((v-$)/h)),B=Math.min(d.outHeight,(d.inHeight+v-$)/h);for(let V=0;V<g;++V){let W=Math.max(0,Math.ceil((x-V)/m)),G=Math.min(d.outWidth,(d.inWidth+x-V)/m);for(let H=0;H<d.inChannels;++H)for(let X=0;X<d.outChannels;++X){let q=0;for(let te=0;te<d.batchSize;++te)for(let Q=R;Q<B;++Q){let se=$+Q*h-v;for(let ne=W;ne<G;++ne){let ie=V+ne*m-x;y?q+=S.get(te,se,ie,H)*A.get(te,Q,ne,X):q+=S.get(te,H,se,ie)*A.get(te,X,Q,ne)}}b.set(q,$,V,H,X)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var vG={kernelName:md,backendName:"cpu",kernelFunc:xG};function wG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a;ve([r,s],"conv2dBackpropInput");let p=w.computeStrides(s.shape),d=w.computeStrides(r.shape),h=_.convertConv2DDataFormat(c),m=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),f=new Ot(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,v,N]=p,{batchSize:T,filterHeight:S,filterWidth:A,inChannels:$,inHeight:R,inWidth:B,outChannels:V,outHeight:W,outWidth:G,strideHeight:H,strideWidth:X}=m;h=m.dataFormat;let q=S-1-m.padInfo.top,te=A-1-m.padInfo.left,Q=h==="channelsLast",se=f.strides[0],ne=Q?f.strides[1]:f.strides[2],ie=Q?f.strides[2]:1,Z=Q?1:f.strides[1],de=d[0],oe=Q?d[1]:d[2],ge=Q?d[2]:1,fe=Q?1:d[1];for(let we=0;we<T;++we)for(let Te=0;Te<$;++Te)for(let _e=0;_e<R;++_e){let Re=_e-q,Fe=Math.max(0,Math.ceil(Re/H)),tt=Math.min(W,(S+Re)/H);for(let nt=0;nt<B;++nt){let it=nt-te,Xe=Math.max(0,Math.ceil(it/X)),mt=Math.min(G,(A+it)/X),Be=0;for(let It=Fe;It<tt;++It){let qn=It*H-Re;for(let Zt=Xe;Zt<mt;++Zt){let wn=Zt*X-it,Kn=de*we+oe*It+ge*Zt,Rn=x*(S-1-qn)+v*(A-1-wn)+N*Te;for(let un=0;un<V;++un){let en=y[Kn+fe*un],za=b[Rn+un];Be+=en*za}}}let vn=se*we+ne*_e+ie*nt+Z*Te;g[vn]=Be}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var kG={kernelName:As,backendName:"cpu",kernelFunc:wG};function IG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ve([r,s],"conv3d");let c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=c,y=g.front,b=g.left,x=g.top,v=new Ot(c.outShape,r.dtype),N=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,S=v.values,A=w.computeStrides(r.shape),$=w.computeStrides(s.shape);for(let R=0;R<c.batchSize;++R){let B=R*A[0],V=R*v.strides[0];for(let W=0;W<c.outDepth;++W){let G=V+W*v.strides[1],H=W*c.strideDepth-y;for(let X=0;X<u;++X){let q=H+X*h;if(q<0||q>=c.inDepth)continue;let te=X*$[0],Q=B+q*A[1];for(let se=0;se<c.outHeight;++se){let ne=G+se*v.strides[2],ie=se*c.strideHeight-x;for(let Z=0;Z<p;++Z){let de=ie+Z*m;if(de<0||de>=c.inHeight)continue;let oe=te+Z*$[1],ge=Q+de*A[2];for(let fe=0;fe<c.outWidth;++fe){let we=ne+fe*c.outChannels,Te=fe*c.strideWidth-b;for(let _e=0;_e<d;++_e){let Re=Te+_e*f;if(Re<0||Re>=c.inWidth)continue;let Fe=oe+_e*$[2],tt=ge+Re*c.inChannels,nt=Fe;for(let it=0;it<c.inChannels;++it){let Xe=N[tt+it];for(let mt=0;mt<c.outChannels;++mt)S[we+mt]+=Xe*T[nt+mt];nt+=c.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var TG={kernelName:Zu,backendName:"cpu",kernelFunc:IG};function NG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ve([r,s],"conv3dBackpropFilterV2");let c=w.computeStrides(r.shape),u=w.computeStrides(s.shape),p=_.computeConv3DInfo(r.shape,l,i,1,o),d=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,g=p.filterHeight,y=p.filterWidth,b=new Ot(p.filterShape,"float32"),x=b.values,[v,N,T,S]=b.strides,A=n.data.get(s.dataId).values,[$,R,B,V]=u,W=n.data.get(r.dataId).values,[G,H,X,q]=c,te=p.padInfo.front,Q=p.padInfo.left,se=p.padInfo.top;for(let ne=0;ne<f;++ne){let ie=Math.max(0,Math.ceil((te-ne)/d)),Z=Math.min(p.outDepth,(p.inDepth+te-ne)/d),de=ne*v;for(let oe=0;oe<g;++oe){let ge=Math.max(0,Math.ceil((se-oe)/h)),fe=Math.min(p.outHeight,(p.inHeight+se-oe)/h),we=oe*N+de;for(let Te=0;Te<y;++Te){let _e=Math.max(0,Math.ceil((Q-Te)/m)),Re=Math.min(p.outWidth,(p.inWidth+Q-Te)/m),Fe=Te*T+we;for(let tt=0;tt<p.inChannels;++tt){let nt=tt*S+Fe;for(let it=0;it<p.outChannels;++it){let Xe=0;for(let mt=0;mt<p.batchSize;++mt){let Be=mt*G,vn=mt*$;for(let It=ie;It<Z;++It){let qn=(ne+It*d-te)*H+Be,Zt=It*R+vn;for(let wn=ge;wn<fe;++wn){let Kn=(oe+wn*h-se)*X+qn,Rn=wn*B+Zt;for(let un=_e;un<Re;++un){let en=(Te+un*m-Q)*q+Kn,za=un*V+Rn;Xe+=W[en+tt]*A[za+it]}}}}x[nt+it]=Xe}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var SG={kernelName:fd,backendName:"cpu",kernelFunc:NG};function CG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ve([r],"conv3dBackpropInputV2");let c=w.computeStrides(r.shape),u=w.computeStrides(s.shape),p=_.computeConv3DInfo(l,s.shape,o,1,i),d=new Ot(p.inShape,"float32"),h=d.values,[m,f,g,y]=d.strides,b=n.data.get(r.dataId).values,[x,v,N,T]=c,S=n.data.get(s.dataId).values,[A,$,R,B]=u,{batchSize:V,filterDepth:W,filterHeight:G,filterWidth:H,inChannels:X,inDepth:q,inHeight:te,inWidth:Q,outChannels:se,outDepth:ne,outHeight:ie,outWidth:Z,strideDepth:de,strideHeight:oe,strideWidth:ge}=p,fe=W-1-p.padInfo.front,we=G-1-p.padInfo.top,Te=H-1-p.padInfo.left;for(let _e=0;_e<V;++_e)for(let Re=0;Re<X;++Re)for(let Fe=0;Fe<q;++Fe){let tt=Fe-fe,nt=Math.max(0,Math.ceil(tt/de)),it=Math.min(ne,(W+tt)/de);for(let Xe=0;Xe<te;++Xe){let mt=Xe-we,Be=Math.max(0,Math.ceil(mt/oe)),vn=Math.min(ie,(G+mt)/oe);for(let It=0;It<Q;++It){let qn=It-Te,Zt=Math.max(0,Math.ceil(qn/ge)),wn=Math.min(Z,(H+qn)/ge),Kn=0;for(let Rn=nt;Rn<it;++Rn){let un=Rn*de-tt;for(let en=Be;en<vn;++en){let za=en*oe-mt;for(let sa=Zt;sa<wn;++sa){let ia=sa*ge-qn,$r=x*_e+v*Rn+N*en+T*sa,lr=A*(W-1-un)+$*(G-1-za)+R*(H-1-ia)+B*Re;for(let Dr=0;Dr<se;++Dr){let co=b[$r+Dr],ka=S[lr+Dr];Kn+=co*ka}}}}h[m*_e+f*Fe+g*Xe+y*It+Re]=Kn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var _G={kernelName:gd,backendName:"cpu",kernelFunc:CG},EG=st($s,e=>Math.cos(e)),FG={kernelName:$s,backendName:"cpu",kernelFunc:EG},AG=st(Mo,e=>Math.cosh(e)),$G={kernelName:Mo,backendName:"cpu",kernelFunc:AG};function DG(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,[u,p,d,h]=r.shape,m=s.shape[0],[f,g]=o,y=Le([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,N=w.computeStrides(r.shape),T=w.computeStrides(y.shape);for(let S=0;S<m;S++){let A=S*4,$=b[A],R=b[A+1],B=b[A+2],V=b[A+3],W=x[S];if(W>=u)continue;let G=f>1?(B-$)*(p-1)/(f-1):0,H=g>1?(V-R)*(d-1)/(g-1):0;for(let X=0;X<f;X++){let q=f>1?$*(p-1)+X*G:.5*($+B)*(p-1);if(q<0||q>p-1){for(let te=0;te<g;te++)for(let Q=0;Q<h;Q++){let se=Q+te*T[2]+X*T[1]+S*T[0];y.values[se]=c}continue}if(l==="bilinear"){let te=Math.floor(q),Q=Math.ceil(q),se=q-te;for(let ne=0;ne<g;ne++){let ie=g>1?R*(d-1)+ne*H:.5*(R+V)*(d-1);if(ie<0||ie>d-1){for(let ge=0;ge<h;ge++){let fe=ge+ne*T[2]+X*T[1]+S*T[0];y.values[fe]=c}continue}let Z=Math.floor(ie),de=Math.ceil(ie),oe=ie-Z;for(let ge=0;ge<h;ge++){let fe=ge+Z*N[2]+te*N[1]+W*N[0],we=v[fe];fe=ge+de*N[2]+te*N[1]+W*N[0];let Te=v[fe];fe=ge+Z*N[2]+Q*N[1]+W*N[0];let _e=v[fe];fe=ge+de*N[2]+Q*N[1]+W*N[0];let Re=v[fe],Fe=we+(Te-we)*oe,tt=_e+(Re-_e)*oe;fe=ge+ne*T[2]+X*T[1]+S*T[0],y.values[fe]=Fe+(tt-Fe)*se}}}else for(let te=0;te<g;++te){let Q=g>1?R*(d-1)+te*H:.5*(R+V)*(d-1);if(Q<0||Q>d-1){for(let ie=0;ie<h;ie++){let Z=ie+te*T[2]+X*T[1]+S*T[0];y.values[Z]=c}continue}let se=Math.round(Q),ne=Math.round(q);for(let ie=0;ie<h;ie++){let Z=ie+se*N[2]+ne*N[1]+W*N[0],de=ie+te*T[2]+X*T[1]+S*T[0];y.values[de]=v[Z]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var RG={kernelName:Po,backendName:"cpu",kernelFunc:DG};function MG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ve(r,"cumsum");let l=_.getAxesPermutation([s],r.shape.length),c=r;l!=null&&(c=ya({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=_.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let p=ua(c.dtype,"int32"),d=w.makeZerosTypedArray(w.sizeFromShape(c.shape),p),h=n.data.get(c.dataId).values,m=c.shape[c.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)d[x]=i?0:h[x];else{let v=f(y,b-1);d[x]=i?h[v]+d[v]:h[x]+d[v]}}let g=n.makeTensorInfo(c.shape,p,d);if(l!=null){let y=_.getUndoAxesPermutation(l),b=ya({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),b}return g}var PG={kernelName:Ds,backendName:"cpu",kernelFunc:MG};function OG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=hv(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=UT(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var LG={kernelName:yd,backendName:"cpu",kernelFunc:OG};function zG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],p=l*s,d=c*s,h=u/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*d*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<p;++b){let x=Math.floor(b/s),v=b%s;for(let N=0;N<d;++N){let T=Math.floor(N/s),S=N%s,A=(v*s+S)*h;for(let $=0;$<h;++$){let R=$+A+u*(T+c*(x+l*y));f[g++]=m[R]}}}return n.makeTensorInfo([o,p,d,h],r.dtype,f)}var BG={kernelName:Oo,backendName:"cpu",kernelFunc:zG};function kN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=a;ve([r,s],"depthwiseConv2DNative");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=_.computeConv2DInfo(r.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,v=b.top,N=h.outChannels/h.inChannels,T=new Ot(h.outShape,r.dtype),S=n.data.get(r.dataId).values,A=n.data.get(s.dataId).values,$=T.values;for(let R=0;R<h.batchSize;++R){let B=R*u[0],V=R*T.strides[0];for(let W=0;W<h.outHeight;++W){let G=V+W*T.strides[1],H=W*h.strideHeight-x;for(let X=0;X<m;++X){let q=H+X*g;if(q<0||q>=h.inHeight)continue;let te=X*p[0],Q=B+q*u[1];for(let se=0;se<h.outWidth;++se){let ne=G+se*T.strides[2],ie=se*h.strideWidth-v;for(let Z=0;Z<f;++Z){let de=ie+Z*y;if(de<0||de>=h.inWidth)continue;let oe=te+Z*p[1],ge=Q+de*h.inChannels,fe=ne,we=oe;for(let Te=0;Te<h.inChannels;++Te){let _e=S[ge+Te];for(let Re=0;Re<N;++Re)$[fe+Re]+=_e*A[we+Re];fe+=N,we+=N}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var WG={kernelName:Rs,backendName:"cpu",kernelFunc:kN};function VG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a;ve([r,s],"depthwiseConv2dNativeBackpropFilter");let p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),{strideHeight:d,strideWidth:h,filterHeight:m,filterWidth:f}=p,g=new Ot(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,x=p.outChannels/p.inChannels,v=n.data.get(r.dataId).values,N=new Ot(r.shape,r.dtype,v),T=n.data.get(s.dataId).values,S=new Ot(s.shape,s.dtype,T);for(let A=0;A<m;++A){let $=Math.max(0,Math.ceil((b-A)/d)),R=Math.min(p.outHeight,(p.inHeight+b-A)/d);for(let B=0;B<f;++B){let V=Math.max(0,Math.ceil((y-B)/h)),W=Math.min(p.outWidth,(p.inWidth+y-B)/h);for(let G=0;G<p.outChannels;++G){let H=Math.trunc(G/x),X=G%x,q=0;for(let te=0;te<p.batchSize;++te)for(let Q=$;Q<R;++Q){let se=A+Q*d-b;for(let ne=V;ne<W;++ne){let ie=B+ne*h-y;q+=N.get(te,se,ie,H)*S.get(te,Q,ne,G)}}g.set(q,A,B,H,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var UG={kernelName:bd,backendName:"cpu",kernelFunc:VG};function GG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a;ve([r,s],"depthwiseConv2DNativeBackpropInput");let p=w.computeStrides(r.shape),d=w.computeStrides(s.shape),h=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),m=new Ot(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[v,N,T]=p,S=n.data.get(s.dataId).values,[A,$,R]=d,{batchSize:B,filterHeight:V,filterWidth:W,inChannels:G,inHeight:H,inWidth:X,outChannels:q,outHeight:te,outWidth:Q,strideHeight:se,strideWidth:ne}=h,ie=V-1-h.padInfo.top,Z=W-1-h.padInfo.left,de=q/G;for(let oe=0;oe<B;++oe)for(let ge=0;ge<G;++ge)for(let fe=0;fe<H;++fe){let we=fe-ie,Te=Math.max(0,Math.ceil(we/se)),_e=Math.min(te,(V+we)/se);for(let Re=0;Re<X;++Re){let Fe=Re-Z,tt=Math.max(0,Math.ceil(Fe/ne)),nt=Math.min(Q,(W+Fe)/ne),it=0;for(let Xe=Te;Xe<_e;++Xe){let mt=Xe*se-we;for(let Be=tt;Be<nt;++Be){let vn=Be*ne-Fe,It=v*oe+N*Xe+T*Be,qn=A*(V-1-mt)+$*(W-1-vn)+R*ge;for(let Zt=0;Zt<de;++Zt){let wn=ge*de+Zt,Kn=x[It+wn],Rn=S[qn+Zt];it+=Kn*Rn}}}f[g*oe+y*fe+b*Re+ge]=it}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var HG={kernelName:xd,backendName:"cpu",kernelFunc:GG};function jG(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Le([r,r],a.dtype),o=i.values;for(let c=0;c<s.length;c++)o[c*r+c]=s[c];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var qG={kernelName:vd,backendName:"cpu",kernelFunc:jG},KG={kernelName:ec,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(a.dataId).values,u=a.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:v,strideWidth:N,filterHeight:T,filterWidth:S,dilationHeight:A,dilationWidth:$,outShape:R}=_.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),B=w.sizeFromShape(R),V=R.length,W=w.getArrayFromDType(a.dtype,B);for(let G=0;G<h;++G)for(let H=0;H<y;++H){let X=H*v-x.top;for(let q=0;q<b;++q){let te=q*N-x.left;for(let Q=0;Q<g;++Q){let se=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<T;++ie){let Z=X+ie*A;if(Z>=0&&Z<m)for(let de=0;de<S;++de){let oe=te+de*$;if(oe>=0&&oe<f){let ge=w.locToIndex([G,Z,oe,Q],u,w.computeStrides(a.shape)),fe=w.locToIndex([ie,de,Q],d,w.computeStrides(r.shape)),we=c[ge]+p[fe];we>se&&(se=we)}}}let ne=w.locToIndex([G,H,q,Q],V,w.computeStrides(R));W[ne]=se}}}return{dataId:l.write(w.toTypedArray(W,a.dtype),R,a.dtype),shape:R,dtype:a.dtype}}},XG={kernelName:kd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=w.toNestedArray(a.shape,c.data.get(a.dataId).values),p=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:N,filterWidth:T,dilationHeight:S,dilationWidth:A,outShape:$}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===$.length,()=>`Error in ${kd}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let R=w.toNestedArray($,c.data.get(s.dataId).values),B=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let V=0;V<d;++V)for(let W=0;W<g;++W){let G=W*x-b.top;for(let H=0;H<y;++H){let X=H*v-b.left;for(let q=0;q<f;++q){let te=Number.MIN_SAFE_INTEGER,Q=0,se=0;for(let ne=0;ne<N;++ne){let ie=G+ne*S;if(ie>=0&&ie<h)for(let Z=0;Z<T;++Z){let de=X+Z*A;if(de>=0&&de<m){let oe=u[V][ie][de][q]+p[ne][Z][q];oe>te&&(te=oe,Q=ne,se=Z)}}}B[Q][se][q]+=R[V][W][H][q]}}}return{dataId:c.write(w.toTypedArray(B,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},YG={kernelName:wd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=w.toNestedArray(a.shape,c.data.get(a.dataId).values),p=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:N,filterWidth:T,dilationHeight:S,dilationWidth:A,outShape:$}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===$.length,()=>`Error in ${wd}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let R=w.toNestedArray($,c.data.get(s.dataId).values),B=w.makeZerosNestedTypedArray(a.shape,a.dtype);for(let V=0;V<d;++V)for(let W=0;W<g;++W){let G=W*x-b.top;for(let H=0;H<y;++H){let X=H*v-b.left;for(let q=0;q<f;++q){let te=Number.MIN_SAFE_INTEGER,Q=G<0?0:G,se=X<0?0:X;for(let ne=0;ne<N;++ne){let ie=G+ne*S;if(ie>=0&&ie<h)for(let Z=0;Z<T;++Z){let de=X+Z*A;if(de>=0&&de<m){let oe=u[V][ie][de][q]+p[ne][Z][q];oe>te&&(te=oe,Q=ie,se=de)}}}B[V][Q][se][q]+=R[V][W][H][q]}}}return{dataId:c.write(w.toTypedArray(B,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function JG(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ve([a,r],"eluGrad");let s=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let c=i[l];c>=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",s)}var QG={kernelName:Id,backendName:"cpu",kernelFunc:JG},ZG=Rt((e,t)=>e===t?1:0),IN=Jt(Bo,ZG,null,"bool"),eH={kernelName:Bo,backendName:"cpu",kernelFunc:IN},tH=_.ERF_P,nH=_.ERF_A1,aH=_.ERF_A2,rH=_.ERF_A3,sH=_.ERF_A4,iH=_.ERF_A5,oH=st(zo,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+tH*n);return t*(1-((((iH*a+sH)*a+rH)*a+aH)*a+nH)*a*Math.exp(-n*n))}),lH={kernelName:zo,backendName:"cpu",kernelFunc:oH};function Im(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),kt({inputs:{x:r},backend:n,attrs:{shape:o}})}var uH={kernelName:Wo,backendName:"cpu",kernelFunc:Im},cH=Rt((e,t)=>e/t),Iv=Jt(Ms,cH),Tv={kernelName:Ms,backendName:"cpu",kernelFunc:Iv};function TN(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[r,s],u=w.sizeFromShape(c),p=w.getTypedArrayFromDType("float32",u),d=w.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let y=Vi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=Vi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Un({inputs:{real:y,imag:b},backend:n}),{real:v,imag:N}=pH(x,t,n),T=_.mergeRealAndImagArrays(v,N);for(let S=0;S<s;S++){let A=_.getComplexWithIndex(T,S);p[g*s+S]=A.real,d[g*s+S]=A.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(c,"float32",p),m=n.makeTensorInfo(c,"float32",d),f=Un({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function pH(e,t,n){let a=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(dH(a)){let o=Nv(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),d=nr({inputs:{x:p},backend:n}),h=Tv.kernelFunc({inputs:{a:c,b:p},backend:n}),m=Tv.kernelFunc({inputs:{a:u,b:d},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=_.mergeRealAndImagArrays(s,i),l=hH(o,a,t);return _.splitRealAndImagArrays(l)}}function dH(e){return(e&e-1)==0}function Nv(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=_.mergeRealAndImagArrays(e,t),i=n/2,o=_.complexWithEvenIndex(s),l=o.real,c=o.imag,u=[l.length],p=r.makeTensorInfo(u,"float32",l),d=r.makeTensorInfo(u,"float32",c),h=Un({inputs:{real:p,imag:d},backend:r}),m=_.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=Un({inputs:{real:b,imag:x},backend:r}),N=Nv(l,c,i,a,r),T=N.real,S=N.imag,A=[T.length],$=r.makeTensorInfo(A,"float32",T),R=r.makeTensorInfo(A,"float32",S),B=Un({inputs:{real:$,imag:R},backend:r}),V=Nv(f,g,i,a,r),W=V.real,G=V.imag,H=[W.length],X=r.makeTensorInfo(H,"float32",W),q=r.makeTensorInfo(H,"float32",G),te=Un({inputs:{real:X,imag:q},backend:r}),Q=_.exponents(n,a),se=[Q.real.length],ne=r.makeTensorInfo(se,"float32",Q.real),ie=r.makeTensorInfo(se,"float32",Q.imag),Z=Un({inputs:{real:ne,imag:ie},backend:r}),de=xv({inputs:{a:Z,b:te},backend:r}),oe=rp({inputs:{a:B,b:de},backend:r}),ge=vv({inputs:{a:B,b:de},backend:r}),fe=Wi({inputs:{input:oe},backend:r}),we=Wi({inputs:{input:ge},backend:r}),Te=tu({inputs:{input:oe},backend:r}),_e=tu({inputs:{input:ge},backend:r}),Re=nu({inputs:[fe,we],backend:r,attrs:{axis:0}}),Fe=nu({inputs:[Te,_e],backend:r,attrs:{axis:0}}),tt=r.data.get(Re.dataId).values,nt=r.data.get(Fe.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(B),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ge),r.disposeIntermediateTensorInfo(fe),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Fe),{real:tt,imag:nt}}function hH(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=_.exponent(r*o,t,n),c=_.getComplexWithIndex(e,o);s+=c.real*l.real-c.imag*l.imag,i+=c.real*l.imag+c.imag*l.real}n&&(s/=t,i/=t),_.assignToTypedArray(a,s,i,r)}return a}function mH(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=kt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=TN(o,!1,n),c=kt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var fH={kernelName:Td,backendName:"cpu",kernelFunc:mH};function Sv(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(a));return gH(o,r,i),t.makeTensorInfo(a,i,o)}var yH={kernelName:tc,backendName:"cpu",kernelFunc:Sv};function gH(e,t,n){e.fill(t)}var bH={kernelName:Uo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[i,o,l,c]=a.shape,u=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let d=p*l*o*c;for(let h=0;h<o;h++){let m=h*(l*c);for(let f=0;f<l;f++){let g=f*c;for(let y=0;y<c;y++){let b=[i,h,f,y][2],x=Math.round(l-b),v=d+m+g+y,N=u[v];if(x>=0&&x<l){let T=x*c,S=d+m+T+y;N=u[S]}s[v]=N}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},xH=Rt((e,t)=>Math.floor(e/t)),vH=Jt(Ls,xH,null,"int32"),wH={kernelName:Ls,backendName:"cpu",kernelFunc:vH};function kH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=wN({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=rp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=wv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var IH={kernelName:yi,backendName:"cpu",kernelFunc:kH};function TH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=kN({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=rp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=wv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var NH={kernelName:bi,backendName:"cpu",kernelFunc:TH};function SH(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=w.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,c,u,p]=_.prepareAndValidate(a,r);if(c===0)return n.makeTensorInfo(l,a.dtype,[]);let d=Le([c,u],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<c;f++){let g=[],y=0;for(let b=0;b<o;b++){let x=h[f*o+b];y+=x*p[b],g.push(x)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${g} does not index into ${a.shape}`);for(let b=0;b<u;b++)d.values[f*u+b]=m[y*u+b]}return n.makeTensorInfo(l,d.dtype,d.values)}var CH={kernelName:Ho,backendName:"cpu",kernelFunc:SH};function _H(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ve([r,s],"gatherV2");let l=o;o==null&&(l=0);let c=w.sizeFromShape(s.shape),u=w.parseAxisParam(i,r.shape)[0],p=_.segment_util.collectGatherOpShapeInfo(r,s,u,l),d=kt({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=kt({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,c/p.batchSize]}}),m=[p.batchSize,p.outerSize,c/p.batchSize,p.sliceSize],f=n.bufferSync(h),g=n.bufferSync(d),y=KT(g,f,m);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var EH={kernelName:Go,backendName:"cpu",kernelFunc:_H},FH=Rt((e,t)=>e>=t?1:0),AH=Jt(Bs,FH,null,"bool"),$H={kernelName:Bs,backendName:"cpu",kernelFunc:AH};function DH(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=kt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=TN(o,!0,n),c=kt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var RH={kernelName:Nd,backendName:"cpu",kernelFunc:DH},MH=st(qo,e=>Number.isFinite(e)?1:0,"bool"),PH={kernelName:qo,backendName:"cpu",kernelFunc:MH},OH=st(Ko,e=>Math.abs(e)===Infinity?1:0,"bool"),LH={kernelName:Ko,backendName:"cpu",kernelFunc:OH},zH=st(Xo,e=>Number.isNaN(e)?1:0,"bool"),BH={kernelName:Xo,backendName:"cpu",kernelFunc:zH},WH=Rt((e,t)=>e<=t?1:0),VH=Jt(Jo,WH,null,"bool"),UH={kernelName:Jo,backendName:"cpu",kernelFunc:VH};function GH(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=JT(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var HH={kernelName:Cd,backendName:"cpu",kernelFunc:GH},jH=st(Qo,e=>Math.log1p(e)),qH={kernelName:Qo,backendName:"cpu",kernelFunc:jH},KH=Rt((e,t)=>e&&t),XH=Jt(Zo,KH,null,"bool"),YH={kernelName:Zo,backendName:"cpu",kernelFunc:XH},JH=st(nc,e=>e?0:1,"bool"),QH={kernelName:nc,backendName:"cpu",kernelFunc:JH},ZH=Rt((e,t)=>e||t),ej=Jt(ac,ZH,null,"bool"),tj={kernelName:ac,backendName:"cpu",kernelFunc:ej};function nj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ve(r,"LRN");let c=r.shape[3],u=c-1,p=n.data.get(r.dataId).values,d=w.sizeFromShape(r.shape),h=new Float32Array(d);function m(f){let g=f%c,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,u),x=0;for(;y<=b;y++){let v=p[y];x+=v*v}return x}for(let f=0;f<d;f++){let g=m(f),y=p[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var aj={kernelName:rc,backendName:"cpu",kernelFunc:nj};function rj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a;ve(i,"LRNGrad");let p=w.sizeFromShape(i.shape),d=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let b=0;b<y;b++){let x=b%d,v=b-x+Math.max(0,x-o),N=b-x+Math.min(d,x+o+1),T=0;for(let S=v;S<N;S++)T+=Math.pow(m[S],2);T=c*T+l;for(let S=v;S<N;S++){let A=-2*c*u*m[S]*f[b]/T;b===S&&(A+=Math.pow(T,-u)),A*=h[b],g[S]+=A}}return n.makeTensorInfo(i.shape,r.dtype,g)}var sj={kernelName:_d,backendName:"cpu",kernelFunc:rj};function NN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,c=l.length,u=w.parseAxisParam(s,l),p=u,d=_.getAxesPermutation(p,c),h=o.data.get(r.dataId).values;if(d!=null){let v=new Array(c);for(let N=0;N<v.length;N++)v[N]=l[d[N]];h=gv(h,l,r.dtype,d,v),p=_.getInnerMostAxes(p.length,c),l=v}ve(r,"max"),_.assertAxesAreInnerMostDims("max",p,c);let[m,f]=_.computeOutAndReduceShapes(l,p),g=w.sizeFromShape(f),y=ZT(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=_.expandShapeToKeepDim(m,u)),{dataId:b,shape:x,dtype:r.dtype}}var ij={kernelName:Gs,backendName:"cpu",kernelFunc:NN};function oj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))p=nr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=kv(d,r.shape,r.dtype,h,u,"max");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var lj={kernelName:js,backendName:"cpu",kernelFunc:oj};function uj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;ve(r,"maxPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=vN(p,r.shape,r.dtype,w.computeStrides(r.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var cj={kernelName:sc,backendName:"cpu",kernelFunc:uj};function pj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;ve([r,s],"maxPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=n.bufferSync(s),d=JU(p,u),h=u.strideDepth,m=u.strideHeight,f=u.strideWidth,g=u.dilationDepth,y=u.dilationHeight,b=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,N=u.effectiveFilterWidth,T=x-1-u.padInfo.front,S=N-1-u.padInfo.left,A=v-1-u.padInfo.top,$=Le(s.shape,"float32"),R=n.bufferSync(r);for(let B=0;B<u.batchSize;++B)for(let V=0;V<u.inChannels;++V)for(let W=0;W<u.inDepth;++W)for(let G=0;G<u.inHeight;++G)for(let H=0;H<u.inWidth;++H){let X=W-T,q=G-A,te=H-S,Q=0;for(let se=0;se<x;se+=g){let ne=(X+se)/h;if(!(ne<0||ne>=u.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<v;ie+=y){let Z=(q+ie)/m;if(!(Z<0||Z>=u.outHeight||Math.floor(Z)!==Z))for(let de=0;de<N;de+=b){let oe=(te+de)/f;if(oe<0||oe>=u.outWidth||Math.floor(oe)!==oe)continue;let ge=x*v*N-1-d.get(B,ne,Z,oe,V),fe=se*v*N+ie*N+de,we=ge===fe?1:0;we!==0&&(Q+=R.get(B,ne,Z,oe,V)*we)}}}$.set(Q,B,W,G,H,V)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var dj={kernelName:Fd,backendName:"cpu",kernelFunc:pj};function hj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=n.data.get(o.dataId).values,m=Le(d.outShape,o.dtype,xN(h,o.shape,o.dtype,d).values),f=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,b=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,N=v-1-d.padInfo.left,T=x-1-d.padInfo.top,S=Le(o.shape,"float32"),A=n.data.get(r.dataId).values,$=Le(r.shape,"float32",A);for(let R=0;R<d.batchSize;++R)for(let B=0;B<d.inChannels;++B)for(let V=0;V<d.inHeight;++V)for(let W=0;W<d.inWidth;++W){let G=V-T,H=W-N,X=0;for(let q=0;q<x;q+=y){let te=(G+q)/f;if(!(te<0||te>=d.outHeight||Math.floor(te)!==te))for(let Q=0;Q<v;Q+=b){let se=(H+Q)/g;if(se<0||se>=d.outWidth||Math.floor(se)!==se)continue;let ne=x*v-1-m.get(R,te,se,B),ie=q*v+Q,Z=ne===ie?1:0;Z!==0&&(X+=$.get(R,te,se,B)*Z)}}S.set(X,R,V,W,B)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var mj={kernelName:Ed,backendName:"cpu",kernelFunc:hj};function fj(e,t,n,a,r){let s=w.computeStrides(t),i=kv(e,t,n,s,r,"max"),o=xN(e,t,n,r,!0,a);return[i.values,o.values]}var gj={kernelName:Ad,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(a,"MaxPoolWithArgmax");let c=l.data.get(a.dataId).values,u=_.computePool2DInfo(a.shape,r,s,[1,1],i),[p,d]=fj(c,a.shape,a.dtype,o,u),h=l.write(p,u.outShape,a.dtype),m=l.write(d,u.outShape,a.dtype);return[{dataId:h,shape:u.outShape,dtype:a.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function Tm(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"sum");let o;r.dtype==="bool"?o=ps({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=nr({inputs:{x:r},backend:n});let l=o.shape.length,c=w.parseAxisParam(s,o.shape),u=_.getAxesPermutation(c,l),p=c,d=o;u!=null&&(d=ya({inputs:{x:o},backend:n,attrs:{perm:u}}),p=_.getInnerMostAxes(p.length,l)),_.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,m]=_.computeOutAndReduceShapes(d.shape,p),f=_.upcastType(d.dtype,"int32"),g=km(n,h,f),y=w.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v<b.length;++v){let N=v*y,T=0;for(let S=0;S<y;++S)T+=x[N+S];b[v]=T}if(i){let v=_.expandShapeToKeepDim(g.shape,c),N=g;g=kt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(N)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(d),g}var yj={kernelName:ci,backendName:"cpu",kernelFunc:Tm};function bj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=w.parseAxisParam(s,r.shape),l=_.computeOutAndReduceShapes(r.shape,o)[1],c=w.sizeFromShape(l),u=[],p=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(p);let d=ps({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});u.push(d);let h=Iv({inputs:{a:d,b:p},backend:n});u.push(h);let m=Tm({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var xj={kernelName:qs,backendName:"cpu",kernelFunc:bj};function vj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"min");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ya({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let N=f[b+v];N<x&&(x=N)}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var wj={kernelName:Ks,backendName:"cpu",kernelFunc:vj};function kj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ve(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),c=s.map((b,x)=>b[0]+r.shape[x]),u=i==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=w.computeStrides(r.shape),m=w.sizeFromShape(o),f=o.length,g=w.computeStrides(o),y=w.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=w.indexToLoc(b,f,g);for(let N=0;N<f;N++)x[N]<l[N]?x[N]=l[N]*2-x[N]-u:x[N]>=c[N]&&(x[N]=(c[N]-1)*2-x[N]+u);x=x.map((N,T)=>N-l[T]);let v=w.locToIndex(x,d,h);y[b]=p[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var Ij={kernelName:ic,backendName:"cpu",kernelFunc:kj},Tj=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Nj=Jt(el,Tj),Sj={kernelName:el,backendName:"cpu",kernelFunc:Nj},Cj=Io(ad());function SN(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=w.parseAxisParam([o],r.shape),c=NN({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=_.expandShapeToKeepDim(c.shape,l),p=kt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=vv({inputs:{a:r,b:p},backend:n}),h=dN({inputs:{x:d},backend:n}),m=Tm({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:u}}),g=Iv({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var _j={kernelName:pi,backendName:"cpu",kernelFunc:SN};function Ej(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ve(r,"multinomial");let l=o?r:SN({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],p=n.data.get(l.dataId).values,d=[c,s],h=w.makeZerosTypedArray(w.sizeFromShape(d),"int32");for(let m=0;m<c;++m){let f=m*u,g=new Float32Array(u-1);g[0]=p[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+p[f+x];let y=Cj.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let v=y();h[b+x]=g.length;for(let N=0;N<g.length;N++)if(v<g[N]){h[b+x]=N;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var Fj={kernelName:$d,backendName:"cpu",kernelFunc:Ej},Aj=Ya.nonMaxSuppressionV3Impl;function $j(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ve(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:p}=Aj(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Dj={kernelName:al,backendName:"cpu",kernelFunc:$j},Rj=Ya.nonMaxSuppressionV4Impl;function Mj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a;ve(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:h}=Rj(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Pj={kernelName:rl,backendName:"cpu",kernelFunc:Mj},Oj=Ya.nonMaxSuppressionV5Impl;function Lj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a;ve(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=Oj(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var zj={kernelName:sl,backendName:"cpu",kernelFunc:Lj};function Bj(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;ve(r,"oneHot");let l=w.sizeFromShape(r.shape),c=new Float32Array(l*s);c.fill(o);let u=n.data.get(r.dataId).values;for(let p=0;p<l;++p)u[p]>=0&&u[p]<s&&(c[p*s+u[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",c)}var Wj={kernelName:Js,backendName:"cpu",kernelFunc:Bj};function Nm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Wi({inputs:{input:a},backend:n}),s=Nm({inputs:{x:r},backend:n}),i=tu({inputs:{input:a},backend:n}),o=Nm({inputs:{x:i},backend:n}),l=Un({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Sv({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var Vj={kernelName:Il,backendName:"cpu",kernelFunc:Nm};function CN(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Wi({inputs:{input:a},backend:n}),s=CN({inputs:{x:r},backend:n}),i=tu({inputs:{input:a},backend:n}),o=Nm({inputs:{x:i},backend:n}),l=Un({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Sv({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var Uj={kernelName:il,backendName:"cpu",kernelFunc:CN};function _N(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Im({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=Im({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=nu({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var Gj={kernelName:ol,backendName:"cpu",kernelFunc:_N};function Hj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ve(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),c=n.data.get(r.dataId).values,u=w.sizeFromShape(r.shape),p=r.shape.length,d=w.computeStrides(r.shape),h=w.sizeFromShape(o),m=o.length,f=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<u;y++){let b=w.indexToLoc(y,p,d).map((v,N)=>v+l[N]),x=w.locToIndex(b,m,f);g[x]=c[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var EN={kernelName:Qs,backendName:"cpu",kernelFunc:Hj},jj=Rt((e,t)=>Math.pow(e,t)),qj=Jt(Zs,jj),Kj={kernelName:Zs,backendName:"cpu",kernelFunc:qj};function Xj(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=yv(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var Yj={kernelName:oc,backendName:"cpu",kernelFunc:Xj},Jj=st(ul,e=>1/e),Qj={kernelName:ul,backendName:"cpu",kernelFunc:Jj};function Zj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeBilinear");let l=w.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([p,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/b[0],N=y[1]/b[1];for(let T=0;T<p;T++)for(let S=0;S<c;S++){let A;i?A=v*(S+.5)-.5:A=v*S;let $=Math.max(0,Math.floor(A)),R=A-$,B=Math.min(d-1,Math.ceil(A)),V=T*l[0]+$*l[1],W=T*l[0]+B*l[1];for(let G=0;G<u;G++){let H;i?H=N*(G+.5)-.5:H=N*G;let X=Math.max(0,Math.floor(H)),q=H-X,te=Math.min(h-1,Math.ceil(H)),Q=V+X*l[2],se=W+X*l[2],ne=V+te*l[2],ie=W+te*l[2];for(let Z=0;Z<m;Z++){let de=f[Q+Z],oe=f[se+Z],ge=f[ne+Z],fe=f[ie+Z],we=de+(ge-de)*q,Te=oe+(fe-oe)*q,_e=we+(Te-we)*R;g[x++]=_e}}}return n.makeTensorInfo([p,c,u,m],"float32",g)}var e6={kernelName:ni,backendName:"cpu",kernelFunc:Zj};function t6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[l,c,u,p]=r.shape,[,d,h]=s.shape,m=new Float32Array(l*c*u*p),f=[i&&d>1?c-1:c,i&&h>1?u-1:u],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let N=0;N<l;N++){let T=N*o[0];for(let S=0;S<d;S++){let A=S*y,$=Math.floor(A),R=Math.min(Math.ceil(A),c-1),B=T+$*o[1],V=T+R*o[1],W=A-$,G=1-W;for(let H=0;H<h;H++){let X=H*b,q=Math.floor(X),te=Math.min(Math.ceil(X),u-1),Q=X-q,se=1-Q,ne=B+q*o[2],ie=B+te*o[2],Z=V+q*o[2],de=V+te*o[2],oe=G*se,ge=G*Q,fe=W*se,we=W*Q;for(let Te=0;Te<p;Te++){let _e=x[v++];m[ne+Te]+=_e*oe,m[ie+Te]+=_e*ge,m[Z+Te]+=_e*fe,m[de+Te]+=_e*we}}}}return n.makeTensorInfo([l,u,c,p],"float32",m)}var n6={kernelName:Md,backendName:"cpu",kernelFunc:t6};function a6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(p*c*u*m),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/b[0],v=y[1]/b[1],N=0;for(let T=0;T<p;T++){let S=T*l[0];for(let A=0;A<c;A++){let $=i?x*(A+.5):x*A,R=Math.min(d-1,s?Math.round($):Math.floor($));i&&(R=Math.max(0,R));let B=S+R*l[1];for(let V=0;V<u;V++){let W=i?v*(V+.5):v*V,G=Math.min(h-1,s?Math.round(W):Math.floor(W));i&&(G=Math.max(0,G));let H=B+G*l[2];for(let X=0;X<m;X++){let q=f[H+X];g[N++]=q}}}}return n.makeTensorInfo([p,c,u,m],r.dtype,g)}var r6={kernelName:lc,backendName:"cpu",kernelFunc:a6};function s6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),l=w.computeStrides(s.shape),[c,u,p,d]=r.shape,[,h,m]=s.shape,f=new Float32Array(c*u*p*d),g=n.data.get(s.dataId).values,y=[i&&h>1?u-1:u,i&&m>1?p-1:p],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],v=y[1]/b[1],N=1/x,T=1/v,S=Math.ceil(N)*2+2,A=Math.ceil(T)*2+2;for(let $=0;$<c;$++){let R=$*o[0];for(let B=0;B<u;B++){let V=R+B*o[1],W=Math.floor(B*N),G=Math.floor(W-S/2);for(let H=0;H<p;H++){let X=V+H*o[2],q=Math.floor(H*T),te=Math.floor(q-A/2);for(let Q=0;Q<d;Q++){let se=0;for(let ne=0;ne<S;ne++){let ie=ne+G;if(ie<0||ie>=h)continue;let Z=R+ie*l[1],de=ie*x,oe=Math.min(u-1,i?Math.round(de):Math.floor(de));if(B===oe)for(let ge=0;ge<A;ge++){let fe=ge+te;if(fe<0||fe>=m)continue;let we=Z+fe*l[2],Te=fe*v,_e=Math.min(p-1,i?Math.round(Te):Math.floor(Te));H===_e&&(se+=g[we+Q])}}f[X+Q]=se}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var i6={kernelName:Rd,backendName:"cpu",kernelFunc:s6};function o6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ve(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return nr({inputs:{x:r},backend:n});let l=new Ot(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let p=l.indexToLoc(u),d=p.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(c.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var l6={kernelName:ri,backendName:"cpu",kernelFunc:o6},u6={kernelName:Tl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[c,u,p,d]=a.shape,[h,m]=_.getImageCenter(i,u,p),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<c;x++){let v=x*p*u*d;for(let N=0;N<u;N++){let T=N*(p*d);for(let S=0;S<p;S++){let A=S*d;for(let $=0;$<d;$++){let R=[c,N,S,$],B=R[2],V=R[1],W=(B-h)*y-(V-m)*g,G=(B-h)*g+(V-m)*y;W=Math.round(W+h),G=Math.round(G+m);let H=s;if(typeof s!="number"&&($===3?H=f:H=s[$]),W>=0&&W<p&&G>=0&&G<u){let q=G*(p*d),te=W*d,Q=v+q+te+$;H=b[Q]}let X=v+T+A+$;l[X]=H}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},c6=st(si,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),p6={kernelName:si,backendName:"cpu",kernelFunc:c6};function FN(e,t,n,a,r,s,i,o,l,c){let u=[a/r,r],p=e.values,d=t.values;if(a===0)return Le(n,t.dtype);let h=Le(u,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=p[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)c?h.values[g*r+y]+=d[m*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[m*r+y]}return h}function d6(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=FN(h,m,i,p,c,l,o,u,0,d);return n.makeTensorInfo(i,f.dtype,f.values)}var h6={kernelName:pl,backendName:"cpu",kernelFunc:d6};function m6(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ve([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=ua(r.dtype,s.dtype),p=w.makeZerosTypedArray(w.sizeFromShape(r.shape),u),d=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[d++]=l[m]:p[d++]=c[m];return n.makeTensorInfo(r.shape,u,p)}var f6={kernelName:dl,backendName:"cpu",kernelFunc:m6},g6=_.SELU_SCALEALPHA,y6=_.SELU_SCALE,b6=st(hl,e=>e>=0?y6*e:g6*(Math.exp(e)-1)),x6={kernelName:hl,backendName:"cpu",kernelFunc:b6},v6=st(li,e=>1/(1+Math.exp(-e))),w6={kernelName:li,backendName:"cpu",kernelFunc:v6},k6=st(gl,e=>e<0?-1:e>0?1:0),I6={kernelName:gl,backendName:"cpu",kernelFunc:k6},T6=st(oi,e=>Math.sin(e)),N6={kernelName:oi,backendName:"cpu",kernelFunc:T6},S6=st(fl,e=>Math.sinh(e)),C6={kernelName:fl,backendName:"cpu",kernelFunc:S6},_6=11920928955078125e-23,AN=Math.log(_6)+2,E6=st(yl,e=>{let t=e>-AN,n=e<AN,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),F6={kernelName:yl,backendName:"cpu",kernelFunc:E6};function A6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ve([r],"spaceToBatchND");let o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let c=EN.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=_.getReshaped(c.shape,s,o,!1),p=_.getPermuted(u.length,s.length,!1),d=_.getReshapedPermuted(c.shape,s,o,!1),h=kt({inputs:{x:c},backend:n,attrs:{shape:u}}),m=ya({inputs:{x:h},backend:n,attrs:{perm:p}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var $6={kernelName:uc,backendName:"cpu",kernelFunc:A6};function D6(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=_.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],y=FN(m,f,o,d,u,c,l,p,g,h);return n.makeTensorInfo(o,y.dtype,y.values)}var R6={kernelName:Pd,backendName:"cpu",kernelFunc:D6};function M6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let d=[...u];d[o]=p;let h=Vi({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});return c[o]+=p,h})}var P6={kernelName:bl,backendName:"cpu",kernelFunc:M6},O6=st(ui,e=>Math.sqrt(e)),L6={kernelName:ui,backendName:"cpu",kernelFunc:O6},z6={kernelName:cc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ve(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},B6=st(Gr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),W6={kernelName:Gr,backendName:"cpu",kernelFunc:B6};function V6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a;ve(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=pn.sliceInfo(r.shape,s,i,o,l,c,u,p,d),x=kt({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let T=Vi({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=kt({inputs:{x:T},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(T)}else if(b.some(T=>T===0))v=n.makeTensorInfo(b,r.dtype,[]);else{let T=n.bufferSync(x),S=oN(b,T,f,m);v=n.makeTensorInfo(S.shape,S.dtype,S.values)}let N=kt({inputs:{x:v},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),N}var U6={kernelName:xl,backendName:"cpu",kernelFunc:V6},G6=st(vl,e=>Math.tan(e)),H6={kernelName:vl,backendName:"cpu",kernelFunc:G6},j6=st(mi,e=>Math.tanh(e)),q6={kernelName:mi,backendName:"cpu",kernelFunc:j6};function K6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ve(r,"tile");let i=uN(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var X6={kernelName:Ur,backendName:"cpu",kernelFunc:K6};function Y6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ve(r,"topk");let o=n.data.get(r.dataId).values,[l,c]=cN(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var J6={kernelName:wl,backendName:"cpu",kernelFunc:Y6};function Q6(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ve(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=pN(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var Z6={kernelName:Od,backendName:"cpu",kernelFunc:Q6};function e5(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(l[c++]=r.shape[h]);let u=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let d=new Array(o);for(let h=0;h<d.length;h++){u[s]=h;let m=Vi({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});d[h]=kt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return d}var t5={kernelName:kl,backendName:"cpu",kernelFunc:e5};function n5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ve(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,c=[],u=[],p=o-l,d=s;for(let m=0;m<p;++m){let f=Im({inputs:{input:d},backend:n,attrs:{dim:m+1}});d=f,u.push(f)}for(let m=0;m<i;++m){let f=w.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=IN({inputs:{a:g,b:d},backend:n}),b=ps({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=xv({inputs:{a:b,b:r},backend:n}),v=Tm({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});c.push(v),u.push(g),u.push(y),u.push(b),u.push(x),u.push(v)}let h=_N({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var a5={kernelName:pc,backendName:"cpu",kernelFunc:n5},r5=[NU,EV,CU,EU,MV,AU,DU,MU,OU,zU,WU,UU,HU,KU,YU,ZU,tG,aG,sG,IU,oG,uG,pG,DV,OV,hG,FV,fG,yG,vG,kG,bG,SG,_G,TG,FG,$G,RG,PG,LG,BG,WG,UG,HG,qG,KG,YG,XG,Tv,gU,QG,eH,lH,LV,uH,BV,fH,yH,bH,VV,wH,IH,NH,CH,EH,GV,$H,AV,RH,gG,PH,LH,BH,yU,jV,UH,HH,KV,qH,YH,QH,tj,aj,sj,YV,lj,cj,dj,mj,gj,ij,xj,wj,QV,Ij,Sj,Fj,eU,nU,Dj,Pj,zj,rU,Wj,Uj,Gj,EN,Kj,xU,oU,Yj,$V,Qj,vU,wU,kU,e6,n6,r6,i6,l6,u6,p6,uU,h6,f6,x6,w6,I6,N6,C6,cU,_j,F6,$6,R6,P6,L6,z6,dU,W6,U6,mU,yj,H6,q6,X6,J6,sU,Z6,t5,a5,Vj];for(let e of r5)hc(e);var Ui={},Cv={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function s5(e,t){Ui[e]=t}function ar(e){if(!(e in Ui)){let n=i5(e);if(n!==null)Ui[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ui[e];return t.isContextLost()?(delete Ui[e],ar(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ui[e])}function o5(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function i5(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=o5(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ui[e]},!1),e===1?t.getContext("webgl",Cv)||t.getContext("experimental-webgl",Cv):t.getContext("webgl2",Cv)}var sp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(sp||(sp={}));var na;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(na||(na={}));var an;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(an||(an={}));function ip(e,t){return[t,e]}function l5(e,t){return e*t}function op(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function au(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function u5(e,t){let[n,a]=au(e,t);return n*a*4}function _v(e,t){let n=e,a,r,s,i,o,l,c,u,p,d;return ee().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,p=n.HALF_FLOAT,d=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ie(e,t){let n=t();return ee().getBool("DEBUG")&&c5(e),n}function c5(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+p5(e,t))}var d5=596e-10,h5=65504;function m5(e){return!!(ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||d5<Math.abs(e)&&Math.abs(e)<h5)}function p5(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Sm(e,t){return Tr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function f5(e,t){let n=Tr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function y5(e,t){let n=Tr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw g5(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var b5=/ERROR: [0-9]+:([0-9]+):/g;function g5(e,t){let n=b5.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((p,d)=>w.rightPad((d+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),c=i.slice(a-1,a),u=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(c[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function x5(e){return Tr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function v5(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Ev(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function w5(e,t){let n=Tr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function k5(e,t){let n=Tr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function I5(e){return Tr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function T5(e,t){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function N5(e){return Tr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function $N(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),Ie(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),Ie(e,()=>e.enableVertexAttribArray(o)),!0)}function C5(e,t,n){S5(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function _5(e,t,n){return Tr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function E5(e,t,n){return e.getUniformLocation(t,n)}function F5(e,t,n,a){Ie(e,()=>C5(e,t,a)),Ie(e,()=>e.uniform1i(n,a))}function Fv(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function DN(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Cm(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+A5(e,t))}function A5(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Tr(e,t,n){let a=Ie(e,()=>t());if(a==null)throw new Error(n);return a}function S5(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function ru(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function su(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Av(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ru(e),...su(e)]),t}function $5(e,t=!1){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?w.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let a=w.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=ru(e),s=2,i=2;return e.length&&([s,i]=su(e)),a=r*(s/2)*(i/2),w.sizeToSquarishShape(a).map(o=>o*2)}return w.sizeToSquarishShape(a)}function _m(e){return e%2==0}function Em(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||_m(n)&&_m(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&_m(e[0])&&_m(t[0])}var $v,Dv;function D5(e){if($v==null){let t=ar(e);$v=t.getParameter(t.MAX_TEXTURE_SIZE)}return $v}function R5(e){if(Dv==null){let t=ar(e);Dv=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Dv)}function M5(e){if(e===0)return 0;let t,n=ar(e);return ba(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ba(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ba(e,t){return e.getExtension(t)!=null}function RN(e){try{if(ar(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function P5(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ba(t,"OES_texture_float"))return!1}else if(!ba(t,"EXT_color_buffer_float"))return!1;return Rv(t)}function L5(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ba(t,"OES_texture_float")||!ba(t,"WEBGL_color_buffer_float"))return!1}else{if(ba(t,"EXT_color_buffer_float"))return Rv(t);let n="EXT_color_buffer_half_float";if(ba(t,n)){let a=t.getExtension(n);return O5(t,a)}return!1}return Rv(t)}function Rv(e){let t=_v(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function O5(e,t){let n=_v(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function z5(e){return e!==2?!1:ar(e).fenceSync!=null}function lp(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=ee();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>RN(2)?2:RN(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>D5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>R5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:M5(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hd.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>P5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>L5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>z5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function mn(){let e,t,n,a,r,s,i,o,l,c;return ee().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",c=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,c=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Gi(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Mv(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var MN=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,B5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=sp.DENSE;let t=op(e),n=mn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Gi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},W5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=sp.DENSE;let t=op(e),n=mn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Gi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},V5=class{constructor(e){this.variableNames=["A"],this.outTexUsage=na.DOWNLOAD;let t=mn();this.outputShape=e,this.userCode=`
|
|
${MN}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},U5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=na.DOWNLOAD;let t=mn();this.outputShape=e,this.userCode=`
|
|
${MN}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},G5=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=mn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${Mv(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
vec4 values = ${a.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${a.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},H5=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=mn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${c} < ${e[2]}) {
|
|
localCoords[2] += ${c};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
values = ${a.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${u}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${u}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${u}] = values[2];
|
|
} else {
|
|
result[${u}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${Mv(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${a.output} = ${o};
|
|
}
|
|
`}};function j5(e){let t=mn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return f5(e,n)}function q5(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return w5(e,t)}function K5(e){let t=new Uint16Array([0,1,2,2,1,3]);return k5(e,t)}function up(e,t,n,a,r,s){T5(t,n);let i=I5(e),o=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(o,i)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function PN(e){return e.internalFormatFloat}function X5(e,t,n,a){let[r,s]=ip(t,n);return up(e,r,s,PN(a),a.textureFormatFloat,e.FLOAT)}function ON(e){return e.internalFormatHalfFloat}function Y5(e,t,n,a){let[r,s]=ip(t,n);return up(e,r,s,ON(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function LN(e){return e.downloadTextureFormat}function J5(e,t,n,a){let[r,s]=ip(t,n);return up(e,r,s,LN(a),e.RGBA,e.UNSIGNED_BYTE)}function zN(e){return e.internalFormatPackedFloat}function Q5(e,t,n,a){let[r,s]=au(t,n);return up(e,r,s,zN(a),e.RGBA,e.FLOAT)}function BN(e){return e.internalFormatPackedHalfFloat}function Z5(e,t,n,a){let[r,s]=au(t,n);return up(e,r,s,BN(a),e.RGBA,a.textureTypeHalfFloat)}function eq(e,t,n){let a=0,r=3*4,s=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),$N(e,t,"clipSpacePos",n,3,s,a)&&$N(e,t,"uv",n,2,s,r)}function tq(e,t,n,a,r,s){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function nq(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function aq(e,t,n,a){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function rq(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function sq(e,t,n,a){let[r,s]=ip(t,n),i=4,o=new Uint8Array(l5(t*n,i));return Ie(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function iq(e,t,n,a,r,s,i,o){let l=e,c=new Float32Array(u5(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function oq(e,t,n){let a=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var uq=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ee().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,s5(t,e)):this.gl=ar(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(ee().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Sm(this.gl,r),ba(this.gl,s))this.textureHalfFloatExtension=Sm(this.gl,s);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ba(this.gl,a))this.colorBufferHalfFloatExtension=Sm(this.gl,a);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ba(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ba(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=q5(this.gl),this.indexBuffer=K5(this.gl),this.framebuffer=N5(this.gl),this.textureConfig=_v(this.gl,this.textureHalfFloatExtension)}get debug(){return ee().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),X5(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Y5(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),J5(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),nq(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),tq(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Z5(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Q5(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(DN(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>sq(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return iq(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return rq(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=aq(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ee().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>oq(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=y5(t,e),a=j5(t),r=x5(t);return Ie(t,()=>t.attachShader(r,a)),Ie(t,()=>t.attachShader(r,n)),v5(t,r),this.debug&&Ev(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=eq(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Ev(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?_5(this.gl,e,t):E5(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),F5(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=au(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Ev(this.gl,this.program),Cm(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Sm(this.gl,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=lq(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Fv(this.gl,e,this.framebuffer),this.debug&&Cm(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Fv(this.gl,this.outputTexture,this.framebuffer),this.debug&&Cm(this.gl)):DN(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;Fv(a,e,this.framebuffer),this.debug&&Cm(a),this.outputTexture=e,Ie(a,()=>a.viewport(0,0,t,n)),Ie(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function lq(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:WN}=_;function bq(e,t,n,a){let r=[];e.forEach(h=>{let m=w.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
|
|
`),i=e.map(h=>cq(h,t,a)).join(`
|
|
`),o=t.texShape,l=mn(),c=hq(l),u,p,d=gq(l);return t.isPacked?(u=pq(t.logicalShape,o),p=fq(l)):(u=dq(t.logicalShape,o),p=mq(l)),a&&(d+=yq),[d,c,p,s,u,i,n].join(`
|
|
`)}function iu(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return xq(e);case 1:return vq(e);case 2:return wq(e);case 3:return kq(e);case 4:return Iq(e);case 5:return Tq(e);case 6:return Nq(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function VN(e){switch(e.shapeInfo.logicalShape.length){case 0:return Sq(e);case 1:return Cq(e);case 2:return _q(e);case 3:return Eq(e);default:return Fq(e)}}function cq(e,t,n=!1){let a="";n?a+=VN(e):a+=iu(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=Aq(e,t):a+=$q(e,t)),a}function pq(e,t){switch(e.length){case 0:return UN();case 1:return Dq(e,t);case 2:return Pq(e,t);case 3:return Rq(e,t);default:return Mq(e,t)}}function dq(e,t){switch(e.length){case 0:return UN();case 1:return Oq(e,t);case 2:return Vq(e,t);case 3:return Lq(e,t);case 4:return zq(e,t);case 5:return Bq(e,t);case 6:return Wq(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function hq(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function mq(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function fq(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function gq(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${Uq}
|
|
${Gq}
|
|
${Hq}
|
|
`}var Uq=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Gq=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Hq=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,yq=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function UN(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function Dq(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function Oq(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function Rq(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function Lq(e,t){let n=Gi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function Mq(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function zq(e,t){let n=Gi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function Bq(e,t){let n=Gi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function Wq(e,t){let n=Gi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function Pq(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Vq(e,t){return w.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Hi(e){return`offset${e}`}function Sq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=mn();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function xq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=Hi(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function Cq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=mn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${r[0]}, ${r[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function vq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${ou(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=Hi(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:r===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function _q(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=mn();if(r!=null&&w.arraysEqual(t,r))return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],c=Math.ceil(t[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function wq(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&w.arraysEqual(t,r)){let p=r[0],d=r[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=w.squeezeShape(t),o=s;if(o.length<t.length){let p=lu(e,o),d=["row","col"];return`
|
|
${iu(p)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${uu(d,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${ou(e)}
|
|
}
|
|
`;let l=r[0],c=r[1],u=Hi(n);return c===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${u};
|
|
vec2 uv = uvFromFlat(${l}, ${c}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Eq(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),d=[1,2],h=lu(e,p),m=["b","row","col"];return`
|
|
${VN(h)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${uu(m,d)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),c=l*Math.ceil(t[1]/2),u=mn();return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${c}, ${l}, b, row, col);
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`}function kq(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=w.squeezeShape(t),l=i;if(l.length<t.length){let m=lu(e,l),f=["row","col","depth"];return`
|
|
${iu(m)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${uu(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${r}, ${s}, 1)));
|
|
${ou(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,u=c[0],p=c[1],d=e.shapeInfo.flatOffset;if(p===r&&d==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===s&&d==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Hi(n);return`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r} + col * ${s} + depth + ${h};
|
|
vec2 uv = uvFromFlat(${u}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Fq(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],c=Math.ceil(t[n-1]/2),u=c*Math.ceil(t[n-2]/2),p="int b, int row, int col",d=`b * ${u} + (row / 2) * ${c} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,u*=t[n-m-1],d=`b${m} * ${u} + `+d;let h=mn();return`
|
|
vec4 ${r}(${p}) {
|
|
int index = ${d};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${h.texture2D}(${a}, uv);
|
|
}
|
|
`}function Iq(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=w.squeezeShape(t);if(o.length<t.length){let m=lu(e,o),f=["row","col","depth","depth2"];return`
|
|
${iu(m)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${uu(f,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${r}, 1)));
|
|
${ou(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,p=u[0],d=u[1];if(d===i&&c==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(d===r&&c==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Hi(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${r} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${d}, index + ${h});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Tq(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:c}=w.squeezeShape(t);if(l.length<t.length){let f=lu(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${iu(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${uu(g,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${ou(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===o&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Hi(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Nq(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=w.squeezeShape(t);if(r.length<t.length){let g=lu(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${iu(g)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${uu(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${c}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${ou(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],m=d[1];if(m===u&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${c}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Hi(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${c} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function ou(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function Aq(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=WN(e.shapeInfo.logicalShape,t.logicalShape),l=dt(i),c=i-s,u,p=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(g=>`coords.${p[g+c]} = 0;`).join(`
|
|
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((g,y)=>`coords.${p[y+c]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,f=w.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${a}(${d});
|
|
${h}
|
|
}
|
|
`}function $q(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let c=dt(l),u=WN(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,d,h=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${h[f+p]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${c} coords = getOutputCoords();
|
|
${d}
|
|
return get${a}(${m});
|
|
}
|
|
`}function dt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function lu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function uu(e,t){return t.map(n=>e[n]).join(", ")}function jq(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=bq(s,o,r,t.packedInputs),c=e.createProgram(l),u=null,p=e.getUniformLocation(c,"NAN",!1);ee().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;d[m]=e.getUniformLocation(c,m,f),d[`offset${m}`]=e.getUniformLocation(c,`offset${m}`,f)}return{program:t,source:l,webGLProgram:c,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:p}}function GN(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!w.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function qq(e,t,n,a,r){GN(t.inShapeInfos,n),GN([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),ee().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],p=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(w.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function Kq(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:Xq,bincountImpl:HN,bincountReduceImpl:Yq,ceilImpl:Jq,concatImpl:Qq,expImpl:Zq,expm1Impl:e8,floorImpl:t8,gatherV2Impl:n8,greaterImpl:a8,lessImpl:r8,linSpaceImpl:s8,logImpl:i8,maxImpl:o8,maximumImpl:l8,minimumImpl:u8,multiplyImpl:c8,negImpl:p8,prodImpl:d8,rangeImpl:h8,rsqrtImpl:m8,simpleAbsImpl:jN,sliceImpl:f8,stridedSliceImpl:g8,subImpl:y8,tileImpl:b8,topKImpl:x8,transposeImpl:Pv,uniqueImpl:v8}=BT;function qN(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function fn(e,t){return t===1?[e]:qN(e,t)}function w8(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var N8=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=fn("rc",t),a=dt(t),r=k8(t,e,n),s=I8(t,e[e.length-1],e[e.length-2],n),i=T8(e,n);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function S8(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function k8(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function I8(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function T8(e,t){let n=e.length,a=S8(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${a[0]}),
|
|
cEdge ? 0. : getA(${a[1]}),
|
|
rEdge ? 0. : getA(${a[2]}),
|
|
rEdge || cEdge ? 0. : getA(${a[3]})`}var KN=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${C8(t)}
|
|
${Mv(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function C8(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Gi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var _8=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=YN(t,n),r=JN(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=XN(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===an.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===an.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===an.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===an.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===an.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=YN(n,a),s=JN(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=XN(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=ee().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function E8(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function XN(e,t,n,a,r){let s=F8(t,a),i;if(r){let[l,c]=au(e[0],e[1]);i=l*c}else{let[l,c]=ip(e[0],e[1]);i=l*c}let o=E8(n,s);return i*o}function F8(e,t){switch(e){case an.PACKED_2X2_FLOAT32:return zN(t);case an.PACKED_2X2_FLOAT16:return BN(t);case an.UNPACKED_FLOAT32:return PN(t);case an.UNPACKED_FLOAT16:return ON(t);case an.PACKED_4X1_UNSIGNED_BYTE:return LN(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function A8(e){return ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?an.PACKED_2X2_FLOAT32:an.UNPACKED_FLOAT32:e?an.PACKED_2X2_FLOAT16:an.UNPACKED_FLOAT16}function YN(e,t){if(e===na.UPLOAD)return an.PACKED_2X2_FLOAT32;if(e===na.RENDER||e==null)return A8(t);if(e===na.DOWNLOAD||e===na.PIXELS)return an.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function JN(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ds=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Ra="if (isnan(x)) return x;",$8="return x;",QN="return abs(x);",D8="return (x >= 0.0) ? x : (exp(x) - 1.0);",R8=Ra+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,M8=Ra+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Fm="return x;",P8="return x;",O8=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,L8=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,z8=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,cu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},B8=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=fn("rc",t),a=dt(t),r=w8(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},W8=Ya.whereImpl,V8=1e-7,U8=1e-4,Ov={};function G8(e){return e in Ov||(Ov[e]={}),Ov[e]}var H8=128,j8=600;function q8(){return ee().global.screen==null?1024:ee().global.screen.height*ee().global.screen.width*window.devicePixelRatio*j8/1024/1024}var Lv=class extends ju{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!ee().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=ar(ee().getNumber("WEBGL_VERSION"));this.binaryCache=G8(ee().getNumber("WEBGL_VERSION")),this.gpgpu=new uq(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new _8(this.gpgpu),this.numMBBeforeWarning=q8(),this.texData=new rd(this,Ua())}nextDataId(){return Lv.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((ee().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ee().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:na.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(ee().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:na.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new cu(i,Fm):p=new ds(i,Fm);let d=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,c;l&&(c=w.now());let u;if(a==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);u=_.mergeRealAndImagArrays(p,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new cu(a,Fm):h=new ds(a,Fm);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ee().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&ee().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...op(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];u=_.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(a);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}c!=null&&this.disposeIntermediateTensorInfo(c);let p=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ua().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!m5(n))throw ee().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=w.sizeFromShape(t);if(ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...op(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=ee().getBool("WEBGL_PACK")&&a===!0,i=s?Av(t):t,o=s?new U5(i):new V5(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return ee().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Ua().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=H8){let n=this.getCPUBackend();return!ee().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(a=>this.texData.get(a.dataId).texture==null&&w.sizeFromShape(a.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return W8(e.shape,t)}packedUnaryOp(e,t,n){let a=new cu(e.shape,t),r=this.compileAndRun(a,[e],n);return Ua().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=jN(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(ee().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,QN,e.dtype);let t=new ds(e.shape,QN),n=this.compileAndRun(t,[e]);return Ua().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return Ua().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new B8(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new N8(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ru(e.shape),...su(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[ru(t),...su(t)],s=new KN(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=Av(a),i;n?i=new W5(s):i=new B5(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===sp.DENSE){let f=op(e.outputShape);i.texShape=f.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),w.sizeFromShape(s.shape)===0)return i.values=w.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(f.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(f.shape)<=ee().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=f.shape)}else if(!!g.isPacked!=!!e.packedInputs)f=g.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),g=this.texData.get(f.dataId);else if(g.isPacked&&!Em(g.shape,f.shape)){let y=f,b=f.shape;f.shape=g.shape,f=this.packedReshape(f,b),o.push(f),g=this.texData.get(f.dataId),y.shape=b}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:g,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=Kq(e,l,c),p=this.getAndSaveBinary(u,()=>jq(this.gpgpu,e,l,c)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),qq(this.gpgpu,p,l,c,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=ee().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=w.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!ee().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ee().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=D(()=>{if(!ee().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ee().getBool("DEBUG");ee().set("DEBUG",!1);let t=this.abs(pe(1e-8)).dataSync()[0];if(ee().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?V8:U8}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=w.now());let u=t.texShape;if(u==null&&(u=$5(n,o),t.texShape=u),r!=null){let p=Av(n),d,h=u[1],m=u[0],f=r instanceof Uint8Array;o?([h,m]=au(u[0],u[1]),d=new H5(p,[m,h],f)):d=new G5(p,[m,h],f);let g=this.makeTensorInfo([m,h],a);f?this.texData.get(g.dataId).usage=na.PIXELS:this.texData.get(g.dataId).usage=na.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,m,r);let y=!0,b=this.runWebGLProgram(d,[g],a,null,y),x=this.texData.get(b.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(b.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-c)}else{let p=this.acquireTexture(u,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=K8(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};Lv.nextDataId=0;function K8(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var X8="3.2.0";Hd.isBrowser()&&Jd("webgl",()=>new Lv,2);var ZN=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,pu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Am=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,cp=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||w.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${dt(r)} coords = getOutputCoords();
|
|
`,r===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=fn("coords",r);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Gn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var Y8={kernelName:Ws,backendName:"webgl",kernelFunc:Gn};function hs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Gn({inputs:{x:a},backend:n}),l=Gn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var J8={kernelName:hd,backendName:"webgl",kernelFunc:hs},eS="return (a < 0.) ? b * a : a;",tS=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function Q8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),o=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cp(tS,r.shape,i.shape):new pu(eS,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var Z8={kernelName:Vs,backendName:"webgl",kernelFunc:Q8},nS="return (a < 0.) ? b * a : a;",aS=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function eK(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cp(aS,a.shape,r.shape):new pu(nS,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var tK={kernelName:ei,backendName:"webgl",kernelFunc:eK},rS="if (isnan(x)) return x;",nK=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,aK=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ke({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),d=n(p.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new cu(i.shape,t):u=new ds(i.shape,e),o.runWebGLProgram(u,[i],l)}}function rn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(a&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,N]=x,T={dataId:v.dataId,dtype:v.dtype,shape:l.shape},S={dataId:N.dataId,dtype:N.dtype,shape:c.shape},A=new pu(e,l.shape,c.shape);return u.runWebGLProgram(A,[T,S],ua(v.dtype,N.dtype))}),b=hs({inputs:{real:g,imag:y},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(y),b}let p=s||ua(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&r!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=r(l.shape,c.shape,m.values,f.values,p),b=u.makeTensorInfo(y,p),x=u.texData.get(b.dataId);return x.values=g,b}let d=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new cp(t,l.shape,c.shape,n):h=new pu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],p)}}function $m(e,t=!1){if(e==="linear")return t?P8:$8;if(e==="relu")return t?L8:R8;if(e==="elu")return t?O8:D8;if(e==="relu6")return t?z8:M8;if(e==="prelu")return t?aS:nS;if(e==="leakyrelu")return t?tS:eS;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var sS=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=a?e[1]:e[2],u=Math.ceil(c/2),p=a?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${b};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},iS={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},oS=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},lS="return a * b;";function uS(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=_.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),c=new oS(iS.REAL,a.shape,r.shape),u=new oS(iS.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=hs({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[c,u]=c8(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(u,s),d=n.texData.get(p.dataId);return d.values=c,p}let i;return ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new cp(lS,a.shape,r.shape):i=new pu(lS,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var rK={kernelName:Ys,backendName:"webgl",kernelFunc:uS};function sK(e,t,n){let a=[ru(e.shape),...su(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[ru(t),...su(t)],i=new KN(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ye(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(s,o),c=w.sizeFromShape(l);w.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(r.dataId);return u.isPacked&&!Em(r.shape,l)&&!(u.texture!==null&&Em(u.shape,l))?sK(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var iK={kernelName:cl,backendName:"webgl",kernelFunc:ye},cS=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${w.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},oK=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${u===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${u===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function lK(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function ji(e,t,n,a){let r=lK(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:c}=r[i],u,p;n==="mean"?u=i===0?new cS({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},o):new cS({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c}):u=new oK({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},n),p=s,s=a.runWebGLProgram(u,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var cK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=dt(this.rank),r=uK(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function uK(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var pK=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=dt(this.rank),r=qN("rc",this.rank),s=new Array(this.rank);for(let c=0;c<t.length;c++)s[t[c]]=r[c];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Dm(e,t,n){let a=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pK(e.shape,t):new cK(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function dK(e,t,n,a){let r=t,s=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,l=_.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=Dm(e,l,a),o=_.getInnerMostAxes(o.length,s)),_.assertAxesAreInnerMostDims("sum",o,s);let[p,d]=_.computeOutAndReduceShapes(u.shape,o),h=p;n&&(h=_.expandShapeToKeepDim(p,i));let m=w.sizeFromShape(d),f=w.sizeFromShape(e.shape)/m,g=ye({inputs:{x:u},attrs:{shape:[f,m]},backend:a}),y=Gd(e.dtype),b=ji(g,y,"sum",a),x=ye({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),c&&a.disposeIntermediateTensorInfo(u),x}function zv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return dK(r,s,i,n)}var hK={kernelName:ci,backendName:"webgl",kernelFunc:zv};function Fn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=r.shape[s[u]];let c;if(i.shouldExecuteOnCPU([r])){let u=i.texData.get(r.dataId).values,p=Pv(u,r.shape,r.dtype,s,l);c=i.makeTensorInfo(l,r.dtype);let d=i.texData.get(c.dataId);d.values=p}else c=Dm(r,s,i);return c}var mK={kernelName:fi,backendName:"webgl",kernelFunc:Fn},pS=1e3;function Rm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,p=n?e.shape[c-2]:e.shape[c-1],d=a?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],m=a?t.shape[u-2]:t.shape[u-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=w.sizeFromShape(f),b=w.sizeFromShape(g),x=y===b||y===1||b===1;w.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let v=(y>b?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let N=n?[y,p,h]:[y,h,p],T=a?[b,m,d]:[b,d,m],S=ye({inputs:{x:e},backend:r,attrs:{shape:N}}),A=ye({inputs:{x:t},backend:r,attrs:{shape:T}}),$=[S,A],R=Math.max(y,b),B=n?S.shape[1]:S.shape[2],V=s!=null,W=i!=null,G=l==="leakyrelu",H=l!=null?$m(l,!0):null,X=V||W||G||H!=null,q;if((h===1||m===1)&&B>pS&&X===!1){let Q=S,se=A;n&&(Q=Fn({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),$.push(Q)),a&&(se=Fn({inputs:{x:A},backend:r,attrs:{perm:[0,2,1]}}),$.push(se));let ne=m!==1,ie=m===1,Z=Q;ne&&(Z=ye({inputs:{x:Q},backend:r,attrs:{shape:[R,B,1]}}),$.push(Z));let de=m===1?2:1,oe=se;ie&&(oe=ye({inputs:{x:se},backend:r,attrs:{shape:[R,1,B]}}),$.push(oe));let ge=uS({inputs:{a:Z,b:oe},backend:r});q=zv({inputs:{x:ge},backend:r,attrs:{axis:de,keepDims:!0}}),$.push(ge)}else{let Q=ua(e.dtype,t.dtype),se=new sS(N,T,[R,h,m],n,a,V,H,W,G),ne=[S,A];if(s!=null&&ne.push(s),W&&ne.push(i),G){let ie=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));ne.push(ie),$.push(ie)}q=r.runWebGLProgram(se,ne,Q)}let te=ye({inputs:{x:q},backend:r,attrs:{shape:v}});$.push(q);for(let Q of $)r.disposeIntermediateTensorInfo(Q);return te}function fK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a;return Rm({a:r,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:u})}var gK={kernelName:gi,backendName:"webgl",kernelFunc:fK},dS="return abs(x);";function yK(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=jN(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new cu(a.shape,dS):r=new ds(a.shape,dS),n.runWebGLProgram(r,[a],a.dtype)}var bK={kernelName:So,backendName:"webgl",kernelFunc:yK},xK=Ra+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,vK=Ke({opSnippet:xK}),wK={kernelName:Co,backendName:"webgl",kernelFunc:vK},kK=Ra+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,IK=Ke({opSnippet:kK}),TK={kernelName:_o,backendName:"webgl",kernelFunc:IK},hS="return a + b;",NK=rn({opSnippet:hS,packedOpSnippet:hS,supportsComplex:!0,cpuKernelImpl:Xq}),SK={kernelName:Wr,backendName:"webgl",kernelFunc:NK},CK=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},_K=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function Mm(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Gn({inputs:{x:a[0]},backend:n});if(a.length>ee().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Mm({inputs:a.slice(0,o),backend:n}),c=Mm({inputs:a.slice(o),backend:n});return Mm({inputs:[l,c],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ua(o,l)),s=a.map(o=>o.shape),i=ee().getBool("WEBGL_PACK")?new _K(a[0].shape,s):new CK(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var EK={kernelName:Ts,backendName:"webgl",kernelFunc:Mm};function FK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Fn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("all",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ye({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=ji(f,f.dtype,"all",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ye({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ye({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var AK={kernelName:ld,backendName:"webgl",kernelFunc:FK};function $K(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Fn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("any",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ye({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=ji(f,f.dtype,"any",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ye({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ye({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var DK={kernelName:ud,backendName:"webgl",kernelFunc:$K},RK=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},MK=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=dt(o),c=fn("coords",o),u,p;if(s===1){p=o+1;let S=dt(p);u=`
|
|
${S} sourceLocR = ${S}(${c.join()}, 0);
|
|
++${c[o-1]};
|
|
${S} sourceLocG = ${S}(${c.join()}, 0);
|
|
++${c[o-2]};
|
|
${S} sourceLocA = ${S}(${c.join()}, 0);
|
|
--${c[o-1]};
|
|
${S} sourceLocB = ${S}(${c.join()}, 0);
|
|
--${c[o-2]};`}else p=o,u=`
|
|
${l} sourceLocR = coords;
|
|
++${c[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],m=d.map(S=>"int "+S),f=fn("sourceLocR",p-1).concat("inIdx.r"),g=fn("sourceLocG",p-1).concat("inIdx.g"),y=fn("sourceLocB",p-1).concat("inIdx.b"),b=fn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${b.join()})));`,N=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,T=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${T}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${c[o-2]} < ${i[o-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${N};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${v}
|
|
vec4 candidate = ${N};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function mS(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=_.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new RK(o,n,a==null),c=[t];a!=null&&c.push(a);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let p=mS(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}function fS(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=_.computeOptimalWindowSize(s),o=new MK(r,i,n,a==null),l=a==null?[t]:[t,a],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=fS(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function gS(e,t,n,a){let r=[n];if(_.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!ee().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=_.computeOutAndReduceShapes(t.shape,r),l=w.sizeFromShape(o),c=ye({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=mS(e,c,a);s.push(u);let p=ye({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),p}return fS(e,t,a)}function PK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=Fn({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=gS(n,l,i[0],"max");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var OK={kernelName:Ns,backendName:"webgl",kernelFunc:PK};function LK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=Fn({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=gS(n,l,i[0],"min");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var zK={kernelName:Xu,backendName:"webgl",kernelFunc:LK},BK=Ra+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,WK=Ke({opSnippet:BK}),VK={kernelName:Eo,backendName:"webgl",kernelFunc:WK},UK=Ra+"return log(x + sqrt(x * x + 1.0));",GK=Ke({opSnippet:UK}),HK={kernelName:Fo,backendName:"webgl",kernelFunc:GK},jK=Ra+`
|
|
return atan(x);
|
|
`,qK=Ke({opSnippet:jK}),KK={kernelName:Ao,backendName:"webgl",kernelFunc:qK},XK=nK+`
|
|
return atan(a, b);
|
|
`,YK=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+aK+`
|
|
return result;
|
|
`,JK=rn({opSnippet:XK,packedOpSnippet:YK}),QK={kernelName:Do,backendName:"webgl",kernelFunc:JK},ZK=Ra+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,eX=Ke({opSnippet:ZK}),tX={kernelName:$o,backendName:"webgl",kernelFunc:eX},pp=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:g:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,N=s%4,T=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},Bv=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let v="max",N=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(N="avgValue / count");let T=Math.floor(s/4)*4,S=s%4,A=`
|
|
if (${b}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${v}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${T}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${A}
|
|
}
|
|
|
|
int xC = xCCorner + ${T};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${A}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${A}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${A}
|
|
}
|
|
}
|
|
setOutput(${N});
|
|
}
|
|
}
|
|
`}};function nX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;lp(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return Gn({inputs:{x:r},backend:n});let p=new pp(u,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var aX={kernelName:Ss,backendName:"webgl",kernelFunc:nX};function rX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,l,c),d=new Bv(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var sX={kernelName:Yu,backendName:"webgl",kernelFunc:rX},iX=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${u});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},oX=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=u-1-e.padInfo.front,m=p-1-e.padInfo.top,f=d-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function lX(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new oX(d);return n.runWebGLProgram(h,[r],i.dtype)}var uX={kernelName:pd,backendName:"webgl",kernelFunc:lX};function cX(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;lp([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=new iX(u);return n.runWebGLProgram(p,[r],i.dtype)}var pX={kernelName:cd,backendName:"webgl",kernelFunc:cX};function dX(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Rm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var hX={kernelName:Cs,backendName:"webgl",kernelFunc:dX},mX=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},fX=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},gX=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;w.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[a,r,s],u=null;i!=null&&(u=i.shape,c.push(i));let p=null;o!=null&&(p=o.shape,c.push(o));let d=ee().getBool("WEBGL_PACK_NORMALIZATION")?new fX(a.shape,r.shape,s.shape,u,p,l):new mX(a.shape,r.shape,s.shape,u,p,l);return t.runWebGLProgram(d,c,c[0].dtype)},yX={kernelName:zs,backendName:"webgl",kernelFunc:gX},xX=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=`uniform int start[${this.rank}];`,a=bX(this.rank),r,s=e.map((i,o)=>`sourceLoc.${Wv[o]} = start[${o}] + coords.${Wv[o]};`);r=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${r}
|
|
setOutput(getSource(${a}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Wv=["x","y","z","w","u","v"];function bX(e){if(e===1)return"sourceLoc";if(e<=6)return Wv.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var vX=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=fn("coords",this.rank),a=fn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${a[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function wX(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=pn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function dp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=pn.parseSliceParams(r,s,i);if(pn.assertParamsValid(r,o,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=f8(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:c}=n.texData.get(r.dataId),u=pn.isSliceContinous(r.shape,o,l);if(c||!u){let p=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new vX(l):new xX(l),d=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),wX(r,o,l,n)}var kX={kernelName:ml,backendName:"webgl",kernelFunc:dp},IX=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=[],m=ye({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Fn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=ye({inputs:{x:f},backend:n,attrs:{shape:u}}),y=dp({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},TX={kernelName:Ju,backendName:"webgl",kernelFunc:IX};function NX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),c=HN(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var SX={kernelName:dd,backendName:"webgl",kernelFunc:NX},CX="return float(a != b);",yS=rn({opSnippet:CX,dtype:"bool"}),_X={kernelName:nl,backendName:"webgl",kernelFunc:yS};function hp(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Gn({inputs:{x:r.complexTensorInfos.real},backend:n})}var EX={kernelName:Dd,backendName:"webgl",kernelFunc:hp},FX="return float(int(x));";function AX(e,t){let n=new ds(e.shape,FX),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function Vv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Gn({inputs:{x:r},backend:n});let i=xt(r.shape),o=Vv({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=hs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=hp({inputs:{input:r},backend:n}),o=Vv({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=Gn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return AX(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=yS({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var $X={kernelName:_s,backendName:"webgl",kernelFunc:Vv},bS="return ceil(x);",DX=Ke({opSnippet:bS,packedOpSnippet:bS,cpuKernelImpl:Jq}),RX={kernelName:Es,backendName:"webgl",kernelFunc:DX},MX=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},PX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function OX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;ee().getBool("WEBGL_PACK_CLIP")?o=new PX(r.shape):o=new MX(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var LX={kernelName:Vr,backendName:"webgl",kernelFunc:OX},zX=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function xS(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function BX(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new zX(a.shape),i=[xS(a,r.complexTensorInfos.real),xS(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var WX={kernelName:Qu,backendName:"webgl",kernelFunc:BX},VX=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},UX=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=dt(a),s=fn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],c=i.slice(-2),u=i.join(),p=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${c.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${Pm(i,l,f)}),
|
|
vec2(${Pm(c,l,f)}));
|
|
}`}let d=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${d}(${Pm(i,l,h)}),
|
|
vec2(${Pm(c,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Pm(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Om(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Gn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var GX={kernelName:Sd,backendName:"webgl",kernelFunc:Om};function du(e,t,n){let a=e[0].dtype;if(a==="complex64"){let c=e.map(m=>hp({inputs:{input:m},backend:n})),u=e.map(m=>Om({inputs:{input:m},backend:n})),p=du(c,t,n),d=du(u,t,n),h=hs({inputs:{real:p,imag:d},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),u.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(a==="string"){let{tensors2D:c,outShape:u}=vS(e,t,n),p=c.map(g=>({vals:n.readSync(g.dataId),shape:g.shape})),d=c[0].shape[0]===1,h=Qq(p,u,a,d),m=_.computeOutShape(e.map(g=>g.shape),t),f=n.makeTensorInfo(m,a,h);return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),f}if(e.length>ee().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=du(e.slice(0,c),t,n),p=du(e.slice(c),t,n),d=du([u,p],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),d}if(ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new UX(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,a)}let{tensors2D:r,outShape:s}=vS(e,t,n),i=new VX(r.map(c=>c.shape)),o=n.runWebGLProgram(i,r,a);r.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=ye({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function vS(e,t,n){let a=_.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>ye({inputs:{x:r},attrs:{shape:[-1,w.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function wS(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(c=>c.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>w.sizeFromShape(c.shape)>0);if(o.length===1)return Gn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return _.assertParamsConsistent(l,s),du(o,s,n)}var HX={kernelName:Ro,backendName:"webgl",kernelFunc:wS},kS=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,v="result = activation(result);");let N=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${b}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${N}
|
|
${v}
|
|
setOutput(result);
|
|
}
|
|
`}},jX=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},qX=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:p}=n,{left:d,top:h}=o,m=r*a,f=mn(),g=p==="channelsLast",y=g?0:1,b=g?1:2,x="";for(let v=0;v<=1;v++)for(let N=0;N<=1;N++)x+=`
|
|
blockIndex = rc.y + ${N};
|
|
pos = rc.x + ${v};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
|
|
d0 = offsetY + ${u} * (pos / ${m});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
|
|
d1 = offsetX + ${c} * (int(mod(float(pos), ${m}.) / ${r}.));
|
|
|
|
if(d1 < ${t[b]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${g}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${v*2+N}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${v*2+N}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function IS({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=a.texData.get(e.dataId),u=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[],b=(p===1||d===1)&&u>pS,x=l[2]%2!=0&&!!c.isPacked;if(b||!ee().getBool("WEBGL_LAZILY_UNPACK")||!ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],N=ye({inputs:{x:e},backend:a,attrs:{shape:[1,v,n.inChannels]}}),T=ye({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Rm({a:N,b:T,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ye({inputs:{x:S},backend:a,attrs:{shape:n.outShape}}),y.push(N),y.push(T),y.push(S)}else{let v=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),N={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},T=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,w.assert(Em(c.shape,N.shape),()=>`packed reshape ${c.shape} to ${N.shape} isn't free`);let S=ye({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let A=Rm({a:N,b:S,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),$=a.texData.get(A.dataId);w.assert($.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=T,$.shape=n.outShape,g=Gn({inputs:{x:A},backend:a}),g.shape=n.outShape,y.push(A)}for(let v of y)a.disposeIntermediateTensorInfo(v);return g}function TS({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:p,outHeight:d,dataFormat:h}=n,m=h==="channelsLast",f=l*c*u,g=d*p,y=[f,g],b=!0,x=!1,v=[],N=ye({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),T=ye({inputs:{x:t},backend:a,attrs:{shape:[1,f,w.sizeFromShape(t.shape)/f]}});v.push(N),v.push(T);let S=new qX(y,N.shape,n),A=a.runWebGLProgram(S,[N],"float32"),$=ye({inputs:{x:A},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push(A),v.push($);let R=r!=null,B=s!=null,V=o==="leakyrelu",W=o?$m(o,!0):null,G=new sS($.shape,T.shape,[1,g,n.outChannels],b,x,R,W,B,V),H=[$,T];if(r&&H.push(r),B&&H.push(s),V){let Q=a.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));H.push(Q),v.push(Q)}let X=a.runWebGLProgram(G,H,"float32"),q=m?[1,d,p,n.outChannels]:[1,n.outChannels,d,p],te=ye({inputs:{x:X},backend:a,attrs:{shape:q}});v.push(X);for(let Q of v)a.disposeIntermediateTensorInfo(Q);return te}function KX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=IS({x:r,filter:s,convInfo:d,backend:n});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=TS({x:r,filter:s,convInfo:d,backend:n});else{let f=new kS(d);h=n.runWebGLProgram(f,[r,s],"float32")}let m=ye({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),m}var XX={kernelName:Fs,backendName:"webgl",kernelFunc:KX},YX=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},JX=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},QX=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},ZX=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function eY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),h=new YX(d);return n.runWebGLProgram(h,[r,s],"float32")}var tY={kernelName:md,backendName:"webgl",kernelFunc:eY};function nY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(c),d=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),h=new JX(d);return n.runWebGLProgram(h,[r,s],"float32")}var aY={kernelName:As,backendName:"webgl",kernelFunc:nY};function rY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),u=new jX(c);return n.runWebGLProgram(u,[r,s],"float32")}var sY={kernelName:Zu,backendName:"webgl",kernelFunc:rY};function iY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,c=_.computeConv3DInfo(r.shape,l,i,1,o),u=new QX(c);return n.runWebGLProgram(u,[r,s],"float32")}var oY={kernelName:fd,backendName:"webgl",kernelFunc:iY};function lY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,c=_.computeConv3DInfo(l,s.shape,o,1,i),u=new ZX(c);return n.runWebGLProgram(u,[r,s],"float32")}var uY={kernelName:gd,backendName:"webgl",kernelFunc:lY},cY=rS+`
|
|
return cos(x);
|
|
`,pY=Ke({opSnippet:cY}),dY={kernelName:$s,backendName:"webgl",kernelFunc:pY},hY=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,mY=Ke({opSnippet:hY}),fY={kernelName:Mo,backendName:"webgl",kernelFunc:mY},gY=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,p]=n;this.outputShape=[c,u,p,l];let d=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,v]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${b});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${v};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},yY=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,u=new gY(r.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[r,s,i],"float32")},bY={kernelName:Po,backendName:"webgl",kernelFunc:yY},CS=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${NS(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${dt(a)} coords = getOutputCoords();
|
|
int end = ${SS(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${SS(a,"coords")} = idx;
|
|
val += getX(${NS(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function NS(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function SS(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function xY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,c=_.getAxesPermutation([s],l),u=r;c!=null&&(u=Fn({inputs:{x:r},backend:n,attrs:{perm:c}}));let p=_.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let d=u.shape[p],h=Gn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new CS(u.shape,!1,o),g=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new CS(u.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=_.getUndoAxesPermutation(c),f=Fn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),f}return h}var vY={kernelName:Ds,backendName:"webgl",kernelFunc:xY};function wY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(s.dataId),u=HN(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=Yq(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var kY={kernelName:yd,backendName:"webgl",kernelFunc:wY},IY=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function TY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=new IY(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var NY={kernelName:Oo,backendName:"webgl",kernelFunc:TY},_S=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,g="",y="";n&&(a?g=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?g=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:g=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${g}
|
|
|
|
const ivec2 strides = ivec2(${c}, ${u});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${p};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},ES=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=m,g="int xR; int xC; int xCOffset;";for(let v=0;v<h;v++)for(let N=0;N<m;N++)g+=`
|
|
vec4 xTexelR${v}C${N*2} = vec4(0.);
|
|
vec4 wR${v}C${N} = vec4(0.);
|
|
vec4 xR${v}C${N} = vec4(0.);`;for(let v=0;v<h;v++)for(let N=0;N<f;N++){let T=N*2;if(g+=`
|
|
xR = xRCorner + ${v*p};
|
|
xC = xCCorner + ${T*d};
|
|
`,u===1){if(T<m&&(l%2==1?g+=`
|
|
xCOffset = xC + 1;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${T} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
xTexelR${v}C${T}.zw = vec2(0.);
|
|
}
|
|
} else {
|
|
xTexelR${v}C${T} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + 1 - 2;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
vec4 previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.);
|
|
}
|
|
|
|
xR${v}C${T} = vec4(previous.zw, xTexelR${v}C${T}.xy);
|
|
} else {
|
|
xR${v}C${T} = vec4(0, 0, xTexelR${v}C${T}.xy);
|
|
}
|
|
`:g+=`
|
|
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
|
|
xTexelR${v}C${T} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${v}C${T} = vec4(0.);
|
|
}
|
|
|
|
xR${v}C${T} = xTexelR${v}C${T};
|
|
`,T+1<m)){let S=l%2==0?w.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(g+=`
|
|
xCOffset = xC + ${l%2} + ${S};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${T+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`,d>1&&(g+=`
|
|
xCOffset -= 2;
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${T} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${v}C${T} = vec4(0.);
|
|
}
|
|
`),g+=`
|
|
xR${v}C${T+1} = vec4(
|
|
xTexelR${v}C${T}.zw, xTexelR${v}C${T+2}.xy);
|
|
`):g+=`
|
|
xCOffset = xC + ${S};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${T+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
|
|
xR${v}C${T+1} = xTexelR${v}C${T+2};
|
|
`}}else T<m&&(g+=`
|
|
if(xR >= 0 && xR < ${s}) {
|
|
`,l%2==1?(g+=`
|
|
xCOffset = xC + 1 - ${u};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${T} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${v}C${T} = vec4(0.);
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i}) {
|
|
xTexelR${v}C${T+2} = getX(batch, xR, xC + 1, d1);
|
|
} else {
|
|
xTexelR${v}C${T+2} = vec4(0.);
|
|
}
|
|
|
|
xR${v}C${T} = vec4(
|
|
xTexelR${v}C${T}.zw, xTexelR${v}C${T+2}.zw);
|
|
`,T+1<m&&(g+=`
|
|
vec4 final = vec4(0.);
|
|
xCOffset = xC + 1 + ${u};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xR${v}C${T+1} = vec4(xTexelR${v}C${T+2}.xy, final.xy);
|
|
`)):(g+=`
|
|
if(xC >= 0 && xC < ${i}) {
|
|
xTexelR${v}C${T} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${v}C${T} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + ${u};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${v}C${T+2} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${v}C${T+2} = vec4(0.);
|
|
}
|
|
|
|
xR${v}C${T} = vec4(
|
|
xTexelR${v}C${T}.xy, xTexelR${v}C${T+2}.xy);
|
|
`,T+1<m&&(g+=`
|
|
xR${v}C${T+1} = vec4(
|
|
xTexelR${v}C${T}.zw, xTexelR${v}C${T+2}.zw);
|
|
`)),g+="}");T<m&&(g+=`
|
|
vec4 wTexelR${v}C${T} = getW(${v}, ${T}, d1, q);
|
|
wR${v}C${T} = vec4(wTexelR${v}C${T}.xz, wTexelR${v}C${T}.xz);
|
|
`,T+1<m&&(g+=`
|
|
vec4 wTexelR${v}C${T+1} = getW(${v}, ${T+1}, d1, q);
|
|
wR${v}C${T+1} =
|
|
vec4(wTexelR${v}C${T+1}.xz, wTexelR${v}C${T+1}.xz);`))}for(let v=0;v<h;v++)for(let N=0;N<m;N++)g+=`dotProd += xR${v}C${N} * wR${v}C${N};`;let y="",b="";n&&(a?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,b="result = activation(result);");let x=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${c}, ${u});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2;
|
|
int q = 0;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
vec4 dotProd = vec4(0.);
|
|
|
|
${g}
|
|
|
|
vec4 result = dotProd;
|
|
${x}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}};function SY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=a,u=l;u==null&&(u=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computeConv2DInfo(r.shape,s.shape,i,u,o,c,!0),d;return ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?d=new ES(p):d=new _S(p),n.runWebGLProgram(d,[r,s],"float32")}var CY={kernelName:Rs,backendName:"webgl",kernelFunc:SY},_Y=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},EY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function FY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a,p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),d=new _Y(p);return n.runWebGLProgram(d,[r,s],"float32")}var AY={kernelName:bd,backendName:"webgl",kernelFunc:FY};function $Y(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a,p=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new EY(p);return n.runWebGLProgram(d,[r,s],"float32")}var DY={kernelName:xd,backendName:"webgl",kernelFunc:$Y},RY=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function MY(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=w.sizeFromShape(a.shape),i=ye({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new RY(s),l=n.runWebGLProgram(o,[i],i.dtype),c=ye({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var PY={kernelName:vd,backendName:"webgl",kernelFunc:MY},OY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:p}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${u}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function LY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),u,p=new OY(c);u=n.runWebGLProgram(p,[r,s],"float32");let d=ye({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var zY={kernelName:ec,backendName:"webgl",kernelFunc:LY},BY="return (x >= 0.0) ? x : (exp(x) - 1.0);",WY=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,VY=Ke({opSnippet:BY,packedOpSnippet:WY}),UY={kernelName:Lo,backendName:"webgl",kernelFunc:VY},GY="return (b >= 1.0) ? a : a * (b + 1.0);",HY=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,jY=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cp(HY,a.shape,r.shape):new pu(GY,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},qY={kernelName:Id,backendName:"webgl",kernelFunc:jY},KY=`
|
|
return vec4(equal(a, b));
|
|
`,XY="return float(a == b);",YY=rn({opSnippet:XY,packedOpSnippet:KY,dtype:"bool"}),JY={kernelName:Bo,backendName:"webgl",kernelFunc:YY},QY=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${_.ERF_P};
|
|
float a1 = ${_.ERF_A1};
|
|
float a2 = ${_.ERF_A2};
|
|
float a3 = ${_.ERF_A3};
|
|
float a4 = ${_.ERF_A4};
|
|
float a5 = ${_.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,ZY=Ke({opSnippet:QY}),e7={kernelName:zo,backendName:"webgl",kernelFunc:ZY},FS="return exp(x);",AS=Ke({opSnippet:FS,packedOpSnippet:FS,cpuKernelImpl:Zq}),t7={kernelName:Ps,backendName:"webgl",kernelFunc:AS};function Uv(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),ye({inputs:{x:s},backend:a,attrs:{shape:o}})}var n7={kernelName:Wo,backendName:"webgl",kernelFunc:Uv},$S="return exp(x) - 1.0;",a7=Ke({opSnippet:$S,packedOpSnippet:$S,cpuKernelImpl:e8}),r7={kernelName:Vo,backendName:"webgl",kernelFunc:a7},DS=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function RS(e,t,n){let a=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=ye({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new DS("real",l,t),u=new DS("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=hs({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let f=ye({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function s7(e){let{inputs:t,backend:n}=e,{input:a}=t;return RS(a,!1,n)}var i7={kernelName:Td,backendName:"webgl",kernelFunc:s7},o7=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Gv(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||w.inferDtype(r),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new o7(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var l7={kernelName:tc,backendName:"webgl",kernelFunc:Gv},u7=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},c7={kernelName:Uo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new u7(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},MS="return floor(x);",p7=Ke({opSnippet:MS,packedOpSnippet:MS,cpuKernelImpl:t8}),d7={kernelName:Os,backendName:"webgl",kernelFunc:p7},h7=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,m7=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,f7=rn({opSnippet:h7,packedOpSnippet:m7,dtype:"int32"}),g7={kernelName:Ls,backendName:"webgl",kernelFunc:f7},y7=class{constructor(e){this.variableNames=["A"];let t=mn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},b7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=mn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},v7={kernelName:Ld,backendName:"webgl",kernelFunc:x7},hu;function x7(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,c],d=[u,c,s];(o||i||l)&&(hu==null&&(hu=document.createElement("canvas").getContext("2d")),hu.canvas.width=c,hu.canvas.height=u,hu.drawImage(r,0,0,c,u),r=hu.canvas);let h=n.makeTensorInfo(p,"int32");n.texData.get(h.dataId).usage=na.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(h.dataId),r);let m=ee().getBool("WEBGL_PACK")?new b7(d):new y7(d),f=n.runWebGLProgram(m,[h],"int32");return n.disposeData(h.dataId),f}function w7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=_.convertConv2DDataFormat(u),g=_.computeConv2DInfo(r.shape,s.shape,l,p,c,d,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=IS({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=TS({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,N=o!=null,T=h==="leakyrelu",S=h?$m(h,!1):null,A=new kS(g,v,S,N,T),$=[r,s];if(i&&$.push(i),o&&$.push(o),T){let R=n.makeTensorInfo([],"float32",w.createScalarValue(m,"float32"));$.push(R),b.push(R)}y=n.runWebGLProgram(A,$,"float32")}let x=ye({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var k7={kernelName:yi,backendName:"webgl",kernelFunc:w7};function I7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=a,m=[],f=u;f==null&&(f=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=_.computeConv2DInfo(r.shape,s.shape,l,f,c,p,!0),y=ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=d?$m(d,y):null,x=[r,s],v=i!=null,N=o!=null,T=d==="leakyrelu";if(v&&x.push(i),N&&x.push(o),T){let $=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push($),m.push($)}let S;y?S=new ES(g,v,b,N,T):S=new _S(g,v,b,N,T);let A=n.runWebGLProgram(S,x,"float32");return m.forEach($=>n.disposeIntermediateTensorInfo($)),A}var T7={kernelName:bi,backendName:"webgl",kernelFunc:I7},N7=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=dt(t.length),r=dt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function S7(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,c,u]=_.prepareAndValidate(a,r),p=ye({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),d=ye({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape)/c,c]}}),h=new N7(i,u,[l,c]),m=n.runWebGLProgram(h,[d,p],d.dtype),f=ye({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var C7={kernelName:Ho,backendName:"webgl",kernelFunc:S7},E7=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=dt(this.rank),a=_7(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function _7(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function F7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=w.sizeFromShape(s.shape),p=[],d=ye({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=ye({inputs:{x:s},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});p.push(d),p.push(h);let m=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(d),v=n8(x,b,m);return p.forEach(N=>n.disposeIntermediateTensorInfo(N)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let f=new E7(d.shape,m),g=n.runWebGLProgram(f,[d,h],d.dtype);p.push(g);let y=ye({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var A7={kernelName:Go,backendName:"webgl",kernelFunc:F7},$7="return float(a > b);",D7=`
|
|
return vec4(greaterThan(a, b));
|
|
`,R7=rn({opSnippet:$7,packedOpSnippet:D7,cpuKernelImpl:a8,dtype:"bool"}),M7={kernelName:jo,backendName:"webgl",kernelFunc:R7},P7="return float(a >= b);",O7=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,L7=rn({opSnippet:P7,packedOpSnippet:O7,dtype:"bool"}),z7={kernelName:Bs,backendName:"webgl",kernelFunc:L7};function B7(e){let{inputs:t,backend:n}=e,{input:a}=t;return RS(a,!0,n)}var W7={kernelName:Nd,backendName:"webgl",kernelFunc:B7},V7="return float(!isnan(x) && !isinf(x));",U7=Ke({opSnippet:V7,dtype:"bool"}),G7={kernelName:qo,backendName:"webgl",kernelFunc:U7},H7="return float(isinf(x));",j7=Ke({opSnippet:H7,dtype:"bool"}),q7={kernelName:Ko,backendName:"webgl",kernelFunc:j7},K7="return float(isnan(x));",X7=Ke({opSnippet:K7,dtype:"bool"}),Y7={kernelName:Xo,backendName:"webgl",kernelFunc:X7},J7="return float(a < b);",Q7=`
|
|
return vec4(lessThan(a, b));
|
|
`,Z7=rn({opSnippet:J7,packedOpSnippet:Q7,cpuKernelImpl:r8,dtype:"bool"}),e9={kernelName:Yo,backendName:"webgl",kernelFunc:Z7},t9="return float(a <= b);",n9=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,a9=rn({opSnippet:t9,packedOpSnippet:n9,dtype:"bool"}),r9={kernelName:Jo,backendName:"webgl",kernelFunc:a9};function s9(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=s8(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var i9={kernelName:Cd,backendName:"webgl",kernelFunc:s9},o9=`if (x < 0.0) return NAN;
|
|
return log(x);`,l9=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,u9=Ke({opSnippet:o9,packedOpSnippet:l9,cpuKernelImpl:i8}),c9={kernelName:Us,backendName:"webgl",kernelFunc:u9},p9="return log(1.0 + x);",d9=Ke({opSnippet:p9}),h9={kernelName:Qo,backendName:"webgl",kernelFunc:d9},m9="return float(a >= 1.0 && b >= 1.0);",f9=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,g9=rn({opSnippet:m9,packedOpSnippet:f9,dtype:"bool"}),y9={kernelName:Zo,backendName:"webgl",kernelFunc:g9},b9="return float(!(x >= 1.0));",x9=Ke({opSnippet:b9}),v9={kernelName:nc,backendName:"webgl",kernelFunc:x9},w9="return float(a >= 1.0 || b >= 1.0);",k9=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,I9=rn({opSnippet:w9,packedOpSnippet:k9,dtype:"bool"}),T9={kernelName:ac,backendName:"webgl",kernelFunc:I9},N9=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},S9=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},C9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,c=ee().getBool("WEBGL_PACK_NORMALIZATION")?new S9(r.shape,s,i,o,l):new N9(r.shape,s,i,o,l);return n.runWebGLProgram(c,[r],r.dtype)},_9={kernelName:rc,backendName:"webgl",kernelFunc:C9},E9=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},F9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a,p=new E9(r.shape,o,l,c,u);return n.runWebGLProgram(p,[r,s,i],r.dtype)},A9={kernelName:_d,backendName:"webgl",kernelFunc:F9};function $9(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=ji(i,e.dtype,"max",a),l=ye({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function PS(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[u[T]];let v=Pv(b,r.shape,r.dtype,u,x);h=n.makeTensorInfo(x,r.dtype);let N=n.texData.get(h.dataId);N.values=v}else h=Dm(r,u,n);c=_.getInnerMostAxes(c.length,o)}_.assertAxesAreInnerMostDims("max",c,o);let[m,f]=_.computeOutAndReduceShapes(h.shape,c),g=m;i&&(g=_.expandShapeToKeepDim(m,l));let y;if(d){let b=n.texData.get(h.dataId).values,x=o8(b,w.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=$9(h,f,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var D9={kernelName:Gs,backendName:"webgl",kernelFunc:PS},R9=ZN+`
|
|
return max(a, b);
|
|
`,M9=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Am+`
|
|
return result;
|
|
`,P9=rn({opSnippet:R9,packedOpSnippet:M9,cpuKernelImpl:l8}),O9={kernelName:Hs,backendName:"webgl",kernelFunc:P9};function L9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;lp(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return Gn({inputs:{x:r},backend:n});let p=new pp(u,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var z9={kernelName:js,backendName:"webgl",kernelFunc:L9};function B9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,c,l),d=new Bv(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var W9={kernelName:sc,backendName:"webgl",kernelFunc:B9},V9=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},U9=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,p=l-1-e.padInfo.top,d=c-1-e.padInfo.left,h=o*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${p}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function G9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new Bv(d,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new U9(d),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var H9={kernelName:Fd,backendName:"webgl",kernelFunc:G9};function j9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;lp([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=!0,m=new pp(d,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new V9(d),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var q9={kernelName:Ed,backendName:"webgl",kernelFunc:j9};function K9(e,t,n,a){let r=new pp(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new pp(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var X9={kernelName:Ad,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;w.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let c=[1,1];w.assert(_.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=_.computePool2DInfo(a.shape,r,s,c,i),[p,d]=K9(a,o,u,l);return[p,d]}};function Y9(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=ye({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=ji(i,"float32","mean",a),l=ye({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var J9={kernelName:qs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let S=0;S<v.length;S++)v[S]=a.shape[u[S]];let N=Pv(x,a.shape,a.dtype,u,v);m=i.makeTensorInfo(v,a.dtype);let T=i.texData.get(m.dataId);T.values=N}else m=Dm(a,u,i);h.push(m),c=_.getInnerMostAxes(c.length,o)}_.assertAxesAreInnerMostDims("sum",c,o);let[f,g]=_.computeOutAndReduceShapes(m.shape,c),y=f;r&&(y=_.expandShapeToKeepDim(f,l));let b=Y9(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function Q9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Fn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ye({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=ji(f,f.dtype,"min",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ye({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ye({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var Z9={kernelName:Ks,backendName:"webgl",kernelFunc:Q9},eJ=ZN+`
|
|
return min(a, b);
|
|
`,tJ=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Am+`
|
|
return result;
|
|
`,nJ=rn({opSnippet:eJ,packedOpSnippet:tJ,cpuKernelImpl:u8}),aJ={kernelName:Xs,backendName:"webgl",kernelFunc:nJ},rJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let a=e.length,r=dt(a),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},sJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=dt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=fn("rc",a),l=fn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${o[a-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${o[a-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${u});
|
|
${o[a-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},iJ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sJ(a.shape,r,s):new rJ(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},oJ={kernelName:ic,backendName:"webgl",kernelFunc:iJ},lJ=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,uJ=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Am+`
|
|
return result;
|
|
`,cJ=rn({opSnippet:lJ,packedOpSnippet:uJ}),pJ={kernelName:el,backendName:"webgl",kernelFunc:cJ},dJ=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},hJ=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,mJ=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,OS=rn({opSnippet:hJ,packedOpSnippet:mJ,checkOutOfBounds:!0}),fJ={kernelName:Ms,backendName:"webgl",kernelFunc:OS},LS="return a - b;",zS=rn({opSnippet:LS,packedOpSnippet:LS,supportsComplex:!0,cpuKernelImpl:y8}),gJ={kernelName:hi,backendName:"webgl",kernelFunc:zS};function BS(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=w.parseAxisParam([s],r.shape),o=PS({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=_.expandShapeToKeepDim(o.shape,i),c=ye({inputs:{x:o},backend:n,attrs:{shape:l}}),u=zS({inputs:{a:r,b:c},backend:n}),p=AS({inputs:{x:u},backend:n}),d=zv({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=ye({inputs:{x:d},backend:n,attrs:{shape:l}}),m=OS({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}var yJ={kernelName:pi,backendName:"webgl",kernelFunc:BS};function bJ(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:BS({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],p=new dJ(c,u,s),d=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),h}var xJ={kernelName:$d,backendName:"webgl",kernelFunc:bJ},WS="return -x;";function vJ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=p8(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new cu(a.shape,WS):r=new ds(a.shape,WS),n.runWebGLProgram(r,[a],a.dtype)}var wJ={kernelName:tl,backendName:"webgl",kernelFunc:vJ},kJ=Ya.nonMaxSuppressionV3Impl;function IJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,c=n.readSync(r.dataId),u=n.readSync(s.dataId),{selectedIndices:p}=kJ(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var TJ={kernelName:al,backendName:"webgl",kernelFunc:IJ},NJ=Ya.nonMaxSuppressionV4Impl;function SJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d,validOutputs:h}=NJ(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var CJ={kernelName:rl,backendName:"webgl",kernelFunc:SJ},_J=Ya.nonMaxSuppressionV5Impl;function EJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=_J(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var FJ={kernelName:sl,backendName:"webgl",kernelFunc:EJ},AJ=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},$J=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=w.sizeFromShape(r.shape),c=new AJ(l,s,i,o),u=ye({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let d=[...r.shape,s],h=ye({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},DJ={kernelName:Js,backendName:"webgl",kernelFunc:$J};function Lm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=hp({inputs:{input:a},backend:n}),s=Lm({inputs:{x:r},backend:n}),i=Om({inputs:{input:a},backend:n}),o=Lm({inputs:{x:i},backend:n}),l=hs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Gv({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var RJ={kernelName:Il,backendName:"webgl",kernelFunc:Lm};function VS(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=hp({inputs:{input:a},backend:n}),s=VS({inputs:{x:r},backend:n}),i=Om({inputs:{input:a},backend:n}),o=Lm({inputs:{x:i},backend:n}),l=hs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Gv({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var MJ={kernelName:il,backendName:"webgl",kernelFunc:VS};function PJ(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Uv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=Uv({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=wS({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var OJ={kernelName:ol,backendName:"webgl",kernelFunc:PJ},LJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let a=e.length,r=dt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},zJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=dt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=fn("rc",a),l=fn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${c}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${c}) {`],d=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${p[m]}
|
|
if (${d}) {
|
|
result[${m}] = float(${n});
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},US=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zJ(r.shape,s,i):new LJ(r.shape,s,i);return n.runWebGLProgram(o,[r],r.dtype)},BJ={kernelName:Qs,backendName:"webgl",kernelFunc:US},WJ=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,VJ=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Am+`
|
|
return result;
|
|
`,UJ=rn({opSnippet:WJ,packedOpSnippet:VJ}),GJ={kernelName:Zs,backendName:"webgl",kernelFunc:UJ};function HJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],c=w.parseAxisParam(s,r.shape),u=c,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=Fn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,o),l.push(d)),_.assertAxesAreInnerMostDims("prod",u,o);let h;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:g,outDtype:y}=d8(d.shape,d.dtype,m,u);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=_.computeOutAndReduceShapes(d.shape,u),g=w.sizeFromShape(f),y=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),b=Gd(r.dtype),x=ji(y,b,"prod",n);h=ye({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=_.expandShapeToKeepDim(h.shape,c);h=ye({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var jJ={kernelName:ll,backendName:"webgl",kernelFunc:HJ},GS=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=h8(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},qJ={kernelName:oc,backendName:"webgl",kernelFunc:GS},KJ="return 1.0 / x;",XJ=Ke({opSnippet:KJ}),YJ={kernelName:ul,backendName:"webgl",kernelFunc:XJ},JJ=Ra+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,QJ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,ZJ=Ke({opSnippet:JJ,packedOpSnippet:QJ}),eQ={kernelName:ti,backendName:"webgl",kernelFunc:ZJ},tQ=Ra+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,nQ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,aQ=Ke({opSnippet:tQ,packedOpSnippet:nQ}),rQ={kernelName:ai,backendName:"webgl",kernelFunc:aQ},sQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},iQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function oQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new iQ(r.shape,l,c,s,i):new sQ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],"float32")}var lQ={kernelName:ni,backendName:"webgl",kernelFunc:oQ},uQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function cQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new uQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var pQ={kernelName:Md,backendName:"webgl",kernelFunc:cQ},dQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function hQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=new dQ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],r.dtype)}var mQ={kernelName:lc,backendName:"webgl",kernelFunc:hQ},fQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function gQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new fQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var yQ={kernelName:Rd,backendName:"webgl",kernelFunc:gQ},bQ=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=dt(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},xQ=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=fn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=dt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${c(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${u(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,b)=>d(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function d(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function vQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return Gn({inputs:{x:r},backend:n});let l=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new xQ(r.shape,o):new bQ(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var wQ={kernelName:ri,backendName:"webgl",kernelFunc:vQ},kQ=class{constructor(e,t,n,a){this.variableNames=["Image"],this.outputShape=[];let r=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,c]=_.getImageCenter(a,r,s),u=l.toFixed(3),p=c.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=`
|
|
vec3 fill = vec3(${n.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - ${u}) * ${o} - (float(y) - ${p}) * ${i};
|
|
float coordYFloat = (float(x) - ${u}) * ${i} + (float(y) - ${p}) * ${o};
|
|
int coordX = int(round(coordXFloat + ${u}));
|
|
int coordY = int(round(coordYFloat + ${p}));
|
|
${d}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${r}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},IQ={kernelName:Tl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new kQ(a.shape,r,s,i);return o.runWebGLProgram(l,[a],a.dtype)}},TQ=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,NQ=Ke({opSnippet:TQ}),SQ={kernelName:si,backendName:"webgl",kernelFunc:NQ},CQ="return inversesqrt(x);",_Q=Ke({opSnippet:CQ,cpuKernelImpl:m8}),EQ={kernelName:ii,backendName:"webgl",kernelFunc:_Q},HS=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=dt(r.length),l=dt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function FQ(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=[p/c,c];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=ye({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=ye({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new HS(l,o,h.shape.length,m.shape.length,u,d),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=ye({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var AQ={kernelName:pl,backendName:"webgl",kernelFunc:FQ},$Q=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c<t.length;c++)l.push(`${i[c]}`),c<e&&o.push(`${i[c]}`);a=o.join(),r=l.join()}let s=dt(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function DQ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new $Q(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ua(r.dtype,s.dtype))}var RQ={kernelName:dl,backendName:"webgl",kernelFunc:DQ},MQ=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${_.SELU_SCALEALPHA};
|
|
float scale = ${_.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,PQ=Ke({opSnippet:MQ}),OQ={kernelName:hl,backendName:"webgl",kernelFunc:PQ},LQ="return 1.0 / (1.0 + exp(-1.0 * x));",zQ=Ke({opSnippet:LQ}),BQ={kernelName:li,backendName:"webgl",kernelFunc:zQ},WQ=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,VQ=Ke({opSnippet:WQ}),UQ={kernelName:gl,backendName:"webgl",kernelFunc:VQ},GQ=rS+`
|
|
return sin(x);
|
|
`,HQ=Ke({opSnippet:GQ}),jQ={kernelName:oi,backendName:"webgl",kernelFunc:HQ},qQ=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,KQ=Ke({opSnippet:qQ}),XQ={kernelName:fl,backendName:"webgl",kernelFunc:KQ},YQ=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,JQ=Ke({opSnippet:YQ}),QQ={kernelName:yl,backendName:"webgl",kernelFunc:JQ},ZQ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let c=[],u=US({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=_.getReshaped(u.shape,s,o,!1),d=_.getPermuted(p.length,s.length,!1),h=_.getReshapedPermuted(u.shape,s,o,!1),m=ye({inputs:{x:u},backend:n,attrs:{shape:p}}),f=Fn({inputs:{x:m},backend:n,attrs:{perm:d}}),g=ye({inputs:{x:f},backend:n,attrs:{shape:h}});return c.push(u),c.push(m),c.push(f),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},eZ={kernelName:uc,backendName:"webgl",kernelFunc:ZQ};function tZ(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,strides:u,outputSize:p}=_.calculateShapes(s,r,o),d=!1,h=new HS(c,l,r.shape.length,s.shape.length,u,[p,1],d),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=ye({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var nZ={kernelName:Pd,backendName:"webgl",kernelFunc:tZ};function aZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=r.shape.length,u=new Array(c).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[o]=d;let m=dp({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[o]+=d,m})}var rZ={kernelName:bl,backendName:"webgl",kernelFunc:aZ},sZ="return sqrt(x);",iZ=Ke({opSnippet:sZ}),oZ={kernelName:ui,backendName:"webgl",kernelFunc:iZ},lZ="return x * x;",uZ=Ke({opSnippet:lZ}),cZ={kernelName:cc,backendName:"webgl",kernelFunc:uZ},jS="return (a - b) * (a - b);",pZ=rn({opSnippet:jS,packedOpSnippet:jS}),dZ={kernelName:di,backendName:"webgl",kernelFunc:pZ};function hZ({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ra+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new ds(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var mZ={kernelName:Gr,backendName:"webgl",kernelFunc:hZ},fZ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=dt(n.length),s=dt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function gZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=pn.sliceInfo(r.shape,s,i,o,l,c,u,p,d),x=ye({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let T=dp({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=ye({inputs:{x:T},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(T)}else if(b.some(T=>T===0))v=n.makeTensorInfo(b,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let T=n.texData.get(x.dataId).values,S=Le(x.shape,x.dtype,T),A=g8(b,S,f,m);v=n.makeTensorInfo(b,x.dtype,A.values)}else{let T=new fZ(m,f,b);v=n.runWebGLProgram(T,[x],x.dtype)}let N=ye({inputs:{x:v},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),N}var yZ={kernelName:xl,backendName:"webgl",kernelFunc:gZ},bZ="return tan(x);",xZ=Ke({opSnippet:bZ}),vZ={kernelName:vl,backendName:"webgl",kernelFunc:xZ},wZ=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,kZ=Ke({opSnippet:wZ}),IZ={kernelName:mi,backendName:"webgl",kernelFunc:kZ},NZ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=dt(this.rank),r=TZ(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function TZ(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function qS(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"){let o=n.readSync(r.dataId).map(u=>w.decodeString(u)),l=Le(r.shape,r.dtype,o),c=b8(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new NZ(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var SZ={kernelName:Ur,backendName:"webgl",kernelFunc:qS};function CZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,c]=x8(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var _Z={kernelName:wl,backendName:"webgl",kernelFunc:CZ};function EZ(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;lp(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=v8(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var FZ={kernelName:Od,backendName:"webgl",kernelFunc:EZ};function AZ(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],c=new Array(o-1),u=0;for(let f=0;f<o;f++)f!==s&&(c[u++]=i.shape[f]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){d[s]=f;let g=dp({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),y=ye({inputs:{x:g},backend:n,attrs:{shape:c}});m[f]=y,p.push(g)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var $Z={kernelName:kl,backendName:"webgl",kernelFunc:AZ},DZ=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";r%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function RZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],c=0,u=_.getAxesPermutation([c],o),p=r;u!=null&&(p=Fn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),c=_.getInnerMostAxes(1,o)[0]);let d=_.segment_util.computeOutShape(p.shape,c,i),h=w.sizeFromShape([p.shape[c]]),m=ye({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Gd(r.dtype),g=(v,N,T,S,A)=>{let $=v.shape[0],R=v.shape[1],B=_.segment_util.segOpComputeOptimalWindowSize(R,A),V={windowSize:B,inSize:R,batchSize:$,numSegments:A},W=new DZ(V,N),G=n.compileAndRun(W,[v,T],S);if(l.push(G),G.shape[1]===A)return G;let H=GS({backend:n,attrs:{start:0,stop:A,step:1,dtype:"float32"}}),X=qS({inputs:{x:H},backend:n,attrs:{reps:[R/B]}});return l.push(H),l.push(X),g(G,N,X,S,A)},y=g(m,"unsortedSegmentSum",s,f,i),b=ye({inputs:{x:y},backend:n,attrs:{shape:d}}),x=b;if(u!=null){l.push(b);let v=_.getUndoAxesPermutation(u);x=Fn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var MZ={kernelName:pc,backendName:"webgl",kernelFunc:RZ},PZ=[_9,A9,gK,bK,wK,TK,SK,EK,AK,DK,OK,zK,VK,HK,QK,KK,tX,sX,aX,uX,pX,hX,yX,TX,SX,$X,RX,LX,WX,J8,HX,tY,aY,XX,oY,uY,sY,dY,fY,bY,vY,kY,NY,AY,DY,CY,PY,zY,UY,qY,JY,e7,t7,n7,r7,i7,l7,c7,d7,g7,v7,k7,T7,C7,A7,M7,z7,Y8,W7,GX,G7,q7,Y7,Z8,e9,r9,i9,h9,c9,y9,v9,T9,D9,W9,z9,H9,q9,X9,O9,J9,Z9,aJ,oJ,pJ,xJ,rK,wJ,TJ,CJ,FJ,_X,DJ,MJ,OJ,BJ,GJ,tK,jJ,qJ,EX,fJ,YJ,rQ,eQ,iK,lQ,pQ,mQ,yQ,wQ,IQ,SQ,EQ,AQ,RQ,OQ,BQ,UQ,jQ,XQ,kX,yJ,QQ,eZ,nZ,rZ,oZ,cZ,dZ,mZ,yZ,gJ,hK,vZ,IZ,SZ,_Z,mK,FZ,$Z,MZ,RJ];for(let e of PZ)hc(e);var OZ="3.2.0",LZ={"tfjs-core":Y0,"tfjs-backend-cpu":fU,"tfjs-backend-webgl":X8,"tfjs-data":IT,"tfjs-layers":sm,"tfjs-converter":yT,tfjs:OZ},Hn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Hn||(Hn={}));var mp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(mp||(mp={}));var KS;function zZ(e){KS=e.wasm.cwrap(gi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function BZ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let A=n.dataIdMap.get(i.dataId);if(A.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${A.shape.length}.`);m=A.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=mp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=c?s.shape[1]:s.shape[2],x=r.shape[0],v=n.makeOutput([x,y,b],r.dtype),N=n.dataIdMap.get(v.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(s.shape).buffer);return KS(d,T,r.shape.length,h,S,s.shape.length,l,c,g,m,f,p||0,N),v}var WZ={kernelName:gi,backendName:"wasm",setupFunc:zZ,kernelFunc:BZ};function An(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var VZ=An(So);function gn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,p=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,m=_.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),b=o.dataIdMap.get(f.dataId).id,x=()=>a(p,g,c.shape.length,d,y,u.shape.length,Hn[c.dtype],b);if(t&&c.dtype==="float32")return x(),f;let v=_.getBroadcastDims(c.shape,m),N=_.getBroadcastDims(u.shape,m),T=v.every((A,$)=>A===$),S=N.every((A,$)=>A===$);if(T&&S)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var UZ=!0,GZ=gn(Wr,UZ),XS;function HZ(e){XS=e.wasm.cwrap(Ts,null,["array","number","number","number"])}function jZ(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return XS(s,r.length,Hn[a.dtype],i),a}var qZ={kernelName:Ts,backendName:"wasm",setupFunc:HZ,kernelFunc:jZ};function zm(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var KZ={kernelName:Ws,backendName:"wasm",kernelFunc:zm},YS;function XZ(e){YS=e.wasm.cwrap(fi,null,["number","array","number","number","number","array","number"])}function Bm(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=JZ(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=YZ(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=zm({inputs:t,backend:n});return m.shape=o,m}let c=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(c.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return YS(u,h,l.shape.length,Hn[l.dtype],p,d,s.length),c}function YZ(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function JZ(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var QZ={kernelName:fi,backendName:"wasm",kernelFunc:Bm,setupFunc:XZ};function mu(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,c=!1;if(o!=null){let u=new Array(r);for(let d=0;d<u.length;d++)u[d]=a[o[d]];i=_.getInnerMostAxes(i.length,r),l=Bm({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(c=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:c}}var JS;function ZZ(e){JS=e.wasm.cwrap(Ns,null,["number","number","number","number","number"])}function eee(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:c,axes:u,inputWasTransposed:p}=mu(s,r,t);if(p){let y=t.dataIdMap.get(c.dataId).id;y!==i&&(l=c,o=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),m=t.dataIdMap.get(h.dataId).id,f=w.sizeFromShape(h.shape),g=l.shape[u[0]];return JS(o,Hn[l.dtype],f,g,m),p&&t.disposeData(c.dataId),h}var tee={kernelName:Ns,backendName:"wasm",kernelFunc:eee,setupFunc:ZZ},QS;function nee(e){QS=e.wasm.cwrap(Ss,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function aee(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.strideHeight,b=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let v=a.makeOutput(u.outShape,"float32"),N=a.dataIdMap.get(v.dataId).id;return QS(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,x,N),v}var ree={kernelName:Ss,backendName:"wasm",setupFunc:nee,kernelFunc:aee};function Ma(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=w.sizeFromShape(a.shape),i=w.inferFromImplicitShape(r,s);return w.assert(s===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var see={kernelName:cl,backendName:"wasm",kernelFunc:Ma},ZS;function iee(e){ZS=e.wasm.cwrap(Cs,null,["number","array","number","number","array","number","number","number","number"])}function oee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=g===y||g===1||y===1;w.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);w.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,u,d]:[g,d,u],N=o?[y,h,p]:[y,p,h],T=Ma({inputs:{x:r},backend:n,attrs:{shape:v}}),S=Ma({inputs:{x:s},backend:n,attrs:{shape:N}}),A=n.dataIdMap.get(T.dataId).id,$=n.dataIdMap.get(S.dataId).id,R=i?T.shape[2]:T.shape[1],B=o?S.shape[1]:S.shape[2],V=Math.max(g,y),W=n.makeOutput([V,R,B],T.dtype),G=n.dataIdMap.get(W.dataId).id,H=new Uint8Array(new Int32Array(T.shape).buffer),X=new Uint8Array(new Int32Array(S.shape).buffer);return ZS(A,H,T.shape.length,$,X,S.shape.length,i,o,G),n.disposeData(T.dataId),n.disposeData(S.dataId),W.shape=x,W}var lee={kernelName:Cs,backendName:"wasm",setupFunc:iee,kernelFunc:oee};function Wm(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var uee={kernelName:_s,backendName:"wasm",kernelFunc:Wm},cee=An(Es),e2;function pee(e){e2=e.wasm.cwrap(Vr,null,["number","number","number","number"])}function dee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return e2(o,s,i,c),l}var hee={kernelName:Vr,backendName:"wasm",setupFunc:pee,kernelFunc:dee};function t2(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>w.sizeFromShape(h.shape)>0);if(s.length===1)return zm({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=w.sizeFromShape(x.shape.slice(a));return Ma({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=_.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=mv(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=w.sizeFromShape(s[0].shape.slice(0,a)),c=0,u=s.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return c+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*c;for(let f=0;f<p.length;f++){let g=u[f],y=h*g,b=p[f].subarray(y,y+g);d.set(b,m),m+=g}}return i}var mee={kernelName:Ro,backendName:"wasm",kernelFunc:t2},n2;function fee(e){n2=e.wasm.cwrap(Fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gee(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p,dataFormat:d}=n,h=_.convertConv2DDataFormat(d),m=_.computeConv2DInfo(r.shape,s.shape,l,c,u,p,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,N=m.dilationHeight,T=m.dilationWidth,S=m.strideHeight,A=m.strideWidth,$=m.inChannels,R=m.outChannels,B=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let V=a.makeOutput(m.outShape,"float32"),W=a.dataIdMap.get(V.dataId).id;return n2(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,v,B,N,T,S,A,$,R,W),V}var yee={kernelName:Fs,backendName:"wasm",setupFunc:fee,kernelFunc:gee},a2;function bee(e){a2=e.wasm.cwrap(As,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xee(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,inputShape:u}=a,p=1,d=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(u,s.shape,i,p,o,c,!1,d),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:v,outHeight:N,outWidth:T,strideHeight:S,strideWidth:A}=h,$=f-1-h.padInfo.top,R=g-1-h.padInfo.left,B=h.dataFormat==="channelsLast",V=w.computeStrides(h.inShape),W=w.computeStrides(r.shape),[G,H,X]=w.computeStrides(s.shape),q=V[0],te=B?V[1]:V[2],Q=B?V[2]:1,se=B?1:V[1],ne=W[0],ie=B?W[1]:W[2],Z=B?W[2]:1,de=B?1:W[1],oe=t.makeOutput(h.inShape,"float32"),ge=t.dataIdMap.get(oe.dataId).id,fe=t.dataIdMap.get(r.dataId).id,we=t.dataIdMap.get(s.dataId).id;return a2(fe,we,m,f,g,b,x,y,N,T,v,S,A,$,R,G,H,X,q,te,Q,se,ne,ie,Z,de,ge),oe}var vee={kernelName:As,backendName:"wasm",setupFunc:bee,kernelFunc:xee},wee=An($s),Hv;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Hv||(Hv={}));var r2;function kee(e){r2=e.wasm.cwrap(Po,null,["number","number","number","number","array","number","number","number","number","number"])}function Iee(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:c}=n,u=l.shape[0],[p,d]=i,h=[u,p,d,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Wm({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(c.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,N=new Uint8Array(new Int32Array(o.shape).buffer);return r2(g,y,b,u,N,p,d,Hv[r],s,v),f!=null&&t.disposeData(f.dataId),x}var Tee={kernelName:Po,backendName:"wasm",setupFunc:kee,kernelFunc:Iee},s2;function Nee(e){s2=e.wasm.cwrap(Ds,null,["number","number","number","number","number","number"])}function See(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=_.getAxesPermutation([s],l),u=r;c!==null&&(u=Bm({inputs:{x:r},attrs:{perm:c},backend:n}));let p=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;s2(m,i?1:0,o?1:0,h,f,Hn[r.dtype]);let g=d;if(c!==null){let y=_.getUndoAxesPermutation(c);g=Bm({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return g}var Cee={kernelName:Ds,backendName:"wasm",setupFunc:Nee,kernelFunc:See},i2;function _ee(e){i2=e.wasm.cwrap(Oo,null,["number","number","number","array","number","array","array","number","number"])}function Eee(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return i2(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,v),f}var Fee={kernelName:Oo,backendName:"wasm",setupFunc:_ee,kernelFunc:Eee},o2;function Aee(e){o2=e.wasm.cwrap(Rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $ee(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p}=n,d=c==null?[1,1]:c,h=_.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,N=h.dilationWidth,T=h.strideHeight,S=h.strideWidth,A=h.inChannels,$=h.outChannels,R=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let B=a.makeOutput(h.outShape,"float32"),V=a.dataIdMap.get(B.dataId).id;return o2(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,R,v,N,T,S,A,$,V),B}var Dee={kernelName:Rs,backendName:"wasm",setupFunc:Aee,kernelFunc:$ee},Ree=!1,Mee=gn(Bo,Ree,"bool"),Pee=An(Ps);function jv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Ma({inputs:{x:r},backend:a,attrs:{shape:o}})}var Oee={kernelName:Wo,backendName:"wasm",kernelFunc:jv};function Lee(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var zee={kernelName:tc,backendName:"wasm",kernelFunc:Lee},l2;function Bee(e){l2=e.wasm.cwrap(Uo,null,["number","number","number","number","number","number"])}function Wee(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,c,u]=a.shape;return l2(s,o,l,c,u,i),r}var Vee={kernelName:Uo,backendName:"wasm",kernelFunc:Wee,setupFunc:Bee},Uee=An(Os),Gee=!1,Hee=gn(Ls,Gee),u2;function jee(e){u2=e.wasm.cwrap(zs,null,["number","number","number","number","number","number","number"])}function qee(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return u2(u,p,d,h,m,r,g),f}var Kee={kernelName:zs,backendName:"wasm",setupFunc:jee,kernelFunc:qee},c2;function Xee(e){c2=e.wasm.cwrap(yi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yee(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d),g=mp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Z=a.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);v=Z.id}let N=f.filterHeight,T=f.filterWidth,S=f.padInfo.top,A=f.padInfo.right,$=f.padInfo.bottom,R=f.padInfo.left,B=f.dilationHeight,V=f.dilationWidth,W=f.strideHeight,G=f.strideWidth,H=f.inChannels,X=f.padInfo.type==="SAME"?1:0,q=f.batchSize,te=f.inHeight,Q=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(se.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return c2(y,q,te,Q,b,N,T,v,S,A,$,R,X,B,V,W,G,H,x,g,ie,m||0,ne),se}var Jee={kernelName:yi,backendName:"wasm",setupFunc:Xee,kernelFunc:Yee},p2;function Qee(e){p2=e.wasm.cwrap(bi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Zee(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d,!0),g=mp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Z=a.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);v=Z.id}let N=f.filterHeight,T=f.filterWidth,S=f.padInfo.top,A=f.padInfo.right,$=f.padInfo.bottom,R=f.padInfo.left,B=f.dilationHeight,V=f.dilationWidth,W=f.strideHeight,G=f.strideWidth,H=f.inChannels,X=f.padInfo.type==="SAME"?1:0,q=f.batchSize,te=f.inHeight,Q=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(se.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return p2(y,q,te,Q,b,N,T,v,S,A,$,R,X,B,V,W,G,H,x,g,ie,m||0,ne),se}var ete={kernelName:bi,backendName:"wasm",setupFunc:Qee,kernelFunc:Zee},d2;function tte(e){d2=e.wasm.cwrap(Ho,null,["number","number","number","number","number","number","array","number"])}function nte(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=dy.prepareAndValidate(a,r),c=t.makeOutput(s,a.dtype);if(i===0)return c;let u=r.shape,p=u[u.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return d2(d,Hn[a.dtype],h,i,p,o,m,f),c}var ate={kernelName:Ho,backendName:"wasm",setupFunc:tte,kernelFunc:nte},h2;function rte(e){h2=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function ste(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=Ma({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),p=w.sizeFromShape(s.shape),d=Ma({inputs:{x:s},attrs:{shape:[c.batchSize,p/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],m=t.makeOutput(h,r.dtype);if(w.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,g=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(w.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer);return h2(g,Hn[r.dtype],x,f,y,c.batchSize,v,b),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var ite={kernelName:Go,backendName:"wasm",setupFunc:rte,kernelFunc:ste},ote=!1,lte=gn(jo,ote,"bool"),ute=!1,cte=gn(Bs,ute,"bool"),m2;function pte(e){m2=e.wasm.cwrap(Vs,null,["number","number","number"])}function dte(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;m2(r,n,i)}return s}var hte={kernelName:Vs,backendName:"wasm",setupFunc:pte,kernelFunc:dte},mte=!1,fte=gn(Yo,mte,"bool"),gte=!1,yte=gn(Jo,gte,"bool"),bte=An(Us),xte=!1,vte=gn(Zo,xte,"bool"),f2;function wte(e){f2=e.wasm.cwrap(Gs,null,["number, number, number"])}function kte(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:p,inputWasTransposed:d}=mu(i,r,t);if(d){let b=t.dataIdMap.get(c.dataId).id;l=c,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",u,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,u),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;f2(o,g,b)}if(d&&t.disposeData(c.dataId),s){let b=_.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var Ite={kernelName:Gs,backendName:"wasm",setupFunc:wte,kernelFunc:kte},Tte=!1,Nte=gn(Hs,Tte),g2;function Ste(e){g2=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Cte(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,b=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,N=u.inChannels,T=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(u.outShape,"float32"),A=a.dataIdMap.get(S.dataId).id;return g2(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,x,v,N,T,A),S}var _te={kernelName:js,backendName:"wasm",setupFunc:Ste,kernelFunc:Cte},y2;function Ete(e){y2=e.wasm.cwrap(qs,null,["number, number, number"])}function Fte(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=c;c.dtype!=="float32"&&(b=Wm({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;y2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(b.dataId),x}var Ate={kernelName:qs,backendName:"wasm",setupFunc:Ete,kernelFunc:Fte},b2;function $te(e){b2=e.wasm.cwrap(Ks,null,["number, number, number"])}function Dte(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let m=c.shape.length;_.assertAxesAreInnerMostDims("min",p,m);let[f,g]=_.computeOutAndReduceShapes(c.shape,p),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;b2(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var Rte={kernelName:Ks,backendName:"wasm",setupFunc:$te,kernelFunc:Dte},Mte=!1,Pte=gn(Xs,Mte),Ote=!0,Lte=gn(Ys,Ote),zte=An(tl);function qv(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var x2;function Bte(e){x2=e.wasm.cwrap(al,"number",["number","number","number","number","number"])}function Wte(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=x2(c,u,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=qv(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var Vte={kernelName:al,backendName:"wasm",setupFunc:Bte,kernelFunc:Wte},v2;function Ute(e){v2=e.wasm.cwrap(rl,"number",["number","number","number","number","number","bool"])}function Gte(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=v2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=qv(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Hte={kernelName:rl,backendName:"wasm",setupFunc:Ute,kernelFunc:Gte},w2;function jte(e){w2=e.wasm.cwrap(sl,"number",["number","number","number","number","number","number"])}function qte(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=w2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=qv(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var Kte={kernelName:sl,backendName:"wasm",setupFunc:jte,kernelFunc:qte},Xte=!1,Yte=gn(nl,Xte,"bool"),k2;function Jte(e){k2=e.wasm.cwrap(Js,null,["number","number","number","number","number"])}function Qte(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return k2(u,s,i,o,c),l}var Zte={kernelName:Js,backendName:"wasm",setupFunc:Jte,kernelFunc:Qte};function ene(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var tne={kernelName:il,backendName:"wasm",kernelFunc:ene};function nne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return jv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=jv({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=t2({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeData(u.dataId)),c}var ane={kernelName:ol,backendName:"wasm",kernelFunc:nne},I2;function rne(e){I2=e.wasm.cwrap(Qs,null,["number","array","number","number","array","array","number","number"])}function sne(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return I2(i,c,t.shape.length,Hn[t.dtype],d,h,r,l),o}var ine={kernelName:Qs,backendName:"wasm",kernelFunc:sne,setupFunc:rne},one=!1,lne=gn(Zs,one),T2;function une(e){T2=e.wasm.cwrap(ei,null,["number","number","number"])}function cne(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return T2(s,i,l),o}var pne={kernelName:ei,backendName:"wasm",setupFunc:une,kernelFunc:cne},N2;function dne(e){N2=e.wasm.cwrap(ll,null,["number","number","number","number"])}function hne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;N2(l,y,Hn[b.dtype],x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var mne={kernelName:ll,backendName:"wasm",setupFunc:dne,kernelFunc:hne},fne=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=yv(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},gne={kernelName:oc,backendName:"wasm",kernelFunc:fne},yne=!0,bne=gn(Ms,yne),xne=An(ti),vne=An(ai),S2;function wne(e){S2=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number"])}function kne(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,[u,p,d,h]=r.shape,m=[u,l,c,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Wm({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return S2(y,u,p,d,h,l,c,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var Ine={kernelName:ni,backendName:"wasm",setupFunc:wne,kernelFunc:kne},C2;function Tne(e){C2=e.wasm.cwrap(ri,null,["number","array","number","array","number","number"])}function Nne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return zm({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);C2(l,u,i.length,p,r.shape.length,c);let d=Ma({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),d}var Sne={kernelName:ri,backendName:"wasm",kernelFunc:Nne,setupFunc:Tne},_2;function Cne(e){_2=e.wasm.cwrap(Tl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function _ne(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=_.getImageCenter(o,d,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(x).buffer);return _2(c,p,d,h,m,s,f,g,v,x.length,u),l}var Ene={kernelName:Tl,backendName:"wasm",kernelFunc:_ne,setupFunc:Cne},Fne=An(si),Ane=An(ii),E2;function $ne(e){E2=e.wasm.cwrap(pl,null,["number","number","number","number","number","number","array","number","number"])}function Dne(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=hy.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return E2(h,m,Hn[s.dtype],l,c,u,f,d,g),o}var Rne={kernelName:pl,backendName:"wasm",setupFunc:$ne,kernelFunc:Dne},F2;function Mne(e){F2=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Pne(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:w.sizeFromShape(r.shape.slice(1));return F2(i,o,l,h,u),c}var One={kernelName:dl,backendName:"wasm",kernelFunc:Pne,setupFunc:Mne},A2;function Lne(e){A2=e.wasm.cwrap(li,null,["number","number"])}function zne(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||A2(a,s),r}var Bne={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Lne,kernelFunc:zne},Wne=An(oi);function Vm(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=pn.parseSliceParams(t,n,a),o=pn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),c=r.makeOutput(i,t.dtype),u=w.computeStrides(t.shape),p=r.dataIdMap.get(c.dataId);if(o){let m=pn.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(c).set(l.subarray(m,m+w.sizeFromShape(i))),c}if(t.dtype==="string"){let m=wm(l,s,i,t.shape,t.dtype);return p.stringBytes=m,c}let d=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Vne(l,u[0],d,s,i);else if(h===3)Une(l,u[0],u[1],d,s,i);else if(h===4)Gne(l,u[0],u[1],u[2],d,s,i);else{let m=wm(l,s,i,t.shape,t.dtype);d.set(m)}return c}function Vne(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let c=i;c<l;c++){let u=c*t+o;n.set(e.subarray(u,u+r[1]),s),s+=r[1]}}function Une(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],c=r[2],u=o+s[0],p=l+s[1];for(let d=o;d<u;d++)for(let h=l;h<p;h++){let m=d*t+h*n+c;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Gne(e,t,n,a,r,s,i){let o=0,l=s[0],c=s[1],u=s[2],p=l+i[0],d=c+i[1],h=u+i[2],m=s[3];for(let f=l;f<p;f++)for(let g=c;g<d;g++)for(let y=u;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var Hne={kernelName:ml,backendName:"wasm",kernelFunc:Vm},$2;function jne(e){$2=e.wasm.cwrap(pi,null,["number","number","number","number"])}function qne(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||$2(r,i,o,l),s}var Kne={kernelName:pi,backendName:"wasm",setupFunc:jne,kernelFunc:qne};function Xne(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let d=[...u];d[o]=p;let h=Vm({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return c[o]+=p,h})}var Yne={kernelName:bl,backendName:"wasm",kernelFunc:Xne},Jne=An(ui),Qne=An(cc),Zne=!0,eae=gn(di,Zne),D2;function tae(e){D2=e.wasm.cwrap(Gr,null,["number","number","number"])}function nae(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return D2(i,r,l),o}var aae={kernelName:Gr,backendName:"wasm",setupFunc:tae,kernelFunc:nae},R2;function rae(e){R2=e.wasm.cwrap(xl,null,["number","array","number","array","array","array","array","array","number","number"])}function sae(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,h=_.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=_.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(R=>{s[R]=0,i[R]=1,g.splice(R,0,1)});let y=Ma({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:x,strides:v}=_.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,c,u);s=b,i=x,o=v;let N=_.slice_util.maskToAxes(d);N.forEach(R=>{i[R]=s[R]+1,o[R]=1});let T=_.slice_util.computeOutShape(s,i,o),S=T.filter((R,B)=>N.indexOf(B)===-1);if(o.every(R=>R===1)){let R=Vm({inputs:{x:r},attrs:{begin:s,size:T},backend:t});t.disposeData(y.dataId);let B=Ma({inputs:{x:R},attrs:{shape:S},backend:t});return t.disposeData(R.dataId),B}let A=t.makeOutput(S,"float32");if(!S.some(R=>R===0)){let R=t.dataIdMap.get(y.dataId).id,B=new Uint8Array(new Int32Array(w.computeStrides(y.shape)).buffer),V=new Uint8Array(new Int32Array(s).buffer),W=new Uint8Array(new Int32Array(i).buffer),G=new Uint8Array(new Int32Array(o).buffer),H=new Uint8Array(new Int32Array(S).buffer),X=new Uint8Array(new Int32Array(w.computeStrides(S)).buffer),q=t.dataIdMap.get(A.dataId).id;R2(R,B,y.shape.length,V,W,G,H,X,S.length,q)}t.disposeData(y.dataId);let $=Ma({inputs:{x:A},attrs:{shape:S},backend:t});return t.disposeData(A.dataId),$}var iae={kernelName:xl,backendName:"wasm",setupFunc:rae,kernelFunc:sae},oae=!0,lae=gn(hi,oae),M2;function uae(e){M2=e.wasm.cwrap(ci,null,["number, number, number"])}function cae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;M2(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var pae={kernelName:ci,backendName:"wasm",setupFunc:uae,kernelFunc:cae},dae=An(mi),P2;function hae(e){P2=e.wasm.cwrap(Ur,null,["number","array","number","array","number","number"])}function mae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(u.dataId).id;return P2(s,l,r.shape.length,c,o.length,Hn[u.dtype],p),u}var fae={kernelName:Ur,backendName:"wasm",setupFunc:hae,kernelFunc:mae},O2;function gae(e){O2=e.wasm.cwrap(wl,null,["number","array","number","number","number","bool","number","number"])}var yae=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(c.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return O2(i,o,a.shape.length,Hn[a.dtype],r,s,u,d),[c,p]},bae={kernelName:wl,backendName:"wasm",setupFunc:gae,kernelFunc:yae};function xae(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==s&&(l[c++]=r.shape[h]);let u=new Array(i),p=new Array(o).fill(0),d=r.shape.slice();d[s]=1;for(let h=0;h<u.length;h++)p[s]=h,u[h]=Vm({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return u.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var vae={kernelName:kl,backendName:"wasm",kernelFunc:xae};function wae(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var kae={kernelName:Il,backendName:"wasm",kernelFunc:wae},Iae=[VZ,GZ,qZ,tee,ree,lee,uee,cee,hee,mee,yee,vee,wee,Tee,Cee,Fee,Dee,Mee,Pee,Oee,zee,Vee,Uee,Hee,WZ,Kee,Jee,ete,ate,ite,lte,cte,KZ,hte,fte,yte,bte,vte,Ite,Nte,_te,Ate,Rte,Pte,Lte,zte,Vte,Hte,Kte,Yte,Zte,tne,ane,ine,lne,pne,mne,gne,bne,xne,vne,see,Ine,Sne,Ene,Ane,Fne,Rne,One,Bne,Wne,Hne,Kne,Yne,Jne,Qne,eae,aae,iae,lae,pae,dae,fae,bae,QZ,vae,kae];for(let e of Iae)hc(e);var Kv=ee();Kv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Kv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Kv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var L2=Io(J_()),Tae='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Nae=Io(Q_()),z2=class extends ju{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new rd(this,Ua())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(a)*w.bytesPerElement(n));return Sae(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Cae(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function B2(e,t,n){if(Um!=null)return Um;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),fp!=null&&fp[a]!=null?fp[a]:n+a}async function _ae(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=Tae,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?B2(e,t,gp!=null?gp:l):l+o},Xv&&(r.instantiateWasm=Cae(B2(e,t,gp!=null?gp:"")));let s=!1;r.onAbort=()=>{s||yp||(yp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Um==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+L2.default.toString()],{type:"text/javascript"}),i=(0,L2.default)(r)):i=(0,Nae.default)(r),i.then(o=>{s=!0,yp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function Sae(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Eae=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Um=null,gp=null,fp={},yp=!1,Xv=!1;function Fae(e,t=!1){if(xy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),yp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Um=e,Xv=t}function Aae(e,t=!1){if(yp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")gp=e;else{fp=e;let n=Eae.filter(a=>fp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Xv=t}var $ae="3.2.0",Dae=2;Jd("wasm",async()=>{let{wasm:e}=await _ae();return new z2(e)},Dae);var ww={};td(ww,{AnchorPosition:()=>ir,DrawBox:()=>qm,DrawBoxOptions:()=>cw,DrawFaceLandmarks:()=>vw,DrawFaceLandmarksOptions:()=>xw,DrawTextField:()=>fs,DrawTextFieldOptions:()=>wp,drawContour:()=>Nr,drawDetections:()=>Gae,drawFaceExpressions:()=>Kae,drawFaceLandmarks:()=>Yae});function Nr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var Yv={};td(Yv,{computeReshapedDimensions:()=>Zv,getCenterPoint:()=>Xi,isDimensions:()=>Hm,isEven:()=>Gm,isFloat:()=>Qv,isTensor:()=>qi,isTensor1D:()=>Rae,isTensor2D:()=>Jv,isTensor3D:()=>Sr,isTensor4D:()=>aa,isValidNumber:()=>Pa,isValidProbablitiy:()=>fu,range:()=>rr,round:()=>Ki});var yn=class{constructor(t,n){if(!Pa(t)||!Pa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new yn(1/this.width,1/this.height)}};function qi(e,t){return e instanceof Ee&&e.shape.length===t}function Rae(e){return qi(e,1)}function Jv(e){return qi(e,2)}function Sr(e){return qi(e,3)}function aa(e){return qi(e,4)}function Qv(e){return e%1!=0}function Gm(e){return e%2==0}function Ki(e,t=2){let n=10**t;return Math.floor(e*n)/n}function Hm(e){return e&&e.width&&e.height}function Zv({width:e,height:t},n){let a=n/Math.max(t,e);return new yn(Math.round(e*a),Math.round(t*a))}function Xi(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function rr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Pa(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function fu(e){return Pa(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var lt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Pa)}static assertIsValidBox(t,n,a=!1){if(!lt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Pa),s=[a.x,a.y,a.width,a.height].every(Pa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,c]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];lt.assertIsValidBox({x:i,y:o,width:l,height:c},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=c}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new lt({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new lt({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new lt({x:t,y:n,width:a,height:r})}rescale(t){let n=Hm(t)?t.width:t,a=Hm(t)?t.height:t;return new lt({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new lt({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),c=s-o,u=i-l,p=Math.min(c,t-o),d=Math.min(u,n-l);return new lt({x:o,y:l,width:p,height:d}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new lt({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,c=this.left,u=this.top,p=this.right,d=this.bottom;return p>n&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),c<1&&(l=2-c,c=1),u<1&&(l=2-u,u=1),{dy:i,edy:l,dx:s,edx:o,y:u,ey:d,x:c,ex:p,w:a,h:r}}calibrate(t){return new lt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var gu=class extends lt{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var ms=class{constructor(t,n,a,r,s){this._imageDims=new yn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new lt(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new lt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new ms(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var gt=class extends ms{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new gt(a,r,s)}};function ew(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function tw(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,Infinity),r=n.reduce((o,l)=>l<o?l:o,Infinity),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new gu(a,r,s,i)}function nw(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let c=0;c<o.length;c++){let u=o[c],p=e[i],d=e[u];l.push(ew(p,d,a))}r=r.filter((c,u)=>l[u]<=n)}return s}function Oa(e,t){return D(()=>{let[n,a,r]=t,s=Sn([...e.shape.slice(0,3),1],n,"float32"),i=Sn([...e.shape.slice(0,3),1],a,"float32"),o=Sn([...e.shape.slice(0,3),1],r,"float32"),l=Je([s,i,o],3);return me(e,l)})}function aw(e,t=!1){return D(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,Sn(h,0,"float32")},l=o(s),c=r-l.shape[i],p=[t&&c?o(c):null,e,l].filter(d=>!!d).map(d=>ue(d,"float32"));return Je(p,i)})}function Mae(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function bp(e){return 1/(1+Math.exp(-e))}function Pae(e){return Math.log(e/(1-e))}var yu=class extends lt{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Oae=.5,Lae=.43,zae=.45,ra=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new yn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof gt?t.box.floor():new lt(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/zae),l=Xi(t),c=Math.floor(Math.max(0,l.x-Oae*o)),u=Math.floor(Math.max(0,l.y-Lae*o));return new yu(c,u,Math.min(o,this.imageWidth+c),Math.min(o,this.imageHeight+u))}alignMinBbox(t){let n=tw(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var W2=class extends ra{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Xi([t[3],t[4]])]}};var bu=class extends ra{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Xi)}};var xp=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Ki(this.distance)})`:""}`}};var vp=class extends lt{static assertIsValidLabeledBox(t,n){if(lt.assertIsValidBox(t,n),!Pa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var Cr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new Cr(t.label,n)}};var V2=class extends vp{static assertIsValidPredictedBox(t,n){if(vp.assertIsValidLabeledBox(t,n),!fu(t.score)||!fu(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function sr(e){return e.detection instanceof gt}function Yi(e,t){return{...e,...{detection:t}}}function rw(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function jm(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function sw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=jm();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function iw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var ow=A_(G2()),Qt;function Vae(){if(!Qt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Qt}function lw(e){Qt=e}function uw(){return iw()?lw(rw()):(0,ow.isNodejs)()?lw(sw()):null}function Uae(e){if(Qt||uw(),!Qt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Qt.Canvas,Image:n=Qt.Image}=e;Qt.Canvas=t,Qt.Image=n,Qt.createCanvasElement=e.createCanvasElement||(()=>new t),Qt.createImageElement=e.createImageElement||(()=>new n),Qt.ImageData=e.ImageData||Qt.ImageData,Qt.Video=e.Video||Qt.Video,Qt.fetch=e.fetch||Qt.fetch,Qt.readFile=e.readFile||Qt.readFile}var rt={getEnv:Vae,setEnv:lw,initialize:uw,createBrowserEnv:rw,createFileSystem:jm,createNodejsEnv:sw,monkeyPatch:Uae,isBrowser:iw,isNodejs:ow.isNodejs};uw();function Ji(e){return!rt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function $n(e){let{Canvas:t,CanvasRenderingContext2D:n}=rt.getEnv();if(e instanceof n)return e;let a=Ji(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var ir;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(ir||(ir={}));var wp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||ir.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},fs=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof fs?t.text:t,this.anchor=n,this.options=new wp(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a===ir.BOTTOM_RIGHT||a===ir.TOP_RIGHT,s=a===ir.BOTTOM_LEFT||a===ir.BOTTOM_RIGHT,i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,c=s?this.anchor.y-o:this.anchor.y;if(n){let{width:u,height:p}=n,d=Math.max(Math.min(l,u-i),0),h=Math.max(Math.min(c,p-o),0);return{x:d,y:h}}return{x:l,y:c}}draw(t){let n=Ji(t),a=$n(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let c=this.measureWidth(a),u=this.measureHeight();a.fillStyle=r;let p=this.getUpperLeft(a,n);a.fillRect(p.x,p.y,c,u),a.fillStyle=s,this.text.forEach((d,h)=>{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var cw=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:ir.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new wp({...i,...s})}},qm=class{constructor(t,n={}){this.box=new lt(t),this.options=new cw(n)}draw(t){let n=$n(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:c}=this.options;c&&new fs([c],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Gae(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof gt?a.score:sr(a)?a.detection.score:void 0,s=a instanceof gt?a.box:sr(a)?a.detection.box:new lt(a),i=r?`${Ki(r)}`:void 0;new qm(s,{label:i}).draw(e)})}function kp(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function pw(e){return new Promise((t,n)=>{if(e instanceof rt.getEnv().Canvas||kp(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function dw(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=rt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Qi(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t?new yn(e.naturalWidth,e.naturalHeight):e instanceof n?new yn(e.videoWidth,e.videoHeight):new yn(e.width,e.height)}function Zi({width:e,height:t}){let{createCanvasElement:n}=rt.getEnv(),a=n();return a.width=e,a.height=t,a}function Ip(e,t){let{ImageData:n}=rt.getEnv();if(!(e instanceof n)&&!kp(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Qi(e),s=Zi({width:a,height:r});return e instanceof n?$n(s).putImageData(e,0,0):$n(s).drawImage(e,0,0,a,r),s}async function hw(e,t){let n=t||rt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(aa(e)?1:0),i=D(()=>e.as3D(a,r,s).toInt());return await ki.toPixels(i,n),i.dispose(),n}function Km(e){let{Image:t,Canvas:n,Video:a}=rt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function mw(e,t,n=!1){let{Image:a,Canvas:r}=rt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Zi({width:1,height:1});let s=Qi(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,c=Zi({width:t,height:t}),u=e instanceof r?e:Ip(e),p=Math.abs(o-l)/2,d=n&&o<l?p:0,h=n&&l<o?p:0;return u.width>0&&u.height>0&&$n(c).drawImage(u,d,h,o,l),c}var _r=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Sr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(aa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof rt.getEnv().Canvas?a:Ip(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return rr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return Zv({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,D(()=>{let a=rr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ee){let o=aa(i)?i:i.expandDims();return o=aw(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Xa.resizeBilinear(o,[t,t])),o.as3D(t,t,3)}if(i instanceof rt.getEnv().Canvas)return ki.fromPixels(mw(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return $t(a.map(s=>ue(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function ht(e){if(e instanceof _r)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Ji);return a.forEach((r,s)=>{if(!Km(r)&&!Sr(r)&&!aa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(aa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>Km(r)&&pw(r))),new _r(a,Array.isArray(e))}async function xu(e,t){let{Canvas:n}=rt.getEnv(),a=e;if(!(e instanceof n)){let i=await ht(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await hw(o)}let r=$n(a);return t.map(i=>i instanceof gt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:c})=>{let u=Zi({width:l,height:c});return l>0&&c>0&&$n(u).putImageData(r.getImageData(i,o,l,c),0,0),u})}async function vu(e,t){if(!Sr(e)&&!aa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(aa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return D(()=>{let[n,a,r]=e.shape.slice(aa(e)?1:0);return t.map(o=>o instanceof gt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:c,height:u})=>Bl(e.as3D(n,a,r),[l,o,0],[u,c,r]))})}async function eo(e,t){let{fetch:n}=rt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function Hae(e){let t=await eo(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return dw(n)}async function fw(e){return(await eo(e)).json()}async function jae(e){return new Float32Array(await(await eo(e)).arrayBuffer())}function Xm(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function gw(e,t){let{manifestUri:n,modelBaseUri:a}=Xm(e,t),r=await fw(n);return Ht.loadWeights(r,a)}function qae(e,t,n=!1){let{width:a,height:r}=n?Qi(t):t;return e.width=a,e.height=r,{width:a,height:r}}var sn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof Hr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof Hr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Yn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await gw(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=rt.getEnv(),{manifestUri:a,modelBaseUri:r}=Xm(t,this.getDefaultModelName()),s=c=>Promise.all(c.map(u=>n(u).then(p=>p.buffer))),i=Ht.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ee))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Dn(e,t,n){return D(()=>{let a=Ei(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=J(a,t.bias),a})}function Ym(e,t,n=!1){return D(()=>{let a=qe(n?J(Ft(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Dn(e,t.conv0,[2,2])),r=Dn(a,t.conv1,[1,1]),s=qe(J(a,r)),i=Dn(s,t.conv2,[1,1]);return qe(J(a,J(r,i)))})}function Tp(e,t,n=!1,a=!0){return D(()=>{let r=qe(n?J(Ft(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Dn(e,t.conv0,a?[2,2]:[1,1])),s=Dn(r,t.conv1,[1,1]),i=qe(J(r,s)),o=Dn(i,t.conv2,[1,1]),l=qe(J(r,J(s,o))),c=Dn(l,t.conv3,[1,1]);return qe(J(r,J(s,J(o,c))))})}function to(e,t,n="same",a=!1){return D(()=>{let r=J(Ft(e,t.filters,[1,1],n),t.bias);return a?qe(r):r})}function bn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function wu(e,t){return(n,a,r,s)=>{let i=Sa(e(n*a*r*r),[r,r,n,a]),o=Qe(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Jm(e,t){return(n,a,r)=>{let s=Na(e(n*a),[n,a]),i=Qe(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Qm=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function ku(e,t){return(n,a,r)=>{let s=Sa(e(3*3*n),[3,3,n,1]),i=Sa(e(n*a),[1,1,n,a]),o=Qe(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Qm(s,i,o)}}function Iu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Qm(n,a,r)}}function jn(e,t){return(n,a,r)=>{let s=e[n];if(!qi(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function xn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Zm(e,t){let n=wu(e,t),a=ku(e,t);function r(i,o,l,c=!1){let u=c?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:u,conv1:p,conv2:d}}function s(i,o,l,c=!1){let{conv0:u,conv1:p,conv2:d}=r(i,o,l,c),h=a(o,o,`${l}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function H2(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock4Params:r}=Zm(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function ef(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function tf(e,t){let n=jn(e,t),a=ef(n),r=Iu(n);function s(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:c,conv1:u,conv2:p}}function i(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:c,conv1:u,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function j2(e){let t=[],{extractDenseBlock4Params:n}=tf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return bn(e,t),{params:a,paramMappings:t}}var Np=class extends sn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(pe(255)),i=Tp(s,n.dense0,!0);return i=Tp(i,n.dense1),i=Tp(i,n.dense2),i=Tp(i,n.dense3),i=Qn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await ht(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return j2(t)}extractParams(t){return H2(t)}};function Sp(e,t){return D(()=>J(ze(e,t.weights),t.bias))}function q2(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=xn(e),o=Jm(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function K2(e){let t=[],n=jn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return bn(e,t),{params:r,paramMappings:t}}function nf(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Cp=class extends sn{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof _r?this.faceFeatureExtractor.forwardInput(t):t;return Sp(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return q2(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=nf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),K2(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var yw=["neutral","happy","sad","angry","fearful","disgusted","surprised"],gs=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);yw.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return yw.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var af=class extends Cp{constructor(t=new Np){super("FaceExpressionNet",t)}forwardInput(t){return D(()=>Ta(this.runNet(t)))}async forward(t){return this.forwardInput(await ht(t))}async predictExpressions(t){let n=await ht(t),a=await this.forwardInput(n),r=await Promise.all(ut(a).map(async i=>{let o=await i.data();return i.dispose(),o}));a.dispose();let s=r.map(i=>new gs(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function bw(e){return e.expressions instanceof gs}function rf(e,t){return{...e,...{expressions:t}}}function Kae(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof gs?s:bw(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),c=sr(s)?s.detection.box.bottomLeft:a||new De(0,0);new fs(l.map(p=>`${p.expression} (${Ki(p.probability)})`),c).draw(e)})}function no(e){return sr(e)&&e.landmarks instanceof ra&&e.unshiftedLandmarks instanceof ra&&e.alignedRect instanceof gt}function Xae(e){let t=(i,o,l,c)=>Math.atan2(c-o,l-i),n={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return n;let a=e._positions;n.roll=t(a[36]._x,a[36]._y,a[45]._x,a[45]._y),n.pitch=t(a[30]._x-a[0]._x,a[27]._y-a[0]._y,a[16]._x-a[30]._x,a[27]._y-a[16]._y);let r=a.reduce((i,o)=>i<o._y?i:o._y,Infinity),s=a.reduce((i,o)=>i>o._y?i:o._y,-Infinity);return n.yaw=10*(e._imgDims._height/(s-r)/1.45-1),n}function Tu(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new gt(e.detection.score,r.rescale(s.reverse()),s),o=Xae(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var xw=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},vw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new xw(n)}draw(t){let n=$n(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof bu&&(n.strokeStyle=i,n.lineWidth=s,Nr(n,this.faceLandmarks.getJawOutline()),Nr(n,this.faceLandmarks.getLeftEyeBrow()),Nr(n,this.faceLandmarks.getRightEyeBrow()),Nr(n,this.faceLandmarks.getNose()),Nr(n,this.faceLandmarks.getLeftEye(),!0),Nr(n,this.faceLandmarks.getRightEye(),!0),Nr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let c=u=>{n.beginPath(),n.arc(u.x,u.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(c)}}};function Yae(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ra?a:no(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new vw(r).draw(e)})}var X2="0.30.5";function Jae(e,t){let n=wu(e,t),a=ku(e,t);function r(i,o,l){let c=a(i,o,`${l}/separable_conv0`),u=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),c=a(i,i,`${o}/separable_conv1`),u=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function Y2(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=xn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Jae(a,n),c=s(3,32,3,"entry_flow/conv_in"),u=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:c,reduction_block_0:u,reduction_block_1:p},h={};rr(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function Qae(e,t){let n=jn(e,t),a=ef(n),r=Iu(n);function s(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:u}}function i(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function J2(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Qae(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),c=s("entry_flow/reduction_block_1"),u={conv_in:o,reduction_block_0:l,reduction_block_1:c},p={};rr(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return bn(e,n),{params:{entry_flow:u,middle_flow:p,exit_flow:m},paramMappings:n}}function Q2(e,t,n){return J(Ft(e,t.filters,n,"same"),t.bias)}function kw(e,t,n=!0){let a=n?qe(e):e;return a=Dn(a,t.separable_conv0,[1,1]),a=Dn(qe(a),t.separable_conv1,[1,1]),a=At(a,[3,3],[2,2],"same"),a=J(a,Q2(e,t.expansion_conv,[2,2])),a}function Zae(e,t){let n=Dn(qe(e),t.separable_conv0,[1,1]);return n=Dn(qe(n),t.separable_conv1,[1,1]),n=Dn(qe(n),t.separable_conv2,[1,1]),n=J(n,e),n}var Iw=class extends sn{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(pe(256)),i=qe(Q2(s,n.entry_flow.conv_in,[2,2]));return i=kw(i,n.entry_flow.reduction_block_0,!1),i=kw(i,n.entry_flow.reduction_block_1),rr(this._numMainBlocks,0,1).forEach(o=>{i=Zae(i,n.middle_flow[`main_block_${o}`])}),i=kw(i,n.exit_flow.reduction_block),i=qe(Dn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await ht(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return J2(t,this._numMainBlocks)}extractParams(t){return Y2(t,this._numMainBlocks)}};function Z2(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),r=Jm(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function eC(e){let t=[],n=jn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return bn(e,t),{params:r,paramMappings:t}}var Er;(function(e){e.FEMALE="female",e.MALE="male"})(Er||(Er={}));var sf=class extends sn{constructor(t=new Iw(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof _r?this.faceFeatureExtractor.forwardInput(t):t,r=Qn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Sp(r,n.fc.age).as1D(),i=Sp(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return D(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Ta(a)}})}async forward(t){return this.forwardInput(await ht(t))}async predictAgeAndGender(t){let n=await ht(t),a=await this.forwardInput(n),r=ut(a.age),s=ut(a.gender),i=r.map((l,c)=>({ageTensor:l,genderTensor:s[c]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:c})=>{let u=(await l.data())[0],p=(await c.data())[0],d=p>.5,h=d?Er.MALE:Er.FEMALE,m=d?p:1-p;return l.dispose(),c.dispose(),{age:u,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return Z2(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=nf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),eC(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var _p=class extends Cp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return D(()=>{let i=(p,d)=>$t([Sn([68],p,"float32"),Sn([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>d<h),c=p=>o(p,(d,h)=>h<d);return t.mul(Sn([s,136],n,"float32")).sub($t(Array.from(Array(s),(p,d)=>i(l(d),c(d))))).div($t(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return D(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await ht(t))}async detectLandmarks(t){let n=await ht(t),a=D(()=>ut(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(await s.data()),l=o.filter((u,p)=>Gm(p)),c=o.filter((u,p)=>!Gm(p));return new bu(Array(68).fill(0).map((u,p)=>new De(l[p],c[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var Nu=class extends _p{constructor(t=new Np){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function tC(e){let t=[],{extractDenseBlock3Params:n}=tf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return bn(e,t),{params:a,paramMappings:t}}function nC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock3Params:r}=Zm(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var Tw=class extends sn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(pe(255)),i=Ym(s,n.dense0,!0);return i=Ym(i,n.dense1),i=Ym(i,n.dense2),i=Qn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await ht(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return tC(t)}extractParams(t){return nC(t)}};var of=class extends _p{constructor(t=new Tw){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var aC=class extends Nu{};function rC(e,t){return J(L(e,t.weights),t.biases)}function Nw(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Ft(e,s,n,r);return o=J(o,i),o=rC(o,t.scale),a?qe(o):o}function sC(e,t){return Nw(e,t,[1,1],!0)}function Sw(e,t){return Nw(e,t,[1,1],!1)}function lf(e,t){return Nw(e,t,[2,2],!0,"valid")}function ere(e,t){function n(o,l,c){let u=e(o),p=u.length/(l*c*c);if(Qv(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${u.length}, numFilters: ${l}, filterSize: ${c}`);return D(()=>Ve(Sa(u,[l,p,c,c]),[2,3,1,0]))}function a(o,l,c,u){let p=n(o,l,c),d=Qe(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:p,bias:d}}function r(o,l){let c=Qe(e(o)),u=Qe(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:u}}function s(o,l,c,u){let p=a(o,l,c,`${u}/conv`),d=r(l,`${u}/scale`);return{conv:p,scale:d}}function i(o,l,c,u,p=!1){let d=s((p?.5:1)*o,l,c,`${u}/conv1`),h=s(o,l,c,`${u}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function iC(e){let{extractWeights:t,getRemainingWeights:n}=xn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=ere(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),c=s(9216,32,3,"conv32_3"),u=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),N=D(()=>Ve(Na(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:c,conv64_down:u,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:v,fc:N},paramMappings:a}}function tre(e,t){let n=jn(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),c=a(i);return{conv:{filters:o,bias:l},scale:c}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function oC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=tre(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),c=a("conv64_1"),u=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!Jv(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:c,conv64_2:u,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return bn(e,t),{params:v,paramMappings:t}}function La(e,t){let n=sC(e,t.conv1);return n=Sw(n,t.conv2),n=J(n,e),n=qe(n),n}function Ep(e,t){let n=lf(e,t.conv1);n=Sw(n,t.conv2);let a=Qn(e,2,2,"valid"),r=xt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=xt(o);n=Je([n,l],1);let c=[...n.shape];c[2]=1;let u=xt(c);n=Je([n,u],2)}return a=s?Je([a,r],3):a,n=J(a,n),n=qe(n),n}var Su=class extends sn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(150,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(pe(256)),i=lf(s,n.conv32_down);i=At(i,3,2,"valid"),i=La(i,n.conv32_1),i=La(i,n.conv32_2),i=La(i,n.conv32_3),i=Ep(i,n.conv64_down),i=La(i,n.conv64_1),i=La(i,n.conv64_2),i=La(i,n.conv64_3),i=Ep(i,n.conv128_down),i=La(i,n.conv128_1),i=La(i,n.conv128_2),i=Ep(i,n.conv256_down),i=La(i,n.conv256_1),i=La(i,n.conv256_2),i=Ep(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await ht(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await ht(t),a=D(()=>ut(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return oC(t)}extractParams(t){return iC(t)}};function nre(e){let t=new Su;return t.extractWeights(e),t}function uf(e,t){return{...e,...{descriptor:t}}}function are(e){return typeof e.age=="number"}function cf(e,t){return{...e,...{age:t}}}function rre(e){return(e.gender===Er.MALE||e.gender===Er.FEMALE)&&fu(e.genderProbability)}function pf(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function sre(e,t){function n(l,c){let u=Sa(e(3*3*l),[3,3,l,1]),p=Qe(e(l)),d=Qe(e(l)),h=Qe(e(l)),m=Qe(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:u,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,c,u,p,d){let h=Sa(e(l*c*u*u),[u,u,l,c]),m=Qe(e(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,c,u,p){let{filters:d,bias:h}=a(l,c,u,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,c,u){let p=n(l,`${u}/depthwise_conv`),d=r(l,c,1,`${u}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),c=s(32,64,"mobilenetv1/conv_1"),u=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),N=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:v,conv_13:N}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),c=r(256,512,3,"prediction_layer/conv_1"),u=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),N=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),S=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),A=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),$=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),R=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),B=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:N},box_predictor_3:{box_encoding_predictor:T,class_predictor:S},box_predictor_4:{box_encoding_predictor:A,class_predictor:$},box_predictor_5:{box_encoding_predictor:R,class_predictor:B}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function lC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=sre(n,t),i=r(),o=s(),c={extra_dim:Kd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:c},paramMappings:t}}function ire(e,t){let n=jn(e,t);function a(c,u,p){let d=n(`${c}/Conv2d_${u}_pointwise/weights`,4,`${p}/filters`),h=n(`${c}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(c){let u=`mobilenetv1/conv_${c}`,p=`MobilenetV1/Conv2d_${c}_depthwise`,d=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",c,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(c,u){let p=n(`${c}/weights`,4,`${u}/filters`),d=n(`${c}/biases`,1,`${u}/bias`);return{filters:p,bias:d}}function o(c){let u=i(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:u,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function uC(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=ire(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Sr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return bn(e,t),{params:s,paramMappings:t}}function xa(e,t,n){return D(()=>{let a=Ft(e,t.filters,n,"same");return a=J(a,t.batch_norm_offset),qt(a,0,6)})}var ore=.0010000000474974513;function lre(e,t,n){return D(()=>{let a=Qr(e,t.filters,n,"same");return a=fr(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,ore),qt(a,0,6)})}function ure(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function cC(e,t){return D(()=>{let n,a=xa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=ure(o);a=lre(a,s.depthwise_conv,l),a=xa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function cre(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),c=Math.min(a[n][1],a[n][3]),u=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(u-l)*(p-c);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,c),g=Math.min(i,u),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function pC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((u,p)=>({score:u,boxIndex:p})).filter(u=>u.score>r).sort((u,p)=>p.score-u.score),l=u=>u<=a?1:0,c=[];return o.forEach(u=>{if(c.length>=i)return;let p=u.score;for(let d=c.length-1;d>=0;--d){let h=cre(e,u.boxIndex,c[d]);if(h!==0&&(u.score*=l(h),u.score<=r))break}p===u.score&&c.push(u.boxIndex)}),c}function pre(e){let t=ut(Ve(e,[1,0])),n=[me(t[2],t[0]),me(t[3],t[1])],a=[J(t[0],xe(n[0],pe(2))),J(t[1],xe(n[1],pe(2)))];return{sizes:n,centers:a}}function dre(e,t){let{sizes:n,centers:a}=pre(e),r=ut(Ve(t,[1,0])),s=xe(L(dn(xe(r[2],pe(5))),n[0]),pe(2)),i=J(L(xe(r[0],pe(10)),n[0]),a[0]),o=xe(L(dn(xe(r[3],pe(5))),n[1]),pe(2)),l=J(L(xe(r[1],pe(10)),n[1]),a[1]);return Ve($t([me(i,s),me(l,o),J(i,s),J(l,o)]),[1,0])}function dC(e,t,n){return D(()=>{let a=e.shape[0],r=dre(U(Ha(n.extra_dim,[a,1,1]),[-1,4]),U(e,[-1,4]));r=U(r,[a,r.shape[0]/a,4]);let s=ca(We(t,[0,0,1],[-1,-1,-1])),i=We(s,[0,0,0],[-1,-1,1]);i=U(i,[a,i.shape[1]]);let o=ut(r),l=ut(i);return{boxes:o,scores:l}})}function ao(e,t){return D(()=>{let n=e.shape[0],a=U(to(e,t.box_encoding_predictor),[n,-1,1,4]),r=U(to(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function hC(e,t,n){return D(()=>{let a=xa(e,n.conv_0,[1,1]),r=xa(a,n.conv_1,[2,2]),s=xa(r,n.conv_2,[1,1]),i=xa(s,n.conv_3,[2,2]),o=xa(i,n.conv_4,[1,1]),l=xa(o,n.conv_5,[2,2]),c=xa(l,n.conv_6,[1,1]),u=xa(c,n.conv_7,[2,2]),p=ao(t,n.box_predictor_0),d=ao(e,n.box_predictor_1),h=ao(r,n.box_predictor_2),m=ao(i,n.box_predictor_3),f=ao(l,n.box_predictor_4),g=ao(u,n.box_predictor_5),y=Je([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Je([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var va=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ro=class extends sn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(512,!1),"float32"),r=me(L(a,pe(.007843137718737125)),pe(1)),s=cC(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=hC(s.out,s.conv11,n.prediction_layer);return dC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await ht(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new va(n),s=await ht(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],c=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let u=Array.from(await c.data()),d=pC(l,u,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=d.map(x=>{let[v,N]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(A=>A*g),[T,S]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(A=>A*f);return new gt(u[x],new yu(T,v,S-T,N-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),c.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return uC(t)}extractParams(t){return lC(t)}};function mC(e){let t=new ro;return t.extractWeights(e),t}function hre(e){return mC(e)}var fC=class extends ro{};var gC=.4,yC=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],bC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],xC=[117.001,114.697,97.404],vC="tiny_yolov2_model",wC="tiny_yolov2_separable_conv_model";var df=e=>typeof e=="number";function Cw(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!df(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>df(t.x)&&df(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(df)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Cu(e){return D(()=>{let t=L(e,pe(.10000000149011612));return J(qe(me(e,t)),t)})}function Fr(e,t){return D(()=>{let n=ea(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ft(n,t.conv.filters,[1,1],"valid"),n=me(n,t.bn.sub),n=L(n,t.bn.truediv),n=J(n,t.conv.bias),Cu(n)})}function Ar(e,t){return D(()=>{let n=ea(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ei(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=J(n,t.bias),Cu(n)})}function mre(e,t){let n=wu(e,t);function a(i,o){let l=Qe(e(i)),c=Qe(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:c}}function r(i,o,l){let c=n(i,o,3,`${l}/conv`),u=a(o,`${l}/bn`);return{conv:c,bn:u}}let s=ku(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function kC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=xn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=mre(r,i),u;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,x]=a,v=t.isFirstLayerConv2d?o(p,d,3,"conv0"):c(p,d,"conv0"),N=c(d,h,"conv1"),T=c(h,m,"conv2"),S=c(m,f,"conv3"),A=c(f,g,"conv4"),$=c(g,y,"conv5"),R=b?c(y,b,"conv6"):void 0,B=x?c(b,x,"conv7"):void 0,V=o(x||b||y,5*n,1,"conv8");u={conv0:v,conv1:N,conv2:T,conv3:S,conv4:A,conv5:$,conv6:R,conv7:B,conv8:V}}else{let[p,d,h,m,f,g,y,b,x]=a,v=l(p,d,"conv0"),N=l(d,h,"conv1"),T=l(h,m,"conv2"),S=l(m,f,"conv3"),A=l(f,g,"conv4"),$=l(g,y,"conv5"),R=l(y,b,"conv6"),B=l(b,x,"conv7"),V=o(x,5*n,1,"conv8");u={conv0:v,conv1:N,conv2:T,conv3:S,conv4:A,conv5:$,conv6:R,conv7:B,conv8:V}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:u,paramMappings:i}}function fre(e,t){let n=jn(e,t);function a(o){let l=n(`${o}/sub`,1),c=n(`${o}/truediv`,1);return{sub:l,truediv:c}}function r(o){let l=n(`${o}/filters`,4),c=n(`${o}/bias`,1);return{filters:l,bias:c}}function s(o){let l=r(`${o}/conv`),c=a(`${o}/bn`);return{conv:l,bn:c}}let i=Iu(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function IC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=fre(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return bn(e,n),{params:i,paramMappings:n}}var or=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var _w=class extends sn{constructor(t){super("TinyYolov2");Cw(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Fr(t,n.conv0);return a=At(a,[2,2],[2,2],"same"),a=Fr(a,n.conv1),a=At(a,[2,2],[2,2],"same"),a=Fr(a,n.conv2),a=At(a,[2,2],[2,2],"same"),a=Fr(a,n.conv3),a=At(a,[2,2],[2,2],"same"),a=Fr(a,n.conv4),a=At(a,[2,2],[2,2],"same"),a=Fr(a,n.conv5),a=At(a,[2,2],[1,1],"same"),a=Fr(a,n.conv6),a=Fr(a,n.conv7),to(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Cu(to(t,n.conv0,"valid",!1)):Ar(t,n.conv0);return a=At(a,[2,2],[2,2],"same"),a=Ar(a,n.conv1),a=At(a,[2,2],[2,2],"same"),a=Ar(a,n.conv2),a=At(a,[2,2],[2,2],"same"),a=Ar(a,n.conv3),a=At(a,[2,2],[2,2],"same"),a=Ar(a,n.conv4),a=At(a,[2,2],[2,2],"same"),a=Ar(a,n.conv5),a=At(a,[2,2],[1,1],"same"),a=n.conv6?Ar(a,n.conv6):a,a=n.conv7?Ar(a,n.conv7):a,to(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return D(()=>{let r=ue(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?Oa(r,this.config.meanRgb):r,r=r.div(pe(256)),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await ht(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new or(n),s=await ht(t),i=await this.forwardInput(s,a),o=D(()=>ut(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},c=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let u=c.map(g=>g.box),p=c.map(g=>g.score),d=c.map(g=>g.classScore),h=c.map(g=>this.config.classes[g.label]);return nw(u.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new ms(p[g],d[g],h[g],u[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return IC(t,this.config)}extractParams(t){let n=this.config.filterSizes||_w.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return kC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,c=t.shape[1],u=this.config.anchors.length,[p,d,h]=D(()=>{let y=t.reshape([c,c,u,this.boxEncodingSize]),b=y.slice([0,0,0,0],[c,c,u,4]),x=y.slice([0,0,0,4],[c,c,u,1]),v=this.withClassScores?Ta(y.slice([0,0,0,5],[c,c,u,this.config.classes.length]),3):pe(0);return[b,x,v]}),m=[],f=await d.array(),g=await p.array();for(let y=0;y<c;y++)for(let b=0;b<c;b++)for(let x=0;x<u;x++){let v=bp(f[y][b][x][0]);if(!a||v>a){let N=(b+bp(g[y][b][x][0]))/c*o,T=(y+bp(g[y][b][x][1]))/c*l,S=Math.exp(g[y][b][x][2])*this.config.anchors[x].x/c*o,A=Math.exp(g[y][b][x][3])*this.config.anchors[x].y/c*l,$=N-S/2,R=T-A/2,B={row:y,col:b,anchor:x},{classScore:V,label:W}=this.withClassScores?await this.extractPredictedClass(h,B):{classScore:1,label:0};m.push({box:new gu($,R,$+S,R+A),score:v,classScore:v*V,label:W,...B})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},_u=_w;_u.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Eu=class extends _u{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:gC,classes:["face"],...t?{anchors:bC,meanRgb:xC}:{anchors:yC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new gt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?wC:vC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function gre(e,t=!0){let n=new Eu(t);return n.extractWeights(e),n}var hf=class extends or{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var wa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function so(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>no(l)?r(l):l.detection),i=a||(t instanceof Ee?await vu(t,s):await xu(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ee&&l.dispose()),o}async function Fu(e,t,n,a,r){return so([e],t,async s=>n(s[0]),a,r)}var TC=.4,NC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],SC=[117.001,114.697,97.404];var Au=class extends _u{constructor(){let t={withSeparableConvs:!0,iouThreshold:TC,classes:["face"],anchors:NC,meanRgb:SC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new gt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var Ze={ssdMobilenetv1:new ro,tinyFaceDetector:new Au,tinyYolov2:new Eu,faceLandmark68Net:new Nu,faceLandmark68TinyNet:new of,faceRecognitionNet:new Su,faceExpressionNet:new af,ageGenderNet:new sf},CC=(e,t)=>Ze.ssdMobilenetv1.locateFaces(e,t),yre=(e,t)=>Ze.tinyFaceDetector.locateFaces(e,t),bre=(e,t)=>Ze.tinyYolov2.locateFaces(e,t),_C=e=>Ze.faceLandmark68Net.detectLandmarks(e),xre=e=>Ze.faceLandmark68TinyNet.detectLandmarks(e),vre=e=>Ze.faceRecognitionNet.computeFaceDescriptor(e),wre=e=>Ze.faceExpressionNet.predictExpressions(e),kre=e=>Ze.ageGenderNet.predictAgeAndGender(e),EC=e=>Ze.ssdMobilenetv1.load(e),Ire=e=>Ze.tinyFaceDetector.load(e),Tre=e=>Ze.tinyYolov2.load(e),Nre=e=>Ze.faceLandmark68Net.load(e),Sre=e=>Ze.faceLandmark68TinyNet.load(e),Cre=e=>Ze.faceRecognitionNet.load(e),_re=e=>Ze.faceExpressionNet.load(e),Ere=e=>Ze.ageGenderNet.load(e),Fre=EC,Are=CC,$re=_C;var Ew=class extends wa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Ru=class extends Ew{async run(){let t=await this.parentTask,n=await so(t,this.input,async a=>Promise.all(a.map(r=>Ze.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>rf(a,n[r]))}withAgeAndGender(){return new $u(this,this.input)}},Mu=class extends Ew{async run(){let t=await this.parentTask;if(!t)return;let n=await Fu(t,this.input,a=>Ze.faceExpressionNet.predictExpressions(a),this.extractedFaces);return rf(t,n)}withAgeAndGender(){return new Du(this,this.input)}},lo=class extends Ru{withAgeAndGender(){return new io(this,this.input)}withFaceDescriptors(){return new ys(this,this.input)}},uo=class extends Mu{withAgeAndGender(){return new oo(this,this.input)}withFaceDescriptor(){return new bs(this,this.input)}};var Fw=class extends wa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},$u=class extends Fw{async run(){let t=await this.parentTask,n=await so(t,this.input,async a=>Promise.all(a.map(r=>Ze.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return cf(pf(a,i,o),s)})}withFaceExpressions(){return new Ru(this,this.input)}},Du=class extends Fw{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Fu(t,this.input,s=>Ze.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return cf(pf(t,a,r),n)}withFaceExpressions(){return new Mu(this,this.input)}},io=class extends $u{withFaceExpressions(){return new lo(this,this.input)}withFaceDescriptors(){return new ys(this,this.input)}},oo=class extends Du{withFaceExpressions(){return new uo(this,this.input)}withFaceDescriptor(){return new bs(this,this.input)}};var mf=class extends wa{constructor(t,n){super();this.parentTask=t;this.input=n}},ys=class extends mf{async run(){let t=await this.parentTask;return(await so(t,this.input,a=>Promise.all(a.map(r=>Ze.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>uf(t[r],a))}withFaceExpressions(){return new lo(this,this.input)}withAgeAndGender(){return new io(this,this.input)}},bs=class extends mf{async run(){let t=await this.parentTask;if(!t)return;let n=await Fu(t,this.input,a=>Ze.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return uf(t,n)}withFaceExpressions(){return new uo(this,this.input)}withAgeAndGender(){return new oo(this,this.input)}};var ff=class extends wa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?Ze.faceLandmark68TinyNet:Ze.faceLandmark68Net}},gf=class extends ff{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ee?await vu(this.input,n):await xu(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ee&&s.dispose()),t.map((s,i)=>Tu(s,r[i]))}withFaceExpressions(){return new lo(this,this.input)}withAgeAndGender(){return new io(this,this.input)}withFaceDescriptors(){return new ys(this,this.input)}},yf=class extends ff{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ee?await vu(this.input,[n]):await xu(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ee&&s.dispose()),Tu(t,r)}withFaceExpressions(){return new uo(this,this.input)}withAgeAndGender(){return new oo(this,this.input)}withFaceDescriptor(){return new bs(this,this.input)}};var bf=class extends wa{constructor(t,n=new va){super();this.input=t;this.options=n}},Fp=class extends bf{async run(){let{input:t,options:n}=this,a;if(n instanceof hf)a=Ze.tinyFaceDetector.locateFaces(t,n);else if(n instanceof va)a=Ze.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof or)a=Ze.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>Yi({},a)))})}withFaceLandmarks(t=!1){return new gf(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Ru(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new $u(this.runAndExtendWithFaceDetections(),this.input)}},xf=class extends bf{async run(){let t=await new Fp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Yi({},n):void 0)})}withFaceLandmarks(t=!1){return new yf(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Mu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Du(this.runAndExtendWithFaceDetection(),this.input)}};function Dre(e,t=new va){return new xf(e,t)}function vf(e,t=new va){return new Fp(e,t)}async function FC(e,t){return vf(e,new va(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Rre(e,t={}){return vf(e,new or(t)).withFaceLandmarks().withFaceDescriptors()}var Mre=FC;function Aw(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var wf=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof Cr)return i;if(i instanceof Float32Array)return new Cr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new Cr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>Aw(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new xp(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this.distanceThreshold?n:new xp("unknown",n.distance)}toJSON(){return{distanceThreshold:this.distanceThreshold,labeledDescriptors:this.labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>Cr.fromJSON(a));return new wf(n,t.distanceThreshold)}};function Pre(e){let t=new Au;return t.extractWeights(e),t}function AC(e,t){let{width:n,height:a}=new yn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>AC(r,{width:n,height:a}));if(no(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Tu(Yi(e,r),s)}return sr(e)?Yi(e,e.detection.forSize(n,a)):e instanceof ra||e instanceof gt?e.forSize(n,a):e}var Ore=typeof process!="undefined",Lre=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",zre={faceapi:X2,node:Ore,browser:Lre};export{sf as AgeGenderNet,gu as BoundingBox,lt as Box,wa as ComposableTask,ys as ComputeAllFaceDescriptorsTask,mf as ComputeFaceDescriptorsTaskBase,bs as ComputeSingleFaceDescriptorTask,gf as DetectAllFaceLandmarksTask,Fp as DetectAllFacesTask,ff as DetectFaceLandmarksTaskBase,bf as DetectFacesTaskBase,yf as DetectSingleFaceLandmarksTask,xf as DetectSingleFaceTask,yn as Dimensions,yw as FACE_EXPRESSION_LABELS,gt as FaceDetection,fC as FaceDetectionNet,af as FaceExpressionNet,gs as FaceExpressions,Nu as FaceLandmark68Net,of as FaceLandmark68TinyNet,aC as FaceLandmarkNet,ra as FaceLandmarks,W2 as FaceLandmarks5,bu as FaceLandmarks68,xp as FaceMatch,wf as FaceMatcher,Su as FaceRecognitionNet,Er as Gender,vp as LabeledBox,Cr as LabeledFaceDescriptors,_r as NetInput,sn as NeuralNetwork,ms as ObjectDetection,De as Point,V2 as PredictedBox,yu as Rect,ro as SsdMobilenetv1,va as SsdMobilenetv1Options,Au as TinyFaceDetector,hf as TinyFaceDetectorOptions,Eu as TinyYolov2,or as TinyYolov2Options,Mre as allFaces,FC as allFacesSsdMobilenetv1,Rre as allFacesTinyYolov2,pw as awaitMediaLoaded,dw as bufferToImage,vre as computeFaceDescriptor,Zi as createCanvas,Ip as createCanvasFromMedia,hre as createFaceDetectionNet,nre as createFaceRecognitionNet,mC as createSsdMobilenetv1,Pre as createTinyFaceDetector,gre as createTinyYolov2,vf as detectAllFaces,_C as detectFaceLandmarks,xre as detectFaceLandmarksTiny,$re as detectLandmarks,Dre as detectSingleFace,ww as draw,rt as env,Aw as euclideanDistance,cf as extendWithAge,uf as extendWithFaceDescriptor,Yi as extendWithFaceDetection,rf as extendWithFaceExpressions,Tu as extendWithFaceLandmarks,pf as extendWithGender,vu as extractFaceTensors,xu as extractFaces,Hae as fetchImage,fw as fetchJson,jae as fetchNetWeights,eo as fetchOrThrow,$n as getContext2dOrThrow,Qi as getMediaDimensions,hw as imageTensorToCanvas,mw as imageToSquare,Pae as inverseSigmoid,ew as iou,Km as isMediaElement,kp as isMediaLoaded,are as isWithAge,sr as isWithFaceDetection,bw as isWithFaceExpressions,no as isWithFaceLandmarks,rre as isWithGender,Ere as loadAgeGenderModel,Fre as loadFaceDetectionModel,_re as loadFaceExpressionModel,Nre as loadFaceLandmarkModel,Sre as loadFaceLandmarkTinyModel,Cre as loadFaceRecognitionModel,EC as loadSsdMobilenetv1Model,Ire as loadTinyFaceDetectorModel,Tre as loadTinyYolov2Model,gw as loadWeightMap,Are as locateFaces,qae as matchDimensions,tw as minBbox,Ze as nets,nw as nonMaxSuppression,Oa as normalize,aw as padToSquare,kre as predictAgeAndGender,wre as recognizeFaceExpressions,AC as resizeResults,Ji as resolveInput,Mae as shuffleArray,bp as sigmoid,CC as ssdMobilenetv1,Og as tf,yre as tinyFaceDetector,bre as tinyYolov2,ht as toNetInput,Yv as utils,Cw as validateConfig,zre as version};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=face-api.esm.js.map
|